{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# set width = 100%\n", "from IPython.core.display import display, HTML\n", "display(HTML(\"\"))" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", "from pandas.plotting import scatter_matrix\n", "import seaborn as sns\n", "import os" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Data Exploration" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Duplicate entries: 2159\n", "Nan Count:\n", "acousticness 0\n", "artists 0\n", "danceability 0\n", "duration_ms 0\n", "energy 0\n", "explicit 0\n", "id 0\n", "instrumentalness 0\n", "key 0\n", "liveness 0\n", "loudness 0\n", "mode 0\n", "name 0\n", "popularity 0\n", "release_date 0\n", "speechiness 0\n", "tempo 0\n", "valence 0\n", "year 0\n", "dtype: int64\n", "\n", "Int64Index: 172230 entries, 0 to 174387\n", "Data columns (total 19 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 acousticness 172230 non-null float64\n", " 1 artists 172230 non-null object \n", " 2 danceability 172230 non-null float64\n", " 3 duration_ms 172230 non-null int64 \n", " 4 energy 172230 non-null float64\n", " 5 explicit 172230 non-null int64 \n", " 6 id 172230 non-null object \n", " 7 instrumentalness 172230 non-null float64\n", " 8 key 172230 non-null int64 \n", " 9 liveness 172230 non-null float64\n", " 10 loudness 172230 non-null float64\n", " 11 mode 172230 non-null int64 \n", " 12 name 172230 non-null object \n", " 13 popularity 172230 non-null int64 \n", " 14 release_date 172230 non-null object \n", " 15 speechiness 172230 non-null float64\n", " 16 tempo 172230 non-null float64\n", " 17 valence 172230 non-null float64\n", " 18 year 172230 non-null int64 \n", "dtypes: float64(9), int64(6), object(4)\n", "memory usage: 26.3+ MB\n" ] } ], "source": [ "data = pd.read_csv(\"data/data.csv\")\n", "print(\"Duplicate entries:\", sum(data.duplicated()))\n", "# remove duplicated data\n", "data = data.drop_duplicates()\n", "print(\"Nan Count:\")\n", "print(data.isna().sum())\n", "data.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## split data and ensure y coverage" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'popularity')" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaa0lEQVR4nO3df5Bd5X3f8fdHgIVAxoba3upXIrURJIBsCDuKYjftYpyi2rQimWCLYCMCGWUYnICrTi3sP2TGoxk6YwzGNrSywRKxkSIbO6j8iINV39iJAVkQwiJk2RprC0KqFGwHtG5RkPTtH+eRdFjd3XP37p7763xeMzt77nPPj+fZvXs/+zzPOecqIjAzMxvLlHZXwMzMOp/DwszMCjkszMyskMPCzMwKOSzMzKyQw8LMzAqVFhaSTpW0RdI/SNom6ZZUfpakxyT9JH0/M7fNzZJ2Stoh6dJc+UWSBtNzd0pSWfU2M7MTldmzOAi8NyLeBVwALJa0CFgJbI6I+cDm9BhJ5wJLgfOAxcBdkk5K+7obWA7MT1+LS6y3mZmNUFpYRGY4PTwlfQWwBFiXytcBl6flJcCGiDgYEbuAncBCSTOAMyLi8ciuILwvt42ZmbXAyWXuPPUMngJ+DfhiRDwpqS8i9gJExF5J70irzwKeyG2+O5W9npZHltc73nKyHgjTpk27aM6cOU3V+8jh15ly5PXswSmnNbWPbnPkyBGmTKneFFYV213FNkM1291Mm3/84x+/HBFvH1lealhExGHgAklvBb4l6fwxVq83DxFjlNc73hpgDUB/f39s3bp1fBVOauvvYGDHquzBp15sah/dplarMTAw0O5qtFwV213FNkM1291MmyX973rlLYnZiPgnoEY217AvDS2Rvu9Pq+0G8l2B2cCeVD67TrmZmbVImWdDvT31KJA0DXgf8CNgE7AsrbYMeDAtbwKWSpoqaR7ZRPaWNGR1QNKidBbU1bltzMysBcochpoBrEvzFlOAjRHxkKTHgY2SrgNeAK4AiIhtkjYCzwOHgBvSMBbA9cBaYBrwaPoyM7MWKS0sIuJZ4MI65T8DLhllm9XA6jrlW4Gx5jvMzKxE1To1wMzMmuKwMDOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOCzMzK+SwMDOzQg4LMzMrVOpdZ3vB3JUPH1seuvUDbayJmVn7uGdhZmaFHBZmZlbIYWFmZoUcFmZmVshhYWZmhRwWZmZWyGFhZmaFHBZmZlbIYWFmZoUcFmZmVshhYWZmhRwWZmZWyGFhZmaFHBZmZlbIYWFmZoUcFmZmVshhYWZmhUoLC0lzJH1X0nZJ2yTdmMo/JeklSc+kr/fntrlZ0k5JOyRdmiu/SNJgeu5OSSqr3mZmdqIyP1b1ELAiIp6W9GbgKUmPpeduj4jP5FeWdC6wFDgPmAl8R9LZEXEYuBtYDjwBPAIsBh4tse5mZpZTWs8iIvZGxNNp+QCwHZg1xiZLgA0RcTAidgE7gYWSZgBnRMTjERHAfcDlZdXbzMxO1JI5C0lzgQuBJ1PRRyU9K+leSWemslnAi7nNdqeyWWl5ZLmZmbVImcNQAEiaDjwA3BQRr0q6G/g0EOn7bcC1QL15iBijvN6xlpMNV9HX10etVmuqzsNTZ1I75xYAVhw5dKy82f11g+Hh4Z5u32iq2O4qthmq2e7JbHOpYSHpFLKg+FpEfBMgIvblnv8S8FB6uBuYk9t8NrAnlc+uU36CiFgDrAHo7++PgYGBpupdW38HAztWAXDNa/cfKx+6qrn9dYNarUazP69uVsV2V7HNUM12T2abyzwbSsA9wPaI+GyufEZutd8DnkvLm4ClkqZKmgfMB7ZExF7ggKRFaZ9XAw+WVW8zMztRmT2L9wAfAQYlPZPKPgFcKekCsqGkIeBPACJim6SNwPNkZ1LdkM6EArgeWAtMIzsLymdCmZm1UGlhERF/S/35hkfG2GY1sLpO+Vbg/MmrnZmZjYev4DYzs0IOCzMzK+SwMDOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOCzMzK+SwMDOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOCzMzK+SwMDOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOCzMzK3RyuytgNpnmrnz42PLQrR9oY03MeovDwrpOPhDAoWDWCh6GMjOzQu5ZWFcY2Zsws9Zyz8LMzAo5LMzMrJCHoaxjeejJrHM4LKzrOVTMylfaMJSkOZK+K2m7pG2SbkzlZ0l6TNJP0vczc9vcLGmnpB2SLs2VXyRpMD13pySVVW8zMztRmXMWh4AVEfEbwCLgBknnAiuBzRExH9icHpOeWwqcBywG7pJ0UtrX3cByYH76Wlxivc3MbITSwiIi9kbE02n5ALAdmAUsAdal1dYBl6flJcCGiDgYEbuAncBCSTOAMyLi8YgI4L7cNmZm1gLK3n9LPog0F/gecD7wQkS8NffcLyLiTElfAJ6IiK+m8nuAR4Eh4NaIeF8q/x3g4xFxWZ3jLCfrgdDX13fRhg0bmqrv8M/3M/3gHgAGj8w7Vr5g1lua2l83GB4eZvr06e2uxhsMvvTKhLZv5PfVie0uWxXbDNVsdzNtvvjii5+KiP6R5aVPcEuaDjwA3BQRr44x3VDviRij/MTCiDXAGoD+/v4YGBgYd30BauvvYGDHKgCuee3+Y+VDVzW3v25Qq9Vo9udVlmsmOHHdyO+rE9tdtiq2GarZ7slsc6nXWUg6hSwovhYR30zF+9LQEun7/lS+G5iT23w2sCeVz65TbmZmLVLm2VAC7gG2R8Rnc09tApal5WXAg7nypZKmSppHNpG9JSL2AgckLUr7vDq3jZmZtUCZw1DvAT4CDEp6JpV9ArgV2CjpOuAF4AqAiNgmaSPwPNmZVDdExOG03fXAWmAa2TzGoyXW2yZoIrcJ9zUTZp2ptLCIiL+l/nwDwCWjbLMaWF2nfCvZ5Lh1qIm8yZcVEI3sd+3i00s5tlmv8b2hzMyskMPCzMwK+d5QVqrR5i88N2HWXRwW1jIOCLPu5WEoMzMr5LAwM7NCDgszMyvksLBKG3zpFeaufNjzKWYFHBZmZlbIYWFmZoV86qw1zUM3ZtXhnoWZmRVyz8Ismcjdcs16ncPCxsVDT2bV5GEoMzMr5J6FWQEPT5m5Z2FmZg1wz8IKeZ7CzBwWdgKHg38GZiM1NAwlaXMjZWZm1pvG7FlIOhU4DXibpDMBpafOAGaWXDczM+sQRcNQfwLcRBYMT3E8LF4FvlhetczMrJOMGRYR8Tngc5L+NCI+36I6mZlZh2logjsiPi/p3cDc/DYRcV9J9epIPt/e8vx6sCppKCwk/Tnwr4FngMOpOIBKhYWZz5Kyqmr01Nl+4NyIiDIrY2ZmnanRK7ifA/5lmRUxM7PO1WhYvA14XtK3JW06+jXWBpLulbRf0nO5sk9JeknSM+nr/bnnbpa0U9IOSZfmyi+SNJieu1OSRh7LzMzK1egw1Kea2Pda4AucOK9xe0R8Jl8g6VxgKXAe2Wm635F0dkQcBu4GlgNPAI8Ai4FHm6iPmZk1qdGzof5mvDuOiO9Jmtvg6kuADRFxENglaSewUNIQcEZEPA4g6T7gchwWZmYt1ejZUAfIzn4CeBNwCvDLiDijiWN+VNLVwFZgRUT8AphF1nM4ancqez0tjywfrZ7LyXoh9PX1UavVmqgeDE+dSe2cWwBYceRQ3XWa3XenGh4ePtamFQvqt7kX9U2bnPZ20+sh/7uukiq2ezLb3GjP4s35x5IuBxY2cby7gU+TBc+ngduAazl+ZfgbDjtG+Wj1XAOsAejv74+BgYEmqgi19XcwsGMVANe8dn/ddYauam7fnapWq3H053VNhU4PXbHgELcNTvx+mt30esj/rqukiu2ezDY39VcSEX8paWUT2+07uizpS8BD6eFuYE5u1dnAnlQ+u065WVcYeV2GL96zbtXoMNTv5x5OIbvuYtzXXEiaERF708PfIzslF2ATcL+kz5JNcM8HtkTEYUkHJC0CngSuBnzbEes4vprbel2jPYv/mFs+BAyRTUqPStJ6YIDsjrW7gVXAgKQLyIJmiOxGhUTENkkbgefT/m9IZ0IBXE92ZtU0soltT26bmbVYo3MWfzTeHUfElXWK7xlj/dXA6jrlW4Hzx3t8s3YZ65Yg7oFYt2r0w49mS/pWushun6QHJM0u3tLMzHpBo1dwf4VsXmEm2amr/zOVmZlZBTQ6Z/H2iMiHw1pJN5VQn67h4QQzq5JGexYvS/qwpJPS14eBn5VZMTMz6xyN9iyuJbvP0+1kZzL9ABj3pLd1rsGXXqnUxXidxj1V63SNhsWngWXp1hxIOgv4DFmImFkT/EFK1k0aHYZ659GgAIiInwMXllMlMzPrNI2GxRRJZx59kHoWE7+hjpmZdYVG3/BvA34g6RtkcxYfpM4FdGZm1psavYL7PklbgfeS3Qn29yPi+VJrZlZRnuy2TtTwUFIKBweEmVkFed7BrIO5l2GdwmHRAfyGYGadzmFRYfmQWrGgjRUxs47X6KmzZmZWYe5ZTILRrsT1kJKZ9QqHRZtM5FYPnuMws1ZzWLSI7wNkZt3MYWHWJdyjtHZyWHQYz3+YWSdyWJTIQ09m1it86qyZmRVyz6JLjLeX4vFtM5tMDguzLuR/BqzVPAxlZmaF3LMw63LuZVgruGdhZmaFSutZSLoXuAzYHxHnp7KzgL8A5gJDwAcj4hfpuZuB64DDwJ9FxLdT+UXAWmAa8AhwY0REWfXuNo1MfPsUXjObqDJ7FmuBxSPKVgKbI2I+sDk9RtK5wFLgvLTNXZJOStvcDSwH5qevkfs0M7OSldaziIjvSZo7ongJMJCW1wE14OOpfENEHAR2SdoJLJQ0BJwREY8DSLoPuBx4tKx6m3Uzz19YWVo9wd0XEXsBImKvpHek8lnAE7n1dqey19PyyPK6JC0n64XQ19dHrVZrqpLDU2dSO+cWAFYcOdTUPrpN3zRYsaAabc3r5XaP9vofHh5u+m+jm1Wx3ZPZ5k45G0p1ymKM8roiYg2wBqC/vz8GBgaaqkxt/R0M7FgFwDWv3d/UPrrNigWHuG2wU14OrdPL7R66aqBuea1Wo9m/jW5WxXZPZptbfTbUPkkzANL3/al8NzAnt95sYE8qn12n3MzMWqjVYbEJWJaWlwEP5sqXSpoqaR7ZRPaWNGR1QNIiSQKuzm1jZmYtUuaps+vJJrPfJmk3sAq4Fdgo6TrgBeAKgIjYJmkj8DxwCLghIg6nXV3P8VNnH8WT22YN8WS3TaYyz4a6cpSnLhll/dXA6jrlW4HzJ7Fq4zJ06h8eW55bkfkLM7ORfAW3mZkVcliYmVmh3jxn0MzeID9/sXbx6W2siXUr9yzMKmbwpVeYu/Jh3zPMxsVhYWZmhRwWZmZWyGFhZmaFPMFtZsf4Qj4bjXsWZmZWyGFhZmaFHBZmZlbIcxZmFeZrLaxR7lmYmVkh9yzMrC6fGWV57lmYmVkh9yzMrJB7GeawsK7gD6Eyay+HhXUUh0Lncy+jmhwW1vUaCRiHkNnEOCysY+Xf4NuxvZkd57CwSTHe/9wn8kY+mSHyee6b0L7MqsJhYU3rhf/cF0zZxdCpqwAPT5mNxWFhk66dIdILAWbWiXxRnpmZFXLPwizxGVNmo3NYjIPfTDzMY2/kay6qw2FhVof/MTB7o7bMWUgakjQo6RlJW1PZWZIek/ST9P3M3Po3S9opaYekS9tRZzOzKmtnz+LiiHg593glsDkibpW0Mj3+uKRzgaXAecBM4DuSzo6Iw62vcjWMHGqq+n/W7mU0ZrQPUvLwVG/opGGoJcBAWl4H1ICPp/INEXEQ2CVpJ7AQeLwNdawkz1McN9rPwiFiva5dYRHAX0sK4H9ExBqgLyL2AkTEXknvSOvOAp7Ibbs7lZl1DPc+rNcpIlp/UGlmROxJgfAY8KfApoh4a26dX0TEmZK+CDweEV9N5fcAj0TEA3X2uxxYDtDX13fRhg0bmqrf8M/3M/3gnobXHzwyr6njdJK+abDv/2XLC6bsam9lWmh46sxx/a7Hq9HXRv5nXvbrKf+7boUFs97SuoONYXh4mOnTp7e7Gi3VTJsvvvjipyKif2R5W3oWEbEnfd8v6Vtkw0r7JM1IvYoZwP60+m5gTm7z2UDdv+7UQ1kD0N/fHwMDA03Vr7b+DgZ2rGp4/Wt64D/JFQsOcdtg9nI4evuLKqidc8u4ftfjNfK1MVoPJP8zL/v1lP9dt8LQVQMtO9ZYarUazb4ndKvJbHPLz4aSdLqkNx9dBv498BywCViWVlsGPJiWNwFLJU2VNA+YD2xpba3NrFlzVz587Mu6Vzt6Fn3AtyQdPf79EfFXkn4IbJR0HfACcAVARGyTtBF4HjgE3OAzoaxbjHVygE8csG7S8rCIiJ8C76pT/jPgklG2WQ2sLrlqlZa/+6q1Vy9PlvuK7+7VSafO2gi9/KZhZt3FYTEJJvqm7lCwRvh1Yu3ksJhko5/t0nlXRefrVOOWNtbEqshDUt3FYdEm453c9H+V1eRJcOsUDosSNfOHXvabg998eoP/ebBWc1h0oUaHuqwaeuF+VR6S6nwOiy7ngLBG5F8nn+e+NtakmIOjMzkszHrUaP9I5K+p6abeh7VXWz78yMzMuot7FmbWsTwk1TkcFmYV1onX/1hncliY2TE+JddG47Aws64w8hbnHpZqLU9wm5lZIfcszKyuXrjYzyaPw8LMxqVT5jV8plRrOSzMrGmdEhxWPoeFmU0KD1v1NoeFmXU9D0mVz2FhZj3FwVEOh4WZlcrDU73B11mYmVkh9yzMrC1a0ePID0mtXXz6pO23ihwWZtZRfDpuZ3JYmFnHmszgGHzpFa4ZcX8p8CR4oxwWZtYVfDv19nJYmFlXmqxeh0+1bYzDwsy63mRNljs4Rtc1YSFpMfA54CTgyxFxa5urZGY9zMHxRl0RFpJOAr4I/C6wG/ihpE0R8Xx7a2ZmnSzf46hNuYWhU1cBb+xxNNIrGS04qhQoXREWwEJgZ0T8FEDSBmAJ4LAws3EbLSAaWWfuyvpBky9vqk4dHjaKiHbXoZCkPwAWR8Qfp8cfAX4rIj46Yr3lwPL08BxgR5OHfBvwcpPbdqsqthmq2e4qthmq2e5m2vyrEfH2kYXd0rNQnbITUi4i1gBrJnwwaWtE9E90P92kim2Gara7im2GarZ7MtvcLfeG2g3MyT2eDexpU13MzCqnW8Lih8B8SfMkvQlYCmxqc53MzCqjK4ahIuKQpI8C3yY7dfbeiNhW4iEnPJTVharYZqhmu6vYZqhmuyetzV0xwW1mZu3VLcNQZmbWRg4LMzMr5LDIkbRY0g5JOyWtbHd9yiJpjqTvStouaZukG1P5WZIek/ST9P3Mdtd1skk6SdLfS3ooPa5Cm98q6RuSfpR+57/d6+2W9LH02n5O0npJp/ZimyXdK2m/pOdyZaO2U9LN6f1th6RLx3Msh0WSu6XIfwDOBa6UdG57a1WaQ8CKiPgNYBFwQ2rrSmBzRMwHNqfHveZGYHvucRXa/DngryLi14F3kbW/Z9staRbwZ0B/RJxPdlLMUnqzzWuBxSPK6rYz/Y0vBc5L29yV3vca4rA47tgtRSLin4GjtxTpORGxNyKeTssHyN48ZpG1d11abR1weVsqWBJJs4EPAF/OFfd6m88A/i1wD0BE/HNE/BM93m6yMz2nSToZOI3suqyea3NEfA/4+Yji0dq5BNgQEQcjYhewk+x9ryEOi+NmAS/mHu9OZT1N0lzgQuBJoC8i9kIWKMA72li1MtwB/FfgSK6s19v8r4B/BL6Sht++LOl0erjdEfES8BngBWAv8EpE/DU93OYRRmvnhN7jHBbHNXRLkV4iaTrwAHBTRLza7vqUSdJlwP6IeKrddWmxk4HfBO6OiAuBX9Ibwy+jSmP0S4B5wEzgdEkfbm+tOsKE3uMcFsdV6pYikk4hC4qvRcQ3U/E+STPS8zOA/e2qXwneA/wnSUNkQ4zvlfRVervNkL2ud0fEk+nxN8jCo5fb/T5gV0T8Y0S8DnwTeDe93ea80do5ofc4h8VxlbmliCSRjWFvj4jP5p7aBCxLy8uAB1tdt7JExM0RMTsi5pL9bv9XRHyYHm4zQET8H+BFSeekokvIbu3fy+1+AVgk6bT0Wr+EbF6ul9ucN1o7NwFLJU2VNA+YD2xpdKe+gjtH0vvJxrWP3lJkdXtrVA5J/wb4PjDI8fH7T5DNW2wEfoXsD+6KiBg5edb1JA0A/yUiLpP0L+jxNku6gGxS/03AT4E/IvtHsWfbLekW4ENkZ/79PfDHwHR6rM2S1gMDZLci3wesAv6SUdop6ZPAtWQ/l5si4tGGj+WwMDOzIh6GMjOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOC7MWkzQ3f5fQcWz3g9z2fzj5NTMbncPCrMMdvTNoRLw7Fc0FHBbWUg4LsxHSf+4/krRO0rPpsyBOk3RJuhnfYPocgalp/SFJ/03SlvT1a6l8raQ/yO13eJRjfV/S0+nr3al8QNlnjtxPdvFkfvtbgd+R9Ez63Ibvpwvvju7z7yS9s6yfj1WTw8KsvnOANRHxTuBV4D+TfXbAhyJiAdkN+q7Prf9qRCwEvkB2F4BG7Qd+NyJ+k+yK4ztzzy0EPhkRIz9XZSXw/Yi4ICJuJ7s6+xoASWcDUyPi2XHUwayQw8Ksvhcj4u/S8lfJ7i+0KyJ+nMrWkX1OxFHrc99/exzHOQX4kqRB4OtkH7x11Jb0uQNFvg5clm4OeS1ZqJlNqpPbXQGzDjXe++BEneVDpH/I0g3t3lRnu4+R3dPnXWnd13LP/bKhA0f8X0mPkd2W+4NA/7hqbtYA9yzM6vsVSUd7CFcC3wHmHp2PAD4C/E1u/Q/lvj+eloeAi9LyErJexEhvAfZGxJG0z0Y+5vIA8OYRZV8mG8L6YbffHM86k8PCrL7twDJJzwJnAbeT3a3162nI6Ajw33PrT5X0JNlnfH8slX0J+HeStgC/Rf2ewl3pOE8AZ4+yzkjPAock/YOkjwGkD3V6FfjK+Jpp1hjfddZshPRRsw9FxPkNrj8E9EfEy2XWq6AOM4Ea8Oupl2I2qdyzMOtykq4m+yySTzoorCzuWZiZWSH3LMzMrJDDwszMCjkszMyskMPCzMwKOSzMzKzQ/we1pN62xjxi7QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data_train, data_test = train_test_split(data, random_state=42)\n", "x_train, x_test, y_train, y_test = data_train.drop('popularity', axis=1), data_test.drop('popularity', axis=1), data_train['popularity'], data_test['popularity']\n", "y_train.hist(bins=range(100))\n", "y_test.hist(bins=range(100))\n", "plt.ylim(0,3000)\n", "plt.ylabel('count')\n", "plt.xlabel('popularity')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## look at training data" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
acousticnessartistsdanceabilityduration_msenergyexplicitidinstrumentalnesskeylivenessloudnessmodenamepopularityrelease_datespeechinesstempovalenceyear
71190.8420['Ella Fitzgerald']0.3292139200.16004dRsNHZdFTtYKDh05EyfJw0.000101100.1460-15.6061Ev'ry Time We Say Goodbye461956-01-010.032480.3590.2321956
350760.0323['Less Than Jake']0.5412021060.94306xOZCV4EPCupXwvqajSKzq0.00000020.0912-4.2701History Of A Boring Town511998-01-010.0551107.3170.7791998
1624450.9480[\"Lightnin' Hopkins\"]0.5851295730.41400iRxyng88iIeus3mV2yK2c0.09000080.2610-7.5041Heavy Snow91962-05-260.0542181.6410.3351962
164780.6880['Baby Bash', 'Frankie J']0.6622390270.74806Nq5lE0CeOAAAqN4qhkbZU0.00000850.0841-3.0410Suga Suga752003-01-010.268082.3310.5352003
1261040.0807['Chill Out 2018']0.5182136000.62003X1Sb7Pq4eyqfZXG8BYZGC0.95100090.1300-10.4380Same Time Next Year02019-05-150.0303118.0170.4612019
\n", "
" ], "text/plain": [ " acousticness artists danceability duration_ms \\\n", "7119 0.8420 ['Ella Fitzgerald'] 0.329 213920 \n", "35076 0.0323 ['Less Than Jake'] 0.541 202106 \n", "162445 0.9480 [\"Lightnin' Hopkins\"] 0.585 129573 \n", "16478 0.6880 ['Baby Bash', 'Frankie J'] 0.662 239027 \n", "126104 0.0807 ['Chill Out 2018'] 0.518 213600 \n", "\n", " energy explicit id instrumentalness key \\\n", "7119 0.160 0 4dRsNHZdFTtYKDh05EyfJw 0.000101 10 \n", "35076 0.943 0 6xOZCV4EPCupXwvqajSKzq 0.000000 2 \n", "162445 0.414 0 0iRxyng88iIeus3mV2yK2c 0.090000 8 \n", "16478 0.748 0 6Nq5lE0CeOAAAqN4qhkbZU 0.000008 5 \n", "126104 0.620 0 3X1Sb7Pq4eyqfZXG8BYZGC 0.951000 9 \n", "\n", " liveness loudness mode name popularity \\\n", "7119 0.1460 -15.606 1 Ev'ry Time We Say Goodbye 46 \n", "35076 0.0912 -4.270 1 History Of A Boring Town 51 \n", "162445 0.2610 -7.504 1 Heavy Snow 9 \n", "16478 0.0841 -3.041 0 Suga Suga 75 \n", "126104 0.1300 -10.438 0 Same Time Next Year 0 \n", "\n", " release_date speechiness tempo valence year \n", "7119 1956-01-01 0.0324 80.359 0.232 1956 \n", "35076 1998-01-01 0.0551 107.317 0.779 1998 \n", "162445 1962-05-26 0.0542 181.641 0.335 1962 \n", "16478 2003-01-01 0.2680 82.331 0.535 2003 \n", "126104 2019-05-15 0.0303 118.017 0.461 2019 " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_train.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
acousticnessdanceabilityduration_msenergyexplicitinstrumentalnesskeylivenessloudnessmodepopularityspeechinesstempovalenceyear
count129172.000000129172.0000001.291720e+05129172.000000129172.000000129172.000000129172.000000129172.000000129172.000000129172.000000129172.000000129172.000000129172.000000129172.000000129172.000000
mean0.5012960.5365742.325686e+050.4809940.0680100.1953985.2141560.211697-11.7826350.70204825.9467070.105971116.9842520.5254011976.582990
std0.3794360.1759251.459441e+050.2720480.2517640.3333383.5203020.1809215.6862350.45736021.8720390.18330430.2480350.26445226.714325
min0.0000000.0000004.937000e+030.0000000.0000000.0000000.0000000.000000-60.0000000.0000000.0000000.0000000.0000000.0000001920.000000
25%0.0907000.4140001.662000e+050.2480000.0000000.0000002.0000000.099300-14.9432500.0000001.0000000.03520093.9647500.3110001955.000000
50%0.5220000.5480002.057635e+050.4630000.0000000.0004965.0000000.138000-10.8650001.00000026.0000000.045400115.7500000.5370001977.000000
75%0.8960000.6680002.656670e+050.7080000.0000000.2410008.0000000.271000-7.5410001.00000042.0000000.076000134.9922500.7450001998.000000
max0.9960000.9870004.792587e+061.0000001.0000001.00000011.0000000.9990003.7440001.000000100.0000000.970000243.5070001.0000002021.000000
\n", "
" ], "text/plain": [ " acousticness danceability duration_ms energy \\\n", "count 129172.000000 129172.000000 1.291720e+05 129172.000000 \n", "mean 0.501296 0.536574 2.325686e+05 0.480994 \n", "std 0.379436 0.175925 1.459441e+05 0.272048 \n", "min 0.000000 0.000000 4.937000e+03 0.000000 \n", "25% 0.090700 0.414000 1.662000e+05 0.248000 \n", "50% 0.522000 0.548000 2.057635e+05 0.463000 \n", "75% 0.896000 0.668000 2.656670e+05 0.708000 \n", "max 0.996000 0.987000 4.792587e+06 1.000000 \n", "\n", " explicit instrumentalness key liveness \\\n", "count 129172.000000 129172.000000 129172.000000 129172.000000 \n", "mean 0.068010 0.195398 5.214156 0.211697 \n", "std 0.251764 0.333338 3.520302 0.180921 \n", "min 0.000000 0.000000 0.000000 0.000000 \n", "25% 0.000000 0.000000 2.000000 0.099300 \n", "50% 0.000000 0.000496 5.000000 0.138000 \n", "75% 0.000000 0.241000 8.000000 0.271000 \n", "max 1.000000 1.000000 11.000000 0.999000 \n", "\n", " loudness mode popularity speechiness \\\n", "count 129172.000000 129172.000000 129172.000000 129172.000000 \n", "mean -11.782635 0.702048 25.946707 0.105971 \n", "std 5.686235 0.457360 21.872039 0.183304 \n", "min -60.000000 0.000000 0.000000 0.000000 \n", "25% -14.943250 0.000000 1.000000 0.035200 \n", "50% -10.865000 1.000000 26.000000 0.045400 \n", "75% -7.541000 1.000000 42.000000 0.076000 \n", "max 3.744000 1.000000 100.000000 0.970000 \n", "\n", " tempo valence year \n", "count 129172.000000 129172.000000 129172.000000 \n", "mean 116.984252 0.525401 1976.582990 \n", "std 30.248035 0.264452 26.714325 \n", "min 0.000000 0.000000 1920.000000 \n", "25% 93.964750 0.311000 1955.000000 \n", "50% 115.750000 0.537000 1977.000000 \n", "75% 134.992250 0.745000 1998.000000 \n", "max 243.507000 1.000000 2021.000000 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_train.describe()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJsAAANeCAYAAAC1dQ+UAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADhHUlEQVR4nOzdfZhlVXnn/e9PUEQUFJEO0MQ2I5oIjBg6hMQ8mU5IIhETTAYUgwKRhOijkUw6ExpnJjpxmAdnghoxmqAYQEEgqIERUBGtGCe8CAZtAY2tdKCBQHgRaRMNjffzx15Fny6qu6qrTp2Xqu/nuuqqs9fea5/7nK6zep97r5dUFZIkSZIkSVI/PGHYAUiSJEmSJGnxMNkkSZIkSZKkvjHZJEmSJEmSpL4x2SRJkiRJkqS+MdkkSZIkSZKkvjHZJEmSJEmSpL4x2aSRluTmJKuGHYek0ZLknCT/Y9hxTCfJRJLf2sq+H06yMckOU49NcmySTw8yVkmSJGkhmGzSyJjuy2NV7V9VE0MKSZL6qqpur6qnVtWj0+w7v6p+aXI7SSV57mAjlDRfg0yGm6SWJI0qk02SJEnSiEuyoiWhd5wsm5qklqRx09umaXEx2SSSrEnyzSQPJ7klya/17PvtJLf27PvxVv5jbfjHt9tQt1/tqbPFEJIkJyT5QnucJO9Mcm+Sh5J8JckBSU4CjgX+sA0x+T/t+PVJfqE93iHJm3tivTHJvm1fJXldkm8keTDJnyVJTwyvba/jwSSfSvLsbcXT9r20veaHk9yZ5A8W7l9B0rYkeVGSL7XP40XAk1v5M5J8Isk/t8/3J5Is76k3keRtSf5vq/vpJHv07P+ZJH/X2rI7kpzQyndK8idJbk9yT5I/T7LzbJ6z+XdJrm/tyqVJdm91H/dlsSeW3rby8634y61NfGWSryb5lZ7jn5jkviQH9eEtljRkacNrJWlUJNk7yUfbNc9tSd7Uyt+a5OIk57Xrq5uTrJypXk/dS5J8OMl3gBOSPCfJ59u5PtO+y324HX95kt+dEtdXkrx8MO+C5spkkwC+Cfw/wG7Afwc+nGSvJEcDbwWOA3YFfhW4P8kTgf8DfBrYE/hd4Pwkz5/Fc/0S8LPA84CnA68E7q+qs4Dzgf/Vhpj8yjR1fx94FfDSFs9rgX/p2f8y4CeAFwKvAF4C0BqiNwO/DjwL+FvgI9uKp+07G/idqnoacADw2Vm8Pkl9luRJwF8DHwJ2B/4K+I9t9xOAvwSeDfww8K/Ae6ac4jeA36Rrr54E/EE77w8DVwJn0rUNBwE3tTpvp2sXDgKeC+wD/NF2POdxdG3U3sAm4N3b85qr6mfbwxe2NvEi4Dzg1T2HvRS4u6pumlpf0uBsIxn+WAK559jHhsemG273viRXJPku8HNJjkjy90m+0xLgb+2pPpmE/nZLQv/U1OdI8tNJvtgS3V9M8tM9+7aZfN/Ka5tMkP9mi+fBdDf3fqJ92ft2kvf0HP/cJH/Tnv++9n5IGkNJnkD3ne/LdNdBhwG/l+Ql7ZBfBS6k+w51Ge1aaBb1AI4ELml1zwcuAK4Hnkn3/fM1PceeS8/1T5IXtvNe0aeXqgVisklU1V9V1V1V9YP2heYbwCHAb9Elf75YnXVV9Y/AocBTgdOr6t+q6rPAJ+gSQTN5BHga8KNAqurWqrp7lqH+FvBfq+rrLZ4vV9X9PftPr6pvV9XtwOfoviQC/A7w/7Xn2gT8T+CgdL2bthXPI8ALkuxaVQ9W1ZdmGaek/joUeCLwrqp6pKouAb4IUFX3V9VHq+pfquph4DTgP0yp/5dV9Q9V9a/AxWxuG44FPlNVH2nnvb+qbkoS4LeB/1RVD7Tz/k/gmO14zg9V1Ver6rvAfwNe0YdeCx8GXppk17b9GroEnKQhmSEZPhu/QdeGPA34AvBdumT104EjgNf33L2fTEI/vSWhr5kSy+7A5XTJ7WcC7wAuT/LMKc/3uOT7LPwksB/dTbl3Af8F+AVgf7r2bbINfBvdzchnAMvpkvmSxtNPAM+qqj9u3/m+Bbyfdj0EfKGqrmjzUH6I7ob/bOoBXFNVf11VP6C74fcTwB+1479Al7yadCmwX5L92vZrgIuq6t8W4DWrj0w2iSTHJbmp3Z36Nl0vnj2Afel6PU21N3BHaxwm/SNdhnmbWmLqPcCfAfckOavni9NMthbPpH/qefwvdAkx6Hof/GnP63sACLDPDPH8R7qeA//Y7tL91CzjlNRfewN3VlX1lP0jQJKnJPmLJP/YumJ/Hnj6lMTO1tqGrbUpzwKeAtzY0258spXP9jnvmBLrE+na1TmrqruA/wv8xyRPB36Z7m6gpOHZajJ8li6tqv/bbvh9r6omqmpt2/4KXU/sqcnsrTkC+EZVfaiqNlXVR4CvAb29xbeWfJ/J21p8n6ZLiH2kqu6tqjvpeoy/qB33CN11197t+C9s5XySRt+zgb0nr4Xa9dCbgWVt/9TrqyenmyZgpnqw5XXS3sADVfUv0+2vqu/TtVevbr2mXoU328aCyaYlrvXueT/wRuCZVfV04Kt0yZg7gH83TbW7gH3bh33SDwN3tsffpfuiNumHeitX1bur6mC6u2HPA/7z5K4Zwt1aPDO5g2443NN7fnauqr/bVjytR9eRdHf//pqukZM0eHcD+7QeR5N+uP1eDTwf+Mmq2pXNd/57j92arbUp99ENjdu/p83Yraomk1Szec59p8T6SDvvfE12JT+a7q7gnTMcL2lhbTUZPku9X7hI8pNJPpdunpOHgNcx+0T13tM899SbgVtLvs/knp7H/zrN9uR5/pCuLbw+3Rwur53l+SWNnjuA26Z8h3paVb20D/V628y7gd2T9H5/7L2Ogu7651i6IXn/MrVnp0aTySbtQvdh/2eAJL9J17MJ4APAHyQ5OJ3ntuTUdXQJpT9MN0HtKrq7Zhe2ejcBv97u/j8XOHHyydoY/59MN+/Td4HvAZNLgN8D/Mg2Yv0A8LYk+7V4/v2UruFb8+fAqUn2bzHslm4+qq3Gk+RJ6ZYT3q2qHgG+0xOnpMG6hm7eozcl2THJr9MN9YVu6Mm/0s1hsjvwlu047/nALyR5RTvvM5Mc1Hptvh94Z5I9AZLs0zPXwGye89VJXtAunP4YuKR1M98e07WJfw38OHAy3RxOkoZrW8nwLW6+Jdni5lsz9UbbBXTDR/atqt3ormGylWOnuouuR0Gv3puBC66q/qmqfruq9qabxuC97VpQ0vi5HvhOklOS7JxusaYDkvxEP+tVN03LDcBb23ewn2LLHpm05NIPgDOwV9PYMNm0xFXVLXQf2mvovtgcSDdMg6r6K7p5BC4AHqb7krN7Gx/7q3RDOO4D3gscV1Vfa6d9J/Bv7XznsuUwj13pvsQ9SHe37X7gT9q+s+nmSPp2kr+eJtx30PUu+jRd8udsYOdZvMaP0032e2Eb8vLVFvtM8bwGWN/qvI4tJ+aVNCCtzfl14AS6z+orgY+13e+iawfuA66lG+422/PeTjdUdjXd8Nqb2DzfwCnAOuDa1gZ8hq4302yf80PAOXS9CJ4MvGmaY2byVuDc1ia+osX8r8BHgeew+T2QNDzbSoZ/Gdg/yUFJnkz3mZ7J0+iGk3wvySF0cyxN+me6L1tbuzF3BfC8JL/RYnkl8AK6eTUHIsnR2bw654N0CTJv1kljqN0k+xW64ba30V33fIBuUal+1zsW+Cm672L/A7gI+P6UY86j+6764e16IRqabNnrV5IkjbIkfwQ8r6pMgEsjIN1y3++nW7lycnWkb1TVf03yX4D/RNcb8lS6RPR+VbUuyTnAhqr6rz3nOoruJuDuwN8A6+kmBH912//HwOvp5ok6nG6Bk9+qqp9p+38G+NMWyzrg5Ml5k5JMAB+uqg+07RN6627lta2g+7L4xOoWWSHJBuDVVTXRtj8MfK2q/keS/0X3pXE3upuOb69uxWFJmrV0K1l+rare0lN2HHDSttosjRaTTZIkjYk2bO/vgddU1ednOl6SJGnUtSF2D9Alt3+JbkTNT1XV37f9TwE+C7y3qpxGYEw4jE6SpDGQ5LfpJt280kSTJElaRH4ImAA2Au8GXt+TaHoJ3TDie+imd9GYsGeTJEmStEQlORb4i2l2/WNV7T/oeCRJi4PJJkmSJEmSJPXNjnOtmGRfuhnhf4huZYyzqupP23wSFwEr6CY1fEVVPdjqnAqcSLcqxZuq6lOt/GC6VXt2pptY8eSqqiQ7tec4mG5m+ldW1fptxbXHHnvUihUrZvUavvvd77LLLrvM+jUPwzjECMbZT+MQI8wuzhtvvPG+qnrWgEIaC7NtoxbT38EoMM7+Wgxx2j493mJrn8BYF8o4xQrjFe93v/tdvva1r9k+TbGY2qdxiBHGI85xiBHGI87Zxrhd109VNacfYC/gx9vjpwH/QLe86v8C1rTyNXSrUND2fRnYiW7J5m8CO7R919MtdRjgSuCXW/n/C/x5e3wMcNFMcR188ME1W5/73OdmfeywjEOMVcbZT+MQY9Xs4gRuqDm2MYv1Z7Zt1GL6OxgFxtlfiyFO26fF3z5VGetCGadYq8Yr3s997nO2T4u8fRqHGKvGI85xiLFqPOKcbYzb0z7NeYLwqrq7qr7UHj8M3ArsAxwJnNsOOxd4eXt8JHBhVX2/qm6jW471kCR7AbtW1TUt+POm1Jk81yXAYUky15glSZIkSdsnyZOTXJ/ky0luTvLfW/lbk9yZ5Kb289KeOqcmWZfk622S58nyg5Osbfve7fc7aXGa8zC6XklWAC8CrgOWVdXd0CWkkuzZDtsHuLan2oZW9kh7PLV8ss4d7VybkjwEPBO4rx9xS5IkSZJm9H3g56tqY5InAl9IcmXb986q+pPeg5O8gG5kyv7A3sBnkjyvqh4F3gecRPfd8ArgcLrRLZIWkXknm5I8Ffgo8HtV9Z1tJKan21HbKN9WnakxnETXYLFs2TImJiZmiLqzcePGWR87LOMQIxhnP41DjDA+cUqSJGl+2giUjW3zie1nWytNPTaqBbgtyeSolvW0US0ASSZHtZhskhaZeSWbWlb7o8D5VfWxVnxPkr1ar6a9gHtb+QZg357qy4G7Wvnyacp762xIsiOwG/DA1Diq6izgLICVK1fWqlWrZhX/xMQEsz12WMYhRjDOfhqHGGF84pQkSdL8JdkBuBF4LvBnVXVdkl8G3pjkOOAGYHV1i0PNZVTL1Ofb7g4F43AzdBxihPGIcxxihPGIcyFinM9qdAHOBm6tqnf07LoMOB44vf2+tKf8giTvoOtKuR9wfVU9muThJIfSDcM7DjhzyrmuAY4CPtuy6pIkSZKkAWlD4A5K8nTg40kOoBsS9za6Xk5vA84AXsvcRrVMfb7t7lAwDjdDxyFGGI84xyFGGI84FyLG+fRsejHwGmBtkpta2ZvpkkwXJzkRuB04GqCqbk5yMXALsAl4Q2uwAF4PnAPsTNeFcrIb5dnAh1q3ywfoxv1KkiRJkoagqr6dZAI4vHeupiTvBz7RNucyqkXSIjLnZFNVfYHpM9MAh22lzmnAadOU3wAcME3592jJqoWw9s6HOGHN5Y9trz/9iIV6KkmSZm1Fz/9N4P9PGm3+vUqLX5JnAY+0RNPOwC8Ab5+cPqUd9mvAV9vjuYxqWZSmtpHnHL7LkCKRBusJww5AkiRpqUmyvi39fVOSG1rZ7kmuSvKN9vsZPcdv1xLiSXZKclErv66tHCxJc7UX8LkkXwG+CFxVVZ8A/ldrg74C/Bzwn6Ab1QJMjmr5JI8f1fIBYB3wTZwcXFqU5r0anSRJkubk56rqvp7tNcDVVXV6kjVt+5Q5LiF+IvBgVT03yTHA24FXDuqFSVpcquorwIumKX/NNups16gWSYuLySZJkqTRcCSwqj0+F5gATmFuS4gfCby1nesS4D1J4kIrkjRcU6dygccPP3Z4shYDk02SJPXZ1IvEqbxoFN3qS59OUsBftFWXlk3OfVJVdyfZsx07lyXE9wHuaOfalOQh4JlAb0+qviwtvvrATVvsH6XlncdhuelJxrpwxinejRs3DjsEDcFM1w3SODLZJEmSNHgvrqq7WkLpqiRf28axc1lCfFbLi/djafHH3aE/duZzDMo4LDc9yVgXzjjFOy5JMQ2WPZ00jpwgXJIkacCq6q72+17g48AhwD1J9gJov+9th89lCfHH6iTZEdgNeGAhXoskSdJU9mySJGnAvEO5tCXZBXhCVT3cHv8S8Md0S4UfD5zefl/aqsxlCfHJc10DHAV81vmaJEnSoJhskiRJGqxlwMeTQHctdkFVfTLJF4GLk5wI3A4cDd0S4kkmlxDfxOOXED8H2JluYvDJJcTPBj7UJhN/gG41O0mSpIEw2SRJ0oibbuJQe0ONr6r6FvDCacrvBw7bSp3tWkK8qr5HS1YNmj33JEmSySZJkraDiR9JkiRp20w2SZIkSZK0SNjDVKPAZJMkSZIkSWNqul7X0rA9YdgBSJIkSZIkafGwZ5OkJSfJeuBh4FFgU1WtTLI7cBGwAlgPvKKqHmzHnwqc2I5/U1V9qpUfzOZVoK4ATnZpcUmSpKXLXkZSx2STpKXq56rqvp7tNcDVVXV6kjVt+5QkL6BbMnx/YG/gM0me15Ydfx9wEnAtXbLpcDYvOy7N2uSF6eoDN3GCF6mSJI2NYSSXTGhpHDiMTpI6RwLntsfnAi/vKb+wqr5fVbcB64BDkuwF7FpV17TeTOf11JEkSZKkJcueTZKWogI+naSAv6iqs4BlVXU3QFXdnWTPduw+dD2XJm1oZY+0x1PLHyfJSXQ9oFi2bBkTExMzBrhx48ZZHTdsSzHO1QduelzZ1HNPd8xsLNt59nWH+b4vxX93SVrKkjwZ+DywE913yEuq6i1OQyBpa0w2SVqKXlxVd7WE0lVJvraNYzNNWW2j/PGFXTLrLICVK1fWqlWrZgxwYmKC2Rw3bEsxzmmHua397pSCuf33uvrATZyxdpZ1pzznIJc1Xor/7pK0xH0f+Pmq2pjkicAXklwJ/DpOQ7AkTR3KN8jrEI0Hk02Slpyquqv9vjfJx4FDgHuS7NV6Ne0F3NsO3wDs21N9OXBXK18+Tbk0ErwIlCT1S+t5tLFtPrH9FN10A6ta+bnABHAKPdMQALclmZyGYD1tGgKAJJPTEJhskhYZk02SlpQkuwBPqKqH2+NfAv4YuAw4Hji9/b60VbkMuCDJO+juzO0HXF9VjyZ5OMmhwHXAccCZg301GgQn4ZQkCZLsANwIPBf4s6q6LsmSn4Zge4fOb8+Q+X6Zy3sy03s59TUMY9j6uAyXH4c4FyJGk02SlpplwMeTQNcGXlBVn0zyReDiJCcCtwNHA1TVzUkuBm4BNgFvaF3AAV7P5jkHrsS7cpIkaZFq1z8HJXk63bXUAds4fMlMQ7C9q8hu15D5Pll/7KrtrjPTezn1dc/lOeZrXIbLj0OcCxGjySZJS0pVfQt44TTl9wOHbaXOacBp05TfAGzrQkuSJGlRqapvJ5mgm2vJaQg0Zw75X9yeMOwAJEmSJEmjK8mzWo8mkuwM/ALwNTZPQwCPn4bgmCQ7JXkOm6chuBt4OMmh6bqZH9dTR9IiYs8mSZIkSdK27AWc2+ZtegJwcVV9Isk1LLFpCJzLUZodk02SJEmSpK2qqq8AL5qm3GkIFompSbRzDt+lr+cDh8ktNSabJM3I8dSSJEmSpNlyziZJkiRJkiT1jT2bJEmSJEnSY9be+RAn9IxucGSDtpfJJkmSFoGZJix1OKwkSZrU74nOnThdUzmMTpIkSZIkSX1jskmSJEmSJEl94zA6SZKkAUuyA3ADcGdVvSzJ7sBFwApgPfCKqnqwHXsqcCLwKPCmqvpUKz8YOAfYGbgCOLmqKslOwHnAwcD9wCurav3AXpwkadFxmJy217ySTUk+CLwMuLeqDmhlbwV+G/jndtibq+qKts+LJUnSSHEuIw3JycCtwK5tew1wdVWdnmRN2z4lyQuAY4D9gb2BzyR5XlU9CrwPOAm4lu766XDgSrprrQer6rlJjgHeDrxycC9NkqTt5zXZ4jLfnk3nAO+hSwj1emdV/UlvgRdLkqRx4J07LbQky4EjgNOA32/FRwKr2uNzgQnglFZ+YVV9H7gtyTrgkCTrgV2r6pp2zvOAl9NdPx0JvLWd6xLgPUlSVbWQr0uSpH4y+TTe5pVsqqrPJ1kxy8O9WJIkSYJ3AX8IPK2nbFlV3Q1QVXcn2bOV70N3M27Shlb2SHs8tXyyzh3tXJuSPAQ8E7hvaiBJTqK74ceyZcuYmJiYMfiNGzducdzqAzdt8/jZnHOhTI11lBnrwhmneDdu3DjsEKRFzQTW4CzUnE1vTHIc3VwEq9ucAwt2sTSXCyWAZTtveYE0iv8Jjct/jsbZP6MY49QvEhMTEyMZpySNuiST0w/cmGTVbKpMU1bbKN9WnccXVp0FnAWwcuXKWrVq5pAmJiboPe6EGXoDrj925nMulKmxjjJjXTjjFK/XVloI9trWMCxEsul9wNvoLmreBpwBvJYFvFiay4USwJnnX8oZaze/BcO8GNqacfnP0Tj7ZxRjnPpFYv2xq0YyTkkaAy8GfjXJS4EnA7sm+TBwT5K9Wq+mvYB72/EbgH176i8H7mrly6cp762zIcmOwG7AAwv1giRJkqZ6Qr9PWFX3VNWjVfUD4P3AIW3XfC6W8GJJkiSNu6o6taqWV9UKurksP1tVrwYuA45vhx0PXNoeXwYck2SnJM8B9gOub0PuHk5yaJIAx02pM3muo9pzOAWBJEkamL73bJq8K9c2fw34ant8GXBBknfQTRA+ebH0aJKHkxwKXEd3sXRmT53jgWvwYkmS1Ad2JdeIOh24OMmJwO3A0QBVdXOSi4FbgE3AG9riKgCvZ/Nqvle2H4CzgQ+1+TEfoEtqSZI0VF6DLS3zSjYl+Qjdyil7JNkAvAVYleQguuFu64HfAS+WJEmSelXVBN2qc1TV/cBhWznuNLqV66aW3wAcME3592jJKknqhyT70q1A/kPAD4CzqupPk7wV+G3gn9uhb66qK1qdU+lWF38UeFNVfaqVH8zm735XACfboUDD4oThC2e+q9G9apris7dxvBdLkiRJkjReNtEt/PSlJE8DbkxyVdv3zqr6k96Dk7yArqPA/nSjWj6T5Hmts8H76BZ3upYu2XQ4mzsbSFok+j5nkySNuiQ7JPn7JJ9o27snuSrJN9rvZ/Qce2qSdUm+nuQlPeUHJ1nb9r27zZkiSZK06FTV3VX1pfb4YeBWNq8gPp0jgQur6vtVdRuwDjikLYCwa1Vd03oznQe8fGGjlzQMC7EanSSNupPpLpJ2bdtrgKur6vQka9r2Kd6VkyRJ2lKSFcCL6ObbfTHwxiTHATfQ9X56kC4RdW1PtQ2t7JH2eGr5dM9zEt21FsuWLWNiYmLG2DZu3Dir4+Zj9YGb5lV/2c7zP8cgjGKcZ55/6Rbbz9lthy3+vdfe+dDj6hy4z25bbM/0mqb+/Uw959TzzcYg/i7nayFiNNkkaUlJshw4gm5I7++34iPp5p8DOJduDpVT6LkrB9zW5o87JMl62l25ds7Ju3ImmyRJ0qKV5KnAR4Hfq6rvJHkf8Da6+XrfBpwBvBaYrsd3baP88YVVZwFnAaxcubJWrVo1Y3wTExPM5rj5OGGek1yvPnATZ6wd/a/h4xDnOYfvssW/97T/Nmu/O6Vg269p/bGrttiees6p+2djEH+X87UQMY72X48k9d+7gD8EntZTtmxyFc2qujvJnq183nflYHTvzPXDOMY5anfpeg3yLuJ8/t3G8d9dkjQ/SZ5Il2g6v6o+BlBV9/Tsfz/wiba5Adi3p/py4K5WvnyacmnRWnvnQ1skrZbKJOQmmyQtGUleBtxbVTcmWTWbKtOUbdddORjdO3P9MI5xzveO5EIa5F3EudyZmzSO/+6SpLlrc1OeDdxaVe/oKd9r8oYd8GvAV9vjy4ALkryDbiqC/YDrq+rRJA8nOZRuGN5xwJmDeh1aXKYmcTRaTDZJWkpeDPxqkpcCTwZ2TfJh4J7Ji6U2ceW97XjvykmSJHXXUK8B1ia5qZW9GXhVkoPobrqtB34HoKpuTnIxcAvdSnZvaHNeArweOAfYmW4KgpGehmCFyQxpTkw2SVoyqupU4FSA1rPpD6rq1Un+N3A8cHr7PTn7oHflJEnSkldVX2D6nt1XbKPOaXRzZE4tvwE4oH/RSRpFJpskqUsyXZzkROB24GhYXHflJEmSJGlQTDZJWpKqaoJu1Tmq6n7gsK0c5125MbdizeWsPnCTY/olSZK0KE0d7jkKk5CbbJIkSZIkSUveTHN0DSKpM9NzjMs8YiabJEmSJEmS+mBqMmj1gUMKZMhMNkmSJEmSxPj0GpFG3ROGHYAkSZIkSZIWD5NNkiRJkiRJ6huTTZIkSZIkSeob52ySJEmSJEkaQeM6j5jJJkmSJEmSpCEY12TSTBxGJ0mSJEmSpL6xZ5MkaVFZrHeH+m3q+7T+9COGFIkkSZIWG5NNkiRJkiRJ22kuNzmXyo1Rh9FJkiRJkiSpb+zZJEkaW0vlzpAWjyRPBj4P7ER3HXZJVb0lye7ARcAKYD3wiqp6sNU5FTgReBR4U1V9qpUfDJwD7AxcAZxcVZVkJ+A84GDgfuCVVbV+QC9R0iKUZF+6duWHgB8AZ1XVn/az7Rrk65G08OzZJEmSNDjfB36+ql4IHAQcnuRQYA1wdVXtB1zdtknyAuAYYH/gcOC9SXZo53ofcBKwX/s5vJWfCDxYVc8F3gm8fQCvS9LitglYXVU/BhwKvKG1T/1suyQtIvZskiRJGpB2935j23xi+yngSGBVKz8XmABOaeUXVtX3gduSrAMOSbIe2LWqrgFIch7wcuDKVuet7VyXAO9JEnsOSJqrqrobuLs9fjjJrcA+9LftGjh7SEsLx2STJEnSALW7+zcCzwX+rKquS7KsfZmjqu5Osmc7fB/g2p7qG1rZI+3x1PLJOne0c21K8hDwTOC+aWI5ia6HAcuWLWNiYmLG+Ddu3LjFcasP3LTN42dzzoUyNdZRZqwLZ5zi3bhx48wHDVmSFcCLgOuAfrZdU59n3u3TTGZqvxbCsp2H87zbaxziHIcYYThxnnn+pVtsH7jPbts8fiHaSZNNkiRJA1RVjwIHJXk68PEkB2zj8Ex3im2Ub6vOdLGcBZwFsHLlylq1atU2QulMTEzQe9wJM/QMWH/szOdcKFNjHWXGunDGKd5RT4oleSrwUeD3quo7yXTNTXfoNGUztV1bFvahfZrJTO3XQlh94CbOWDv6X8PHIc5xiBFGI86Z/i9eiHbSOZskSZKGoKq+TTfk5HDgniR7AbTf97bDNgD79lRbDtzVypdPU75FnSQ7ArsBDyzEa5C0dCR5Il2i6fyq+lgr7mfbJWkRMdkkSZI0IEme1Xo0kWRn4BeArwGXAce3w44HJvu/XwYck2SnJM+hm0z3+jZs5eEkh6brWnDclDqT5zoK+KzzNUmaj9bOnA3cWlXv6NnVz7ZL0iIy+n3OJKmPBrHs+CBfj6Sxsxdwbpu36QnAxVX1iSTXABcnORG4HTgaoKpuTnIxcAvdalBvaMPwAF7P5jboSjZPsHs28KE2Ie8DdCtCSdJ8vBh4DbA2yU2t7M3A6fSv7ZK0iJhskrTUTC47vrF1B/9CkiuBX6dbuvf0JGvolu49ZcrSvXsDn0nyvHbBNLl077V0yabD8YJpQblqjMZdVX2FbmLdqeX3A4dtpc5pwGnTlN8APG6+p6r6Hu0LnyT1Q1V9gennW4I+tV2D4HWElqqpf/vrTz9iwZ/TYXSSlpTqbG3Z8XNb+bl0y/BCz9K9VXUbMLl07160pXtbb6bzeupIkiRJ0pJlsknSkpNkh9YF/F7gqqp63NK9QO/SvXf0VJ9concfZrl0ryRJkiQtJfMaRpfkg8DLgHur6oBW1rd5T5LsRNdb4GDgfuCVVbV+PjFL0gCWHd/yBMlJdMPtWLZs2ayWNd64cePIL38Mg49z9YGb5lRv2c5zrztIw4xze/4d/fuUJEnStsx3zqZzgPfQJYQmraF/856cCDxYVc9NcgzwduCV84xZkoBu2fEkE/QsO15Vd/d76d6qOgs4C2DlypW1atWqGWObmJhgNscN26DjPGGOcy2sPnATZ6wd/WkKhxnn+mNXzfpY/z4lSZK0LfMaRldVn6db5aRXP+c96T3XJcBhbYlMSZqTAS07LkmSJElL1kLcPt1i3pMkvfOeXNtz3OT8Jo+w9XlPHpsrpao2JXkIeCZwX+8TzmWICjx+uMIodrUflyEAxtk/oxjj1GE9ExMTIxnnLA1i2XFJkiRJWrIG2Vd/LvOezGpOlLkMUQE48/xLtxiusD1DCAZlXIYAGGf/jGKMU4curT921UjGORuDWHZc/eMSxZIkSdL4WYjV6O5pQ+Pow7wnj9VJsiOwG48ftidJkiRJkqQRsRA9mybnPTmdx897ckGSd9BNED4578mjSR5OcihwHd28J2dOOdc1wFHAZ9u8TpIkqY+m9iJbf/oRQ4pEkiRJ425eyaYkHwFWAXsk2QC8hS7J1K95T84GPpRkHV2PpmPmE68kSZIkaWlwOL40PPNKNlXVq7ayqy/znlTV92jJKkmSJEmSJI2+hZizSZIkSZIkSUuUySZJkiRJkiT1zUJMEC5JkiRJkqQRNHU+s3MO36Xvz2HPJkmSJEnSViX5YJJ7k3y1p+ytSe5MclP7eWnPvlOTrEvy9SQv6Sk/OMnatu/dSTLo1yJpMOzZJEmSHme6FXzWn37EECKRJI2Ac4D3AOdNKX9nVf1Jb0GSF9CtIr4/sDfwmSTPayuRvw84CbgWuAI4nM0rkUtaROzZJEmSZmXFmstZseZy1t75kMtJS9ISUlWfBx6Y5eFHAhdW1fer6jZgHXBIkr2AXavqmqoqusTVyxckYElDZ88mSdLIMIEhSdJYeWOS44AbgNVV9SCwD13PpUkbWtkj7fHUckmLkMkmSZIkSdL2eh/wNqDa7zOA1wLTzcNU2yifVpKT6IbcsWzZMiYmJmYMaOPGjVsct/rATTPWGbRlO49mXFONQ5zjECOMR5xTPzv9YLJJkiRJkrRdquqeycdJ3g98om1uAPbtOXQ5cFcrXz5N+dbOfxZwFsDKlStr1apVM8Y0MTFB73EnjGCP6dUHbuKMtaP/NXwc4hyHGGE84jzn8F2YzWdsezhnkyRJkiRpu7Q5mCb9GjC5Ut1lwDFJdkryHGA/4Pqquht4OMmhbRW644BLBxq0pIEZ7fSaJGlRc44mSZJGX5KPAKuAPZJsAN4CrEpyEN1QuPXA7wBU1c1JLgZuATYBb2gr0QG8nm5lu53pVqFzJTppkTLZJEmSNCBJ9qVbgemHgB8AZ1XVnybZHbgIWEH3pe0VbaJdkpwKnAg8Crypqj7Vyg9m85e2K4CTq6qS7NSe42DgfuCVVbV+QC9R0iJUVa+apvjsbRx/GnDaNOU3AAf0MTRJI8phdJIkSYOziW7Fph8DDgXekOQFwBrg6qraD7i6bdP2HQPsDxwOvDfJDu1c76ObPHe/9nN4Kz8ReLCqngu8E3j7IF6YJEnSJJNNkiRJA1JVd1fVl9rjh4Fb6Zb+PhI4tx12LvDy9vhI4MKq+n5V3QasAw5pc6XsWlXXVFXR9WTqrTN5rkuAw9r8KJIkSQPhMDpJkqQhSLICeBFwHbCsTZ5LVd2dZM922D7AtT3VNrSyR9rjqeWTde5o59qU5CHgmcB908Sw4EuL93sp5e2xEEs5LxRjXTjjFO/GjRuHHYIk9YXJJkmSpAFL8lTgo8DvVdV3ttHxaLodtY3ybdV5fOEAlhZff+zM51woU2MdZca6cMYp3nFJiknSTBxGJ2lJSbJvks8luTXJzUlObuW7J7kqyTfa72f01Dk1ybokX0/ykp7yg5Osbfve7TAVSbOR5Il0iabzq+pjrfieyWXE2+97W/kGYN+e6suBu1r58mnKt6iTZEdgN+CB/r8SSZKk6dmzSdJSMzk575eSPA24MclVwAl0k/OenmQN3eS8p0yZnHdv4DNJnteW8J2cnPdaupWgDsclfLdpxQw9IKTFriWlzwZurap39Oy6DDgeOL39vrSn/IIk76Brg/YDrq+qR5M8nORQumF4xwFnTjnXNcBRwGfbvE6StKitvfOhGXtbShoMk02SlpQ2J8rkvCgPJ+mdnHdVO+xcYAI4hZ7JeYHbkkxOzrueNjkvQJLJyXlNNknalhcDrwHWJrmplb2ZLsl0cZITgduBowGq6uYkFwO30CXL39CS3QCvB84BdqZreybbn7OBD7X26gG6hLkkSdLAmGyStGQt4OS8U59n3hPwjqrtjXOmiYQXyrKdh/fc22Pc4hz1v9FR/BxV1ReYfk4lgMO2Uuc04LRpym8ADpim/Hu0ZJUkSdIwmGyStCQt8OS8Wxb2YQLeUbW9cQ6ra/vqAzdxxtrR/y9v3OIc5sTPszEunyNJkqTFxgnCJS05A5icV5IkSZKWLJNNkpaUWUzOC4+fnPeYJDsleQ6bJ+e9G3g4yaHtnMf11JEkSZKkJWv0++pLUn8NYnJeSZIkSVqyTDZJWlIGMTmvJEmSJC1lDqOTJEmSJElS39izSZK0YFYMafU5SZLUP0k+CLwMuLeqDmhluwMXASuA9cArqurBtu9U4ETgUeBNVfWpVn4wm6cguAI4uaqmXc1X0nizZ5MkSZqTFWsu3+JHkrRonQMcPqVsDXB1Ve0HXN22SfIC4Bhg/1bnvUl2aHXeB5xEt+DKftOcU9IiYc8mSY/jl0ZJkiRNqqrPJ1kxpfhIYFV7fC4wAZzSyi+squ8DtyVZBxySZD2wa1VdA5DkPODluMCKtCjZs0mSJEmStL2WVdXdAO33nq18H+COnuM2tLJ92uOp5ZIWIXs2SZIkSZL6ZbpVf2sb5dOfJDmJbsgdy5YtY2JiYsYnXrYzrD5w0+yiHJJxiBHGI85xiBHGI86NGzfO6jO2PUw2SZIkSZK21z1J9qqqu5PsBdzbyjcA+/Yctxy4q5Uvn6Z8WlV1FnAWwMqVK2vVqlUzBnTm+ZdyxtrR/oq7+sBNIx8jjEec4xAjjEec5xy+C7P5jG2PBXvFbUzuw3QrEGyqqpWuWCBJkrS0TDcP4PrTjxhCJJL67DLgeOD09vvSnvILkrwD2JtuIvDrq+rRJA8nORS4DjgOOHPwYUsahIWes+nnquqgqlrZtl2xQJIkSZLGSJKPANcAz0+yIcmJdEmmX0zyDeAX2zZVdTNwMXAL8EngDVX1aDvV64EPAOuAb+Lk4NKiNei+XK5YIEmLlKsYSpK0OFXVq7ay67CtHH8acNo05TcAB/QxNEkjaiGTTQV8OkkBf9HG3G6xYkGS3hULru2pO7kywSPMYsWCuUweB4+fqOvM8y/dYv+B++w2q/MspIWYqGshGGf/jEKMM01gNzExMRJxSpIkSZJGz0Imm15cVXe1hNJVSb62jWPntWLBXCaPg5knkFt/7OzOs5AmJib6PlHXQjDO/hmFGE+YoYfK+mNXjUSckiRJkqTRs2DJpqq6q/2+N8nHgUNY4BULJEmDs2LN5aw+cNOMyUlJkiRJS8uCTBCeZJckT5t8DPwS8FU2r1gAj1+x4JgkOyV5DptXLLgbeDjJoUlCt2LBlmPdJEmSJEmSNDIWqmfTMuDjXX6IHYELquqTSb4IXNxWL7gdOBq6FQuSTK5YsInHr1hwDrAz3cTgTg4uSdIImjpJvMvbS5IkLU0Lkmyqqm8BL5ym/H5csUCSJEmSJGnRWpBhdJIkSZIkSVqaTDZJkiQNUJIPJrk3yVd7ynZPclWSb7Tfz+jZd2qSdUm+nuQlPeUHJ1nb9r27zW9JmwPzolZ+XZIVA32BkiRpyTPZJEmSNFjnAIdPKVsDXF1V+wFXt22SvAA4Bti/1Xlvkh1anfcBJ9EtrLJfzzlPBB6squcC7wTevmCvRJIkaRoLNUG4pDExdULfxS7JB4GXAfdW1QGtbHfgImAFsB54RVU92PadSvfF7VHgTVX1qVZ+MJsXL7gCOLmqapCvZdCW2t+KtFCq6vPT9DY6EljVHp8LTACntPILq+r7wG1J1gGHJFkP7FpV1wAkOQ94Od1CKkcCb23nugR4T5Is9jZKkiSNDpNNkpaac4D3AOf1lE32KDg9yZq2fcqUHgV7A59J8ry2WuZkj4Jr6ZJNh+NqmZLmbllV3Q1QVXcn2bOV70PXzkza0MoeaY+nlk/WuaOda1OSh4BnAvdNfdIkJ9G1ZSxbtoyJiYkZA924ceMWx60+cNOMdaaazfP0w9RYR5mxLpxxinfjxo3DDkGS+sJkk6QlZQA9CiSpnzJNWW2jfFt1Hl9YdRZwFsDKlStr1apVMwY0MTFB73EnzKHX4/pjZ36efpga6ygz1oUzTvGOS1JMkmZismkbpg4ZWX/6EUOKRNIC62ePgsfpR8+BYVh750NbbK8+8PHHLNt5br0aBs04+2u2cZ55/qVbbB+4z24LFdK0RuFztB3uSbJXa4P2Au5t5RuAfXuOWw7c1cqXT1PeW2dDkh2B3YAHFjJ4SZKkXiabpCXGeXe2y1x6FDx+Rx96DgzDbHorrD5wE2esHf3/Soyzv+Ya56B6s0wahc/RdrgMOB44vf2+tKf8giTvoBvOux9wfVU9muThJIcC1wHHAWdOOdc1wFHAZ52vSZIkDdLoX9FK0sLrZ48CSdqmJB+hG7q7R5INwFvokkwXJzkRuB04GqCqbk5yMXALsAl4Q5s3DuD1bF6o4Eo2D+U9G/hQG/r7AN3cc5IkSQNjskmS+tujQJK2qapetZVdh23l+NOA06YpvwE4YJry79GSVZK00Npclg/Trdy7qapWzmWlX0mLyxOGHYAkDVLrUXAN8PwkG1ovgtOBX0zyDeAX2zZVdTMw2aPgkzy+R8EHgHXAN3FycEmStHT9XFUdVFUr2/bkSr/7AVe3baas9Hs48N4kOwwjYEkLy55NkpaUhe5RIEmSpO1b6ZfuRqCkRcRk03ZwdTqNIycElzQq/H9UkhalAj6dpIC/aAujbO9Kv48zl9V8x2FV13GIEcYjznGIEcYjzoVYwddkkyRJkiRprl5cVXe1hNJVSb62jWNnvaLvXFbzPfP8S0d+VdfFvvLsII1DjDAecZ5z+C59X8F3tF/xiJuux4h3aTVs9mSSJEnSoFTVXe33vUk+TjcsbntX+pW0yJhsksacySX1i39LkiRpeyTZBXhCVT3cHv8S8Mds50q/Aw9c0oIz2dRnzkehhWZCQJI0TGvvfIgT/L9IUmcZ8PEk0H23vKCqPpnki8DFbdXf24GjoVvpN8nkSr+b2HKlX0mLiMkmaYSsWHM5qw/c5EW8JEmSRl5VfQt44TTl97OdK/1KWlxMNklDZC8lSUuZvYElSZIWJ5NNC2ymZIIX1pIkaakx0ShJ0uJmsmnIvNhaWuzJJEmSJEla7Ew2jZipyYip8/eYjBptJpM0Tvx7lSRJkrQQTDaNGXtCDY5fxCVJkiRJ2n4mm8bcbBIiJqQkSZIkSdKgmGxaAra3h85MyanpzrfQw/3m0stoagwr1lz+uDilpcTeepIkSZIGwWSTHqcfX0hH4UvtKMQgSZq96dpte+dKkiSNH5NNkrQImWyVJEmSNCxPGHYAkiRJkiRJWjzs2SRJi4A9mbRYuQqrJEnS+DHZJEmSpKEyqShJ0uLiMDpJkiRJkiT1jT2bJEnS2LAHjCRJ0ugbi2RTksOBPwV2AD5QVacPOSRJAhaufVp750Oc0POl2i/UkrbXOF8/mVSUFrdxbp8kzc7IJ5uS7AD8GfCLwAbgi0kuq6pbhhuZpKXO9knSqFps7ZPJJ2nxWGztk6TpjXyyCTgEWFdV3wJIciFwJGBjJGnYbJ+kITMJsVWLun2a7Qqcqw/c9FgvUf82pJGxqNsnSZ1U1bBj2KYkRwGHV9Vvte3XAD9ZVW/sOeYk4KS2+Xzg67M8/R7AfX0MdyGMQ4xgnP00DjHC7OJ8dlU9axDBDMNs2qdWPpc2ajH9HYwC4+yvxRCn7ROLvn0CY10o4xQrjFe8ewC72D4t6vZpHGKE8YhzHGKE8YhztjHO+vppHHo2ZZqyLTJkVXUWcNZ2nzi5oapWzjWwQRiHGME4+2kcYoTxiXOBzdg+wdzaqHF5f42zv4yzv8YlzgWy5NsnMNaFMk6xwnjF22JdMew4FtiSbp/GIUYYjzjHIUYYjzgXIsYn9PNkC2QDsG/P9nLgriHFIkm9bJ8kjSrbJ0mjyvZJWgLGIdn0RWC/JM9J8iTgGOCyIcckSWD7JGl02T5JGlW2T9ISMPLD6KpqU5I3Ap+iWxrzg1V1c59Ov91D74ZgHGIE4+yncYgRxifOBWP7BBhnvxlnf41LnH1n+/QYY10Y4xQrjFe84xTrnNg+jUWMMB5xjkOMMB5x9j3GkZ8gXJIkSZIkSeNjHIbRSZIkSZIkaUyYbJIkSZIkSVLfLPpkU5LDk3w9yboka6bZnyTvbvu/kuTHRzTOY1t8X0nyd0leOIpx9hz3E0keTXLUIONrzz1jjElWJbkpyc1J/mbQMbYYZvo33y3J/0ny5Rbnbw4hxg8muTfJV7eyfyQ+P+NsHNoo26f+so3qe5y2UwMy28/YKJjp72KUJNk3yeeS3No+SycPO6atSfLkJNf3fO7/+7BjmkmSHZL8fZJPDDuWmSRZn2Rta/9vGHY8o8zrp8HE2HOc107zjHEUrpsGfs1UVYv2h27CuW8CPwI8Cfgy8IIpx7wUuBIIcChw3YjG+dPAM9rjXx7VOHuO+yxwBXDUqMUIPB24Bfjhtr3nKL6XwJuBt7fHzwIeAJ404Dh/Fvhx4Ktb2T/0z884/4xDG2X7NJT30zZq+2K1nRqRv4lR+pnp72KUfoC9gB9vj58G/MOovrftc/TU9viJwHXAocOOa4aYfx+4APjEsGOZRazrgT2GHceo/3j9NLgYe47z2mn+MQ79umnQ10yLvWfTIcC6qvpWVf0bcCFw5JRjjgTOq861wNOT7DVqcVbV31XVg23zWmD5gGOE2b2fAL8LfBS4d5DBNbOJ8TeAj1XV7QBVNapxFvC0JAGeStcgbRpkkFX1+fa8WzMKn59xNg5tlO1Tf9lG9Znt1MDM9jM2EmbxdzEyquruqvpSe/wwcCuwz3Cjml77HG1sm09sPyO72lCS5cARwAeGHYv6yuunAcXYeO3UnxiHft006GumxZ5s2ge4o2d7A4//z3s2xyy07Y3hRLqM46DNGGeSfYBfA/58gHH1ms17+TzgGUkmktyY5LiBRbfZbOJ8D/BjwF3AWuDkqvrBYMKbtVH4/IyzcWijbJ/6yzZq8Ib9GVosfB8HIMkK4EV0PYZGUhuWdhPdF8+rqmpkYwXeBfwhMIpt03QK+HRr+08adjAjzOun/vDaqX8Wy3VTXz83O847nNGWacqm3n2ZzTELbdYxJPk5usboZxY0ounNJs53AadU1aNd0nbgZhPjjsDBwGHAzsA1Sa6tqn9Y6OB6zCbOlwA3AT8P/DvgqiR/W1XfWeDYtscofH7G2Ti0UbZP/WUbNXjD/gwtFr6PCyzJU+l6D/zeCH6OHlNVjwIHJXk68PEkB1TVyM2NleRlwL1VdWOSVUMOZ7ZeXFV3JdmTrk39WuuJoC15/dQfXjv1z2K5burr52axJ5s2APv2bC+nyyRu7zELbVYxJPn3dN2Af7mq7h9QbL1mE+dK4MLWGO0BvDTJpqr664FEOPt/8/uq6rvAd5N8Hngh3RwJgzKbOH8TOL26AbTrktwG/Chw/WBCnJVR+PyMs3Foo2yf+ss2avCG/RlaLHwfF1CSJ9Ilms6vqo8NO57ZqKpvJ5kADgdGLtkEvBj41SQvBZ4M7Jrkw1X16iHHtVVVdVf7fW+Sj9MNzTHZ9HheP/WH1079s1ium/r7uakBT/A1yB+6ZNq3gOeweaKu/acccwRbToJ1/YjG+cPAOuCnR/n9nHL8OQx+gvDZvJc/Blzdjn0K3QXSASMY5/uAt7bHy4A7GcKkkcAKtj6J3NA/P+P8Mw5tlO3TUN5P26jtj9d2agT+JkbtZ1t/F6P00/42zwPeNexYZhHrs4Cnt8c7A38LvGzYcc0i7lWM+AThwC7A03oe/x1w+LDjGsUfr58GF+OU4712ml+MI3HdNMhrpkXds6mqNiV5I/ApuhniP1hVNyd5Xdv/53Sz6r+U7oP+L3QZx1GM84+AZwLvbZnlTVW1cgTjHKrZxFhVtyb5JPAVujH8H6gBd/+e5Xv5NuCcJGvpPvCnVNV9g4wzyUfoLtD2SLIBeAvdZKAj8/kZZ+PQRtk+9ZdtVP/ZTg3G1v4mhhzWVk33d1FVZw83qq16MfAaYG2bCwngzVV1xfBC2qq9gHOT7EA39+vFVfWJIce0WCyjG5YI3RfXC6rqk8MNaTR5/TTQGIduHK6dxuW6adDXTGkZLEmSJEmSJGneFvtqdJIkSZIkSRogk02SJEmSJEnqG5NNkiRJkiRJ6huTTZIkSZIkSeobk02SJEmS1AdJPpjk3iSzWgkrySuS3JLk5iQXLHR8kjQorkYnSZIkSX2Q5GeBjcB5VXXADMfuB1wM/HxVPZhkz6q6dxBxStJCs2eTJEmSJPVBVX0eeKC3LMm/S/LJJDcm+dskP9p2/TbwZ1X1YKtroknSomGySZIkSZIWzlnA71bVwcAfAO9t5c8Dnpfk/ya5NsnhQ4tQkvpsx2EHIEmSJEmLUZKnAj8N/FWSyeKd2u8dgf2AVcBy4G+THFBV3x5wmJLUdyabJEmSJGlhPAH4dlUdNM2+DcC1VfUIcFuSr9Mln744wPgkaUE4jE6SJEmSFkBVfYcukXQ0QDovbLv/Gvi5Vr4H3bC6bw0jTknqN5NNkiRJktQHST4CXAM8P8mGJCcCxwInJvkycDNwZDv8U8D9SW4BPgf856q6fxhxS1K/paqGHYMkSZIkSZIWCXs2SZIkSZIkqW9MNkmSJEmSJKlvTDZJkiRJkiSpb0w2SZIkSZIkqW9MNkmSJEmSJKlvTDZpZCWpJM9tj/88yX+bRZ0rkxy/8NFJ2h5Jbk6yathxjKokK1qbt+OwY5E0mpKsT/ILw45D0uI12c4keXOSDww7Ho03L2o1FqrqdbM87pcnHyc5AfitqvqZhYpL0uxU1f7zqZ/krcBzq+rV/YloYdn+SJKkcVVV/3PYMWj82bNJkjT20vH/NEmSJGkEeGGuvkiyd5KPJvnnJLcleVOS3ZNsSPIr7ZinJlmX5Li2fU4bHndVkoeT/E2SZ2/l/Ock+R8920cmuSnJd5J8M8nhrXwiyW8l+THgz4GfSrIxybcX/E2QtFU93bLfmuTiJOe1z/3NSVb2HHdKkjvbvq8nOax9vt8MvLJ9nr/cjp1IclqS/wv8C/AjU4eZtOf7cHs8OVTtN5PckeTBJK9L8hNJvpLk20neMyXu1ya5tR37qd42qp3rdUm+0fb/WUt6Tdv+JDkiyd+3duuO1ltra+/XRJK3Jfm/7b34dJI9evYfmuTvWsxf7h2imOSEJN9q9W5Lcmwrf25rZx9Kcl+Si7b/X1LSKEjyo+3zfUySl7Vrom+3duHft2P+c5KPTql3ZpJ3DSVoSWNjyvXTJ5O8ccr+Lyf59fb4R9v3uQfatdsreo47p10fXd6uS65L8u969m+r7kuT3NLq3ZnkD1r5Hkk+0dq8B5L8bbzhOJL8R9G8tQ/3/wG+DOwDHAb8HvATwGuB9yfZE3gncFNVnddT/VjgbcAewE3A+bN4vkOA84D/DDwd+Flgfe8xVXUr8Drgmqp6alU9fY4vT1L//SpwId3n9zLgPQBJng+8EfiJqnoa8BJgfVV9EvifwEXt8/zCnnO9BjgJeBrwj7N8/p8E9gNeCbwL+C/ALwD7A69I8h9aPC+nS3L9OvAs4G+Bj0w518vo2roXAq8AXrKN9ue7wHHtdR8BvL49x9b8BvCbwJ7Ak4DJi6x9gMuB/wHs3so/muRZSXYB3g38cnsPf5qubYWurf008AxgOXDmjO+UpJGT5MfpPsu/C/wD8EHgd4BnAn8BXJZkJ+DDwOFJnt7q7UjX7n1oCGFLGl8XAK+a3EjyAuDZwOXtuuOqdsye7bj3JumdPuFVwH+nu/5YB5zWzjNT3bOB32nXMwcAn23lq4ENdNdmy+iu1aq/L1n9YLJJ/fATwLOq6o+r6t+q6lvA+4FjqurTwF8BV9N9ufqdKXUvr6rPV9X36b7w/VSSfWd4vhOBD1bVVVX1g6q6s6q+1t+XJGkBfaGqrqiqR+m+9Ewmjx4FdgJekOSJVbW+qr45w7nOqaqbq2pTVT0yy+d/W1V9r7VP3wU+UlX3VtWddAmlF7Xjfgf4/6rq1qraRJfwOihb9sA8vaq+XVW3A58DDtrak1bVRFWtbe3WV+gSV/9hG3H+ZVX9Q1X9K3Bxz7lfDVzR3sMfVNVVwA3AS9v+HwAHJNm5qu6uqptb+SN0F4d7t9f/hRnfKUmj5v+hS9IfX1WfAH4b+Iuquq6qHq2qc4HvA4dW1d3A54GjW93Dgfuq6sZhBC5pbH2cLa9/jgU+1r6/vYzuxuBftmuxLwEfBY7qqf+xqrq+XUudz+brmZnqPkJ3TbhrVT3Y9k+W7wU8u6oeqaq/rSqTTSPIZJP64dnA3q0r47fbkJE302WaAc6iy0b/ZVXdP6XuHZMPqmoj8ACw9wzPty8w0xdQSaPrn3oe/wvw5CQ7VtU6ul6RbwXuTXJhkpnagztm2D+de3oe/+s0209tj58N/GlPu/YAELoenJOmvpanshVJfjLJ59INN36IrvfTHls7fhvnfjZw9JQ292eAvarqu3Q9F14H3N26rf9oq/eHLf7r0w1ffO02nlvSaHod8HdV9bm2/Wxg9ZT2YF82X0udS5egpv22V5Ok7VJVD9P1qD6mFR3D5tEozwZ+ckobdCzwQz2n2Nb1zLbq/ke6G2n/2KYB+KlW/r/pekh9uk0bsKZPL1V9ZrJJ/XAHcFtVPb3n52lV9dIkO9B16T6PbsjIc6fUfawXU5Kn0g0JuWsWz/fvZjgG7E4pjZ2quqCt4PZsus/w2yd3ba3KlO3vAk/p2f4h5u4Ouu7bvW3bzlX1d7OoO128F9D1SNi3qnajm9cpc4zrQ1Pi2qWqTgeoqk9V1S/S3fX7Gl1PU6rqn6rqt6tqb7peW++dpk2WNNpeB/xwkne27TuA06a0B0+pqskhv38N/PskB9D1IphxugJJmsZHgFe1hM/OdL25oWuD/mZKG/TUqnr9LM65zbpV9cWqOpJuiN1f0/XypqoerqrVVfUjwK8Av5/ksL6+WvWFySb1w/XAd9JN7Ltzkh2SHJDkJ+h6OEE3d9OfAOe1BNSklyb5mSRPoptP5LqqmqmnwtnAb6abOPgJSfbpuXPf6x5geTu3pBGX5PlJfr7NNfI9ul5Gj7bd9wArZjEB5E3AMUmemG7i8aNmOH5b/hw4dXLugCS7JTl6hjqTpmt/ngY8UFXfa3PP/cYc4/ow8CtJXtLa2ycnWZVkeZJlSX61zYPwfWAj7T1McnSS5e0cD9IlxB6d9hkkjaqH6YbD/WyS0+mSya9rPSeTZJd0ixE8DaCqvgdcQpfsvr4N+ZWk7XUF3Y3AP6abQ/MHrfwTwPOSvKZdez0x3cIrPzaLc261bpInJTk2yW5tmoTvsPl65mXpFj1JT7nXMyPIZJPmrc278it0429vA+4DPgD8PPD7wHHtmLfTfbnp7ep4AfAWuuEpB9N1nZzp+a6nmzT3ncBDwN/QNX5TfRa4GfinJPfN4aVJGqydgNPp2pB/oruTNZmw/qv2+/4kX5qm7qT/Rtfz8UG6ySgvmGswVfVxunbrwiTfAb4K/PIsq0/X/vy/wB8neRj4I9odujnEdQdwJN178890dwb/M93/6U+gmzjzLrp29T+054Vufr3rkmyk62F1clXdNpcYJA1PVX0b+EW69uhIunmb3kPX7q0DTphS5VzgQBxCJ2mO2vxMH6NbUOWCnvKHgV+iG1p3F93129vprulmOudMdV8DrG/XYK9j85Dg/YDP0N1QuwZ4b1VNzOsFakHEubQ0LEnOATZU1X8ddiySJEmLUZIfphtS+0NV9Z1hxyNJWhrs2SRJkiQtQm3o8e8DF5pokiQN0o7DDkCSJElSf7W52+4B/pFunidJkgbGYXSSJEmSJEnqG4fRSZIkSZIkqW8W3TC6PfbYo1asWDGrY7/73e+yyy67LGxA8zQOMcJ4xGmM/TPbOG+88cb7qupZAwhpbMy2jRqHv4VxiBHGI85xiBHGI07bp7kb9/ZpFOMaxZjAuLbHMGKyfXq8cW+feo1DjDAecY5DjDAecS7I9VNVLaqfgw8+uGbrc5/73KyPHZZxiLFqPOI0xv6ZbZzADTUC7cIo/cy2jRqHv4VxiLFqPOIchxirxiNO26el2z6NYlyjGFOVcW2PYcRk+7T42qde4xBj1XjEOQ4xVo1HnAtx/eQwOkmSJEmSJPWNySZJkiRJkiT1jckmSZIkSZIk9c2MyaYkH0xyb5Kv9pT97yRfS/KVJB9P8vSefacmWZfk60le0lN+cJK1bd+7k6SV75TkolZ+XZIVPXWOT/KN9nN8v160JEmSJEmSFsZsejadAxw+pewq4ICq+vfAPwCnAiR5AXAMsH+r894kO7Q67wNOAvZrP5PnPBF4sKqeC7wTeHs71+7AW4CfBA4B3pLkGdv/EiVJkiRJkjQoMyabqurzwANTyj5dVZva5rXA8vb4SODCqvp+Vd0GrAMOSbIXsGtVXdNmMD8PeHlPnXPb40uAw1qvp5cAV1XVA1X1IF2Ca2rSS5IkSZLUB0n2TfK5JLcmuTnJya189yRXtREnV/V2AujnyBZJi8eOfTjHa4GL2uN96JJPkza0skfa46nlk3XuAKiqTUkeAp7ZWz5NnS0kOYmu1xTLli1jYmJiVoHf+8BDnHn+pY9tH7jPbrOqN0gbN26c9esZpnGI0xj7Z1ziHGdr73yIE9Zc/tj2+tOPGGI0krSZ7ZO0qG0CVlfVl5I8DbgxyVXACcDVVXV6kjXAGuCUKSNb9gY+k+R5VfUom0e2XAtcQddx4Ep6RrYkOYZuZMsrB/oqt8OKnvYObPOk2ZpXsinJf6FrkM6fLJrmsNpG+VzrbFlYdRZwFsDKlStr1apVWw+6x5nnX8oZaze/BeuPnV29QZqYmGC2r2eYxiFOY+yfcYlTkiRJs1dVdwN3t8cPJ7mV7ob/kcCqdti5wARwCj0jW4DbkkyObFlPG9kCkGRyZMuVrc5b27kuAd6TJG0EjKRFYs7JpjZh98uAw3oahg3Avj2HLQfuauXLpynvrbMhyY7AbnTD9jawuUGbrDMx13glSZIkSbPThre9CLgOWNYSUVTV3Un2bIf1c2TLfVOef7tHryxE7/vVB27aYnu+5x+XEQLjEOc4xAjjEedCxDinZFOSw+ky2f+hqv6lZ9dlwAVJ3kHXjXI/4PqqejTJw0kOpWusjgPO7KlzPHANcBTw2aqqJJ8C/mfPeOBfok1ELkmSJElaGEmeCnwU+L2q+k6bbmnaQ6cpm+vIli0L5jB6ZSF6358wdRjdPEfDjMsIgXGIcxxihPGIcyFinDHZlOQjdD2M9kiygW6FuFOBnYCrWsNzbVW9rqpuTnIxcAvd8Lo3tPG6AK+nW9luZ7ruk1e28rOBD7Uulw/Qjfmlqh5I8jbgi+24P66qLSYql6StSfKfgN+iu3hZC/wm8BS6OeZWAOuBV7QFCEhyKt0cAo8Cb6qqT7Xyg9ncdl0BnNwS4jvRLXZwMHA/8MqqWj+YVydJ0nA4f83il+SJdImm86vqY634niR7tV5NewH3tvJ+jmyRtIjMmGyqqldNU3z2No4/DThtmvIbgAOmKf8ecPRWzvVB4IMzxShJvZLsA7wJeEFV/WtLgh8DvIAlOrmlJEnSTNqKcWcDt1bVO3p2TY5GOb39vrSnvC8jWxb2lUkatCcMOwBJWiA7Aju3O2ZPobubdiTdpJa03y9vjx+b3LKqbgMmJ7fciza5ZbsIOm9KnclzXQIclm30MZckSRoDLwZeA/x8kpvaz0vpkky/mOQbwC+2barqZmByZMsnefzIlg/QXVd9ky1HtjyzjWz5fbqbf5IWmXmtRidJo6iq7kzyJ8DtwL8Cn66qTycZ+OSWMLcJLpftvOWElKM4qeA4THYI4xHnOMQI4xHnOMQoSaOqqr7A9HMqARy2lTp9G9kiafEw2SRp0WkLCxwJPAf4NvBXSV69rSrTlPVlckuY2wSXZ55/KWes3dxEz3cyyoUwDpMdwnjEOQ4xwnjEOQ4xSpIkLXYOo5O0GP0CcFtV/XNVPQJ8DPhp2uSWAH2c3BInt5S0PZJ8MMm9Sb7aU/bWJHdOGbYyue/UJOuSfD3JS3rKD06ytu179+RQ3iQ7JbmolV/Xli+XJEkaGJNNkhaj24FDkzylffk6DLiVzRNSwuMntzymfUF7Dpsnt7wbeDjJoe08x02pM3kuJ7eUtD3OoVtsYKp3VtVB7ecKgCkLGBwOvDfJDu34yQUM9ms/k+d8bAED4J10CxhIkiQNjMPoJC06VXVdkkuALwGbgL+nG8b2VODiJCfSJaSObsff3Fasu6UdP3Vyy3OAnekmtuyd3PJDbXLLB+i+DErSjKrq89vR2+ixBQyA21qbc0iS9bQFDACSTC5gcGWr89ZW/xLgPUliQlySJA2KySZJi1JVvQV4y5Ti7+PklpJG1xuTHAfcAKyuqgdxAYNZG8XJ4UcxJphfXL3/9tDff/9RfL9GMSZJGgcmmyRJkobvfcDb6BYaeBtwBvBaXMBg1kZxcvhRjAnmF9cJay7fYruf//6j+H6NYkySNA6cs0mSJGnIquqeqnq0qn4AvB84pO1yAQNJkjR2TDZJkiQN2eRKmc2vAZMr1bmAgSRJGjsOo5MkSRqgJB8BVgF7JNlAN7/cqiQH0Q13Ww/8DriAgSRJGk8mmyRJkgaoql41TfHZ2zjeBQwkSdJYcRidJEmSJEmS+sZkkyRJkiRJkvrGZJMkSZIkSZL6xmSTJEmSJEmS+sZkkyRJkiRJkvpmxmRTkg8muTfJV3vKdk9yVZJvtN/P6Nl3apJ1Sb6e5CU95QcnWdv2vTtJWvlOSS5q5dclWdFT5/j2HN9IcnzfXrUkSZIWjRVrLmftnQ+xYs3lrFhz+bDDkSRpyZtNz6ZzgMOnlK0Brq6q/YCr2zZJXgAcA+zf6rw3yQ6tzvuAk4D92s/kOU8EHqyq5wLvBN7ezrU78BbgJ4FDgLf0JrUkSZIkSZI0emZMNlXV54EHphQfCZzbHp8LvLyn/MKq+n5V3QasAw5Jshewa1VdU1UFnDelzuS5LgEOa72eXgJcVVUPVNWDwFU8PuklSZIkSZKkEbLjHOstq6q7Aarq7iR7tvJ9gGt7jtvQyh5pj6eWT9a5o51rU5KHgGf2lk9TZwtJTqLrNcWyZcuYmJiY3YvYGVYfuOmx7dnWG6SNGzeOZFxTjUOcxtg/4xKnJEmSJGnw5pps2ppMU1bbKJ9rnS0Lq84CzgJYuXJlrVq1asZAAc48/1LOWLv5LVh/7OzqDdLExASzfT3DNA5xGmP/jEuckiRpaZg6V9f6048YUiSSJJj7anT3tKFxtN/3tvINwL49xy0H7mrly6cp36JOkh2B3eiG7W3tXJIkSZIkSRpRc002XQZMrg53PHBpT/kxbYW559BNBH59G3L3cJJD23xMx02pM3muo4DPtnmdPgX8UpJntInBf6mVSZIkSZIkaUTNOIwuyUeAVcAeSTbQrRB3OnBxkhOB24GjAarq5iQXA7cAm4A3VNWj7VSvp1vZbmfgyvYDcDbwoSTr6Ho0HdPO9UCStwFfbMf9cVVNnahckiRJkiRJI2TGZFNVvWoruw7byvGnAadNU34DcMA05d+jJaum2fdB4IMzxShJkiRJkqTRMNdhdJIkSZIkSdLjmGySJEkaoCQfTHJvkq/2lP3vJF9L8pUkH0/y9Fa+Ism/Jrmp/fx5T52Dk6xNsi7Ju9u8mLS5My9q5dclWTHo1yhJkpa2GYfRSZIkqa/OAd4DnNdTdhVwalVtSvJ24FTglLbvm1V10DTneR9wEnAtcAVwON2cmCcCD1bVc5McA7wdeOUCvA5JWnRWrLl82CFIi4I9myRJkgaoqj5PtyhKb9mnq2pT27wWWL6tcyTZC9i1qq5pq/ieB7y87T4SOLc9vgQ4bLLXkyRJ0iDYs0mSJGm0vBa4qGf7OUn+HvgO8F+r6m+BfYANPcdsaGW033cAtJ5SDwHPBO6b+kRJTqLrHcWyZcuYmJiYMbhlO8PqAzc9tj2bOgtt9YGbtohrFGIC2Lhx48jE0ms+cfX+20N/3+tRjGtU/w0ladSZbJIkSRoRSf4LsAk4vxXdDfxwVd2f5GDgr5PsD0zXU6kmT7ONfVsWVp0FnAWwcuXKWrVq1Ywxnnn+pZyxdvMl5PpjZ66z0E5YczmrD9z0WFyjEBN0CY/ZvKeDNp+4TpgyxKif7/UoxjWq/4aSNOocRidJkjQCkhwPvAw4tg2No6q+X1X3t8c3At8EnkfXk6l3qN1y4K72eAOwbzvnjsBuTBm2J0nT2coCBm9NcmfPQgUv7dl3aluM4OtJXtJT7gIG0hJnzyZJkqQhS3I43YTg/6Gq/qWn/FnAA1X1aJIfAfYDvlVVDyR5OMmhwHXAccCZrdplwPHANcBRwGcnk1caL1MnKl5/+hFDikRLyDk8fgEDgHdW1Z/0FiR5AXAMsD+wN/CZJM+rqkdxAQNpybNnkyRJ0gAl+QhdIuj5STYkOZHuy93TgKtaz4E/b4f/LPCVJF+mm+z7dVU12Uvp9cAHgHV0PZ6ubOVnA89Msg74fWDNIF6XpPE33QIG23AkcGHrgXkbXVt0iAsYSAJ7NklapJI8ne5L2AF0c5W8Fvg63aS7K4D1wCuq6sF2/Kl0d9seBd5UVZ9q5QfT3eXbme7O3MlVVUl2ort4Ohi4H3hlVa0fyIuTNNaq6lXTFJ+9lWM/Cnx0K/tuoGvjppZ/Dzh6PjFK0hRvTHIccAOwul0/7UPXc2nS5EIFjzCkBQz6MaH71Mnmp5rv+cdl0vlxiHMcYoTxiHMhYjTZJGmx+lPgk1V1VJInAU8B3gxcXVWnJ1lDd7f/FLuBS5IkbdX7gLfR3bx7G3AG3U28rS1GMLQFDPoxofvUyeanmu/k8+My6fw4xDkOMcJ4xLkQMTqMTtKik2RXuqEnZwNU1b9V1bfZsuv2uWzZpdtu4JIkSVNU1T1V9WhV/QB4P3BI2/XYYgTN5EIFLmAgyWSTpEXpR4B/Bv4yyd8n+UCSXYBlVXU3QPu9Zzv+sS7dzWR3732YZTdwYLIbuCRJ0qLRbr5N+jVgcqW6y4Bj2gpzz6FbwOD6do31cJJD242444BLe+oc3x67gIG0iDmMTtJitCPw48DvVtV1Sf6UbU+Qu6DdwOcy58CynbecM2AUx3mPw/hzGI84xyFGGI84xyFGSRpVbQGDVcAeSTYAbwFWJTmI7jpnPfA7AFV1c5KLgVuATcAb2hQE0C1gcA7dnJdXsuUCBh9qCxg8QDeNgaRFyGSTpMVoA7Chqq5r25fQJZvuSbJXVd3d7tLd23P8XLuBb5ipG/hc5hw48/xLOWPt5iZ6vvMDLIRxGH8O4xHnOMQI4xHnOMQoSaNqexYwaMefBpw2TbkLGEhLnMPoJC06VfVPwB1Jnt+KDqO769bbdft4tuzSbTdwSZIkSeoDezZJWqx+Fzi/rUT3LeA36RLsFyc5EbiddmfNbuCSJEmS1D8mmyQtSlV1E7Byml2HbeV4u4FLkiRJUh/Maxhdkv+U5OYkX03ykSRPTrJ7kquSfKP9fkbP8acmWZfk60le0lN+cJK1bd+7J5cPb0NaLmrl1yVZMZ94JUmSJEmStLDmnGxKsg/wJmBlVR0A7EA3jGQNcHVV7Qdc3bZJ8oK2f3/gcOC9SXZop3sf3UpN+7Wfw1v5icCDVfVc4J3A2+caryRJkiRJkhbefCcI3xHYua3E9BS6VZqOBM5t+88FXt4eHwlcWFXfr6rbgHXAIW1FqF2r6po2ue55U+pMnusS4LDJXk+SJEmSJEkaPXOes6mq7kzyJ3ST7P4r8Omq+nSSZW0FJ9ry4nu2KvsA1/acYkMre6Q9nlo+WeeOdq5NSR4Cngnc1xtLkpPoekaxbNkyJiYmZvUalu0Mqw/c9Nj2bOsN0saNG0cyrqnGIU5j7J9xiVOSJEmSNHhzTja1uZiOBJ4DfBv4qySv3laVacpqG+XbqrNlQdVZwFkAK1eurFWrVm0jjM3OPP9Szli7+S1Yf+zs6g3SxMQEs309wzQOcRpj/4xLnJIkSZKkwZvPMLpfAG6rqn+uqkeAjwE/DdzThsbRft/bjt8A7NtTfzndsLsN7fHU8i3qtKF6u9EtMS5JkiRJkqQRNJ9k0+3AoUme0uZROgy4FbgMOL4dczxwaXt8GXBMW2HuOXQTgV/fhtw9nOTQdp7jptSZPNdRwGfbvE6SJEmSJEkaQfOZs+m6JJcAXwI2AX9PN5TtqcDFSU6kS0gd3Y6/OcnFwC3t+DdU1aPtdK8HzgF2Bq5sPwBnAx9Kso6uR9Mxc41XkiRJkiRJC2/OySaAqnoL8JYpxd+n6+U03fGnAadNU34DcMA05d+jJaskSZIWgyQfBF4G3FtVB7Sy3YGLgBXAeuAVVfVg23cqcCLwKPCmqvpUKz+YzTfrrgBOrqpKshPd6r4HA/cDr6yq9QN6eZIkSfMaRidJkqTtdw5w+JSyNcDVVbUfcHXbJskL6Hp279/qvDfJDq3O++hW492v/Uye80Tgwap6LvBO4O0L9kokSZKmYbJJkiRpgKrq8zx+wZMjgXPb43OBl/eUX1hV36+q24B1wCFtEZZdq+qaNp/leVPqTJ7rEuCwNi+mJEnSQMxrGJ0kSZL6YllbNIWqujvJnq18H+DanuM2tLJH2uOp5ZN17mjn2pTkIeCZwH1TnzTJSXS9o1i2bBkTExMzB7ozrD5w02Pbs6kz1do7H9pi+8B9dtvuc/RafeCmLeKaS0wLYePGjfOKpfd9hv69rvnEtVAxwWjGNd9/Q0laqkw2SZIkja7peiTVNsq3VefxhVVn0S3wwsqVK2vVqlUzBnTm+ZdyxtrNl5Drj525zlQnrLl8i+25nGPq+VYfuOmxuOZ7vn458/xLOeML331se/3pR2xX/X6/T5MmJiaYzb/1dBYqJhjNuOYTkyQtZSabJEmShu+eJHu1Xk17Afe28g3Avj3HLQfuauXLpynvrbMhyY7Abjx+2J4kaQ5WTE1sbmcSWVoqnLNJkiRp+C4Djm+Pjwcu7Sk/JslOSZ5DNxH49W3I3cNJDm3zMR03pc7kuY4CPtvmdZIkSRoIezZJkiQNUJKPAKuAPZJsAN4CnA5cnORE4HbgaICqujnJxcAtwCbgDVX1aDvV6+lWttsZuLL9AJwNfCjJOroeTccM4GVJkiQ9xmSTJEnSAFXVq7ay67CtHH8acNo05TcAB0xT/j1askqSJGkYHEYnSZIkSZKkvjHZJEmSJEk9Vqy5nBVrLmftnQ89bkJoSdLMTDZJkiRJkiSpb0w2SZIkSZIkqW9MNkmSJEmSJKlvTDZJkiRJkiSpb0w2SZIkSZIkqW9MNkmSJEmSJKlvTDZJkiRJkiSpb+aVbEry9CSXJPlakluT/FSS3ZNcleQb7fczeo4/Ncm6JF9P8pKe8oOTrG373p0krXynJBe18uuSrJhPvJIkSZIkSVpYO86z/p8Cn6yqo5I8CXgK8Gbg6qo6PckaYA1wSpIXAMcA+wN7A59J8ryqehR4H3AScC1wBXA4cCVwIvBgVT03yTHA24FXzjNmSZIkSdIUST4IvAy4t6oOaGW7AxcBK4D1wCuq6sG271S672yPAm+qqk+18oOBc4Cd6b7fnVxVlWQn4DzgYOB+4JVVtX5AL+9xVqy5fFhPLS16c+7ZlGRX4GeBswGq6t+q6tvAkcC57bBzgZe3x0cCF1bV96vqNmAdcEiSvYBdq+qaqiq6xqe3zuS5LgEOm+z1JEmSJEnqq3Pobvz3WkPXmWA/4Oq2zZTOBIcD702yQ6sz2Zlgv/Yzec7HOhMA76TrTCBpEZpPz6YfAf4Z+MskLwRuBE4GllXV3QBVdXeSPdvx+9D1XJq0oZU90h5PLZ+sc0c716YkDwHPBO7rDSTJSXSNGcuWLWNiYmJWL2DZzrD6wE2Pbc+23iBt3LhxJOOaahziNMb+GZc42wXPDcCdVfWyxXxnTpIkjZapvWbWn37EkCKZvar6/DRTlxwJrGqPzwUmgFPo6UwA3JZksjPBelpnAoAkk50Jrmx13trOdQnwniRpnQ4kLSLzSTbtCPw48LtVdV2SP6Vlubdiuh5JtY3ybdXZsqDqLOAsgJUrV9aqVau2EcZmZ55/KWes3fwWrD92dvUGaWJigtm+nmEahziNsX/GJU66BPitwK5te/LOnMN8JUmSZmfgnQlgbh0KtveGaG/Hg7na3huw43LTdhziHIcYYTziXIgY55Ns2gBsqKrr2vYldF/c7kmyV2uI9gLu7Tl+3576y4G7Wvnyacp762xIsiOwG/DAPGKWtEQkWQ4cAZwG/H4r9s6cJEkjZrIH0OoDN3HCmsvHogeQgAXsTABz61CwvTdET+jDnE3b22FhXG7ajkOc4xAjjEecCxHjnJNNVfVPSe5I8vyq+jpwGHBL+zkeOL39vrRVuQy4IMk76HoO7AdcX1WPJnk4yaHAdcBxwJk9dY4HrgGOAj7rFzlJs/Qu4A+Bp/WUjc2dOYf59s84xDkOMcJ4xDkOMW5NkufTDfWd9CPAHwFPB36bbvoCgDdX1RWtznYNAV74VyFpEbIzgaTtNt/V6H4XOL+tRPct4DfpJh2/OMmJwO3A0QBVdXOSi+mSUZuAN7QhKgCvZ/MF0ZXtB7rJxz/Uehk8QDfMRZK2KcnkKio3Jlk1myrTlA31zpzDfPtnHOIchxhhPOIchxi3pt28Owgem3PuTuDjdNdX76yqP+k9fo5DgCVpe012ALAzgaRZm1eyqapuAlZOs+uwrRx/Gt2QlqnlNwAHTFP+PVqySpK2w4uBX03yUuDJwK5JPox35iSNj8OAb1bVP25jId65DAGWpK1K8hG6KQf2SLIBeAtdksnOBJK2y3x7NknSyKmqU4FTAVrPpj+oqlcn+d94Z07SeDgG+EjP9huTHEe3wubqtpLmXIYAb2FYw3ynTso736GPqw/ctEVcozKUcr7vVb/fp0nzGW66EDFNnnPy/RqVv6lRi2kQqupVW9llZwJJ28Vkk6SlxDtzkkZem57gV2lJc7ohcW+jG6r7NuAM4LXMbQjwloVDGuY7dVLe+Q4VPmHN5aw+cNNjcY3K0OP5vlf9fp8mzWe46ULEdELPBOFnrN1xZP6mRi0mSRonJpskLWpVNUG36hxVdT/emZM0+n4Z+FJV3QMw+RsgyfuBT7TNuQwBliRJWnBPGHYAkiRJ2sKr6BlC1+aYm/RrwFfb48uAY5LslOQ5bB4CfDfwcJJD0034dBybhw1LkiQtOHs2SZIkjYgkTwF+EfidnuL/leQguqFw6yf3zXEIsCRJ0oIz2SRJkjQiqupfgGdOKXvNNo7friHAkiRJg+AwOkmSJEmSJPWNySZJkiRpiVix5nLW3vkQK9Zczoopq6VJktQvJpskSZIkSZLUN87ZJEmSJEnSHEztIbj+9COGFIk0WuzZJEmSJEmSpL4x2SRJkiRJkqS+MdkkSZIkSZKkvjHZJEmSJEmSpL4x2SRJkiRJkqS+MdkkSZIkSZKkvjHZJEmSJEmSpL6Zd7IpyQ5J/j7JJ9r27kmuSvKN9vsZPceemmRdkq8neUlP+cFJ1rZ9706SVr5Tkota+XVJVsw3XkmSJEmSJC2cfvRsOhm4tWd7DXB1Ve0HXN22SfIC4Bhgf+Bw4L1Jdmh13gecBOzXfg5v5ScCD1bVc4F3Am/vQ7ySJEmSJElaIPNKNiVZDhwBfKCn+Ejg3Pb4XODlPeUXVtX3q+o2YB1wSJK9gF2r6pqqKuC8KXUmz3UJcNhkrydJkiRJkiSNnh3nWf9dwB8CT+spW1ZVdwNU1d1J9mzl+wDX9hy3oZU90h5PLZ+sc0c716YkDwHPBO7rDSLJSXQ9o1i2bBkTExOzCn7ZzrD6wE2Pbc+23iBt3LhxJOOaahziNMb+GZc4JUmSJEmDN+dkU5KXAfdW1Y1JVs2myjRltY3ybdXZsqDqLOAsgJUrV9aqVbMJB848/1LOWLv5LVh/7OzqDdLExASzfT3DNA5xGmP/jEuckjRukqwHHgYeBTZV1cokuwMXASuA9cArqurBdvypdNMOPAq8qao+1coPBs4BdgauAE5uPci1FSvWXL7F9vrTjxhSJJIkjb/5DKN7MfCr7aLoQuDnk3wYuKcNjaP9vrcdvwHYt6f+cuCuVr58mvIt6iTZEdgNeGAeMUuSJI26n6uqg6pqZdvu53yYkiRJC27OyaaqOrWqllfVCroLnc9W1auBy4Dj22HHA5e2x5cBx7QV5p5Dd+FzfRty93CSQ9t8TMdNqTN5rqPac3hXTpIkLSX9nA9TkiRpwc13zqbpnA5cnORE4HbgaICqujnJxcAtwCbgDVX1aKvzejZ39b6y/QCcDXwoyTq6Hk3HLEC8kiRJo6KATycp4C/aVAH9nA9zC3OZ97Ifc1721p/rOaaerzeuUYgJ5v9eLURM832vFiom2Px+jcK/3yjGJEnjpC/JpqqaACba4/uBw7Zy3GnAadOU3wAcME3592jJKkmSpCXgxVV1V0soXZXka9s4di7zYW5ZOId5L/sx5+UJU+dHmue8mSesuZzVB256LK5RiAnm/14tREzzfa8WKibgsbhG4d9vFGOSpHGyED2bJEmSNAdVdVf7fW+SjwOH0ObDbL2a5jsfpiRpAbnYgNSZzwThkiRJ6pMkuyR52uRj4JeAr9Lf+TAlSZIWnD2bJEmSRsMy4ONdfogdgQuq6pNJvkj/5sOUJElacCabJEmSRkBVfQt44TTlfZsPU5IkaRAcRidJkiRJkqS+MdkkSZIkSdqmJOuTrE1yU5IbWtnuSa5K8o32+xk9x5+aZF2Sryd5SU/5we0865K8u80tJ2mRMdkkadFJsm+SzyW5NcnNSU5u5X27IGoT8l7Uyq9LsmLgL1SSJGmwfq6qDqqqlW17DXB1Ve0HXN22SfIC4Bhgf+Bw4L1Jdmh13gecRLeowX5tv6RFxjmbJC1Gm4DVVfWltrLTjUmuAk6guyA6PckauguiU6ZcEO0NfCbJ89pEu5MXRNcCV9BdEF0JnAg8WFXPTXIM8HbglQN9lZIkScN1JLCqPT4XmABOaeUXVtX3gduSrAMOSbIe2LWqrgFIch7wcga0iMGKNZcP4mkkYbJJ0iLUlv2+uz1+OMmtwD7094LoSOCt7VyXAO9JkqqqBX55kiRJw1DAp5MU8BdVdRawrF13UVV3J9mzHbsP3Y26SRta2SPt8dTyx0lyEt0NP5YtW8bExMSMAW7cuHGbx60+cNOM5+i3qfHMFOOoGIc4xyFGGI84FyJGk02SFrU2vO1FwHX094JoH+COdq5NSR4CngncN00M232xtGznLS+IRvE/qHH4jxPGI85xiBHGI85xiFGSxtSLq+qudv10VZKvbePY6eZhqm2UP76wS2adBbBy5cpatWrVjAFOTEywreNOGEbPprXf3WLznMOfus0YR8VM7+UoGIcYYTziXIgYTTZJWrSSPBX4KPB7VfWdbcw/OZcLogW9WDrz/Es5Y+3mJnr9sTPXGbRx+I8TxiPOcYgRxiPOcYhRksZRVd3Vft+b5OPAIcA9SfZqN/H2Au5th28A9u2pvhy4q5Uvn6Zc0iLjBOGSFqUkT6RLNJ1fVR9rxfe0CyH6cEH0WJ0kOwK7AQ/0/5VIkiQNV5Jd2jyYJNkF+CXgq8BlwPHtsOOBS9vjy4Bj2oIqz6GbCPz61sP84SSHtkVXjuupI2kRMdkkadFpFy9nA7dW1Tt6dvXzgqj3XEcBn3W+JkmStEgtA76Q5MvA9cDlVfVJ4HTgF5N8A/jFtk1V3QxcDNwCfBJ4Q1t4BeD1wAeAdcA3GdDk4JIGy2F0khajFwOvAdYmuamVvZnuAujiJCcCtwNHQ3dBlGTygmgTj78gOgfYme5iaPKC6GzgQ20y8QfoVrOTJEladKrqW8ALpym/HzhsK3VOA06bpvwG4IB+xyhptJhskrToVNUXmH5OJejTBVFVfY+WrJIkSZIkbeYwOkmSJEmSJPWNPZskSZIkSRqAtXc+xAlrLt+ibP3pRwwpGmnh2LNJkiRJkiRJfTPnZFOSfZN8LsmtSW5OcnIr3z3JVUm+0X4/o6fOqUnWJfl6kpf0lB+cZG3b9+626hNtZaiLWvl1SVbM47VKkiRJkiRpgc2nZ9MmYHVV/RhwKPCGJC8A1gBXV9V+wNVtm7bvGGB/4HDgvUl2aOd6H3AS3XLj+7X9ACcCD1bVc4F3Am+fR7ySJEmSJElaYHNONlXV3VX1pfb4YeBWYB/gSODcdti5wMvb4yOBC6vq+1V1G7AOOCTJXsCuVXVNVRVw3pQ6k+e6BDhssteTJEnSYrKNXuNvTXJnkpvaz0t76mxXr3FJ0uhZsebyLX6kxaAvE4S34W0vAq4DllXV3dAlpJLs2Q7bB7i2p9qGVvZIezy1fLLOHe1cm5I8BDwTuG/K859E1zOKZcuWMTExMau4l+0Mqw/c9Nj2bOsN0saNG0cyrqnGIU5j7J9xiVOSxsxkr/EvJXkacGOSq9q+d1bVn/QePKXX+N7AZ5I8r6oeZXOv8WuBK+h6jV85oNchSRqiqQkrJyDXMMw72ZTkqcBHgd+rqu9s48bZdDtqG+XbqrNlQdVZwFkAK1eurFWrVs0QdefM8y/ljLWb34L1x86u3iBNTEww29czTOMQpzH2z7jEKUnjpN2sm7xh93CSyV7jW/NYr3HgtiSTvcbX03qNAySZ7DVuskmSxsD2JovsDaVRNK9kU5In0iWazq+qj7Xie5Ls1Xo17QXc28o3APv2VF8O3NXKl09T3ltnQ5Idgd2AB+YTsyRJ0qib0mv8xcAbkxwH3EDX++lB5tZrfOrzbHfv8H70DO+tP9dzTD1fb1yjEBPM/71aiJjm+14tVEyw+f0ahX+/UYxJmrS9yaXpjre3kxbanJNNbez/2cCtVfWOnl2XAccDp7ffl/aUX5DkHXRdvfcDrq+qR5M8nORQuguq44Azp5zrGuAo4LNtXidJkqRFaZpe4+8D3kbXu/ttwBnAa5lbr/EtC+fQO7wfPcNPmHrXfp69y09YczmrD9z0WFyjEBPM/71aiJjm+14tVEzAY3GNwr/fKMakpcueSxpH8+nZ9GLgNcDaJDe1sjfTJZkuTnIicDtwNEBV3ZzkYuAWujkJ3tDmFAB4PXAOsDNdF+/Jbt5nAx9q3cIfoJuXQJIkaVGartd4Vd3Ts//9wCfa5lx6jUuSJC24OSebquoLTH/nDOCwrdQ5DThtmvIbgAOmKf8eLVklSZK0mG2t1/jk9ARt89eAr7bHc+k1LkmStOD6shqdJEmS5m1rvcZfleQguqFw64HfgTn3GpckSVpwJpskSZJGwDZ6jV+xjTrb1WtckiTY/hXvpO31hGEHIEmSJEmSpMXDZJMkSZIkSZL6xmSTJEmSJEmS+sZkkyRJkiRJkvrGZJMkSZIkSZL6xtXoJEmSJElawqauTnfO4bsMKRItFvZskiRJkiRJUt/Ys0nSjLzTIUmSJEmaLZNNkiRJkqRFZ+oNU0mDY7JJkiRJkiQ9Zu2dD3FCT7Ju/elHDDEajSPnbJIkSZIkSVLf2LNJkiRJkiRt1dQhifZ00kxMNknSGPA/eC1G/l1LkjSe/D9cMzHZJEmSBmKmiVqn2+/FqyRJo282k7GP4v/pJs0WjskmSRpD/seoceAqQJIkadJ8rwumXu9OncS8HxbrNfYwXtdYJJuSHA78KbAD8IGqOn3IIUkSMDrt02L9j1HjZSGSS/5tz92otE+SNJXtk+Zi6jXB6gMH/5xTjep1ySjc8Bv5ZFOSHYA/A34R2AB8McllVXXLcCOTtNSNcvs0rl2ZNTqm+xtafeCmvt9B1MIY5fZJ0tJm+6TFZDbX3KN4/TQ17nMO36XvzzHyySbgEGBdVX0LIMmFwJGAjZGkYRvr9mm+dzxG8T/O6YxDnOMQ46iwp9OsjXX7JGlRs32SloBU1bBj2KYkRwGHV9Vvte3XAD9ZVW/sOeYk4KS2+Xzg67M8/R7AfX0MdyGMQ4wwHnEaY//MNs5nV9WzFjqYYZlN+9TK59JGjcPfwjjECOMR5zjECOMRp+0TS7Z9GsW4RjEmMK7tMYyYbJ9YdO1Tr3GIEcYjznGIEcYjzr5fP41Dz6ZMU7ZFhqyqzgLO2u4TJzdU1cq5BjYI4xAjjEecxtg/4xLnAMzYPsHc2qhxeI/HIUYYjzjHIUYYjzjHIcYBWXLt0yjGNYoxgXFtj1GMaRFYcu1Tr3GIEcYjznGIEcYjzoWI8Qn9PNkC2QDs27O9HLhrSLFIUi/bJ0mjyvZJ0qiyfZKWgHFINn0R2C/Jc5I8CTgGuGzIMUkS2D5JGl22T5JGle2TtASM/DC6qtqU5I3Ap+iWxvxgVd3cp9Nv99C7IRiHGGE84jTG/hmXOBeU7dNYxAjjEec4xAjjEec4xLjglmj7NIpxjWJMYFzbYxRjGmtLtH3qNQ4xwnjEOQ4xwnjE2fcYR36CcEmSJEmSJI2PcRhGJ0mSJEmSpDFhskmSJEmSJEl9s+iTTUkOT/L1JOuSrJlmf5K8u+3/SpIfH9E4j23xfSXJ3yV54ajF2HPcTyR5NMlRg4yv5/lnjDPJqiQ3Jbk5yd+MWoxJdkvyf5J8ucX4m0OI8YNJ7k3y1a3sH4nPzrgbhzbK9ql/bJ/6FqPt0xDM9nM2SEn2TfK5JLe2v8eThx1TryQ7JPn7JJ8YdiwASZ6e5JIkX2vv2U8NOyaAJP+p/ft9NclHkjx5SHE8rm1JsnuSq5J8o/1+xjBi05a8fhpcnD3HDe0ayuunvsU42Ounqlq0P3QTzn0T+BHgScCXgRdMOealwJVAgEOB60Y0zp8GntEe//Kg45xNjD3HfRa4AjhqRN/LpwO3AD/ctvccwRjfDLy9PX4W8ADwpAHH+bPAjwNf3cr+oX92xv1nHNoo26eBv5e2T7OL0/ZpwD+z/ZwNIa69gB9vj58G/MMoxNUT3+8DFwCfGHYsLZ5zgd9qj58EPH0EYtoHuA3YuW1fDJwwpFge17YA/wtY0x6vmWz//Bnq34zXTwOMs+e4oVxDef3U1zgHev202Hs2HQKsq6pvVdW/ARcCR0455kjgvOpcCzw9yV6jFmdV/V1VPdg2rwWWj1qMze8CHwXuHWRwPWYT528AH6uq2wGqatCxzibGAp6WJMBT6RqjTYMMsqo+3553a0bhszPuxqGNsn3qH9unPrF9GorZfs4GqqrurqovtccPA7fSJS+GLsly4AjgA8OOBSDJrnRfNM4GqKp/q6pvDzWozXYEdk6yI/AU4K5hBLGVtuVIuiQd7ffLBxmTpuX1U/+MwzWU1099Mujrp8WebNoHuKNnewOPvwCZzTELbXtjOJEu4zhIM8aYZB/g14A/H2BcU83mvXwe8IwkE0luTHLcwKLrzCbG9wA/RnextRY4uap+MJjwZm0UPjvjbhzaKNun/rF9Gpxhf24Wo5F/T5OsAF4EXDfkUCa9C/hDYFQ+Hz8C/DPwl21o3weS7DLsoKrqTuBPgNuBu4GHqurTw41qC8uq6m7okpvAnkOOR14/9dM4XEN5/TQ4ff3cLPZkU6Ypqzkcs9BmHUOSn6NrjE5Z0IimeeppyqbG+C7glKp6dOHD2arZxLkjcDDd3caXAP8tyfMWOrAes4nxJcBNwN7AQcB72h3JUTIKn51xNw5tlO1T/9g+Dc6wPzeL0Ui/p0meSnfX/feq6jsjEM/LgHur6sZhx9JjR7rhE++rqhcB36UbFjZUbQ6kI4Hn0LUruyR59XCj0ojz+ql/xuEayuunwenr52axJ5s2APv2bC/n8d1yZ3PMQptVDEn+PV1X7COr6v4BxTZpNjGuBC5Msh44CnhvkpcPJLrNZvtv/smq+m5V3Qd8HhjkhHyzifE36bqCVlWto5vL4EcHFN9sjcJnZ9yNQxtl+9Q/tk+DM+zPzWI0su9pkifSJZrOr6qPDTue5sXAr7Y250Lg55N8eLghsQHYUFWTPb8uoUs+DdsvALdV1T9X1SPAx+jmshkV90wOI2m/hzUUW5t5/dQ/43AN5fXT4PT1c7PYk01fBPZL8pwkTwKOAS6bcsxlwHFt5vVD6bru3j1qcSb5Ybr/fF9TVf8w4PhmFWNVPaeqVlTVCroLmP+3qv561OIELgX+nyQ7JnkK8JN0czyMUoy3A4cBJFkGPB/41gBjnI1R+OyMu3Foo2yfBhgntk/9MuzPzWI0m7+NgWtzX5wN3FpV7xh2PJOq6tSqWt7anGOAz1bVUHvrVNU/AXckeX4rOoxuQt1hux04NMlT2r/nYQy23ZvJZcDx7fHxdO20hsvrp/4Zh2sor58Gp6+fmx37F9foqapNSd4IfIpuhvgPVtXNSV7X9v853Yz6LwXWAf9Cl3EcxTj/CHgmXSYZYFNVrRyxGIduNnFW1a1JPgl8hW4ehQ9U1bTLPw4rRuBtwDlJ1tJ1ZzylZekHJslHgFXAHkk2AG8BntgT49A/O+NuHNoo26f+sX3qH9unwdva38aQw4KuB9FrgLVJbmplb66qK4YX0kj7XeD89mXoW4zAZ6OqrktyCfAlusly/x44axixbKVtOR24OMmJdF8Wjx5GbNrM66eBxzlUXj/1z6Cvn1I1MsPtJUmSJEmSNOYW+zA6SZIkSZIkDZDJJkmSJEmSJPWNySZJkiRJkiT1jckmSZIkSZIk9Y3JJkmSJEmSJPWNySZJkiRJkiT1jckmSZIkSZIk9Y3JJkmSJEmSJPWNySZJkiRJkiT1jckmSZIkSZIk9Y3JJkmSJEmSJPWNySZJkiRJkiT1jckmSZIkSZIk9Y3JJkmSJEn6/9u793DJyvLO+9+foIgoCiIdpEmaRMwEIR7oEDLOZDqiY0cdIRlREhRImCHxNREnJKEx845mZpjgJJ6NZhgxoEGRoAaioiJmx/ENB8GgLRBjKx1o6IAiIu1EQuP9/rGeLdXVu7t3d1ftqrX393Ndde2qZx3qrrWrnlp1r+cgSRoZk02SJEmSJEkaGZNNkiRJkiRJGhmTTZIkSZIkSRoZk02SJEmSJEkaGZNN2mlJ1id57oj3eWqSz41yn5K00JJckOS/TzoOSUtTkpkk/2E3tr8pyarRRSRJOz4/SrIpyY8uZEwavz0nHYAkSZKkyauqp83eT/J64ClV9fLJRSRpKaiqx046Bo2eLZskSZKkJSyJF6AlSSNlskm7LMleSd6S5M52e0uSvdqyrbrFJakkT2n3n5jk8iTfSXId8GNzrPvrSb6a5N4kf5wkA8t/Ncktbdknk/xIK0+SNye5O8l9Sb6U5Ii27AVJbk5yf5I7kvz2mA+RpCnVugP/Tqsjvpvk/CTLklzR6ohPJ9mvrfvi1rXk262Lyk8M7OeZSb7Qtvkg8Oih53lRkhvbtn+T5CcX+KVKmpBWz5zdzj3uTfKnSR7dlv3HJOuSfKudDz15YLtK8uokX0/yzSR/mOQRbdnrk/zZwLor2vpbJYuS/FiSzyS5p+3noiRPGIrvrCRfAr6bZM/ZoRKSrAZeC7ysdW/5YpITktww9BxnJvmLER86SSPSPuN3tPOUryQ5ttUjlyb5YCv/QpKnD2zz5CQfSvKNJLcmefXAskckWZPka61uuSTJ/gPL/1U73/l2ktuTnDoQzn5JPtae89okPzaw3eDvxAvab79trfsvklzZ6s+vJHnpwLI5f+8lOSDJR1tc30ryf2brVY2PB1i74/eAY4BnAE8Hjgb+8zy3/WPge8BBwK+227AXAT/V9v1S4PkASY6nOwH6ReBJwP8BPtC2+bfAzwJPBZ4AvAy4py07H/i1qnoccATwmXnGKmlx+vfA8+jqi38HXEFXtxxA9/346iRPpatfXkNX33wc+Mskj0ryKOAvgPcB+wN/3vYJQJJnAe8Bfg14IvC/gMvTkvKSloST6M5ffoyurvnPSZ4D/AHduc1BwD8AFw9t9wvASuBZwHHMfZ60I2nP82TgJ4BDgNcPrfNLwAuBJ1TV5tnCqvoE8D+AD1bVY6vq6cDlwKGDCXfg5XR1oKQpk+THgd8Afqr9/nk+sL4tPo7uvGV/4P3AXyR5ZEvA/CXwReBg4FjgNUme37Z7NXA88G/o6pZ76X7XkeSH6c6l3k53zvQM4MaBkH4J+H1gP2AdcM52wp9z3ST7AFe2mA9s670zyWwX4G393jsT2NDiWkZ3vlfbeX6NgMkm7Y6TgP9aVXdX1TfoKoRX7GijJHvQ/SD7L1X13ar6MnDhHKueW1XfrqrbgL+iq7Cg++H2B1V1Szsx+h/AM9K1bnoQeBzwL4C0dTa27R4EDk+yb1XdW1Vf2NUXLmlReHtV3VVVd9Alra+tqr+tqgeAjwDPpEtYf6yqrqyqB4E/AvYG/iVdsv2RwFuq6sGquhT4/MD+/yPwv6rq2qp6qKouBB5o20laGt5RVbdX1bfofiz9Et3503uq6gutvjkb+JkkKwa2e0NVfaudA72lbbdTqmpdq7seaOdpb6L7gTjobS2+f5rH/h4APkiXYKL9uFsBfHRnY5O0IB4C9qL7/fPIqlpfVV9ry26oqkvbuc2b6FpmH0N3of9JVfVfq+qfq+rrwP8GTmzb/Rrwe1W1odUJrwde0lpXngR8uqo+0M6L7qmqGwfi+XBVXdd+v13Ew7/t5rKtdV8ErK+qP62qze333IeAl7Tl2/q99yBdcv9HWmz/p6pMNo2ZySbtjifTXY2b9Q+tbEeeRDc4/e1D2w77x4H7/xeYHTjuR4C3tmaQ3wa+RXf17uCq+gzwDroM+11Jzkuyb9vu3wMvAP4hyV8n+Zl5xCpp8bpr4P4/zfH4sQzVc1X1fbq66+C27I6hk5XBuuxHgDNn66pWXx3C/OpJSYvD8LnOk9m6XtlE1wr74B1st1OSHJjk4taV5DvAn9G13NxWfPNxIfDLSUJ3gfGS9oNT0pSpqnV0LbNfD9zd6oPZuuT2gfW+T9fq58l05y5PHjp3eS1dayDa8o8MLLuFLqm1jO4cZzaZNZdt/bbbmXV/BPjpofhOAn6oLd/W770/pGsh9al0XZTXbOe5NSImm7Q77qT7wM/64VYG8F3gMbMLkvzQwHrfADbTVUiD287X7XTNI58wcNu7qv4GoKreVlVHAU+ja7L+O63881V1HF2Ty78ALtmJ55S0NG1Rz7UfWIcAdwAbgYNb2azBuux24JyhuuoxVfUBJC0Vw+c6d7J1vbIPXVfbO3awHQydX/HwD6y5/AFdN5GfrKp96VokZWid7V3Z32pZVV0D/DPwr4Ffxi500lSrqvdX1b+iq3MKeENb9IM6pnWdW05Xz9wO3Dp07vK4qnpBW/124OeHlj+6tRK/naFxeMfgduCvh57/sVX1yvZ65/y9V1X3V9WZVfWjdEMn/FaSY8cc65Jnskm74wN0Yw88KckBwH+hu2oGXT/fpyV5RrrBMF8/u1FVPQR8GHh9ksckORw4ZSee90+As2f75iZ5fJIT2v2fSvLTSR5Jd0L2PeChNr7KSUke35qLfocuCy9J23MJ8MJ0A2o+kq7P/wPA3wBX0yXOX51uYN1fpBu7btb/Bn691UlJsk+SFyZ53EK/CEkT86oky9MNoPtaum5o7wd+pZ0j7UU3HMC1VbV+YLvfSbJfkkOAM9p20I1/8rNJfjjJ4+m64G3L44BNwLeTHEy7+LYT7gJWzDGI7nvpWpFvrqrPbb2ZpGmQ5MeTPKfVM9+ja7U9+/vnqCS/2Lq/vYbu3OYa4DrgO+kGFt87yR5JjkjyU227PwHOycOTMz0pyXFt2UXAc5O8tJ0XPTHJM0b8sj4KPDXJK9oYU49sv/9+Ynu/99JN2PKUdoFwttzfgmNmskm7478D1wNfAtYCX2hlVNXfA/8V+DTwVWD4ZOQ36JpD/iNwAfCn833SqvoIXVb+4tYs/MvAz7fF+9L9wLuXrtn5PXRjrEDX3Ht92+bXaWMOSNK2VNVX6OqKtwPfpLsa9u/aOAb/TDdRwal0dc7L6BLps9teTzdu0zva8nVtXUlLx/uBTwFfb7f/XlVXAf8v3TgjG+laApw4tN1lwA10yaWP0Q16S1VdSZd4+lJbvr3xkn6fboDx+9o+Pryddefy5+3vPUkGx7l8H93Au7ZqkqbbXsC5dOcv/0jX2ue1bdlldOct99L9RvrFNpbRQ3TnOs8Abm3bvht4fNvurXSTBXwqyf10CaqfBmhjzL2A7sLct+jqrx/McjcKVXU/3YRQJ9K1xPpHut+Fs5OvbOv33mF0v0s30V0sfGdVzYwyNm0tjoslSZIkjVaS9cB/qKpP7+R2BRzWxluZOkn2Bu4GnlVVX510PJJ2TpLXA0+pKi+8a6xs2SRJkiRpvl4JfN5EkyRpe/acdACSJEmSpl9rrRXg+MlGIkmadnajkyRJkiRJ0sjYjU6SJEmSJEkjs+i60R1wwAG1YsWKea373e9+l3322We8AU05j4HHAMZ3DG644YZvVtWTRr7jHptvHdWH92UfYoR+xNmHGKEfcc43RuunrVk/Lbw+xNmHGKEfcVo/7brFVD/N6kusfYkTjHVcBmPdqfqpqhbV7aijjqr5+qu/+qt5r7tYeQw8BlXjOwbA9TUF9cI03eZbR/XhfdmHGKv6EWcfYqzqR5zzjdH6yfppGvQhzj7EWNWPOK2frJ8G9SXWvsRZZazjMhjrztRPdqOTJEmSJEnSyJhskiRJkiRJ0siYbJIkSZIkSdLImGySJEmSJEnSyJhskiRJkiRJ0siYbJIkSZIkSdLI7DnpAKSlbMWaj+1wnfXnvnABIpGkfhquRy9Yvc+EIlk61t5xH6cOHHe/pyRNq+HvCOsraeHYskmSJEmSJEkjs1vJpiTvSXJ3ki8PlP1hkr9L8qUkH0nyhIFlZydZl+QrSZ4/UH5UkrVt2duSpJXvleSDrfzaJCt2J15JkiRJkiSN1+62bLoAWD1UdiVwRFX9JPD3wNkASQ4HTgSe1rZ5Z5I92jbvAk4HDmu32X2eBtxbVU8B3gy8YTfjlSRJkiRJ0hjt1phNVfXZ4dZGVfWpgYfXAC9p948DLq6qB4Bbk6wDjk6yHti3qq4GSPJe4HjgirbN69v2lwLvSJKqqt2JW+oT+5pLkiRJkvpk3AOE/yrwwXb/YLrk06wNrezBdn+4fHab2wGqanOS+4AnAt8cfJIkp9O1jGLZsmXMzMzMK7hNmzbNe93FymMw2WNw5pGbd3qbccTq+0CSJEmSNCpjSzYl+T1gM3DRbNEcq9V2yre3zZYFVecB5wGsXLmyVq1aNa8YZ2ZmmO+6i5XHYGGPwdazz+38R3D9SatGEssg3weSJEmSpFEZy2x0SU4BXgScNNDlbQNwyMBqy4E7W/nyOcq32CbJnsDjgW+NI2ZJkiRJkiTtvpEnm5KsBs4CXlxV/3dg0eXAiW2GuUPpBgK/rqo2AvcnOabNQncycNnANqe0+y8BPuN4TZIkSZIkSdNrt5JNST4AXA38eJINSU4D3gE8DrgyyY1J/gSgqm4CLgFuBj4BvKqqHmq7eiXwbmAd8DW6wcEBzgee2AYT/y1gze7EK0mSNElJHp3kuiRfTHJTkt9v5fsnuTLJV9vf/Qa2OTvJuiRfSfL8gfKjkqxty97WLtrRLux9sJVfOzyZiyRJ0rjt7mx0vzRH8fnbWf8c4Jw5yq8Hjpij/HvACbsToyRJ0hR5AHhOVW1K8kjgc0muAH4RuKqqzk2yhu4C21lJDgdOBJ4GPBn4dJKntgt276KbIOUa4OPAaroLdqcB91bVU5KcCLwBeNnCvkxJkrSUjWXMJkmSJG2tOpvaw0e2WwHHARe28guB49v944CLq+qBqrqVrhX40UkOAvatqqvbEAPvHdpmdl+XAsfOtnqSJElaCGObjU6SJElbS7IHcAPwFOCPq+raJMvaOJZU1cYkB7bVD6ZruTRrQyt7sN0fLp/d5va2r81J7gOeCHxzjlhOp2sdxbJly5iZmdlh/Mv2hjOP3PyDx/PZZqFt2rRpKuMa1oc4+xAj9CPOPsQoSaNiskmSJGkBtS5wz0jyBOAjSbYaSmDAXC2Sajvl29tmrljOA84DWLlyZa1atWo7oXTeftFlvHHtw6eQ60/a8TYLbWZmhvm8lknrQ5x9iBH6EWcfYpSkUbEbnSRJ0gRU1beBGbqxlu5qXeNof+9uq20ADhnYbDlwZytfPkf5Ftsk2RN4PPCtcbwGSZKkuZhskrQoJflPbaanLyf5QJsBytmeJE1Ukie1Fk0k2Rt4LvB3wOXAKW21U4DL2v3LgRNbnXMocBhwXetyd3+SY1q9dPLQNrP7egnwmTaukyRJ0oIw2SRp0UlyMPBqYGVVHQHsQTeb0xq62Z4OA65qjxma7Wk18M42pgo8PNvTYe22upX/YLYn4M10sz1J0o4cBPxVki8BnweurKqPAucCz0vyVeB57TFVdRNwCXAz8AngVa0bHsArgXfTDRr+NbqZ6KCbGfiJSdYBv0Wr6yRJkhaKYzZJY7RizccmHcJStiewd5IHgcfQdS85G1jVll9I133lLAZmewJubT/Qjk6ynjbbE0CS2dmermjbvL7t61LgHUli6wFJ21NVXwKeOUf5PcCx29jmHOCcOcqvB7Ya76mqvgecsNvBSlqS2gW364E7qupFSfYHPgisANYDL62qe9u6Z9NdgHsIeHVVfbKVHwVcAOwNfBw4o6oqyV50s2ceBdwDvKyq1i/Yi5O0YGzZJGnRqao7gD8CbgM2AvdV1aeALWZ7AgZne7p9YBezszodzDxnewJmZ3uSJEnqszOAWwYe2zJc0k6zZZOkRaeNxXQccCjwbeDPk7x8e5vMUTay2Z52ZWrxPkyP3IcYoR9x9iFGmM44zzxy8xaPpzFGSeqLJMuBF9K1pvytVnwctgyXtJNMNklajJ4L3FpV3wBI8mHgX9Jme6qqjSOc7WnDjmZ72pWpxfswPXIfYoR+xNmHGGE64zx1qLvyBav3mboYJalH3gL8LvC4gbItWoYnGWwZfs3AerMtwB9kni3Dk8y2DP/mcCCjuFg3fEFimi5G9OXiSF/iBGMdl12N1WSTpMXoNuCYJI8B/oluHJTrge/SzdB0LlvP9vT+JG8CnszDsz09lOT+JMcA19LN9vT2gW1OAa7G2Z4kSVLPJXkRcHdV3ZBk1Xw2maNsZC3DR3GxbviCxPqTdryPhTKNF3Dm0pc4wVjHZVdjNdkkadGpqmuTXAp8AdgM/C3dycpjgUuSnEaXkDqhrX9TktnZnjaz9WxPF9ANcHkFW8729L7WZPxbdGMWSJIk9dWzgRcneQHwaGDfJH/GhFqGS+o3k02SFqWqeh3wuqHiB3C2J0mSpK1U1dl0M/fSWjb9dlW9PMkfYstwSTvJZJMkSZIkaVvOxZbhknaSySapZ1YM9z0/94UTikSSJEmLUVXN0M06R1XdwyJpGe55tLRwHjHpACRJkiRJkrR4mGySJEmSJEnSyOxWsinJe5LcneTLA2X7J7kyyVfb3/0Glp2dZF2SryR5/kD5UUnWtmVvS5JWvleSD7bya5Os2J14JUmSJEmSNF6727LpAmD1UNka4KqqOgy4qj0myeF0A8A9rW3zziR7tG3eBZxON4PBYQP7PA24t6qeArwZeMNuxitJkiRJkqQx2q1kU1V9lm4WgUHHARe2+xcCxw+UX1xVD1TVrcA64OgkBwH7VtXVbdrL9w5tM7uvS4FjZ1s9SZIkSZIkafqMYza6ZVW1EaCqNiY5sJUfDFwzsN6GVvZguz9cPrvN7W1fm5PcBzwR+ObgEyY5na5lFMuWLWNmZmZegW7atGne6y5WHoPxHoMzj9w8lv0OGkXsvg8kSZIkSaMyjmTTtszVIqm2U769bbYsqDoPOA9g5cqVtWrVqnkFNDMzw3zXXaw8BuM9BqcOTa86DutPWrXb+/B9IEmSJEkalXHMRndX6xpH+3t3K98AHDKw3nLgzla+fI7yLbZJsifweLbutidJkiRJkqQpMY5k0+XAKe3+KcBlA+UnthnmDqUbCPy61uXu/iTHtPGYTh7aZnZfLwE+08Z1kiRJ6p0khyT5qyS3JLkpyRmt/PVJ7khyY7u9YGAbZ/OVJEm9slvd6JJ8AFgFHJBkA/A64FzgkiSnAbcBJwBU1U1JLgFuBjYDr6qqh9quXkk3s93ewBXtBnA+8L4k6+haNJ24O/FK47ZiAbrNSZJ6bTNwZlV9IcnjgBuSXNmWvbmq/mhw5aHZfJ8MfDrJU9s51OxsvtcAH6ebzfcKBmbzTXIi3Wy+L1uA1yZJkgTsZrKpqn5pG4uO3cb65wDnzFF+PXDEHOXfoyWrJEmS+q616J6dSOX+JLfw8MQoc/nBbL7Are0C3NFJ1tNm8wVIMjub7xVtm9e37S8F3pEktg6XJEkLZSEHCJckSVLTurc9E7gWeDbwG0lOBq6na/10L2OczbfFsNMz+i7be8vZVqdxNtO+zLLahzj7ECP0I84+xChJo2KySZIkaYEleSzwIeA1VfWdJO8C/hvdrLv/DXgj8KuMcTZf2LUZfd9+0WW8ce3Dp5CjmBV11Poyy2of4uxDjNCPOPsQoySNyjgGCJckSdI2JHkkXaLpoqr6MEBV3VVVD1XV94H/DRzdVnc2X0mS1DsmmyRJkhZImzHufOCWqnrTQPlBA6v9AvDldt/ZfCVJUu/YjU6SJGnhPBt4BbA2yY2t7LXALyV5Bl13t/XAr4Gz+UqSpH4y2SRJkrRAqupzzD2m0se3s42z+UqSpF6xG50kSZIkSZJGxmSTJEmSJEmSRsZkkyRJkiRJkkbGZJMkSZIkSZJGxmSTJEmSJEmSRsZkkyRJkiRJkkbGZJMkSZIkSZJGxmSTpEUpyROSXJrk75LckuRnkuyf5MokX21/9xtY/+wk65J8JcnzB8qPSrK2LXtbkrTyvZJ8sJVfm2TFBF6mJEmSJE0dk02SFqu3Ap+oqn8BPB24BVgDXFVVhwFXtcckORw4EXgasBp4Z5I92n7eBZwOHNZuq1v5acC9VfUU4M3AGxbiRUmSJI1LkkcnuS7JF5PclOT3W7kX7CTtFJNNkhadJPsCPwucD1BV/1xV3waOAy5sq10IHN/uHwdcXFUPVNWtwDrg6CQHAftW1dVVVcB7h7aZ3delwLGzJ1GSJEk99QDwnKp6OvAMYHWSY/CCnaSdNLZkU5L/1LLhX07ygZYlH1lGXJK240eBbwB/muRvk7w7yT7AsqraCND+HtjWPxi4fWD7Da3s4HZ/uHyLbapqM3Af8MTxvBxJkqTxq86m9vCR7VZ4wU7STtpzHDtNcjDwauDwqvqnJJfQZbwPp8uIn5tkDV1G/KyhjPiTgU8neWpVPcTDGfFrgI/TZcSvGEfckhaNPYFnAb9ZVdcmeSvtCtw2zHWCU9sp3942W+88OZ2uHmPZsmXMzMxsJ5TOpk2b5rXeJPUhRuhHnH2IEaYzzjOP3LzF42mMUZL6pLVMugF4CvDH7Vxqiwt2SQYv2F0zsPnshbkHmecFuySzF+y+ORTHbp8/DX9HDJvk90Vfvq/6EicY67jsaqxjSTYN7HvvJA8CjwHuBM4GVrXlFwIzwFkMZMSBW5PMZsTX0zLiAElmM+ImmyRtzwZgQ1Vd2x5fSpdsuivJQe0k6SDg7oH1DxnYfjldnbWh3R8uH9xmQ5I9gccD35ormKo6DzgPYOXKlbVq1aodvoCZmRnms94k9SFG6EecfYgRpjPOU9d8bIvHF6zeZ+pilKQ+aRf8n5HkCcBHkhyxndXHdsFuFOdPw98Rw9aftON9jss0fqfOpS9xgrGOy67GOpZkU1XdkeSPgNuAfwI+VVWfGnFG/Ad2JesN/comjovHYLTHYEdXT8ZhFLEvtvdBVf1jktuT/HhVfQU4Fri53U4Bzm1/L2ubXA68P8mb6FpXHgZcV1UPJbm/jVVwLXAy8PaBbU4BrgZeAnymNROXJEnqvar6dpIZup4lE7lgJ6m/xtWNbj+61kqHAt8G/jzJy7e3yRxlO8qIP1ywC1lv6Fc2cVw8BqM9Bju6ejIOo7gis0jfB78JXJTkUcDXgV+hG6fukiSn0SXDTwCoqptad9+bgc3Aq9pVPYBXAhcAe9O1qpxtWXk+8L7WEvNbdF2BJUmSeivJk4AHW6Jpb+C5dAN4z15k84KdpHkZVze65wK3VtU3AJJ8GPiXjDYjLknbVFU3AivnWHTsNtY/BzhnjvLrga2aj1fV92jJKkmarySH0A2U+0PA94HzquqtSfYHPgisANYDL62qe9s2Z9PN3vQQ8Oqq+mQrP4qHk+EfB86oqkqyV3uOo4B7gJdV1foFeomS+u0g4MI2btMjgEuq6qNJrsYLdpJ2wriSTbcBxyR5DF03umOB64HvMrqMuDRxKybQkkmS1GubgTOr6gtJHgfckORK4FRGN4nKD6YVT3IiXauEly3oq5TUS1X1JeCZc5TfgxfsJO2ER4xjp21Q3kuBLwBr2/OcR5dkel6SrwLPa4+pqpuA2Yz4J9g6I/5uumk0v4aDg0uSpJ6qqo1V9YV2/37gFrrxKJ1WXJIkLRpjm42uql4HvG6o+AFGlBGXJEnqsyQr6FoQXAss+LTiLYadnmRl2d5bTogxjRNM9GXiiz7E2YcYoR9x9iFGSRqVsSWbJEmSNLckjwU+BLymqr6znYZHY5tWHHZtkpW3X3QZb1z78CnkJKcO35a+THzRhzj7ECP0I84+xChJozKWbnSSJEmaW5JH0iWaLqqqD7fiu1rXOEY4rThOKy5JkibBZJMkSdICaWMnnQ/cUlVvGlg0OxU4bD2JyolJ9kpyKA9PorIRuD/JMW2fJw9tM7svpxWXJEkLzm50Us8Nz4i3/twXTigSSdI8PBt4BbA2yY2t7LV0k6Y4rbgkSVoUTDZJkiQtkKr6HHOPqQROKy5JkhYJu9FJkiRJkiRpZEw2SZIkSZIkaWRMNkmSJEmSJGlkTDZJkiRJkiRpZEw2SZIkSZIkaWRMNkmSJEmSJGlkTDZJkiRJkiRpZEw2SZIkSZIkaWRMNkmSJEmSJGlkTDZJkiRJkiRpZPacdABSn6xY87FJhyBJkiRJ0lSzZZMkSZIkSZJGZmzJpiRPSHJpkr9LckuSn0myf5Irk3y1/d1vYP2zk6xL8pUkzx8oPyrJ2rbsbUkyrpglSZIkSZK0e8bZsumtwCeq6l8ATwduAdYAV1XVYcBV7TFJDgdOBJ4GrAbemWSPtp93AacDh7Xb6jHGLEmSJEmSpN0wlmRTkn2BnwXOB6iqf66qbwPHARe21S4Ejm/3jwMurqoHqupWYB1wdJKDgH2r6uqqKuC9A9tIkiRJkiRpyoxrgPAfBb4B/GmSpwM3AGcAy6pqI0BVbUxyYFv/YOCage03tLIH2/3h8i0kOZ2u9RPLli1jZmZmXkFu2rRp3usuVh6DnTsGZx65ebzBjMCu/D99H0jSwknyHuBFwN1VdUQrez3wH+nOnwBeW1Ufb8vOBk4DHgJeXVWfbOVHARcAewMfB86oqkqyF90FuqOAe4CXVdX6BXlxkiRJjC/ZtCfwLOA3q+raJG+ldZnbhrnGYartlG9ZUHUecB7AypUra9WqVfMKcmZmhvmuu1h5DHbuGJzag9no1p+0aqe38X0gSQvqAuAddAmhQW+uqj8aLBgaauDJwKeTPLWqHuLhoQauoUs2rQauoEtM3VtVT0lyIvAG4GXjezmSJElbGteYTRuADVV1bXt8KV3y6a7WNY729+6B9Q8Z2H45cGcrXz5HuSRJUi9V1WeBb81z9V0ZamBw2IJLgWOdYEWSJC2ksbRsqqp/THJ7kh+vqq8AxwI3t9spwLnt72Vtk8uB9yd5E91Vu8OA66rqoST3JzkGuBY4GXj7OGKWtPi0iQauB+6oqhcl2R/4ILACWA+8tKrubevaTUXSpP1GkpPp6q0zW/20K0MNHAzcDlBVm5PcBzwR+ObwE+7KUATL9t6yW/k0dsPuS/fwPsTZhxihH3H2IUZJGpVxdaMD+E3goiSPAr4O/ApdS6pLkpwG3AacAFBVNyW5hC4ZtRl4VWseDvBKHv6hd0W7SdJ8nEE3E+a+7fHsjJjnJlnTHp9lNxVJU+BdwH+jGy7gvwFvBH6VXRtqYF7DEMCuDUXw9osu441rHz6F3JXu2+PWl+7hfYizDzFCP+LsQ4xJDqG7mPZDwPeB86rqrV6wk7SzxtWNjqq6sapWVtVPVtXxVXVvVd1TVcdW1WHt77cG1j+nqn6sqn68qq4YKL++qo5oy36jNRWXpO1Kshx4IfDugeJRzohpNxVJI1NVd1XVQ1X1feB/A0e3Rbsy1MAPtkmyJ/B45t9tT9LStpmuZeVPAMcAr2oX5WYv2B0GXNUeD48rtxp4Z2tZDg9fsDus3Va38h9csAPeTHfBTtIiM7ZkkyRN2FuA36W7KjdrixkxgcEZMW8fWG+2O8rBzLObCjDbTUWSdtrsmJbNLwBfbvcvB05MsleSQ3l4qIGNwP1JjmmJ7pPZcniCU9r9lwCf8WKdpPmoqo1V9YV2/366FuIH4wU7STtpnN3oJGkiksxOKX5DklXz2WSOspF1U9mVMVH6MK5DH2KEfsTZhxhhOuMcHDsIpjPGYUk+AKwCDkiyAXgdsCrJM+jqkfXAr8EuDzVwPvC+JOvoWjSdOPYXJWnRSbICeCbd2LlbXLBLMnjBbizjyo3i/Gn4O2LYJL8v+vB9Bf2JE4x1XHY1VpNN0jasWPOxSYegXfds4MVJXgA8Gtg3yZ/RZsRsJ0m7OyPm7DYbdtRNZVfGROnDuA59iBH6EWcfYoTpjPPUobr6gtX7TF2Mw6rql+YoPn87658DnDNH+fXAEXOUf482LqYk7YokjwU+BLymqr6znYZHY7tgN4rzp+HviGGTHHNuGr9T59KXOMFYx2VXY7UbnaRFp6rOrqrlVbWC7or+Z6rq5WzZtWR4Rsyp6qay9o77WLHmYz+4SZIkLYQkj6RLNF1UVR9uxXfNdvcd4QU7x5WTFjGTTZKWknOB5yX5KvC89piqugmY7abyCbbupvJuujEIvsaW3VSe2Lqp/BZtoExJkqS+ahfXzgduqao3DSzqzQU7SdPBbnSSFrWqmgFm2v17gGO3sZ7dVCRJ0lL3bOAVwNokN7ay19JdoLskyWnAbbRzIMeVk7QtJpskSZIkSVTV55h7TCXwgp2knWA3OkmSJEmSJI2MySZJkiRJkiSNjMkmSZIkSZIkjYzJJkmSJEmSJI2MySZJkiRJkiSNjMkmSZIkSZIkjYzJJkmSJEmSJI2MySZJkiRJkiSNjMkmSZIkSZIkjcye49pxkj2A64E7qupFSfYHPgisANYDL62qe9u6ZwOnAQ8Br66qT7byo4ALgL2BjwNnVFWNK2YtbSvWfGzSIUiSJEmS1HvjbNl0BnDLwOM1wFVVdRhwVXtMksOBE4GnAauBd7ZEFcC7gNOBw9pt9RjjlSRJkiRJ0m4aS7IpyXLghcC7B4qPAy5s9y8Ejh8ov7iqHqiqW4F1wNFJDgL2raqrW2um9w5sI0mSJEmSpCk0rm50bwF+F3jcQNmyqtoIUFUbkxzYyg8GrhlYb0Mre7DdHy7fSpLT6VpAsWzZMmZmZuYV5KZNm+a97mLlMXj4GJx55OZJhzISu/L/9H0gSQsnyXuAFwF3V9URrWxkww0k2YvuIt1RwD3Ay6pq/QK9PEmSpNEnm5LMnjzdkGTVfDaZo6y2U751YdV5wHkAK1eurFWr5vO03Y/y+a67WHkMHj4Gpy6SMZvWn7Rqp7fxfSBJC+oC4B10CaFZs8MNnJtkTXt81tBwA08GPp3kqVX1EA8PN3ANXbJpNXAFXWLq3qp6SpITgTcAL1uQVyZJksR4utE9G3hxkvXAxcBzkvwZcFfrGkf7e3dbfwNwyMD2y4E7W/nyOcolSZJ6q6o+C3xrqHiUww0M7utS4Ngkc13EkyRJGouRt2yqqrOBswFay6bfrqqXJ/lD4BTg3Pb3srbJ5cD7k7yJ7ordYcB1VfVQkvuTHANcC5wMvH3U8UqSJE2BUQ43cDBwe9vX5iT3AU8Evjn8pLsyFMGyvdmi6/k0dsPuS/fwPsTZhxihH3H2IUZJGpVxjdk0l3OBS5KcBtwGnABQVTcluQS4GdgMvKo1DQd4JQ+PRXBFu0mSJC0VuzLcwFiHInj7RZfxxrUPn0LuSvftcetL9/A+xNmHGKEfcfYhRkkalbEmm6pqBphp9+8Bjt3GeucA58xRfj1wxPgilCRJmgp3JTmotWra3eEGZrfZkGRP4PFs3W1PkiRpbBayZZMkSZLmdjmjG25gdl9XAy8BPtPGdZIkDVgxxwRB68994QQikRYfk02SJEkLKMkHgFXAAUk2AK9jtMMNnA+8L8k6uhZNJy7Ay5IkSfoBk03SIjN8hcarM5I0Xarql7axaCTDDVTV92jJKkmSpEkw2aQlazYpc+aRmzl1jia0kiRJkiRp5z1i0gFIkiRJkiRp8TDZJEmSJEmSpJEx2SRJkiRJkqSRMdkkadFJckiSv0pyS5KbkpzRyvdPcmWSr7a/+w1sc3aSdUm+kuT5A+VHJVnblr0tSVr5Xkk+2MqvTbJiwV+oJEmSJE0hk02SFqPNwJlV9RPAMcCrkhwOrAGuqqrDgKvaY9qyE4GnAauBdybZo+3rXcDpwGHttrqVnwbcW1VPAd4MvGEhXpgkSdK4JHlPkruTfHmgzIt1knaaySZJi05VbayqL7T79wO3AAcDxwEXttUuBI5v948DLq6qB6rqVmAdcHSSg4B9q+rqqirgvUPbzO7rUuDY2RMpSZKknrqAhy+szfJinaSdZrJJ0qLWrpg9E7gWWFZVG6FLSAEHttUOBm4f2GxDKzu43R8u32KbqtoM3Ac8cSwvQpIkaQFU1WeBbw0Ve7FO0k7bc9IBSAtlxZqPTToELbAkjwU+BLymqr6znXOZuRbUdsq3t81ccZxOd3WPZcuWMTMzs52oO8v2hjOP3PyDx/PZZqFt2rRpKuMa1oc4+xAjTGecg58TmM4YJanntrhYl2TwYt01A+vNXpR7kHlerEsye7Hum8NPuivnT8PfAcPfEfOxUN8hffm+6kucYKzjsquxmmyStCgleSRdoumiqvpwK74ryUHtROkg4O5WvgE4ZGDz5cCdrXz5HOWD22xIsifweLa+EghAVZ0HnAewcuXKWrVq1Q7jf/tFl/HGtQ9X0etP2vE2C21mZob5vJZJ60OcfYgRpjPOU4cuJFywep+pi1GSFqmxXqzblfOn4e+p4e+I+Vioc65p/E6dS1/iBGMdl12N1W50khad1hz7fOCWqnrTwKLLgVPa/VOAywbKT2yDVh5KN7bAde0q3v1Jjmn7PHlom9l9vQT4TGsqLkmStJjc1S7SMcKLdezoYp2kfjPZJGkxejbwCuA5SW5stxcA5wLPS/JV4HntMVV1E3AJcDPwCeBVVfVQ29crgXfTjUPwNeCKVn4+8MQk64Dfog2WKUmStMh4sU7STrMbnaRFp6o+x9zNtAGO3cY25wDnzFF+PXDEHOXfA07YjTAlSZKmSpIPAKuAA5JsAF5Hd3HukiSnAbfRzn+q6qYksxfrNrP1xboLgL3pLtQNXqx7X7tY9y262ewkLUImmyRJkiRJVNUvbWORF+sk7ZSxdKNLckiSv0pyS5KbkpzRyvdPcmWSr7a/+w1sc3aSdUm+kuT5A+VHJVnblr3NqTElSZIkSZKm17haNm0GzqyqLyR5HHBDkiuBU4GrqurcJGvoxjg5K8nhdE0onwY8Gfh0kqe2Zpjvopvy8hrg48BqHm6GKW3Til2YfUKSpElKsh64H3gI2FxVK5PsD3wQWAGsB15aVfe29c8GTmvrv7qqPtnKj+LhLiwfB85wXBRJkrRQxtKyqao2VtUX2v37gVuAg4HjgAvbahcCx7f7xwEXV9UDVXUr3UC8R7fZDvatqqvbCdJ7B7aRJElajH6uqp5RVSvb4zV0F+sOA65qjxm6WLcaeGeSPdo2sxfrDmu31QsYvyRJWuLGPmZTkhXAM4FrgWVtdgKqamOSA9tqB9O1XJq1oZU92O4Plw8/x+l0J1QsW7aMmZmZecW2adOmea+7WC3mY3DmkZvntd6yvee/bh/N5/+7mN8HkrQIHEc3YC90F+tmgLMYuFgH3NoG3D26tY7at6quBkgye7HOluGSJGlBjDXZlOSxwIeA11TVd7Yz3NJcC2o75VsWVJ0HnAewcuXKWrVq1bzim5mZYb7rLlaL+RicOs9udGceuZk3rl28Y+WvP2nVDtdZzO8DSeqZAj6VpID/1c5xxnKxDnbtgt3wRZppvFjRl4sofYizDzFCP+LsQ4ySNCpj+4Wd5JF0iaaLqurDrfiuJAe1E6WDgLtb+QbgkIHNlwN3tvLlc5RLkiQtRs+uqjtbQunKJH+3nXV362Id7NoFu7dfdNkWF2nmc1FjofXlIkof4uxDjNCPOPsQoySNyliSTW3GuPOBW6rqTQOLLgdOAc5tfy8bKH9/kjfRDRB+GHBdVT2U5P4kx9B1wzsZePs4Ylb/OSC4JKnvqurO9vfuJB8BjsaLdZK0YIZ/U6w/94UTikTqt7EMEA48G3gF8JwkN7bbC+iSTM9L8lXgee0xVXUTcAlwM/AJ4FVtJjqAVwLvphs0/Gs43oAkSVqEkuzTZvElyT7AvwW+zMMX62Dri3UnJtkryaE8fLFuI3B/kmPaBcCTB7aRJEkau7G0bKqqzzF3E26AY7exzTnAOXOUXw8cMbroJEmSptIy4CNtjMs9gfdX1SeSfB64JMlpwG3ACdBdrEsye7FuM1tfrLsA2JvuQp0X60ZsPi2qbREhSVqqFu+oyJIkST1SVV8Hnj5H+T14sa6X7I4jSVqqTDZJkiRpyZnEWI/Dz3nB6n0WPAZJkhaCySZJkiRpAtbecR+nDiSgbPkkSVosTDZJkiRp0evDrLV2u5MkLRYmmyRJkqQpZPJJktRXJpvUW324QilJ0mI3jQmR4e5pi8WOzn2m4dhLkgQmmyRJkqRFYa5klAkoafdMY0Jd6gOTTZIkSdIi5Q9lSdIkmGySJEnSyIyjm/uOEiTDz3nmkSMPYdEw+SRJWggmmyRJkjTVHKdxfEw+SZLGwWSTesGTzF3nSaQkSZI0Gp5bS/NjskmSJEkSMFeXxM1bzOznD2tJ0nyYbJIkSZI0L7bqkLbkZ0J9tBDvW5NNmkp2m5MkSZp+c52z+WNbkmSySZIkSdLI2NJDS5nvf6ljsklTwZZMkiRJi9OOzvP8Ma7FzOSTpsEkfm/3ItmUZDXwVmAP4N1Vde6EQ9JuMrmkxcL6SdK0sn5SX/hjfOlZyvXT7Pt9ePD9QX4GtBhMfbIpyR7AHwPPAzYAn09yeVXdPNnItD0mk7QUWD9JmlbWT+ozk0+Lm/XTju3ubyk/M5qG3+NTn2wCjgbWVdXXAZJcDBwHWBlNyDS8cbXrPIEbKesnSdPK+kmLxnzOPS9Yvc8CRKIRsX4as1H+XpttgeVvBu2sPiSbDgZuH3i8AfjpwRWSnA6c3h5uSvKVee77AOCbux1hvy35Y/DqJX4M8gZgfMfgR8awz2myw/oJdrmO2uJ/0v5P06Yvn50+xNmHGKEHcf7cG+Ydo/UTo6mfplFfvtv7EGcfYoSd+uxPkvVTZ0nXT7P68tmajXNKz0WH9eKYNlMV6w7+v4Oxzrt+6kOyKXOU1RYPqs4DztvpHSfXV9XKXQ1sMfAYeAzAY7Abdlg/wa7VUX34n/QhRuhHnH2IEfoRZx9iXCDWT1MeI/Qjzj7ECP2Isw8xLpAlXT/N6kusfYkTjHVcdjXWR4wjmBHbABwy8Hg5cOeEYpGkQdZPkqaV9ZOkaWX9JC0BfUg2fR44LMmhSR4FnAhcPuGYJAmsnyRNL+snSdPK+klaAqa+G11VbU7yG8An6abGfE9V3TSi3e9017tFyGPgMQCPwS6xfupFjNCPOPsQI/Qjzj7EOHbWT72IEfoRZx9ihH7E2YcYx8766Qf6Emtf4gRjHZddijVVW3WPlSRJkiRJknZJH7rRSZIkSZIkqSdMNkmSJEmSJGlklmSyKclvJvlKkpuS/M+B8rOTrGvLnj/JGBdCkt9OUkkOGChbEscgyR8m+bskX0rykSRPGFi2JI4BQJLV7XWuS7Jm0vEsRTv6H6Tztrb8S0meNYUxntRi+1KSv0ny9GmLcWC9n0ryUJKXLGR8A8+/wziTrEpyY/uO+utpizHJ45P8ZZIvthh/ZQIxvifJ3Um+vI3lE//cLEbT+p2R5JAkf5XklvaePKOV75/kyiRfbX/3m4JY90jyt0k+OsUxPiHJpe086ZYkPzNtcSb5T+1//eUkH0jy6GmIca66aXtxLaVzzlHrw/nTPOOc+DnUQCy9OJdqMUz9+VSLYerPqQZiGf25VVUtqRvwc8Cngb3a4wPb38OBLwJ7AYcCXwP2mHS8YzwOh9ANyvcPwAFL7RgA/xbYs91/A/CGJXgM9miv70eBR7XXffik41pKt/n8D4AXAFcAAY4Brp3CGP8lsF+7//PTGOPAep8BPg68ZEr/308AbgZ+uD0+cApjfO1Anfkk4FvAoxY4zp8FngV8eRvLJ/q5WYy3af7OAA4CntXuPw74+/Z9/j+BNa18zez7dsKx/hbwfuCj7fE0xngh8B/a/Ue1emlq4gQOBm4F9m6PLwFOnYYY56qbthUXS+iccwzHeerPn3YizomeQ+1MrAPrTexcaieO6xOY4PnUTsQ58XOqgVhGfm61FFs2vRI4t6oeAKiqu1v5ccDFVfVAVd0KrAOOnlCMC+HNwO8CgyPEL5ljUFWfqqrN7eE1wPJ2f8kcA7rXta6qvl5V/wxcTPf6tXDm8z84Dnhvda4BnpDkoGmKsar+pqrubQ8HP09TE2Pzm8CHgLvnWLYQ5hPnLwMfrqrbYIvvqGmKsYDHJQnwWLoTo80soKr6bHvebZn052YxmtrvjKraWFVfaPfvB26hS0gcR5c4of09fiIBNkmWAy8E3j1QPG0x7kv3g+N8gKr656r6NlMWJ92M2nsn2RN4DHAnUxDjNuqmbcW1lM45R60P50/zinMKzqFm9eVcCvpxPgU9Oaf6QSBjOLdaismmpwL/Osm1Sf46yU+18oOB2wfW29DKFp0kLwbuqKovDi1aMsdgyK/SZWlhaR2DpfRap9V8/geT/j/t7POfxsOfp4WywxiTHAz8AvAnCxjXsPkcy6cC+yWZSXJDkpMXLLrOfGJ8B/ATdD/u1gJnVNX3Fya8eZv052Yx6sUxTbICeCZwLbCsqjZCl5ACDpxgaABvobvQN/h5mbYYfxT4BvCnrbvfu5PswxTFWVV3AH8E3AZsBO6rqk9NU4xDthVXLz5TU6oP50+7EsMkzqFm9eVcCvpxPgWL55xq1k5/pvYcazgTkuTTwA/Nsej36F7zfnRNv34KuCTJj9I1BxtWc5T1wg6OwWvpupFttdkcZYvyGFTVZW2d36PLHl80u9kc6/f2GOzAUnqt02o+/4NJ/5/m/fxJfo7uROlfjTWiOZ56jrLhGN8CnFVVD3UXjyZiPnHuCRwFHAvsDVyd5Jqq+vtxB9fMJ8bnAzcCzwF+DLgyyf+pqu+MObadMenPzWI09cc0yWPprri/pqq+M8HP+laSvAi4u6puSLJqwuFsz5503Sh+s6quTfJWuq5fU6ONeXQcXdezbwN/nuTlEw1q10z9Z2qK9eH8aadimOA51A9CmKNsGs+loB/nU7B4zqlm7fRnalEmm6rqudtaluSVdE3qCrguyfeBA+gyc4cMrLqcLsPYS9s6BkmOpPty/mKrJJYDX0hyNEvkGMxKcgrwIuDY9n6ARXYMdmApvdZpNZ//waT/T/N6/iQ/Sdc15Oer6p4Fim3WfGJcCVzc6r0DgBck2VxVf7EgEXbm+//+ZlV9F/huks8CT6cbg2YhzCfGX6Hrjl7AuiS3Av8CuG5hQpyXSX9uFqOpPqZJHkmXaLqoqj7ciu9KclBVbWxN/SfZ7ePZwIuTvAB4NLBvkj+bshih+z9vqKpr2+NL6ZJN0xTnc4Fbq+obAEk+TDfuzTTFOGhbcU31Z2rK9eH8ad4xTPgcalZfzqWgH+dTszEshnOqWTv9mVqK3ej+gi5zSJKn0g3W9U3gcuDEJHslORQ4jOn8J++WqlpbVQdW1YqqWkH3pnlWVf0jS+QYQDczAHAW8OKq+r8Di5bMMQA+DxyW5NAkjwJOpHv9Wjjz+R9cDpzcZoA4hq67wMZpijHJDwMfBl6xwFeM5h1jVR06UO9dCvw/Ezg5ms//+zK6rt57JnkM8NN0489MU4y30V0pJMky4MeBry9gjPMx6c/NYjS13xltrIvzgVuq6k0Diy4HTmn3T6H7fE1EVZ1dVctbHXQi8JmqejlTFCNAOx+8PcmPt6Jj6QbZnaY4bwOOSfKY9r8/lq6enKYYB20rrqV0zjlqfTh/mlecU3AONasv51LQj/Op+cbZh3OqWTv9mVqULZt24D3Ae9JN6ffPwCktk3hTkkvovlA3A6+qqocmGOeCq6qldAzeQTf7x5UtO39NVf36UjoGVbU5yW/QzUq4B/CeqrppwmEtKdv6HyT59bb8T+hm+3gB3cCh/5fuCsi0xfhfgCcC72yfp81VtXLKYpy4+cRZVbck+QTwJbpxXd5dVXNOQTupGIH/BlyQZC1dk+qzquqbCxUjQJIPAKuAA5JsAF4HPHIgxol+bhajKf/OeDbwCmBtkhtb2WuBc+mGSziN7oT+hMmEt13TGONvAhe1H0dfp/v8PIIpibN177sU+ALdudrfAufRDa470Ri3UTfN+T9eSueco9aH86ediHOi51A7GetU6MP51HzjZArOqWaN49wqD/cekiRJkiRJknbPUuxGJ0mSJEmSpDEx2SRJkiRJkqSRMdkkSZIkSZKkkTHZJEmSJEmSpJEx2SRJkiRJkqSRMdkkSZIkSZKkkTHZJEmSJEmSpJEx2SRJkiRJkqSRMdkkSZIkSZKkkTHZJEmSJEmSpJEx2SRJkiRJkqSRMdkkSZIkSZKkkTHZJEmSJEmSpJEx2SRJkiRJkqSRMdkkSZIkSZKkkTHZJEmSJEmSpJEx2SRJkiRJkqSRMdkkSZIkSZKkkTHZJElSk2RVkg2TjkOSJEnqM5NNGqkk65M8d9JxSJIkSZKkyTDZJEmSJC1BSfacdAySpMXJZJNGJsn7gB8G/jLJpiS/m+SYJH+T5NtJvphk1cD6M0n+e1u+KclfJnlikouSfCfJ55OsGFi/krw6ydeTfDPJHyZ5RFv2iCT/Ock/JLk7yXuTPH6BD4GkKZFkTZJLh8remuRtSX4lyS1J7m/1ya9tZz9PTvKhJN9IcmuSVw8se32SS1p9c3+Sm5KsHFh+SJIPt23vSfKOgWW/2mK4N8knk/zIqI+BpH5L8jtJPjRU9vYkb0ny+CTnJ9mY5I52PrVHW+fHknym1TvfbOdVTxjYx/okZyX5EvBdE06SpHEw2aSRqapXALcB/66qHgtcBHwM+O/A/sBvAx9K8qSBzU4EXgEcDPwYcDXwp239W4DXDT3NLwArgWcBxwG/2spPbbefA34UeCzwDiQtVR8AXpBkX4D2I+ylwPuBu4EXAfsCvwK8OcmzhnfQktl/CXyRro46FnhNkucPrPZi4GLgCcDltHqnPd9HgX8AVrTtL27LjgdeC/wi8CTg/7R4JWnQnwGrZxNFLSn0MuB9wIXAZuApwDOBfwv8h7ZdgD8Angz8BHAI8Pqhff8S8ELgCVW1eZwvQpK0NJls0ji9HPh4VX28qr5fVVcC1wMvGFjnT6vqa1V1H3AF8LWq+nQ78flzuhOoQW+oqm9V1W3AW+hOlgBOAt5UVV+vqk3A2cCJXq2Tlqaq+gfgC8Dxreg5wP+tqmuq6mOt3qmq+mvgU8C/nmM3PwU8qar+a1X9c1V9HfjfdEnyWZ9rddxDdD8An97Kj6b7ofc7VfXdqvpeVX2uLfs14A+q6pZW1/0P4Bm2bpI0qKo2Ap8FTmhFq4FvAhuAnwde0+qXu4E30+qmqlpXVVdW1QNV9Q3gTcC/Gdr926rq9qr6p4V4LZKkpcdkk8bpR4ATWhe6byf5NvCvgIMG1rlr4P4/zfH4sUP7vH3g/j/Q/Zij/f2HoWV7Ast2OXpJffd+Hk5I/3J7TJKfT3JNkm+1eukFwAFzbP8jwJOH6rDXsmW98o8D9/8v8OiW5D4E+IdttBj4EeCtA/v8Fl1LhIN37WVKWsQupLt4R/v7Pro65JHAxoF65H8BBwIkOTDJxa173XfoWkgN13G3I0nSGNnqQ6NWA/dvB95XVf9xhPs/BLip3f9h4M52/066ky8Glm1my+SVpKXlz4E3JllO1wX3Z5LsBXwIOBm4rKoeTPIXdMmeYbcDt1bVYbvw3LcDP5xkzzkSTrcD51TVRbuwX0lLy18A70pyBF33398FHgQeAA7YRkL7D+jOx36yqu5pXXeHhxaorbaSJGmEbNmkUbuLbswk6K6k/bskz0+yR5JHJ1nVfvjtqt9Jsl+SQ4AzgA+28g8A/ynJoUkeS9ct5YOOQyAtXa37yAzdOHC3VtUtwKOAvYBvAJuT/DzdWCdzuQ74ThtId+9Wjx2R5Kfm8fTXARuBc5Ps0+q/Z7dlfwKcneRpAG2g3xO2tSNJS1dVfQ+4lK5l5nVVdVvrXvcpumT6vm2SlB9LMttV7nHAJuDbSQ4GfmciwUuSljSTTRq1PwD+c2vS/TK6QbxfS/fD7na6E57ded9dBtwA3Eg3+Pj5rfw9dE3LPwvcCnwP+M3deB5Ji8P7gee2v1TV/cCrgUuAe+m6110+14ZtHKZ/BzyDrl75JvBuYIczXQ5s+xS6iRM20NWJVNVHgDcAF7cuLl+mG39FkuZyIXAk3XnOrJPpkuc309Vll/LwMAW/TzeRyn1050ofXrBIJUlqUmUrWvVDkgIOq6p1k45FkiRpIST5YeDvgB+qqu9MOh5JkubDlk2SJEnSFEryCOC3gItNNEmS+sQBwiVJkqQpk2QfurEw/wFYPeFwJEnaKXajkyRJkiRJ0sjYjU6SJEmSJEkjs+i60R1wwAG1YsWKea373e9+l3322We8AY1AX+KE/sTalzihP7HOFecNN9zwzap60oRCmkrzraP68H/vQ4zQjzj7ECP0I875xmj9tDXrp4VljKOxGGO0fpK0GCy6ZNOKFSu4/vrr57XuzMwMq1atGm9AI9CXOKE/sfYlTuhPrHPFmeQfJhPN9JpvHdWH/3sfYoR+xNmHGKEfcc43RuunrVk/LSxjHI3FGKP1k6TFwG50kiRJkiRJGhmTTZIkSZIkSRoZk02SJEmSJEkaGZNNkiRJkiRJGhmTTZKWnCR7JPnbJB9tj/dPcmWSr7a/+w2se3aSdUm+kuT5A+VHJVnblr0tSSbxWiRJkiRp2phskrQUnQHcMvB4DXBVVR0GXNUek+Rw4ETgacBq4J1J9mjbvAs4HTis3VYvTOiSJEmSNN32nHQA0nysWPOxrcrWn/vCCUSivkuyHHghcA7wW634OGBVu38hMAOc1covrqoHgFuTrAOOTrIe2Leqrm77fC9wPHDFgrwIaQkb/j7wu0DStJqtr848cjOnrvmY9ZWkJcVkk6Sl5i3A7wKPGyhbVlUbAapqY5IDW/nBwDUD621oZQ+2+8Plc0pyOl0rKJYtW8bMzMwOg9y0adO81pukPsQI/YizDzHCdMR55pGbt3g8HM80xChJkrTUmWyStGQkeRFwd1XdkGTVfDaZo6y2Uz6nqjoPOA9g5cqVtWrVjp96ZmaG+aw3SX2IEfoRZx9ihOmI89Thlk0nrdri8TTEKEmStNSZbJK0lDwbeHGSFwCPBvZN8mfAXUkOaq2aDgLubutvAA4Z2H45cGcrXz5HuSRJkiQteQ4QLmnJqKqzq2p5Va2gG/j7M1X1cuBy4JS22inAZe3+5cCJSfZKcijdQODXtS539yc5ps1Cd/LANpIkSZK0pNmySZLgXOCSJKcBtwEnAFTVTUkuAW4GNgOvqqqH2javBC4A9qYbGNzBwSVJkiQJk02SlqiqmqGbdY6qugc4dhvrnUM3c91w+fXAEeOLUJIkSZL6yW50kiRJkiRJGhmTTZIkSZIkSRoZk02SJEmSJEkaGZNNkiRJkiRJGhmTTZIkSVMiyfoka5PcmOT6VrZ/kiuTfLX93W9g/bOTrEvylSTPHyg/qu1nXZK3JckkXo8kSVqanI1OU2nFmo9NOgRJkibl56rqmwOP1wBXVdW5Sda0x2clORw4EXga8GTg00meWlUPAe8CTgeuAT4OrAauWMgXIUmSli5bNkmSJE2344AL2/0LgeMHyi+uqgeq6lZgHXB0koOAfavq6qoq4L0D20iSJI2dLZskSZKmRwGfSlLA/6qq84BlVbURoKo2JjmwrXswXculWRta2YPt/nD5VpKcTtcCimXLljEzM7PDADdt2jSv9SbJGEfDGHfPmUduBmDZ3t39aY1TksbBZJMkSdL0eHZV3dkSSlcm+bvtrDvXOEy1nfKtC7tk1nkAK1eurFWrVu0wwJmZGeaz3iQZ42gY4+45tQ0LceaRm3nj2j1Zf9KqyQYkSQtobN3okvynJDcl+XKSDyR5tANcSpIkbVtV3dn+3g18BDgauKt1jaP9vbutvgE4ZGDz5cCdrXz5HOWSJEkLYiwtm5IcDLwaOLyq/inJJXQDWB6OA1xqDg4ILkla6pLsAzyiqu5v9/8t8F+By4FTgHPb38vaJpcD70/yJrrzp8OA66rqoST3JzkGuBY4GXj7wr4aSZK0lI1zgPA9gb2T7Ak8hu6KmgNcSpIkzW0Z8LkkXwSuAz5WVZ+gSzI9L8lXgee1x1TVTcAlwM3AJ4BXtQt1AK8E3k13TvU1vFAnSZIW0FhaNlXVHUn+CLgN+CfgU1X1qSRjGeByVwa3hOkeUHBQX+KEXY91dgDFnbE7x2QpHNOF1pc4JWlaVdXXgafPUX4PcOw2tjkHOGeO8uuBI0YdoyRJ0nyMqxvdfnStlQ4Fvg38eZKXb2+TOcrmPcDlrgxuCdM9oOCgvsQJux7rqbvQjW53BllcCsd0ofUlTkmSJEnSeI2rG91zgVur6htV9SDwYeBf4gCXkiRJkiRJi9q4kk23AcckeUybPe5Y4BYeHuASth7g8sQkeyU5lIcHuNwI3J/kmLafkwe2kSRJkiRJ0pQZ15hN1ya5FPgCsBn4W7pubo8FLklyGl1C6oS2/k1txrqb2/rDA1xeAOxNN7ilA1xKkiRJkiRNqbEkmwCq6nXA64aKH8ABLntvxRzjK60/94UTiESSJEmSJE2bcXWjkyRJkiRJ0hJkskmSJEmSJEkjY7JJkiRJkiRJIzO2MZskSVqqhse2c1w7SZIkLSUmmzQRcw0yLknadSa4JEmSNC3sRidJkiRJkqSRMdkkSZIkSZKkkbEbnSRJu8muwZIkSdLDTDbJcT4kacrNlcyyrpYkSdK0shudRmLFmo+xYs3HWHvHfV7hlyRJkiRpCbNlkxaECShJS5ktSCVJkrSUmGySJKmHTOJLkiRpWplsUm/ZUkDSYrH2jvs4daBOsz6TJElSn5lskrSkJHk08FlgL7o68NKqel2S/YEPAiuA9cBLq+rets3ZwGnAQ8Crq+qTrfwo4AJgb+DjwBlVVQv5etRPw8nyM4+cUCA7yaSYJEmS5sMBwiUtNQ8Az6mqpwPPAFYnOQZYA1xVVYcBV7XHJDkcOBF4GrAaeGeSPdq+3gWcDhzWbqsX8HVIkiRJ0lSyZZOkJaW1PNrUHj6y3Qo4DljVyi8EZoCzWvnFVfUAcGuSdcDRSdYD+1bV1QBJ3gscD1yxEK9DC8cuu1poLaF9PXBHVb3IlpeSJKlvTDZpLBy4VtOs/ZC7AXgK8MdVdW2SZVW1EaCqNiY5sK1+MHDNwOYbWtmD7f5w+VzPdzpdCyiWLVvGzMzMDmPctGnTvNabpEnEuPaO+7Z4fOTBj9/hNrsb55lHbt7i8dsvumyOdXZ59wAs23vL5xmOdziG+RiOcz7Hakd2FOdCGD4WwzH04bMzD2cAtwD7tsezLS/PTbKmPT5rqOXlk4FPJ3lqVT3Ewy0vr6FLNq3GZLgkSVogJpu0QyaOtNi0H2LPSPIE4CNJjtjO6plrF9spn+v5zgPOA1i5cmWtWrVqhzHOzMwwn/UmaRIxnjrcyuikHT//7sY5/JzjcOaRm3nj2oGv5LXfHVpj97+uh4/VrrTYevtFl20R53yO/6jt6D3Qh8/O9iRZDrwQOAf4rVZsy0tJktQrJpskLVlV9e0kM3RX/O9KclBr1XQQcHdbbQNwyMBmy4E7W/nyOcqlqbSjCwd2F5wabwF+F3jcQJktL3eSMY6GMe6e2ZaYs61CpzVOSRoHk02SlpQkTwIebImmvYHnAm8ALgdOAc5tf2f7IF0OvD/Jm+i6qRwGXFdVDyW5vw0ufi1wMvD2hX01khaTJC8C7q6qG5Ksms8mc5TZ8hJjHBVj3D2zLTFnW69OojWoJE2KySZJS81BwIVt3KZHAJdU1UeTXA1ckuQ04DbgBICquinJJcDNwGbgVa0bHsAreXgA3iuwi4qk3fNs4MVJXgA8Gtg3yZ9hy0tJktQzJpskLSlV9SXgmXOU3wMcu41tzqEbP2W4/Hpge+M9aQKGu4NdsHqfCUUi7ZyqOhs4G6C1bPrtqnp5kj/ElpeSJKlHTDZJkiRNt3Ox5aUkSeoRk02SpN5ytkwtVlU1QzfrnC0vJUlS75hskiQtac7CJkmSJI2WySZJ0pKyo9ZQtpbqzHUczjxytPs0sSdJkrQ4PWJcO07yhCSXJvm7JLck+Zkk+ye5MslX29/9BtY/O8m6JF9J8vyB8qOSrG3L3pZkrul8JUmSJEmSNAXG2bLprcAnquolSR4FPAZ4LXBVVZ2bZA2wBjgryeHAicDT6GZT+XSSp7ZBLt8FnA5cA3wcWI2DXGoOXjGXFh9bGfWL9bAkSZJgTC2bkuwL/CxwPkBV/XNVfRs4DriwrXYhcHy7fxxwcVU9UFW3AuuAo5McBOxbVVdXVQHvHdhGkiRJkiRJU2ZcLZt+FPgG8KdJng7cAJwBLKuqjQBVtTHJgW39g+laLs3a0MoebPeHy7eQ5HS61k8sW7aMmZmZeQW5adOmea87SeOO88wjN2/xePi5hpdvz7K9d279cdreMevL/x76E2tf4pQkSZIkjde4kk17As8CfrOqrk3yVrouc9sy1zhMtZ3yLQuqzgPOA1i5cmWtWrVqXkHOzMww33Unadxxnjrc7eGkVdtdvj1nHrmZN66djnHnh1/HoL7876E/sfYlTknTa65uk3bFkyRJ6p9xZQU2ABuq6tr2+FK6ZNNdSQ5qrZoOAu4eWP+Qge2XA3e28uVzlEuSNC9r77hvp5LmkiTtCscZlKSHjWXMpqr6R+D2JD/eio4FbgYuB05pZacAl7X7lwMnJtkryaHAYcB1rcvd/UmOabPQnTywjSRJkiRJkqbMOPs7/SZwUZuJ7uvAr9Alty5JchpwG3ACQFXdlOQSuoTUZuBVbSY6gFcCFwB7081C50x0Y+ZVGUm7wi5QkqTFyu84Sdo5Y0s2VdWNwMo5Fh27jfXPAc6Zo/x64IiRBidJkiRJkqSxmI6RnCVJU2/4qu4Fq/cZ+T4lSZIk9Z/JJkmStEtMFkpayqwDJWnbxjJAuCRJkiRJkpYmk02SJEmSJEkaGZNNkiRJkiRJGhnHbJIkSWPheCaSJElLk8kmSZI0ESajJEmSFieTTZIkYOsf/uvPfeF21197x32cupPJApMLkiRJ0uLnmE2SJEmSJEkaGVs2SZIkTYEkjwY+C+xFd452aVW9Lsn+wAeBFcB64KVVdW/b5mzgNOAh4NVV9clWfhRwAbA38HHgjKqqhXw92tpg684zj9zMqsmFMlE725JWktQ/JpskSXMaRZc3u81JO+UB4DlVtSnJI4HPJbkC+EXgqqo6N8kaYA1wVpLDgROBpwFPBj6d5KlV9RDwLuB04Bq6ZNNq4IqFf0nS7jM5JUn9Y7JJkiRpCrSWR5vaw0e2WwHHwQ8awVwIzABntfKLq+oB4NYk64Cjk6wH9q2qqwGSvBc4HpNNIzWfZPq4kyLzScLsaJ3tvY65Wl95EUGSNB8mm5YgTxKk/vGqrrQ0JNkDuAF4CvDHVXVtkmVVtRGgqjYmObCtfjBdy6VZG1rZg+3+cPlcz3c6XQsoli1bxszMzA5j3LRp07zWm6RxxLj2jvu2eHzmkTve5u0XXbbNbZbtvfXyIw9+/E7FdOaRm7f7fMPPuaOYhs0V43xe986aK+7tPefg/3ah3o/Dx3pnLNu7237aPzeSNEommyRJkqZE6wL3jCRPAD6S5IjtrJ65drGd8rme7zzgPICVK1fWqlWrdhjjzMwM81lvkkYR49YX50Z72nzmkZt549qhfa797hYPd9wKabyn8nPGOAXWn7TqB/cX6v24s7OvDpo9joNxS9Ji52x0kiRJU6aqvk3XXW41cFeSgwDa37vbahuAQwY2Ww7c2cqXz1EuSZK0IKbvUoUkaafZzU7qvyRPAh6sqm8n2Rt4LvAG4HLgFODc9ne2z9HlwPuTvIlugPDDgOuq6qEk9yc5BrgWOBl4+8K+GkmStJSZbJIkSZoOBwEXtnGbHgFcUlUfTXI1cEmS04DbgBMAquqmJJcANwObgVe1bngArwQuAPamGxjcwcElSdKCMdkkaUlJcgjwXuCHgO8D51XVW5PsD3wQWAGsB15aVfe2bc4GTgMeAl5dVZ9s5Ufx8I+5jwNntNmkJGmnVdWXgGfOUX4PcOw2tjkHOGeO8uuB7Y33JEmSNDYmmyQtNZuBM6vqC0keB9yQ5ErgVOCqqjo3yRpgDXBWksOBE4Gn0XVT+XSSp7bWA++im8XpGrpk02psPSBJvWD3Y0mSxsdkk6QlpU0fPjuF+P1JbqGbEvw4YFVb7UK6gXnPauUXV9UDwK1J1gFHJ1kP7FtVVwMkeS9wPCabJKmXtp7pTUuZ7wdJ2j0mmyQtWUlW0HVZuRZY1hJRVNXGJAe21Q6ma7k0a0Mre7DdHy6f63lOp2sBxbJly5iZmdlhbJs2bdpivTOP3LzF8uF97Gj5XNbecd/QPna4yRaW7b31806jPsTZhxhhMnHu7Ht9+LMjSZKkhWeySdKSlOSxwIeA11TVd5Jsc9U5ymo75VsXVp0HnAewcuXKWrVq1Q7jm5mZYXC9U4e7e5y05T52tHwuw9vsrDOP3Mwb107/10gf4uxDjDCZOHf2vT782ZEkSdLCm/4zW0kasSSPpEs0XVRVH27FdyU5qLVqOgi4u5VvAA4Z2Hw5cGcrXz5H+dSyS4Ckvlqq4ytZb0uS+spkkxatpXpiqu1L14TpfOCWqnrTwKLLgVOAc9vfywbK35/kTXQDhB8GXFdVDyW5P8kxdN3wTgbevkAvQ5IkjZCJPUkaLZNNkpaaZwOvANYmubGVvZYuyXRJktOA24ATAKrqpiSXADfTzWT3qjYTHcArgQuAvekGBndwcEmSJElLnskmSUtKVX2OucdbAjh2G9ucA5wzR/n1wBGji06SJEmS+u8R49pxkj2S/G2Sj7bH+ye5MslX29/9BtY9O8m6JF9J8vyB8qOSrG3L3pbtjOArSZIkSZKkyRtbsgk4A7hl4PEa4KqqOgy4qj0myeHAicDTgNXAO5Ps0bZ5F9104Ye12+oxxitJkiRJkqTdNJZkU5LlwAuBdw8UHwdc2O5fCBw/UH5xVT1QVbcC64Cj22xQ+1bV1VVVwHsHtpEkSZIkSdIUGteYTW8Bfhd43EDZsqraCNCmFj+wlR8MXDOw3oZW9mC7P1y+lSSn07WAYtmyZczMzMwryE2bNs173UkadZxnHrl5ZPsatmzv8e5/dwwew77876E/sfYlTkn94gxRkiRJ/TPyZFOSFwF3V9UNSVbNZ5M5ymo75VsXVp0HnAewcuXKWrVqPk/bJR/mu+4kjTrOU8d44n7mkZt549rpHHd+/UmrfnC/L/976E+sfYlTkiT122AS+swjN3Pqmo+x/twXTjAiSdKwcWQFng28OMkLgEcD+yb5M+CuJAe1Vk0HAXe39TcAhwxsvxy4s5Uvn6NckiRJkiRJU2rkyaaqOhs4G6C1bPrtqnp5kj8ETgHObX8va5tcDrw/yZuAJ9MNBH5dVT2U5P4kxwDXAicDbx91vJK0GNn1SJIkSdKkLGR/p3OBS5KcBtwGnABQVTcluQS4GdgMvKqqHmrbvBK4ANgbuKLdJEmSJEmSNKXGmmyqqhlgpt2/Bzh2G+udA5wzR/n1wBHji1CSJEmSJEmjNJ0jOUuSJEnzNNx1+ILV+0woEk3K8HtgRwOG291cksbLZJMkSZIW1M4mBiRJUr88YtIBSJIkSZIkafGwZZMk9ZDN/6XFJ8khwHuBHwK+D5xXVW9Nsj/wQWAFsB54aVXd27Y5GzgNeAh4dVV9spUfxcOTrHwcOKOqaiFfjyRJWrps2SRJkjQdNgNnVtVPAMcAr0pyOLAGuKqqDgOuao9py04EngasBt6ZZI+2r3cBpwOHtdvqhXwhkiRpabNlkyRJ0hSoqo3Axnb//iS3AAcDxwGr2moX0s30e1Yrv7iqHgBuTbIOODrJemDfqroaIMl7geOBKxbqtUjTxhbBkrSwTDZJkiRNmSQrgGcC1wLLWiKKqtqY5MC22sHANQObbWhlD7b7w+VzPc/pdC2gWLZsGTMzMzuMbdOmTfNab3vOPHLzFo93tL8drT+8fD4xDm+z0JbtPfkYdqTPMe7oPbKQZmPc3c+NJPWJySZJkqQpkuSxwIeA11TVd5Jsc9U5ymo75VsXVp0HnAewcuXKWrVq1Q7jm5mZYT7rbc+pw7PRnbT9/e1o/eHlZx65mTd+7rtbbjM0493wNgvtzCM388a1030q3ucYd/QeWUizMe7ofS5Ji4ljNkmSJE2JJI+kSzRdVFUfbsV3JTmoLT8IuLuVbwAOGdh8OXBnK18+R7kkSdKCMNkkSZI0BdI1YTofuKWq3jSw6HLglHb/FOCygfITk+yV5FC6gcCva13u7k9yTNvnyQPbSJIkjd10t4uVRmhwYMgzj9z8g5FWJUmaEs8GXgGsTXJjK3stcC5wSZLTgNuAEwCq6qYklwA3081k96qqeqht90rgAmBvuoHBHRxckiQtGJNNkiRJU6CqPsfc4y0BHLuNbc4Bzpmj/HrgiNFFJ0mSNH92o5MkSZIkSdLImGySJEmSJEnSyNiNTpIkSdKiMjhWpyRp4dmySZIkSZIkSSNjskmSJEmSJEkjYze6JcBmxJIkSZIkaaGYbJJ2wnDibv25L5xQJJIkSZIkTSeTTdJuMPkkSdL22cJakqSlxzGbJEmSJEmSNDImmyQtKUnek+TuJF8eKNs/yZVJvtr+7jew7Owk65J8JcnzB8qPSrK2LXtbkiz0a5EkSZKkaWSySdJScwGweqhsDXBVVR0GXNUek+Rw4ETgaW2bdybZo23zLuB04LB2G96nJEmSJC1JJpskLSlV9VngW0PFxwEXtvsXAscPlF9cVQ9U1a3AOuDoJAcB+1bV1VVVwHsHtpEkSZKkJc0BwiUJllXVRoCq2pjkwFZ+MHDNwHobWtmD7f5w+ZySnE7XCoply5YxMzOzw4A2bdq0xXpnHrl5Hi9jYS3bezrjGtaHOPsQI0xnnMOfp+HPjiRJkhaeySZJ2ra5xmGq7ZTPqarOA84DWLlyZa1atWqHTzwzM8PgeqdO4WxOZx65mTeunf6vkT7E2YcYYTrjXH/Sqi0eD3921A/O7ipJ0uIyljPGJIfQdSv5IeD7wHlV9dYk+wMfBFYA64GXVtW9bZuzgdOAh4BXV9UnW/lRdGOs7A18HDijdVuRdosnthpwV5KDWqumg4C7W/kG4JCB9ZYDd7by5XOUS5IkSdKSN64xmzYDZ1bVTwDHAK9qA+06CK8WtRVrPrbFTb1xOXBKu38KcNlA+YlJ9kpyKF0ddF3rcnd/kmPaLHQnD2wjSZIkSUvaWFo2tR9is+Of3J/kFrrxTI4DVrXVLgRmgLMYGIQXuDXJ7CC862mD8AIkmR2E94pxxK2lzZZOS0OSD9DVQwck2QC8DjgXuCTJacBtwAkAVXVTkkuAm+mS6K+qqofarl7Jw60ur8B6SZIkSZKABRizKckK4JnAtYxpEN5dGXwX+jOI6O7GuZCDuU7j4LFzmU+ccx3znX1to3h/LZX36UKpql/axqJjt7H+OcA5c5RfDxwxwtAkaVGwZa8kSRprsinJY4EPAa+pqu90vU3mXnWOsnkPwrsrg+9CfwYR3d04F3Jg4WkcPHYu84lzeNBZ2PljOdc+dtZSeZ9KkiRJkhaHsWUFkjySLtF0UVV9uBU7CK8kSZIWnC2uJElaOGMZILwNmHs+cEtVvWlgkYPwSpIkzSHJe5LcneTLA2X7J7kyyVfb3/0Glp2dZF2SryR5/kD5UUnWtmVvy3aalkuSJI3DuGajezbwCuA5SW5stxfQDcL7vCRfBZ7XHlNVNwGzg/B+gq0H4X03sA74Gg7CK0mSFqcL2HrWXWfylSRJvTOu2eg+x9zjLYGD8EqSJG2lqj7bJlYZ5Ey+kiSpd6Z/JGdpQhzbQZI0BcYyk++sXZnRd0ezj45iVtrh/Q/vc0fL+zA7rjGORp9i7MOsvZI0KiabFiGTJJIkLXq7NZPvDxbswoy+O5p9dCSz4K797lDBnju1vA+z4xrjaPQpxlHMUixJfTGuMZskSZK0++5qM/jiTL6SJKkvTDZJkiRNL2fylSRJvTPdbU4lSZKWiCQfoBsM/IAkG4DX0c3ce0mS04DbgBOgm8k3yexMvpvZeibfC4C96QYGd3BwSZK0oEw2SZIkTYGq+qVtLHImX0mS1Ct2o5MkSZIkSdLI2LJJGqPhmQHXn/vCCUUiSZIkSdLCsGWTJEmSJEmSRsZkkyRJkiRJkkbGZJMkSZIkSZJGxmSTJEmSJEmSRsZkkyRJkiRJkkbGZJMkSZIkSZJGxmSTJEmSJEmSRmbPSQeg3bNizccmHYIkSVpC1t5xH6cOnH+sP/eFE4xGkiRNI5NN0gIaTg56gi5JkiRJWmzsRidJkiRJkqSRsWWTNOXsriBJkiRJ6hNbNkmSJEmSJGlkbNkkSZKkXeZkJZIkaZjJJkmaQsPdJyVJkiSpL+xGJ0mSJEmSpJGxZZM0QcNdD+Yz+PeubCNJi9VwnXjB6n0mFIkkSZJmmWzqGcdFWNzm+v+eeeQEApEkSZIkaRfZjU6SJEmSJEkj04tkU5LVSb6SZF2SNZOOZyGtWPMx1t5xHyvWfMxWTdIUWsr1k6TpZv0kSZImZeq70SXZA/hj4HnABuDzSS6vqpt3d9/Dsz059o2knTHO+kmSdof1kyRJmqSpTzYBRwPrqurrAEkuBo4DenmyZOskjdqO3lMmUcdqUdVPkhYV6ydJkjQxqapJx7BdSV4CrK6q/9AevwL46ar6jYF1TgdObw9/HPjKPHd/APDNEYY7Ln2JE/oTa1/ihP7EOlecP1JVT5pEMAthPvVTK9+VOqoP//c+xAj9iLMPMUI/4pxvjNZPWD9NmDGOxmKMcVHXT5KWhj60bMocZVtkyKrqPOC8nd5xcn1VrdzVwBZKX+KE/sTalzihP7H2Jc4R22H9BLtWR/XhePYhRuhHnH2IEfoRZx9iXCDWT8a424xxNPoQoySNWh8GCN8AHDLweDlw54RikaRB1k+SppX1kyRJmpg+JJs+DxyW5NAkjwJOBC6fcEySBNZPkqaX9ZMkSZqYqe9GV1Wbk/wG8ElgD+A9VXXTiHa/013vJqQvcUJ/Yu1LnNCfWPsS58hYP/UiRuhHnH2IEfoRZx9iHDvrJ2McEWMcjT7EKEkjNfUDhEuSJEmSJKk/+tCNTpIkSZIkST1hskmSJEmSJEkjsySTTUlWJ/lKknVJ1kw6nmFJ1idZm+TGJNe3sv2TXJnkq+3vfhOI6z1J7k7y5YGybcaV5Ox2jL+S5PlTEOvrk9zRjuuNSV4w6ViTHJLkr5LckuSmJGe08qk7rtuJdeqOa5/sqD5K521t+ZeSPGsKYzypxfalJH+T5OnTFuPAej+V5KEkL1nI+Aaef4dxJlnVPks3JfnraYsxyeOT/GWSL7YYf2UCMW5Vxw8tn/jnpk+28Z359CRXt/ORv0yybyt/XpIbWvkNSZ4zsM1RrXxdO/6ZRIwDy384yaYkvz2NMSb5ybbsprb80dMUY5JHJrmwld+S5OyBbcYZ48jOjcYV587GOKnPjSRNVFUtqRvdIJlfA34UeBTwReDwScc1FON64IChsv8JrGn31wBvmEBcPws8C/jyjuICDm/Hdi/g0HbM95hwrK8HfnuOdScWK3AQ8Kx2/3HA37d4pu64bifWqTuufbnNpz4CXgBcAQQ4Brh2CmP8l8B+7f7PT2OMA+t9Bvg48JIp/X8/AbgZ+OH2+MApjPG1A3XSk4BvAY9a4Di3quOHlk/0c9O32za+Mz8P/Jt2/1eB/9buPxN4crt/BHDHwDbXAT/TjvsVwM9PIsaB5R8C/nzwO2paYqSbpOdLwNPb4yfSviOnKMZfBi5u9x9Dd366YgFiHNm50bji3IUYJ/K58ebNm7dJ3pZiy6ajgXVV9fWq+mfgYuC4Ccc0H8cBF7b7FwLHL3QAVfVZuh8Vg7YV13F0JygPVNWtwDq6Y78gthHrtkws1qraWFVfaPfvB24BDmYKj+t2Yt2Wib4HemI+9dFxwHurcw3whCQHTVOMVfU3VXVve3gNsHwB45tXjM1v0v34vHshgxswnzh/GfhwVd0GUFULHet8Yizgce3q+2Pp6trNCxnkPOr4SX9uemUbx/PHgc+2+1cC/76t+7dVdWcrvwl4dJK92vHdt6qurqoC3ssIz1V2JkaAJMcDX28xzpZNU4z/FvhSVX2xbXtPVT00ZTEWsE+SPYG9gX8GvrMAMY7k3Gicce5sjJP63EjSJC3FZNPBwO0Djzew/R/Mk1DAp1oz29Nb2bKq2gjdFxxw4MSi29K24prW4/wb6bpUvGeg+fVUxJpkBd2Vr2uZ8uM6FCtM8XGdcvM5RpM+jjv7/KfRXZldSDuMMcnBwC8Af7KAcQ2bz7F8KrBfkpn2HXDygkXXmU+M7wB+ArgTWAucUVXfX5jw5m3Sn5vF4MvAi9v9E4BD5ljn3wN/W1UP0B3fDQPLFuKYzxljkn2As4DfH1p/amKk+6xXkk8m+UKS353CGC8FvgtsBG4D/qiqvrWQMe7mudGCxDnPGAdN+nMjSQtiKSab5uoHXQsexfY9u6qeRdcd5VVJfnbSAe2CaTzO7wJ+DHgG3YnTG1v5xGNN8li6FhevqarvbG/VOcomHevUHtcemM8xmvRxnPfzJ/k5umTTWWONaI6nnqNsOMa3AGdV1UPjD2eb5hPnnsBRwAuB5wP/b5KnjjuwAfOJ8fnAjcCT6T7378jQWDlTYNKfm8XgV+nOQW6g6yb0z4MLkzwNeAPwa7NFc+xj3Md8WzH+PvDmqto0tP40xbgn8K+Ak9rfX0hy7JTFeDTwEN1n/VDgzCQ/ulAxjuDcaOxx7kSMs+tPw+dGkhbEnpMOYAI2sOXVueV0V2enxmwz26q6O8lH6L7s70pyUFVtbE1uJ9UNZNi24pq641xVd83eT/K/gY+2hxONNckj6U5ULqqqD7fiqTyuc8U6rce1J+ZzjCZ9HOf1/El+Eng33VgT9yxQbLPmE+NK4OI27uoBwAuSbK6qv1iQCDvz/X9/s6q+C3w3yWeBp9ONB7IQ5hPjrwDnti4f65LcCvwLunFHpsWkPze9V1V/R9fVi5bwfOHssiTLgY8AJ1fV11rxBrbsQjv2Y76dGH8aeEmS/0k3Dtr3k3yP7vtrWmLcAPx1VX2zLfs43VhKfzZFMf4y8ImqehC4O8n/R1eX/p9xxziic6Oxvid3Msap+dxI0kJZii2bPg8cluTQJI8CTgQun3BMP5BknySPm71P9+X/ZboYT2mrnQJcNpkIt7KtuC4HTmz90Q8FDmPCP0SGxuv4BbrjChOMtY15cj5wS1W9aWDR1B3XbcU6jce1R+ZTH10OnJzOMcB9s030pyXGJD8MfBh4RVUtVFJkp2KsqkOrakVVraDrGvL/LHCiaV5x0n3W/3WSPZM8hu5H8y1TFuNtwLEASZbRjffy9QWMcT4m/bnpvSQHtr+PAP4zrQtqkicAHwPOrqr/b3b9dnzvT3JM+744mTGfq2wrxqr61wOf97cA/6Oq3jFNMQKfBH4yyWPSjYn0b4CbpyzG24DntM/RPnSD7f/duGMc1bnROOPc2Rin6XMjSQumpmCU8oW+0c1S8/d0s1X83qTjGYrtR+lm1Pgi3QCCv9fKnwhcBXy1/d1/ArF9gK6b1IN0V2JO215cwO+1Y/wVFnhmjW3E+j668UW+RHcycNCkY6VrOl8tphvb7QXTeFy3E+vUHdc+3eaqj4BfB3693Q/wx235WmDlFMb4buDegffF9dMW49C6FzCB2ejmGyfwO3Qz0n2ZrmvGVMVI16XmU+39+GXg5ROIca46fqo+N326beN4ntHeB38PnAukrfuf6cbxuXHgdmBbtrK9J75GN7ZXJhHj0HavZ8vZ6KYmRuDldOd6Xwb+57TFSDcBwJ+3GG8GfmeBYhzZudG44tzZGCf1ufHmzZu3Sd5mv0wkSZIkSZKk3bYUu9FJkiRJkiRpTEw2SZIkSZIkaWRMNkmSJEmSJGlkTDZJkiRJkiRpZEw2SZIkSZIkaWRMNkmSJEmSJGlkTDZJkiRJkiRpZP5/Au0X7fwKneQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data_train.hist(bins=50, figsize=(20,15))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAocAAAJfCAYAAAANeXygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABiZ0lEQVR4nO3dd5hcddn/8fcnAdIJhF4NYKSIEHpV6QIiTSBSBOTRiIpYfsKDj41iQcQCisqCNAWkiURACCChlwQISYggCFFCEAwtgZCQcv/+ON8ZJsPs7Ca758zszud1XXPtzJlzzn1mNpm95/42RQRmZmZmZgB9Gn0BZmZmZtY8nByamZmZWZmTQzMzMzMrc3JoZmZmZmVODs3MzMyszMmhmZmZmZU5OTQzMzNrIEkXSXpZ0pR2npekcyU9I2mSpC0rnttb0lPpuVO643qcHJqZmZk11iXA3nWe3wcYkW6jgd8ASOoLnJee3wQ4XNImXb0YJ4dmZmZmDRQRdwOv1tnlAOCyyDwIrCBpDWBb4JmIeDYi3gH+mPbtEieHZmZmZs1tLeD5isfT07b2tnfJMl09gZmZmVlPstwWxxW6dvD8iRd/nqw5uKQtItqW4BSqsS3qbO8SJ4dmZmZmOUqJ4JIkg9WmA+tUPF4bmAEs1872LnGzspmZmVlzGwMcnUYtbw+8EREvAuOBEZLWk7Qc8Km0b5e4cmhmZmYtRX36NvoSFiPpSmAXYGVJ04HvAcsCRMRvgZuBfYFngDnAZ9JzCySdANwK9AUuiognunw9EYU2u5uZmZk1VL+tPldo8jPvkQtq9Q1sWq4cmpmZWUtptsphs3GfQzMzMzMrc+XQzMzMWoorh/W5cmhmZmZmZa4cmpmZWUtx5bA+Vw7NzMzMrMyVQzMzM2sp6uvKYT2uHJqZmZlZmSuHZmZm1lL6uM9hXa4cmpmZmVmZK4dmZmbWUjxauT5XDs3MzMyszJVDMzMzaymuHNbnyqGZmZmZlTk5NDMzM7MyNyubmZlZS1Ef18bq8btjZmZmZmWuHJqZmVlL8YCU+lw5NDMzM7MyVw7NzMyspbhyWJ8rh2ZmZmZW5sqhmZmZtRRXDutz5dDMzMzMylw5NDMzs5aivq4c1uPKoZmZmZmVuXJoZmZmLcV9Dutz5dDMzMzMylw5NDMzs5biymF9rhyamZmZWZkrh2ZmZtZS+rhyWJcrh2ZmZmZW5uTQzMzMzMrcrGxmZmYtxQNS6nPl0MzMzMzKXDk0MzOzluLKYX2uHJqZmZlZmSuHZmZm1lJcOazPlUMzMzMzK3Pl0MzMzFqKK4f1uXJoZmZmZmWuHJqZmVlLceWwPlcOzczMzKzMlUMzMzNrKerrymE9rhyamZmZWZkrh80pGn0BZmZmBVKhwdznsC5XDs3MzMyszJVDMzMzaymuHNbnyqGZmZmZlTk5NDMzM7MyNyubmZlZS3Gzcn2uHJqZmZlZmSuHZmZm1lL69Cl05pwex5VDMzMzMytz5dDMzMxailw5rMuVQzMzMzMra6nkUNJXJQ2seHyzpBUaeElmZmZWMEmF3nqalkoOga8C5eQwIvaNiNcbdjVmZmZmTaahyaGkP0t6RNITkkanbXtLelTS45LuSNuGpX0nSXpQ0mZp+6mSvlFxvimShksaJOmmdI4pkkZJOhFYE7hT0p1p/2mSVk73j07nf1zS79O2SySdK+l+Sc9KOqQi1kmSxqdjTkvb3hM3bT9T0tS079lFvLdmZmZWW58+KvTW0zR6QMpxEfGqpAHAeEk3ABcAH4mI5yQNS/udBjwWEQdK2g24DBhZ57x7AzMi4uMAkoZGxBuSvg7sGhEzK3eW9EHgW8BOETGzIi7AGsDOwEbAGOBaSXsBI4BtAQFjJH0EWKU6bjrXQcBGERHtNWOn5Hg0wPnnn8/o0aM7eu/MzMzMul2jk8MTJR2U7q9DlhzdHRHPAUTEq+m5nYFPpm1/k7SSpKF1zjsZOFvSj4EbI+KeDq5jN+DaUtJYERfgzxGxCJgqabW0ba90eyw9HkyWLN5THVfSMsBc4EJJNwE31rqAiGgD2koPO7heMzMzW0rNNlpZ0t7AOUBf4MKIOLPq+ZOAI9PDZYCNgVVSgW0aMBtYCCyIiK27ej0Na1aWtAuwB7BDRGxOlmg9Tu3EqNZvMYAFLP4a+gNExD+ArciSxB9J+m5Hl9NOXIB5Na5DwI8iYmS6vT8iflcrbkQsIKswXgccCNzSwbWYmZlZi5DUFzgP2AfYBDhc0iaV+0TET0o5B/BN4K6qQtau6fkuJ4bQ2D6HQ4HXImKOpI2A7YF+wEclrQdZX8O0792kjDkllTMjYhYwDdgybd8SKB23JjAnIv4AnF3ahyyzHlLjWu4ADpO0UlXc9twKHCdpcNp/LUmr1oqb9hkaETeTDYgZ2Zk3x8zMzPKhPir01oFtgWci4tmIeAf4I3BAnf0PB67spreipkY2K98CHC9pEvAU8CDwX7Km5T9J6gO8DOwJnApcnPadAxyTznEdcLSkicB44B9p+4eAn0haBMwHvpC2twF/lfRiROxaupCIeELSD4C7JC0kq2Ie296FR8RYSRsDD6Qh6m8CRwHvrxF3CHCDpP5kFcevLflbZWZmZr3UWsDzFY+nA9vV2lHZdHx7AydUbA5grKQAzk/d1LpEEe7e1oT8SzEzs1ZSaCfAD379L4X+nZ368/0/Txp0mrSVkjhJhwIfi4jPpsefBraNiC9XnyfNgnJURHyiYtuaETFD0qrAbcCXI+LurlxvowekmJmZmfVqVYNOq00nG5RbsjYwo519P0VVk3JEzEg/X5Z0PVkzdZeSw1abBNvMzMxaXJP1ORwPjJC0nqTlyBLAMe+55myWlo8CN1RsGyRpSOk+2UwqU7r6/rhyaGZmZtYgEbFA0glkg137AhelsRDHp+d/m3Y9CBgbEW9VHL4acH0a/7AMcEVEdHlWFPc5bE7+pZiZWSsptM/hpt+4sdC/s1PO3q+5JlbsgCuHZmZm1lKabRLsZuM+h2ZmZmZW5sqhmZmZtZQ+rhzW5cqhmZmZmZW5cmhmZmYtRS6N1eW3x8zMzMzKXDlsUvPHv2f+y1wtu83+hcYzMzNrlDQvoLXDlUMzMzMzK3Pl0MzMzFqKRyvX58qhmZmZmZW5cmhmZmYtxSuk1OfKoZmZmZmVuXJoZmZmLcWVw/pcOTQzMzOzMlcOzczMrKX08TyHdblyaGZmZmZlTZkcSjpV0jeaLb6kNSVdm+7vIunGdH9/Saek+wdK2qTYKzYzMzPrHm5WXgIRMQM4pMb2MUBpvbsDgRuBqcVdmZmZmXWWB6TU1zSVQ0nfkvSUpNuBDdO2z0kaL+lxSddJGpi2XyLpXEn3S3pW0iEV5zlZ0uR0zJlp2waSbpH0iKR7JG2Utn9C0kOSHpN0u6TVKi5pc0l/k/S0pM+l/YdLmlLj2o+V9CtJOwL7Az+RNDHFfbRivxGSHun+d8/MzMysezRF5VDSVsCngC3IrulR4BHgTxFxQdrn+8D/AL9Mh60B7AxsRFa1u1bSPmSVu+0iYo6kYWnfNuD4iHha0nbAr4HdgHuB7SMiJH0WOBn4f+mYzYDtgUHAY5Ju6uh1RMT9ksYAN0ZEqfn5DUkjI2Ii8BngkqV4i8zMzKybuHJYX1Mkh8CHgesjYg5ASrAANk1J4QrAYODWimP+HBGLgKkVFb89gItL54mIVyUNBnYErtG7o5P6pZ9rA1dJWgNYDniu4vw3RMTbwNuS7gS2BSYuxWu7EPiMpK8Do9J53kPSaGA0wPnnn89ntlh9KUKZmZmZdU2zJIcAUWPbJcCBEfG4pGOBXSqem1dxXxU/q8/TB3g9IkbWOP8vgZ9FxBhJuwCn1rmeWtfXGdcB3wP+BjwSEa/U2iki2sgqnAAxf/yYWruZmZlZF/Vx5bCuZulzeDdwkKQBkoYAn0jbhwAvSloWOLIT5xkLHFfRN3FYRMwCnpN0aNomSZun/YcCL6T7x1Sd6wBJ/SWtRJaUju/ka5mdrhuAiJhLVvH8DXBxJ89hZmZm1hBNkRxGxKPAVWTNttcB96SnvgM8BNwGPNmJ89xC1v9wgqSJQGk6miOB/5H0OPAEcEDafipZc/M9wMyq0z0M3AQ8CJyRRip3xh+Bk9Iglw3StsvJKo9jO3kOMzMzy4mkQm89jSKWtrXUOivNmTg0Ir7TyUMKb1Zedpv9C41nZmZWodAMaucf31lo8nPv/+7aozLEZupz2CtJuh7YgGx0tJmZmTWYmqLdtHk5OcxZRBzU6GswMzMz6ywnh2ZmZtZSPFq5PhdWzczMzKzMlUMzMzNrKV4hpT5XDs3MzMyszJVDMzMzayk9ce7BIrlyaGZmZmZlTg7NzMzMrMzNyk3KK5aYmZnlw1PZ1OfKoZmZmZmVuXLYpOb/99+Fxlt2lXWzuC89V2zc1dYrNJ6ZmZmnsqnPlUMzMzMzK3Pl0MzMzFpKX1cO63Ll0MzMzMzKXDk0MzOzluLKYX2uHJqZmZlZmSuHZmZm1lJcOazPlUMzMzMzK3Pl0MzMzFqKK4f1uXJoZmZmZmWuHJqZmVlLceWwvqasHEo6VdI3uuE8K0j6YsXjNSVd29XzmpmZmfVWPb5yKGmZiFjQztMrAF8Efg0QETOAQwq6NDMzM2tCy7hyWFfTVA4lfUvSU5JuBzZM28ZJ2jrdX1nStHT/WEnXSPoLMFbSYEl3SHpU0mRJB6TTnglsIGmipJ9IGi5pSjpHf0kXp/0fk7Rrxbn/JOkWSU9LOquD635T0o8lPSLpdknbput+VtL+aZ8PSno4XcckSSNyeAvNzMzMuqwpkkNJWwGfArYADga26cRhOwDHRMRuwFzgoIjYEtgV+KkkAacA/4yIkRFxUtXxXwKIiA8BhwOXSuqfnhsJjAI+BIyStE6d6xgEjIuIrYDZwPeBPYGDgNPTPscD50TESGBrYHqN92C0pAmSJrS1tXXi5ZuZmZl1v2ZpVv4wcH1EzAGQNKYTx9wWEa+m+wJ+KOkjwCJgLWC1Do7fGfglQEQ8KelfwAfSc3dExBvpWqYC7wOeb+c87wC3pPuTgXkRMV/SZGB42v4A8C1JawN/ioinq08SEW1AKSuM+f/9dweXb2ZmZkvDA1Lqa4rKYRI1ti3g3WvsX/XcWxX3jwRWAbZK1bmXauxfrd6/jHkV9xdSP4meHxGla19UOjYiFpWOi4grgP2Bt4FbJe3WwbWZmZmZNUSzJId3AwdJGiBpCPCJtH0asFW6X28gyVDg5VSx25Ws0gdZM++QOjGPBJD0AWBd4KmlfgV1SFofeDYizgXGAJvlEcfMzMw61rePCr31NE2RHEbEo8BVwETgOuCe9NTZwBck3Q+sXOcUlwNbS5pAlvA9mc77CnCfpCmSflJ1zK+Bvqn59yrg2IiYRz5GAVMkTQQ2Ai7LKY6ZmZlZl+jdFlFrIoX3OVx2lXUBmP/Sc8XGXW29QuOZmVlTKrS8duwVjxaa/FxyxJY9qnzYFJVDMzMzM2sOzTJauelJegjoV7X50xExuRHXY2ZmZkunJ/YDLJKTw06KiO0afQ1mZmZmeXOzspmZmbWUZhutLGnvtErcM5JOqfH8LpLeSCutTZT03c4euzRcOTQzMzNrEEl9gfPIVlebDoyXNCYiplbtek9E7LeUxy4RJ4dmZmbWUpqsz+G2wDMR8SyApD8CBwCdSfC6cmy73KxsZmZm1jhrsfgSvdPTtmo7SHpc0l8lfXAJj10irhyamZlZS+mrYiuHkkYDoys2tUVEW+npGodUz8P4KPC+iHhT0r7An4ERnTx2iTk5bFKlSakLj+tJqc3MzLpVSgTb2nl6OrBOxeO1gRlVx8+quH+zpF9LWrkzxy4NJ4dmZmbWUpqsz+F4YISk9YAXgE8BR1TuIGl14KWICEnbknULfAV4vaNjl4aTwyZ1+we3KTTeHk+MB2DiC68XGnfkWivwyuw5hcYEWGnIwMJjmpmZVYuIBZJOAG4F+gIXRcQTko5Pz/8WOAT4gqQFwNvApyJb/7jmsV29JieHZmZmZg0UETcDN1dt+23F/V8Bv+rssV3l5NDMzMxaSpM1KzcdT2VjZmZmZmWuHJqZmVlLWcaVw7pcOTQzMzOzMlcOzczMrKW4z2F9rhyamZmZWZkrh2ZmZtZSXDmsz5VDMzMzMytz5dDMzMxaiiuH9bly2A0kOck2MzOzXqElkxpJRwEnAssBDwFfBN4AzgH2I1u38ICIeEnSKsBvgXXT4V+NiPsknQqsCQwHZkr6CnAFsBLZItp7A1sBXwFmRsQ5KfYPyBbPPreAl2pmZmZVXDmsr+Uqh5I2BkYBO0XESGAhcCQwCHgwIjYH7gY+lw45B/h5RGwDfBK4sOJ0W5ElkUcA3wP+FhFbAtfzbjL5O+CYFLsP8Cng8txeoJmZmVkXtGLlcHeypG68JIABwMvAO8CNaZ9HgD3T/T2ATdK+AMtLGpLuj4mIt9P9nYGDACLiFkmvpfvTJL0iaQtgNeCxiHil+qIkjQZGA5x//vms300v1szMzBbnymF9rZgcCrg0Ir652EbpGxER6eFC3n1v+gA7VCSBpf0B3qo6b3suBI4FVgcuqrVDRLQBbaWHt59zQYcvxMzMzKy7tVyzMnAHcIikVQEkDZP0vjr7jwVOKD2QNLKd/e4FDkv77AWsWPHc9WR9ELcBbl3qKzczM7Mu69tHhd56mpZLDiNiKvBtYKykScBtwBp1DjkR2FrSJElTgePb2e80YC9JjwL7AC8Cs1PMd4A7gasjYmH3vBIzMzOz7teKzcpExFXAVVWbB1c8fy1wbbo/k2wAS/U5Tq3a9AbwsYhYIGkHYNeImAflgSjbA4d212swMzMzy0NLJoc5WRe4OiWC75BGO0vahGygy/UR8XQDr8/MzMzwgJSOODnsJinx26LG9qngwcdmZmbWMzg5NDMzs5biymF9LTcgxczMzMza58qhmZmZtRRXDutz5dDMzMzMylw5NDMzs5biymF9rhyamZmZWZkrh2ZmZtZS+sqVw3qcHDapPZ4Y35C4I9daofCYKw0ZWHhMMzMzq83JYZNa9I/7Co3X5wM7ATBpxhuFxt1szaHMm/16oTEB+g1ZgemvvllozLWHDe54JzMzy10fVw7rcp9DMzMzMytz5dDMzMxaSl8XDuty5dDMzMzMylw5NDMzs5bSx/Mc1uXKoZmZmZmVOTk0MzMzszI3K5uZmVlL8STY9blyaGZmZmZlrhyamZlZS/Ek2PW5cmhmZmZmZU4Ol5CkaZJWTvfv72Df0yXtke5/VZIXETYzM2uwvir21tM4OeyCiNixg+e/GxG3p4dfBZwcmpmZWVNrqeRQ0lGSHpY0UdL5kraTNElSf0mDJD0haVNJu0i6W9L1kqZK+q2k97xXkt6suH+ypMmSHpd0Ztp2iaRDJJ0IrAncKenO4l6xmZmZVevTR4XeepqWSQ4lbQyMAnaKiJHAQmBDYAzwfeAs4A8RMSUdsi3w/4APARsAB9c59z7AgcB2EbF5OldZRJwLzAB2jYhd2znHaEkTJE1oa2tb2pdpZmZm1iWtNFp5d2ArYLyyUUoDgJeB04HxwFzgxIr9H46IZwEkXQnsDFzbzrn3AC6OiDkAEfHqkl5cRLQBpawwFv3jviU9hZmZmXWCRyvX10rJoYBLI+Kbi22UVgcGA8sC/YG30lNRdXz14+pz13vezMzMrEdomWZl4A7gEEmrAkgaJul9ZNW67wCXAz+u2H9bSeulvoajgHvrnHsscFxpNLKkYTX2mQ0M6frLMDMzs67waOX6WqZyGBFTJX0bGJsSvvnADcCCiLhCUl/gfkm7AYuAB4Azyfoc3g1cX+fct0gaCUyQ9A5wM/B/Vbu1AX+V9GJ7/Q7NzMzMGq1lkkOAiLgKuKqd5xYC2wFI2gWYExGjauw3vOL+4Ir7Z5Ilk5X7Hltx/5fAL7tw+WZmZtYN3OewvlZqVjYzMzOzDrRU5bCzImIcMK7Bl2FmZmY56NsD5x4skiuHZmZmZlbm5NDMzMzMytysbGZmZi3FA1Lqc+XQzMzMzMpcOTQzM7OW0hMnpi6SK4dmZmZmVubKoZmZmbUU9zmsTxHR6Guw9/IvxczMWkmh2dqtT71c6N/Zj224ao/KRl05bFLj//1aofG2WXdFABZOHVdo3L6b7ML0V98sNCbA2sMGs/C5RwuN2Xe9LQFYMOOpQuMus+aGhcYzM2t2ngS7Pvc5NDMzM7MyJ4dmZmbWUvqo2FtHJO0t6SlJz0g6pcbzR0qalG73S9q84rlpkiZLmihpQne8P25WNjMzM2sQSX2B84A9genAeEljImJqxW7PAR+NiNck7QO0AdtVPL9rRMzsrmtycmhmZmYtpW9zjVbeFngmIp4FkPRH4ACgnBxGxP0V+z8IrJ3nBblZ2czMzKxx1gKer3g8PW1rz/8Af614HMBYSY9IGt0dF+TKoZmZmbWUouc5TElbZeLWFhFtpadrHFJzqh1Ju5IlhztXbN4pImZIWhW4TdKTEXF3V67XyaGZmZlZjlIi2NbO09OBdSoerw3MqN5J0mbAhcA+EfFKxblnpJ8vS7qerJnayaGZmZlZZ/Vtrk5144ERktYDXgA+BRxRuYOkdYE/AZ+OiH9UbB8E9ImI2en+XsDpXb0gJ4dmZmZmDRIRCySdANwK9AUuiognJB2fnv8t8F1gJeDXyprEF0TE1sBqwPVp2zLAFRFxS1evqcPkUNL9EbHjkp5Y0oHAP6qGYjeMpBWAIyLi153Y982IGJz/VZmZmVmri4ibgZurtv224v5ngc/WOO5ZYPPq7V3VYWF1aRLD5EBgk1pPSGpExXIF4IsNiGtmZmZNpI9U6K2n6TA5lPRm+rmLpHGSrpX0pKTLleqYks6UNDXN3H22pB2B/YGfpBm7N0jH/lDSXcBXJF0i6ZB24twl6WpJ/0jnPlLSw2kG8A3SfqtIuk7S+HTbKW0/VdJFKd6zkk5MIc4ENkjX8xNJgyXdIenRdN4Darz2eq95q3Sdj0i6VdIaafuJFe/FH9O2j6a4EyU9JmnIUv6+zMzMzHK1pBW8LYAPko2iuQ/YSdJU4CBgo4gISStExOuSxgA3RsS1ACmnWiEiPpoeX1InzubAxsCrwLPAhRGxraSvAF8GvgqcA/w8Iu5NHTVvTccAbATsCgwBnpL0G+AUYNOIGJniLwMcFBGzJK0MPJhmJK8ePl7rNT8E/BI4ICL+K2kU8APguBRnvYiYl5qyAb4BfCki7pM0GJjb8VttZmZmeWiySbCbzpKO13k4IqZHxCJgIjAcmEWW7Fwo6WBgTp3jr+pknPER8WJEzAP+CYxN2yenmAB7AL+SNBEYAyxfUZG7KSLmpaVkXibrsFlNwA8lTQJuJ5twstZ+tV7zhsCmZPMJTQS+zbuzlU8CLpd0FLAgbbsP+FmqYq4QEQuoImm0pAmSJrS1tTfa3czMzCxfS1o5nFdxfyGwTBplsy2wO9nw6xOA3do5/q2K+wtIyWlqql2unTiLKh4vqrjmPsAOEfF2ZYBUoXzPdda4liOBVYCtImK+pGlA/xr71TqXgCciYoca+38c+AhZs/p3JH0wIs6UdBOwL1mFco+IeLLyoKo5kGL8v1+rcWozMzPrqp7YD7BIXZ7pJzWTDk0jbb4KjExPzSZr1m3PNGCrdP8AYNklDD2WLBEtXcfI9neteT1DgZdTYrgr8L4liP0UsIqkHVLsZSV9UFIfYJ2IuBM4mWwQzGBJG0TE5Ij4MTCBrNnbzMzMrOl0x6jhIcANkvqTVdS+lrb/EbggNaUeUuO4C9JxDwN3sHhVsTNOBM5LzcLLkM0Gfnx7O0fEK5LukzSFbE3CHwN/kTSBrLn4yfaOrXGud9JgmnMlDU3xfwH8A/hD2iayPpGvSzojJaALyRbS/ms7pzYzM7OcNdkk2E1H7x1/YU2g8GblbdZdEYCFU8cVGrfvJrsw/dU3C40JsPawwSx87tFCY/Zdb0sAFsx4qtC4y6y5YaHxzMyWQqHtvBNfeL3Q5GfkWiv0qHZsr5BiZmZmLcV9DutzYdXMzMzMylw5NDMzs5biwmF9rhyamZmZWZkrh2ZmZtZS+hQ7/qXHceXQzMzMzMpcOTQzM7OW4j6H9blyaGZmZmZlTg7NzMzMrMwrpDQn/1LMzKyVFNrQ++RLswr9O7vRasv3qIZsVw7NzMzMrMwDUprUvDffKDRev8FDAZg95+1C4w4ZOIC5bxcbE6D/gAG88VaxcYcOGgDA23PnFhp3QP/+AIW/z/0HDCg0nplZZ3lASn2uHJqZmZlZmSuHZmZm1lI8CXZ9rhyamZmZWZkrh2ZmZtZS3OewPlcOzczMzKzMlUMzMzNrKX1cOazLlUMzMzMzK3Pl0MzMzFqKC4f1uXJoZmZmZmWuHC4lScOBGyNi00Zfi5mZmXVeHw9XrsuVQzMzMzMrc3LYDSStL+kxSdtJukXSI5LukbSRpCGSnpO0bNp3eUnTSo/NzMysWFKxt57GyWEXSdoQuA74DPBD4MsRsRXwDeDXETEbGAd8PB3yKeC6iJjfgMs1MzMzq8vJYdesAtwAHAU8A+wIXCNpInA+sEba70Ky5JH08+LqE0kaLWmCpAltbW15X7eZmVnL6lPwrafxgJSueQN4Htgp/Xw9IkZW7xQR90kaLumjQN+ImFJjnzaglBXGvDffyO+qzczMzNrRExPaZvIOcCBwNLAf8JykQwGU2bxi38uAK6lRNTQzMzNrFk4Ouygi3iJLDL8GXAX8j6THgSeAAyp2vRxYkSxBNDMzswaRVOitp3Gz8lKKiGnApun+68A26alz2jlkZ+DatK+ZmZlZU3JyWABJvwT2AfZt9LWYmZm1uj49r5hXKCeHBYiILzf6GszMzMw6w8mhmZmZtZQe2A2wUB6QYmZmZmZlrhyamZlZS3FlrD6/P2ZmZmZW5sqhmZmZtZSeOPdgkVw5NDMzM7MyVw7NzMyspXiew/oUEY2+Bnsv/1LMzKyVFJquvTJ7TqF/Z1caMrBHpaOuHJqZmVlL6VGZWgM4OWxS8958o9B4/QYPBWD+f/5ZaNxlV9+A2XPeLjQmwJCBA3h25uxCY66/8hAA3nir2Nc7dNAAAObNerXQuP2WH8bct4v/3fYfMKDwmGZmvYmTQzMzM2sp7nNYn0crm5mZmVmZk0MzMzMzK3OzspmZmbUUT4JdnyuHZmZmZlbmyqGZmZm1FA9Iqc+VQzMzMzMrc+XQzMzMWooLh/W5cmhmZmZmZb02OZT0Zvq5pqRrG309ZmZm1hz6SIXeOiJpb0lPSXpG0ik1npekc9PzkyRt2dljl+r96Y6TNLOImBERhzT6OszMzMyqSeoLnAfsA2wCHC5pk6rd9gFGpNto4DdLcOwS6/XJoaThkqak+w9J+mDFc+MkbSVpkKSLJI2X9JikA9Lzx0r6k6RbJD0t6ayKY/eS9ICkRyVdI2lw2n6mpKkpsz87bTtU0hRJj0u6u9h3wMzMzCpJxd46sC3wTEQ8GxHvAH8EDqja5wDgssg8CKwgaY1OHrvEen1yWOWPwGEA6U1dMyIeAb4F/C0itgF2BX4iaVA6ZiQwCvgQMErSOpJWBr4N7BERWwITgK9LGgYcBHwwIjYDvp/O8V3gYxGxObB/Aa/TzMzMeoa1gOcrHk9P2zqzT2eOXWKtlhxeDRya7h8GXJPu7wWcImkiMA7oD6ybnrsjIt6IiLnAVOB9wPZk5dv70jHHpO2zgLnAhZIOBuakc9wHXCLpc0DfWhcmabSkCZImtLW1dc+rNTMzs/dQRLG3ir/x6Ta68nJqXGJUX3I7+3Tm2CXWUlPZRMQLkl6RtBlZNfDz6SkBn4yIpyr3l7QdMK9i00Ky90zAbRFxeHUMSdsCuwOfAk4AdouI49O5Pg5MlDQyIl6purY2oJQVxrw33+jiqzUzM7NmUPU3vtp0YJ2Kx2sDMzq5z3KdOHaJtVrlELKm5ZOBoRExOW27Ffiy0mKLkrbo4BwPAjtJen/af6CkD6R+h0Mj4mbgq2RN0kjaICIeiojvAjNZ/BdpZmZmRYpFxd7qGw+MkLSepOXIiktjqvYZAxydRi1vD7wRES928tgl1lKVw+Ra4BzgjIptZwC/ACalBHEasF97J4iI/0o6FrhSUr+0+dvAbOAGSf3JqotfS8/9RNKItO0O4PHuejFmZmbWc0XEAkknkBWq+gIXRcQTko5Pz/8WuBnYF3iGrMvaZ+od29VrUkSXm6at+xXerNxv8FAA5v/nn4XGXXb1DZg95+1CYwIMGTiAZ2fOLjTm+isPAeCNt4p9vUMHDQBg3qxXC43bb/lhzH27+N9t/wEDCo9pZl1W6KIl896aXWjy02/QkB61KEsrNiubmZmZWTucHJqZmZlZWSv2OTQzM7NW1vEgkZbmyqGZmZmZlblyaGZmZq3Fg3HrcuXQzMzMzMpcOTQzM7PW4j6HdblyaGZmZmZlrhyamZlZS5Erh3V5hZTm5F+KmZm1kkJXEHnnjZmF/p1dbujKPWqFFFcOm9Rz3/h0ofHWO/v3ANz1z5mFxv3oBivzZgOWzxs8cAAjvnR9oTGfPu8gAKa/+mahcdceNhiAebdfXGjcfnt8pmFLI/531pxCY66y/MBC45lZF7lyWJf7HJqZmZlZmSuHZmZm1lpcOazLlUMzMzMzK3Pl0MzMzFqLK4d1uXJoZmZmZmWuHJqZmVlrWeTKYT2uHJqZmZlZmZNDMzMzMytzs7KZmZm1FC+fV58rh2ZmZmZW1muSQ0ndsiaZpF0k3dgd5zIzM7MmFIuKvfUwvSY5NDMzM7Ou63XJoTI/kTRF0mRJo9L2xSqCkn4l6dh0f29JT0q6Fzi4Yp9TJV0kaZykZyWdWPHcUZIeljRR0vmS+qbbJRWxv5b2PVHSVEmTJP2xqPfCzMzMaogo9tbD9MYBKQcDI4HNgZWB8ZLubm9nSf2BC4DdgGeAq6p22QjYFRgCPCXpN8D7gVHAThExX9KvgSOBJ4C1ImLTdO4V0jlOAdaLiHkV26qvYzQwGuD8889nzyV7zWZmZmbdojcmhzsDV0bEQuAlSXcB2wCz2tl/I+C5iHgaQNIfSElaclNEzAPmSXoZWA3YHdiKLPEEGAC8DPwFWF/SL4GbgLHpHJOAyyX9GfhzrYuIiDagrfTwuW/cs4Qv28zMzDqlB/YDLFKva1YG1M72BSz+evtX3K9X851XcX8hWUIt4NKIGJluG0bEqRHxGlnFchzwJeDCdNzHgfPIEspHJPXGpNzMzMx6gd6YHN4NjEr9/1YBPgI8DPwL2ERSP0lDyap/AE8C60naID0+vBMx7gAOkbQqgKRhkt4naWWgT0RcB3wH2FJSH2CdiLgTOBlYARjcLa/UzMzMlphiUaG3nqY3VrCuB3YAHierCJ4cEf8BkHQ1WRPv08BjABExN/X3u0nSTOBeYNN6ASJiqqRvA2NT8jefrFL4NnBx2gbwTaAv8IeUkAr4eUS83o2v18zMzKzb9JrkMCIGp58BnJRu1fucTFa9q95+C1nfw+rtp1Y93rTi/lW8d/AKwJY1tu1c/+rNzMysMD2wmlek3tisbGZmZmZLqddUDs3MzMw6xZXDulw5NDMzM7MyVw7NzMystbhyWJcrh2ZmZmZW5uTQzMzMzMrcrGxmZmYtpSdOTF0kVw7NzMzMrMyVQzMzM2sti1w5rEfZgiLWZPxLMTOzVqIigy381+OF/p3t+77NC319XeXKYZN6ZfacQuOtNGQgAPNmvVpo3H7LDys8ZinuO2/MLDTmckNXBuCd1/5TbNwVV8/ivv5ysXFXWJUFM54qNCbAMmtuyNtz5xYac0D//gDMe2t2oXH7DRpSaDyzXsOFsbrc59DMzMzMylw5NDMzs9bi0cp1uXJoZmZmZmWuHJqZmVlL8TyH9blyaGZmZmZlrhyamZlZa3HlsC5XDs3MzMyszJVDMzMzay2uHNblyqGZmZmZlblyaGZmZq1l0cJGX0FTc+UwJ5KmSVq50ddhZmZmtiScHJqZmZlZmZuVK0gaDtwC3AtsDzwOXAycBqwKHAk8A1wErA/MAUZHxCRJKwFXAqsADwOqOO9RwInAcsBDwBcjwjVtMzOzBohFHpBSjyuH7/V+4BxgM2Aj4AhgZ+AbwP+RJYqPRcRm6fFl6bjvAfdGxBbAGGBdAEkbA6OAnSJiJLCQLMlcjKTRkiZImtDW1pbfqzMzMzOrw5XD93ouIiYDSHoCuCMiQtJkYDjwPuCTABHxN0krSRoKfAQ4OG2/SdJr6Xy7A1sB4yUBDABerg4aEW1AKSuMV2bPyenlmZmZtTgPSKnLyeF7zau4v6ji8SKy92tBjWOi6mclAZdGxDe77QrNzMzMcuJm5SV3N6lZWNIuwMyImFW1fR9gxbT/HcAhklZNzw2T9L6Cr9nMzMxKFi0s9tbDuHK45E4FLpY0iWxAyjFp+2nAlZIeBe4C/g0QEVMlfRsYK6kPMB/4EvCvoi/czMzMrCNODitExDRg04rHx7bz3AE1jn0F2Kti09cqnrsKuKpbL9bMzMyWSizsOdU8ScPIcojhwDTgsIh4rWqfdcgGyK5O1g2uLSLOSc+dCnwO+G/a/f8i4uZ6Md2sbGZmZta8TiEbHDuCrKvaKTX2WQD8v4jYmGwqvi9J2qTi+Z9HxMh0q5sYgiuHZmZm1mp61jyHBwC7pPuXAuOA/63cISJeBF5M92dL+juwFjB1aQK6cmhmZmbWvFZLyV8pCVy13s5pQY8tyBbdKDlB0iRJF0lasfaR73Ll0MzMzFpLwSOIJY0GRldsakvzG5eev52sv2C1by1hnMHAdcBX00wqAL8BziCbbu8M4KfAcfXO4+TQzMzMLEdVC13Uen6P9p6T9JKkNSLiRUlrUGMhjbTfsmSJ4eUR8aeKc79Usc8FwI0dXa+TQzMzM2sp0bPmHhxDNm3emennDdU7KFuC7XfA3yPiZ1XPrVFqlgYOAqZ0FNB9Ds3MzMya15nAnpKeBvZMj5G0pqTSyOOdgE8Du0mamG77pufOkjQ5zc+8KxVT7bXHlUMzMzNrLT1otHKaR3n3GttnAPum+/eSLddb6/hPL2lMRdRaDtgazL8UMzNrJTUTm7zMf+jPhf6dXXa7Awt9fV3lZmUzMzMzK3OzcpOafdmphcYbcnQW77mZswuNu97KQ5g95+1CYwIMGTiAKx6bXmjMI7ZYG4CnXy72PR6x6hAA5o27vNC4/XY5krfnzi00JsCA/v15Z2axv9vlVs5+t436N1X0+zygf/9C45l1tx42IKVwrhyamZmZWZkrh2ZmZtZaXDmsy5VDMzMzMytz5dDMzMxaSw+ayqYRXDk0MzMzszJXDs3MzKylxEL3OazHlUMzMzMzK3Pl0MzMzFqLRyvX5cqhmZmZmZU5OawiabikKUtx3P0Vxx/R/VdmZmZm3WLRwmJvPYyTwy6S1BcgInZMm4YDTg7NzMysR+pxyWGqzD0p6VJJkyRdK2mgpN0lPSZpsqSLJPVL+0+T9GNJD6fb+9P2SyQdUnHeN9uJdY+kR9Ntx7R9F0l3SroCmFx1/JnAhyVNlPS1dPzIinPeJ2mzvN4fMzMzqy8WLSr01tP0uOQw2RBoi4jNgFnA14FLgFER8SGygTZfqNh/VkRsC/wK+MUSxHkZ2DMitgRGAedWPLct8K2I2KTqmFOAeyJiZET8HLgQOBZA0geAfhExaQmuwczMzKwwPTU5fD4i7kv3/wDsDjwXEf9I2y4FPlKx/5UVP3dYgjjLAhdImgxcA1Qmgg9HxHOdOMc1wH6SlgWOI0ti30PSaEkTJE1oa2tbgks0MzOzJeI+h3X11Klsogv7l+4vICXHkgQsV+O4rwEvAZunfedWPPdWpwJHzJF0G3AAcBiwdTv7tQGlrDBmX3ZqZ05vZmZm1q16auVwXUmlCuDhwO3A8FJ/QuDTwF0V+4+q+PlAuj8N2CrdP4CsSlhtKPBiRCxK5+zbiWubDQyp2nYhWZP0+Ih4tRPnMDMzM2uInlo5/DtwjKTzgaeBrwAPAtdIWgYYD/y2Yv9+kh4iS4YPT9suAG6Q9DBwB7Urgb8GrpN0KHBnO/tUmwQskPQ4cElE/DwiHpE0C7h4SV+omZmZdbMe2NRbpJ6aHC6KiOOrtt0BbNHO/udFxGmVGyLiJWD7ik3fTNunAZum+08Dm9XYZxwwrup8g9PP+WR9IMskrUmWmI6t+6rMzMzMGqynJoc9hqSjgR8AX0/N02ZmZtZAPXF6mSL1uOSwsrLXyf2H53YxnYt/GXBZI6/BzMzMrLN6XHJoZmZm1iXuc1hXTx2tbGZmZmY5cOXQzMzMWosrh3W5cmhmZmZmZa4cmpmZWUuJha4c1uPKoZmZmZmVuXJoZmZmrcXzHNaliGj0Ndh7+ZdiZmatREUGm3PNWYX+nR146MmFvr6ucuXQzMzMWotHK9fl5LBJzXtrdqHx+g0aAsD9014pNO6Ow1di/svTCo0JsOyqw5n/n38WG3P1DQC49JHnC417zFbrALDghb8XGneZtTZmzttzC40JMHBAf56bWez/n/VWzv7/LHzynkLj9t3owwDMm/VqoXH7LT+MRc88WGhMgD7v377wmGatyMmhmZmZtZRw5bAuj1Y2MzMzszInh2ZmZmZW5mZlMzMzaynhqWzqcuXQzMzMzMpcOTQzM7OWEgtdOazHlUMzMzMzK3Pl0MzMzFqKK4f1uXJoZmZmZmUtWzmUNA3YOiJmVm3fH9gkIs5syIWZmZlZrjxaub6WTQ7bExFjgDGNvg4zMzOzRmiKZmVJgyTdJOlxSVMkjZI0TdKPJT2cbu9P+64i6TpJ49Ntp4pzXJS2PSbpgLS9r6SzJU2WNEnSlytCf1nSo+m5jdL+x0r6Vbp/iaRzJd0v6VlJh1Rc80kp1iRJp7X3OtL2MyVNTfueXcibamZmZjXFwkWF3nqaZqkc7g3MiIiPA0gaCvwYmBUR20o6GvgFsB9wDvDziLhX0rrArcDGwLeAv0XEcZJWAB6WdDtwNLAesEVELJA0rCLuzIjYUtIXgW8An61xbWsAOwMbkVUUr5W0FzAC2BYQMEbSR4BVql9HincQsFFERLo2MzMzs6bUFJVDYDKwR6oUfjgi3kjbr6z4uUO6vwfwK0kTyZK15SUNAfYCTknbxwH9gXXT/r+NiAUAEfFqRdw/pZ+PAMPbubY/R8SiiJgKrJa27ZVujwGPkiWOI9p5HbOAucCFkg4G5tQKImm0pAmSJrS1tbX/TpmZmVmXuHJYX1NUDiPiH5K2AvYFfiRpbOmpyt3Szz7ADhHxduU5JAn4ZEQ8VWN75XkqzUs/F9L+ezGv4r4qfv4oIs6v3rn6dUTE6ZK2BXYHPgWcAOxWfVxEtAGlrDDmvTW7ncsxMzMzy09TVA4lrQnMiYg/AGcDW6anRlX8fCDdH0uWYJWOHZnu3krWh1Bp+xYV+x8vaZm0vbJZeWndChwnaXA651qSVq31OtI+QyPiZuCrwMh2zmlmZmYFWLRwYaG3nqYpKofAh4CfSFoEzAe+AFwL9JP0EFkSe3ja90TgPEmTyK7/buB44AyyfomTUoI4jayP4oXAB9L2+cAFwK+6crERMVbSxsADKRd9EzgKeH+N1zEEuEFSf7KK49e6EtvMzMwsT02RHEbErWTVuLKUdJ0XEadV7TuTdyuKldvfBj5fY/sC4OvpVrl9eMX9CcAu6f4lwCXp/rFVxwyuuH8O2eCYSv+sfh3JtjW2mZmZWQN4nsP6mqJZ2czMzMyaQ1NUDmuprOyZmZmZWTGaNjk0MzMzy0NPnF6mSG5WNjMzM7MyVw7NzMyspbhyWJ8rh2ZmZmZW5sqhmZmZtRRPZVOfK4dmZmZmVubKoZmZmbWURT2oz2Fa9vcqYDjZ6m+HRcRrNfabBswGFgILImLrJTl+sXNFRHddv3Uf/1LMzKyVqMhgL/7oS4X+nV3jm+ct9euTdBbwakScKekUYMWI+N8a+00Dtk4ryS3x8ZVcOWxSC6eOKzRe3012AeDtuXMLjTugf3/mznmr0JgA/QcO4m/P/LfQmLu9fxUA5rxd7Hs8cEB/AN557T+Fxl1uxdUL//cE2b+pRr3Hjzz/eqFxt1pnBaAx/29feK34/7drrTiIebNfLzRmvyErFBrPitHDRisfQFriF7gUGAfUTe66erz7HJqZmZk1r9Ui4kWA9HPVdvYLYKykRySNXorjy1w5NDMzs5ZSdOUwJWuVCVtbRLRVPH87sHqNQ7+1BGF2iogZklYFbpP0ZETcvTTX6+TQzMzMLEcpEWyr8/we7T0n6SVJa0TEi5LWAF5u5xwz0s+XJV0PbAvcDXTq+EpuVjYzM7OWEosWFXrrojHAMen+McAN1TtIGiRpSOk+sBcwpbPHV3NyaGZmZta8zgT2lPQ0sGd6jKQ1Jd2c9lkNuFfS48DDwE0RcUu94+txs7KZmZm1lJ40WjkiXgF2r7F9BrBvuv8ssPmSHF+PK4dmZmZmVubKoZmZmbWUnlQ5bARXDs3MzMyszMmhmZmZmZW1bLOypBWAIyLi142+FjMzMyvOoq5PL9OrtXLlcAXgi42+CDMzM7Nm0rKVQ7J5fjaQNBG4jWzG8MOAfsD1EfE9ScOBW4B7ge2Bx4GLgdPI1iY8MiIelnQqsAGwFrAOcFZEXCBJwFnAPmRrHn4/Iq4q7BWamZnZe3hASn2tnByeAmwaESMl7QUcQrbUjIAxkj4C/Bt4P3Ao2ZqI44EjgJ2B/YH/Aw5M59uMLIEcBDwm6SZgB2Ak2dxDKwPjJd1dWgDbzMzMrNm0crNypb3S7THgUWAjYER67rmImBwRi4AngDsiIoDJwPCKc9wQEW9HxEzgTrJEc2fgyohYGBEvAXcB29S6AEmjJU2QNKGtrd3lF83MzKyLYuHCQm89TStXDisJ+FFEnL/YxqxZeV7FpkUVjxex+PsXVeeMdN5OqVqUOxZOHdfZQ83MzMy6TStXDmcDQ9L9W4HjJA0GkLSWpFWX8HwHSOovaSVgF7Im6LuBUZL6SloF+AjZmodmZmbWILFoUaG3nqZlK4cR8Yqk+yRNAf4KXAE8kI0h4U3gKGBJasEPAzcB6wJnRMQMSdeT9Tt8nKySeHJE/KcbX4aZmZlZt2rZ5BAgIo6o2nROjd02rdj/2Ir70yqfA/4REaOrzh/ASelmZmZmTcCjletr5WZlMzMzM6vS0pXD7hIRpzb6GszMzKxzXDmsz5VDMzMzMytz5dDMzMxayiJXDuty5dDMzMzMylw5NDMzs5bSE+ceLJIrh2ZmZmZW5uTQzMzMzMrcrGxmZmYtxVPZ1KdsEQ9rMv6lmJlZK1GRwf7+mf0L/Tu78cVjCn19XeXKYZNaOG1iofH6Dh8JwBGXjS807hVHb8OiZycUGhOgz/pbc/WkGYXGPGyzNQGYO+etQuP2HzgIgIVP3lNo3L4bfZjZc94uNCbAkIEDGvYej5la7NLp+2+yOgBvFvw+Dx44gFdmzyk0JsBKQwbyasFxhw0ZCMBTL88qNO6Gqy5faLxWEwtdg6nHfQ7NzMzMrMyVQzMzM2spngS7PlcOzczMzKzMlUMzMzNrKbHIfQ7rceXQzMzMzMpcOTQzM7OWssijlety5dDMzMzMylw5NDMzs5biFVLqc+XQzMzMzMpcOTQzM7OW4hVS6nPlsIKkNxt9DWZmZmaN5MqhmZmZtRSPVq6vV1cOJf1Y0hcrHp8q6XuS7pD0qKTJkg5o59iTJI2XNEnSaWnbcEl/l3SBpCckjZU0ID33fkm3S3o8nXuD9s5jZmZm1qx6dXII/BEYVfH4MOBi4KCI2BLYFfipJFUeJGkvYASwLTAS2ErSR9LTI4DzIuKDwOvAJ9P2y9P2zYEdgRc7OM9iJI2WNEHShLa2ti69aDMzM7Ol1aublSPiMUmrSloTWAV4DXgR+HlK0hYBawGrAf+pOHSvdHssPR5MluT9G3guIiam7Y8AwyUNAdaKiOtT3LlQTjJrnefuGtfaBpSywlg4bWL1LmZmZtYNPJVNfb06OUyuBQ4BVierJB5JlihuFRHzJU0D+lcdI+BHEXH+Yhul4cC8ik0LgQFp/1pqnsfMzMysWfX2ZmXIEsJPkSWI1wJDgZdTYrgr8L4ax9wKHCdpMICktSSt2l6AiJgFTJd0YNq/n6SBS3oeMzMzy9+iRVHorafp9ZXDiHgiNfu+EBEvSroc+IukCcBE4Mkax4yVtDHwQOqO+CZwFFmlsD2fBs6XdDowHzi0znle7rYXaGZmZtaNen1yCBARH6q4PxPYoZ39BlfcPwc4p8Zum1bsc3bF/aeB3Wqcs73zmJmZWQN4Euz6WqFZ2czMzMw6qSUqh2ZmZmYlizxauS5XDs3MzMyszJVDMzMzaynuc1ifK4dmZmZmVubKoZmZmbUUVw7rc+XQzMzMzMpcOTQzM7OW4tHK9SnCpdUm5F+KmZm1EhUZ7J4ddir07+yHH7iv0NfXVa4cmpmZWUuJHrjecZGcHDapKUd+vNB4m15+EwBPvTyr0Lgbrro80199s9CYAGsPG8wRl40vNOYVR28DwNMvzy407ohVhwCwYMZThcZdZs0NeXPO24XGBBg8cABz57xVaMz+AwcB8M2bphYa90cf3wSAd96YWWjc5YauXPj/H8j+Dy188p5CY/bd6MNAYz4boTG/WzMPSDEzMzOzMlcOzczMrKUs8lQ2dblyaGZmZmZlrhyamZlZSwlPZVOXK4dmZmZmVubk0MzMzFpKLIxCb10haZik2yQ9nX6uWGOfDSVNrLjNkvTV9Nypkl6oeG7fjmI6OTQzMzNrXqcAd0TECOCO9HgxEfFURIyMiJHAVsAc4PqKXX5eej4ibu4ooPscmpmZWUvpYaOVDwB2SfcvBcYB/1tn/92Bf0bEv5Y2oCuHZmZmZs1rtYh4ESD9XLWD/T8FXFm17QRJkyRdVKtZupqTQzMzM2spsWhRoTdJoyVNqLiNrrweSbdLmlLjdsCSvC5JywH7A9dUbP4NsAEwEngR+GlH53GzcgNI6hsRCxt9HWZmZpa/iGgD2uo8v0d7z0l6SdIaEfGipDWAl+uE2gd4NCJeqjh3+b6kC4AbO7peVw47IOkMSV+pePwDSSdKOknS+FSmPa3i+T9LekTSE5XfDCS9Kel0SQ8BOxT8MszMzCxZtDAKvXXRGOCYdP8Y4IY6+x5OVZNySihLDgKmdBTQyWHHfkf6pUjqQ9aW/xIwAtiWrEy7laSPpP2Pi4itgK2BEyWtlLYPAqZExHYRcW+B129mZmY915nAnpKeBvZMj5G0pqTyyGNJA9Pzf6o6/ixJkyVNAnYFvtZRQDcrdyAipkl6RdIWwGrAY8A2wF7pPsBgsmTxbrKE8KC0fZ20/RVgIXBde3FSlXE0wPnnn8+OObwWMzMzo8tzDxYpIl4hG4FcvX0GsG/F4znASjX2+/SSxnRy2DkXAscCqwMXkf2SfhQR51fuJGkXYA9gh4iYI2kc0D89PbdeP8Oq/ggx5a56VWMzMzOzfDg57JzrgdOBZYEjgAXAGZIuj4g3Ja0FzAeGAq+lxHAjYPuGXbGZmZnV5LWV63Ny2AkR8Y6kO4HXU/VvrKSNgQckAbwJHAXcAhyf2vWfAh5s1DWbmZmZLQ0nh52QBqJsDxxa2hYR5wDn1Nh9n1rniIjB+VydmZmZWfdxctgBSZuQzQl0fUQ83ejrMTMzs67pYcvnFc7JYQciYiqwfqOvw8zMzKwITg7NzMyspfSkqWwawZNgm5mZmVmZK4dmZmbWUhaFK4f1uHJoZmZmZmWuHJqZmVlLWejKYV2uHJqZmZlZmSuHZmZm1lI8WLk+hUurzci/FDMzayUqMti1q32w0L+zh7z0RKGvr6vcrNyctLQ3SZ/vyvE9KW4rvVbH7b0xHbf3xnTcJboVamFEobeexslh7zO6heK20mt13N4b03F7b0zHtR7JfQ7NzMyspbjPYX2uHJqZmZlZmSuHvU9bC8VtpdfquL03puP23piO26R6Yj/AInm0spmZmbWU36+8caHJz6dn/r3wQTdd4WZlMzMzMytzs7KZmZm1FA9Iqc+VQzMzM1tikvpI2rHR12Hdz8mhLRVJEyR9SdKKBcfdQFK/dH8XSSdKWqGAuCc04LXe0ZltOcUeJKlPuv8BSftLWjbnmH3zPH8nr2FFSZs1IG4fScsXFEuSjpL03fR4XUnb5hxz0zzP32wkrSZpv3RbtcC4O0v6TLq/iqT18owXEYuAn+YZIy+eBLs+J4e9gKSzJC0vaVlJd0iaKemonMN+ClgTGC/pj5I+JqmIDrfXAQslvR/4HbAecEUBcVcne61XS9o7z9cqqb+kYcDKKVkZlm7Dyd7zItwN9Je0FnAH8BngkpxjPiPpJ5I2yTnOYiSNS/9/hgGPAxdL+lkBca9IcQcBU4GnJJ2Ud1zg18AOwOHp8WzgvJxj/lbSw5K+WMSXuZJGfDZKOgx4GDgUOAx4SNIhecZMcb8H/C/wzbRpWeAPeccFxkr6ZEGf/1YQJ4e9w14RMQvYD5gOfADI9Y9MRDwTEd9Ksa4ALgL+Lem09Ec2L4siYgFwEPCLiPgasEaO8QCIiG8DI8gS0mOBpyX9UNIGOYT7PPAIsBHwaLr/CHAD+f8RL1FEzAEOBn4ZEQcBeSdtmwH/AC6U9KCk0QVV04am/z8HAxdHxFbAHgXE3STFPRC4GVgX+HQBcbeLiC8BcwEi4jVguTwDRsTOwJHAOsCElBjvmWfMpPDPRuBbwDYRcUxEHA1sC3wn55iQfSbuD7wFEBEzgCEFxP06cA0wT9IsSbMlzSogbpcsjGJvPY2Tw96h1Ny3L3BlRLxaRNDU/PZT4CdkFb1DgFnA33IMO1/S4cAxwI1pW67NnSWRzfv0n3RbAKwIXCvprG6Oc05ErAd8IyLWq7htHhG/6s5YdUjSDmR/0G9K23IdwBYRsyPigojYETgZ+B7woqRLU6U4L8tIWoOsynNjRzt3o2VTU/2BwA0RMR8o4s/I/NSEH5A1PwKL8g4aEU8D3yarbn0UOFfSk5IOzjFsIz4b+0TEyxWPX6GYv7XvpM+o0u91UAExiYghEdEnIpaLiOXT40K6SFh+PFq5d/iLpCeBt4Evpg/7uXkGlPQI8DpZJe2UiJiXnnpI0k45hv4McDzwg4h4LvWpyb3pRNKJZAnpTOBC4KSImJ/65T1Nlsx0V6zdIuJvwAu1/nBGxJ+6K1YdXyVrnro+Ip6QtD5wZ54BU8LycbLf8XCyLx6XAx8mq6x9IKfQpwO3AvdGxPj0Wp/OKVal84FpZE3Zd0t6H9mXq7ydC1wPrCrpB2Rf6r6dZ8D0RfIzZL/f24BPRMSjktYEHgDy+jdd+GcjcIukW4Er0+NRZP9+83a1pPOBFSR9DjgOuKCAuKT+2COA/qVtEXF3EbGXVk+s5hXJk2D3Euk/56yIWChpILB8RPwnx3jrR8SzVdvWi4jn8orZSJJOB34XEf+q8dzGEfH3box1WkR8T9LFNZ6OiDiuu2J18nr6AINT81yecZ4lS0B/FxH3Vz13bkScmGf8ZiBpmdRtIu84GwG7AwLu6M5/v+3Eu5ssUbk2It6ueu7TEfH7HGMX+tmYYh4M7Ez2/t4dEdfnGa8i7p7AXinurRFxWwExPwt8BVgbmAhsDzwQEbvlHbsrfrPCRoUmP194/cke1SfTyWEvIOlQ4JaImC3p28CWwPcj4tEcYz4aEVtWbXsk9dfKjaT9gDOA95FVvkWWMOXajNFOP8rZqSmw15F0BVmFdiFZf8ehwM8i4ic5xhwcEW/mdf46cc8Cvk9WXboF2Bz4akTkWpGW9BXgYrIBIRcCW5BV4cfmFK9uX+A8m1wlfTUiflG17SsRcU5eMVOMwj8bU9zVge3ImuvH552MppjrAS9GxNz0eACwWkRMyznuZGAb4MGIGJm+eJwWEaPyjNtVvxq6YaHJzwlvPNWjkkP3OewdvpM+/HYGPgZcCvwmj0CSNpL0SWCopIMrbsdS0aSQo1+QNe+uVHD/lkeB/5INmHg63X9O0qOSckmI04CXFSoeryjp+3nEqqERgyXWTCNKp0DWFJn+oOetEYMWAI5LcfcCViFrdj0zx3iPABPSz+p/y4/kGBfg6Brbjs05JhT42ViSKmkPkw0QOQR4UFIR1f5rWLzv6MK0LW9zKxLSfhHxJLBhAXEtR04Oe4eF6efHgd9ExA3kN/pwQ7I/oisAn6i4bQl8LqeYlZ4HpkTxJe9bgH0jYuWIWAnYB7ga+CLZ1CB52CciXi89SKNK980pVrVGDJa4gKyf43yAiJhENmVS3hoyoIus6l2Ke3FEPF6xrdulQU3rk/Wv/ETFv+X9yKnPn6TDJf0FWE/SmIrbnWQDNfJW5GdjyUnAFhFxbEQcA2xFNggnb8tExDulB+l+3q8VYHr6Evtn4DZJNwAzCojbJR6tXJ8HpPQOL6SOyHsAP1Y2SXQuiX/6cL1B0g4R8UAeMTpwMnCzpLuA0iAYIiLveem2jojjK+KNlfTDiPh6er/z0Dd9E58H5WaivGJVa8RgiYER8bAWny4t9/53NGbQAsAjksaSzdX5TUlDKGDUMNk0K5X/lv8q6YycYt0PvAiszOKTJc8GJuUUs1Jhn40VppO9vpLZZF9q8/ZfSftHxBgASQeQDaDLVWTTXAGcmpL+oWRfpq0Hc3LYOxwG7A2cHRGvp2k5cmkWk3RyRJwFHKFsSpnFFDBo4AfAm2RN2EV8Ky55VdL/An9Mj0cBr6URtnn9Qf8DcEcamBJkow8vzSnWYiLiXLJRrSX/krRrzmFnKps3sjQVxyFkiUWuIuIUST/m3UELc4AD8o4L/A8wEng2IuZIWomsaTlvM1Nz/R/I3uujyKmKlwZw/Yts0u1GKOyzscILZLM23ED2/h4APCzp65DrF9njgcsl/YqsAv08tZvzu11qth8RERenL1drAU09OLEnrlpSJCeHvUD6w/Iy2ei4p8mqLXlNxVEa1Tghp/N3ZFhE7NWAuEeQzbv35/T43rStL9kfoG4XEWelzt6lUaVnRMStecSqJmk14IfAmhGxj7JVS3Ygm7ooL98jq1huJOkFsj8uV+UYD4A0gvVLZP0qR5OtQrMh+c95GGQTi+9HNp3OIIrpt3s42XtdGkF7N++ultKtJN0bETtLms3i3RIKGUhW8GdjyT/TreSG9DPXCakj4p/A9pIGkw02nd3RMd1B2cosW5P9n7mYd1dmyXNKM8uZRyv3ApX/OSPiA8rmDrsmInrdf05JZwJ/y2tEZzsx+wKXRkTeSxI2DUl/Jfug/1ZEbC5pGeCxiPhQjjEfJRuk8E+ypr/9yEYNb5dXzBT3KrIBGUdHxKap+f6BiBiZc9zfkFWdd4uIjdOUK2MjYps841bEX55sxaHCR4gXpcU+G/sBnySbI7Rc+ImI03OOO5FspP2jEbFF2jYpIgpfo3xJ/GTwBwpNfk568x89arSyK4e9w0Gk/5yQLZuU+i91u9S5vN3/VBGxfx5xK3wJOFnSPLKBC7lXIFJT4yqSlqvs8J2XRldbkpUj4mpJ3yQLukDSwo4O6qJDyEZXHklW6TmabCRv3jaIiFGlbhIR8bZUyDqx20XElpIeS3Ffk5R7VwlJHwIuA4alxzOBYyJiSk7x+gCTImLTPM7fgcI+G0skbU22hF5pui1S7LyTpRuAN8i+6MzrYN/u9E5EhKRCV2axfDk57B2K/M95do7n7lBE1P1gl/TBiHgih9DTgPskjSGtXZqup9v7D0W2Dm2HrzVnb6U+cKV/U9uT/eHJTUQ8mxK0P5P1l/pYVE2YnJN3UrWw9Fo3oJg/rg1Zxo6s6f7rEXFnirsL0AbsmEewiFgk6XFJ60bEv/OIUUcjEpfLyfo1TqaY32fJ2hGxd4HxShq2Movlx8lh71DYf86IuCuP83aj35NNq9PdZqRbH3LuO6QGTlZc4evAGGADSfeRzcN3SB6BUr/KygrpMLK+nA9JKqLi8j2y0ZXrSLqcrK/UsTnHhAYsY5cMKiWGABExroCkaQ3gCUkPs/iXq7xbGhqRuPy3NGK4YPdL+lBETC447jzgdrLZDDYEvhsFrMzSVR6QUp/7HPYSKmjZJElXR8RhNf6gl5o8G9rPRNJjpX4vOZ1/UES81fGeXYrxHNl7W6tpM9JcdblL/Qw3TNfxVOS0GkyaJqddUWPJwhyuYSWyZb9EttJD7lOApLiFLmOXYl5P1sxaWrLuKLKpmg7MMeZHa20v4stmUZ+NFfF2JxvgcweLT7eV65rokqYC7ycbyDWPgj6TlU3M/ymyf1MXkb3HTZ9YnDloRKHXeMpbT/eoPodODm2JSFojIl5s7w96EX/I61GNZf266bylkbqDI2JdSZsDn4+IL3Z3rGYhaUfe27n9soZdUI4krcV7+4jdXUDcvsBqVXFzbXpNA19OI6uQimy08qlRMeG6LT1JfwA2Ap7g3WbliJzXRG/kZ3Lqo7sX2VRMW5MtEPC7NIK6Kf1gYLHJ4bfm9Kzk0M3KvYCyRd5/DKxK9mGf28CFiHgx/fyXsvVDtyWrchWyfmgD/YJs+a0xABHxuKSP5B00/W53JnuP74mIP+cdM8X9PbABMJF3V5kIsoEMvUqa43AUVX/MyZKmPON+maxJ+yWy91gpbt7V9w2Adci6SCxDVrncLc+4qc/qL4GNyeYn7Qu8lffgqiI/Gytsnueo/vakz+Tq+QYHFxQ7JP0H+A/ZdEErAtdKui0iTi7iGqx7OTnsHc4iWw4r9yapEmXrh34X+BvZB+4vJZ0eERcVdQ3tyG00cUQ8XzWINdfRu5J+TdZMdGXadLykPSPiS3nGTbYmW1+5FZoWDiSb6qTIEZ4AX0lxi1hGrtLlwDeAKRQ3YOJXZE2P15D92zoaGFFA3MI/G8nWUt4kIqYWGLNh8w1KOpFsvfuZwIXASRExP41Sf5psVaum4z6H9Tk57B1eKvjDD95dP/QVKPfZup+sz0mu6jUBRsT2OYV9PjWzRppu5ETenRA8Lx8FNi0laJIuJRsBWYQpwOoUsEJJE3iW7A9p0cnh8+Q8Arwd/42IvxQdNCKekdQ3IhYCF0u6v4Cwjfhs3Bk4JvUdLqzvHw2YtidZGTi4uvk6jVLfr4D4lgMnh73DhDSR758prgN0Q9YPrWgCnMrizZ159w87HjiHbFmo6cBYsjkX8/QU2aodpQ/ddShmPVrIPvCnptGllf+m8h5d2ghzgImSqgcQ5L0U5LPAOEk3Uew64d+TdCHFDpiYk75UTZR0FtmXjiKmlWnEZ2MjppOBBs03GBHfrfNc0Yl5pxU5x1BP5OSwd1ie7A9c5YTBAXT7B6DS+qC0s35od8er4UAa0ASYRq8eWWRMYCXg7ylBA9iGrMmq1O8xz0Tt1BzP3WzGpFvR/p1uy1HsOuGfIRswsSyL97HMM2H6NFk/wxOAr5F90flkjvFKCvtsLJ+8cX3/PN+gdRuPVrYlkvq1tCsiTss5/l+BQ6PgJb/SB/zneO/o3dxGILY3/UdF7Gafc7LHSJNgrxsRTzX6WvImaXIjBky0CjVwyb6ip+3pyb7Tf4NCk58z5v7To5WtWKkv2ldKU1GkqSp+mkfiknfy1wmNagK8AbiHbLLXvJeRK/lvdad2SbtExLi8Auq9S/aVn6K4pfsKJekTZCv/LAesJ2kkcHpelVk1fgnKwgZM1JgPdTF59cOTdHJEnCXpl7Xi5/x50ai+f6Rk0AmhdZmTw95hs8o5yiJbozW3iaChXEk7Gfgg0L8i9m55xqVxTYADI+J/C455taTLgJ+QvcdnkVUkdsgrYDR2yb5GOZVsSqZxABExUdJ6OcYrLUF5MNmgnz+kx4eTLdOYtyIHTDRqQEKpr9uEBsQutO9fK36h6w4L3Whal5PD3qGPpBUj4jUoL7+W9+/2cuAqsg//48mmMvhvzjGJiEtTx/YPpE25rdxR5UZJ+0bEzQXEKtmObI62+8mW7Cst7VYYSauyePJf9Nq4RVgQEW9UTVOU25+OUncASWdEROVcmX+RlPvE2xQ4YKJRk+KXRmNHxKUNCF9o378W/UJnOXNy2Dv8lGxdzWvT40OBH+Qcc6WI+J2kr6Q/dndJKmIprF2AS8kqLCJbD/eYAlaz+ArwTUnvAPMp5lv5fOBtYABZgvZcRBQyyE7S/mT/rtYEXiabOujvZJXi3maKpCOAvpJGkE1TVMQ0K6tIWj8ingVI1cpV8g7aiIStqrq1HNlgmCImwf4A2ZyOw1m8r3CeLRyrANdSsdYwsEeO8RbTIl/ouszzHNbn5LAXiIjLJE0gW+VAZHNO5d2fqFSte1HSx4EZwNo5x4QsYdmrNHAgffhfCWyVc9yhZKOV14uI0yWtC6yRc8zxZH0dtyabWuZ8SYdExCE5xwU4g2yt4dsjYgtJu5I1e/ZGXwa+RdbEegVwK/D9AuJ+jWwqm2fT4+HA5wuIW7jq6pakA8ma8vN2DfBbssmZi+orvGfqglLu+yfpp0Cu3VJa7Aud5cyjlXswSctHxKzUjPweEfFqjrH3IxugsQ7ZsljLA6dFRK79ASVNqu4bVWtbDnF/Qzbtx24RsXEa9DM2IrbJMea2ZJWHyoT06IjIPXGRNCEitpb0ONlk54skPRwRRfxBL5SkLSLisQbF7kc2rQzAkw1YpaVhJD2Y46T1pRiPRETeXxxLsb4AfBFYH6hcU3gIcF9EHJVz/MfJCgSLfaGLiNF5xu2pvrHs+oUmP2fPf9ajla0wV5D1+XuExftIldZoXT+vwBFxY7r7BrBrXnFqmCDpd8Dv0+MjyV5/3raLiC0lPQblQT95z033GVJCCpxONtH4ARRT1Xpd0mCyycUvl/Qy2ZqpvdHPJK1BVmX6Y0Q8UURQSUdXbdpcEhHRG9evPrjiYR+yanhuf5wrvjD/RdIXgetZfHaDPL44XwH8FfgRcErF9tl5flGvMD8iXpHUR1KfiLgzLRpgtsScHPZgEbFf+pnnyMqaUnPub4DVImJTSZsB+xdQ1foC2cokJ5IlwXcDv845JsB8SX1Jf9DSaO28+//VSkiXzTlmyQFk/R2/RpaADwUaPY1RLiJiV0mrA4cBbZKWB64q4N9yZdW5P7A72fQnvS45BD5RcX8BWZ/hA3KMV/rCXKrWnFTxXC5fnCPiDbIvy43qflH6QncPvf8LneXMzcq9gKQ7ImL3jrZ1c8y7yD5wz4+ILdK2KRGxaV4xG0nSkWTL9m1JNiDmEODbEXFNjjEfAnYExqckcRWypuxcpylKsX9cPXVPrW29jaQPkU3RNCoiily1BElDgd8XMM+h9UKSvku2tv2LwFFkX+guj4hXGnphTepry6xXaPLz8wXP9ahm5T6NvgBbepL6p+aTlSWtKGlYug0n65Scp4ERUb1cXm7fUiVdnX5OljSp+pZX3JKIuJwsafgR2YfvgXkmhsm5ZM1hq0r6AXAv8MOcY5bsWWPbPgXFLpSkjSWdKmkK8CuykcpFDK6qNgcY0YC4uZO0vqS/SPqvpJcl3SApt24vFXG/JGmFiscrpmbm3khkg6nGkS3Xd5UTQ1tablbu2T4PfJUsEXyEd5tQZgHn5Rx7pqQNeLeZ9RCypCkvX0k/GzWpLhHxJPBkgfEul/QIWXOjyBLSXBeyr+xUX5V0DwHuyzN2A11MNuJ9r4iYUVRQLb5SSl9gY+DqouIX7Aqyz6SD0uNPkb3n2+Uc93MRUf4sTF0zPkcxXVEKlVavOi118RlFNr3Y9IgobBqdnsSTYNfnZuVeQNKXI+KXBcdcH2gja/Z8DXgOOCoipuUctyWbO4uSmjZXpHGd6luGFl87ewHwr4iY3qjryZOkhyJiu6ptRYxWngRsHukPXeo3PCkieu30Lqn/7KFkCfiQvGdy6KlO7Ftss/K5C92sbMX7j9LanZK+LelPkrbMM2BEPJu+ka4CbBQRO+edGCYt09zZCBHxRkRMi4jDgelk81kGMDhNpdNr1OmqMLmgrgp3kVWih5Al5O/kHbOB7pR0iqThkt4n6WTgplJXmBzj3kq2YsnuknYjq1bekmO8hpH0BUnjgDvI5kX9nBPD9i2MKPTWFZIOlfSEpEWStq6z396SnpL0jKRTKrYPk3SbpKfTzxU7jOnKYc+nNM+fpJ3JKj5nA/9X/U29m2P+EDgr0prO6R/b/4uIb+cUr6FziLUaSSeQrTn8Eu+Oyo7e9MdG0hoR8aKk99V6Pu+VRCQdRrZu9jiybgMfBk6KiGvrHdcTKVvHuT0REbn0P5TUh6z7TalrxljgwogoakLswkg6k2wqpomNvpae4Et9hhea/Jy3aNpSVw4lbUz2OXw+8I2IeM+a4akq/g+yAsp0skUUDo+IqZLOAl6NiDNT0rhiR61tTg57AUmPpUlPfwRMjogrStvyjlm17dGIyKVi6ebOYkl6hmwqHXdoz4mySYv3jIiX0+NVyCYw3ryxV9a7SBoArFtaVckM4HgVmxz+NpY+OSxJleH2ksMdgFMj4mPp8TcBIuJHkp4CdklfhtcAxkXEhvViuVm5d3hB2ULvhwE3K1t1Ie/fbd8UByh/APers3+XVDZ3porO2/TS5s4m8TzZnG29lqTZkmbVuM2WNKuAS+hTSgyTV+iln8mSlpV0oqRr0+0EFTBnp7Il5SaSmpIljZSU6ypOZg2yFtnndsn0tA2y+YhfBEg/V+3oZB6t3DscBuwNnB0Rr6dvBid1cExX/QG4Q9LFZEnacWTz/+VK0ieAn+H1Q/P2LNm6vzex+MoSP2vcJXWvqFrvtwFukXQrWT84yEaY3tzA68nTb4BleXeU8KfTts/mHPd7ZGs4jwOIiInKpvqyFtcdlbwlIWk0ULmUYVtEtFU8fzuweo1DvxURN3QmRI1tS10ddXLYO6wMTACoqKLlOuVKRJwlaTLv9uU5IyJuzTNm8n1ge6rWDy0gbqv5d7otl27WzSLiJEmfBHYi+z/UFhHXN/iy8rJNVXP531Kzet4WRMQbUo8aKGq9UEoE2+o839Uph6YD61Q8XhsoTc31UkUf6zXICit1OTnsHW7i3aWi+gPrAU+RczUtIv5KtpZokbx+aAHSnGlIGhQRbzX6enqriLgOuK7R11GAhZI2iIh/QnkqrCIGhUyRdARZN5gRZMtu3l9AXLOijQdGSFoPeIFsKqMj0nNjgGOAM9PPDiuRvbJ/S6uJiA9FxGbp5wiyZpR784wp6eA0LP6NgvtpldYPvZts/dBz8Pqh3U7SDpKmkjXZI2lzSb1u4uBGaIK+jo1wEtl0NuNSp/q/Af+vgLhfJvuSPI9sIu43yBYOMOsxJB0kaTqwA9kUULem7WtKuhkgIhYAJ5BN3/R34OqIeCKd4kxgT0lPk41mPrPDmB6t3DvlOXI4nf8Z4BN5r9hRI+4gssEofYAj8fqhuVC2rvMhwJhWWDvb8iWpP1kyWFrv/Tbg5xExt6D4roCbLQE3K/cCkr5e8bAPsCXw35zDvtSAxLAvcEPqm7GIAgbAtLKIeL6qr1avmxvOCnMZ2bKeZ6THhwO/J1vJIzeSdgQuJFtreF1JmwOfj4jeur6yWbdwctg7VI66XEDWBzHvfkwTJF0F/JnFR7P+Ka+AEbFQ0hxJQyOiV0+z0gSeT39YQ9JyZH21Cv0yYL3KhlUDUu4saEDKz4GPkfW5IiIel/SRAuKa9WhODnuBisEDQ7KH8WYBYZcH5gB7VV4KkFtymMwFJku6DSg3E0XEiTnHbTXHA+eQzZM1nWxliS819IqsJ3tM0vYR8SCApO2A+4oI7Aq42ZJzctgLSNqUrIlmWHo8EzgmIqbkFTMiPpPXuTtwU7pZjiJiJlmfTrPusB1wtKR/p8frAn9P02HluSyjK+BmS8EDUnoBSfeTTZR5Z3q8C/DDiNgxx5j9gf8hGwnYv7Q9Io7LK6YVJ02H8GVgOBVfIiNi/0Zdk/Vcamf96pK81rGWtDJZBXwPsv7YtwJf8QA2s/pcOewdBpUSQ4CIGJdG9ebp92QTbX8MOJ2sypT7N3JJz1Fj1veIWD/v2C3mz8DvgL+QDf4xW2p5JX+diOsKuNlScHLYOzwr6TtkCRvAUcBzOcd8f0QcKumAiLhU0hVk38rztnXF/f5kox2HFRC31cyNiHMbfRFmXZEm2z6HbFWlAB4AvhYRzzb0wsyanCfB7h2OA1YhGwzyJ7Ll9PLuEzg//Xw99XkcStYEmauIeKXi9kJE/ALYLe+4LegcSd9Lk2FvWbo1+qLMltAVwNXAGmTrsV/Du2tZm1k7XDnsBSLiNbKO1kVqk7Qi8G2yaSIGA9/JO2hVgtKHrJI4pJ3dbel9CPg0WeJdalYOnIhbz6KI+H3F4z9IOqFhV2PWQ3hASi+QpnU5NCJeT49XBP4YER/LIdbXa21OPyMiftbdMavi38m7fQ4XANOAsyPiH3nGbTWSngQ2i4h3Gn0tZktL0pnA68AfyT43RgH9gPMAIuLVhl2cWRNz5bB3WLmUGEJWSZS0ak6xSlW6DYFtSJPLAp8gW+84FxVJ6Y1kH/LlhBTYD8g1KW1BjwMrAC83+DrMumJU+vl53v1SKbKuOAF4IJtZDU4Oe4dFktaNiH8DSBpOjRG93aFiwu2xwJYRMTs9PpWsP09eqpPSG8g+5HNNSlvYasCTksaz+Ao4nsrGepL/BW6JiFlp0N6WwBkR8WiDr8usqTk57B2+Bdwr6a70+CPA6JxjrgtUNjm+Q44DUhqYlLaq7zX6Asy6wbcj4mpJOwN7Aj8FfkM2KbeZtcPJYS8QEbdI2posIZxIVlV7O+ewvwcelnQ9WZXyIODSnGNCwUlpq4qIuzrey6zplZbK+zjw24i4IX2hNLM6nBz2ApI+C3wFWJssOdyebD6v3EaWRsQPJP0V+HDa9JmIeCyveBUalZS2FEmzebdrwnLAssBbEbF8467KbIm9IOl8shVSfiypH57CzaxDHq3cC6T1SbcBHoyIkZI2Ak6LiFEdHNojpelsSknp3QUlpS1N0oHAthHxf42+FrPOkjQQ2BuYHBFPS1oD+FBEjG3wpZk1NSeHvYCk8RGxjaSJwHYRMU/SxIgY2eBLs15E0oMRsX2jr8PMzPLlZuXeYbqkFcjWw71N0mvAjIZekfVokg6ueFiabNzfJM3MWoArh72MpI+SLWV3iycwtqUl6eKKh6XJxi+ICM97aGbWy7ly2Mt4lKl1laS+wKSI+Hmjr8XMzIrnUVtmtpiIWAh4smszsxblZmUzew9JPyDrnnAV8FZpu1eWMDPr/Zwcmtl7SLqzxuaIiNzmzjQzs+bg5NDM3kPS+hHxbEfbzMys93GfQzOr5doa27yGtZlZC/BoZTMrS6vrfBAYWjXX4fJA/8ZclZmZFcnJoZlV2hDYD1gB+ETF9tnA5xpxQWZmViz3OTSz95C0Q0Q80OjrMDOz4rnPoZnVcpCk5SUtK+kOSTMlHdXoizIzs/w5OTSzWvaKiFlkTczTgQ8AJzX2kszMrAhODs2slmXTz32BKyPi1UZejJmZFccDUsyslr9IehJ4G/iipFWAuQ2+JjMzK4AHpJhZTZJWBGZFxEJJA4HlI+I/jb4uMzPLlyuHZtaejYHhkio/Jy5r1MWYmVkxnBya2XtI+j2wATARWJg2B04Ozcx6PTcrm9l7SPo7sEn4A8LMrOV4tLKZ1TIFWL3RF2FmZsVzs7KZ1bIyMFXSw8C80saI2L9xl2RmZkVwcmhmtZza6AswM7PGcJ9DMzMzMytz5dDMyiTdGxE7S5pNNjq5/BQQEbF8gy7NzMwK4sqhmZmZmZV5tLKZmZmZlTk5NDMzM7MyJ4dmZmZmVubk0MzMzMzKnByamZmZWdn/BzEEpJDy0oF7AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "corr_matrix = data_train.corr()\n", "mask = np.triu(np.ones_like(corr_matrix, dtype=bool))\n", "fig, ax = plt.subplots(figsize=(10, 10))\n", "sns.heatmap(corr_matrix, cmap='RdBu', vmax=1, vmin=-1, center=0,\n", " square=True, linewidths=.5, mask=mask)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looks like acousticness and year are linearly correlated with popularity\n", "\n", "Now looking for non linear correlations" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABsEAAANsCAYAAAAKnQZyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5hc6XWfi77fjpVz5wQ0ch7MYHLiDDNHIkVlWdkKli35XJ/gY18533t9HttXPsfX4ciSZUuWZQWKCqRISoxDDsMETMRgBrnROVdOO+/7x1dd6AYaQE9icr3Pw4eY7uq9q3bt/YW1fuu3RBiG9OjRo0ePHj169OjRo0ePHj169OjRo0ePHj169Ojx3YTyrX4DPXr06NGjR48ePXr06NGjR48ePXr06NGjR48ePXq83fSSYD169OjRo0ePHj169OjRo0ePHj169OjRo0ePHj2+6+glwXr06NGjR48ePXr06NGjR48ePXr06NGjR48ePXp819FLgvXo0aNHjx49evTo0aNHjx49evTo0aNHjx49evT4rqOXBOvRo0ePHj169OjRo0ePHj169OjRo0ePHj169OjxXUcvCdajR48ePXr06NGjR48ePXr06NGjR48ePXr06NHju45eEqxHjx49evTo0aNHjx49evTo0aNHjx49evTo0aPHdx29JFiPHj169OjRo0ePHj169OjRo0ePHj169OjRo0eP7zp6SbAePXr06NGjR48ePXr06NGjR48ePXr06NGjR48e33W840kwIcS/EkKkhBC6EOKLQoh1IcRP3OZvhoUQLwohLCGE9k6/xx49evTo0aNHjx49evTo0aNHjx49evTo0aNHjx7fXXwzKsHeF4ZhDfgeYB7YD/zd2/xNCXg38Mw7/N569OjRo0ePHj169OjRo0ePHj169OjRo0ePHj16fBfyzaiy0jv//yHgD8IwLAkhbvkHYRhagHW7121QKBTCXbt2vZX32ONbxPT0NLf77pq2hxuEBEGI7QWkIhohIIC4KW/htuNTbbtYnk9UVwmCkLrtEYaQiekEYUil5eIHIQDhO/ux3jEEIAQE4dafKUKgKgJFyM/mBSGEkI3rCCGwXR/XDxECsjGDqK7SsD28IERTBLmEgYKg6XgEYYgfhGiKQjJy6yFi4/vzgpDZYou264E89dtyjVUB+YRJpeXi+gFCgKGqaIrADQJURZCJGvhhiK4IHD/Acn3aboAiIBMzCMOQqK6Siurd4zpeQKXlApCO6RiaQt1yCQJIRjRUZWdjjx+EO37ttyPT09NYkTyuH3xTz6sIUBWB54c3vU+UzvgvkK8RQt7fQQAhIaoQ3XFAVRUEEDNU8gmT9YbdeVZE93wNy8MPQ4bSEZIRnVLToWl7NG0fBPQnTXJxgyAMEQgQUG+7BCEkoxrqbeajluNjez4xQ8PU3nl9yfT0NHU9u+Vnx0bS7/h5e7w9XJmaomXmb/r7a8PKtXE9pqvETY265ckxWhXEDDke2l6AoggMVcHQFPwgpG65KEIQhlCzXIIwRFUUooaKqSp4QYCuynvV9gKCICRmqPQlIxSbNn4QEjM06paL7QWYmiKf2yAkoivYboDtBQjA6PwuFdWJ6ioAlZZLzXJp2h6qIhhOR0l05pS65VFuOWiKIBnRqFkeqhAonXksaepULZeW7aGpCqmIhqGp6KqgbnmUmg5eEBA3NELC7niuKoKoruJ11gthZ0J6M/ORrojOuCOI6ApjuRggn72Gnu0eU1cEB4dS2x7j1YVq99/7+xOYnWuzmfW6xVLN7v73zZ7jswvV7jk1RXBoB+c8NJhEU28cj4oNm8WqddtzXl6t03bl/JCL6YxkY7c/50AcTbtx7bBWt1jewed8bbHaXePEdJU9/YnbnvPocIrt9gzVlsNsuQ3IZ+rIcHrbdafrB5SbDqt1+x1ZH2rdewnCEPwwJAzpzDfyvg0BVQhSUY1y0yUkJB3ViegqTdsjCMHUFELk8xrVVZIRDUVAre1h+/JZFEB/KkIYhqzULIKg80Mg3VkH+UEo1z7b3BtyDQiO56MqAl1Vuuucatul3HS6Y0DM0MjFDei8p6btoXXGAZBrrXLL6a4/DU0hFzO6x/ODkNW6jecHiM46VlUE2ZjeHZs2s5M9w63wghDHC4joSneNsR22G1BpOwghyMYM/CCg2nYRyO+nbsm1ciqq07J9Km1HrlERRA0V1w9wvABNkWOaH4ToqkJUV2m7Pg3be9Of4ZvFxrge0VX0zhi8secC+d02HQ9Tk/fBTuitW75z2Dy+gvyeXn79Emq6/4bXKkKu2f0g7I5juirXCt6mDat8tg1MTaFmuThegL/pNRFdxVAFLccnCOVxTU0hash9meP5nb8BXROkIrrctwYA8nm03YCG7aGrcuyyXB+3syfWFIGpK7h+SBCGJEwNAdQsjzAM0VS5740ZKuWWi+360HnmCwmz+zmCEGzPx9g0Nr5ZvCCk1nZRBKSjBjsMfb1hrh87bS/g4kr9TR9PFdDZLRE3NZIRDdcP8MOQpuXjBXKOGs5EMTRFzrGdOEzLkeNfLm6gKQqL1XZ3/ZmJGd15CuTeamMtm08YW8btatvFcn1MXSUT1eWYq4pbju1vJ3XLo+V4GKpCtjMPvhkcL5BrASFQhUBTb3z/b3XueyO4fkCp6QDyngwJWa/b1G2vG0d7u1EAXVNwvOANr8E27kFFCFqOjP3pmnyWUxGNluN35+BUVEdTru2LWo5Pw3axO+tcIQRxQwUhx6NGZ78VN1VGt1n/un7AbKmFH4REdBVTU264H7b77rwg5NJKvTv2bXzjN/vsG/E/Afih/P9w0++68ZDOZ/PDrUfaWHvKf4stv7/+3AI5Vm68TzYdNwjD7rmu/xuQ108IuvvS64+vCkEublBqOdveS5s/12Y0RRCEYXdvENEUgpBuzBKQ+0fkuhIBmqJsuWZG57lquwFhKNekQsh9s+sH3c+aixuMZKLdc09PTxMvDFFqyLWvqgiCILzhGn+r0RQ5Hm98DlNTSUd1VEWOo34YYmoK6ahOEMpxByBhahiduFXD8jqxYHm/+UFILm509/UbuH7AWt0mCEMcL8T2fJTOHj4I5Pyqqwq5uEHM0Dr3g08I1NoyphAz5PvbmH8znbXBBhv3sbZpjrU662ez8/23HR9TU8jEDFw/oNh0EMjYsd75vl944YX1MAz7brheb+fFvwl/IYQ4D7SBvyWE6AOs2/zNbRFC/CLwiwDj4+M8//zzb/WQPb4FnDp16pbf3euLVf5/X7yErihcXK2Tiug0bI+7xjMUkhE+eGwQ2/X57a9f5VNnltAD+dAqAozg2kBqKqB/c+P83xJkcoHOhgAGkiZuEGC7AZYXYKgKe/riPLSvj5lSC9cPODiY4qMnR1iuWTx9pcjl1QaZmE4hYfL9d44wkY/f9Hwb39+v/ukZ/uj0HKl3YD4YShvoVYfNX58qZMLD0FQKCYNMTC42Wo7HldUmtucTNVT2DyR5eF8fhqbwy4/t7f79CzMlnrq4znLVotRySEc0+lMRdFXhjrEMjx28cZN3PX91dolzS3XGczF+4K7Rt/tjf1O469Qp6u//Zzj+t/qd3B7luuQvdBLACpiqgqYKduVi6JqCv9yAMMTUVbIxg0xc5+paE88PGM5E+Vc/eJwvnlvlyfOrTK03SEcN7tuT4+cemuTzr68QM1Tu2Z3jyfNrAN17IghCZkot8gmDVOTaJs1yfX79y1cAyMZ0fubB3QC8Ol/li+dXGEhF+KG7RrcNRgN4fsDZxRrpqM7uws2ft82cOnWK9ff8sy0/e/5fPLGjv+3xrSc6tI+hn/43t3zNxqZHE6AoMthy53iG09NlhICIpvKDp0Z56uIaQQhhGNKXNHG8gJliixQhihAMZSJcXK7j+HIxOZaLcf9knplik6MjaU5fLfH6ch0/CBnPRfnbj+/jyloTkIvjL5xbAeT4et9knpdmK6iKYL7cJqIrtB053u4uxPne48N85OQIAP/pqSn+4LlZ5kstdE1weCjNB48NcnAwxceen+fF2RIAw5koYUj3+ZzsSzCWi3JmvsrXL6+TjuqEnYDYcs1C9wLCloMmRDdBtlyzNyWI6CT/QrzgzQsyFOTfRnSFTNTg//rRO7hvMv+Gnr1df//T3X+fmkzz27/40A2v2fv3P83QGzzWTl/30XuH+ScfPXnDa+7+Z39J2L42q97qWJnOvw0Vnv/ntz/ne04U+LUfu/eG1xz9R59GuG/s/e/0db/ywb387KMHbnjNB//Pr+CuNrYca7t155+9NM8/++RrKO13LjmRNFVajo+iXLs3r8dQBdmoTrTlEAJj2Sgnx7J86cIqbUcGXTMxGZQ6MJjkgT0FRjJRfv3LV7i63sALQnYX4vzwqTFcP+A/ffUqDcslZmjs6U8wnIky3knmHhtJ857DA1vOv96w+cPnZnlprsJK1aJhezx+oJ8fvnsMQ1P4kxfn+fqldWbLLcayMd51oI9feXwfL81W+J1vXKVp+xweTpKK6Fxdb5GP66iKwpW1BnFDAyGFRsdG0nzfHSP8n5+/wJfOr1KzPPJxGfw8OZ7l3t05HthbuOH63G7PcCuCIOQ3vzpF2/EZSEX4a/eO3/S137i8zrNX5fj03sMD1CyXZ6fkfx8eTvH6Yg2AI8MpPvnKIi/OlCm3HKKGSjKiYzk+rU4gIRc3aNgegymTuuWx1nBIbvflfxuiq4KIpjKSjZA0dX783nEODqfY35/k95+bZa0uk9q/8MgkCfP2IYXeuuU7h+3GYXMH65YN4oZC07nxPleBOyfSvLpQx7ruOYhqMnEW3/RjXRWkTK0bcAxCOcdrqkLT8tA2Apcxg5FshOWqRd32UISC43mAFEgKYDwXo2p5tBwfzw+YyEVZrFpoboCuCFIxnQf3FIibKl+5uE656RAzpBDjp+6bQNdU3nWgjz99cZ7FikXcVPn5hyZRrkuEeX7AH78whxeE3Lc7z/PTZeq2y4nRDPdOXhM/vTxX4be+OsXMepOJQpy/8cgejo2+M0nh68fOf/GZs/zHp2be0jF1RaAoMJaNcWgohRuEvLZQYaVmEwQhyYjGD909zt//wEFeX6rx+ddXODNf4cx8laih8q79fRi6wideWqBueYxko3zgyCC//Pi+7njysdNz/OXZJTRV4e994AB7+5Pd8/+HJy93xQaHhlK8uiCP+zMP7CKyjeDoZvzFK4tcXm1w964cD+27cd65Gb/99atdAdbffNeeN3ROkEHoL5xb4fTVEnXLRVUUhjNRfvy+8S1JV3hrc9/NmC+3+MTLi5iawg/fPUYqolNpOfzaZy9wcaVOIWF21uRxfuupKaaKrbf1/G8nhgIBkOjEAQ1F7ptycZOHhpOUWy51y+XAYIq/8+59fPXyOv/la1cpNx0My9uyT4jpCsmITl9SZ6Fio6sKI5kI/+IHThDRlS1xsX/z+Yv8zjeu4gcQM1V+8K5RDFXlbz++tzsubPfd/cM/fYXfe27+m3BldsbNkk9v9lhRXdBybzxiRFfYlY9xcaVxQ0znVmwXA9JVcDfFr65PzMV0QYDA9wP88Noa3N00v6hCzjGWd+3gmZjG6X/0vq6w7tSpUzzxj3+HT72yRN1yEUIQBMGW43y7kjLkNVA9mfTrT5pEDY1qyyYI4fhohscP9vOT9+8C4He+fpWp9SazxSZtN6Bhu0R0FdcP2def4B88cYim4/G3//tLOCt1DEVQs/1uYjQV1QgCmTzLxHTuGMuQixucma8ylouiCEGp6XBuqYaiCO7bnUNTFFRV8NGToxwZTvGNK0XCMGC+0maxYpGO6vzkfRP0pyL8129Ms1hpM1tq4Xg+S1WLY6MZfuDOEX79ycs8M1VEURQ+eGKIf/rho0R0FSHEthPdO54EC8Pw7wsh/iVQC8PQF0I0gY+8Dcf9TeA3AU6dOhXCjQu2WzHdW3R/2+D5Aaeny2iq4K7x7JbF5MtzFRq2h+0GxA2VSttFAV5dqJGJtRlORzi/UufJC+vdgIJUKlx3ju+AgerNIKvApMIB5OeOqQqB0lEaA22no9YXYOoqubiBUAQjmShBGHJsJM14LtZVpiYiGoYq1Z+5HSqbdFW8ocnsjbB6XQIM5Oe1Pb+jrgbb9UlGdOpBiK6C44Hnh6Q6VQf3Tea6fyuVYwGj2SizpSbL1TZL5RDLDdg7kGAwHdnR+5rpLAbnyi2CILxhE/SdgACOj6R5frZ629d+q9nu/lKVDaVKgKaqVCyPYt2m5QYdZZhKEIbcM55hdr2JE0rF6SdfWSId1cnFDcotE1URHBvOMFNsEobI6jBEV704lJH3xBfOrXSD8n/rsb3dDY+hKvQlTdbqNkOb1EPnl2uEISxXLcotl76keeOHAL5+pciLMzKx8YN3jW6rNuvxnY0fhF2lMVxbrN+MDdWeAKKGSssNSOgqU+vNzpgvK8Femi2zVLVQO1W+G8o2RRG4foimQMv2URUFJQwoJAyODqdYrdssVNosVNq0HZ8gkPW7mqJg6ir3TeaZK7e4f3eetbrN+eUa7z00TMzQuLjcoNx2ODCYYLVmk08YTK+3mCm2mCtf2yTfvSvLF84ts1Kz0DWFluuzVneoWyWGMhG0eYWEqZGPG9Qtj2xMZ1chTsxQeWhvgRdnKnh+yEKlTVxXmK9Y+EHYne8UFeKGymRfnErLZiN/4QegaaAqCkIEuP6b29wFSGWd50vl35PnVzn6FqoWfvDu7YPu4xmNqcobS77stNb07sntAzqJiMJa+/YLI0OBjThmPqbf+sUdHtxzg+AOgMG0yeV1e9vfvVWGs9uPrfsGopzblAS7nnLT4bOvLfP8TInaO5gAE8h5JQDoKIZVP8D2t96ZQggycYOG7eOFIbsKcUxN6QYodFVB0wTD6Ri5uMGdE1l252P831++IgUgjo/nh+wbSFBrezQ6FWQIGExF+PF7xzm3XGdqtUG17dJyPGKGhuX6fPXSGp96ZYkraw1ajofrh/h+yHLN4g9OzyIQXF6tU7VcCnGTqK5yYDCFrirMllqkozrFhkOp4XJxuUHD9hDEuG9PgYl8jLrlcnW9RSqiMVNscWmlzmudZJIMYiZpObKC6sBgkluxXLWoWy57+xPbVgBuR4hUDQO4QcDp6RJ+EHJqInuDQOXkeJZq20VXFQ4OJvGCkJbtY2gK903mUYSgbrnk4gZzpSZeEBLTVYbSUQ4OJlmp2VxYqdOX0OlPRWhaPm4QUGm7CMK3NeD0ThLVpZq+1vaotT3+3Zcus6c/wY/eM8ZwJsJa3SYXN4h8E6rfe3xnsV0CDMBHCsSsbcR3jhdy/Y+DMKThuFLh7ku1v64KHD/E8WVVmBBQtz0WKxaVloOPQMFDIGh3AgAqoGkK+bhBy5GVGyt1C8cLupX3cUPjtcWarEQVAqNTbR+GIc9dLVGzPKbW6l1niI0KHuW6Fd1nX1vmz19aJAxD/urVZSptl5ihdkQCKZIdEd2F5Rq261NuOcTqaqfy7Eam1hrMllqcGM28pYqjzfGW+VL7TR8HIBtVsf0QQ1VIx3SalstqwyFmaER1mWgsJCPkOuvSA4NJlqsWxYbN1FoTPwx514E+YqbGl15fRVNlBU3d8viDZ2f5mQd3yepZQ1aiRnQV67rr8/C+AmfmqxwbSXOpM8+3HR/bDXackHK8gMudvz2/XHtDSbAH9xZ47mqJvf2JG8736nwV2/O5YyyzrQByrW7zsefnmFlvMltqkYnpJEwd15cV1dcnwQBW6xavLdbY25foOhO8FS6vNnA8OefOlVocGU7z5Pk1Lq7UqVsethcwko3y2mKNUsv9tp63Ng83YSjX7wJZsVJte1iOT7nlslhp8+WLa10BhxA3fibbC4iFIZYbUkgYNCyPe3fn+cyrSwD8wJ2jjOfl9R/JRsnFTWptl7vGs4xmYhwZSW0bE3ry/CqrNYuH9xd4benNV2G+3WwkrSwvfFtieTLZEmG5ZneFDhsuBfv6E8R0BV1VupVit8O4Ltm1wfU/21yhJt+HIK5rVFsOQQh1y+dmoToFurHGXMzAcgOixrVn+qfv38XF5Tpz5TYxXaXScjrVbN++zwRAzbnmzSWQQreI5uF4HkKoLFflPPCx03PcsytLEMKV1QbLVQvH97Fc6TKzcdm+cblIte0yV25huwHOdc9PRFPIJ+TzoKkKyzWLF2bL0HGyGMtFWSi3aLs+EU2h0nIQQiEV1Wg6Hr/51BQvzpYZTEVouz41yyWqq/zl2WV++oFdNGyPl+cq8ly6QrXt8vpildFMlLlSE8sLEcLn7EKVl+cq3Dd5c8eddzwJJoT4IeCvOgmwfwjcCfx/gOV3+tw9vjN4ea7C515bRlFkdc+R4WtBptFsjBOjGVRF8OP3jvNHp+d4aa7C9HqTAwMJXluqUW05xHSF6k3Wc7I8WE6KEU2RVnnAzcIdKrKMerNCTeskmt6pgU7dlMjaCYqAhKEQj+gEQUi55eD48nO++9AAqqKw3rBJR3Weny4RWh4C6EuaPHFimPcdGaTcdBjLxroT9dGRNMmI1l1sRnV1ywRwM8IwZDAVxdQF1jaqj7eCAoQCoqrA0BWG01Fmiy1Z1aapjOdjDKSiHB1JUW97lFsm+bhJw3bJxAyOj6Z5ZH+BuyZkEqzYsPmTF+dp2rJy4eRohueulojqKg/vz/P+I0PdqrLb8fC+Pl6aK3NoaPvFzk55frrEy3MVjgynuX/PzQfrdwLL9Wl1EsxChDTsb322WAD9SYP1utPdDGsCIrrAD6DthaiAoStdexSBQFcUbFeqURQBpgqpqM59ewqM5uOM5eJU2w57++IkTI2xbBQ/yNKXNDE0mWDfN5BkOBMhHTU4NpJmX38C1w+698SLs2XOL9dRBKzWLMY7ajBFEfzI3WNUWi6FxLX75+R4lkrLZSgTIX/dxrXcdPjUmUU0VSHbCS5fWW3w21+f5q6JLB86NkSP7w5mSy3+j8+cw/MD/rf3HeDgUIqbFAUS0QQDqQhCCFq2h+sHHB/NMF9poymC4XSEhu1RaXscHU7x4lwFU5PVWKO5GKmozkAqwrsP9dOwPObKLVRFkE+Y5OI6o9kYD+8r8GcvLZKNGRSbDvmkiaIo5BMGf+2eMR7d34fjS8uwZFTjV5841H1/n3l1iSPDSaaLTe6bLHD/njx/dHqWassjFdG2WB8dHErx2MEBJvsSvDRbodp2+MrFVf724/t49EAfe/rihCHcO5lDEYL+ZKRryQBQSBgMpiNU244MNCkyCCYAUxPs7U/wv7z3AItVC1UIXpgpY/sBSVNjIB1hKB2hbvlMF5sUG84bmr+juuDUWJa5apuW42Nogqm15ra2qDsN/6aj2ydqRvNJpirl2/59Iaay3pKj4qHBnVWMJm9SnZGJ6lC+fdLn8HCSl+flZv3hfbevkAYYL2xv07ivP/GGk2CRHU6t2dj21/bUrjyffFVW9JrbWAy9Ml9hqWpxZq56g9jmzWKoAt+/FsxVkOpIVZE2X4mIxt6+BH4Q8vpilYYj16S5uEY2LivbW7ZLLhFhX18SLwx5/FA/86U2BweTvP/oEIqAQsLsJoF+9UMH+fUvX0FTBffsyvPg3j6m15scGkxRaTmcGMvwr3/4BEIIhtJRXp2v8Mp8hbip8oGjQ3z98jr/+WtXubJaRxEKQ+kIEV2h1HRxfGmV2nKkWroQNyl1KtU2LJPum8zh+gGP7O9jJB3lT16cZ2q9yWRfgvceGuAPT89SbjocH01TbjnsLiSIGioHBpP0JU0e3d/HeD7O519bRgjB60s1Ht63fTJ1tW7xh6dnCUO4f0/+lpvczaiK4AfuHOXqehPCkK9dWgdkYvGuieyW10YNlQ9umoM1lS1Vc+/t/Pu5qyWycZOIrnF4KMVPP7CLsVwMVRGs1q2uHY3t+Tx3tcTHTs/y4mwF2w3wg4CW63dtxVQh6EsZLJTa3CR/8E1BAKNZk935BL/87n0kDJU/Oj3Pa4tVah1rqGrb5fvuGOHYSIZ0VL9plXuP7y5utSN8IwHyzQkwBTB1hTCka68s7bgAIeS6JxNhoWLhhwG+H+L5G/ZX8hi6KoibKrmYTt328Fy/M/5KIZAfyHNM5uNEDZW65eEY0uI5HRFEDJU7xtLMl9ucW6rTtD2G0xGOjKRx/YBsTOfl+SqaIsjEdI6NpNk/aDLZF9/23o/qct4Nw5BSyyEIQiqt4AZbqZPjWS6vNlAVwcHBJOOFGxMbbcfnL15ZIujY2/7ITcQ0O2FzvGVDEPBGiBsK/QmTfQMp0jGduKkRNRQWSm3myi2ajs/J8TSnduUoJAwePzjArkIc0bHHfM/hAWqWQ7HpENFV9vQl2N2X4J993xHOzFVZa9hkYwZNx8Pzpaj1jrEM0+tNDE1hLLt13XN8NMPx0QwAo9kop6dLjGRipHco2AFp+XpyPMPFlfoN88Dt2D+QZP/AjYKNy6uNroOCH4Rbqv9AViV//IV5zi3VaFguuwpxHt5XoNR0eHWhym999SrvPzLAg3sLW0Qef/7SAnOlFi/PVvh/vHvfWxbfHh5OMb3eJKKrTBak7bQbBAykImTjci39xXOrtFyPiK6gqfL+rVsODcvH+zaN/gtkxXkYCvYPJvjg0SGurDZ4fqbMWDbKvv4E9+7O07A95ktNXpqrUG5dWw8rwHguyoHBFAJYrFjETJWNzhHOphYS33N8mLFcDMcLODaSvmmS+qW5Mv/uS5fwg5CFapv2TRLeO/18sPPx1tSkxfRq7UZRuYJ044jqgpW6Q9xQKbdsnE3bg81/Y6idwoKOOwdCrq3ihkbTdnEDOR7nkyYjuRhXV2XFb9TQ+P6TIxi6ylcurJGKSAHkvoEEz00VqXTWFtLOT47/UV2gaxqEUG65Wz6vQqc6jGtxXlVRiBkqNcvFUBUGUxEODCZ56tK6TOYIaeCqC4EQAUGodKz0dE6OZXh5rkIionNqV/aG+OdkX4L/+BOn+OplmUAtNx3ajsfZhRrltsPuQozLKw0c12Om4mx5n4mIFEBsxHnTERUvCGg6N36DCrLCzX6bHZoUIGooeH7QTYDFDCk8+PSZJcoth9/6Gty7O98R3vpYnTV/XNMQQpCKaJxdqFKzXLIxo2tnLAS4vrRvf2hvgWRU56uX1nF96Urj+kHXVj2qa5wYy/DSXAVVUdhdSBCPaJiaiqFK+8qNtgt378pyZr5KIWF22/MkIxonxtKs1W3ycQM/CJkrt/ni+RVajiz4UICEqd9UeL7BN8MO8R+FYfjHQoiHgPcDvwb8OnCjV0oHIYQO/CVwAvisEOJXwzB89pvwXnt8C1iqWry+JNWgjx90tvzu4X0F9g8kSUd1uWEeSPLk+VUinZ4fBweTzJfbmHMV1M5CdwOl4wfbn9AZSEfIxk3W6hbnlus4nZlbV+QGOB3V8HzZQyUEfD/oJqY2fIpDL9iSqFKQA5no+N66XvCmNq6qkL02Go7MuG83qV2/udidi2L5IQ1bWsg0HB9VCYgbOo/s72O21GYsFyNuykXmN66s44fSumX/QJKkqXFmrsqLMxVMXTCciXHHWOaW1oc34+uXi7w4VyEd0XE8R3oxd+aON6LAN5CJyc2X0FRBKIJMzGQ4EyEZ0ajbHq4XoCoKfXGTvqRJTNc6pegaHzo+xL7+BC/MVBACDg/JpOqF5TqfeXWJswtVdhfkRmi1YdOfNInoKneMZklHdb5+eZ1Ky+WhfYXrfMk9zi/XGc1E6U9FODyc4vDw9sG+N8KzV0s4XsBzV0vcN5nbsuC1XJ9nrhTZN5jc4k/8dhLteFhfr7C71Yb2nVaDjWWjhMBq3UEVsjTd88H1fVKdHii7++LU2x4rNQs3CGl7PoEjE1K783ITNJCKMp6N8vx0GUMT5OMm2bjBcCbCh44PsVy1uLhS5+xCDSGkVcpmFWD8ugDy3j453iQjGup1G98whHLLwdSVrlXi3v4Ee2/Sz+bcUo31hhzv9vUneGS/TG4kTI1LKw3Co+GOFe49vr15ZqpIuRMs/urlNQ4Opbg+/iCAg4MJ3nWgn3cd6OdLF1b58vlVEqZGpe1Sa3sMpEz2DiTxg5BiwyYgZDgdZaHSQtekgjYXN8jFDf7mu6T96+deW+aVuQqOG2AaKsdG0jyyv5/lqsVMscFYNsqJsSwHB5McGEyypy+Bogg+9vwcxYbDCzNlfv7hye771BSBrqkcHErzkZMjpKM6v/DIHhIRnZbjc8dohj9+fo6T4xn29if54VNjvLpQYa5TKRKGIe89NICmKfzgXWO3vG7fc3yooxZTubxWw/UD2k6AgmAwE+HhfQV2FeK8ulAjQPZBysYNfub+Cb4+VSRhaKw2bJarbVJRWc1wu3FLRQbAExGNiKlxcjyH7XoMpCIkI9tvbne6kM4ktg/M3L+3wFNXbp8EOzGW54sXVhHA3TsM/OcT21c2D6RjsHh7Jfj9k32cW26gCLhrV+62rwfIJra/Tq03sUBKx3am5h7Nbr92Wa5dW1MKsfXb3+jhEBJ2etptXUO+GRKGiqZK+62Nzys6VZ2aqrC3PyoTKKGg1JI9yIK6rHBMRnSCQHBhuS4FW47P6ZkSA6kIP3DnCOeX6hwYTHJ4KMnvPTOLF4TcszvHg3sL3L+nwL2785RbTle0sasQ5//5oYNcWW3wnsMDCCGYKTb58oVVZkstwpBu0G+jctTUZLLunsk8h4aSTK/Lys6xXBRNVTg7X2G+bBEi++ksVdq4vgzu3j+ZZzQrX5eIyP4cuwpxlqptXpgpU2o6OH7AP3jicPd6ff+dozRtj2MjaVbr9o7mPNsNuuPnGw0kDaQiDKQiXFm7Vh14fa8DkIHnc8u17nrvZriez57+BP1Jkx+9e3zLmrE/ee3vNpJhd4xlOTSc5txijRdnyjh+yJ6+OHv6EyxVLO7eleHJC2vMFFs0OhYzIANC3yxHC02BvmSUoUyMyyt1EhGdHzo1yhPOEOeX6yQjGo8d6EcIcdsgw+148zUtPb4V6NsICRRkxaDjh8QMBcvdWuF6/X5BF7ChlzQ1waHhFIRwaaWO2gmqaopAU8HzpSPD950Y4b89O4PtSUX/xvE2rP+DMCRpaty9O8dyY6nTJ0QQM7SO60eLiK5xcaXOWC7GaCbKeD5Of8rkrokMilA4NJTkV//01Y4QR/YUrbalg0PE0BjPxohHpE3aRCHOHaMZptabrDfsbtXOy7NlPvHKIneOZ/ilR/fg+gHTxSZzpTa78jG+9/gQ//3ZWRwv4CN3DLN/IMk/eOIw6w27E4u4cY2gKvIaWK5PdIe9927G5niLCG8/oGyujtgITtt+yGK1TSKiUW45LFd92VM2hEf2SdHpdLGJH4SUmlKAsZl9/UleX6yxWrf5s5cWePehAR7d38+j+/tZrVu8OFNhVyHWDUKP5WL8/MO7mSm2CJGJQAE3jMv5hMkHjm4vHlypWXzt0jqD6QgPbmOzu7Huvp432/d783NyK4HARF4mT959cID9g0meu1rED0IurtQRAvqSkS1V0RdW6syX2qSjNjfWvbxx+pORrn2/XBusYWoKD+zJM5CO8OXzax1b35CIoRJXOkH0Tqxq87NtdOaot2ua2pzo0TqxOtsNbnp8DZkUVzo94QxVRVUE+waSRHWVv/XYXpl4sH12F+JcXGlwYDCJ6weMN11q7Wo3xueFst9bKqrx8myVbEzn2akSD+/r44G9+S37+qih7kiIU2m6rNZsQkJWazaDSbNrCagDLlt7ewnA0AS2F25xfNpAV6VLxcb1iGlSTOMGMvlOKKtuI5p8jxqy11wyotF2PNqdQVhVBY7nsVLz0FWoWzJRFCKTGxuWp54vxci2F0oRZyifjbFsjNlSi6bjETU0hqI62bhBzFAZz0RZqrRBBPQnTB7YV+ALr61Qadlkojr5hEHb9Tk+luXcUo2mLXvbRhVB0tTpS5lUWy4RXaHheDieTJLFIyqOFxIEASKUa7ihTISJXBwvDFiuWrQdn7rtM19pc2AgyXy5hR+GXcFlNmYwV251hPwRToxn+f47x2h7PvfcZK+Tjul8z/FhgiDk3HKNqbUmMVOn3HKothz601EUEbLeqtJ2pVvVRF46bTleQOiH6KrgwGCKcsthptjstiPZGDI2rH7tN7kZMZSN+2DrDZOL6yhCsN6UcbW+pBTM5hM6l1eb1Nqu3Pd27CoXqxYVQuKmRszQODKc4sE9BV6aqxDRVY6Ppmg7caaLbdwgYDQTpe34lJs2X+kIzAxVENUVEqbsZz6ajbBYbTOQivDEsSE+eucI+wdSnFuq4nghY7kYlutzYDDJgQEZk2g6PlNrDRQhsFyfff0JPnNmiZihMpGLM5yJUmo6LFYskqZKJqaTNFR+5oEJ9vRtH3/b4JuRBNvYoTwB/HoYhp8QQvzTW/1BGIYu8J53+o31+PZgMC0neUUI0tGtWyIhBFNrDc4v1zk1keV3vjHN+eU6UUPhh0+N8sOnxvjCuRWeny6xVLMgDNEEJKKyqXZUU0hEdVJRA0VIK7xw08AQNzQm++NkY4bckAbSdm2jF4gq5OQxko6yWG1T35SaD4CaJTeptxuqVAEi3L76LKoJqpYrg4uqDESEdFQNyIlOEUJavAlIRnQ0VQXfQ1MUmrbfSdgJDg7GyccNXl+sEQKPHuhj/0CS3X1xptaaHBpKcnAwxUyxxenpElfXG4ShVDjk48abKq+vWy6ThTiqgIWy3Lg3bdlY0XkDg7gDZDoNxzvzN24oyJgaI5kINcvrBm5URWE8F2VXX6JjySPV0r4f8uDeAqamMpbbGhTbKH3f159gT78MNv/hc7PsLiQwNIV9AwnmSm2eu1qi2LApNm1+quORC/BXZ5eZKbYwNIWff3g3pvbGvL9vxsHBJGfmqxwYvNHW519/7iJn5ivEDJV/92MnSUR2rm7bCRFd5Y6xLDFD46VOfx7oLL5UGRC8XumlCvm/t0uprLH1uQiBqWKLQsLE9QM0ReG+3Vmem65gedLHvz8VoS9hYiiyAX0ILFfbnWa4Knv7EyxU2lxeqXN+qUYiosnNpQqnp4t84fVVnp8udT3QP3zHMHFD22KFuVa3SUa0LRYXHzg2SDauk4kZNyQlP/PqElfXm8RNlccP9PPli2ucHM/eVFm4uy/OS3MVNEUw2ZfoWI+GvDRb4ehIupcA+y7igT15njy/iheE3eqG67/eEFioWAxnTI4Mpzg0nOLAgJwXP//aMoamYGoqR4ZS/M7T0xQbDtm4wSP7+vjhu0fRFcFixaJueRzctGl+35FBHj3Qx29/fZq24zO13qRpebw0V0VXVXJxk8cO9vH0lSKXVhvcMZ7hsQP9eH5Iw/JYqrZZrrYZTMv7/bGD/QyloxSS15qXD6Qi/Mpjeyk1Hf7ux88QhNLC8O+8J8lXL60xtdakPxUhCEIe2ltAu4l1VthperwRdNg/mOJ/fu9+/u0XLpGMGKhCkInqCCErUL5ycY2H9uRZa1jYrs94PsZH7xjh+ZkKixULwoB8PCJt5BTRqVQLcH0ZsNkIoG1YK23M5W3X7zZTHs/FaLs+R4dTHB1Jb1sdfat6qi0+9jd5pvviO7PgvX9vjteWKihCcGri5pvuiHpNaZ+Mbb/Mz8Z3Frw2DWkfpXQU+TvBC7ZPTBwfSfGVy7dP9sU02BDlZrexBNoO5yal9Kd2peEr8t8b6vwNPv3qEldWG2SiOj98apRf//IVlmpvza4xosueHoqACysNLFeKp6qWDCQdP9jPibEsQ6kIxabN515bwvOltWk6quMFEPek/76uCeqWB1j8my9cwvUDvn7F4NWFKheW6/QlZf+bDZROxecGz04VeW2xxsnxDPmEydmFKp9/fYWr6w3Gc7GutR/AqfEsJ0bSzMZ0Tk1kef/RQQpxkz97eYFS02Z6vcl4Ps4vPbqXP3lxnq9eWqPlynWeAP7guTlqbWlP+L0nhpnctPkUwHxZJsuU656B/QNJqi2XL5xboS9p8v4jA8yVW9wzkeXlWdln697JPLFNwd+xXIzHD/ZTs1zu3mFi9nr29CX4gTtH8cNw2z6cf3l2qbve+7mHdm9ZB1RaDn/y4gLVtsOV1QYtx2cwFdk2gL3BesPmi+dWAdg3kOBvvWsvP/Vbz3JxtU6p5WKUWqiKwouzVdqOj+V0qtqRQRFDV2k7/htyjHgrXFypsVxtc26pSjKis28gwT/98NEbKhreKsleFuw7itg2lcUBYHkB6ahUi5tAEMrq0YguiBgaTdvD61gdbiTABOD7IecWq6Qico5JROTY53oBDQ9A2kj//ulZWo6P2dkjX78v0RQ5hz87XUZXFGllHoT0pSKcGMugKQpL1TY1y+XpK8VOUNXnyMgInzqzhILgS+c1hrNRWT0vFOqdfWy17aApCn4orVMjmsLpqyVeW6iy3nDQFMFP3b+LdEznP3/tKqt1m3NLNX7jJ+4iHTOwXJ+nLq7x9JUiv/v0DGEnzH1hpd5N5GxnfbeBoSn82D1jLFWt2wb1bsfmeMuzV1Zv+jpThUzcoGX7xHUFN4SYoeD40ma+1HRoOy56p0LgyHCauVKLeyfzHBtJd0UG14srARarFkEo4zEAZ+Yr3URZfzLCB44O3vA3X7m41q3QMzUFXVP4yB0jO+qhPFNs8l++dpUQmC0Z7B9I7ih5v9EXck9/gg+fGL7t6zczkY/zkTuGsb1gy3p8A0UR/OBdo0wXm1iuz9cur/OZs0s8cXxICpstj1REJ3bdenN/fxJTVckndN5qAux6nrta6lZ2/8R9E/QlTVZrNs9MFRECHt3fz7nlGitVC6EoRFVZ0dbuJMScQDpZWG9TeVjCVElFNBq2h6oq7O2LcW6pgeX6N/Ri2nANUhVBylCxvJCWI5Ozf/rCHH95ZokXZ8v8vQ8cImZo/NdvTPMXryzScnySEZV9/QkWKi3WG/Ke3KhyLzVc+pIGz02VUDvWqO/f5v7cCZN9cU5OZGjaHqoCpbbX3RtstMrVOtkvRZEJ/KGUyXrDptr28K+b/HflY6zUbVody+sA2ZYkbigYmnxG1RAMTcN2A6otmeTqTxrk40murLUIwoCoruH4PhDiBiCQ7SBCZNzS8UNGkyapqBTctxwPEYY4fogfhKxu2EoieNeBfn7xkUnKLZdPvbLIVy6tUW65tB3Zu+lv/O7zRHRpvx12jrG3P8FAOsK+gSSrdYuXZyssVdvoKrxrXx9fvLBKy/HZnZcV9o4fEtFUFAFXiy0cX9oWOl6AosDcahvbk2ulhKlSbrroiuDAYLJbue4FIe85PMBvf22KM/NVlmsWXzq/inZYdHtj3QpFkWNeLm50KynVhMloNsb+gQSlpsta3SGqK9Qsj2LD7oqYVKGQjer84iOT/PEL87w8V6baktajIaAiq/barr3FmnKjRUJ3O8n2YnQn2Pj2tlJpe6Qiaqd/OIxmI5wYyyJCWChbVFouqiJ4eF8fS9UWF5bq1JoOKVNjsj9JXzKCpsqY/Hy5hdtpOWO5UnAyXWzSsn3pEhHKyuvdwykeO9BPIiIFc597fVXajGuCv/HIbrJxk9/62hR//uICCVNjsi9OXzLCI/v7ODgkiwwSpsaLM7LtgxCQjui0XZ+ZUgtFCH7l3Xv5t1+8hNqJoccjGhO5OIXk7ffV34wk2IIQ4jeQSa1/KYQw2bl7TI//AbhjLIPl+qidxqabWSi3+PgL8xSSJl88v8Jaw0brSMWSEY3ZUovxXIyRbJSZYou249OfNMh2PHx3FeIMpiKcW65zZa3NesNGUQRKGKIAbhAymZcD8HypRdMJ8IIATchNp0BWg+wbjDNdat7w3neqQY3q0Ha5YcRSgMZ1FoIbig8/kMf3ghBFhER1qWoZTEVwfZ9a2yVlqlRtGYQIwpBS0+N/+/gZ4qbGo/sKnBzLIITge44P87XL613/8kxMx9CkJ6+mKChC7Mj6cDse3t+HqUsF24HBFOeXa1xYrtN03ngtb6XTk0NhQ3UWUm66uF6dmKFSb8sG72P5CHeMZyk3HebKLXYVYrzn8GA3COH5ATOlFv1Js+u9fudEhprlYmoKj+7vQ1MV3ntkgDNzVQ4Pp1AU+RnKLYdLqw0cX/qEbyh+/M5sFIbhDVUcb4V3Hxrgkf196NuoxUpNubhou37HRuntTYIBTPbHEQIurtRpOTYBciE5ko1RbTs4no/tycWOKuSGLASctykLtl0AudJ0iRuyNDqfMHltsUbNkgpQea9pFOIme/oSnJmX6jhFCIQimCzEySdMzi3XOxswQX8qwvHRDFfWmqw35ILs+ekyaw2HE6MZDg0ltygIn75S5JmpIkEQEjNVsjGD7zs5QsLUePehgW3eMd2eek3b519//iKlpsPz0yX2/sCJba05htJRfunRPbKvXye4fNdErmvd2eO7h9FsjP/w1+7siBvkd73dGFK3PP7khXnKLZ/vOznCew72M1tuU2/n+ML5VYbSUV6eq7BStfDDkLbjsVK3mC+3SEV1PnRsiJghg0iXV+vdBuKmJpWKL85I+9aX5srMFps4XkDddrm61qRheZi6SrNzH3/kjmF+7XMXSEV0PvnKIr/4yB5AqjG3a9yuqQpzZWnZ2LCvlQBfWq1zbqnOUCrCP/yewzft01CzXD52eg7L9fnA0SFqlksuZnBuqcb55Tq25xM3dQZTERYrbWzPo9p2+dSryyyU2zRsn0zc4NBQmv/89asUGw5eENKfdDt9/aK0nYBox0Pc8WV/HjpJt4guqFmd0SiU49xGJWghYfC+I4M3fe+3GgnVTUkw8ybJv8+dX7rFEa4xkY/JSiVV/vtmvPvQAF88v8KuXJyh9PZBomp7Z8medNSQQQghyN+kwut6ig1n25/3Z66957h+8wCOqqpSdgqE4c4CPWvNNru48b78+uVr4o6Gs3W22RDG1C2fPX2xGyrF3igCuU4IwhDLC9mVj3N5rd7tW9B2fD7x8gJCCMIgZHd/gvF8nPWGDaHsh2N5PjFDRRWCQsJkqWqhqworVRsEVFpNWo4UGlXastF72/X50LGhbg9XxwvQVcEzUyWCMOTpqSInx7PdZ3siH2d3Ic5dE1kKCZPp9QZ/eHqO15dqeEHI8zNl4qYMbhYbDjPFNhP5GAvlNpoq+IWHJ9FUhVpbbpot16fReXYqrRu/+wsrDfYPJFir29v2+nrq0hqXVxu8tlhDU2Qg5/JKnaenyrh+wMXVBn+jM/5scH11wZth/BbP0MYzG2zTIGNqXapm247PTLFF3NRY2NQLcTtMTUFXBW3Hp9R0qLZc7t+bJyQkGdEoJCJcWKkT0aUdjKKC4iGTozGdgwMJlqoWl9dufZ43y4bq3A9CvAA8O6Bl26w3HPqSJkEYdi1t3k6a2w8VPb5NETcJvPudwFrUUPF8WVm7Ox9F06RQ03J9nE76p3usztzoeXLOMDRBMmJiuf6WfmK2H7Jcs9EVganLit3Gpv1lwlDIx02SUZ2FcotWZ92fNDVcL2Cu1Ga5ZrHWcHB8WUng+D6t1Tr/3786jxfIQNt4Lsa+gSSHh1IYmsIzUyUqlst6wyEMQlIxndW6xVy5TT5hcHGlzu58gpFslLbrk0anP2myWrdJRfTueiGiq3zx/CrT601s1+e+PXmyMWNbG70NHC/YYg2diRk7tuq/FZvjLZ94Yfqmr7N9cL2Q4UyUQsLkx++dYFchznNXi3z61SUm8hozpTbJiC77CY2o/OKjk912Fh84Osh6w95WBLhUaRM3VDRFdlK7vs/q+eUal1cbnBzPdsWGjY4AuW65aHEDbVMS7Xb85dllGrbHUtXi8YP9XVut23FuWdpAX1ltYHv+Gxa+Tt4mYdmXlE42T55f5fJqnXJL9r75ux84yHy5jaEpN4gtP3zHMGcXauzrT7ztfcj39CeYL7cpJE0yMZ3XFqtM9sX53Z+7u9NHPcbvPj3D2YUq/SmTVFQjG9H5+lSR6aJ0FXi7EmCKgN2FGF4AddvH9QJenK1K4do2H3vjrG0vpO156EpH0C6gbkHTDvj0mSUpIlcEL89VOLdcx/UC0lGdsVyce3bleWWuzHLNJgyh7XjEDZWYqZKKSqeLquXdkJgEuLLW4MpqgxNjGQZuUjk+kY/zMw/sotb2uLBS5+uX1rb8XhOgawJdlU4UE/k4hYRBwtR4dbG2pRQsZig0bA9dFZi6SsuWcZqYoTCSjTG1JgXuikJHSCWvkRdAsenxsw9OEoTw+8/OcGGlIau6RKdqUQjptoS81mEoRQ4DhspwJsp63UIogpmiTEJoqkIQhuiqwkQuyu5CgsXL67y2WOvGrjbeec3yaTkBYSirycotB9cPuGMsg6pIxyaEYDwXw/ZCnrlaYqHcRlUEmqKQi0uHgaliE1OV1fUCOT80bekMFHbedCFp0rB96pZLf9IEBO8+PNCNi84WW53EYUjT9ik1bJ66uMaBwST37N6Z2GcoHeXnHpaVlNW2S7HhoKuwK58gG3ewnYDVhrTr9zq9YP0woNhxgdjbl+DCUo2G4kuL2o5tr7+53JmO3aMAXVexHR8UaWlfa3s3VHxtfNfX4wUhzsa+CnhtqcY//fARPvfaKsvVNooQBIEUYp+Zr3B2qUbD9qjbHv2pCHv7C/QlTQbTUZaqFuWWrGqUbXAUSk2ns16W6TnPD6i0XD7+wgItx+u23LFcn7lSm//01asIIZNn08UmqiIIw5BCwuSTLy/w2deW+ZG7x5gsxGk6Pt+4UqTalja6dqcoZCQbZVc+zvffMcpvPHWFtbpNRFdZq9vbCjCu55uRBPth4APAr4VhWBFCDAF/95tw3h7fIeiqsq33fxiGfOKVRZqOR3HZ5qMnRzg2kiYMpL/q6ekyry3WSUd1fv6hSeqWy8WVOmtNh5WGQyaqsVa3+egdI8yU2rI8GIGpCRQR4PkhtuczX23zy4/v5UfvGePHfuNpVhsOmahOISVVMLm4wVyx3fWq1ZVOkqpTMSa2KVO+npazfaBsY9ADqbbYOPZmAmSvtISpkTQ1TF3F8eQitmp7tO0AHzlALlbbqJ1y9VLL7VaTnF+W1isgFXrvOtDPT94/Qcv2aDp+ZxP+5mxNEqbG4wcHiGgqz14tMZSOysz9bImr62+u8e7ma+WHdCdRIQQBIWOZKKt1i9WajeUGfPyFeaaLLd57eIDjoxk+9/oKF5Zl4uxnH9yNoSnEDO2GPksHB1McHLyWeE3HdN53eABDlQFQZ5P/zAeODvLaYo2xXOymwdCG7bFcbTOei2/ZwNwKy/VverxfenQPf/biAkdHU7e05HkrfM+xYX7zq1c4MZrmmaslNAUSEZ33HB5gpthkttgkamjU2i7VtiNtQ23vBlXK20kAzJUtdEUq6BUhJ0dFKER1lWLD4empIomISsLUiRkaTcsnpktl+/nlOoTSvrBmu/hBwLHhFCOZKNPrdVbrDpoqq0pAVhZuYLk+55drhGHIxVV5nP5UhLsmsuy7xab1/UcGOTNfYTgTZaa4kTCXm/absZEQmSu1qLRcDg0le701vkupdypBbtXUPASWqg5/eXaJl+fKrNcdGVQW8EN3jXLvZJ4vnVsl26nMKSQMzi/VWK5axE1p9RPVZXDh8HCKH7xL7Vb3tmy5eUtHdT772nLXdmA4E2Wu3JbWamNpTk1keW1RbjYPDCQpt9wdNxjf0xfn/sk8Dcfjx+8dp9x0uLTSwHJ8dE255XEWym3qljQE+YtXFgAhVV9RnYODSUoth/FsjKcur9GwXfxA2rENJCPYXkDL8WX1d+ccUp2m4AUhuZiBoSocHk+wXHeI6AqKoqBV2kR1FT8MEWEIhOiqKpWFukqp5fA3Ht3DeP7mYz5Ie6edELnJnJC+Sd+u6/n48/NUWi4I+MTLCxzr9MK4npfmq/iBYL5qU7Uc8ttUms2XdjY3L1TaxAxpQTu7w7+ZyG8f/NkcQFeUm49ziYjarbof2qENcEzfXiByYPP8fp2I5D2H+nl5rsJQKsK/f/Iyq/W3FpEXyDG9bnlkYjqLFbn5DUTYXTO2nIA/e2kBIeTztVBpyzVfAMs1i76krIDuS0cYz8WIaCoRXSEX12laPi1X3udtxycXN1ityyqt09Ml3n9kkC+eW+HMfJWDg0n29Me5tNJgXycZfudEVlaYqYK7d+Xww5Dff3aGs4s1rE7140KlxVpdCqOOdOyec3GduKkynouRjuosVi0e2JNner3J3v4EiYjOB44O8uxUkbFc7AYLqb39CSb7EhwaSvGewwNcWWtQabkcH013LcCm1mSgcTgTJR01WK47+B2lQMu+fe+6t5sPHB3k7EKV0Wz0hmd/TyHBy7MVEqbKB48OUmo5PLL/1v3ykhGdH7tnnI89P8d63eYPT8/yg3eNsn8gyVguxu5CnGevFLlabPDrX6mjKQqBKgMC6ZjOowf6+dK51XcsCRYigyoNWyqSvU6zdz+EuK4ShtIN4d2H+rdU5b1VUm/cfKLHt5Dr7RA3q9G9MJQJFlWQi+uEQrBUsai03a7DycbrFbb2wpbVZCGVlo2qKBibXFGgkywLQhxra2BLU2R1WsPxKLddWrZ0EokYAl1VKCRNjo6keH6mjNdJgG3g+yF+p5e23F/C1fUmEU1aPkcNFcv18YJOq4MwpGl7KIrCS7MVDnas1B7dX8D1A16dr/K/vnc/ry7V2NuXwNw0buTjBq/OV7A9aef80TtHttilbua3vjrF1y6tc2pXll95fN+b+JZuzuZ4S/M2w2rb9WnZHlo6iu377B9IsFyVia+EoVJImNiedOb4oVOjWz7P9YLmDWQVT8g3pkpM5GL0pSJbxhPHC/js2RWCMKTYcPjpB3YBcq5+YabM+44MsFq3t8xPtyMbk71w9w8m+Yn7Jna8nr1rIstzV4vsG0i+bc4v23HvZI4vnV/t2I6p+IGsTm45Hqs1a8vefygdZSj9zrRGuHM8KxPAqsJcucXnXpM9zdzdOUxN4alL60z2xai1XVZrFrm4yXLVopAwmSm239ZYQBjCQrmJ40uRjR9ec2m6HgX5DG8kvcKOiDxEjjGaIqRTUCjFgXv6ZLLPVAVBIPCDgNNXi0QNjT19cWptB8uTrjJDmSgfODqIimCp1uYjd4zckOSqWy6/+dQUUV1lqWp179nt2BC5HhpK8cJ0iemS1f0MiYjGrnyUmuVzz2Qe2/ZoeQHz5XbXzQJkX6eoIZNBAvlMBZ3PaqiyN7qsDJPxxY0xT+1UymUiGi/MljkylOLyaqMzJsnrZfsBpipQO/aTLSdA6yTSptaapKLy2au0XVq2jxeEZOM6UV3l4FCSmuXxTz55lqWKxXrDotiUieoNe0ddkz27Wo6HoSrs6YvzP717L0dHMnzi5QUyUY15ITBUGetrdPpit92QmK5yftnCDzs9IyMghErS1KlaPq7vEwSgEoAiE3JtN+DqeoDry/Y5s8UWpiZYKFvoqmBPXxwIubpSZ6rYotR0+L+/fJnxbIzBne49OuOX64f86cUFmrZLpeVIYURUxw0Mam2PaMc+MmHqhAg++fIiqah09kqYWsf6MkBXlO6+n01xZl0VmKogEtNJRXScICDcoRBgA2tT0UXTDvil33sRz5fPRlQTpKI6jufTdjwiuqBuhbRdjytrDV6arXDXRI7jo2katstINsrltQYNy6Zuye8sEdUZ0BVmSjKpNltqd8e0UtPhXQf6eHmuwkKpzfPTZQZSEVw36O4ZxrJR8gmTp6eKKJ1k7D/58BE+fGKYPz49h+MFOF7A/XvyrNakyCId1VmqWTh+QKnpoiCLJXZipvSOJ8HCMGwJIVaBh4BLSOH/pXf6vD2++ez6+5/e8Wun/8UTO3qdrigc6Pj5LlQsxrIxDgwksbygU44pkxS6pnD3rjwrNYtqS1ZGrTccUlGDVxdrfPjEEJ94OUQrNmUwUFc7g3PI+eUa//ZLl7hzPEvE0IjoPg3bI6gExCI6qYjGdCeorQip6mo5vuw5JjoJmxusGa5NwhtcX7oq6EzOm7L4EU3gbtMose34+EFA2/XxOhn7qKFSrV/rcaIoQvZDKsTw/JBfeuRaH5dszOgMSE2KDZvnrpYZy0W5azy3rar/zXBgMMlSzeLwUJK/eHlpS5PRN4tADvyRTt+qIPRJR3RWG7a0pwjkAK0IjSAMmS+3OT6aodaWk9BLs01ycYPvv3N0x77e9+8pyNJmRXBo6FrSIxnRb+n77Achf/jcLHXLY1chxkdPjt72XJ99bZnXF2s3VCJtsG8gyf/+wYM7et9vlnRMZzgTRVMUDF1lOB1F1wRHh1IcHkry+ddXqFsetZZD2w2wXV/ey6G0THT9t8cDXO1M8mEQ4nSeHWl5EBAKeZ6YIQPjLccjDEMqLYW9/Rq78jFsN0BRBL/37AyuFxAzNQbTBk4pYLVm8c8/c55jo2l+8v7dzJVbVFsO82VZLXhgUAZt1+oW/+qzF3C8gELCIBs1OLdcY7lmETV2b/u+XT/gL15ZxOqo8TMxg195fC/Pz5R5YDJ/2w3Xat3iT16c7/YUe2T/jYKAHt/ZLFbafPyFeYIw5HtPDN/U0sZQZUVvuemwUrVo2h5CgOeH/NnLiyQjOo8c6GNqXQaRyy2XmK6iq4JkRKfcdKgIuanbN3DtHNWWy7NXZUWM65dImBqkIhwbSTNXbvHCTIliw+HDJ4b5/LkVPv/aKqPZKO8+1E8qqu+4V2QmZvDzm+adv3hlEYGs8mpYN27oN+MHAeeW6uiqwiP7C9LOEHh0fx8zxRaj2Sjz5TYXV+sIBP0pk8cO9PG9J0Z4rWPz5gcBH3thjrFsFENTyEYNHF+OC1IDI60xbM9nb3+CX3hkkkf39/GbX7nCF86vYGgqx0czLFbbVNsuk4UEUUN9S0HfzSK99YbL2DZTiEz+3Z5q28XtiHG2q7jZoNJ0cIOQwPFo2e62STBT3VlQZ19fQvZAVBQm+24esd7cO8TbRpkIENG17jpou94yG2yuvmm7O1tHpKLbJ5ffd2SQ/+Mz52jYHh86trWKdyIfZyIf579+Y5qzC5U33XNpI5jbtQWLCcpNh6bjU0iYrDVsQk8GdBOmtOkSoRQnqQIUBEIIBtOyX5WqCO7elaFhy8qbc0t1JnJRnjjWx6mJDF+7XCRmKHgBvDgrq7Y2FOMXVqR6/eJKg//p3XuxDwXdOUhXlS09L8sNh/WGQyFhUGq6HBtJU265uF5A3FS5f0+eUtPh8FC6WzX1wkyJz55dJmpo/MwDuzA0BduTvTpfW6pyZqGKJgQPbZrHRjJR/uajexACVus2H39+jrYbUGu7PHawn4l8jELCxNQVMjGD4UyUj46keWmuTLnl8n13jLy5L+YtkDC1m6730jGdv/6QXA/4QUjT8bp9QEHaKL22KHvPjmavPTP5hInrh8yVWwxnoqSi+pbK8ivrTUpNl76EyVAqQhiGNDuB6D86PU+xYb+j/VhX6s4Nx89GFVquT2WtwX948jKGpvD+I9fsoBxP2ste3z91p1i9SrDvKDRVbHFAkU4GQCBdEJqhTKa3bB9FWFhuuGV/YGqyciAMQuKmSs3yOkE4+Xs/gEJCJ2ZqVFtSdFdqdSzKrhPdRTRpIdt2ZTC27QTdBJu0XZVJq2enSkR0hZYj0BVZlWl29vG+H+AGch0/X5aW6rYXMJGPkTBUFAyKLYeILrDcgAsrTYYzEVIR2Zf80f19jOfj/N4zM4QhFMczPLyv74b95i88PImhCopNF12TVbSbq8U289SlNWw34OuXi/ytd+25pWDkrXC7lmCWG1Bu2pxd8HH9gOOjGV6Zr3aTT7/6oQl+75kZBrO3toLdzMWVOuWmtJCsWdIGd61u4/oBR0fSaIogFdWotNxuZTPIteXGWHnkDX7O7zs5wnLVYiAV2XECDGTV3B1vsOJ4tWYRwk2rgTazUGkztdbg0FCKv/OefbwyX2EiF+P0dIn1hi0rVUK4f09+Rz2n3g42rs9mMaYq4GuX1wlDeH2xhqnJ/kxzxRbZhMFa3e5ail+PqYCqKTgdYcVOCYFy68b+XwHSom8zhibw/RANsEMpSvNCucZMRTT2DyQpNh1GMlHu2Z2j3HJ5ZH+Bb1wuSuthz2Ot4eAHNss1i3jEQPdCBlImpqYwkY/zsw/tpthwyMUNwnBrv+6vXFxjsdLG9YKb9gC/nsF0hO89IR2a2p2qloSpoSoqfUmd/oRJSQiqVYtHD/bx5Pk1LNdnVz5OPmFgagrPXi1SbnmdWIwgHdE4OZGVrk+d70Ig45amJhjNxqi2XbwwZGqtwUrVIgivJcA2rrvrh1K81YmvhqEUoEvBkkEQhqw3ZH9XVZHdw4IQptdbHbcpcIMA2wuurfcVWdEuK0MFL86UUNWwW6H1f33+Iqaq8LXLRRzPR3QSIvOlJg3bR1Wg0jn2xvsMQllN+SuP7aMvofNrn7uIqgheX6ozkDL56J2jXFhusDsfZ1chytnFOq/MV7G9gD19cebLbe7elWUiF2e5auOHLeotl0vLDdzgjW8Gyk0HxwtoOr7sSeZ6WK7PYDpCIWGyXrfZVUigKbBSt1mv23idefA9h/q4st6i2JBj4YUVDwiJ6gJVyOSYqsjqP00RZGI6nvPGXak2P6ICWKxYbExVuqqwWGnz+8/NdpKDct/sBVBpuZyZr/DxF+b5uYd288CeAl+7vMZ6w6ZUt2Xvbl2nP2Xwsw9O8i//6jwtW64FzE5/47bjc2Qoje0GXFpuUGw5tByPH7l7DE2Ve6APHh/m2EiaT51ZpNp2ycTlvDKWi3FiPM3F5TqFhMmDewu0HJ/JvgRhCAeHkpi6iqrIuT+qqztyLXjHk2BCiH8CnAIOAL+N7P/3e8CD7/S5e3xnI4Tgh06NMlNsETNVPvXKEooiGMvFyMUNHtiTx/MDIob0893Tl+DIcIp/8ZlzrDZsuYG0Pfwg4ENHB2nYHl86v0rD8vCCEC9oUm27tG2Pr11aR1cEe/oTVC0XgfQtj+rqpk6VUmLScmVVkq4JwkD27fKFnIAD5IYg2+lbst5wu018rx+rQraWjkc0QYBC0gyp21sHYD+Ethvi+VKFZqohpY7l0MYkZ6iCgVSEyb4EQ+koK3Wbo52/H85E+Yn7xvnkK4tUWi7PXS0igIa1+rYlwT7z6hLrDYeFcpsXZ0tSsf4W0RRZon9yLMNwJkpfJ1DypfNr7MrHqFkeCVOVDXNDuGd3DtcPuGcyx4VOA+T5cpvVurUj9dRqzcILQk69iT4TfiA9qIGuNdDtuNQJWF1aafCBo7d58TvIB44M8sXzq/iBXPg9fqif//qNGZ6ZKuL5gWyk6soFjaZKlWZE19BUwXrd7lqM7KQq8qaEkIxoZGImV9ca1zz/Q4gYGkEoy75btk9ISBCE+KHPdKnJ3RNZkqZGqeXgegGOD15bKpcihoYbyMaybUdWUBbiJi9Ml6TFiqry9JUi47k4Xzy3wmxRKq2PDqe50Koxvd5E1xX+4uVFfvahSf77MzNMF5vcNZ4hn4jQcjw+dnoORREkTI0P3zHC3v5k14rudgTBNWs8700svHp8+7NSszg7X8UPA+6ayG6bBDMUiGgqh4ZSLFctKm2HmKnhdcpEKk2HmVKLn3lwN2fmqkytNzB1hRMjGSzPlxYRa01Waxa6pvC+wwPdKjDZw8Hm6nqLdx/s56/dO06psyk8v1znj5+fx9QUfvOpK2RiBuWWQxDKhrgb9ja3w/Z8HC/o2s8C5BMGuwtxSi2XZETj956Z4W89tnfbQMTV9VZXPXxqIkelXwZBdhfiXVuZfMLk9HQJxwvZlYsxWUhguz6/+/QMyzULxwt4YE+eB/cWGMnGGEyZnJ6psN7p7zdXaoKQgobRbJT3dIIqq3UbXVGIxjVGs1HyCaNjuejzpy8ucGpX9oZqdV1c620SN26e0OlL6CzXXSKq7C+2HTt97MPOQBGyEeTbnpih0HYDNEUQvUmF1OHRNKfn67c952MH+3l6qkjUULnrFn3INg/7N9t6xAzlWhP1W1VKb/po2g57I9o3sb74wrllap0+o188t87/6/tufE2I7GuxU4xNbgAbSuOgU7XguL4MSmgKqYgKQhDTVaqerJ42dBUTaYsXhCFCFZi6tJr85XftZaHa5sWZMk1bCk5WaxbrDZs9fXF0VbBYtehPmdy9K8dTF6Wdzngu2n127t2d46XZCkeGZV/JWwX9cnGDE2Nprqw2+f6TI3z+3ApRXaXtejQsj6trTT5ycmTLMb5xpcgr81UMTeH4SIqzi3UMTfZonV6Xc+eFlfqWJBhcs/y1XJ8zCzU8PyAXN3jsYD/5hMlQJkLT9nlwT6G7Jt21g34v32pURWxJgIHsNbdet3llrsIvPbqnG1Bs2h5N2yMI5Bi0ubogDEMWK23OL9e5d3eO42MZBhImH39xnqm1JrPlFrqqbAk2vhMJseuP17AD1puWtFxH9rzboGa5/MGzs7Rdnw8cHdziqrBTlHeuwKLHO4ChqWyuB96wMPKRwemN4doPZHLp+lHV80MKcQXHlz0mC3GTliuTUaau4gUy0DmaieL7IasNm6ihQBhiuxt2UlKA6ngh5ZZD1NC6glgBqOq1/dhMsSmtqIKQiCYYykTZ15/gjtEM5bbLUxfXuLjS6TPkBWiqQkRX5Hjk+FieT3/SZKlioamCZERlvW7Tl4yQixv8wJ2jrDfs7hr+9cUaL81W2F2QPaE2guXZuMFP3r+LX//yFS6t1Pk3X6gzkonxgaODnBzfahl43+4cT0+VODmWeccSYABxAyq3cEUOke0amq7LQrnFYCrCWDbKly+ssX8wya9/5QrzlRZ+GPL6Yu2Gz7Edg6kIMUNl4rrq+o12A4oi+LF7xlmr2wyl3x73E1NTdyzkeitcXW/yiZcXCENpW3ir/m1BEPLnLy3geAFTa01++oFdPH5wgKvrTb58YY1Ky8F2ffb0J1mpWTc9zjvFSCbK9985QsP2ODSYYqVuM7XW5M7xLGcXZZ/Ig0Mpjo+leG6qjErIi/O1Gz8nMJw0WK7aNxVH3Yybrcg2H0VXZFLdC/xuzMDrxNw8PyQd1bl/T4GZUpNH9vXx1UvrrNXtTqV8gvWGTa3l4AcyqeMHAUGosrsQIxvTOT1dIm5qfPDoIJ98ZRHHk3u4zWJVVQiODqe78yDIlhyvLdZIRfWb9q3bXYhzfDTN89NlDE3hyHCSfCKCH4ScW65huwED6Qi/+qHDPLJvnWLT5oHJPP/l69M8eX6FSkfwj5D9wd59aIBUVOfrl4vdXsRqp1L25GiG2VILPwixOv3BpKWcgqFBOqpRteTPQiDsfFemphAzVQZTEQxNYSIXIxnTmSk25e8MhVTEYL1hsd60qVkuo9kYpqbw1x/cxb//0mXcIOz0kDZYq0u7wpbj03Z9TrslFqtyjev5AY4fYjk+miK4vNrA6vTJCjtVfhJBwlQYz8XZ35+UfdX7k5zalcP1Q46OZNjTJ10QLq7WaVkeSzWLy6uNTgxIQRDQcgJpRY581jw/IAwDmrYriy5yb2zMGM/FODmeYb7c4sJyjbmSdNk6MpxmIhfjzEIV1wuYWm9yx1iGUspmttQmaug8cWKYr15c59mpImv1NgoypjuYirDU6aG4YQkbhHLe2yweeSMkTaVrJ6gpMskVj2i0XZ8gCLE9OZ77IV178mzcYCQTo9JyeHmuwoN7CzwRG+bJ86ucX6ohhIx/TeQTTK01ec+hfr56aZ2oJsX1xYZDzFB5aa5C3NTQNQVdUcjGTO6dLPCew4O4nhRCVNouh4dS1NouE5u+gyNDaS6tNKhZHr/3zCzpiManzyzxnkP9PHF8mPsnc+iqggLctye/oxjcN8MO8aPASeBFgDAMF4UQO4sO9vgfns0+2A/udSk1bU6MZfjiuVXOLlQ5Pprig0eGOLtQZSAtVT73TOY5t1xjarWJqak8sreP0zMVVms2thswkY+zUJYNrzVV4AfyQT+zUGMkG+HBPQUqLQchpLpkutikanmkTBXLC7A7jc6jioJQ5IAkFNEtWVWEwng+xoXleneA0jrJgVuNV2EIqaj0MM/FTZaqba5vqxUzNKmgsr3uAkFOQjquL+2hMp3+Q9cHmfIJkw8eHeKpS2vc4WcxVKUbJH072NjQzxabzJTeumWLIuDYcJqP3jXKj987gaIIFittPvb8XKd0WOEjJ4Z56tJ6t3FtKqLze8/MUGm5HBxIslyzyScM8vHbWz3OlVrdipwPHRvatnfFrTA0hSeODzG11uTEDhOL903meWW+yvG3KRH5ZsknTFQB08UmF1fqjOWiLFbalJsOLdtjvhySMGSV2FBGVpBEdBVFEXzqlUUurtTxguvsCsTWKojOj7Y8A6q4pujx2UgaCwxN4HUizKahkopqNB2vWwqtKHKBEDNkkuDKmgxu9ydNaZnie50KFI/Dw2miusKufIJq22Wp0ubh/QVeWSjjBTBXavNCp1fSQEr6Czcdj/0DCf74hTnZjDuEs4s1ZootvnppnfWGzZPn19BVuZGPmVq3evCNMpiO8MTxISotlxNj39r7oMc7w2KlzXSxSUjIbLEJ+/pu2OA5AeghFJs2d45neOrSOv1JnccO9vOVC+uYukJUU2g5Hg937HdGslE+csdI9757baHK7z49w2guyqHrrGIyMYMjwxpOR7UfN6Vd8DNT60R0BU0R9CcjuEFA25GKw6M7tJtp2h7//dkZmrbPuw/1c2goha4qPLCnwEg2StzUeO5qCdcP+Id/dpa/+dieGwIEx0fTLFctcnGD8XyMPduouHJxg//9AwdZrlr8+csLPHlhja9eWpfqRl/2QcrEDB7c28doNsq/f/IyKzWLv3bPOPsGkvz5S/O8Ml+lYbt4vvQs/8YVKQhJRnTedbCPu8azfOHcKrsK8a6Y4fJq44YkmKmD26liiOg3X0qP5RKU2xUyMf2mFWU7lYs0NtnCFW/RTGejj1YIN7VXTUV21l/kM2eXmC42EQi+emmN9x3Zvim4ptBtVq7epMqrtsl/ybpF0ilpaqx0rkohtTOb5u36NADYzjX16M2qyh4/0M9//upVlqrWjgI1Gy/ZsMfeaFMR0um50LAxdWkBcnw0ydNTRTZamzU7vfcUBZKGXLcNpKRd57NXi1xabbBYabNWdzg2mmY0G0XXZJ+o0VyUL7y+ShiGzBRbnJ4usVa3aVgeJ8ezTPYl3lBfSSGk+rJhezxztUR/MsLRkTQL5RZ7+5MsVmW/wc2bSVOTlqO5uE6tY/EqrUdV9vYncLyAO7fpA7NBKqKzpy+O7QbdIGfC1PjpB3ZhucGOKwq+nTFUQdP2WKq2+fLFNd59sB8hhEyYRWX1R9zQ+NjzcwykIjyyr0ClJfvVThbijOVifM/xYQDqjsfnXlshFVVpOQG5WJoXZqs0bR+FkLbr8za1Z90Wy7smcBpMRXh477VxcK1ud4Vfs8XWm0qCaW9zX5se7yzXC7U2C9+iHYs8x/Pw/ZCm42O7wZa+v0EIxYbLUCbK7kIMXZUuL44f4HqBtDoO4alL65i6SlRXOTma5enpMjHl2vnbjqwScXzQvIBURO4RIpqKptDpOyMt/aQyXOHIaJrVmuz53HYDfvTuMV6YKaN0nFuMjh3UcCbKE8eGeHW+yutLITXL48hwmuWaxUg2RtxQsb2AfMJAUWTP4fcdHmClZjG13sT2Aq6uN2m7/pY5/6/OLvPs1SLFhkM2puMHIZ89K62pN7cj+Jvv2stPP+DfdE57u0jHIlTsmydYNgKkAH0Js9PrMmBPf5zXF6v4QcjrSzXqbY8fvOv2zicgreV/7qFJ/DAkbqicma8ShCHHNvUFi+jq2xqb+GZRaTndZOjtRMCiY113fe83zw84tyTtiYdTESZyMR7aW7jFkd45NicOP3ximJYj78mPBiOdyrCQh/b20Z+I8Mp8Ba1TgbUZN5C93sOblKwI5HOX7tiweb7sPWlfF/va7DSw5e+FvGZRXcEPhaxECsKubj2qK7y6UKXadvmTFxe6fYIurtTJxg0ODSbZN5Dgi6+v0rBdLC8gFzMYTEeptByWqhbPTBUZzkR4baGKoogbxDmPHeynPxWhP2l2n+NnpkqcnpbuGz96z9i2nz0X07my2kAIyERUxvMJrqw1KDWl3eSevjiZqI7nh0ytyx7Os+W2FBQJ0Y1fqkKu5UKk3WMhruP4shIm0emBVrM8Wo6HqgiG0xEmCnEurdQ69nwaw5kIeVeOW5Yr18yZqEYiopGPm2iqwPFCLq83aTs+EU1DET79yWjHSltaM8YNjfWGzXA6wsdfWGA4GyMX07tCZD8Q1NoOfqd6rNr2sLxGZ/0suHs8w9ViiwCobuojoyoCXRVEdY0jw0nGcnEurzVY7KyxFqttvu/kCGfnq/z5ywt8/IU5FBGyVneJGip+IB0RwjBkOBMhRDCcjuL6IZ7vs1q3Oo4hglAInrmy/oarLxVF8K4D0hb7rokcX76wSiZm8K4DfQylo0QNlf/29AzJiIwX/fQDu/mrs0sMZ6IcHExxeUUm/YotFy8I8QOYL7e7hRQqdPcRri/7mL1RorogbmgQejiBjCkPpk3u2pXjmakiV1abUvAUgqlCzDRIR3X+9rv38sJ0hednyrw8V+Gl2TKPHezn0QP9nF2sYrud5yYV4fJqnS+eWyUkRFdkG4TBdIRkRGcoE+GhPQVmii1Wa20+euco9+zeul/RVNkPORMziJsaTdtjuWZhedIZY6bYkk5oLYV8wuCrl9b50rlVNE3h5Fia3YUEuwpxUjvo/fjNSII5YRiGotNxWgjx7S/t6/FtycaD8tJsmVcXqrw0W+bl2TIff2EBXVWImyr7+pMYmsKx4QwCufD9xJlFfD/E9gP6UybVtkshZbLedAgRmJpCvtNbodRw8X2pQN3Tl2C94TBdapKK6mRjRseOxEdVwq4FiBCC/oSJ4wdUWg41y+fCcoPWpp3phmL4Vj1D/TDED2S/JSEEMV3D871uFVlUkxZQY/kYT18u4vshiiIHXjcIiZkqk4UEP3HvBA3b3zaJM5iO8KFjQ3zu7DJuEPK+wwM3vObN8j0nZALoyxdWubRaZ7lqv2mVqi5gT3+cDx4f4iMnR7oq4pYjVdZ9SZOT41lOTmSZKMQJw5B8wmS9YXcXn4oi+JXH9+44MVFtu5sWsG/Oo2VPX+KW6q/rObUr96aqzt4JooYMikcNlZWqzVypRdv1OxUFkIkb7C7E2NMng2NTa1JVsxFY3PiuA2RVox/KCSZEejl7YYjnbV3cyoVT2LU5CZHXPh3TsD1PJseCkIbtb7VCCeXknTA1GrZHteV0FJyyR8eTF1ax3AA/DJleb7J/IImpKwwZUlXzpy8skI+ZuF7IZF+cpKnz8Rfm+dDRIf7mu/aQjuksVtokIzJZkIio3DeZZ2q90V1IBmGI7QWYUYPhTARFSOXSfLnFaDZGEMgEejZm3NAHqtiw+eqldfIJg4f2Fm7ZILvHdz4RXSViyAX4Rs+q7fIElutTabm8MFtmLBcjqqv8xH27ODiY4vxyneFMlIimcmQ4vW2F1nSxxWA6gueHrFTtroWZpiocGkrxtU4C92PPz/H9J0d49mqRatvjyHCK46MZPnximN/5xrTcPJkajh8S2YEQudhwaNrSsve/PzvDcDrGew8PcHg4xUQuzk/fv4v1us3rSzXWGhZPXVyj7ficXahydCTN0ZE0E/k4v7DJSvFW9CdN3E50xvZ9cnGdYtPm7rE8P3DnKOmYzjeurPP0lSIAn351me8RgoWKhetLKxPHl8Gt2VKLdMwgHTP4vjuk8nVff4KDg0nmK20urza4d5smyRFdp+HIuSZ+i8D9dLFJGEK17bPWsBnfxjZsshDnyQvF237uiXyc88ty03yrputtd0MxCNW23RUSbWZq9fZVYABLFYuLy3WEEJSbN5eNb85pOd72ySZrk2zxloKgTaVg9i2SZZt7ymjq9tuZyb44miLwg3BbK86XZstMrTV535EB/tvT0zuqrvHCTcVqQqALgULHxrej2IzoGrsLcYpNB0NT0Ry/29dGC0OGUiamrtGfNJgvtym3HF5fqhECcVPDDwMimoLtBfQlIxweSrJas1mqtlkot+lLmhidBGcqqpF/kz1d5zqCpdWazU/cN85wJgphyPMz0mZxcwV9qSntE3VN4fBwmgf25nmuE+g5PjrOnv4EfhDcUoGZ7VRPLFXbW5qP64rC07NFqm2XR/f3bXvPfifw+mKN+XKb+UqLsWyMVzv92UazsvLhR+4eY7lqcW5Jvm6h3ObgYJJ8XAbehLC29NN5/OAAV9eavDBTJp8wODCUZigT5ysXO70RAc/2tw0Qbn4+3iwbz4OpKhwbSVFqOd1A30QuxsHBJDXL7dgcvXFG3qDause3Fu+6G2ooZUprrE5vmN2FGHFT4+xClWanV81Gnx6QAW+vkyC7uNKibrsYmoKpqRiqrAy72hmTmrYUs1l+SH9CnifsjKGb34XjB5iBFOmZmsJqXYoQgiAkFdGpWy6qIrhnV45Pv7pCy/GYK7X5+uV1/CBgMBWh3HIRAlKmxrsO9PPwvj7mSvLZXKlbHBxMcWQ4zeMH+/nCuVWurjd4YE+h+z5//7kZyk2XB/YWCMKQyULiBtFL05b9jVuOJ100Gg79yQh//tICP//wtbWPEOKm9qKuH3B+qU4uYXQtcN8srVtYDUc1hYPDKc4t1ojqCsOZKP/la9NcLTboS5gMZ6LMl9rsLsQ5NJQkugPL6GpbCpnPzFdJRXUe3dfHiTdoN/jtzNGRtIwjwG2FrUIIfvjUGHPlFpN918ZAU1M5PJTkM2eXWa5axCIa37/DBOM7yeZ7UlcF9+3O4/gygaco0n5MCLoVLO6mKpVa2+NmURgFKUALAzqxBoVERMPeJJhShYznhP7W514gx4JURPbHSuqyh1/b9XC8EFNXyScj3cRX3JBjzGrdJhPV6EuY3DOZw1AVDg5ZrNRl3GOlbpOI6MxX2theQM1yubTaoOX4RHSFgeTWtVZEV5ksxLe4MwSbkn4301V98pVFapaPQGB5cHq6RKnpoAjR6Zvl05+KyJ6Enf3O89MlZooyJpkwNCzPp9xyKDZs/urVFVquT9xUuW8iR18qwrnFKvNl+Tlkj0VZITtZiPP6Uo10VCcZ0dlTSKBpCstV6agRIq950w4oNhpomsBUVQZSJnXLpdJ2EWFIzZLinb19SRAhqzUb3wuZLraIGSoiEFQt6Yh1YDCJ5wW0HI9sTKcYOJ0kiQJIu0QvhP39CWZKLfyI3nW9GMlGadoymWpqKo8e6OP9RwZ4daGG7QUsViz6kxEMrU6pKeeJui3b1tiu342vaqoUMNw3mScV1RlImcwUW50+tbKHe0RT6Uu+ufX0BoeGUjf0RVzt9K1q2B7juRgT+RinduXoT0bQVYW+pMlAKkLTcqk2XYJOF01NlbFsTRHUbY+IrtB+A8qnzXsamZSWSbYwhJbrc3gkw7GRDP1Jmcy+tFKn3HLRFJl8fM+hfp44Nkyp6XZEHC7PXy0zU2yhdJxV+pIq33vHMKPZKH91dgm7cw85+AykTGKGxq/90HFcX+4tVEVgeSEvzVa5b7LA4Kaq38+eXabadnj0QD/37srx356dpdZ28YMAU1PJJ6RocF9/gourddbqDnFDwdQ1lqo2pabLuaUacVO7rZ3tNyMJ9jEhxG8AGSHELwB/HfhP34Tz9vguZTwXIx83sByfVFSn0nLoS0a6DRSTEZ2H9uZJRjRqlkvT9pgrtxBCMJ6LMdbxxf3e40MEYcgj+/u5sFznr15bwnI6igABZ+arfN/JYZ44NkTT8Xh5tiKrxxQ5wTueR92S9mplxWGyoxx3PJcggIimYHU8cftSJpWmg3eLLFgqqmM5PrYXUmk5GKqCrsoFQMTQ8IIQQ1XYlYtyxpCNqjMxnXREo9zZmObiUpk2nIlQbNjbBn3OzFW6lVqXVhscH828Ld9LzNA4OpLGcn3ZV8IPuLTU2LHKfQMBpGI64zlpg7XZamZPX5xH9ksv2FO75KZ7s294IWFy50SWxUqb+/fktyTAwk5gx3YD7tmdu6FS7tBQikrLxQ2CHdk6fLfx4J4CV1YbeEFI1FDJxQ1WahbpmIZAsK8/wb2TeVZqNg3LZaXaxg2kGkVwrfEpyEWfrsqdr+PL56U/adJ2A0otZ9NrQ0IEui66ZfiqIjg+kqHUdFiotOWCLJR9fTRCFEWQjZucHM3g+AGXVuuUGg6JiFSP7BtIcmoiy+88PcNSpc2U22C14XBkKEUYSuWiIqSty5HhJIamslhtMZKN8fRUke8/OcLHTs/SsHzunsgyko4ymI7w2mIVRSicHM+wtz+JAD7/+jK5hMn9k3murDUJQphaazKajfG1y+u8MFNGVwU/cmocL5SbbSEET08Vubre5Op6k76kyYXlOnFD47GD/W+qmqzHtzdjuSjj2Rh+GHZVhNe7vCUjUvUc0VVSUZ2kqXJiLMNAKsITx4d5eL9L3NC6goDtODKcYq7cIhvTtywqQVa3NmyPhU7gtdSSdoiXVhqM5WJ86NgQpq5y9+4cT18psqcvseP+CaPZKEeGU0x1VYQhl1brHO5UkiWjOj/74G7+89evYqgKI5koX7m4huMFLFXbCCEbfm+M5ZdW6qzWbU6OZ7atnlIUwRPHh3hptszp6TKuJy1bY4bK5bU6d03kGM1GiRkq6w0H1w9IR3TCUM6hhib/l43pPLS3wNNTRSbyMZIRnd9/dlbaKJVa/MwDu3hob2GL//8GhYTOeqfp89At+j/0J00qLYeILuf47di7KaF1q5zjA3sLfOXiGooQPLDn5uKJuKlhebLvRsLcPplwx0SGT78u7fRuNeTMl1pyQx+GzJV2ZsuzWnOY2Ea8PJ6LdBW9iVv0EMrFDK4g1yiDyZtf27ipUbc8dE1g3kQ174V0VfeF6yrC247Ply+sAXKDnI4YFJvOjsQ7IbKHX9RQySVMFsst6KhdY4ZKOioDwnVLPnNBCBFVWmjmYgZ9qSjVlsvUWoua5aIpCl4QoqsKQ+kI+waSmJrKkdE0r8xW+MzZZQQhhIKhdISRbIyjI2nGc1HGc3Gib7Jq4KG9BZ6ZKjHZF6cvGaGvc73v2Z2/Yaxp2h5RXeXwUIqJfJxS06W/8/rXl2pdFeztODGWuSH4OVdu8dJsBZBBpfffpOLw2x25TpAWiTKhqd6wRi0kTCzXZ74shTbpqI6mKvzYPWPYXrBl3A3DkKcuruEHIQvlNoeH0syUmsQNFU0RaIqCEA4t278h4RV27jnrjQuGuyhApHOuiK7ylQtr/EAnKHt6usRcqcXh4fSbTsLu7esJgL6TMDWFzbPAvoEUk30B08UWfckIUUNjttzCD+Q4V1M8/DBAdASnfhDiKDIQW3QcFEWu/ceHpWDnkf39fOPKOpdW6liuB2HI2YUqu/JxgjCk1ATLcjFUKURzA1nFVW3LoOG7D/ZTaRfx/JA9A0mWaxZ+EJKJGewfTHF1rcm5lQZhEMr+hYpM8JRbLlFdJWqonBxL8/sdm88z8zX8MKDYcPmRU2MIIXjv4QHgmoD0zFyFiysNam2X9abD//yefVsS/Bt89M7RzvrM4NBQiprlkokZO+pdssFTF9c4My/HmJ+6f+IGgd0b4VYzxkP7CvzHnzzF7z87w2K1jSYExabNeDbG0eE0luczkpH7mV2FOAO3qdheqVn80ek5Lq3USUd18gmz06vnuycJrqvKjudAkL0l07GtybLxfIyH9vbxyVeW0BQZh3L94A3dI+8kluvTcjz+8PQcjhdweChFNq5zz+4sl1fqOL5cA3n+tSRWGMo2IUq4tZpLAKYhBXdVy8X1Q1zfx7kuaKQrAgTSOlpTOv0G5T5AUxUpbCOk7XjkEyapjrWbqatoisL3nhjiS+dXGUhFcNwAVRW0bR9DU3C9gLMLVWZLLXJxg/smc1xZa9KfMrdY+11ZlZWdcVNjd9/We/bKWoM/eWGelZrND901wn17Cty/J0/c1EhFtJsmq/cNJElEVFlFEzcoNR1ZIZ+JUkiYnNqV4SfuHSdqaDx+sJ/XFqu8NFuh3HQZzUS5YzzDxeU6X720DkgxgCIgpqsUkkZ3Xd9wZN/FXNxgvW6xXLP4q9eW2dsXZ7rYYnchzlg+hh/IvZzs5RV2Xa8cz0dVNPYOJXjvkQFpgexI6zwZhzQYzkaZyMb47OvLeH5IRJftWWzPZ67cJmFq2E7AT94/wenpEpW2y7nFGsmIxkgmxtmFKhFdYWq92W0705cw8AONpKkymDQ533TkmLxQoW57fPDYEHdNZPndp6fxgpDPv7ZMKiqt9kayUfb1JXh5voJAVpXpnQTK/ZN53nN4kExMZygdZa7U6lRfBpRbDq4f8sXzqzy8v4/xt1Gk85WL6+iqvH+rLYdf//KV7nPdnzI5tStHy/Fx/QGev1ri1YUaDcdFVxVOjmcxVcEfv7gAgKaEnVi0TETbbrClyEJFuisJpCXmRkWv54eo2tZk7YszJRqWS9LUOTWRwXYDXL9Ow/bRkb0+V+s2h4dSjGVjQAs39Hhhukm57ZKN6Tx4aIDvv3OUmK7ypy/Os1CR/TXVzjNq6gqvL9U4PV1mrtSiYXt4HfvRhu0Cch/xSqfvGEjxbsP2+MqFVfIJ6Qr3cw/t4txynV35eLcqfK7cIhHReXBvnmzU4E9fktdorX77/eo7ngQLw/DXhBDvBWrIvmD/OAzDz7/T5+3x3Us+YfK/vu8Ax0bSnFuuoqBQabncvyfHWC5ORFeY7EtweDhNEIZ86swSxabDeC7GYDpCw/K5YzzDR05cqzCyvYCBVIQzc1VUBc4sVMlEdV6erfK/vG8/V9cbzBblwt7xfUxVpWG7rDdtmraP4/qUmg5OR6miCsGdE1katsfUuvQkT8UM4n7QDZyBLDcNQ6mA+Kn7J/hvz8zQdHyZRIso1O0QJwgxQrq+51fX2xwZTjNbapGM6Kw1bFRVZSgdoe16/L//4nXOr9Q5PpLmZx7cza58jIsrDfb2J+hLSgWXIgSqIu1NQDZonS22ODKSuqG/wRtlPB8jYao8dnCAvrjJVy7fXuEO1wZrP4Byy+XCSp3ff3aGu3fnuu9JCHFbq59Hr+tFscGl1QZf6ywWFIWuim8DVRFbmsb/j0Y6pvMLj0zKBZCQjTuzcQNdvRaoWK3J3iSLlTZ0KiDjeZXZcgtNSMVO3ZaN3GOaQssL8QMfJwwptlzoBKFVRSpbmrasdHxgssAHjg3wb790mYblkY0b/PJje/mVP3iJalv26DM1FUNTODSUJBHRURS4tNhgsWoRhCERQ+XISJrDwyks1yduqB2rxZB622W+0uLe3TmKTYe1hk3T8Zhab7GnL07D9ik2bAaHI1RaLs9eLbFQblNpO6QjBjOlFiPZKG3Hpz+V4b7JPGO5GD94StoctB0f65VFbM/vNo0+t1RjrW6Rjen892dnCIE7xjM8dqCfwVSESysNoobKlbUmU2tNAHYVYuztT+L5MllYiJu3THr0+M7A71TqblQ2AjckVn7q/l1MrTUZy0p7ifPLDaaLLV6dr3JsNL2jcXlXIc4vPbrnpr+/YyxDseFI64u4SX8ywu5CXFaq6SpzpRaXVxvcszvH3bepUH1hpsxa3eb+yTzpmM77jgziB2G3H87JsSyvzFV4cVZajd43mecff89hapZUAbZdn6m1JqWmy+deW8HUFX7uod00LI9Pv7rUqZ5y+dCxoe0/az7OF86tcGm1gSKkzVrC1Ki1XX7jK1c4NJTiV584yH/7xiwJU+P0TIm//fg+hjNRig2H9xwe6AZwNgdiNhSYs8Umv/7lK+ztT/C9J4ZvOH/cuPZ9JG5hu1C35BjnenQbTV9POnotgJSI3Dw0dWWtSdzUEcDFlQaPHdz+dZHOJkdTBOZNrAn3DlwLvhTiN7+3BtMmIQIhYDizs0B3xtz+eBsNrkV4axu0YuNaxdla4+bVZ7sKcS6t1CkkDEx1++v20N4Cu/Ix5sptfvze8S2/W6lZzBSbLFXbrNZsBtImDUcGXtu3KttHWkXFDI1szOTO0QxLFYuIJsUaI9kofUmTuVK7m+Q1NQUvDFCEgueHXF6pgxDULY+YoeL4AZ4fEgQB1dAjnzC4Z1cey/Xls1lsoQjZO2xvf4KG7bJ/QDaFfvLCKkeGU2+q78lkX2LbqsLr5x2/U1Xx8L4C1bbLfZN5XD8gaqg4XvCWe65kYgamLjfzg5uSyu1O74jcWwj2fjM5MZZhveHw4N4CD+0tEO9YJV/PqV059vYniBpq10r8+h5uYRjyZy8tYHsB6ajGPbtlv8PEvOzHWmm6vL5Q5ckLqxBeU/xKXbX8t+NDOqLKSt3bWLJvxtTA9WUlWcvxMTWF2VKL+yYLtByPL51b5be+NkUubtBwPB7Yc2PS9GZsViaP5b/zbM/+R0ZXFWw6IgBF8LMP7matbrFat9BUhZfnKkQ1lbbuM56P8ci+Pv7guRnmym3ark8+YRLTVRYqbehUjuTiBg/t60NXBT96zzj37cnxqVcWeWm2zGxJCuHiEZWJQpbXF6oEQUDU0Dg6nOTMQo1iw0EIWSX13kMDGKrKfLnFRCHOE8cGeXqqyELF4pkrReqOz1rNoun4mLrCPRNZ5soyUVZu2jRsj3/4ibMIoD8ZYbVmUbEcNEXhj56f52ce3NVdi7Ucj1rb5RtXijQsj5brkw5D/sOTl/nyhTU+eGyQ/QNJnr5S5PXFGqd25fh7HzzEn3V6Qf3AXSM0bH9LJdDt2LDrDQnxb2Ixt1NGczGWGzf2cRLAYsXin37yLAcGUuiKYL5s0bA9YrrKdKnJet0haqjcOZHl0f19TK83cf2Avf2JLWvbIAh5brrIbLGN13HPaTo+Q5pC9ju02ved5l0H+3nv4QFOXy2xuxDvWH1/65Ngr8xVePKC7B2+YTX6R8/P4fshg+kIo9koq00HvVN53/bkmiZmqsQMlUxMZ6HcouXI+zaqKyhCSEvfTi9VVZEi2g2hrKEJBtMRwiCk3HZRBOQTOgGCpuUS1QVeIKvNAuSa7uhImoQfIgSs1i3qtsfuQgLb83l5vkLL8fGCgDvGsxiawtNXSpiawvsOZ9k3mOTcYo1Sy+XURJaG7TOei/HCTJmornJoOHlDf/m1us3l1QbVtssfvzDPwaEUmZhx2+ro9xwe5JfWGlxYbqBrguVO76d//tFj5GI6ry/XmC620BTRjU996swSpq5QSJhMFhI8O1Ui0amEOzycRFMUdFXhl9+1j995eppMzGA0HWUsF6cQ1/nMa8vdqjBFUfD8gFjHdrZh+zyyvw9ThVcX63KtLqQD1YGBFIeGU/9/9v47TLLzvu9EPydXjp1zT04YYAJyZM6UmBWoZFq2Zd+7tte+14/D2uvr9drX13mdrZVlWZIlMUlgEANAgshpBjOY3NM5d1eOJ59z/3irCzNA9yCQIAVpvs9DApjuruqpqvOe9/19E7cMZ7COefyXJ+bxg4CTE1n2D6R494E+vnV+HVWRURQJVdEYzkSpm2Le6foiiUFTZW4ZTvPYlQIj2SiKIpx/4z0xzi1XcX3hektHRRLJQNqgbnqcX63TdoSjS0KcDU8tVHjqapGNhoWhyjx8dhXXD6i2XY4Op0lFNfqSEQxNZqInznrNpGn5PDdX4eRkrivEGs3FuH0yy/cviwjrIAh5drbMv/7uFP/is7dtK4J8I5gtNFmumNw6muGp6SK259OwROLUbKlFw/QYzESI66LeJaIp3bj5jxwdwg9CHr20Qc10eXdHIP38fKWzH5NoOT7juSjrNZuFchvPDZABQ5UwNBW7IyJxglcE6rosrrtsXKfUchlKRyi2HB6fKhAA2Y4zMBXRcPyAlu3x/HyZO+fLjORi/PX37+OZ6RKPXd5gtWbi+iERTaZuOvynH8ygyjIfPDLIXMmk2BD3VT8IOTKUpthwmCu2mFqv4/ghUV2mYbnXdeOmoyK+0wsC1moWl9YWycQ05ootTowbrNUs/up79iJJEl87u0KpJdzU/+BjhxnKRnl5ucrYgkinePV1uh1+HE4wOqTXTeLrJn5kUGSJD90yyId2GJCBUJNeWquTj2vct6eXuKGI4siIet2i5ngBV9brRFSFfMKgL2mgqS1cL2C1ZnJmscpssclaTTjEDg+mWSi32ZWO01r2aNmCgVc6+9Et63bN9GjYLq4XsGZbaLLEUCZKzfS6cQ6uLzazlZYjbrK6iqq4hGFIKqpjeTauH9DuqC58P+DW0QwN2+f4eJbTCxVMx0ORJM4sVggA3w/wApgrNik0bF5arNCwPM6tVPkLD+xmoifOF+6fRJEkorqC7fl89fQyrh+yWG7xudvHtn093ygcL8B0Ay6sVHl5qfqGf04Yf8XxOAhFV5Pp+DwzU+QDh8X73HY8EQsTN7ouAxAF3d94eQ0J+MjRQZLbDIxjurDrh6HILX41giDk6ZmS6NzZ2/uWldXvZGwNwwF+9f5dhKGIDpvebPC1s2sAPHm1yJV1kSV9+0SWD9wywO8+u4gXhuRiGpfWG1TbQlWSi6s8cbUo1ESuR08iIvr2EGWbsiSyrd0g4PdfXGa1YhIC379SoDehC7VRKJwKvUmDhKHSsn3W6xYtW0THKbKEioQiSZSaFi8tVjg5nqM3GWG+1KJl+8R0Ccvx6U9FuWNSYXqzQSKisVRqMb3ZJAyhIkvk4jpfOrXE+ZU6nh9guQHVdoukoRHVFH72zjHu2pWnL2mwUGpRbNqkoxq7exMMpCNUTaHo/9rZVb5zcZ2m5XHbaIZERCVhaKzXLJ64WkCRJH7ujjESEYVnZ8uYri/UkR2nwhdPLbNes9jbn+h2g9zEOxdB0Pmsb00q6agbr8GXTi3z8VuHyMZ1Cg0bSRL3uelCg1u2iVZZ75C/Q28iEmdff/I10ZvXxo79YKpAoWF3HAepHSN5Nuoi0hDE4GmLJFJkiY93/n2m0OS/PTVHOqpRbbvcMZFDVWRmC0Ixvbc3wa0jGZ6dLYkuJj8kCIT6S5Yk/A5hvhOCMBR56YEYBv0/3r2HY2NZ/svjM7Qdn1MLFX51bBf96Qi26zNXbPHw2VX604LoPr9Spe2Iro9rB8+fPD7CYrnNdy6sE4Ti77G1Dl6L3uQrr9tQauf3oGa5+AHYfkDL8dmOWtzVl+j2b9yoDH53rxD5yJJ0wzjEtisOil4oIh8T0dcOm+rWK2Icy9s5WsN0hSpUliTMG3zftfB3GLXv6U9gaB3S5AadHxuNV4ivmcLOsY2VltgfNSz/mnzC6/HcXJn5UhvPD/mDF5f40DXr6dMzJfIJnfOrdRqWy1KlLaJr3sBsUULCdAMiuswHjwzw5EyJli3uR7oisVQyWa+bBKFwOyd0RQx/OgzFRE+CMAxpWC6aqjCSjaLKElc3mlTbDs/OlHhutsy7D/SxuzfOSiVJzXTwAlivW4xkY/xgqkDDEl2ZC6U2v/bQzgT4D4svn14W68JQ6jqX1hfum8QPwjfsGt0J6ajGL909gen63bi9huXyrx+5Sq3t8Lk7Rrl94s11NPwksN0auxNeL/LR8cX7emIiSxjC//KevTxyaYPn58pMrTfIxTSemy/jBXSjqFRFdD5oskSx0xvo+iGqIm2bRLEVVffqrzjeK3+myMLBNpaL8d1L63z1zDLlpoPp+Kx5Fh8+MvimxDrXPtdCufWGf+4mfvIQ8VRbHdchv/HUHG3H59BQUpxTO+IVIQaVSekqhYYj7u+d9JKt+3quQ3zfNpIhF1cZzcb53ecWSUVUPn1iVEQmuUUMWaLUcCg3XVRFYrwnTqXlkInp/NRtwzw+tclazeLIUIpj4zmemS0xXWiyXjNZKrc5OZHF9kO8IGC20KJuefghBKGIcLY8MRT3Aghcn+WySVRXSBoauiajuzKqImO7Hl96cZkgDEnHNJbLZjclJqIpnBjPsFwRkVfPz5U5vVAhHdNo2T4HB5O8vFzl7t15fuGu8bf8+j+4r5d0VOs6Sn8YLJXNbf88BBqWww+mCkxtNLBcIe7QFYnvXGyQjGh4QcD7Dg0wkIowV2zx1dPLLJbb7O1L8vm7x7vdjt+7vMH//eQcYQh37c7zwL5ebhlOk4vrO+4vQfSfPnm1SDqqcdeu3FseRL8TUbdccnGddExjIBXhxYXKazppfxIQe2Hx76M5IQpdKAmHVKnlMJyLYXkhNdMRLjckLNdDUxT29iUYy0f5SsVErBxiVtSX0kWnbwCaQrdbXEKIlb0gZKNuk46omI7fudf5aIqEhETDEn1UWztTRYb5Ypujo2nRt6bILJXaXafynr4EUxsN4rpG3XRZrrTpTeqYbsBETxwJiaWKuC4GM9kukbWrN0GxaW9bM3LrSIbRXIz6So3lqsmXTy3zsVuHMF1BoO302Q3DkLYbMJKL4QchH75lkKWKiGnNxDUurTaotB1kCdJR4VI7NpphttjE0BQurzdQJIlDgylycYM9fXFqpnDg2X5AT8IQrp4gYN9Agvcd6qdseSyVWqiqxKn5Cqbr88R0kbv39PDQUIpK0+arp5eFoN8TbiMpKrqWP3NilImeOD+Y2qQ3oVNtu2w2bG4ZluhNGnzk6CA10+H0QoWa6fHyShXXD9nfn+S2sQyL5Ta/+9wCdVOkdjl+QDamc2AgScIQ/e6rNZOIKnNgMMkL8xXqbQ/HD/A7CUWiNy6g3LR5omaJXl5VuHmTUZVLa3WqbZcXF8qoiszunjiTPQn6UjpPz5RYrVr4YcAzMyUe3Cdcm23HYzwbR0acaU0vRJV9Lq7VqZruWyLrW7bH186uEYQhF1brXFqrs38gyeX1Bv3JCNMbTT58dJBjHdFUuSnukQ+fWUFRZH76tiGSEa1LioVhyMNnV4loonfTdDx6kxEsR4ibZEm4/mOGhq5KHaJXXE9bwihFFq5+TVXpTUTIxsSsQZEkLDcQ55HOnPrERJaXFioUmg4bdYt//9gM6ajG3r4kXhCwXLOQJQldlYioCnXT5fJag75UhHMrVTJRjdVqm6gqY3bO3wcHk8JQUjbxAnFtKpJMqWl3OyAn8nH+/scOMbXe5Mp6HdPxaTu+IF9dn5eWqpxcrXNkOI3jhd06mabt8vsvFKh0ojAVRSaivr5w4G0nwSRJ+iTw/wX6eIXcD8MwfPMNujdxE9eg3HJQFWlHhfwjlzb4yullmrbHgYEknzkxum3p9g+mChSbDouVNuP5KHdO5vkrw7v5w47t9NsX15nebBI3VBwvYCgbZTAT5ehIipeXRbTaVgGnHoobu6HKLFfbSNBVzbidBV6RxQbAUGVanVxXLxTRIomIih+IAdZqzcRQFZHjG4IbhIRewEuLVR7a30fdcnE8n7bri6xbWxRHKrKwnvanoty9K89XXhI39Gvziq+NIpKQOjfp8LrveasYycbQFImpjSbNN9nYrSmi3wyEbT4I4V9+Z4rFUpsXFyqd4V8cVZbpSer0JSNc3Wjwey8scmVdLMB7+hLb9myNZGN89qSIm5ncJoJhptDsFplGNIUHdnCU/VnC1uZtLBdnsidOw/bIx3Uev1rA9gLW6jYT+QTj+ThV0+XWkTT5RKTjFAuxnIDepEGh4SDJEhFNKNmVzubkpcUqIfDsTAnHD7sb2ZbtMbXexPFFnGg6ovKxWwf5wVSRjbpQdoWhULyIm7zYNT83V2G9bmOoCvfuyRPVZZ6eLpGIqBiaQrllI0kS7z88wPcvF6hZHm3HFxnmQciXTi0TBGIzkDBUwtAFVLIxjXcf6OOjR4eQJfiNp+b47sUNNmo2u/vifOb4CF8/t9bJWQ5ZLpuoskzb8WlaPrqqsGskTkxXeHG+Aogc5dmix8vLNVRJ4hPHBAHiByEbdWHjXqu+sfixm/iTjYiu0N9xN0Q1sfa6r8quqrRszixV+TsfPkhMV3jsSgFDlTl5jfPV9ny+8fIa51ZqNNoupbbDA/t6+aW7J34kjsHhTJRCwyaf0LcdavtByAvzZcxOp4XnhzseEP74nDgATBeafPbkKLIsMV9s8j+eXWCx1KI3GeHW0Qw/dduQcMDlYkR1hSiiN6fQsDmwzYFzC6oic+dkjlrbxfJ8npktsbsvwcHBFC/OV9g/kMQPQj5yywDLVZPnZsvMFVt87/Im4/kYj18tcHI8x1rNuo5ojhsqBwdT2F7AS4sVDg2mtj3ETm28Qs68vFLZ8feMqDJNCVQJFHn7TfnltVr34L9Z37mP8vbxHF+Kr2CoMkevKZJ/NUxHDPlCL0Db4TmDa/u5bnCbNh0RqhGG0LZ37hDZit8ASO8wnHO8AFWWcOA1ccTX4toSdfcGUW7lloiebjkeTcvd9jPbsl1qpivi5GrXD/2GMhEWSi36kwZNSzzW6+1YZCCmy90YEgn4N49OM5aLcmXdx/c9LqyKz8ZWF4SmiD5WPxBEcUSTuWdPnv5khJFclMVSm4blsVG3OoMNuNLpYcvHdR7c38ff++gh/uMPZtBlibPLNSzXZ6msdK/DrXjotwOeH4h7Oq90iG1B68R2/ygQN9TrBqNT603Or9QAeOxK4R1Bgv0oYagKt0/kuLrZ4I7JnPh8h1A3Rdz4ZtMhpiu0bE/ET0vic9lyxD4NBMHl+AFhuP1zpAyZqvXaT/213x7VFXoSOovlNpfXGyQMFVkWe5h79+S7jvi3AvcGnX838ScPHd1a9wNSaNrdYVNcVyk1HRQJohHRv/ONC6/sizVZYq1q4flCKCk6alTmS23OLtfQFIkgEF0+z86WiGoKhiozno9xaqEK0BWB1C2PFxYqfPDwAH2pSOfcq7JUbrJWF702jTBkvW7RtH164jrrNVvUC2gypiuGcC0nIGGoKOlopz7BR1VEpcC+gSSSJLFWNdFUmdvGspxfEc6pK+sNUlGVRy5s0HJ8klGNff0pPn/XBL/3whILxRaVtsNcoQUSRDWF9x16RTzw+FSBtZrJ/Xt7txUyLZXbPDZVYCAV4b0H+7p7kIgm+ol/FLhWCPOa56+IFAsnHoi1RBLv71pNqPsH01E+f9cYPYkIV9Yb1EyXtZqFpsg8P1fuREZCqeV274NjndjtN4JnZkpcWhOv9VAm8kM7jd9JmNlsstmwsF2fmulc55T4SeLkeI666TKQjvD+QwM0HQ9FljmzVKFpe1xcq2M5wskz2RunYfmokhBZXVpv8Px8GfOa9V5VZDRZJqarlDuCja37VMgrEW5BEBBGJNELFgjFRtBZU8Qs7RX3syJJ6KrMfLHFz9wxhuWKlKdPHhviyZkStudTN13ycYOG5TG92SIV0TkxHufqZoPZYotC3Waw0y+4hYF05DUR81uI6gr/7w/u5x8+fJG1msnVjSb//ekFVEXint157tzhepUkidFslDNLNe7elWcgHe2uc5WtXvrwlTnM+ZU6KzWTcsthrWox2Rvn4FCKAwNJjo5kkCWJ713eYCAdoTdh8KmOoG8kGyGiqSiyxN/+0AH+6+MzfPfiOpW2gyRJ9KcMnp8t8fR0kadnSpRatoiwlARx4voBxaYtEnRsj4P9Cb52NhTx7mHIC/MVNhsOv3DXGE3HR1PlbjejpkjMlVoEYchK1cLqxFTeNZGl4fj0JyP4QcievjjpqMZTM0UIQ75/RYiFkeD2iayoCIhoPD1dYKNh07REZ7zjiVoc3/d5ca6M4wf0Jw0ubzaJKDIN0yUd1bmwVqfWdmhYLo4f8sxMiZeXq9wynOZffOcKVzfEfSOqqTieS9xQGHjVZ+DNQMQAiqjf8ys1YrrCWs3irl15whAODaX4udvHeGKmyJmlKmeXq+zrT1BpizV5erN5XS1LzXS5sFqnL2mw2bBRZFirmbRs8XkOQ/CRCIOAcmvr3voKZFlUgIi6jZCG7dG0PGwv6J6PhJAq5FMnRtAUmdWKyWyxLVxhnk/Tlig0LFZqJnFd4dh4hqFUlHv35vntZxfZ6DisdUWi1HJQJAlJlokbKlFd4d9/f7oTNykubE2RGUpHibzKcLB/IMXu3gR120VRZO7dk2dPX5J//I2Lgig8u8qR4TQnJ7I0LJeBdJTlislq1WK9ZmJ0iMKW8/o54D8OJ9g/Az4WhuGlH8Nz3cSfEVzdaPCNc2soksTnbh8lE9N5fq6MocmcHM8iSRJ100WSBCN+brlGRFUwXf81fU9h2CkItH3ihsZmw+bjvUkeOtDHf3l8lunNJp4fUGw4PLCvh48eHeLiao2ZQqtTuChcYLqmdO3bW+6VTEwnFVEpNB0cL8DxBNGkSCGmE3RjQQQ7LOF44r+CMEQOAbYIMHADkffbsFwev1pgIh8jGdVouwGW44EkykkPDWc4OpLmluE06ZjGx28d4gdXCtwyKoZmpuMjSXQHRroq85mTI6xUzG1VLm/2fVmqtMXCpilvOHplC7YboHZUhludUbIk8e0L6yiysM5mYzoD6QiGolBoWPyXJ2a5ut4QMZIh3WHzq1Fs2pxaqDCYjmxLgqWjGkrHxv9Oid75cUFXZX762DAA37+8QSqiUjVdmrbL8/MlZopNopoiiqQHkxSbNrYrlDRhGHaH6uM9cWKaiBs7vSg2zmEovaboOgxDVqstZElCU2RycYMv3L+bC6t1ZgpNPD9EU0SMQkxXkWUZSZJoWZ7oASs2iWriQL41HDRUpXOjNHl2tojtBjQtT8QwqRKLZZNCwxKZ4lGNVERlV2+cmulyy1AaQ1NYLItogjOLVVarJk3Lo9BQ+d6VTa5uNokbCpWWw8dvEyqws0sVGrZLKqby8VuHmNpodg/RiYjK5fU6TdsThFvnE6/IEg/t6+XJ6eLrRtLdxDsDu3sTfOLYMF4QsqdPOHheTQI4vnARn1upUTNd3n+on/0D12uFZjZb/GCqwPRmk0rLYSgT5dJanbW69UOXpAM8tL+3G724XTfduZUaz8yIeNs7d+UYzcYYyW7/vNm4zmRPgjsnja47zHQCNmqW6HFSxD1RV+XXCA76U5Ft1/Glclt0jQ2mxUH88AAtx+P52QqW4/PopQ3u3tXDPbt7WK2a/ObT8wC8/1A/luvzzEyJTExjs2HREzdQZGnb4XDQiXA4OpLh2A7FuvY1JJLz6jKeV70OlbZLRFd27MEazkRFj0IoOoR2wpdPL3dzzr9xbp0/d9/kjt8rAYTQdl/JW78WqaiGLAmiJn6DCMaTk1nOLFVRFIlbbkC8yZ0oYwBph4n7lbU61Y5S9VSn/2k7xHSZdof9Gszs7IzTFIkWoCGGjNshrqvdfVbsVd/z0P4+jgynKTcd/tMPpvnjc2uvG4MYIg5viiSUhhISTdtltmhDCJYbXtfNJCMESIOpCC3Xp+X4jOZizG62mMjHeHG+gun44n7iiNdmPJ+gYgpF49RGo9sr1psweGmpQsxQaFgeni7ckrm4/raSYKoic//eXq6sN1434udHidGc6OO0HJ9Dg3/2dJObdYu4ofCzd4wR0RTajsdcqYXnh+ztTzKajfDCfIUgpDuQWii1sD1Yrb3ipgxuwDMFryN8kyVBklfaruhgkWVSEQ1DU0hGVPpepwvo9WDtEBF7E38yoUgiztwLQgxV5sR4lof297K3P8GXX1yh1LIx3YCqKRwgfiDu8Y631d8TYLo+QSicYWKvL7rxGpYYzCUiKomIykg2xkK5TbHpoCtQaDpUTdAVCT8QjvSvnF7pRklV2g6/9/wS55fryJKE7Yl4vrYjugyrpstwNkbcUGnaPo7nI8uiKzwb19FkiQurNVwfEoZCEMCBgQQfONzPkeE0SUNjtWrRsMT+7L89PU+AIJmTEYVC0+Z/Pr/Ih44MoCgSj13e5JFLBZIRldvG0ty9WwzDCw1xFgVB9mx17F2LF+bLFBs2xYbNrSPpbfu9f1jEDA3T254IE0k1AbeNpPmpYyPEDZXvXtogG9OIdAi9noT4nfb1J3jvwX4cP6AnblzXD/aRWwYoNoVr4ENH3hgBBpDrRDSr8s5C5x8GhYbNbKHJvv7kD9Wr9nZAV2WurDe6TqLb38Z7+5vBWD7GL98r9py254vePMdnJBslDIV4dbVqoSsimSUX11iyhZNnK4LvWkgEjOZjOF4o3GCdwb2MmKNZ3iuCaL/jHNGkUDiDQrr7rK2Bv6aIGDhFlkhGNE6MZUnHRFKLqojoP0NVODSUpi9lML3ZZKnTBbZQbrNYanNmqUrSUPnAEYMj1+x3n58rc2mtzvGx7LbJHLoiE9UFQd92fPo7MeR1a2fhGAhBSyqi0rQ9+pMRmrbL9GaLz54YEfMSXcFyA0otm+fnyrQsj426jel4tByfoyMZdvclxJyiU4Gyhabt4QfhNeSHQLnlUmq5OH5AQhfxc8/Nlam0HaptQQDFDJnjYxlsL6Blix64//jYdCdqtoUiiTQMyw1YLLcZTEf45rk1nI6TVpLEexjVVHRFotxyUGQYzkZw/ZA9A0k+dWyEJ6aLfPHFJb760gp7ehNU2w4bdZtiwyEZUTk0lObwcJq9fUnu2pXH9ny+dX4DVZbxwxBVkcnHdS6vN3H9sBPFKBP4IQ3PIxHRyCc01usWmZhGJqbTsMRseGZT1MRU28K5PJ6LoSkyy5U2mbjO5+8c27aT+o0goin8zO2jrNcsEZdre9ySSHNoMIWmyOzrT6Kq8nVqo4l8nIWSiSpLTLyK9NcVmZlCk42a1XlvXcotkTzhh6FwcgEVf3viRxgxAjRZQVKEIFGkSHiEHQLMD6HlBPz2M4t84b4JJnoSxAylM5cWscWbdXF+r5kuI1KU4YkYZ5Zq2F6AIsuMZKKEiPqe9ZrFWD5G0lCptGzajo+McIMnDI379oqz+q6eOC8tVvCCkONj2W6P2M/ePsbl9TrrHVG4H4YUm+Kz/6VTy+zqjfP+wwM8enkT1xPz9NFcjCAMietCzPp6+HGQYBs3CbCbuBFqbZdvnl9DkSU+enTwDS06mw2hVPDCkELTZvoaF086qrGvP8m7D/QR1RSWq22KDQdVkWm86oZ0ea1OuSXcHAlDYXpTFE7bns+J8Rx9yRURT2O69CZEHmlUE3bpatvpkjUBglwSll6IGQoTuTipmErd9BjKRHh5uY6OcK2YtnC9SMBgUgdZZjgTYaVq4ngytuvjBiGS91oFp+0FrFVNKi2He3fnSUc1rqw3cPyA4VyMv/3hA8IpldDZqFu8vFxjodxmpWpSHLdFaaAE79rfx7sP9BHRFHIxnctrDZ6bLXPPnvybUh41LJdvnlvDdn3W63ZnQASj2ShrVZPXmSldD0lsAEPEof7WkTQTPXEiqsIL8xWODKX5xPEhxnNx0jGNPzqzyUrFxPQCRnNR3ndogJFslGLT5g9fWkGWJD51fIR0TOPxqQILJdF5M9kTf02Rd18qwufvGsf2/DeUJftnEXXLpeX4HBxMs1RpM5yJ8uRUkblCi0xMbDSQRMzJo5c32GyImLNoR5mxuzfBvv4k376w3oknAQgxVAldVdDlkLotcsRX6zZSKAaOvUmDSsuhN2kQUWU8KcTyRHee4wnb/0A6wmK5jesHzBfb3D6R4+hIhnxC58mrBa5uNrAcEX3ieCLeIx8XEYvDmQhrNYuIphLXFeK6SkSTOTqSwQtEj0u55fDUdJH+VKTbU5OJaUz2xFFkiGky6YjKvXt66E9F+Nk7x+hNGlxZb5COaRSbDvsHksQNBT8I+eNza3x/qkBMU/jA4X6Wy208X3SrrFQtXD/k2bkSh4ZSN3RN3MQ7A4Yqo1yzmG+X9BfVVeaLLS6u1ZkrtPjL79rTJc1AROUFHZdi3FDJx3X29ifJx3XOr9Q4u1zlyFC6m3X+ZiFJ0g0jdq4lGvqSRjfCYDt8+sQIGzWbgXSkq2Sc7I1z9+486zWL0XyMe3b30Je88XDH8wM2Gjb5uMbDZ1dxvIC5Ypsv3DdJsWlz964eCg2HYsPmxfkK88U2Q5kIyxWTlu2RjGiUOrF5hipjqAoxTWU4o1NoiIjjxVKbsWu6aS6s1rtxj+s1k4imcNto5lX3jFcOlTe6xW0R+Yokd4t8Xw0xLNx6rJ2HwoOZCJ4fIslCqb4T9vYnuLAq4tJ2Gp7FdUUoLQlvuOe6czLPYudgdnBoZxJMkYVYRwKkHVyJbniN8OcGs3fTfeUVXa9tH9kE4pAPgpD0PB9Bh12P9YbVHZIUGq/tF9uKlRpMGRi6ghd43MicEgJV00ORQVN1HtzXy28+PYfjhSQiKlFdptQSysy4IdOXFJ//StvFRxCsa1XRr1K3XCbyMWYKTQxVEb1kSQNFhf39SfxQCDVKLYfHpzbZ1ZtARkJVZZqWR0rRSEc1epNGdyD5dmFXTxzXD8jeoD/uR42+VIS/+f79VNsuBwd/OIHWOwVbw8VnZ0pYbsDR0TQLpTZHhlP8/gtLzBSatDtEaqUthhERTeHkeBbT8dlsODidOLo3AtP20TrXLgjH6lYKA51/ShKkoirj+Rj37+3h+GiWL55a4upmE9P1efeB/re8Z9b+DMWc/WmA4/vdoVjLCUgaKrmYQU88QrntUGu7NCzRaXigP4nlBtiucA5ZriCjNupWp9vHYFdvkpgu88J8hTD0SEYUepIGx8dE3L/l+rRtn0xM1BiEQUi7497SJTrVASrJjnDn6ZlSV9meMFTOLdf4iw/uZigd4aWlKpbr05eKcChh0LQcNhoOV9ZFxF/T9jr7K4WxXJL5UltEdsV1JCR+57kFSi2bW4czTPbGOTmRpdCwMTSZv/TALn7r2UXCUMwn/uPnT3BkKEM6KkQw9+55ReiTiqqko5oYJO4gIproibNQandj8ZyOYt/zAx6bKtCTMHjPgb43nQBw7bwlDHZeJSTo3re+f2WTv/TAbn7twd3MFVt868I6s8Umt45mhBtakrh/Xy/HOmtQb/LajlONv/KuvW/qdwQ4MZ5jIB0lriuvGxv7ZhGGIV85vUzb8bm0Vr+OOPiTgEcubjCz2QRED2zb8bsO6ZeXq5xaqHBgINUlVX8ScP0Qa8umLwmhxR2TefpTOl89vcJmwxZdR4pMG8jHdWqWi+mI9SMETE+QS7t74uzuTTBTeIXIuPaTqUjQdHx0WSIe1dio29d9fcsx5ochg2mDh/b3sas3wVMzJSRJnEVGsjHu3t3DlfUG850qg5btIUmi+69hu6xWhYPUVq6fu4mqjCJhCE/PFLclwSRJYrInQcLQGMvFGM/HqLbd694j1w/45rk16pbHBw71d90qqiJTt1wURfSCtWyPh19e5Z988mhXkO0HIUtls+Oi9btdyH90doUnpors6U/gh4JEAEFI/pfHZwA4PJTmof29HcGvzEBK9FBFVIV0TKPt+JRaNrW2eD0iusJnjo8QIITpDdvlylqD8ys1keTgh8Q0IcQay8WotB1M18dyA9ZrFo7nM9ETR1EkJvMJnpousmxa7O1LoCkye3rjGKqCoSk0TJd6R/ywXjcZysRYq1kMpSP0piOcHM9wYaXOo5c2qZkOf+29+1BlmWLT4sp6g5guY6gqKzVTCBODkIgq0rAsN2Bvf4KHDvQT1zWmNhuYjkegqwxmI9y1O09UU7hrd55vX1hnX19SiLMdj8FMlGdmS9y3t/ctR33nEwZXN5uossStnX3cE1eLxHWFfEKnRzK4d08PNdNhaqPJ1EaTP3fvRHdNvRYbdYvVqkm1aVO1PDRFnCdVRSFpKPh+2I2r33I7B6E4P4edYbMiS/SnDQpNh7WaRUxXUGQhPgk694KtxLJzK1VWahbLZZNcXOeWkTQ/d8cYV9YbzBbbNG3RgXllvYGmSOiKjOP79CQ0JFmmJzCY7Inh+iFHhlK8MC9ILk1V+MLdYxwfy3FiIsdazeSF+QrPz4n5vSyJtR/ErPvbnQ67zbrNbSMZ+hImi2URc7xUbjOai1HsnOse3NdDsWHzpdMrSBLcMpLmjskbr5E/DhLsRUmSfh/4Q6B7Ag3D8Cs/hue+iXcALqzVWO+w21MbTW67ZoAXhiHfu7zJQqnN/Xt72NvJ2j82lqHadjFUmf39SS6sCneFJInuJxAL0EdvHcJ2ff7VI1MsV9q8v2PRBxF/98+/c4WG5XFgMMmHDg+wXhfFlKfmK5yYyAISyaiK1Snm1lSZVFQnGRGXzh2TWc4tixvDSDZGIqpycaWOrsjIisSvPbiXRy+LDP/BdISm7bO/P8Hj00UIhHr6c3eMgSSxWjWZ3mx2bamaLJGKasR04bDxQxE55PkBlics58/Pl5ElCcsVLqhiw+bb59cZzUV5ebnedTeB2CB85aVlrm40KTZtFkptzixW+V/fv4+rG82uMi1uqNwx+cYdKJfXG6x2Ii5qpksmqnG50GS22HpTBJiEUM2/a28PNdtjf1+SDxwZQFVkcgmdI0Np9g0mr1NIRDSFI8NpTMfjz9+/i9GsyF++utHsEp6zRWEr7kkYLJTaxHRlx6HfTQfYzliutPnyqWWurDcwNIVPHBvm+HiGf/LNKxiqKGPd1RvvFF2Kgnu7kzOsRVSycZ27d+U5MZ7j8nqDM0tVwjBkKB0lF9c5MpzCcgO++tIKUmdwLCsiAiGiqxSaNkGHFPPDAEWWRMcbYHk+xabYGKejOqPZKLt745xbqfGNZ1Yp1C1CJPIJDQmJqKpQszwcw2c4GwVEp0m5JQ7Px8cynJzIocgyBweTnFqsUmzYjGSjvLRYFXnlEhwfz/Kzd4zx60/MCUVpPsF8qc3vPrdITFeQZakzoNS7Uawj2RhXNxq8uFDBdn1yMZ3Vqs1azUaWJH753gmatlBn2m7Qjd26iXcuzi5V+GffukIQwl9+127u39vbPbhtYThl8Pc/cpDfeX4JpdNPV2jY15Fg2bjOP/jYYZ6fLTOai7G7L46uiL6KH0wVcLyAHzQLb5gEm95s8vhUgdFc7LrInZ2wfyBJRBPul2tJo+1gqMprvieiKfzaQ3swHZ907I0N079xbo3ZQouehE5Uk3G8gJgu4pKemSlhaDKfOj7MbKHFc3OiX2/rfusFIQcHkxweSvPSUpWxfAy3U85+ea3OXLFNb9IgG9f5hbvGefTSZic+RAymmpbLbzw1T1STeXBfH7/6wK7u73Wtz/lGg9x05x6+kwsM4PmFUvfRNus7RxQNpKJkYhqqLN/wXuWHIp5ZUcQ6vE0lGIauoCgSgXdjEmxPX5K/9OBulBtETwMQvpKRtdNqdftEnrgmFL7HthkkbCGfMGh1+kp29ezcfbb1okmA6QVs94iW43VpRXsH18nMZpMvnl6hYXrcYC54HfwAGrbH2aUqcUMDPHIxnY8cHeC3nxPD0L19CVJRjasbdeZKNqoss3cgQV8iwnK13emcdMV+zg87sTMOXhDQsjxun8jjJALmSy0apstmwyIZEZ06e/sSfPL4CKoiEdPUN3w9vVX80ZkVKm2Xlxar/KUHd1FuOXzz/DpRTeGjRwd/6E6wnTCaizH6Z8gQvVQ2eX62zLmVWmfQID5X33h5neWKieOJPYHnB5RbDpoikzDEUP1DRwZpOh5PTxcJgvB1XY0gBiMxTcYNQpq2IKlffQ0EYUjL8ojqClfWG0xvtlirmqJ3orPvf6sk2NgOJMBN/MnEtf1xIfC1s6u4fsDjV1UR7a1I7O5NkIlrtF2P9ZpN3FCYyMe5dSxNre3y8Nk1IOT4eJZPnRjtCh1mCi1ycb07gG7aQkwQIHq29/QKgZgkSWRiGp7noygyJ8Zz3Daa4bm5EsWGjSKLlAgQw8DFUosH9vVw9+48thtQaFg8P1fG9gL6khqZmEbLEc4wTVHY05fADUKqpsue/gSyDN88t8aV9QYLpRbPzJSZyMfIxXUODoo+m6YjyDpVkchGhegyF9f5pXsnsJzguvXZUBU+f9c4T04XOL9aR1Xk6xy255ZrXFitc9euHHdM5gnDkN95bpFyy8FyfSKawnrN4tBQ6k0nAFw7b4nqimAitkFMk5nsibHZdNho2CQMjV+4e5wLq3VsN2C1arFRt64TQiUM9Yb7nDeLH0W6wU7Y2rL9KGLEf9R4fq6M5YkepI2aeR3h8+xsiZbt8+xsiTsmc9smNvw4EOtElT7f2XPLksR7DvQynIlRaDjUTQ9dkZEk6Eno1C2PoXSUlu1RaNi0O6oLx4f1hsO7D/RhOi6rnbhNJDAUUBSJdLQTVw002q8QYBJgyOCGQCd9qWZ6PHJpk+xClRPjwlVyZrHKetXi915c4vJ6nV35OMuVNreNZtnTF8cLQm4ZzjCei/HU1SK6pvCZk6+4M2VZYrInzmyhdcMu3s+cHGGzLoR/2jYqx4VSm9mC6MA8s1TlXQf6kCWJ+VKTn75tiG+dW2O22KJhiroHrhNNSvzM7aOYrk+17fDPv3OF9U78aLlt8/KyqH25ZTiNpsicXqzw7GxJ9GPNl5kvtfjA4QEODqb45fsmsDyftZqJ5QasVMU/VUXCUBX29SXpT0X5xjnRAx/XFRq2mDFmYzqZmEap5XJwIMVazeL4WJYPHB7ge5c30VW5m+TxwSODzBWbGKokUqxsj96kQT5hYLk+X395laWKiSJBT1xHU2TiuszhoRTVlsvffN9+qm2H710uUGhY/N4LSx1Cr48/PLNCGEK55bF/IML9e3o4t1zD0FQ+f/c4X3xhGcsTnWMbNYvHpgosFJs0O87F3X0xZgtNLq7WKTZsbhlO88x0kUtrdfwg5ErQIJ8weHyq0O3lerMwHZ8npgpMF5o8O1cSseuOj+n4NG2PdEzn6EiaRy9tUm47BGHIkeEUe/quF3y1HY8vnlqm2LCxOtdawlDxw5ADA8kOKSwRtl1UWUTwRw2NhukgI6MbovJGlmX8ICToVO7oqozrBcQMFdd0kRDO2339CRY65y8vCLuOwoSh8eD+PhRZ4pmZEstVk4l8nFxcY2qjSU/CYLPhcGAwiaYoXFytsas3geWJDs3RbBRZFhUPpxarPDld7HQ6e8iSmHfryvXniFMLFSFSzcX4f33wAMfHs8wVW7w4X+bqRpPvX94gYajs7kvw7743Q7ktaCZDVVi7gYByCz8OEiwFtIH3X/NnIXCTBLsJAMbzcU4vVISV8lUHorolOnMAnp8vs7c/Sdixfn7gcD9q50Zz62iGVFTD6BQkXotiS2Qqj2RjTBeaHB5Os9mw+J/PL7JZtzBUUdT+6OVNLq01GM+LuIQtZluVJG4dSXNyMs97DvSSTxh8/q5x5gst7tqdRQ5lmo7Lrp4Ev/fCkig4DAIUSeI//WCamK6wry/OmSWvo8qWMFQZ3w/pTxn4QciD+3v459+eEv0bnYiiMAipthwGkkk0RSbwAkJJ5LoiSZ2iSBVZEsSV2RmofPnUEl4o7p/HxzK871A/+YRBfyrCI5c22KjblFoOYcdaOrXRIBvTkSRwPWG7rpnutv1p22EsF0NX5W5knusH/PazC1iuf11PyOtBQqhdXl6rk4ponF+rs1KzGM1FaVgehqpwbrXGew70MdmbIB3VeHBfD4YqM5GPX5cZvqcvwfmVGoosdYdo9+/tYU+f+Lmo/icjY/udhI26TdMWqvSxXIyIpjCWi3PLcBo/CDg2lqXUskVUYM0kYSjEdOF62tuX4MG9vRSaNudXqzQsl5FMFKVT4o4ELVsQzXftyrNQaqOrEqmITqXtsFm3xGAnhMPDaQhD2q7PRs1itWbRtDzqpsdkT5zepMFfetdu1ioWT1wtsFhq4weiu6g3EaHleCyXTTSVTiZ4g8meOAcHU5xZqtK0Pc4sVRnKxNhs2GTjGj97+ygtWwzua6bLdy9uEISwUjFJRTXGclH6UwbFpt3tp5vsiXPP7h5+4c4xpgtNVju9At+/vMn0ZgPLFVnOHzoyyEA6wmyhJTKZJXjfoQFOL1QY66xFN/HOxoXVBovlNkEYcnapyv17e1/Tv/h/fOook31J/taHDvCDKwW8ILhOELKFnoTBh48Oslxpc2Glzi0jaVQFxvMxrm40GX8dcupavDhfpma61FZqnBzPvqFYmLGcuC5sz39LXQVb94o3imJTZOOXWy6/dM84G3Wb8XyMRy5tAIIoDkK4c1ceLwgxHY+FcpuW7fP+QwPct7cHgM+cGGWlajKei/F/fW+ahXIb2/cxHY98TJRzn+v0D0U0hY/dOsS55QqXNxq4fkjjVf0ZknLN+3eDOUQ+oXNuxSeX0EVk2TYYuiY+SFd3frDzK1XWahaSBNMbzR1VbrW2iJpsdmI/toPp+BCKw5Dj7XyXDsOQjYY4bN+IBNNUGcv3USSQpe3f31LTQZJlVCWkbu38nO892Md/f3pBrIU3OID2JA026jYxXSYd297BmI1pKJ09VcJ47e+/XGlzeb2O4wXcINUSXREKWBmhtBSuroCpjRqWFzKZi/IPf+oWjo5lSMd0Fktt8nGNmUJb9OQoMjFd4aF9fdy9O88fvLCE5fm4XshtIxleXKgwnovw5HQZRQoptxx6khH+wccO8eXTKxQaNmEYcttohkODKYazsW33MZ4fIElSR5nr4/oBj17apCdh8P5D/W956Lc1bNua7ZxbqXUVmLOFFoeG3p64Qj8IudTZE74e8f5Ohu35fPfiBi3bIxFRaDoenh9QaorhiKHJ3XhmXZGRZInjYxlURajw79vbw6HBNH/nQwcptRy+8fIqf3hmRQwjVQnLDbd1h+mKDLKM7wlH2Kt5YlWWsJyA9YbF41cKpGM6QRB2yHWFqCaGZm8Vy/WbvafvJLx63yJJwpEbBMIdkIqoJCMqu3rinFuuUWk7HBpMcceuHJ8+McoTUwX+4MUl1ms2thuQjxt88Mgg/akGfiCEA1c2GqiyzJ6eBBt1m4btYSgyR0eyfORolMeuFCi3bBJxoTZ/YF8ve3rjzBUaHB/Pkk/opCMqP5gqslRuc2qhwv/6vv3cMZHjwkqd6c0GjufTsDxihhAUlBoOfhAQUWX29idxPDH8KzUdyh3l/GK5hSRJqLJwfkgSDGWinF+ps1wx2T+YYL1qUWjZ/NYz8xwaTJGNjzGciRKG4XX3Yl2V+eNz68yVWkxvXB8z+8R0AdsNKDcd7tqVp+UG3c6krYdIRlRyb8Ehde285Y6JLF89u77t92mqTEzXGM/HiKgKTdtjakO4aNZqJifGs9dFVtfaLitVk1298TcliKi2HRZKbSRJ9Mjm4ga/cu9Ed7bzdkCSJD59YpS5YpM9vT86h7HjBTw5XSAM4f69vW9ZvHhwIMnzcyUIYblq0jDdLrm4py/B2aUau3rjPzECDOCxqU3OLdfQFJnZQpO247FQanPPZAaJgJAQxwvoT0eYL7Wom6/07emahOm+Qqabjst6zWQkGycMZaqmuBZtP2Q4adC0AyzXFwLmuI5ZF1HRUU3m6EiactthuWwSVUVXoN9Jy+hNGbRsn6mNBl88tUSt7dKyPRqWx8mJHCfGs9w5me++jhP5GB+9dYh8Jyr9Wnz81qFu/cJOMFTlhukYA+kIyYhKy/bZ1Run2BQRcf3JCBdW67id1Jy66aKrEl9/eZUDg+muKF2WpW5v6t/64EFWaybPzZb47sUNbMfniy8uYXsBP3vHGC3Hw+yIVJxO+s16zeLgYIq+ZIS/+5FDlFo2Z5eq/OcfzBDXVVRFQpYkXC/g1GIFCGlYPj9/5xhfOb1MwkgSNVTumswjS6IXUVdlhjIx9vYm+Pffn6bQsBnKRviVeya5c3eel5eqvDBfAUni0GCKL9w/yXrd5sRYlq+eXmatZpKJaRT9gLbjc2qhSkST2dWbYP9Aku9d3iSqyUR1hd6EztOd+NhUVOX/+FqL6UKT6c0Wh4fSDGSi4sy3p5dzy3Vqpsunjg3z3HyFtiOcS6brM1dsYbkBF9eaRDSZli3mi9WOgzgARjIRJvI/3DWmyqIP7fxKjcFMFMv10RWFhXKLhKEgSZKIXozpFJo2iiRtWwNgOiI+eCBl0LB9RjJR9I4gNKIpHBhIosoSpxcrRFSZQtOh2LSRELUbA0nh/rI9cd6FEF2VOdCfoG77oodYltBk4dhMGir5hM5ssYWhSrz3UD+fOzFCoWnTdDwe3N/Hg/v7qJkujufj+SGPXNxkrtjE9QJ6Ewb7B1Ps7U+iKRKaIvFrD+3mq6dX6Eno/JvvTbNRE/GU4/k4pabNcDbGuw/0kY5qnF+pcXAwRcvxaDseluezWjP54qkl/tp793HLcJqNusVLi1WKTZtq20VXRVw4iL+DqGLoef336C2/u28QYRj+ytv9HDfxzsZwJspfeGA3ssRrNj4JQ2UoE2G1arG3c9D67sUNLqzWReTYHaOvRC1d0/Pk+gF/dGaVQsPm3Qd6Ge5E5G1l/J5fqRHVFCZ64kzk4zy0v5dff2IOQxUHzVtHM/z2Mwu83BmKq4pErW13h0A10+GffusythdwcjxLzFB5erpM3XJYr9sohBQaQrWlyBKqJCJ7emyDbExnX1+StuNTM13+6Mwqz82VmS+2CBGF9VvFw04IlzdecYcpskw+oTGYiqKqMgPJCAOZKC/MlZnaqFNpOdRMkGWR215qOuQTBvfvFVEM/ckId+3KU+tEHPQlDYYyUXoSBj9/5zgPn1nl8lqDpXKbL9y36w3dAPpTEf5CRyGvKTJBEPKJYyMslU1enC93Lbqvh61utIVii6gucp3H8zGmNxvULI+BVISYpiBLEqcXq/y5+yZ57EqBS2sNHruySW8ywq0jaXb3JehPRq5T7YPY+G5XQHwTbwyHh1KsVNs0LI+ehM6u3gRffWmFxVKLqKFyfDzDE1eLRDtOu426hYRQAC1XLV5aqrCnL8mXTy3TdjwqbZe7JnOcXqxSbDqcUyTu2dPDP/vUrTw/L0pLF0uiA8j3A37jyTlRhjme5eRkjiNDKf7Pb15m4/wathugq0KB+uD+Xr7y4jKLlTblloMsiXiuTEzDC0IkJJCgaYk+siBsYXsBhwdTDKQjbNZtejuEcVRXKLds7t/b21VyfvjIAN8+v8563aLt+Hz97Bq9yYhQskR0Ti9W6EnoJAyVB/f18K8fneLcSp1dvXH29iWomSI3XRT2RolqCh88MsCltQZ9SYNkZ4157zWu1Zt4Z0NTwPNDgjDsrqnuq7K7H7u8yWDaYLInseN7P7XRoGl7ZGMqf/+PLuK4PiO5GPfu6eG9B/u4f28vyTdBmu7tT7BWs7qHszeCrftvNqbxC3dPvO0H8fcd7OelpQr7+pNkYjpeIFTRjucznI0wmo131/WtbjG7M+C6Ntrx2mLrY2NpYrrMS4tVMjGNQtPGUBUShojdTUVV9vQl6E0arNfFJvvn7hy77vfSriF6bjTseHq6TNP2mS+I4dFo7rV9lL2paLefK3MD8clSxcRyfSRgqdLe8ftSUY3NhiNc8Tu8PXFdiGmQwLjB0OrMUpXHrohoyJ8+NrxtnyaIe7+EUObvRLQEQYgXCmdJ2925K+GZmVK38+HZmSKfOTm27fdpikRUEyXcnh8gvPLXI7ymO8J/VRxlqWnz5VMrtB2PyZ4YF1cF4bndjmWr9y0EkCXiqoitLrU8ZFnC9EOemi1xaDjNF+4Te4/ffHqOueImsiQRhiFxQ+X2iSyHBlN87NYhvv7yGudXSixXRNTcC3Nl/CDEDSERkdEVGUNTOD6W5anpIisVkyvrDZYqJndMZmnZPndM5rqDmY26xZdOLWO7AV4QoCkyqiLh+SGFhs2R4RQj2bdGJP3UsWGmN5tM5ONIkhAXCeWt/LYq9p+bLfHcXBlJgp+5ffvPwZ80nF2qcnWzycnxLBM7XC+vxtR6k6sbIgLrg4f7aVoeVzeb9KcipGM67zvUz+W1Opoi8QcvLrNQqhPVZIYzMc4uV/nbXznHeC5GzNDY0xtjsidBJircs64f4vnua2I+JURCRNt08QNxPcmKOINs7ce9ji2s7QQEgUPNdIlqCrcMp0hENe7f0/NDuSniN13u7yh0bhndz8fBgRSZmEZvIkLUULm0Wuf8So3TCxUimkwyohMCddNjptCk0hai1K0uk0pbxIQPpCJYnsf/eGaRpu1RaFQZzsbIxHRatk+55XJlo87JiSw/e+cYp+fLvLxS7ySbzAuiWFXQFYnpzSbpqIYfiBhGRYbFSovffm6R6c0mEiG2F6ApIhIwE9W5sNqg1nbRFI+mLcQcxabDQCrCpfU62ajOHRN53ne4nzNLFabWm8Q0FUmCfR3i7tKqiIZq2D6GKuKodEXmW+fXubxe5+R4rivKATi/WqPcdLCc6/eCk/k4l9cbTPSIZJOEoXL/3h7mS23unMyR6fRyvdptUrdcvnZ2lSCEjx8d2tYdfO285W/8/ukd3+cwhOGMwYP7eqm2XRIRlQurdTxfvKYfODzQ3fd4fsDvvbBI2/EZz8f45PGRax4n5NRCBcsNuGMyd91eKQxDvvjiMk3b49xylVbnddjVG+c9B9/e808urpOL/2gtxudXa5xdEkKqTEzrxnq9WfyND+zjjy+sUzNdkCQKDZvBzj323Qf6uWe3EP/+pLBaNTm7VBX9XZ0UpLPLVSzX4Q/Pros5VhDi+uJ/bVsI5nIxDVmG9ZqDKtONUbQ8OLNUIx3VxAwpDAmQUKWQ1bqD6wUoErQdH0mSiGqKEPgEAdObLfrTEfIJA9cLiCgSuipzfCxLpeWy3hm296cMGpYnPv8P7eLuXeI6tFyf2UKb4WyUmC6I5UrbIRfTr7uvSZL0hvuhGpbL9y5vEtNV3rW/tzvXTBgqv3LvJF4gusls12elajJbaDKWj9GbFORbPmGwUjV5+OwqpxaqaLLE5Y0GI9ko9+3pQZKkTsy8WF/6kzqX1htgSpxbrvLZk6PMFloirlKS2NufZF9/opNuJaDIEn3JCPv6kwymo7h+QCams1q1CDt/B9PxMR2Xb19YZzATZb1mce+eXj5xbBhZlvjOhXUurNbZqFv8vT+60LnOfVqOx79+dIp7F3r4lXsn+Uc/fYSW5bGnX8yM5gotXl6qcmW9wUpVRK2vVk28ICQIAmKGxmguZK7Y4sxiFcsLSBga63WbpXKL/8/XLnBkKM1gxqDUdropT6oic2WjwaGhFEOZKEOZKFFDpT8VYSwXQ5ElVjrnprghXIqWGzCQjtKXNAiCkLlSG0KoWR737+15y9UCIPZWe/uSHaFmyGA6wtRGk6QhanI+e3sPuzvOwvv39fDu/X2d2h6Xr760guMFfPy2IVIRDdcPGczEeNdAkv39Sb50ermb8vG/ffQQf/0PzlBqOZiOj0SIJMnEDYVkRCOiK7QcD8sVCWJxQySEhZJEoW6jdj5HuipTMT1mii0ubzTROgKrzZrFrz81x0rFYrInxmdvHyNhqELI5/r81G3D/C/v2cPff/gCDdvjxcUKTieFZabQZDgbYzQb46++dx//9I8vMVdoUm45eEGEgVSEREQjGVFZr5l8/8omYQizhSZDmSi7exO0bB/bC6i0XB4+s8ov3TPBUDpKTFfEmmBIRHUZ0wWQODGW43N3jL6m8mY7vO0kmCRJ/x34q2EYVjv/nQX+RRiGf+7tfu6beOdgpyGSIkt89uQoTqfQEmC5IiyOG3Xruj+/FoWGzVJZLHaX1xt89uTodV/f3ZsQKvrhDJ+7Y5Slclt0UdmhGEL4AZc36qSiOo4Xko8bvLRUo/zdKf7yu/awXrOwPWEPPrtSZTQbIwxDkXvq+8iKcHo5nhhEBJJQ0Ll+QE/SIB/XeHm51lGlhFie6CqSCIkbQl253hDKL9cPUSQxZOpPGfz0bSNoqsyXTy1zbrnGaC7GsbEMs8UmEV1lMB0hlzA6xYDJ616fdEzrZgbftSuPLNP9em/SQNdksOgu2sqNJO7XYGszvlRu81+fmGW+2OLWkTS9SV3EZbwOD6ZIYtPoB2IgJ0udbgI/FNm3fkDb8djfL24YW90qyxWTMAy5tNYgrqv85tPzHB5Kc2Q4zftukgg/UkQ0hY/fOszHjg6JYtog5Osvr1JsOdg1k3/yx5fpSRgUmw6GKvPeg/38YKrIes2kZjl87/Iml9bqGKq4IecTOnv7E7y0XEOShGomG9WI6jItx6fa9litWSLqMwgIQlFavVI1aTk+j13ZpNJ2iGoKnh+SNFQCQl6cL3NhtU656TCSjWIldDRF4eBgCs8PWO+UyrqdDgA/CFEkicFMlF+8e4J/9ehVFEkipinMlVrIksTXzq52D3ZuEKLKENNUZEkMF+dLLbIxQXw9tK+XsBP1ko3rlFvCQVJuOQymo9TMBsfGsswVm8R1FUkWEQTbuX5u4k8HhjMxJnvjhGHYJRFU+fp73uNTBS6t1blrV56/9t59rxksLpXbfOPlrXgKFdcPaDo+C6U2I9k251fq3LPn9ZVP1+LEeI4jw+lObMkbW+s3Ou6PStvF9m6sjPxRYCwfu84BMrXRoC52u+zrT2173RiqgpG4fl+w5YixPZ/bxrKd4ndBTFTarugKSUbY15+gbnqsd8jBX3toz7a/V09CZ7oo9hh9yZ1JgC11muOH2DsQP35Ap080uGH/RX8ny1+S2FYxuIW66RGGIW03wN9BhCLJMqosEQThayIorkWp5QjluCLxngN9O37flov1RqOZTEwnpimYiBjcHX//a7pbN7bp8dqCoSrYXkBEV3Z0d69UX/n5pn39sNEPBTEd0RQOD6YptVyKTRvLCcSwN4RXv2MhInJb72Tyh74Y5jUt8bPXXkaTPQnGckKABRKlls3/+c1LHB5OoysKV9brNCwPVZE5OZFjar1B1XQJwpB9/UlGclEUSeKOyRx7+xI8cmmd5YrFZsPi331vGhD9M1v72/liC8cLqJpCgDWYFiKLZiC68W7U9/d6SEVe2Ttu1i0atssX7p/sDrR/1LBcn0cubXBprQGdAvSdOvX+JMH2/O5BvmG5/ErP5A2/PwhCHD+gP2WgKRKOFzJTaDOcjXFkOM3+wRT37M53IrDKBGFIKqohSxK//8ISfSkD2xXx0FMbYvhfalrCra/LlFqBcO9JEvKrGgdlSayBQSdKKghD/KBzHUudft6QTum51P1sSxIgiS5D541GPVyDV4JTQZJuOt3fSbi2K0eWhGNIlmTec6if4UyUT/6Hp6iaLo4Xsi8ZFxHptkel7fD9y5t84PAAR4bTxA2Vff2JrmAgHdOolGxOL1aEOj6qs1otsVG3CEIhAk0YCg3b42dOjhKEIbPFNiumQ6tidmoQ3G53ltUReEZUBVmGp6ZLNEzhqszFdO7YlcT3A15aqjJdaBLTlU4UaEg+rvPTtw1xaa3O1Y0GkiRiwI6PZ5nIx0W/dLnNet1iIh8nm9C5PZalaftYjk/dcrl7dw8P7e8lF9e5tCbqGi6s1q4jwbSOWFVTREzVE1cLtB2fB/b2cN/enuuiBU9O5Dg5cWNS5epGk826uN9dXq9z567tneJb8xbf3/7i1SQRI3l+pdGJ+hX37q1VPh3VKDZs1E4Uqx+KWQfQjaHcwsvLNf7d96fx/IBqe4yP3jp03de3SPZ0VERSbg1u34nIdRJ1AHLxt3av/faFdb52dlXEggYBQ+kIu/quj+B7u6KHXw8vLwviYl9/El1V2Nef5O7deZqmy9/9w3NU2g5e8MraHgQBXhgwmIlgugGfvX2MJ6eLrFZtdFUiRMYNxazJcgOGs6qYmakygRuIxwlDZHmrN1dEAUuScCwRCmHTVjTpk1eLpKMax8azHB/P8rWXV/H9kGPjaT46OMRwVohVr91jf/WlFS6v1VmvW7z3YD+W63f7uz98y+Bbep1eXKh0Yw/HcjH2D7ziNlRkCUUW758bhIxmo6zVTJqWx/6BJH/jfft5aqbI09NFZEmi0nY4tVjm/EqdP6xZrFRMfuYOIQbaclmt1mzSEY18MsJwNooiiy6/4c5c8v/5nr3s7jgewzDk2xfWWSy3eWBfLwcGUvzSPRP8h8emmSm00DsJFwlD5dS8cGXNFlq860Afl9canF4s05M0eGCf6D6/tNZAVyX8MOjsXyRSERUvCKm2Xb5yepnvXd4grmvs6k2wVGlTbNo0TBc/FNf9Ws0inzAo1C0kRcZ0fSptl/5UBEWRkJAICTEdnysbDYIABtNRYrroX+tJGFTbLlXTIR/XOTqcYa7YIqarHBpKcctwmg8c7icT1fiXj0zx1dMrWG7IJ4/3MdmToO34HB5K8a++M4WMSHZvWD63jma2jbV8NVq2x8NnV7Fdn4/eOtTdZ0c0hfcd6md3b5xbRtLd+4bnhzy4v5eT41kkSeITx0aue7z5okiPACGO2jeQIGGoXZf0uZWaSPCK64xHNaptl+VKG9cPcIMQQ4aBVIRjYxkiusyZxRquH3Zre/IJAy8IiahCJNmTFARx3FBZrZosV0wMVaI3GSFEdITpisxSpU2laTOUiXJkKN3tZJ4pCsHXnZM5XpgvY7kBDcvlmZkSqajGV04to8rwyeOjOF5AueViuUEnzUwkRkU0hd5khItrDWzP57Eroqbhrt09/OLdk3z34hogoalCVHJ1s0lvwiA9qbFYblNuuvSlDPpTUWxfRHz+iSDBgKNbBBhAGIYVSZKO/Rie9yb+lECSpOuInAf29XJqocyevuSOcUy9SYOhTIRCw+bQ4GtjWsbzcX7tod3IkugcGkwL1cB63WajbvPkdJFPnxjld59b4OR4Fsf3md5skYiozBSa3D6R490H+ri62WS92uap6SKeH5CKqNieQl8ywmguxtRGg/6kKL9cLLXQFGE1LjYdJCQ0VcL1RISTH4QosmDvLVcQX34nfz1EHADyCQPLC3h2rsx6zcT1Q7Hhd3zunMzheAEHB1P8+Qd2MbXexPZ8jnVUxJfW6hweSnHXrrxQ02wzNPrQkQHOrdTY1RN/Q4v/q3F1s0HNdLG9gGLTZrXa5o3MVsMQUoaKrohD1WbdQVFl0jGdmKFQt1yhuBtIsqsnwZ4OGfbgvl5OL1Z4l95Hw3a7Tr3Nxs2IlbcL116P79rfx3rNYqnc7mRbt4hrCitVk7ih8KEjAzw5XeDsUq27MXvPwSyuF/L+w/2852A/xabD6cUqEVWhYbn871+7wK58Al2TSEZUIppCRBXDlqbtYdctnpou8sC+XnoTOo7nExDSsD2iqoLlic6fatvpKp0+d8cIpxaqvLRQxQtEDGndFEW4yYjCvXt6ODGew9CFtZxQOEfU6SKVpsMfvLBEJqqxXDFFlIofkoyopGIal9ZqjOfjTG00uH0ihyRLNEyPJ64W+dDhAcZyMQxN5t0H+njfoQEe3N+LrshsNmzmiy0ObrM+vRW8M4+NfzZw9+48qiLh+iF3dQYTr15fTddnuWqKWIwgwJCvX58lSRA5Tdvj8FCSd9PHUqXdVXUNv8VulTcbafiu/b28MF9mIh9/SwSYIKItehLGWzrM7+kTDhRVkZnMi3gw0/G7Lq+dcHWj2R1G5eI6nzg2wu0TbZ6eLjGSjZKN6wxmoswWW8QNhVT0xn+3/QMpXlysIiGxb2Bnt8dwJspSpU1UV3aM7Ds5nmUsF2Ol0uanbhve8bE+fWKEs0tVdFXmQ0d2jgm0XRFRIUv+juRmteXi+mIAUbecHR9rvWayUG6hSBLl9s7fl47qNDq9QcoOz+l4AUlDiFxuFEn87n09/Pbzy0gSfOxVQ7PrfrdqGz+ERtulbrrktjn0HOwXUSF+ENKXvP7rfckIHz06yEK5zXC6Hy+ARy9v4PkiFkVVZaQguE7EE1EgqimCjIio+IEY5KWiGqWmjecHuJIg70zbY7VmEzMUgiBkreZyabXOas0iH9c7Mc8yUVXh7l15Nus2z8+ViGgyPQkxsHF8nz96bpVK2+GBfT30paIUGqIUPAwFIbWF8Z44z86W6EsaVE2XiCbzmROjaKrU7Q58I/CDUDiot3kfG5bL77+whBeEHB5KveW+hNfDuZUaVzeaSEB/OsLJidxbdrH9OKHJMvmEQbFhM/g6a5LjCQdFqelwciLLx24douX4fPv8OnFDZaInwT2780RUhWJDDPBBxKc+fKaJ7QW0bZ+7duVZqZrMF1u0HI+IrrC3P8li2WQgFVJsOigSeBLIoSCqZUXquEkkLEf0TDQ6jFYQClFaLqaBJKMpIoWi2LCpWQ6Vts+5lTr7B3hDvQuvhiLT7cQcSN3s4X0nQQxxJbxADNUurNbpTRr0d9bWW0cyOH5AVFP49PERLqzVubLRZL7Y4oNHBhnNxfg7Hz4o1uNrhBwbNZN/+8g0m3WLmKZQM12qbRs/ED11hqbgeCGrVZN/9/1paqZDuSXixEAiosoMpCOs14WTQZHgF+8ep9RyOLNY5anpItmYwWAmytGRjHCPhyGVtovnh7z/+AD1tosiw3AmwrcurKMqsjjT+2IgrykSl9fqLFfayGIGz0guyqePjxLRZMotEZu4tz9x3d6oP2Xw3GyZExMZTMfv3vvu3pNnudxmsifOTKHJS4tVQNQbPNhxtb8ZjOdFTH1IuKNj+1oMpONA8TV/nk/oHBhM0e4QesWmw22jGn1Jg48eHeLpmRJfe3mNuKHwy/cIIcTHbh1ivtTiluHrmznLbVtEL/Pac7kkSXzy+DAzm01+8e5xNuoWYcibitZ1/eAtzSreDkz0xPn8XeOEoZhBvRGsVk2SEbVL/H3l9DKlpqis6E9HieoqDcv9kXatvRV4fsD3Lm/iByGzhSa/dM8EfghD6Qj/5tGrJCIqdcvD61yvqgS5hMHRkbSIac/FqLUd/DBEU2WyMYO65WFJoPghmZjG+w/1cX61zrnlGmEYCOGL79Mb1zk+keP5uTIt20dXJIYz8W7c80Kp3Y3mS0VVhtNi9ldpOaLfaa3JrSPZbYnJhuWyUbdZq1l88cUlJAlOjudYrb75+9oWBtMRznaEvT2Jne9vCUPl3j09nfoIldFsjLt25zk+nuWOiRxPXC1w21iWqKbw+FSRuKGyUGpxca3GQlGQHjXT6UTQatyzO8+hoRQXV+t87JZBZGBXT/y6Xt2a6XJprYEXBHz34gZjuRgnJ3Ls7UtSMz0s1+umB/QkdYqd6PuLqzUs12epbHJxrcaphTIRVebePcIt9fRMienNJtk4GKpM2/F5abHKty+s07Dc7l7WdH00RWb/QJJq22U4G2VPb4JL63VOjg/w4kKFcsulYQkh119/7z5emC/x8Jk1EoZKy/HQFFnsczSFw0NpglBUbixXTUZyUX7nuQXajo+uunzv0iZXN5scGkxx+4R4XyVJnJGmNlr8yr1ChBGGISfGszwzU6Llenzi2NAbXldmCy1Wq1uC/Ho3eQvgyHC6m0D26KVN8nGd+WKb8Ablw+M9MdJRDccP6E3qWE7AifEsKxWTIAx5abHKYDpKyxFix3/7vascG83y7fo6fQmdmK7y6RMjLFdNzq/UumaRqCYzmImQielUmg5RTWYsF2W20CKiyTQ6AjxdkelLRfjg4UE0RWI0F+UPXlhmpWLRivpcWW+wty/JUCbCy8s1FkttbhvJ8N6DIsGg2BJ736FMlBfmywykIyyUTNq21zkrqV0Xo6rIfPToEMPZKL3JCFFdYbVqcmapCsCTUwW+fX6dTx4bIpswurGPddNFU2UmeuNEdYXBdKSTeCA6lC+t1dnXn3zdGcOPY1WVJUnKhmFYAZAkKfdjet6b+FOKPX0J9vTdoCwdMWC8ZThDscNab4drBwK5uM7PdtQVmiIWg3t25/lnn74VEEz/H54R9tQDAykMVeaX753kPz42zeNTBRGZKEsUm8Lm/dC+Xj55fIQvnloSyqwQorqK7QacWap04hkdwlDqDKLADcTGfaPukDBUOmJLQgQZVm27DGQC9vUnOD1fJkTC8nzmiy2alsu+/hQfumWADxwewFAVbukUzxebNo9dEfnNz86WCAK4d+/2joGehMH9e3p4YrrI1Y0m9+/reVND0sNDaa6sC1eWHwbMFFpvSCkaAPNlE12BiK7iByG+47Out/nwLUMslNoYqsJT0yXMTozkPXt62NufZG//KyqbM0tV5outbobyTbw98APhuIpoCp86McR/+P4sU+sNfu7OMb760gobdYvlikk2puEFgVBwWh6KplBtuRwaSnF4KMXphQp/6aE99CQM/sezCzw7U+LcQoXnZsuMZGNU2zZBENJ2Q6QQbC9ElUMKDYu5YpOfPjbEy8s1VqoWUV1mpWbyS3eP03J8Xlqo0HJ8Ti9WRV+gBovlFms1i/6UUMK0HJe65fC1s2uUmg4P7e9F65Rqzxab1E2XhUqLqKbw288udBSuHUt5RCVmKPQkI7h+wNGRNHv6EsR1hbPLNYIg5F8/OkW55TKYjnQ3RluH4y27/o8K7ut/y038hDBTaPKPv3EJLwj5Rz91mOPjORw/4NrjUa3tENFVdvfEt11zR7IizsHxAiptj7/w4G7glbzw7brjpjYaTG00uHUkw2guxrnlmnBCjWbeUueC5fqUWw737umhL/nKAGum0MRQ5Tc0pP7m+XVmNpvk4jq/ePf4G3agbSEfN3hofx+5uE4QhvzOswu4fsCD+/u6TpXt0JsUTout4d2vPzFL3FD5xLFhJEJ+48lZRrIxPn/XmIiQeJ3N83rd7AxyhRt0JxwZSbLesBhMR3dUB285XN1AqDS33ttXo9TpCAHYbIghyXbwgqAjPpGwX13y00E6phIGwoWm3sDJs1azREyJBOu1ncUlpuPh+SJmSlW2f7xsTKdmia6CMNz5EFhoud39z3p159e27YnHcEMIfA947eurahKKLAb720WFZmI63zi3xncurKNK4rVzO3Fwvhe8xgtv+RD4PhG901EVhhRaDrW2y1Klzf/1vWlWq2KocWqhDJJEVFNxfB8vEOpo3fEpBDZRTSYbE47oS2t1Wo7H3v4kMiLSMgzhYiduBmCpbPLhWwZ5bq7EaDZGTFe6JGEYhvzxuTWCUERKj2Zj2F6AoclvimxeKLV4+MwqUV3hc7ePvkaV7/khfue9s99g1PVbwUAq0h24v+tA3zuCAAMRD/W5k6NUOzE9N0K17VBqOrRsj995dpH9A0ke3N+DBDw1U+TyWp0XF8rs60/y2ZOj3L07z/cubzJXbOH5oidFVUSHykbdotCwyMQMRrJRZKDUsgkDEcHrB0JsJgGpuMZQOkLNdGlYnlDYX3M5bsUhtWwfTZEwNIWPHx3CDgK+cXYNz/eomS4XV2qMvoU9zLUfm7Z3c+fyTkKI2P+DcDf7QcDURoNTCxWycZ1fvneCiZ64WLMkSEc0ZCkUDmaEaDNuqK9Zk04tVji7XKXteBwaSCFJElc3ArwANF1iNBsDCRaLbU4vVfD8AE1VhAguhLYiUWg4BAFkoxq7+5JcWq3z4kKFC6t1FFniPQf7GEhFeWmxwuW1Bqoiif5tQmK6Qj6h8/xcme9c3KTUsonrKoeHkiiyzGbTpmX7/GBqk5lCi5iusCsfp1C3+d/+6ByaIjOQivDg/l7OLFYZy8cYycYIAkFC+2HIdy9u4nghv3TPBEvlNvv7kxwYSHJ8LEtMV1E75OJ2g/PzKzXmSy1un8jt6ALvSRj8xQd2CRLwDbhzf+e5hdf8WVSBqKFyaDCFoSpMF5qkIyoNy+POyRwL5TY1U4hh2o4v9rGqLKoleuJMbzZ5ZrbEkaE0Ez1xbp/Ic25Pnabt8aFtnDX9qUj37/NGlPvX4pGLG5zr9Md88AaioB8n3ozb+pmZEs/OljA0mV+8e0IQXSFMF1rYjujvuXMyz2KpzeANnPM/DqiKTH8qwuNTBSTgPz8+y7v29/LifJnHLm9SbDr0JHQkJNodN2AyomI7PqmoxmqlzfnVGpbjE9FkFFkmonairD1BbD15tcBSxaJpi71kGIrob9sPObdcx3QD4rpMNqpxcCBFzXSYLbYoNUVvoBeELJZahCGs1ixBgoVCpJSOadsKTj9ydAhdUXhsShB8tutzca3GL959Ywf3q9F2vO5Q/8BAiv5kBE2Vb0heup1Enc+eHGM8F6Wnc6bSVZnj4yKtIhvTaDs+P3fnGDMbTRYrJv/i21MkIyrj+TifPTnKdy5ukIqI/eJvPjVPueXwrgN9fP6ucYYzUSRJwvZ8Hrm4ie365OM63+qQU1fWG3zmxAjrNQtZhmLDIQwAJO7aJZw9cV3l0nqDdFSl3HJ4aaHSfX2fnC7yiWMjDGeEaKvdIWaynZ5l2/ORZQnfD3l2VhBnx8ay9CUN5ootaqaLKkvcs7uHvpTBcsVko2GzUbN55OI6w9kY4/k4P3fXGIulNsPZCN+7vEkQwK6+ONW2Kwi9SxtUWg6rlRgRTfSm9SYNXlqqEtUUnp0tsVxpY7vCSWh3utKurDfYP5DkpaUql9br5JM6J/IZ3n2D1ItXIxlROb8i3FYP7d/55/b3J/n1J+ZoOx6/9ewCnzwxQnQbIWkqovHn7puk3HL47WcX8IOQ+/b2MJiJ0LA9PnBkgKShMr3ZxNAUZjabhGHIR48O4vkBqqpQabts1m3WaxZ+ENKb1OlPRYhoCrOFFisVk5ihYDoeTcsTfceShKpISJJEb8Lgrl15jgyn+CffvES5ZeP6AWXTpWY63fP083Nlzi1XiekK3zi3xtWNhnCv9ib4lXsnuW+5xgvzZWQZ/v1j00yt18UZUZbQVeHufPjsKqbr8/Fbh7h7dw8HB1NM9sS5uFbjfz6/iOsHrFaFA7LQsLm0VqfcdtjTm+AX75oACZ64WmCpbBLXZeqWy1PTRfIJg/e+Tqzuj4OM+hfA05Ikfanz358B/vGP4Xlv4s8wCg2bb18Qha+tHTZfWyg1bWqmy1BGdIZMbQg75mbD5vN3jRPRFOKGysdvHeKZmRK/+ZRYxIoth0urdTw/EIu/7eEG4MvwzFxZOMU2WixV2sR0oRwOEUOEhVKbIAjwQwnHf8U+7ncOqUEQMJA2KDUczE4XhR+K6JRHL2xQ7JTkhqEgkIpNB11tcXAg9ZqNZDKiYqgymw2LtRo8fHaF28YyKLLED6YK6IrM/Xt7ukPRi2t1znQUaamo9qYIpf6UiI/aqFv8o69dfE3J9o0QAo4PnuUJmzuiS+r/fnKOTEyn2hYH/asbdQ4MplkotZjoSXB0JN0lE24bzdyMlfsx4OXlKk/PlADYqJuie0SWGMpEBIls+bRsUUIbdjpgJEnC0BUWy22CUCiYLDeg5fjs7hWHp8VSG9cLCBCbylLLxQtCkW2NUDCHIWTjOoWGzaMXN9nTn+gog3zqpsuXTq/wFx/YzbsP9POfH58hF9f470/PUWw6uL4Y0G7ULeKdXGbPDyjj8vVza9RMl9snc1xcq/Hk1VI3LlGTZVGs6viUWzZHRzKMdkiJoUyUw0Mp3ndoAEUWm01JEvb9S+vCeVLtFPL+pGIsbuIniz88vSI6nEL40qlljo/nXtNPpKkKigQV0+EbL6+SiencMZnrqtFEbJ04iDasVwaHW6pi2xPKu1RE49BQCj8I+db5dfwgZL1m8dD+Xh65tCEeK+QtCQW+c3GDmc0muirzhfsmiWgKZ5aqfP/yJiCcSjcqhgZxvwU6h5cQbQfCZCc8dmWTl5drqJ2hVrnlcHm9wVrNZk9fousGfjV6k4bI4/dDXpgv07BEQfZiuc1vPDnHE1cLqIrM/+9TR7ljhxiha/HUdKH77989v84//Kmj237f0zNlHDdgvthitdrethPMcsVBxA9DCs2dSR9dlXlquoSmSvz0sZ0dY4mIRt0SismdoqaXKu0umbEVvbEddvUm8P0ASZbY07uz+KjSdgigG2USM177PlzdbNDuuN6vrDd3fKy1WpsOv8h6fWfiTZWlzuENwh3I1KsbDdGpCtuqe6tth6sbDc4uVdls2F0CbAvbUXXFtkfMDai2HXJxvdu/ZTk+51drXOx0pygSxCMqhAqm46PJEigyMV0RsSBtFy+A0azHmUXRI+X6Pn/+/l2sVEwyMZ3bRjMslU0qbZdDgynmiy2eni4xlIlw+0SO8bz4PAUhNDoxkluvRDKivWmV/PRmEy8IaViiu3L/wPXvYzau89Gjg6zXbI6NZd7UY78ZjOZi/PK9E0jwjovH0lX5OpfLTuhJGBwaSvHycpWBdERExl3apGIKEvjqZgMQQ5G245GKaEQ1hamNBrIkE9fCzoG/RNvxkIBC0+blpQpPTBWRJbB9MTjcih0LgJblcandEHGI2+zRRRcYSAR4gRjMf/3cKv1J0R3pBQFIEpqq0HQ8livtt0xSPnpxk7/70bf0ozfxE4Dt+t01MUR8Thwv5Jvn18hEdfb2JVitmrRssX7cPpnl7HIV2/WZK7X5b0/NYagK7z/Uj+MH7O1LoCoyhqqgyqLvJ5REzJmhKRwYMDg8lOLpmRJL5TYNW3zORceziuNLeK5wyOcTOuW2C6EQAD07V6Y3rgvSTZW79xPT8ZkptDg8lOLQYJLzq3VemKsgSVA3XQoNi5rl4vkBmy0H0xbCS1mSmMjFUDqRak3Hw7dCZgut7pr75VMr9CYNTi9W+NUHdnF2qcZyxex26TUsj82GzcNnVwlDIerdWsN/8Z4JbM+/TmAEYobxyKUNwlBEHb+6n/RavKl+vm2+1fRhs27z2FSRf/qpW1iotFmpCMHP83NlJEniQH+SXFxnNBe7bsgfhiHfOr+G64csV0x+4a5xnrxa4LbRDPfdoDuwYbndvsls/I07Q69siPVxaqPxJ4YEezMotcRez3YDmpZHwlCJ6wqGIlHvRNDOFVscfBPOuLcTnzkxQq3tslptc365xtXNBpWmg6bIjGRijOajnBzLMlNo8t2Lm1zdaDLbIYwlwPPCzv4qwO24gkDEgWbjOpfWRMqKuL6BThpSqeVSbYvrT5YUVFXl7EqVcsfhjCRSNrZEOacWKmiqjKZI6LKMpsjkOp+r8ys15ootToxn6U0alJo27z3Ux3sO9vGfH5/h7FK1c72tc3w8Izr5dJWlSpuZQpNbhjOvcfmdW67x6OUNkhGNn79zjIimvKHP8YvzFZ6bKwOQPTpIf/qV6+PxqQKX1xs8ebUoIloTOn/rgwf4H88ucGGtTthJH/ilu8f5vecXKTYt5gpNrmw2SBgqX395jY26xXg+zs/fOcbUepPTixXWaxb37Mkzko0yVxTnkn/yx5dx/YCNuoUmy5TbLicmsvzvHz/Cv330Ks/Nldjfl8T0BIFZM10KDZtGZ438rWfniWoKSxWTXEwjFzPIxTVWKiIhaFdPjLWaRbXt0LQD5kttZostXN/vuiZdP2AsJ2oDrmw0kCSJr59b597deS6u1fkLD+zi+FiW71xYp9oSLqAX58uEwGKpxXLFoidpECLhBQHTBRHTKDqlqwBcWmtQbjscGkzSdnyGM1HRuwe0bR9dVQhCWK5YPDtX5s5OatbroWF5XQesdYPul4trddqOS9vx2ajbmI7o9NoJTcvrCk5WKyazRRGxOZCO8OmTo8wVWzw+tcnTdZOliokqw8HBNHXLpGm94rrLxlR0Te6IOtLUTQ83CNioe/i+mLeFobjmcnEdPwipmw6//ew8Y9kYpxerLJZNJEL6Yzr37hGdhP/u+1d5YqqIoSmkIiqm7SFJYLpBV9hwy0iaW0bS/N7zi8wVWmw2HFIRjWxc59BgkkLTYXazQs10Wa6YJCMaR4bT7OpNEO3sWz1fxKBeWq0zVxIz9aF0lIVSi0rL4YmZIqcWykRVhZrl8vJyTaQkOD4T+Rh7+pI7vcRvPwkWhuFvSZL0IvBuxC33k2EYXny7n/cm/mxDV+Wuqipyg9idatvhd59bFEqRqEbNdFmtmmRjOoaqCPdVWvz8Y1cKvDhf5pnZEutVE9sTCqiYrjCRieL5AdMF0SHUsjy+f6XQ7QOJ6Qq3jGRo2x6PTxVwPKEAkeSQiCZBGBIiVGlxXXQsmG6AR/hKCbEEpYbJBS9gMBOlaXm0HY8gFPbjZETrDrW2egYimoKhKtyzp4dnZkqUWg5eIOKoNus2z8+WWK2aBEHIezodWtlOrnUYQi7+1oYPX31pBT8IcN4MC8YrrjcZ8T/T8VFkCcPx6EnoJCIaG3WbiCpzYVUog5Yrbd57sJ+epPETjwz4s4K27VNoWOTiBifH85RbIq5hIp/g+FiGy2t1JElEUKmyRICEBLRtj3LLYbVm8vJKjYFUFD8MWSi2qFsuTdtjKBMlDKFteeTjmnAVtIVqSiIkEzeQJYm65fH8fIVdvQk+d/soVzebnFupEQYhrudzeqFCXFd5evGV4aYEGIpCOiqKOJOGihsEuF6IFwiirmF5LJTatB0P2wsYTEc4OZEhYWg8cnGDuKFiOj4P7Ovl+FiWhu1eNwAyVIV3dVREhirz3Uub3L0rT8vxeOZskWRU49aRzA27f27iTxfG8jF8H4IwYKQTWyi9agIx0RNjJBNFV2W+fWGdyZ4Eiix1nT+yLPGRo4NMbTS7Lt9r8cxMqRunk4qqjGRjZGIapaZDPqFf10G25dTZIsrKLZv3HOx/XWei11nP/SDsRnOZ11h9t8hqyxXF8NsdIN7bOZTs7Uu8pRibrc4JrxNv15s0WK9Z5OIai6V2N3riWliuz1PTRSKaiJ3bP5DkykaDuK4wnIlS7SibPT94TafFTriGh6Rmb9/1BeB3nDNyKDqmtoOiSMiScGXdqPD8wmodpBDPF12nu3YgpVRZqPlkWcTSbIfBdBRDEzF9vamd1ctzhSZ09ibThSYndyBPt4xdYbizs8wLxb4nCMQwdSdkowYyooslF9t5D/LA3h6emS2xqydOOrY96XD3nh6SEQ3L9Tk5+VpyMx3VWKtaYm/0KgLsRjA9cVeTTJdcXKgsR7MxCg0R59UKPQxN9Ls2bY+G6RLtfN7G83EqbYeViikU+5JwH88Xm8iyxB++tMI/+ulbSEfF332rAwJguVPsDUJJuYW24/Hg/l7WqhafPjFCGEJPUr+hI8DtXM/XXoe3DKdZKreJGSrj+e2JjT19yRseLH9U2InQ/tMCWZZ41/4+9vYluLBa4z//YJaYoaLLElFdpScponGOj2dJRjSSEQdJElGFNdMhRDiDBXkgI0nifVQVGdd3RfSULBEEouPH7Axo7GuEddf9PkDMEHGmlucT18X6EEoSYQgbDYtsVGfPeBYvCCg2XfJx/YciKbPRt95TdxM/fqiKzLWSicl8jAODSWptlzAS8sxMiRCYLTYZyUY5Nprl3j0NmrbHfKmF5fpYrs//eHaBdFRjudPffHwsy/17ezm9WKbYsNFUGaXjrDi7VGO1ZmO7flcoKhES1WRUWcPVQ4YzEcZycdZrNmEYsFE36U0YbDZssjGN/lSEX7hnnJnNFovlNv2pCLm4zgePDLBet7iyXqcvGcHQZHb1Jji3UhOdPE2HpuXRtD3GcjEe2t/HsfEsCUNlV2+c713exHYDLNejLxkhHVVp2sL9UGzYPDVdpDehM5yJMJ4XHWmpiIoiSXhhSLnl8N+fnkeVJd59oI/BbfZgesdR0rC87jD/R4HJfJyLG63X/PlWB/fvP79IKqLSjuskIyKhRVUk0jFt2/5ZSZLIxnU26za5uM6LCxXR6YiIiLs2teVaPHx2lc26Tdwo86v373rD6QB3TOY4s1jdds/3TsC9u3uQEJF5A+kIS+U2u/oSPDNbQpLA8gJyCf1PzH1QVWQ+eXyYRy9vUm4LImQsF8PyAvb0Jfnc7aPk4jrnV2pcWK3T3BRRo7oioSoybddBlkGWRNxe0/aI66qIfvPCzn3LB0k4wduu6NgLggAn6HRW+gG261FtuzgdUWtfwiBh+KxULQjB8QPCEDIRnf50lF29cT51bATT8btk8pbw/exSDQlBLMQ0BdsVnarnV+o8dqXAbKHFUCbKZl0kIixXTH7x7onrXpe5jvusbrqUWg5D6Qh1yyNpqDckpa+NBH+1QHZrbtlyPKKazFLF5NJajTAMiWmiR2koE+XfPzbDXEl0wcZ0haShYnkBMV3udkf1JnSOjWd5eanKas3EdD3umMx1YvAU1qptaqYn9r6SiLj84OFBFFnir79vH6bt8eJihRfnyzi+6L/dEiPYXkCpYdOTNEhHVHb3JvjE8WEurdZ5fr6MF4SUWg4RTUGRZSRgPBelagoH+mJZzFp6EwYnxrOM52OsVEw2GzaaLOY8Q5kIqiyzUbc4v1LD8nwMTaFuelxaq+P4PhFV4fhYhl++Z4J/++hVJERU78nxHO8/PMDDL61wrtSi0nY4OpymbnkcG8twy3CaM0sV0lGVe3bnObdSRe90JVtucMPY9i3s7U9wetHAcn2ODL9CWH//8iYLpRb37e1lT1+C4Wy0cw5/Zc8GUGk5RDu9WNdiLB/jvr091Nout09kadgehYbNREc0MdkT5/Epidlim2rbQZbACwQB5AeCVNzTG8fxRQXIQDrKsbEs79rfxz/+xgXOLVdxJZkgCDFUuVu34/oBSxWLfCLCcrUtko8MhYSusq8/yYmxLGeXqpxfEa4uSYLNps1wLkbFdNnTl+DYaAbL9VkstxnJRjkxnuXUQgVVkSjU7e55NxlRMTSZRtXl6kad71/eIKYrTPbE6U1E+MSxQWYKbT5yywAzhRY9CZ0gCMnEdQZSEc6tVnnk4gYLpRYJQ6U/HSET1WjaLmEYUmo67LmBqe9tmxhLkpQKw7DeiT9cB373mq/lwjAsv13PfRM3kY5qfO6OUSot94bRiabrdxWSiixU6tW2KO3LxXVmNhtAyOnFKqWm090Iyp2YliCEwUyUE2NZHrm80Rk+QU9CZ77Uoi8liioThsZm3WR2s93d4CmyRCqm0ZswODCQpNCwubzeQJFFZNp6TcQobinlHT+k0PRo2AF122E0GycTEyrk8XyMXMzgiatFNhs2Z5YqKJLEew8NcGI8S0xTsb0ALxBKnNFsjKbl8cR0kZbt4Ydwx64cyYjGaC7G5+8aJwjD1yjS3ihUWWK9bpOOaq8po78W4nbwWgSAoUCIsOcmDJW/+cEDzBfbDKYjTPTERNGx5TFdaDK10WAoE+WvvGvPmx6snl+pMb3Z5PhYVsQb/RgQhiHfv7LJWs3iwX2975ioHxBK8V9/cpZK2+G+vb18+uQId+/Jo0gSA+kI9+3t4dnZEs1OlE4yorJcNmlaDpm4GMobqoyuKuzuTdDqOKzWahZN26dhuV3XY1RSuG04zRMzRWKKgqG+Qh2kohrVtoMqS8yX2vz8nWP820enCQn57ecWeGmxiiyJuNGoKuMFPn0Jg5MTWdZqNlfWRUTKfXt6iBsKiiKT0FWimsyRoTS2G1A3XSZ64hwfzfH1c2s0bY8gAKNH5O6nYxqnFsp86/w6H7t16DUxJffu6eXePb0sV9r8va+eZ7rQZCgd5WO3DvILr9pI38SfXiQiKnFDIQhfKf1+9XD6X37mNp6fr7BSbXc3w/FXRSXs6k3sSHzonXVvK2sb4LMnRyk0bDIxjdWqxXsP9nXiOsQwYrVqMtVR055aqLwuCfa+Q/08N1tiutDiOxc2+OCRAU5OZAnDEEOT2dOX4LnZEk/PlBhMR/jMyVEUWeLKegPXDzg8lGI0F3tdt9iNsLcvyXxHydmTjPCpEyPoqoKhyq/pwfD8gG+eX+fUQhlFkkhGNHoSBvsHkvzlh3Z378V/8337+U8/mGVXb5wHbxBncS2kLXUKoN5gaLO7N865lTqZmLajOlSRFPwwJODGEXPDmQhRTUXuDAl2QtUUwwfb8XeMQzw2mmV/f4L5Upsv3DOx42M5XkDL8ZA77tadYGgKtu+hyAjV/TbIxwzolFzHjJ0PlwcGkzy/UEaWJHbvMDgD0RFpqIoY6u8Qr5iLGfz0rUMUGhYfPfraRIDfeW4RWZaIGyquL+K0rnlrXwMJEVvtB6Cq4r8PDiTpTRh86qSID/zy6WXOLVcZzcZYq5mi20qSuH08ywePDDLeE2e+2OLhl1fxPDFwlDtDryAI2WyIGODtMJKN8d6DfYQhHBxMUW2LOL0vn14hDOEDh/u5tFYnEVEZzUU5t1zjsSubjOVjfOzoUHcos1G3+NKpZUAovLecS32pCL9875uLArqJt46vnV3tuONFDJrpBozn43zm5Chu4KPKMkeG06xUTb760ioty2d3T5y4ptKwBBGmqTIxTQZJnEtqpksQCHdm3FAJw7AbUXUj5BMaEU0M2xOGBqGPJMvonUjEettl3myz2bQ5PpbF0ITrs266XcL2zWIk/5ON+bqJN4drty0yMJAREUsLZpuornJkOMV63WY0F+WX753k9GKFVEQITPNxg6WyyQP7eruu3ELD4o/PrTGSjfHnH5jkb32pSbFpk9ZV7tvTw8XVOkvlNqos0b5mSYzrChKCdHG9gH0DaTZqJiEhji/OuSs1G5mQ+bJLoSl6f8byQmy0UjW5tCbuyytVk2LTJmGojOVSVFouPQmdW8cy+J3e7Ybt8cHDAzywv7d7xqyZLr2JCB88Inp1epMG37+ywe8/v8QdE3nSURGrXPcDBtJRPnhkoLu3+8zJUTYbFudWqry8VGe+JMi5X7xnguFX7cM0Rebn7hyj1HRe87UfBv2pyLYkmB+ErFbaPD0D9+/r4eR4lj19CUayUZq2z5EbOJM+fWKEzbpNfyrS3VuqsnRD0d+W28ELwq4j4Y3g9okct0+8c6sPsnGdj3T2JKcWKjw+VcByPU5MZHl6uoDthhTqNqtV80canf/DoC8V4WfvGOPOyRwPn10lrit87NZhpjcb/PoTs/QlDHqSBnt6E8wUWvgENG2fwbTGcCZKpe124nkDPD+kaoqUlP50hN6ERsWUGM1G+ZV7Jym1HF6cL3N2qdqJFIWWE7DZsElFdXoTBl4QsK8vydnlKpmYhuMG+GGA7QWsN2x6UxHycYP1hsV4LkZcF9F1XhCQ7+zHa6ZLuW2zWDJp2S5JQ0NXZV5arJCO6qxUhCjIc/xte5BPjmepmy49CYPBVITvXNzg4mqdkWyUz5wc3fG1vG00001qGsnGqJkuZ5eqjGSjPLC3l6F0lJPjGX73+UWCEGYKbe6azFNsOqzXLGK6SA/RFEFk6KqC6weM56LkYjobDZuG5fH1c2vs7ktie6ID+PJ6g9FslHLLYaUqZpK6IrF/IMl4Ps4HDg9w+4SIlg/DkJlii96kwaHBFM/Oinjmj946xH97co7n5spd0fzP3jHGbWMZjo1lWal21mxHiB4GUhGSusJtY1kMTURtPzNT4sunl9EUmbMrNdpPCWfYLcMZHr28QcP22N8fZyQbp9oW/W7CARxlX38S2/MZycW4utFAU2WCEFRZZrlqMldooasy//WJWQ4PpbFcnxPjGVq2z317ezrR9CF/dGaZb13YwHR8RrNRNmo2bhBwYiL/hggwgFLLodCw8ANYrVpkYjqnFyr80ZkVBtNRnp8rs6cvwYePDPLV0yvMbDa6salbSSpRXeHn7xx7jaBoa317abFCNqrx0P7r54XpqEbCULsCVF2RsTsuUs8POTCUYjwfx3SEpeLQYIqYrhDTNVRFwbJ9ZLljtAAaptuNKdVk0eOoyPCu/X0MZ2LcszvPH1/YYL4o+nq3/m8sF0cCViomDcvjN56aY7Vq4Qci7WkkE2V3b4KGJSpF/DAkCAMGUxFUWSTDGIrEiwsVvABun8hyYDDFQ/v76U3WOTmRpy8V5bnZEgcGkxwbzbK3L8l/+sEMS+U2phuQjyv86n2TnFqo8IOrxW4k5o3wdtomfhf4KHCK68+TW+fLXW/jc9/ETdCXjLwuiTOYjvKuA32UWzZ3TOZ55OI6UV1ho24zvdnk/EqN/pRQcIWEvO/gAPfv7eG3nl1go2axvz9JT9JgrWZhuQGKLKMriA4IL+DoSArHC1iutDizWKPlePiBOEiMZyNEDI3DQ0lun8jz8JlVHM/HD0BXJCKaDIT0JzXW6kJ7FwBtN8DyAhpWg909cW6fyGG5Pmt1E9v3eXZWEGGeH9J2fEZzUZbKLaGYSRocHcmgqzKjuRgj2SjVzqZka+ZSbNo8N1tmOBt9yyTYZ06OMlcQeb87EV3c4M8VCdIxDdcXi/zhjrriw0cHeWmhQsPy+fk7x1mrmfyr71xhs+mwWrWwO/bf/z97/x1l2Xmed6K/HU+OlXPo3I1OyIkAwRwlUqIClSUq2/L4zr22NZ7rcbhe1oyvbI91R5Zk+SrnwJxJEBlooBudc+VcJ+ez897zx3fqoBvd1WiQBAVReNbCQnXVqbNP7fh+7/uEuunwmVNruH7A9x4Z2ZY9Z7t+lxlUadv89Heo+VNoWpxZqQGI/Ku7/v4MwdarBqYjgjbNjgpEUyQ++fIqM7kmpiPsALMxjYFEGNf3aZguEV3BdDymeuMMpSO8c28fiYjO0fE05abN7z49x2y+iY+Ql5fbFjVJwvZ8BpNhik0bOgukTFTj5x7ZQbVt80cvLJKvmzRMh2RY5Wq+wdXNOg3Tww0gosroqkRME43yn39kB7/2pctEdBXDdlkuGzQtl3REhY4n8mRvjEMjKZ68mqfteHz+7DrltoMiSQykQ6QiGivlNv/+8xd5/HIOkJgvNPkP33dzS7RS0yJXNzFtj5btvibTcTbfoGl5HBxJ3Za3/1t4c6NlCitMPwi6yqlX97gvbda7NjdrVQPb9W8r3HwL90/3kI4Kxu5WQzusKWRjOp8+tUa+YZEIq/zMQ1Pd868vEeqoChym+157W4mwRrSjhFwotriy2eDwWPo6VvBsQdjciaG2S75u8sVzG4BocryWXe2WrWMiLKwbrkWubvCpU6v4gfAAny+2SIU1slGNnniIqK5wZqVKoWFx73SWSstmLt/Edn1qbYdURCcZEWXvtdfgzoEEv/6Dh6/bVrXTQN6OVJGJauSbQg42mNr+OVlsmPiBT8t2MByP2E1YvYWm1bUObprbZ+Q8tneAbDyEJsvXMQ5fDdfzCQDHD244z7bwjUubnF6pEQD/8atX+L67b26xVDMscZ+XhAJ4OyRCCobjEVZl3G22uVppQyAUuU1ze/VcRFeJaCqKfGtl3FLZoGV7eDUT2/XQb2I327I8Xl6p0rZcJlaqvOfAK7ZJfkepPJgKU25ZmLZL2/a3rUvgFQswqfP7hu1yfLHM0fEsXz6/ydHxNI/s6uMX3jZNWFf4+oUcv/GNGRHaHg3xyJ5+TMfj5aUK79k3SL5hUmiaXNlsMpGJIskSB4ZTpDsKuOdmi1zaqHPvVJZDo2meny3y4kKZTFTj7FqNQsMiFlK6jcQnrxS6asbBZJhzazVcX1h2NUyXVOd9l0qC4QnCGvN27Pvewrcf1Y4dj+2Jur5m2Nw5keKL5zc4v1Zj/1CSQsNipdLm5aUK2ahOWJcZyoSJmyoHR1J8/N5x/sezCzx1JY8E/OzDE/zal652agdxjnuvkn3JiHP42iu60nJwA4eIKgbVlgsBHoMJncFEmFLDwnF9mr7PcrlFXyJMbyJE8xZK2NfCrfII38KbD5IEqizugQEwk2sS1UQGSU88RCamc990DwPJMOWWzYvzgu+8VGrRtj1SEY2ophDTxfPiict5khGN0UyUjxwdYTQTIRlWuWsiw089NMWXzq5TbNoMScJOynFFhraiSBiuz3QiRCykcjXXYCgVJhnRyNdNZEkoqExb2OsHAXzx7AbFpo1hu8zkGyRCKs/PFsnXLUbSEdwg4MX5ImtVg5CqkInofODgECeXqzywo4e9g4muAv7YfJH/8IVLtG2PoZRoyvYlQnzm1DqVtsPjl3McGE1wZDTFCwtl1qsGnzy5yr6hJImwys7+BIMpkSd8YlFkquiqTHubaymqq0Sz396W3XZ80aBzoB3fZzAZ4Wfftn27znQ8vnx+E9v1ec+BAdJRvUtyumMkRV8ixPnVGicWyzy4s/eGYbnnB6QjGoWGxXv3D7w+O8fvIlTbNq7nc3yxQiqs4vgSXhDg+QHVtvOmGYJtYbovzj99125A2Pb+569dZbNmMpqJYLoepabVsc0V2XHiGSHsRKuGw0bNQJLA9wXBe61qdJVEvTGNeFjl++8a43sPj/BTv/+iUCp54qZjuz7JsMJ0X5y27VE1bPqTIYIgYKHQwvNfWV9dzTV4eFcvo5kIqiKzsz/GszMFNmptIqrMAzt6SIRU/uKlZa7mGyCJ/b5/OMl4NkqAxKHRFGOZCAvFJkfHbxy6Dqcj/Nj9E91/L5eEWn+taoiMplsQs3dcQ2r86oVNVisGp5ar/Ozbptg9INxAPn7vOM9cLVJp2+wdShDRVU4tVzo55v0MpcLM5FtENJlS0yIbD5EIa0z0xDizWuvGw+wciON4gtT20nyZUtMSNpWeTyKkc/dElt2DCc6v1Tv3R425gujp9MbD1AybfMPi8mad5+dKaIrUdW8az0bYPZjgroksp1eqhFWV779zhAtrdWYLTRwvYM9gglRU576pLPmGGO6GNaFeu3M8TbUtaiHH84lqCjXD5U9fXGHvYALXD/jn79vDY3t6+W9PzrNcbHPPVJbxnih+IKICGqbL/3hmgWLDxnF9NEWi3LJp2y67BxIUGiZzhSaGI3K0T69USYU1DMdDliSemSnStFwimsJUz+2vvReLLZ6+WsQLAnb0xRlOh3nqaoGG6WI6Ld6+R+TBy7JEOqqJGABVRlNlNjpkEMP2qLadm6rqS02LJ68I+33HD64bgn3w0BCyDM9cLRAE4ufn1mq0TJeq6eA6PuWmhdJRGluuyNdaKIkhoWcINzHb9Qiw8H2fAJnBVJiq6SFLMvGwOD4HR9O8uFDmykYd2xNCkYbpdBSUHiFVwfd9WpbLTE5Yuy91roWruQbJsEpPXNgTW45L3RSZtA/v7EGWJKotl76kzlKpxfGFMvuGE1Tbwmnpi+c2ODqWJqzJXN1s0jJFPvlMXji69MRD3DOR4dBYRrhFdZxvNuvmtsRheAOHYEEQfKjz/7cohW/hTY1rm3KP7R0AJLIxQ0gsy22u5po0TcHOObFUptKyaVnipjmSifKJh6f44xeWePJKHtt1iYdChHUZXVHYrJkMpsJs1AQjY6u54gewVDVRJIv5YotnZkoYjofp+qiyTFhT0ZSARDgCkkQmFuLcWl0oZDoFveV4FJomVcNmpWLguD6rFeHFXm07hDSZ52aLxEMqq1WDA0NJ6qbLo7vFDTkb0/nHj+3i2HyRoVSEmVyDo+MZnrxSYKXc5mquwUQ2+ro8ureQimj86gf28D/9xWnBct2uE3cTqDJENJlESKMvESYT08lEdc6s1Di+WEGRhJx+NBNhui/OnqEk3kadgWSYWMcOcS7fFEMT4Mpmgwd23DzjRZUlsjGdUtP+pgd+3wxSEY1MVKPSdpjs/fszAAO4cyLDY3v7KDZtPn6vYDmdX6vx7GyRC+t1QprCvsEE//x9ewmrMr/7zAJ7BxUubTSIaAo7+uN84uEp/urEKpc26rxtVy93jKQI6wpv3zuARMC5tSqlpiWyviyPsKaQjmqEFIVcw8T2Ai5t1HnH3n6altdtKqYiGpc36zQtr1sEhzSZIBC2Ak3L4N9+9hzfe3SUT58SnskbNYOG6bBZl4jqKomwyj2TPZxarvCVC3lc32ffYJLBZJgdfTHalkdUV9iomSwWW2zWTFRZ4uJG/RYFr8RYNkpYU7h3MstAMsRKuc1IOsJMvkm6Y9cCsFJu87kzYmhg2N625+5b+PuDiZ4oUV3B9QOmOsOmVy/1g87irmY4XN1sMN0XY6HYYqNq0JsIcWWzwc7++E3DnUEU2PtfxdBdLrX4m5OrnF+rM9UTE9akQYDc2XpYU/iJByZxOta5t4OxTJSX5QqyLDGUvvGeed9Ulmdnikz0xEhFNHLXZDr526h1rsVTVwr8+UvLbNRMjoyl+fi94+wZTJCvm/ztyVVOLlUwHI9y2yEb1VBlmd2DCcE0DKvdxYLl+rxjbz+piIYsSbz/jiH2DydvK7j8udkiL3UGDT96/8RNB2E7+mPkm1UA9m9zTABqlrBwst3rrSOvRcuwu0yxxi0GTeWWzanlKpoiMdkb3daGTO6YbcqStC2r+uxarbvNQmP7TLAruaawTQvg/Hpt29cNpSPUO3ZN0W3OpYneKIos4/s+6VtYLW/UDOqGgyxBvrF9RppgE/t4t2icldvi9zVV7g4ctiDLEt97ZIS/eXmFk8sVHC+45QBsC53dge8Lu0nD8dmsGaiKxMtLFfYPJzEcj0d393FkIs0ju/s4v1ZjsdTk06fX6IuHaJgu84UWIU3GsAVzORvVSUU1dvXHRXi34/HCXBFFlnlxvsyh0TQz+Sa261Fs+jhe0L1u93QatL2xEC/Ml1BliWRE49Boiqeu2oxloyTCryz59g0lWCg2kZDYM/jmyBy5Fi/Olyg2bR7a2fNdbR383gMDnFutsVE1CQJIRXSOzVdIRTXcTiD4mZUa88Uma5U2EvAr9+8kFdUYSkW6uYwX1mqUmjbJiMqFjSZhVWHTNqgbwv7WRwy+VAWcTg7xq8/1reG14QYif7Xz/XLLRlMV3E5+hBTAo7t7eWhXP1FNYc8t1JqvhZVy+7Vf9BbeNJAliUxUp9yyO7ZmPm/f3cdq1aDStpEkqdt0ChA1hul4pKI6iuzQshz+9KUlJIT1flgTtfSOvjj5usFIOsKOvhiP7O7j8mady7kmh8dSPLyzlz96YYlTyxVAqB/CqkzTcpkrtIiHxSDsrvE0xxfK5Bo2tut3srs8QprMs7NF4fBgOvh+QLFhU2o5TPTEsF2PXN2kZjidAZ/EUCrMxY06puPxhbPrPHVFOKq8c28//+ELl1gotnC8gGxMx/bEc3soHSFXN/H8gP/0latCuZAKM94T46WFMp8/u47p+Pz4/RN8+PAwd01k2dWf4IW5IseXKjxxOU8irN2SWPPtwunVmz/PI5qMLMscGU3zIx0r3nzDpNS0uxluWzi+UObJK3lKLZsXF0r8zMNT15GXXD/g7Nor23l1PvtcoclcJ0ZiuWKw4ztgs/tmxP3TPby8VKZtuzRNh0RIJRyXGU5H2TWwfRP3zYBLG3WKTQvDFnEHmiLRMMVDJvBfyZ3VVJm27XXITcIez/MDWraH74vsu/lCg9mCxMXNJobtcd90D6oiVixBAJosXDQKTZtCs4TtBuwaiLOzL87xpQq2FwhlVCCUZumIiuUEXfv5c2t1FsttggAKTZuDIyliIZV7prJ8/XKOluWxqz/BcCrSHUpM9sT43790idWKwXsODPCJh68fCluuhybL3QHuw7t6OblcYe9g4pYDsFdjq5bTVKHoPrVS5akrBdaqBqvlNkhiUOZ4AadWquwdTLBzIM6DO3t5brbIHz6/SDykct9UlnhY487xNP/msxdoWh4ty+V9d/ST7KiGLm82uoN3HxjJRLh/uofLmw0s1+OL5/I0LYeW5ZGMqLx73wA7+hJs1E1CqsJCsUW5ZXWGHzKbNYvfenKOXM1kvWYwX2hRaFj0xjRMx8fxbSKawi8+uoOIrvBXJ1aomw6DqTD/z3fvIR3V+IPnF0mGVR7Y0cNSuUXVcKi0bL54rknQOc8+cMcQlbZ49qzXDHb2J7hjOMVzc0XSUY3jS2UMx0WWJQZTEXrjIR7Z1ce9U1l+/k9OUGs7LJfbWI5PpW2TCCs8uqefcks8EyzXIyDg4kaN+yrZ23JpKrdsWraL7weUWhaqIvLoDgwn2T2Q4L5rMqZNx2ckE+3W9/dOZTEcj0xM70YlvBpbVomm43XJcVvQFJmBRBhFlpnNN8lENQ6NpFgstjAcj0u5BuV5G12RObVcY6o3SiIsbD8Nx+ues2FVQpYkNE1BVWRkCaZ7IqxXLVYbbX7/uUV64yESYUF4AYl0VGWxJMgonz+3wWg6Qqlpk4pqhDSFUtOhbroEgVBmN02HkCozlApzZsXkhbkyvfEQ/YkQP3LfBLv6EzxxJc8nT67ieD4bVYOILpwMFouCzPrpU6u4fsAFXcV0Pdq2R1hX+bmHJ9FUhU+eXGU0E2EgGcIP4MDQra1yyQlaMwABAABJREFU3/AAHUmSHg+C4J2v9b238BZeC6bjMZtvMpKOfFODmdtBKqLx8K5ecnXBYl+vmaTCKqoi8fY9fXz5fI5y2+bcapWIpnBqpUJI28n3HBlmuSIsokotUXxP9sZIRlRemCuyUTOuW3BKQOAjMr98IQkPKbLwPA6EZLlhuTh+wKGRFIdH08TDWje0vG174obt+OJh1LS7gaL9yRCW6zOSDiN1mmDDqTB7BpPsGUxc58t950SGiK7w5fObPD9X4pMn18jGRI5EVFduWw58LTZrJpW2ze6BBIdG05xYLFM3by9nBaAnHiIRUpnqjRHWZLKxEJIkdRo/FoulNqmI1mWI/9j9E1zp5KMYjsgQm+yJEQ9VOsyM7RkdsizxQ/eMUW7ZDHwHh2AhVeHH7p/AcLy/F6HvluvxpXObtGxhCfLzj+wARFP3/FqNTFTHdgORRdc5BrsHErRsl3RU48xKi/5kiExUZ89gQgyN1kUT9uRyhXNrNdYqBoNJk/feMchisYXckdL3J0P8zENTHB1L8cfHltmsmeQaJk3TpW44hDWFIBAhsUuldncAFlJEJpksCbbzVpbApc0mezYb/O5P3sNzs0V+56k5Wh2bw75EiB19cR7Z1ctvPjGL53lYXkDbdvn+u0aoGi5fu7jJYqmFKkuU2w6JsEospHLneGZbhVdvIsSB4VR3CHB+rc6VzQYHhlOcXhG2jT/+wMQNisXbT6h5C29mlNoi784PoFAXTXn5VWujYwslsrEQ88UmG1WTlxbKwtZQEgqa0UyU+UKLHX1x9FuoY7bg+QF/8uIyZ1aq9CVCDKZDvGf/4A2LMkWWUOTbv8+PZaP87NumkaRXFm2Vls2zs0V64yEe2NFzXV7Q7oEEzgGxID34GtkNS6UWxxfLlFu2GEzXDP78pWUGkuGOqkHYLpRawirY8QJCmkRIlQlpMv3JEJoiQrITYZWIrvBTD07i+EK5+lqomw5//uISJxYr7OyPU2mLhfnNmvCe/8q1fossZMYyUQy7QTKsbXuvL7ReGUIFtyCMnF+r8fxsEVWRODiS4uh45qavy8REBlZEF/k+N0PvNX/TrdQYuvLKfovcYh82LRfT6VgnbvN+lu2DFHQHdNvhSq7Rtam+ulnf9nVsvY+0rRsiU71xejpEl8Mj6Rt+LklCCVVp2d2spO0g8coQAQRhJ6qr9MR0Do+lUWSJmVyTxUKL6qg4pkOdTIqLG3Xw4Opmg/F9UbFA3agznBbn9kM7erm0WWcwGWa9Y8/1hbMbzBZaZKMaR8cH2agZrJTbLJZafOCOIcZ6oszkmtw7lbnumhvriRLthLP3xkM3zUxJhDU+dtcYnzuzzh8+v8g79vZvO2D/TmOjZvD8XAkQz8APHRr+O/5EbxxGM1FGM1Fm8w2emsljuwEPTGd58mqBmiGaoaWmyMHtiYfYPZhgui+O6Yp8k6neGM/OFMlENfwgIB3R6UuGGeuJsFJuYiOY9qKUFwqvkCoY3HInt9W9yfD31f8uNK3ufS6iKdhuwGO3aR17K2Tj370Dzu9GaIrM9985yl8cX0ZTBJt9s24hI5GKaF1FKkA8pPITD0zQ7DDDjy+WqbZtrmw2qBoOsiyxbzDJgeEUq9U2L3yjxIHhJEfH+5nui/P8bBEA1wsoNi3uGE5SNRzaloOqyKQ7+dXZqM5SWQzC/KCTmWe5xDSFeEhj/0iE1XKLuWIbAjEUdr2g64BiOh6W4+EGIq9SkUUv4PBoitlim3zd5ORyBdNxaVgef3F8mZbloikyEV2hLxHiqSsF+hNhfuGRac6v1bm0WefrF3MATPXFuWMkiel6zBealFo2T10tMJqNcnA4yVcubHB8oUK+aaHJMp85vYYkwR3DqZtmb327UG3dXHXmeAEKAetVg998cpZffHQHf/nSCq4fsD6a4p37BrqvfWa2wFy+Sc1w2NEX5+J6/boh2InFMieXKwwkwjzYIfQFQcB8sUUyrNET07s123dyDf5mQyyk8tDOPk4vV4UqKqox1RPj5x+Z/qayc7+TODSSRpUlbC+g2hmEEwQoiug/SQTYfoAagCIF9MXD5Opmdz0cVkXvS5YlDEcoPWXg/Hqdo2NpFEnC8nyhXA5gJBGiZrpIklANmY7PnRMZZvJNKi0b03bJRnXiYYWW7XN2tcqXzm/wvUdG0BWZyR4RB3J0PE200+MSdVyIRMhjqjdGIiyeu4WmxWql1bVv3XLw2cK51RqPX87RE9P5oXvG0VWZfUPJ26qlTiyWOb9W48h4hiNjad57YJCoXuj2t7ZIc3XDwQt88CVOr9SY7I1xx0iSvYPJLnnbdv3uNqf74t0+30eOjvL01QKnV6p87uw6vVGdqb4YPfEQ905nOTCU4isXNqgZLqbj8fY9fRybL9OfDFHPOaiyhK7IFJs2U33wbz98gGPzJf70xWUKDeFqJUsSTue+XzZsLqzXObdWRUJiriD6lNGQwlA6jB8EXM012Nkb46sXNomHVM6uVrm82eDYfIlsTOed+wYYS0c4vlDpWvUFQSAywdZrSEgoksThUVFzx0Iqo+kopaZQU/YlwhwdS7F/JEUypPHI7j68ICAT0ak0bVqmS8vxxHDGDfjRe8f5wxeWWK/4pKI66YiGriqdPKvXHoKlIqrIqZQkkZ0VUvmhe8YpNCx2v2qA/aFDQ3zuzDp3TqSJhlRiYYnvu3P0lu8f1VV+7P5xKi2HseyNg7KruQaFjtorE9NIhjUapkvbdjFsD9v1kYGmZfPU1RYt0+k4ogQkwuL4hTqEkpGOvXE8pLJSNmjYLo4XUGyY5OsWAQFj2Rj7hxPM5pvIkkREl5ECKDYsym1bEM/xyTcFQdxw/E4cBOwfTlJuClcUt8Ou9HzRS9BVmfune5jNN5nNNxlOhfnR+8c5s1Lj8mYdy2lhuwGuJxzThEosQiKkUTUcnrqyzpWcUHMOJkM8sKOXlv2K+8XN8EZmgoWBKNArSVKGV4jPSeC7d0XzFt4wfPHcBkslkZfys2+bekMKA8P2+MvjKyyXWrhewD0TGUzX56N3jrKzP8FUr2CnTPXGaJguQ8kw//mrVzg4kuTAUIpPn1rHD6DSdui3Pc6v1Vkut7g25iOqCXu2tu0jERAPC6Z6b0xjoy4RDSkUGxauD4okGu1X8g1KLUc091URrr5aaWPYPvm6yFKK6eLGlY7qfH8nGH2p2KTYsvnwwWEe2nXzYnprP27WTUbTERQZPnx4iMEOy/T1oNKy+asTK7RtV1hPhdUbFA+3ggxUWxZmR56ciYmMhI8dHeXsWo2aIaTKO/vj3SZZOirsN2bzTf7sxWV0Vebj947xc49MEwTBa1rPhVSFodR33mpAVWQSb/LidgsLxRYLReEdf3a1xmN7RfPjc2fWWasaxEIKP/7AGH99Yo1MVOfOiTSXN+vsGUhwaDTFlc06mqLw0aMjPLijl785uUrb9qi0bd57oJ+/OrGG6fjMFcT56vkBPZ1jnwprfO7sOps1kw8fGeZ3npoXrBjXY7VicHg0zZnVCn4gslUkQJeF0tELhMc8PqQjKk3LRVVkji9W+OMXFpEk0dCJhlR8P8BxfN69f0DYjlouhhsgSQHTvRHes3+Qs2s1/vrECpbrY7vCQ9rz4WcenmLXQIKNmsFLC6KJf+d4Bsv12TuYYCQd4cfuH8fzA56eKbJSbqPIMpa7ZY0XdL8ey0b50KEhWrb3mkODt/D3A54XkI1qXQUJcMN96exKFV2W2awLxm1EV7hjJImmKF0LmVREvW37qKbpdrIYhGf4j98/+brv59vh1eSI5+aKzOYbPH4px2yhwfceGbkuzPvVtoY3g+cHfPb0OiFVNJUGU2GGUmGsTufVdn2OjKXYP5RElmGjaqKpEkfHMl0rxFhI5Ufvm6DStrtWkrIsEbrNId8LcyWeuFzoDpB++J7xbVUoubrR/Xq9Ztz0NQBHxtO0bY+RdARdu/n9/tBIqusT/mqm37WYzTe4mmsgdQaj2w3BJnvjtGxhVxHVb/5+k/2x7jZ7E9s3onf3xzi5XEGS2DbYHoQliOMHlFsOxYbJSPZG8km++UrWVaW1ve2jKktdj3rtFgPfmKZQkxxCqrRtPdiyXPYMJoRVo37jayK6gibLolZg+ywwEM3RyZ4Y8wXxLDw6lmaiN8ZgMsJwOozheOweEOr+vzqxQrlt8eP3T7J/KMUXz23Qtj2GU2Hum87SE9O6WReTPVGSYZW7JzJc2WxQMxzsp+cwXZ89AwnGsxHevqefU8sVYiFhEzqSidw0E2W+0OTxS3n6kyE+dGj4lna61bbdfa6fW619W4Zgp1eqLJVa3DOZ/aYtnOIhEZZtOT49sddWbn43YGd/gv/PR+5gId/ipaUys/mmsEkNxHX37v2jmJ16Iqwp/PbTc8zlm2SiOuNZwSzeP5QgEwtxYqFMoWFfN5z3fUhHVRzPx/N8ElGdh3f28uxMkWLLwr8JT00MqzvWd754M10RyuZ9r8GwvV2k3yBC41t4YxAg7M8AkhGVwWSYuWKLhuViuR7PzhTY1R8nFdGIhRRiIY1YSGUgGebIeBqCgN9/fpEX50vsH06xdzBOJhoiVzexPZ+66aKr4p61dyjBp06u8cJ8iSubdQbTYQ521O6O7/PyUpV4SEWRpU7T2ubpmSJxXUaTZYotm0LTpu24TPREyTdsFFlCliWkcIDl+qSjGqoiUWgK28RkVGM0E2GyJ0YqqvORI2kurtdwvYByyyVAWNTFQyrJsMZHjo5weqXK589tsF41+MW37+ThXSJHy3Z9HM/nZx6aJB7WmOqNcWWjgYTESDqCpsj818dn+cblnIguyEQwHJegHRBSFY4vVnhgR89rrmG/WdyMmrr1DHRdn4ViG1mRmck3OLNaJQiEYmQLpabFSwtlWpbDQDLMYCp8nbOO6/nMF1ocGE6iynJXEXFsvsyx+RKKLPGj943zkw9OYrs+PR2V/jMzBWZyTe6bzt5W7fhmQRAIKzKRa5R63daO90/3cHK5wkyuwamlirBovkVG7N8VFgpNji2UuX8qy1RfnMneGAeGk0Cd9ZpJRJU6lnOCnNTh8uF4XjfLvmW7NEyXIIA7x0U21lyhRb5hYjk+mViIUsPij48t0RMPEVJFPRDVFSxPWK45fkAspJAIKayW24xnIywWmyiKjC+B6YhBt+uLAcpa1cAPfNIRnbsnMnzkqBg+CGVUnYFkCM+Hd+0fYP9wgmPzJaK6ylLZ4G27+vjG5Ry+H/DU1ULXUWkm36Dcsrm0UWeqN87D2/TZXo0gCHhutoQfBDw/V+TIWJpc3eRsR50py1K3trtjJMlsvincKWIaK5U2+4eS3WvN8wNKLZv1qsHdk5nr7N/uncryXGdQ7QUBxcAmGw+hqzJ98RBt2yNXt1irGvz+c4v83CPT/OSDkxwdT/PEpRx1w2O+1CRXNzm1XGU8E+XFhTI9UZHFaLkeuweSTPXFSIZVDgwnqbUcLqzXqBkiQkKSAmRJuPn85fEVNmoGC0VBJA6pMi8vlXlmpkjVcKibDuWmxVcuCmtnw3KZ7o2Ra1gMpyIMpyMoitUdiv34A5Ps6I9z72SGf/WZCwCMZHT+6bt286lT66xXTIotmx+4a5R4WMV0/W5usSRJ7OiL8cVzOXJ1C8Px2DeUJAAme6I3JY/dDH2JMHeMpHA8n+nOurMvEbppHpUfwFRfDE1Rbiv/8GpOrAcOj6ZZKlf5+qVN3r1/gLFsjJlcgwvrdXrjIXb0xlguGyyXDLIxl6neKKmIzkbN6PZ2l8ptap0MviSiNzCYjLBnIMZTM0ValsRcocVAMsxcoSUIJjGdVFijaQnrbt+HeEhh90ACGQnH9TCcgPFslJphE9IVKi2bdsdW0nJ8+hMh4iEV2/N5975B/uTFxW6G2b1TWX7iwYmuLWgqovFj9090BnIRSi2LF+ZLTPbEOLVSZTAVYibfJKkqQMC79g1wcb3OC/Ml5ovCchmgbsrk6iaLpdYt1yFvpBLsF4B/ihh4vcwrQ7A68Jtv4HbfwncptgLjXc/H8wO+Tf286+B2wjpXKgaJkMq+4ST/5B07u/6iHzk6wt7BBE3bIRXWePxyno2qQSys8pP3TzCUCjFfbKEpEoWmhSZLyIiMq62GznRvnGLLAjxiIZWdnQXDQzt7OTZXYq7YYtP1sW1ho9SyHJ6bbZLQtY5nbsBm3USTX5nem06A7Yqh2lRPlI/dNcZnTq+RjOrYrk+uYfLpU2s8srtPhJAmw101wURPFFkSwzlZltg7mLyOVfx64HSOzUyuiSpLLJdbr0sFJpg94JsuFcVCVcSNOh3XCOsKw+kw+YbF4dE0fa+ytVqpiHBx0/HYrJsdluA/TH/xbzeGUhFRfLo+qiJ1B1wrlTaXNuqkIhqW4zOUCjPZEyPfsPjqhRz5hkVMF40Xw/Fod1QCS6UWsZBKIqzx3GwZxxXnTUBApWUznI6QDGuYrmCx5Gsmf/PyKgdGkkz3RpkvtFmrGkz1xkhHVDwfam1RUMfDKv2JML/86DR/eGxJSN9dj1RER5NlTNejZtjUTYcL63UOjyVZLrfwATcIqLRtlstt4h3LSoCK4fGvPnOBHX1x3rmvj7blc3mzQViTOTwmMvY+d2Yd0/Hw/IBUROMPnl8gGdF4fk7nJx+cBESo8AcPDglFayZCpMNUTUc12rbHC3Mljoylb9lsfgt//3DHSApJEuzjw6OisA5eJV1ZrZrIkijyehIhJnuivG1nH4mIxlhGWM31JUK3vbBORoQ6sTce4m27er9tA7CboTce4vhCWfi8V0xenC/z7v0Dr/2L10CWxEDC9QPec2CQH7x7DMfzubRR5/iisBZ56DZY0ZmY/k0rxfs7+zcaUnn7nv5bsrCvPXy+v32jQgqEmsUP/G1VWZGQRjKi4rg+49ntmYeZmM5wOoIExEPbD8vum8qiKTJDyfANisNrP/9Ww+tWLpWuD5osI0lgeds/y82Ol5rwl785w3wsHQVJIggC4uHtlx89sRCqvGW9dQultNwprJDxtxlfaYrE8YUKNcO+qd1IbzzE9xwe4umZPPm6fcshmKbIeJ3wtiAQi8J39ieYyEbpS4T4bIcUUmpalFs2zjmf3QMJvn4pT9vy2NUf53uOjJAIa4z1iMbRQrHFbL7JSsXgA4cGSUY0lsttPnd2g8meKAdH09w7JZqH+4aSXMk1kICDozdfoJ9ZrdK0XJoFl0LDuqWtVjqqM9ETZa1idHNXv1l4fsALc0W+cHaD/mSYluV1Mw5fLxJhjR+/f4KG6b7pslDeSHz1Qo5q2+bxi3kqhrCwGUyGeHBnD3d1GmIN0+EPnl/kqSt5AkQQeSKksFgUSphiw2K9JnJOdU3BvSaDst1pPPQlwvQnQ/TFBdkgIKDQsEXT8lWf6drvKRLs7IvzL96/l7tfNXz9ZuFtFyD4Ft6UEBatJSzXp217HBxJE1Zl4iGVi+t1ii2bf/nJsyiK+N6vfd9B+jpqBV2ROb1S5ZFdfUQ0RRBJU1F29sdZrRoMpsLcM5npElgubTRwfJ8AQa4ot21iukZvXEQOtCyvw8AXBNaW7aIrEp4n07R9rI4rRdv2eGRXPwPJML2xED1xnarh4vo+vi+yYSKagkFAWFXojYeY6o2RjAj19o7eeNedIqxJGHZAPCRzaDRDJqaxWjGotm3KPQ6nlqsMpyOEdYV/9NjO7n4zHY/Pnl6nYTronXXDoZEkf3psEUUSpI97pnv4ubdN89JCiTMrNfYMJt7QNWxMF/vpWgQIJZgsQW9c1J6XNxoMJMO0LPe6dfdWIzsS0rhjNMUvPrrjuvdSFZkDw0kubzauI2u0Orlnnh9gOF53+AViPx2bK1HqWIxN9MSoGQ7DqfCbfj1/Yb3O45fygKhdtntGXwvT8Tp5dhH6EiF+4v5J/tGfvkypZVNoWvynr1zmz37+gTeNGqxuOvzHr1yh3LI5Nlfi177/IFFd5XuOjFJqLWC7AU3L6daVAa/kcwVAvmljuiKnsmEKNeWd4xke2tXLv/vcBTRFYTwbpWV5HXcJnV0DCT58eJjTy1UiusJ6tY1P0LWQX6+Z1GeKfOCOATbrJrP5FroiM56NsqMvzmqlzbm1GtW2w2bdZLI3hnqNw4HnCzXKHSNpxjIR3nfHIG3bZWd/As8PcFyfX3x0B/mGRaVt8/JiuTsEu2siwxfPbWDYHk9dzfPgjp7bWqMJ29gYs/lmdwCwRYQFsBwfXZW7a55374eQOk+xaTOaifJLj+6g5XisVw0ChK3wcFoQ1xVZwvF8Ti1VOL4oHJ7atovl+sRDKgPJEH2JMB84NIztePzhC4tCMeT53XzPQ6NpDo2mWSm3+Xefu8Bmx+L1ySt5ji+Wcb2AHf1xxrNRPnpkhKMTgpBXbFq8uFDpkOA1NmomsiSRjuroqsK51QrPzhSodXLi9w3GObtqUWqaWG5Ab1zn3GqVkCJR7cRL7OiP84P3jPP2vX0UGyb/+aszmK7HVy/mODKWRpLgxHKFeFihabocHk2TjurdnrHleKyU20J5FATUO2S0j945wt0TPSwUmzxxJU/L9gkCeGBHLz907+3XriFVxnBEr+rV1+mJxTJzhSb3TvUw1Ruj0DBRZZlK28b1A/RbnCvrVYMvnBXRGBtVg786sULL8lgut3lgRy9//MIimZjOrv4E/8sH9vFXJ1b48rlNVism0ZBKzXBZLrc5MJzk0d39nFgS+Zz5ukU2pmE44nw4tlBhtfJKrrLISBPqrMFkmB+8e5Q/fXGF08sVfAXGs1Eme2JczTXRFRlFBsPx0BSZeEjCsD1qhoOmyNw7lWU4FWax3MJxA+aKLRRJFmspP6BQt24QIaQiGqmIhuP5/O3Lq93IkQMjKRYKTbKxEHKnV7xUbvG1Szks12ffYAJJgkLD6vTFPSZ7bq3keyMzwf4r8F8lSfqVIAj+f2/Udt7CPxy8/45Bzq7WmOiJftMNPd8P+OpFET65eyDOPZM917HaE2GNDx0eIggCTNdjZ3+8OwDbwlcv5lgptXmhIixrXD+gbXkcX66Siuj0J1wKDWHn1BvX2TmQwLA9ehM661WTuiXkon3xEHdPZrhjJEmhYfPufQPcOZ7mv3x9hpVSCykIyERUlkttwZBrO+iKRMMSN3YZOjQCCVkSRUVI0+hLhjEcl/1DSZ6+WqBluRSbFuPZGBfWa0R1laFUmB/u3OQrLZvNmonrw0AyfINn9+tBfzLM++4YxLBdVsoGS6X26zJ02yqW3ECEqRabFpbr0xcL8f6Dg8zmmkz0xNg39Mri4NJGndMrVcazEUYyYliz4xZBiK/GfKHJ1VyTQ6Opf1ANl9eDVETjEw9PMVdo8cVzr+RVaZ2FrvBS9hlMRRhIhTFLbYJADGb3j6VJRXQKDYsL6w32DiZ5+55+5gtNYiEN2xN5AdW2zUAyzEAyzD955y529ifojev8L397ls+e2SCkybzQCWM1HBej5VFuOdw9leXCurAfGUqH2TOQ5NBIkv/ryTlqbRvXC+i5xlKTABzXZ6kkisZj8xXRuPV8WpbDbz85xy89toOdneI5pqtkYzpXc8Ly47E9fdx3uEc0ZyWJr57f5PFLeYpNi/3DSbxrbFYubzRQZHGN9SZCfOTIMDN5cb59+NAw2ZjOw7t6Kbds/q9vzHBpo04mpvMLj+zg8DWMytvBm3t5+A8b37ic48JGnSAI+MK5De4YTeO9am4SViVWym3GeiKEFBnT8dg7JBroXzy3joTEPVNZHtnVd9uLrHe9zkHU7UJk1Zj0J0OENYX7p8X18MVzmwA3ZcC9FiRJ4ofvHWetYjDRKVw1RebQaJqRdIR8w8LxblxkbPmN345F5Gvh6HiGf/6+vdQNh3unbt3k3T+cYrki8s4Ojaa3fd3lXIOWJZ6HpuMRukntMtUbozcWotSyODy+/Xt9+PBw5zmv8EhnEX4zXFyvcWy+yHg2hrpN42ix1OpanpVb22eChTUFVRWZDLeyQ7wW7jZDwZbtkoqIrKMtdePNsHsgzlcv5JDkgP23yKtqGC6uF3SDrm+GhUKLUtPC8nzOr97cWlFWZPYOJqm2y4LIs03R4ro+TcsTNY0Ei8U2v/fMHAdH0+zsT5AMa+wZSBJWZApNG0kSjbGWJcgfdcvt2r/1xkN8352j/NWJFS5v1FmvGnz53CbJsIZExwWg5RAPqYx1BqMr5TabNRPfDzi5VOHQWPo6xSXAnoEkyyWDvkToOntdx/P5/Nl1qm2H9x4YFIxa+bWtWG66Hzyfr1/K07Rc3rm3n0xM59RyhRfny6xVDRRFum0W7XZI3MI+9LsRQRBgez4zuSZ10yYZFgS5H71vkod2vpIpUW07rFfbeL44prsGElQNlwCI6SpD6TCmKwh2Y5kIz82JxoePsJVLhkUw+2bN4m9OrqFIohHblwhRblrYPihAWJOxPWFNtXU9eAGsVAw+eXKN2XyTH753nKj+rbURnJtJ0N7CmxZKR6XrBRB4AUulNj98zxi1tsPLSxXaFZewrjCWidIwhQ3i1hDs2HyJl5dEpteHDw/RNF026xaW6/Hj909guz5/9uIST14p0JcIsVEz8IKAqb4oLdOn1LRo+A6m45EIq2iKGHBJBMiyTDqiixgBW1hd6aqM5wUMpiLcP53lgZ093fy69aqB3bFYC2kKi8eXsRwfPxB5PO8+MMDplSqfPbPOnoEE75YHqZsO90xmuXMszf/2uQtc3qxzbKFETJdxPBVFElmh18JyvU6DvMALcyVyDYuhZJiIpvCFc5uUOtZQA4kQUz0xQqrMO/YO8MiuvteVJ/TN4B17+vjsudwN398aYNRNjxOLFRaLLcayMfYMJtgz+ApBb9eAiFcoNCwe2X1zwtB7DgzyngOD3X/7fsCO/hg+AX3x0A12YyFVptwSCmXL9fiD5xZwvIC7JzO8bdf2Nc8W2rbLetVgNPPN94m+WVyrut6OfPRqfPn8JgvFFroq84mHp0hFNfYNJzm5XMH1AzZqJhfWaxwZu7nq/zsNz3vFpN8PXsnaevf+AR7d3ccfv7DI8cUylbbFubU6jusLAqAvsrpsV6i4DNtFkUFRJB6/nONL5zeIdIjOABXDoWW6NEyHiKbgBlBq27gNn5iu4G7lWvrCOUAi4Px6nSNjGUYzUUzbo9VpxmdiovfmeCJeZCIbZUfHpm6jk1/1tl09tGyvW8tHdZUPHx5mpdzm8Gga1w9omA6lpkX/NeubiZ4YY5ko59drnFutsVo1bklkuxYfOjSE6fjdHuSOvjiP7e3HdDzumrjxeEuSWCPeN91D2/H4o+cXuZJrkOlY+Mmy1O19PXEpz28/PcdmzaDadvCDAF1VuGsig4Qgyo10+l1v39NHriYGBxdWqxQbFu85MMhyucVLCxUKTYuxTJSRTISNmomuyNiuS29MJxvVr7Po642HODqW4vxalY2aya6BOBFNYSwbZXdfggtrNWF32eGvrVVMVioGvu+jawpRTeXMWo1kVMNyfXb2x1Fkif6Ezkwn9mT/cJKX5ku0LZd/9jdnSUc0IrpCvm4RD2vs6I/j+QFD6RCnl6vcM5lhOB0RZG3XF6SNsFAc9cbDHBhJcG61huF45JtiP9Tazi1t9K7FYqndESjA1VyTezqkNdPxeGZGWPo+fbXAVG+Md+4b4ORy5bpYA9v1UTsK5WuhyMJOVCxtxL3AdDzWKiEubzSIhVSKTZsHpkV/q9KyaTseiYjKgzt6WCoZRHWFd+ztI/ADNmsGewYTfO+RER6/lGciovL4JRHhA+LeOxgPkY7rrFXarFcNKm2HkUyEA8NJbNfj3ske3n9oiC+f3yQV0ZjsEw5IlZbD/qEEQ+kIz88W8fyA/kQI2/W6VvmHR9MYtsf+oQQvzBchCFivieiHvUMJXC/ornVMx+ULZzZ5oWOLXm27jGQifPjQMFdzDUzHw/YCvnJuE8N2CasKU70iM/3PXlrC8QKSYZWlksFwevvr8Q3PBAM2JUlKBEHQkCTp/w3cCfz7IAhOfge2/Ra+i5CO6rds/NwO1msGF9frnFqpcmKpwnrV7A6DtrCjL87PPzrNk1cKZKLadZZ6QRAwk2twbk3cMJWOndr+4RT98RANw0GRZcEq6zADQLCCNmsmDdNFVSRhfTOV5e6JDF+5sEmubvHsTIEruSZ108V1fRRFom66mJ0bZFhXsD0fuUPfFuGiEq4vIUsK/YkQ33fnCKPZKH/x0gqO59MbF1kYF9frZKJ69yZbuqbp1RsP0bBcMWgztrcoul3sG0oy8e7d/NvPXiCsKxiu32WaKxLbNpgQfxZ6J2dDliWhlNGF9UuhYdGwXMYyUT56dIRHO3kET14R9lX5usU/eefO18UW8/yAL5zdwPUD1qoGn3h46lv4y7+7sRWWuQXXD0Tej+ezXGpxbrXK/uEk79w3wF+fWOHSRp2j4xkGkmH2D6eoGTaLpRZ/dWIVPwiY7InheAG/8tguZvKNLmPz4GiaB3b0EgTCdmClYtAb13EDEUA9lo1ybq1O3XQ5v1alZTksltqAKALKLZPferqI6XgoHb/iquEgA4YrbDZdx2ejZhLTFUzXJdaRaptuwEy+yW98fZa37+1juidG0xbsx6VSm5Vyiy9f8Dg6nkZTQ/Qnwpiuz0AyjCwJO4sHpnt4eUnknDUtUXyeXatxz2SGSxsNPnVqjZrhMJdv8h8/dqi7Xy9vNljuyNWPL5Zf9xDsLbx58fxcEbvjTXVsXhR1r+5vhDWVTExhPBNF7wwbzqzWWK0YnFkRi6uzazV6YqHbYpi+GoWGxctLZcazMfYPf2uqjy+e32Qu3yQd1fjJByaRZYk9g0mG0xEMx+v61L9exEPqdU0WEMP2vzi+gu367BlM8IFrSBovzhf5s5dWSIY1PnxIZCQNJr81xvCR27zusjGta03Zn9z+75UQYch6x77hZlgutlgst/B8ePJygX/94Zu/l+cHKLKMhNT5+uZ/51MzRdq2x0y+wXqtzVj2JqSQa+ZUt9pfB0aSfPHcBpoi33BsrkVYlTBdwSDPxm++6JjujWO7QhV8K4XX37y8io9ocPzRi8u89+DNHdRlOejYJm6ZJ96IRFiENPtA4ibqM9fzMWyPVMcj/xaRbDiBIDSoMrieUA4XWw7Pz5VYr5rs6o/zyJ4+Pn7vGE9eybNeE9mVO/vjeF5AOqpxdbPBaCbKYrHFsYUSqiwxlIrgB9AXD2N6Hu89MMjxxQqJsNqx3hWs4FzdIgjEYK3YtLm82eATD09dd/z2DyfZO5i4YUG9WjFYLLYBOLta/ZYIP4ulFpc2xEDx5aUK79o/0LUZOziS4pHdfa85RH4tnF6pslxuc+9k9pZqtu8WSJLER4+OcHmjTlhTO+z6kevslYpNi+OLJeYKLWzPJ64r7BtMMJaNcGG9Tl8izA/cNYokSZxdrVBpO7w4V2ZLl2l7QYft7RAEIofGDgLatk/dtF6p0xVIRDRalkvLun5I1bI8vnpxk5VKm7CmftNqvy3Yr5HD9xbeXJAlCV1TaHXqmXLbYnd/ghPJCoNJYVu2fyhJw/boTwii5xZqhs3plQohVeGjR4d5bq6E5Xgsl1v8/CM7aFoulbbDlVyDr1/KMZqJMtET5RcfneZ3nlqg2DRpmB7ZmI6mimyfy7lGxxVFoSeucTXXpNUhiqqKxN6hJD0xjd9/boGhdBTbFYPdvzy+TKlpM9Ubpdp2kCVJWLd11vQxTWUm1wQgV7eY6o3xRy8s8sJciQ8fGaZludRNYekW1XTiutx1wAipClO9MQzb40+OLdG0XLzO8GejbjKYDHHXRIb/8ewCSmdtryoylzbq7BlMsG8o+YYPwAAa9s0V2yDKA9FoFBZ0uiox3RPl82fWeXhXL/uHU6QiGvuGksT0NutV87a2+dWLm1zaaJCN6bxr740kLUmSODyWEnb2HaWYKsu3JOpci78+sUq5ZTOcDvND93xr96bXi31DSXEeEXSHra8Fx/PZ6Ch383WL8Z4on3h4movrNa7kmiiy1LUEfzMgE9P5lcd2cmKpwgPTPXz9Ug7b9XnPgQG+dG6Tvz4h7O6SYY337Bvg9GqNpulQM1xcPyCqSqiKhK4q+EFAEIjei7A6VHlkdw/JDmm2hcikvbhRF8+J4MYaTpElJnujXFirs1EzWS63OxaMMi3LJazJmI5wPIp3HB6euJJnpiDyjL5+KSfsF6MaP/XQ9f2fqd5YV5Xq+QF7BhOMZqLdRv0WDo6mWCy1aFkuf31ihV9++84bLONvBkmSrnudJEnbrj88P6BmOEz3xakbDpWWTc1wyNet7sBhoifatVO3XK+bzxgLqfhBgCbLfONynt54iFhIZUd/nNWKQctyaVgOw+kIJ1dqVK8UuLhRR5YkhlJh9g0mRa5u2yYaUuhPhvneHT1MZKOcXqnxqVPr/MDdo6SjOnXT4eSyGKSVWzZJX+OB6SwRXeNLFzYwHI937RtgvWawoy/OXL7BZt0ERSEeVpnsjeL70DBdbM/j9GqVdETHsD0qbYc7JzIMpyLkGhZt2yOsCSWSF4j1kOm4fONSjkLd5CsXcyTDKqdWqjy8q49fenSa0ytV8g2L1Uqbf/ZXZ/j4feOslI1uv3ZnnxigFZrmbQ/BRtPCAUnc419Za+mKTF8iRKFhdV0oLNejZXkYHVX+lc0GXz6/STKi8sP3jAs3FM/nmZkiluvzgTsGsdyA0UyEJ68UKbcs7ppIc3gsQ0gTasd3dTIaMzGdqC7iEx7e2Ut/ooXn+7wwV+L4YgXPD5gMIBZSODCcpNS0aHWyyulcM23Xo101KDRtLDfA9hzWym2m+xM8tKuPgYTOZ8+sUW45JMMq909nGc1E+K+Pz3Bps8G+4ST/j/fs4avnN3D8gIsbdS5vNohoCrvvjBPWFX7vuUUkSUaSfBqm082NdFyfR/f0cXQ8w39/eoHnZovEQwobNRPH83lhvkREU/nV9+/j955b4JMnV2lbHpbrd4juAZ86tdrJBfTYrFndofp2+E4Mwf5VEAR/LUnSw8B7gV8Hfgu47zuw7bfwLWLyV7/wd/0Rvq3ojYdIdsJ7M1Gt60v6anz1Qo7PnF5DV2SyMZ09HTay5fqMZiKoikxge2iawuExwTJo2y5Hx9KsVNosFdts1i10VabSsmlaLlFdoT8hJMHq1oAnpFJpO5iOy+nNprB67KwJfS+g3LaJ6sI7Nh3RWKsaBIEIZE9FdPINC02RyMZ0fvmxHciSxDcu5TEdn31DCWGLYzlM9MZ474FBeuI6T18tYjgeLy9VuGsigyxLvGNvP09czmO5HtW2vW0Oyu0iqqtoiozvB2idwFToZH3cJIR7CzLiRq4pMqMZ0VCttl2OL5Rp2eJmZzk+Fzfq3SHYWDbCTK7JaCaC5we8uFBCkuC+qZ5b5mGAYKPEwyrVtrihv4VbY2d/nHfu68d2fXYPxPlSYZO25ZFvWPgBLJXaPH4px0KxxWgmykyugesHGLZLOqIT0RTWqgbzBaHoG81ECWkKn3h4mq9dylFp2ezrNFrn8k3+8vgKddNBV2V6IxoP7ujhyFiGi2t1JnqinF2tMldoCuspz8fxAo4vivwaTZHRVZmRTJRK28FyPEKaYAA5rsjSWyy2CKkyqiJz13iGq/kmTdNBkSUurNXJd4qXe6eyNCyXp68WuJpr8HN/dIKjYxn+2fv28qHDQ/zBc4skwiL7oNSy+eMXlqgbDlFdJRvTiOgq2ViIe6eyfOrUGiCY1l4QoCIG/IdGU+TrwjpgZ//tKxm38FYr6c2L3f0JnrhcAOgWye6ruu37hpP4XsCOvhgbNYsAaFoudcPB9nwSIRXb9akYFgvFVndxdrt4/FKOjZrJ5c0GEz1RYqHbu98FQcCXzm+yWmnz6O5+dFXm2FyJqK6IgfI1lg5vhHpjy6IYuO55bbs+X7uYZ7NmiuyAF5eZ7o1xZDzNY51nwzcDv1O466rM7ls0Mpqm1xm+QKW5fYMmHRELk2RYvUFVvoXHL212lYHL5fa273V6pcpsXjTmRtKRbYehIVWhabnIkkRUu/lxfmzfAL/2pUuYHtx1C/XZTL4pMkL8gNl8k/t33JzxHVzzxXbL/3Pr1W5NsFhqbbvNa2MwgltYTRJsETOkbS0dx7MRehM6m1WTu65pyG7h5aUKL82XeGmhgu0Gr3kfdQKQPAjrwhpxy9e/1LQIqTKz+SbvPTCIJEl89eImkiQRD6k0bZfTnQDwXQMJbNfH9X2GUhH2DiWptMRQazgVwXR9fuS+Ma7mm+wZSHQZo0fH01zJ1am0bSKajOmEb5orcDOl6EAyRDoqArO/mefLteiLi/Bsy/UY7bCAj4ylu+HWO/riXWvg273PXIuG6fDEZWEr1bbcG4hq362I6ipjmSiyJDGQDDPdG+eL5zY4Op5mKBXh2Zkixxcq2K6PIon1yNcv5XjP/kF+9N4JxnujhFSFfMPk7GqdK5t1FEXGvUZ2bNiuyPgCPMMhG9Now3XDX1kSljZORymjyXR/B8Q9smV5Nx0qv174r5ZEv4U3NRzPx+iQJX3EuZKIqHzioUnKLZvVisHBsQwfPDTEF89u8MmTa3zg0BDJsIYmywynI4RUYXu8WmkzX2ixv5NFmI3p3DOZ5cpmnaneGOWWw0ha2PG1bJeYrmJ7NooCMV3YfkU1BdP1iYcV4iEFTZGQOzk0fXHBRD+1XMXyfB6Y6mH3QJyvXNzk3GoNVZYYTok8spblERAQ1hTunMh0MoldFott7hhOslBsMldo0jBdnulkAqmyjO16LBbblFo2+aZNuWWTr5v88mM7u88F0/XYO5ggpMk8tqefVERjvWbw8K5eVFliLBuhbXskI9p1KpM3GjO57Z/BW/GlibBKWFeZysb4jSdm2aiZfOHcBv/bhw9w10QGwxaq08ptDqnyDQsQ+8X2fMI3yWt9/x3DnF+vMZ6Nkm+YbNYsHtjRc8PrXo0gCLp2bg1z+wHf7aBhCnJLOqJ1s8xuB7ciCt0M/Umh6uhPhji2UGK8J0oirHLnRJZi02ZHX1wMCd4EMB2PL5zdwHQ9Pnx4mLWKwWy+2SV7v7RQYrMuBtUt2+PZ2RKHRlMgBby8VMX1fGw3QJJ8QJDLVVnGdoTtXSSk8PCufooNi8f29jFXaLFQaFGvi2MpIdbN0jUWvZJEd3ueH1Bt2cTDoq+WjmjM5FvcPZFhujfGTz88xefPrPPSQomBZJiNqoEmy1j4t8yeBTFs+6G7x1mrGkz3Xb/2eu+BQWZyDVq218kg89m+Cr4e5ZZNsWkx3RvbdvD97EyRmXyD4XSEzZrBRs3k955bxPOEnd1IKsxqxcDxAnJ1i4/dNcrlzQayBD3xMIosVODFpoUE5BsmJ5Yq7OjPE9FFz6JhulzZbLBRM7BdH8/36UmGGctGuXeqhzvH0/yTvzhFvm6xdyjOTz0wyemVKlFdrDWu5hoEgSAQrNcMSp2eDMBwOkqubhFSFQ4MpxhMhlFliTsnMnzp/AZ10yXwA+IREfmSioo1U9uS8TqWtVc2G8iyhOP6fOn8hshw93x29se4ayLLeqXNasWgZji8MFvsZt2eKbYoNm3SERVdVTg8luLSWo31uslMvskXzm6iyBL5hsWu/jiHx9IkwhqTPbe/vt41kOBH7x/v5Fanu9+XZYkfvmeMuumSiWqcXqnyW0/Okghp5Oomh0ZTzOab+EFAte2Qb5hM9MS4vNng1HKF1YrBZG+Mn3vbNGFNZvdggiubAYfG0jywo+eGe6Iii7oxqisECDLBbz81z7m1OnanP6bJMmdX60DAPVNZXlwosVE1cToxHrW2Q7Lj1gFChTaUjjCWiXJls85fvrRMu6PmasdCRHWVK7kGG1WDbCzEmZWayIdMR3C9gJcWynh+gOsFrNYMjs2VKNRNCIR72WgmSqFp0bZcSi2HYstmo2ayWmmLAack0RcPcW69RkgV55YfBFzaqKMpMk3b4tBIEk2RKTVtemI6C8Umjh8wlAq/Zj/iO9H13epafBD4rSAIPiNJ0r/5Dmz3LbyFGxDWFH7qwUnevruP1arBgeEUxc4F2JsQF7Tt+qxVDdq2hyF5XZnr1u8fGk1zYqmC4XjoisyRsTSFhsXxxQrZmM73HR3hx++b4BtXCqxW2qxUDHRNRpVleuM6fgDjPVEimsyF9TqBL9iZIUXi2plcAAQdq8VYSGGuIOyLJEDTFNq2iwTd8NH5QptCwyIT01kqiXyAmiEaYbmayW8/OQuSCJDf0RfjqSt5DgwnCWsKB0dTIuNIlTm+WOnmuZxbrZGrm9w7nb3BdudWqJsOYU0mqquYzivFqHOLARgIdYTp+N3B48llsZ/NjkdtRBMPxbCmsFEziIdU7pnI0B8PccdIijOrNV5aEPYv8ZB6S5sqEMybH7pnjI2aedO8kLdwPSRJ6u7TMyvVLvtPliT8QLD2FostVsptWrbLe/YPcH6thiSJQe1Ub5T/8MXLDKVCSICuSpxZrZKvm8wXm/gBHF+s8MFDQ8Ln23QIqcI/OBZS+YPnF/lXH4qSjesYrkfbdNmomfi8krvnBaAEMJgJ8+iePkoth1Kzgh8E7BtM8M79g9TbDr/55CyW6+N6HgdG0vzIfeMsFFtcWBcMqN64TrllsVxq8X98+TKKLFEzHCzXJ6LKrNcMruYaZKM684UmPTGdSxt1XpwrsVpt47g+D+zoYbovTgB86OAwqajGv/7wAU4slhlMhfH8gJVym5VKm90DcRqmSzyk3uCR/Bb+fmOyNyZsQwPY0Rleya9SrpzuWCQUWw6feNsUdcPhz19aIRnReOfeATRFIhZSOblU5eXFKo/t7b9t1RIIS9ONmklUV15XvkC17XBlswEIf/NyyyasydQMh4/dPfptsSG8FRJhjQ8eGmKtalz392qKxGAyxLk1kY+V7bD2Cp0mSxAErFYMgiBg/HUsaE6vVnnqihhYKkekba11Vytttgi6ubqx7fvFwgqeL7JGttvvB65R5oW17fenULkJq7z+5PbNsgenszw1U2Q8GyG5DaFFLBTE11sKoZtB5EEKZfatFG9OZ1DpA4WmSTp+4+cbSUfxOza5qVs00OMhhbw45W5Zd6RjIjcyqqvbBkxfzjWEJW5c5+RSlY8efcX+LwgCZvINnpsrUm7fOg/sWojaTFgPDqVCzOSFdVPddDi5VOFf/u0ZTq3WCaky/+GjB7E6FkCm41NpOzRNBx/I100yMZ3FYoulUgvT9RhMhjAdj10DCd61/3obKRCWd6PZKHM5YYfyx8eWePf+gddUdkV1lZ96cBLPD15TZWDYHs/NFcnVTA6OpjjYyTTcQiqq8dMPTWJ7fvf4SJLEvk4zu9yy+YvjyzhuwIcOD922PfVKuc1TVwv0J3QSYZWG6dJ7k/Pouw0LxRYzuQb7h5MMpsKoisyRsRRfPr+JH4jm1U88MElvPEQ8rBINKfTGk6xV29iuz5Vcg/GeKKoqM5NrMN0Xw/F8VioGsZCCawbd4D/vmmGWF0Cp7dzQrjPdAMt1u69TJchGdXzEtasrIEkBibBKrm4ycIv7wmtBeZNk3byF24MfBNe5edw5nsH2Av7sxWUubtTZ1R+nbYuG6lpVPBcvrde5b7qHPUNJZvJNYiGVwWSY3ngITZGvy/B8eFcv2ZjOubUqO/rjJEIqXzi7IfKvbY9MVEdC5kfuH+fcap1K28HzA0zH5+JGg5AEUV1YeaYiqlDSuB6m43N5s8bjl1TOrNS6Qxvb9Tk0mmKu0EKWRF7Oe/cP8HvPC9VXNqazUGohAVFNwekoo8azMb7nyAj/369cZq7Q6tro+i2bc2s1PnlylY/fM0axaVNsmiTDGg/s6OHYfBldlemJhdjZn+DOcUHMaJgiQ+XVFn4LnYzxV9sGfjsQ3qZ2UyTh/JEIK2SiGj98zygyEtW2jev55OomK+UWd01keN8dg5xfq7N36ObDn1LT4uRylfFslD2DCR7a0cufvrRE2/L4yoVNvufw8A1K9FRU62YhvVp1cytIksSHDg1xZbPBgW/RjveFuRIX14XaeTgdeV2f4/VgvtAiFRHklFhHFXRls8FapY2qyOiK/IZt+/VirtDskrTOrdXYP5QUhNH1Gm3bJRFWGUiFaVpNJCQapoNEgKYohBSFtuUhyQExRSWqKazXhBVqOqKxayBO3XT58vlNod7oEL9d3+9m14ohmOh9bSGiyd3rT1cV9g2nmM010BSJQoece6nz+QzLY6VsEAuJ2mKqN8bBkRSrVYPpvjjlpsUL8yXatsdje/pYr5kMpyPdGiQV1W5QBy2VWsiSxC89tpNTy1VG0q/deN9C23b585eWsV2fA8PJ62xDt2A6HscXRU8rCODuySwvzpd4cb5MSJVxfJ+hdJRhSazV0lGdUytVLm7UBdHF9+hLRMjXLWIhhXLLRldlQorI6To6nuYbl3JdEviRsTSW65OOhtjRl+DoeJr5QotTKxWalkOubrBaabNYeol37O1HliEZ0VirGCyW2lzJ1RlIhBlMhTEcn/5EiHLL5nJH5XpwJMWTnfWV4wc8squPF+fLXN1skG8KddeB4RRHxtKYts9ypU1EUwirMl4A030xDMdjrWqSkiV+/IFJ3ndgkH/16fNYjovj+h31qoZhi2sqVzN44kqBkKpAELBzMInlB+iKxH3TPbwwV8Tp5KG1bJd0VH9NAv21uLYv9mqoHSEFCBeYIAg4u1ZlLBtBV2SOjqcpNMQ6YMuesieuUzMc1qrCzvClxTKHR1MYtsd4NsZSqc2DO27c1lRvjJWyQbKTqXVyuYLleHhBwM7+OB+7a5Sm6XbVgFuRIKmIhq4o6JrMRlX0VeMhlVzDRJVkBpIhSi2bSx0yiuMFFJoWYV0VA9VFIVIw7DZ+EPD1izlm8k3umsigqzKm4+P4Pn/50grFpoXn+YR1lYiuUGrZmI5H3RCW8bsH4jx9VZwf071xfuS+Mb50PofbqV8jmsx//tpVWpZLzXAIawoz+Zaw2e2Lce90Dxc36piOzWbd5PJmnQe3IW7Cd2YItiZJ0u8A7wL+D0mSQnTijN7CW3gjsPWgPjKavq643oKqyIxmo4xmo2zUTP74hUUubTTYP5TgB+4e44krBVbLbZFbEdXZPXD9Av79B4cYSoX53Wfm6U+EieoqUd3t3qgvbdTZrJui+Q9kIir7h5KMpMO0bZ9nZwo8N1PkpK4I/+u2g+f5qIpEKqLRNBwRHo+YlBtugNN2rxse7eyNUmq7WK6FJInfnck1mOqLslhqE1IVqm2bnqiwNCm3bFbLbbxA+L5eXK8z3Rej2LQYzUTpj4dJRzUsx2eoYz1TaFh8/uy6YP45gvmzHRzP5wtnN6i0baE4i+nk6xaqIhHS1O6C+rU4n54vAhaLLRFi//RVkTsxmApz72SWiK7QMByqbYc/en6JkCpzZrXK7oEEix3v5i3EQypNSxyXWz3Qorr6ujLE3oLAaEaEsGqKxP/6wX2EVYUL63VOrVQoNkXxuV4xyMQ0zqxU6UuE+NuXV9moGRQaFh+/d4yXFirIEkz1RlkpmzQsl90DCbEglCXqbQe1swhYKrXI1U1+9g9PEA8pJMKiARoQIAOTPXE26xaG46JIwgLA82E4FeaSJuxCDcdnvWrQH9e6tih+AHsGElzNNzFsj48eHSUZUfk/v3aV5bKB7XrdcHiJgJiuoKsKO/piPDdTYKHYIh3T2axb7B1I8PjlPL4vCqP7p3tvyGUayUS4tKHy9EyBE0sVLNdDQkJThDp0qdTmaq7B7oH4mz4I+i3cHqpGh8koBdS6X1//mlLDom64NAyX7z0yTF88RCaqUWk77B1K8PY9/czkGny+E5Tbtl4f0/U9BwbZO5SkLxF6zcFVEARcWK/juIIEYjoeIVUWWQVLFVxf48Bwir23yGv6dmJnf/wG9YokSSBJHB1Lk4pq3DuVZbVi8ECHtfu5M+v8xfEVwprM9xwe5p37Bm5rcRpcIykKtpMXIXK3tvD8bHHb1235l69U2rQt96Y5FdP9SVRJZGHuuIXCb7ovzk8/OIUsc8u/Zb1mEgQBdcMV2Y2RG4/3lc1Gt5lZuIWS7SNHRgRDXlVumclx7a7KbjN4q7RMrE7O0Gbd2va9pGsGxLca2PzUA5P8zclVHtjRQ3yb/THdGycT1am0bQ6PXd8Ymys0WSq1aZouiZBGCwfDvfkxj+sySNCy/E5mSkDNdAlpMpmoRiISZbnUZrHY4tRyhQChyPv6xRz/4v17qRs2T1wuMJAMcWQ8wzMzRWF5G8BTVwvdBW9/PEI2pvHpU+v8yH3j9CVCBEHA35xcZbXcpmG5rJRaJCMaC8UW/ckwp1duz95QkoQV0WqlzUyuyf7h5E0HGMcWSnz1wiZLpTZXcg1CqtJluHu+YGEmwxrj24ROb9bMroXTasW47frqxYUyhYZFoSHYzLIsMfQtDFjezGhaLp8/s96xwzLRFJm1qsGP3z9By/KIh1Xmi23qhtN1ZnhoZw/TfSI3COC3n5rjhbkSrufjeD6fPbWGj9iPQRDgeYFgzssatuN18+wkBOHM8zv/3eTzXXsV+D6ENYl4SKNli4yHUtPmv3ztCjv6E/zE/RMcGf/mMmt6Y/9wct++G+C+yr7yV96xqxNE7zGcCmM4Hg/v7CUV1dBVodCd6JBQpnpj/PJjO0UeTIcYd2Wzwb5XDVD2DyfZP5zE8XyeuJyn0LSY7Fgdz+YaVAyHF2bLWI7LSDpMTzzEC3Ml6m2ns26W8XyRN5IKqyK/LBDD/YsbDdEY9MX6+lKuwc5ANNcrLYvLmzb/6M9OMp6NUmjYtG2Pxy/lGMtEcXyhLhtMhkmGVZ66khdZMrbHgcEEuqbgBgGKJKxhLddnJBPm7FqVq7kVvnBug48cHeEn7p8g8apMzJs9z8+v1fjaRZHZ9X13jnT347cLbevmz30vAMPxO6TaEM/OFNnZn+DuiQzPzJRomC5/9uIyubpFKqLx3gODN+21AHz9Uo71qsi16kvoPHW1wGyuSX8izHyhJTJ6XlUTVVo2s4Um070xel4nCWKiJ/Zt2U9bf4+mSN8WxesWZvMNnrxSYDQT5b0HBtg7mKTQsEhGVN7XGYJIiPooEVK5ezrTHZT+XWM0HSWqK9iuz1RPjL5EiB+5bxzL8VA71m8fOjzMf/naVU4vV/B8OLtWY6onzp3jaZ6bL+F4HqbtkdAVdEVGkuCO4ThNWzwH83WDK5sq1baNpig4fkBIkwmCgExUx/UD2paLJou1+1bzPKor7OpPEO6oTItNUV/aboDjejQsj//6+AyHxlIEQKFh8utfvUJvIsRPPzhFy3L5b0/M8sxMkaiu8MfHFiGQGO+J8p9+8LAYoLwKlzbqfPm8yEH+niPDPPo641ocN+iqpdq2x+XNOivlNkfHMvR2FKEhVVjeLZfb7OyPc2AoxVKpzVhPlFzNJBnRWSi26IvryJLI+np+roTpeGxUDWRZ5uiYUJVfydUxHZ/+RJj+VETkc/liQHJquYrr+/Qlwkz3xagbDivlNqeWKwwkw4Q1mb54mMViG8N2uLzRYLMmLMBHM8KG0fdBRkZVJI6MZdAUcXx+/7lFwppMsWnzUw9OosjCzn0m1+APn1vg/HodxxOxL7oqlOs/cPcY5abNufUaUz0xZjoOGO/YO8D77xhiodSk1rL5kxcW+fTJNaptS9hLajI+EumoSiykEA0pVNsOIUXh2HwJ3w+4azLDA1M9LFVanFwSSqWIprBYalEzHPoSIQ6OpF63Dbfr+XzlQo6qYfPufQM3kAZ39sU5NldkLBMlQBAHh9ORrg2nYXv4gXCH+NH7Jvjbk6uENUFESIQ1BlNhNmtmdy28pXyNh1QkSeKuiSy7BhJENEG4HMtESUY0Hpju4WN3CyLDnxxbIle3qLUdTq9WKbdsMlGN/mQYp+nj+RANqTy8q5cLHfXVRk0QX8O6giZJKKqE68FMrtFVI+bqFobt0rTcrjNX03TZPRDnaq5Jvm5hOh6u76Mp4viEVIWQKkbcm3UDP4CL62p3eHZ4LM2ugWQ383sgofPp0+s0TRfD8RhNR7iwUcd0PCTg8qaPokrEdPF51qsG8mv00L4TQ7AfBN4H/HoQBFVJkoaAf/Yd2O5b+AeItu3yudPr5BsWF9Zq/ON37LrhNRs1g799eRWg03B38YOApuVxfr3GYrHF8aUyhQ5L99On1/nph6bYrJn86YtLDKbCfP/REfYPp1ivGtRNh1955y4me2PkGxb7h5L87clVsVBsCduapuXRsBwKNYvNhkG97XYZ3V4QIMsSEhLj2Qj3TmaJhxXyDYuzq3V8XCw36LaFeuI6g8kIxWYNxxe0zs2aSbFpY9gpNFXh/FqVl5fKpKMa33t4hEsbNV6YLwMBsZBCOiIsB08uVRjNRAWz98EpwcrpLLjbtsuF9RqOF7wmC22tYnTlxyeXKiyUWpxYLOH5gkWqyNdbHG0HH/FgqLZsnricx3A8YrrC3eNp/s33HKBtuXz69HpHkeOhKRKm41Fp2Tw/K4qX7z0yTEhTWCq2+MzpdfqTIX74nvHXxex4C6+NtarB7oE4R8fEsNlyfcZ7ovQmNE4ul2mYDus1i4d29lCoW+TqJhc2GsiShKbKbNZNNjte6KkOE2y53ObTJ9e4vFnnxYUy5bZNRFO4czxF2xaqr7blkm8IH+yQLAMyAcLGKqJKSJJCRFPJxHTevX+AYtPibzrDt7CmYjoe88VW1/5HUxX6EiFhs7le77BsREhuWJW7nsmyJArSTFTj7okMuwaFxd1GzSBAWCLcOZGhajjC1iod7lpzADiux1+eWEWVJU6vVFkotkhFRCGQjGjcOZ7G8XxGsxFm800KDeuWyou38PcHYVXcp7aIDUDHMuMVSBJEdQWfgMVSi6FUhB+5b4K66XSZiDv747xtVy+G43H3pMjcMWyPvz25Stt2+dCh4W2b4Yos3baF4oX1Ol84u8EL80U8Hw6OpHjXnSPcOZ5h90CCjaqxbQP8W8ELcyVOLlfYP5y8LUtDXZUJdQr+uyay3DXxys/mCy08P2CtYvDFc5ts1Cx+8sEJovqty96jYxlcP+D52SLPzhQ7FkU3XofXqrZvFdlg2CLTSZZktjPbe2Y2z9bs5dJm85af73Z86pdKbZqWKyz3PA+48Xcmr7F0ierbD5oyMZ2feWj6Nbd5LVq2y80MhFYrJnTs+9q32GkDqRDznXpi4BaKt69c2GC+0KRl2fzP79p9U1VJMqLx7n19XNio8+ju68+pWEglCESm24Qu89xMadttOX7A0bE0VdNhvWxguh7FRptKy8L1AtIxjZiuUDUc/EA0EsMS3D2ZQVVkPnR4hL1DKa7mGuzsj+MHPl89n2MgFSIeUohooilkOC6KrOMHQdf+03J91ioG61WDQtNiOBXBD3yQhMPAqwfEyyWRLblvKHHDEDEIAj5zeh3b9ZkrNPnZt914bCOaQq5mUmhYDCRD1w3sRb5AGUmCH7l3/KbPqJ39ceaLcUzH58g2DFnL9fjkyTUKDYtHd/dxeCzdIcO0ycZ0BpLhN1xl+neJmVyDjZoJBDRMl2xMJx5SURWZVFT83d9/5wgbVREuD2JwkIkKlnBEF9nDR8fTrFUNLq3XOb9eo2G6SJKE43ps1C1UWRBsbO+Vu48swR0jCS6uN7Bv7gh/HRRFIh5S8AKhnHG8AM/3WCoZKLLM1y/lv+kh2Frt9mzU3sKbAyFNZuuIhRSJyV6hOhzPRpgvNOmN6KxWDXriIeEQAdetvRRZwvcDPn92jSeu5JnIRpnNN6m1nRuebV86t8FvPTWHBBwcSVJo2iyU2kjAc7MFZFmiZXUsyDwP1/O7WVY+EA0C3CAgGVKpBy6aouD7PodHU8zkm4RVRSjyO1lDy+U2vu8Lxrvlisxtz8e0Pc6t1dAV4Xjx+OU8J5YqaJ0mviJDIqqzbyhJT1xnJB3ljpEUfYkQD+3s5SsXcpiuT9M0+fzZdfYPJnnn/hvzsF6NdufirLZtzq7WGM1Ev63r2FutySXE4NC0hSX3ubUad02kWS4LEmOxaXFxo85QMszvP7/AnsEkEU3m0Gi6W69u5Ri1LJe+RAjT8akZwuKyabkcGUt3VGUGB0dFxhjA7z4zT7VtM9kb4+cfuYnk4TuAeyazDCbDJMLqNx0PYToefhBcV3O+vFShbjhcMuvcO5XlgR09HB1PE1JlJElcGw3bIRnW6I3r7PsOEc1uB6moxicensIP6D6be+MhPnhomHNrVRqmywtzJRaKTZDA9ny8QKHcMlmptpEBxwVJDSi1HDIxjeFUhD1Daf725Cqm4+J5Pg1TZOhFdCAQisWDIymiYZVa28awXQznFWK40lG3D6RCXN1s4HhCpdy2fVRF/CyiK6iKxP3TPYxlIvyTPz9N23KRZKFUvXcySxAIQrflwFrNJKRKVNsWDcMllLhxCNa+5uFp3M6D9Cb78313DLJRNZnui/Enx5a4sF7n09F1fvX9exnLRpEkibsnMyiSIB6nohofv3ecR3f18icvLlM3xOD/eMelY7ViMJwOk4nqhDXRW9isW9wzGSWkpulPhOlLhGhbLi8vV7iwXmP/cKrj7uERDyns6o9zcrlK4AtbRNfzyabDvP/gIPmGyRVH5LvJElRaDsVmlXRU4+h4hv/pXTv4i+OrgoRnukgd9bimCIvabDzEx+4a4cpmgy+e2yCkKViuD0GAC+zpjfGuAyJy49h8CUmSWC63+flHRJ269f18XRyXUrPZWQMKa36/k+nYtj32DYl83GLTYqmj5g1rMvOFFg3T4dJGg1NBFQk69rs2V3NNwqrMLz4yDby+/stKRbgD+UHAc3MlPnp05Lqfv2v/ALm6Sa4u1FaqLNG2XV5aKGM6HldzTTRF5ofvGWMgKfJdIyG1qxD7obvHhIVshzTw5fObXN5sMNUb4yOdbV3rnDGWjfLD94zxuTPr/MbXZ8lGNfJNk0rL7tjMml1CousHuJ1hYL4u8amTa8TDKuWWjSRJ9CVE3mcyqqMpEo4X4HgBazWTbESDzurWdgNkOWC9Jkh9yYiO5Xj0JXQkRK6tpirEdE1kb4ZUFElUpo7ns1Zt05cMkQxrIivZD3h+roRhezwzU6JqODQMh8neGKbt43fYl7IkBA198TAx3UVTJY6MZrZJin4F34khWC9wAkCSpC1j98vfge2+hX+AUGSJQtMSOUFtm8+cXqPcsrlzPCNYt9D1zgVR+L59Tx9nVqvs7IuzbyjJXx5fwbDcrm1PruPH/BuPX+XZmSK6prBvMMlIOsKzs0Vm800imsIvPLoDRZZwPJ/Lm3XhNdxh0nt+wGbdJKoptExXMLADCIVkooqE4fidG4CJ7QV8+NAw//N7dvOvP3Oe+UITxwkoGw5Sx87w5eUKpZZzna2J6/u8uFhBV2QcT7CVReiuyocPj+AFgvnsuAGllo0qyzw3W+Kxvf0kwhoRXbkupNPzA/YPpzBtj/GeW7OMB5Lhbt5EJqrx7EybiuF1Gr+vDwGiqXh8sYwXQE9Mp9Cw0RSZbDzUsS8UwatPzxTpS4QpNS3qpsPTVwvIksQHDg51MyXydYuW7XYfDp4fvDUQ+yZhuR6KJK6xxy/luLzZ4FOnVpnoiaHKMvdMZulPhqkbHg3TYVe/heV4FJoidP1d+/p4Yb5Mb1zn0Gia2XyT4XSEt+3qZbksFFCG5aGrMvm6SaXt0FJcZEnm5942zdcv5biwVsOptknEQri+T9Px8P2A5VILywsIAmgpHtP9UQ6Ppvmnf3ka1/eRZYmQKiwSts5LCbGQP7dW5eBIGlkGTZZYrwlFSdNyaNkunu9jukLJE9JUnp4tcXKlSttyMdyATNTl2HyJpuVy50SGf/TYDjZrFvdPZ7v77g9fWOJPji3h+gEhRWIkE6XVkbc3LZdqWwzPZnJNDo2liF+TpeJ6PgvFFr3x0LaMy7fw5sVnT69hdZ45nz+3xv/rfXtvsEO0PZENd/dklnrb5fefW+DeqSwHhl9Rr2xZjikdxhyIDKktC8BLG/XbUoTcDlq227HaFY2MWGchHw+p7LrN0O/Xi9MrVWzX58xKlbfv7ntNJeRHjo4wX2gxeZOB3IcOD9F2PFbLbcayUdq2S9v2bjoEm803eHGhzI6+OPdP93SeFRKVtsOFtTr9e29cDIV1mZYtluHxyPaldNN0aDs+nu9s+9xpGa8soB1/+yem6Xg8eSWPpsgik2QblZTrBULhIV+v0LoWUVVkqDiuz8gtrICDQGSB6ap8S4b1tZupb5PH8eDOXiK6gun4HLqFXdF4JspxuYwsSUxktt/miwsVTFc0TaqGTU/8xuP00nyRf/WZiziez7nVGn/9Sw91fzaUinQIMuLc825RrNhewOmVChLiWpUA04MAD12RaNselu2hKTKqHBDXFd62u/+6ffHsTIFC0+J3npqjaToYjlDx7x1MMJj0KbVt1qsG8bDK/VM9XRuksCYy5Z4utIh2mjnxcIiYriLLcGq5wlRvDE2RyTdMPnlqlSCAStvmkVexkwVbVrC5r70WNmoGX7uYIxPVWa8Y1E1hDXM11+TUcrWbj7c1vA+CG3MNt6CrMh86tL1zAMDXL+b4zKk1JEmcY4fH0tw1kWXPYJJwJ6fzuxnj2Wg3BP2eyQyeH/DI7j6enSnSlxBqk784voLVOUd2DSQwHY8/PrZIzXCothyWK236EiFs1+fxK3kahshPDWsKhi1qNVkC0/aAoMue11WZhUL7ukH+rWC5ATP5dseSVyGqywSApijIEswXmlzerH9TyuBcbXsr2bfw5oN3zTXvdR4umiLzgYNDfO1ijosbdXwCkmENs0N0+NyZdSQJ7p7IcnA0RaFpcXKpiu34nFmpMZaN8mcvLfPTD00S1hRenC9xeqXKyeUy9Q6pYLNmgSTOv4YpnuWKLIkmHWC6nlA0BnRjA/zAJ/AD/CDosOUF8bXYtLlvqoea6fDRI8PIssz//5n5DolB5O2FVBldVagbDus1A9P2kWQJVZZwOo3hnriO5weMpCPoqszjl3IMJMP8+AOThDWx/r93qoeffXiK//7MPOWmxUqpzb/7/EXqHfvDWEjl0GjqOsVT03JZLLbY0R8jVzd46qrBTK7BizGdB3dub+30eqFuU4+oYi5IRFepmQ6VtstoJkLDdPnQoSGeuJJnV3+CvkSIi+t1mpbDXx5f4eBIivWqyY/dL9hIT88UaBiiYf6Bg4Pi+VQ3adku//gdOxnPxvjdZ+bx/ICNmsEP3D3GQrHF+bUalivs7f4u8a3YEJaaFn95YgXXC/jw4WGmemO0OtlJlzYaPLSzp2tBd60S7k9fXOR3n57HdH2GUxE+8fDUt/x3fDuhKjIr5TYLxRZ3jKTIxnSm+2L8l69d4WquScN0qBkOXoc4ajoe+U4ekdOZuppOgOuJHLADw0kme8I0TRez83MJQfpuW554Hxmu5pv8r+/fx8XNOjO5xiuZYIj7TzIsrOIdT2QI3zOZJh7W0BSZqd4Yc4UWqbAgtP2Xr10lIMBwXCK6sPQ9vVplOBXhoZ29IubA8TAcn6F0hLWqQdVwbiAbHR5NiXxOWermGr5e7B1MsncwScN0KLcc6oZDJqqx3Fm3HJsv8h+/fIWW5bJvKMkP3DXKVy/mWCq3meyJ0hMPMZAMdQcplzdqDKVCOB3HhUrLYTgdwXB87prM8NDOXnRF5jefnGWh1CYT1emJ6by86DBbaLBcbpMIa3z48BBfPr9Jb1yQoPoTIb56IUepaZOK6Aymwrx9Tz+1ts2nT68zX2hSbNp8+PAQs7kmubqJqoh16lRvFNv1+cTDU/zJsUVeXqqwUGxjuR6qLPHorl4ubjRQFEH4OrNS44W5MqmIRk88RH8izJfPbfLZM2tUO05QluPTst1uzzKiKWSiKqWWS4DIoloptztrV4UL643O/RoOj6XEPcbxhVW9JmO54vwUvZ6AkysVpvtfZ75fZ1B0bL5EuWUz3Rvr9p1B1LxnV6ps1E0+8dAUsizx7EyRC+t1lkotsjGdRFjj7FqVMys1/CDggweHAFEjP3Elz0q5zcO7+lgotviTY0vd42PYLpc2GwylwtfFaSyX28wWmlzqKKZalkuxaeP5QUeIAcmwStMSpG8/EHbmlbZDUAMp8LE8cX/uiQkl5kgqwu6BGCeWyjRNh/FMhIgu4h5cP8DrXIOXN5uEVIl4WGO6L8Iju/pZrbSptB3WqwazhSZhTeHXPnIH4ReXObkiIoVWSm1Gs1HOrVXZNRDvDptbtsuBoRSbNYN7JrPM5ZosFFt4vkMmomE4Hi8vVwjJErYP8bBy3f6/Gb4TQ7AvcI2dKzAFXAEOfAe2/Rb+gSGkKrxjr2D7piMaJ5cqpKM6L8yXuhfD/qEkSx022aHRtGADAycWK3y+4z0+2Ruj1LRRZJjusOebneGV5XjMFhoioNrxUWQRHn91s87eoSRPXy2QjmhM9sa4nKvT7khEdUUm3/EoBtF8742FyMa0rqLMcn3KLZtPnV4T79GTIKJpPHE5322e+56P6bg3DJcCBLNLkra8UxUcL2C13ObgSBLbDSg2bKK6iq7KeEHAUqnFudXaTQvrqd4Yb9/dR910eWD61oV3RFe6eRNeEHB6pYquShjOLX/tltgiigeBT9tx+YuXlvn4vePEQio7Ow+nj90l8j3mCk1+84lZNmsmp5YrHBxJ8cCOHp6fKzGRjZIMa1iux1+dWKXctHnvHQPfMSuv7xYsFlt89sw6IVXmfQcG8XzhQZ2NaRxfLHPfVA8zeeEZ3JfQsT2f1arJE5fzbDZMBhIRMlGdh3f28tiefvYPJ9k1IGT4e4eSJMIax+bLyJKNqsBENobpeKQiOmFNZiQT4T0HBpjIRvnUqTUqbZuRVIjViilYYf4rdpu+H7BQaPOnLy5RalpYrmAtZaM6Q+kwz82WOjlzEgFwfKFErm5x71SWXN3C9+GXH9vBWDbC//n1GXINEwmhUlyrGoQUiVzd7YSHSlzJtWjZwjaxZXt86NAQ7z0wcF0jL1c3MRyPctNGUyTajs9Hjg6jKwqpqMa59Sor5TaJsLD8/K2n5vi+O0eZ6o3x+OU8F9fr6KrMzzw0dd2w+i28+bGlaoFOMwfBkrwWoukg8xMPTPDpU+sAPH21iCJLTGRjRHSF2XyjG+T7sbuGCWsqw+kw2ZhOy3Zfdyj3djgwnORjd40yko4wm2+QieqEbpFV9e3CwZGUUIINJbcdgK1XRTD0geEkybB2Qy7aYrHFTL7JHSNJ/uUH9ol8opeWWSq1efxSju+/c/SGBvtzs6VOoL3F4dE0o5kIibBQjW5n5RbVlO4QLBHaXp2V69j+WV7ApY0aD+y4UeGmKLdHyji1XOXShgjLGkiGuWObQVK7Ux+4nk9zG1XWgeEUqixjBT47+rY/b16cL/PrX72Cpkj8+48evC1ru8C/eXe9bXn0xkO0be+WFkN+IFiFfnDrDNEtbUuAsGy7Gc6vN7A8nyAIbpp9djkn1L91w0XvKGa23vO6bQVw7WxPQjR5xMJPfIB0IoxhuXiA5fi8vFzGC3zGMlF2DcSJhlTapTYtS2S1Vto22ZhO1XDIxHRyDYuZfJNURGO+2MJ0vG6DTJYl3rarl3zDYqIniukIRmypaZGMaGSiOu85MIjvvzL49LYZUv3gPWOslNvXhX+fWq5SatqsVQw2aya262M5PiFVZnYroA14cEcvUV0lGVG/qYF7EAS0OyH26ahOtW1fN1yNh1Rcz+eTJ1cpNi3es3+QydtUsP59Qk88xM+/bZrz6zUevyQIW+vHV7Bdn0pbBHyXWzbpqM5yuc2ugQQty6VlecL5oWExlonSshxkCTwvQJYkZEkiHdF4dHcflzeFZVHTdLBtj7Aq4fhgO/7rqs07nD0sL8A1XHqiYn0jyRKBHzCajfLifPmbqqlLt7BifQtvPlxrh3itkujMao2a4aKrMlFdYWd/nAvrNVzPZ7NuEtGEHdXB0RSqLLFcEfkhw+kwO/piWK7XZbmfWKpguz6JkE5fPES+Q1ybyMYYy4Q5vVJjpdymbbsosrDf0hUZBx/bfeX+3TB9DNvuZHJCOKRRNRwe2tlLqWVTK7e5tNnkwR1Z9g+nkGSJlVKbaEhhMB3BtH3CmsxSyUNVZWHj5fk4rk+17ZAIaRwaS+G4AVfzDUotm1hY5ZmZAieXK0Q0hY/fO0bVcHjn3n6+djGHIrs0LYc/e2kZXZVJhMS9/tphx6dOrVFsiPv6ew8MMJtvYbs+q9V2d3iwhfWqwWKpxYGh1HVKuq37bCy0/XO2J6az3rjxRuAGoCsSsgyG5WH7ARt1MXD81ffv4+c66izb9fnaxU1+4/EZTMfjymajm+UFdBvVGzWDq/kmEVXpKoeXSm02amYn8+kVUpfn++wbSlJu2bxt17dv4Pedxmb9FUvglXKbqd6YILiENO4cz7Cr/0aV9mqlzR88v0S+YeP5Yojx356c5de+79AbRgoJguB12e67ns9nTgsF9xfObfALj0xTMxxqpovj+R31m8i80RWJbCyE43hsVXK+LxQkjg+1ts2fH19BlegOwLqfC0HuFrlWYLseL69UcD2fRFin3BLFmK5KTPZEWa+ZmI4ryIWSxPn1Bu89MNDJli9zbrXOlVydimHTtFzSER0JieF0uJOBpTNXaNJ2PKZ6Y+gdG8J7JrN8o0Oo/thdo9cNRlVF5oEdN6uuXz9kSaInJrKc0jG9W9u/vFTFdIQFseX6fOHcOs/MlLBcH9v1ODKW4a7xDIulNs/OFAjrKvGIxo6+OGPZKE1TxIkossRET6xr6/jwjl5BRPAC2raL7XnYrk9EU3j8cp6P3T1KuNNDVGSJTEynYToUmzbgEwupxMMq794/wOfPbeJ1iMh/9Pwi/Qmds+s1VEnUoPGwRiqs8rvPLHRtD8st4fKTjOrcMZoi1zApNkxyDZ9Ky6ZuukQ0md2DCfI1k7lik7WKgeuLSIq2Iwhnvi+G5UMpoTSNhRTWqwa2Jz5Pw3I5OJIioivcPz3EvqEEs4UmuZpFpe3guB7xkHBxMB2FhuUSUmQurjewDns3tcHcDrGQygcPDdG0XDRFZqnc5vBYunuNfen8Bo9fyuF4QiV3z3QW2/M5v1ZDVcS52JcIkwxrHfJHQKFhsWsgQc1wOLsqLPiPL5bJ1Uxh2du0eNuuXr5+Kc9svokqS/zMw1Pd+/5oJkLb8jqKadAVWQynPTFoPjiaRFdlcjWLmiFqya2cTbsTIOsjhlvlloMkBawhMdEbFQKFps1GzSQZUjvPWYmaIerUAPF3x0Mqb9vVTzam8dKCSbkt1sS6ImxO1+smv/5DR/jvT82xVjXI1U0apovl+Gida+zEYpmfe2Qa2xH3nyevFFitiL6KHwSU2zaKLOMHfpdA4frBTeMHrsUbPgQLguDgtf+WJOlO4Bfe6O2+FiZ/9Qu3/drF//2Db+AneQvfbrx9Tz/pqGiczxVazOYa1zHFYyG1OzwBIcGcyTVZKrVYLrVx/IBdA3Hec2CAANioWQRBwE89PIn8/BJhTebPXxRZI5mYkKwrsswfHVsiqivM5VsYjsdKuS1CAIMAqeNJvtWcUCQYSIV5x75+Jnpiwq5wrsR61aBluTiux/94dp54SBULANfD88H3PTRVom1vT1kOgoDxbJQgCMjVLZ6bK7JzIE42phEPqzRNlz2DGSQJsjF9W8sZSZJeF+tsK29CBX7p7Tv41MlV6saNw7rXg5guoykKGzWTz5xeY7ovftOiY0dfnA/eMcQTV3KsVgxWKi0e3NF3XcOu0LAodhQTVzYb39IQ7NJGnTMrVfYPJ7cNxPxuw2JJ2Iu1bY+W7fETD06QiWo8M1Mgqqvk6ybvv2OI6b4Yp5YreH6FfYNJnp8t0rRFhkS5bbFWMfj82XV+pWNVWm07fO1ijg8fGmaiJ8rZVYdc3SYeVrh3MkvdculNhPibl1cpNCzWKm02ayYBMFc0MBwXzxfXVFRTMBwPWRa5Mr2JEKmoxngmRKnpsFE32aibHB1PcyXXxHK9jh2qWJQNJEMcGs0Q1WWevFLgb19eQZICwqrctTTLRjWanSam3PG2liS6waIr5TZfPr/Jy0sVPn7vePchnI1q+H4AEsTDKpmosIKYLzSZyzdod9hxbdvv2m+cXa12GYQg7lW25xO5Icr+LbyZMZwKU24Lm7t0p1FxM1WQ68GppQqz+QbD6QilpsWXzm0ykAzzI/eNs1I2aFoOF9brnFgqM9UTI6wpTPREeWT30LctPH0r6HeqN8b/eGYBEDZob3R24sO7enn4Fo2PluXyty+v4vpiGP09r8qpFDZL6zhewHK5zQ/fM8ZLC8ImZCAZYr1qUjOcG3ImxnuilFs2g6kwIVUmIitd25ft1FvNa8K5K+3t860URcLvNA6ntmEWR655Bt9qHtaX0JEksWDO3kIRqqkyhuMjSxDTbl7mH5sv0jAFy/7E4vY2gL/33AJnVqogwd+cWOZfvH//9h+wu/2bb9NyPQoNC9v1WK1srwBZKAm7WgmYLTS2fd1WVkIyrG1rWfTuff38xtev0nY8Htl747lVbFgsdWq1A0NJ1usGufprN+YlSeSFqIFoEridfIpsXNh/tCzxt17dbPDbT81iewFRXeHwaIoHd/RwbKHMWCdXMxvVWSu3MR2/a9tzZbPO7/zf7P13mGTned4J/06qU7mqcw6TMwYzGESCIMAcxACJkihZEiVZlsN65fTtru2116sNXn+2Jdle2bIyRSWKEnMAQYDIRJzB5Ng9nXPlePI5+8d7uqZ7pnswABHJua+LFwcdqqqrznnf532eOzw5wcdu6WV7d4rbRtp4djzPkZE23runmxcmipycK4X7nYQRynp6M1F+7JY+yoazLiMVBBHjK8fn0RSZnzg8sI5MsbUrwdhynY5khK6UTnsiwkrNJKFrfDRko4JQEd2xpZ2r0bRdTsyW6U1H2XqddeLhs8ucX6wy2B7js/eM0BaPsPsqFvVS1WS6IAaWJ+fKP5RDMKCVZbKKRJi3cjlXZ6GsMFs0uHdHJ0tVky+8OMMH9/XSk47y7Hieiikaj0ldEW4RYbOqOxXh0FAbsizq++WqhRdAXJNoi+ssVs0NM8BuFAGQiKrctbUTw3Y5Plum2LC47zp5gdfDrt4fzs/2hxUb9cvnSk2eu1ygKyVs9j+8r494RGGwLUYQiLyruZLRUlKosswtA1lc3ycT08jVLPaGpBaAPX0pjk2X2NadYEtnnD98eoKXZ8qcXawQ1zSatmgIA3QmNXb1Zqg0bc4tVq55bZ4ftAiimiRx12g7H9jbw79/+AKFusXnnp3kT56d4r27uhjMxrh1KMtSxWwpwUzHoy8TY6rQQJElkS/jiCan6Xg8fHaJofYYR0bamCuZdKeF3VjD8mjaHvm6jeX6lA2HjmQEkJAl0Rysmy5t8ci6Pf/cQpVTs2XaEsLObCAb44N7e/jCS7PMFg2+e265tR47ns9Xjs9juz7ThSY/c8dw63G+cnye6UKTWwYzvG/PxtaLletYuMU0GVWSaHgBvh/gez4rVXOdk0rFcAChpEhE1JBwqvKdM4vcu6OL9+zs4sXJIh0JnVOzFW4fFZapCV3h5GwZVZHJRiPcsbW9dW1s707x8YP9WK5/DcFpLRqWy6Pnl5EliQ/s7XnFZuebhfmywddOzBORpZbCfnUfHmqPM5CNicb84LUEpulCk0xMY77UxPGhZjgcnykzVWi0iL+vJ751apHxlTp3b+vYcE/fCKtuROM54YD00JklfvK2Qe7a2s5JTWa+1GS5ahHVFD52oBfbC1pkDsf1eG6iyErNQiHA9cG9yhZbhtCLcz0RyXZ9nriwQsP2kCVQw4gNWZLCKBBxjneCAF0V18eF5RrFhsPJuRKFuoOuyZyYLuH4AZ3JCL0Zcd7vSEZ4YaLAYsXE90Wm38dv6ads2BybLpGKqsQj6qakotcK0/F45NwyfhBwx5Z24rrKkdF2tnYlWtagh4fbWCg3qZkuH97Xy+MXVwgCYVu3qyeNLEl8+8wSd4y2UahbqIrMy1NltnTG6UlH+enbuxntiON6Pok1VnkN2+PAQAbL9Xhxqsh8ycBHkP339mf48+dniKgS6ajCQFuc74/lGVuptzIXXT/gb47O8d0zS2ztjFM1HFRZ4tRcBV2VsWwXG6GoVcJaWeLKYH5rV4KlsinOKrbHRK7RsrZN6AqWI0gRL00W6UhGqBjC3j0IAtoToudquh6qLGqm80t14hGFj+7v5ZnxAvNlcb6IqsJz5ZMH++lK6bw0VYQAhttjDHfE0VWZfQNpHj27jBcIa2phkx5wYqbMnVtfecjp+QEPn13CdDw+vK+XQ8Nt5GoWt4+08c1TC1xeafCu7R0kdBXbEzlwi2VDEPcC6M9G0TWFD+7tY7gjzlShzkrNXDfESUU1etJRlqsmhdCKtmG5fPrIILeNtDNXmgfEmvynz0/Rl4nxsQN9nJwrs1wzkSXY2pGgbDjkwrw8VZGoGi7bupNUDYelqhhceYHIBpMlUe+vWtcHgbBMXI0mQZLoy0TRNZlz81Vsz0dGvHdIIAdCjHFkNIvn+zx7uUCxaQMSBwZSVJoOhNdGVJX5tfftoOl4/Nnz01iOz97+NJ4vrD4tx+c7Z5ZoT0SYKTUpNcWgNKmrRBRxPVquhySJf/uOt6nSeS3eDCXYOgRB8LIkSbe/2c97Ez86UGSJ20ZEsTXYFmuFgO/ubWx4mJ7INehJ63SndOqmSzSicMtAmv0DWc4tVtnTl0KSJA4Pt3NwsI3/4xtnqVkuuZrHpw4PcGgoy9dPLDCZr3NwKNvy+a9bLqoc4DogyaApkNQFYz+pq3QkIiiyRKFhkYpqxHWVaOhl64Re2sWmjeMFyFwpCExH+Ota3sYbshSIjUySxCG72LDRZJnh9gSlpsNwe5wDAxlemirhB0HLb/b1hOtzXWuh62HVskWWJEY6ExwZaePCYg1Jkoiomy9q9+/u5pnLebpSMsemyty9tXMdw0k0ZxLkatZ1i+sbwRMXc5iOx3LV4sBA5lUxqd6puGVQZE/ENIWtXaL5/lO3D1GzXIIABtpi7O0Xzax//pE91EyH8ZU6k4UGpYaNLMHYcp18XRTI37uw0jocSEh0JnVuHcpyZr7ChaUqXWmd/kyMnd0p/uTZKWzXpzOhc2G5RsPyiGtKaAsnfP5H2+Ok45rIAgoChtpjPHhokKcu5TgxY+OEMu2ErpKviRBPz7+Stef6PgcH2xjpTDBXavAnz05xYbmO6wsrldEBce0YtkcqqrGnL8XYcp1S0yYdVelIRhgMg1TPL1YZXxG2RHduaefPX5jm1GyFkY44HaZLRyrCHaMdnF+o8q0ziwShp3lElWlPRIhFRM7RQDbGCxMFbhnIkI1r9GdjreL4Jt45WDswsVuMx/ULZEqXaYur/PGzUxTqNqWGzbbuFOMrtZYF2aHhLMdnSmRjGhXTodCwWK5aqIrE02M5tnQmwkG1u2HQ+qtFPKLSndZZqVokoyqlhr2hHWexYfPV0NrswUMDrzlD4Uaw+q4FG/j8SZIguQiWtsqLU0XOL1ZDW2KbjqS+4UH2gV3dHB5uI6mryGHhLEnSdQdSjnvlcSx7Y/s/AIWAVa512fDo3SA6x/KuNKOut21u707x83eJuuF67/FAJophN0hHFbRNSC6W47f26Kqx+euvWSJzgECi2tz859ZC3+SNW66Z+CErstLcXIrSldSREJ9nzwZ5bKs4MJClYXls7Yyzmfm7EwQMdyYwbY+22LX5YreNtPPIuWUWywYzoX3KjZQuUiCUaK5PqESQSEVV2mMaJSSCwMZH2JHYXkDddNA1hZmiaHTFNIXRjjhxXeXMfIWa7ZGNqfRmoiQiohb0Q/Xa9u4UtwxmKTcdjk2X+PLL8/zkkUEmCw1imkpPmD2zis3sSsdX6jQtl4vLNS6v1PiJ24ZatfLu3jRbOoWtcRAENB2PdFS7Yfvo74VMVFmS+MV7RjfNrpvICzLAQsnk04cHN6ydulI63WmdQt1mz2u0GXqnYHt3ik8dkvH8gNGOOJeW6+iazJMXcwy2x5AlYekNcHK2TGcygixLKJLEfKmJLIl623Y99FCdOlduMhmqHm3XJR5RCFComqJWC3uM10CBVxyQ+YGwLNrVm+S/PXEZ1/fJRjV29r42goSq3Kxn3km42gJ1lfVet1wSEcGEPzCQ4dR8hZOzYih17/YOPn6wn3zd4veeukwqqvGRA72Umw5jKzWimsJErkHFcMjENN67u4em5XFsusQj55Yoh0Q13w5wPBvfFzna2WiE20fb+PHDw/z242PEdRXHc9EIcFaJp4hM1lRUozOlM1cx+I/fvcRUoclC2cAMySLPXM7zP31oN10pnYfPLHF0ukRfJsov3D1COhbhsfPLRFSZrlSE6UKTXN3mwmIVkFiqWJSbLp+9Z4Q7t3aSr1s8dn6FdExjpCPBg4cG+L2nJrhlMIvl+sQjCpWmQzqmcd/OTvb3ZwGomg7fPbdEJqYRBAEPHhpAkiS2dCXoSEaYKxlcXKqhqzLv29MTqpHF+rl2jXY9v0UimMg1eN+ejT9LZZNNUwZs36dmiUaiLItGb7np8NzlPHdt7WA8V+drJxaomw4RVZxz+rIxZoqi+awp4jXes62D0/MVqobDC5NFVFlY5X7l+DwNy+XcYhU38GlPRFrK4s0U7mvx7OU83zmzREJXGWqP/8Bn+tcLl5ZqWI6PBdy7M7OObLt6Zt4M+/sz3DHazmS+ges5rXstX7fZ/soRua8KIoNIEIzOzFdueAimyBI/ffuQiAnwArJxje50lH9w/3aevLjCnz4/Q4CwB3zfnh7+4JlJLNdjtDOOYUtk4xoxTUaWJeaLTZru+vVEVSQUWSLwfSRZxvV8HB8atk+jaCADcV0W+5gkzlMR1UNC9Jw0iTATTGa20GB8WahjulI6EFBsOsIaPaxvDMdjtCPO108sYDgeaV3l/t1d7O5L8dJUia6kzlB7nFuGMq87GefCUo3xFVEP9aSj3Lujk6+8PE9CV6iaIhdubWbc556dojOps7UryT3bOtjVm+JEuMb2ZmJ89p5RvnZigcsrdVzf5xfvGSWpq/zBMxOAxKdvG6QnVGJu60pycq4syH/pKGPLdfozUbKxCN2pCE9cWCFXt1BkiaGOGJYjbMez8QhpXaUjqTOeqyNJcPfWDrZ0Jnl5ukSuZtGX0dEUkdfckYiQiqotAcCO7hSD2RjLNZOa7rJYNlAksa8osqipB9tjzBYNGqYg0S9VLZTQdSEIxPqWjmpkZY1Sw1qTdSrRk4nxfz24n6curVAzXM6HPadHzy/jB4LMrSsyuibTm4mSisW4baSNQt0mf24ZNYynWaiY1yUarsWzl/P86XNTIgvY9/nJI4KMYNgeY8t1giDg6HSJHz80wLGpknAxaouhyDDamWA8Vxc94aR4vqbls6VT1FOrZA9FlvjM7UM0bZfff3qSuuWiSFLLWeYDe3s4PVfh/FKVUsNhItfg0XMr/KfvjTFXahKPqFRMl3RMY7QjwYWlmjgLS2LAFtVU1DBXjUACfIJAEBba4sIu0fEDlEAouGzXZ2tngtuGszxxMUdAQDoq3CGWKiaWa+MGog/+vfMrTHQ2w3tfoWm7nJytEEiwtzfNhaU6Z+bP05HUefDQAL9w9yiXw/vCcjyalkeuZpKr2+JspCqsVE0iiowUBGztTDBdFO5ufniRaIpC9Abca97wIZgkSf90zX/KwGEg90Y/7+uJG1WNvZMUY69GCfdOxnShSakhLAAn8vVrNrFHzy3xJ88JBdevvW8HUVVmIt9gS2eS7d1JDo+0Mb5SJ1ez6ErpnJorM1Ns4nk+O3uSfHBPD49fXGG62CAWUfB8+OC+bh4+syxCzQORHUIAUU1lX3+a/+fBA/ybr5+l0BDWMx1Jncl8g3xo+UAgWC4yQjauSGLhXz3sBq5YnFYHY2u9kQPACWClLnzSE7pMdzLCUtXAcn2SUZWDQ1nawgFcsWZzaaVOX1h8ji3XeHGqyI7u1A0XRVfD9Xz+3UPnKRtOi60D12/urYUX2trJUoDleMRUkVXWn42xrz8dWsZdG1aryBL7+jPMFpu0JSLXNFdUReaTt64PqnytGGyLMb5SZ6At9iMxAAMRKOoHQlFXbNj0Z2Okohrv3d3NxaUa91+VPZKKiqDUnz4yxPMTQr6fKDWpmQ4S4hr/yP5elqomHUmh2LplMIMiC6aZabnkqiaJiJA1r967u7tTXMrVGWmL8avv2crJuapQ+IXNomTUxvXEwfbffO0MU/kGcV2l3LDQZOhORbD9ANsLWgWGrkps6YyzsyfJw2eXubBUpdSwMR2PRESlMym8mi8sCi/yeAQUWSYb11iqGizVPBxfNAR836duefSmo3zp6Cx/8PRlSmG46JaOOIdH2viVd29lvmTw24+PtUJhMzGN7nQMVZG4fbiNhuPx+eem6U3rxHWV//G9O25m2b1D0ZPUmSqIbMlMmB91dSbYnVs62Nuf5uFzy0iSWK9KDRFAntAVjk2XaI9r/PTtw7wwWWC22CShq+RqFnJoOfAfHr7AucUqQ21xPryvl8MjbZyaq9CZjFxXnREEwYaqJ1F4D/PcRJ6XJkvMFpr87J3D1yipxpZrIStYWNPeNvLa9o5XQkJX+fHDAyxWTPb3X9sokSRxQF8oGwy2xVuHfE2RWTQsNEUoPDdqRLza4XJHQmO5Lv7mgevkVq0lWyc3sQCMrbXceIWN8ur3fiOsVC1cL6BmepuGgum60rLzi1/HMulnbh9icqWOqsh8+joNnLXwN2mu7epJ053UqZjOdeuLQs1q5abWrc0HbydmS5QNm4vLwqJK28AySAqExV5MU9CvGggatkuxaXN4OMul5SqVpoNzg4WKB3ju6nMEdKeFhWY2GeEzdwzxJ89Ns1ixMB2XfM3C8nw0xyOiKjiOj0dAWyJCJvSyb9oiPLo3E6MvG8MPArrTOrcOCzuVfN1mviwamzVT2P/+wt2jlBo2g5vUIUEg9rhVNunOnhQnZ8tYrlBgnFustoZgs8UmD58VTMuPH+xvqTLWrgkLZYOXpops6Uxco4DXwsGnLIkMj83wrm2dnJgts39gc8vTiCJzYCCD5wfs6H5j1advB2xZcy7Z259mW3dCKPFCktXF5Rp10+XoVJHJfB1ZAkUWw0Ix1A+QJJ2G5bKjO4mmSPiBqG1601Fs12eq0MD2AgI/zFGRwb6e1+h1kKta/Olz0+RqFpIEs6XmjRf4V6Et/qZzcW/iB0BEkVir4f39pyaQZZG/pakyZ+YrHJ0ukYlqENohZeJC1XRuoUojtGaSJbhjSzs102GlKmqcqVwDNwi4dSjLbLHJd88tUW7aLSVBSleJRYRdeDYR4YFdXQxm4/zrr52hGlqy6Qrcs62Dp8eKommHOLtIkmClT+WbIuNrjQIlQLhISBI0bTEcqFsututxfKZMd1rsWRcWa+E5M83P3jHMl1+e44kLK5SbNg+fXeLCUo1fe/8O3r+nZ12N0Z+N8clb+/nu2WUM36M9HqFmukQ1mZrptggDEUUQ52zXpyulkw5rxXhE5cP7e/n9pyYYbo9zaq7SygT9ySODzJUMdvZcWSdVReaebR1cWKq11veN0J+NMlm8VpHtA0boNuN6Ad0pkQUznmvwv3/9LIeG25Al0cTvCPewofYE797RwfMTRVw/aDWQ37enm/0DGU7OlTm3UG1lrf/UkSGeu1xAokquZvGHz0xw385udEXipekSWzuTfPRAb2uPqDTFgDAWUfjg3l5mikINUG6KPsPbBXv60oyv1InrCsM3mClWNRyeu1xAVST+4QPbGFup8fJMGRDW5LvegAzeqKawrz/N2EqdW4ezr+p3s/EI//CBHaJfNFngT5+f5pO39rOnL0N3SqdqONQMm3//8AXGVhpIwFxR7BGG64tGtizRk41SajhUDbdlex34AYEk6mZNEtmCpabDWupgKqJASMaIKDISYrhWaDi4Ya/McT1MB0Y6YmiKyvbuBJqqcHqujOv75GoWmagYyJWbwjIQBIGoOxkNVaAuhbrDu3d2vSHxGb3paLhXw0A2xmyxSWdSqEgnco3WYHe1fotpChFV4b6dXfzte7fg+QGaItOwXHb1pNBUmWPTJYwwgkUG/sv3LnFusUompom+iyJcPu7a2sHff882nr60wr/86lkqTZFZ/Mlbu+hJ6XzvfI5S00bXZGYLQiHl+gF3be3gn39kN49dWKFQt9BVhUPDbeiagizDxcUqni96ZEldY39/mpdny6SjGl1pnUrT4bGLK6RiKtWmUMnOFCEVVbFdn919KQ4OZnlBLrFcMSg1HWQZFEnCcn0CAlaqJrmaFZISdA4MpinU3Rbh7+lLeS7nmrQnIhwcSJML3R6Wqhbt8QiFhk02rnFsuszdisJ3ziyTqwmL6UrTJRaR0VV5UzLZqpXjqpOCG2bRw3qL4FhEYU9fmq+fnCela2ztTPBPPrCTZ8bzbO9OEtUU9g9kWvabq+eXHd1JHj0vrGj39V95DbIs8rVuGcxwfrFKOqa1BmfxiMqdWzuI6wp/+tw0XakoU8U6UVUWsR9BwGhnnJimslAx6UxqWK4ggfthvyyiiK6yJ4EfiI5ySlfZN5ClYTrMVyziEZnulE6p6XB6vkKuZjKQjZGOaviBcE2qmQ5OSDCXEbl0w+0+mizhqxLNmovt+RQbDpNqgwBhiz1XMtjVk+TWoTZ+54nLNGyX9+/pJgigWLcwbUFmtV2vpcpetbBXZIlYRKZueiBJ+EHA6bkqNdO5LiH4zag+115FLiIj7EtvwvPexI8gyk2bp8bytMcjHBrO8PRYnqlCk+H2+IbsovNLNWxXyPw/9/1JPnPHCB/Y24vvB5SbNl87Pk/VdPnWqUUG22K8PF2iZrqkoiqfuLWPhi0k+RO5BjFN4Y4tHfzkbQN8f7xAKqrhBz5dyShtMQ2PgHhE5ZunF1mqWRTrYpjQnogwW2qG+ULicOsDhhu0mA/rWgVBKElXJRzHxwdSukIqqlKzHKqmv/pjEICmKjx1KU9fNsqO7hQHBjIMtcV56PQS3WmdM/OioAbC96vBM2N5Xp4ptiS1r8aPerbU5KXJYsgiEBJyw/Zwb/CQvLqHOD7MFQ3+6NkpdFVmqWLy+09P8uy4+Ezv2trO/bu6uXtbB90hW/yTt/azVDHpTr9yo/AHwccO9FExBJPvRwUzxSb5moXr+fzpc9Ps6U9z345Onh7LY9geL06V+Ngtfdf83kcO9FFs2swWm9StCPds66QzqZONh6Gn6StM//0DWf7he3dwbKrIYxdWkCWJ8ZU6e/tFjt8tAxnOG1U6ExqOH3Bqrsa7d3Ty8nSJpYo4SO/qTpLQRaDz2EodXVOwQ9VDMqpx19ZOLNdjtij8hHVFojul84G9ffzx96c4v1TF9Tw0RSERKja9AFYqBpoiY7ge2ZiG7Xqs1CxAIiILf/OKIfIHVFliqdxEU1W8IGgN03b2pGlYLv/sr08wUzBCm8OAVFTj5+4e4dBwGxVDHLa/Py4GHemYRndKp1i36Epvroq4ibcvFqtX7PJKDTE48a7qGh6bKdGTjvLgrQPMlQwOj7TxnTOLgMTJ2SpxbZ6JQoPDw2184mA/P35YWPq6nmDofe7ZSZ6/XGClZqHJMlOFJlXT5fxiFUmCnzoyxKm5MrIkcf+u7pYNrmF7/NVLM1RNl48e6Lsm/FmRJWzXxw+E6qVqutcMYrZ1Jzk1V0GSYGvnG9u0HmyLX9f2MR65khl5y2CW7lSUb59e4NJynYl8g0PDmzeFNkIQBJwMvdgPDl5R/eqaAqHGS7+OFc/aPvNcsclg+7UDs/Y172cyuvleW6hbfOPkAqoi86lDAyQ3GV7Zno8UkmeKhk0mce1+uLUj0SLYrB6kNkJfJsbu/gwRRbrhQaHlbqwniahi/XS8oGXftxEurVzJ0Ht2Ir/pzzVt8Vim412jUFhFbyYaZg1YfOxA77rv/Zuvn+WJizmM0F5r7VBgM7UMXMkCa/1dmsKv3LuFb55apFCz+d75Fe7Z3skLE0XmQrWOZworEcXzcHyZu7Z1cM+2TvozMZCEsmdHdxLb95nMNRhqj7OlI0FnUufRc8ucnq8wX26iyBIP7OppKTLjmsJXjs/zpWNztMU1/of37mBPXxrfD/jrY7MslE3u3NrOPds66Urp/P37t7H1bILJfJODgxmOz5SQJYnZorDcqZkuC2VjXU7XKh67sEKuZjGZb7C9O0k8cuX6e+/uHgaycbpS+nUPnQeHsq8YVn12odrKyVJleUPrqB9m6KrCZ24XbOLlqsn+gQxzpSa/+d2LTOQbZOMR7tnWwXOXi3Skdf75h3dyablBOsxBfm6iQMVw0GQJy/Go2x5GON1dZVTb4TBslagW8MoqsFU4gWiA66qE7Yr176kxcZ8qMnx4X98N55ZeXLjWwu4m3r6QNiA4CCWxRFtcY6Zo0JEUOYefunWA75xd5qHTS/hBwO5e0XRPR1UGsmIP39MravtUVOWxi+Kedz2fsZUaTdvF9WEgG+f20SzFpsO5xSoRVQEkCnWbL788T9UU1ZQqgyzJXFpugBQOe1WZTCyC4fhIkoTpeGzvTrBQMulO6UyH1rtD7XFKDYeHTi8xkWuICALXY6gtTkIX7PNkRGG+YvDcRIHTCxVB0rA9LMfHlgPmS01+98nLdCQirTojX7coNWxuGcyyUjU5t1gL80skQGrtWw3L5XPPTlGoW8gylBo2f310js/eMwoIpe6nbxvipakiu3qv5El1JnU6NyDG3Lm14xWtvJarm9s4r8IHyoZLEPhEVJFrfnahguF4dCbEcOzffnIfPZkYqizheAEN273i8iFJ9GaiZGJdRBSZZFRtERrfv7ebsmHz3OUCPWmdvzk6S65ukY1HcL2A9+zqatU4x2dLLQvlbV11dvemyddsoppyXYLXm43eTJS/c9/WG/75XM3itx8b48JSjZ09SaYKDQ4OtbG3P8PWjgTv29vzhvUZPrivlw/ue22/G1GF+rNsuIDL2HKNg4NZulI6M8UG00WDuiXUYhBQNT1MWwy7mrZLRBGk2vZEhM6UzmyxgeOBpikkIzLFhoPlBrjetcr8quWH+ZcAIkbAcsWAZzWz0HTF8y5Vbe7akuLQcBuLFZPdvSlenCoR1xTqlseu3jR3bmnnu+eWxJkoCDg6VeKPnplE12T29mV4fqJwXdLW+EqNxy6s0JuJ8WMH+lpuEq+E3kyUXw5t15O6iiJLnJ6voCoyWzaovz5xsJ9Tc2V29Ah3qlzd5K+PzVG3BJnrji0dbO1McnSqSFRTePRijoblMrYsSGxLFYN9A1lOzVXY158mHlH53gXRv3F8YXu6pTNBW1xDkgIURUaVZRRJwvV9krpKWzzC8Zky3z27RN1yGWiLMVWoM5iN052MMibXmS42aE9E+PHbBuhNR0X9YXt86mA//+G7Fyk3bYp1i0xCDGIM2yIWUbhvTxe/+p5tfPGl2Zbaqy8dxQkCIopMNqZyeqFG1bBb51LL9jg2XWGoLc5oNkoztEmNaQqn5ip0JCI4nk8ApKMqluuRjqkslA0cL+D5iQIXl6t4fkDFsIUSUZKIR1SmC41r6uATs2Uev7BCVFP4ubuGSUU17t3RSalpYzo+n7x1vUX/+/d0c36xCghRxt+5byt3besISRcShbrF4xdztCc07t/ZjSxLvDBZ4KlLefwgYPv5FD9xeHDdY75vTw/37uhkpWq1lH2rWKladKeiyBLcPtrOM2N5+rMxDo9kycQiLFdN4ppMW1xnqWpSMx2euZynYXlIormMLEvC7h2hwjPcErt6E9wymML1oVR3mC6KbON8zeLiknDqkiWRDWo6Proq3kdFkVDCfS4d07ica2C5PqbrEw3FDSPtMerWaqagz+8+dZkXJgvoqowX9jdWahZ9WWE1PJGr44dWkVFVbpH6VjPSZotNTN9juWZycq7Mvds3t+p+MzLBfh1AkqSU+M+g/kY/5zsBb0Qm2TtV3WW7Ps9NFFBlibu2dvxAaofnLhe4vFLnMhCLCMnm3j5h83JmvkLDKnL/rq7WIf19u7uZKzYZ83wqTYc/eXaSHT1JnrqUY2y5zkxRDNDmSk1yNYvL+Tqm47O7J4XjwXSxyXzZwHaFl+rxmRIfv6WPe7Z14voraLJMXFfpy0Q5u1DlzHyF6UIdwxYe4Y4XsFgRYY+rFoAQtBosLesnrjRl3ADkIMCXIBLKPTVVpmF79GbiEBg0bBFOigST+TqpqIYVFvTZuMafPDdF3RJy64WywfMTBe7a2kFHMsLDZ5do2i4SYNg+cyXjujLwhbLB6fkKO3tSbOlMcG6hiqYKv95o2Gi90QHY1fBCeoXjimBQ03I4v1jD8XwePb9CXyaG6wX8RJjxpinyuuDSNwpyGBR6o3i14bNvRwy1xelIRlrhm5dX6pycKXFmoUpSVyk1LOIRhdu3tF/TnJUlCV1V2NefoTMZEcrHhsXL00Vu37L+oHb/ri7u29HJQsUUvvGSxAsTRWKawvhKnagmvPhTUQ3T8fjq8QUUWdz7qixk/pdzdaqmG9qGaSAJVkrDcjm9UMFyfPzQ8zgaUfh779nGaGeSb5xcaDFEk1GFvnSUbFyjZnk0LJfh9jhV08FwPF6eKSMhWKbN0Mva94VNmoPICfMln/aQ5dmd1jkxV2ahbIQHB3FPZ2MqB4cyHBlp57bRdpqWyxMXVqgaDvGIzFBbjNHOBMWmc3MI9g7FWgu+1X+rV8klSk2Xp8fyPHh4kF+6d5Rvn1rC94XNaEpXMRwP3xeMs0LDZmtY16mKTFsiQjqmkYlHsN2A7d1J7trazuWcGCZISJxfrHJ+USijutPRFstwqWpSCq3pxpZrjHTEUWVp3XqVDxvfu3qTpPRrm5udSf1VHfxfCRM5sfceHBSqZdfzefjsMhXD4f17u1ukh7UwHY+jU8K/f22TvTcTZbg9wd5+k/OLNaYLDY5NFSk1HUzX44Fd3dcNjz8zX+XxMBhbkaRWQ765RqHUvI5aaS1W1RlXoyOhtwYricjmDY8Ts2VenCoiS8Ju5vAmLO/+rFAqJ3SF3k3sBC8tCVUrEq3PfyOcXahi2B4GcGm5dkMNJ32TP+H74znydRs/gMcvbm4IkYwqlEJlYXdy8zXP8wNcL8CTA7RN6savnphjfEWwDf/7UxP8wj1bWt87v1htDcCutte8Xsmy9kdVGfb1pZnMNzi7UKFhuVxalulaEu9VOqYyvtIAhP2u6YMsuThuwC2DGTqTOlXD4s9fnKXUtMnERE22WDHI1Sx29aZYrAjCxGzR4LaRNgznyvU2VWjw5ZfnRRaDJjN8coGdPSlqpsNCWahPL6/UuWebsEuUJIkP7xdklROzZZ4IP4e9/anWfnn1wXoVXSmdXM0iHdVC1ugVRNTXb1i19gxwPVXZ2xWW6/Hc5QJ6aBN2o02xq/GdM0s8PZajJx3lk7f2t5jOrhewWLZExoTrU2y6PBg2Sr5xcoG66dK0/daF6oS5SHBtLR4EYjD2amv0mumSzAgFvyYLBdDqkPz8YoXDN6gGLhqbrz038faDcxXZoDOps68/zUhHnIrhcma+zGMXcuzpE4MaMyQ7XFyq8clbB/jV+7by+IUVHr+4wv27unhmPE/FcJgpNtBVhWioyHK8AFkSI7ea5fLsRBHPC/CCAM8PqBo2p+erOH6YUxaSQ3VNgSDACi9o0/FZrJooksT+/hQN2+PcYq1lzdSwXVK6yoHBLLomUzEs6pbNKkfjwnKNILR5HumM8flnp8nXLBqmQ9lwkJCIqDJeEGCFRNY/fGaSz94TMNQW489fmMF2fUzXY6lscGq+Sn82yv/0wZ0gya1h0fHZEk9fygmlS1RlX3+GuuWuOztu605guh7bf4Chz9p+y0rtlYdgIIaScV0o1CKKUAL1aXLLSvLPX5jhs/eMUmo6PDdRQIJWFtRQW4z7d3UTiyg8sLubStPhayfmycQ0tnYlmC+JvW2m6OF50J+JsVgx2d6dJLFmkD7UHufkbAVNlehNR9ndK/oN6Zi2jozxTkOuZuH5wjZsqWpyer6CLEl0p4TF4NVkgqv7LW8ltnQlxDlYgtGOBKbrY7liIK3IEtmYsPUjEGwrN3T5cX1BgtJkocaPqDoRRUGRAnrSOj1pnfxkCbhC1FgVbgaIWl9VhGOM5fot1cnalUn2xdA2Elq1zpYMinULVZZJ6gol12dnb4IP7u3h26cXOb9YJaWrjOfqBAH4gXBiKhs27+7oZLbYZDxXZ19/unX+KDdtTsyWObdYpdwQyhhdFSSlyCbyxKNTRaqmw11bO4hH1Na1+/lnp3j84goHhzL84/fsWvc7vh/w8kyJ711Y4fRsmURU5V99bC8Xl2qsVE0s1+epS3mWKhaW69Gd1klHI8gSlBrC+s/zAyqmy8nZMtm4xpePzTHUEScZVUK3HZ+OlE6+ZnNiphyeSaTW8yuyjBfAnVvbeOLCCmOh9fXFpSqzRQNFhqSucGm5geP79GeilBoizqUnpTNdbDJVaKLKMobjiSF+AKmoQhAENGyfiVydh04v8o2TC1iuz0hHnN39KZq2yMq9bbiNrnSR5y4XKDUdsiEZuhwqymzPR5XDPqkvBjG6Kofvh0ZUk1sZjYtlE1WGYsNipWaGMSxi/2hL6CR0la+dWOCX792yrp+1GGaNmY5HqSFURpoit0ipV0NVZN69o3OdKnft470wWWS22GS2KKwih9rjLFVMpgoNPD9gOt/Y8HF1Vdmw1ynLwk5UkoTF5scO9LVsaJfKBs9NFmhYXsuSvWm5VMNIEyQJVRL7buAHyDIYjk+zInLIupIRkjENAnAdF9fzsQNQFbE3uH4QqhMlJCR29KQoNmwcz6dpeezsTnJpuYYbBAy1x5nM1Tm7WKUtHmFrV4Kq6bJUNTBsD8/3qRoeVdNBU2R8P6BQtzgxUyJXt/ARA/SuZIR8w0KWZEY74tiez6QvrtmlikndvP7Z/M2wQ9wP/CnQHv53HvhsEARn3ujnfrPxRg2h3qnDrRvFidkyL0+LDS8T027ID3ozdKd1wVDUZHZ0J1vh5OWmzRePztKZ1ElGVR7YJQyWd/em+Rcf3cP/9rWzHJsuMtKR4PhMmdnQIqA3E+W+nZ30pnU+/9w0BDDaEWdPf5pc1WQi36ArGcG0PVzP59RchX/11TMMt8d5z44u7t7WyUNnlrBdn3LTplC3WaoGghnsB3jBekYxQdBicK+dmQjv79D+MBCMl7a4Rt2wMVxa6pO5UpM9fWnBAG/Y4jDsuDRtt6WqOT1foWo6dIdWKumoxh89M8mZ+Qr37+rmtpE2yk1H2DTENm+IrOKhM0tUDYdLSzX+wQPb0VWF20bamMjVaYZhpa8FEoLVLyyMRBBooemQjqo0wgyWE7OlV1QeHJ8R6r07trS/JeG5p+cqITNF5mfvHHnHqscSusov3D3KYsXgb47Ohdkuwsrn0lKNQsPihckiPekoP3ZLPz9+2wB6aPP18YP9XFquMdweJx3V+JtjswA8M16gJy0CSkGwnn/3yctMF5rcs60Nw/aYKTawDA/LdXF9UdRkYxG2dSfpTuskLYXvnltmqWpiuz7zFZOoquL7onAqGzaW4+EHAb4Pl1dqOJ4oFghgpD3G7r40yYhCOqoSUaQw40VkdFVMh0LdxvNFgd+Z0FmuGliORzKqooQ3as301jVSI4oIhY1qMiPtaXRNYTLfoLZmU5Yl6MlE+dgt/RwcyuL7Af//71zg2EyZuumwpz/NwcEsO3tSbOu6GSD/TsVG+VWryt+1kGShtinURR7Art4UW7uSdKV0nri4wuGRdnb3ptjbe61Nw6duHaAtHmFPb5ozCxW+cXKR+3Z28sDubjpCxu7p+UqYv3dlgD+QjTHcHqdsOOiqzH99fJyORISfvn2YiCqIJPNlk/5MjGPTZVxP+I+/1n16rtTk0nKNvX2ZlgXJWhi2xzdOLpKvW/zVS7O8f08PB4cyrWyvY1MqHznQf83vPTdR4ERoIdOeiJCOanzl+Bx+IBiUUU1qZe89PZZvHZhjYW7fM+MFXN/nfbt71jUe1jbk1/67ucb3onydTK21OTur69zViEQUocjwILGJZSKA4Xjka8Kn33I2HqiBuN4iqowiSziez0apn8motkZpvvkmfWAww7dOLxBRFfb23ZgtT6Wx8fvRtLxWPWBvohYDSOkaIAY411OpmY7IPnV9wT6PbTDMVCSppcYzr1Kf/fxdI/ynRy8RCXNaCnWL5g34IQaI7AmAuCazUDM58XyZRuh96fgebsXE9nzevaOTTx7s58+en2G+IhoxXgBPXcoxka+zvSvFqbkyfhBQath0p6PEIwqXluvk68LuaU9/iq1dCRxPWD72ZWKYjkdUU2iLR4hqMooiocoS2ZjKHzw9geP5DLXHqJvuhooA3w/4/niel6aKjHYk2NLZx/v39FJq2jx0ZpGuZJR3be9AkiTKTcG4/8CeHg4MZLi0XOPrJxe4d3vnOiX364U9fSLwXahHXn8rqDcax6ZLHA/XoraE9pqslJ6/XOCLL81SMWxmCg329KX5vz51gH/9tdMU6w5LVQNZlohrKsOhMtZ0PPqzUU7NlVtMaVWWr3t/S9KVBuOrgRQO7Wumw9NjOf7RB3ZQrDtM5hviTGC63L/rlYNsVm00b+KdAVWWWDu2bFgO79o+0CKSnF2orGn2KeRqJosViyOj4msXl2qcXRDM+Gxcw3A9Xpoq0hGP8Nl3jfLkpRyPnlvm1qE2mrbHdL5OwxERAFFNJhYR2aSm62F7PoeHRQ635wfEIzLVMEt7FT6CmGYT8PWTC3iBRFSTqVsKd462tdQOP354gGcvF1iqWARIYQ6msKrrjOt84+Qi9+/oFCQ3z6dhC3uwiCLz8Vt6hcKrYVNo2Ay3x/nOmSUIAr5/OY/liIa8iDsI8LwAwwmIReDPX5hmb38ay77iDXDv9g6G2hPsDBUfq/j2qUVKTYez8xX+/v3bydUslqsm6ajIxVIVmXLTJgjYlKS5tt/StK+v/dRkYZGV0FVUGUb70xSbLhXD5q4tvWiqzNHJIt84ucCTF3MMZGOcW6oSUWTmy00GsnHyYQb3anzBw+eWGFuuEdOENd34Sp2a6dKV1vnUrX0UGzafuWOYg0MZZopNejNRdFVhW1eSX3n3FhRZap3j+9+APPM3E5Yr1ApLVZOULs6emiIzvlLHdDy+fXqxRfBdxdX9lrfSIr87FeXv3rcVSRID6BOzZaYKTSpNh1hEYaZg4noBmirsSBVFwl8TFu/7wvFIC/s5uiaUIYYprPl8T5A3YpqCY125VkX2l8gDjyhyKzNwFaok1h5FFr2jmWKTeERhttTE9wMqhrA/3NWdYizsiUkSlA2Hn7trBEWS+MqJeVK6wq6eFHMlg9NzZRK6xnS+wS++SxCpvntumfmSwUrNZHylTqFh07Q8goAW0WgtpgsNnh674mzw3t09gKjXnx7L0bQ9XpostRyiQFwj48t1nh7L8/3xHK4X4PgBz47nWa5ZlJsOfiAiHQzH49xClXRURZZkPnmwn+09SX7962c5u1hlpC3GuaUauZrF7zx5mWiYq3739g4SmkJHSkSz+IGPHua2+QGUDEHOuntbB7ePdvD5Z6fFoNv1aNoyVVOsxYmIgqpIpGIaEVVhoWwgSSa96SiW6/PtM4vMl5sEgbC0TMc0bMej1HSoNG3OGg4LFRNZErWM4wlj9eWqsL83HZ+fuWOYpapFh+EwlI1ycq6CIkk4oRqo2hS5kgldpT8rUWwIhVYmJhTLkgQXlqqoioTnE66vgVASymJ/CwIxyJEluPr2unNrB4bj0RaPMNR+7fpzcrZM2XC4Y7S9dY48MtrOkdGNSUFRVeHUXJlMLAKSUEmWmjZVwxE26I0bIyqsYqgtxhOhKnEq32CpajHUHmdfX4r/9sRlig2HREShLxNFVcQ5cjxXx3GFWq49EWGxYkKw3i7b9gLydYu65eGFoo2ErlA1XAoNl0RERpUlYpoS5jvGuXUow/OX82iKGNhFNIWa6VJuOhQbNm1xja6kTgBs60xydqHCYsUUzmHhZ1MxXUba4yiKRExTubBcF8RFx4Mwa65peeiKEGzMlZotdXXFcF4xn/zNoE/8HvBPgyB4HECSpPvDr93zJjz3TbwDsOp7LUmCAfVqsZYpddtIO0NtImw8qavcva2DiVyDL708RxAELFdNukLrgIbl8s1TC8wWDUxHqDwUWWIgG6MrqXNyrszevjSO53NppU5HMkJfJsaOniS6KvPMWJ6LyzXksADQFBk/CJgtNZnMNxhsj7OjN8V7dnXx0KkFDNsLPW2v4GquiA/r5V8hNFmoadxAFAWqIg64q70m2xMZRzJiEW6LaSBJeL6P54shmePanJgpkdIVrFB2uqM7yfGZMmcXK5yZr2C5Hp842M982WBvf5qeVBRZFhYSEUXekNGajqpUDYdkVEWWoDMZwQ8CGpb7mg7Xrc8VEYqoqzK6qlAxHJ68lOf+HZ1s702xXDbxgLGVGr/zxDjv3d3NrquaDdOFRovp7AVBa/h5Q88fhjomdfUHUnGdW6wwviLCOS3X5x88sH3D7JJ3CvoyMX7p3i0EQcCLk0VemChy365OHjq9xFLVZLbUZKlq4vo+n7h1gOcnCnQmRejxI+eW6U7pbO9OslwVzdz4GmXJXHjvNG2PrxxfxHY9TMdna2eSuu2SjCjs6k2Timk8eGiAofY4//qrZ5jK12lYgl0UBKI5ajpCcu0HAXFdxQvccPgsGi+mI4bRuarFP/viSVK6iq7JoWReZKmcW6wQUxUMV9wvAcKbWAzJJBIRFcf3aTQcwZZSwBOxftgeSJJH1ZBZrgpLOkUSg+9VrBahT1/KsVw1ycRUvj+ep9iwsb2AqKrQnY7ywX2913wON/HOgbGm2WC7Gy+KqgQf3d/LB/Z287lnp5kpNLlzazsfOdDL7z01gSxJ1AyHswsVJgsNPn3b4DpF1MszZaYLTcbCHKyIqjC2XF+XTfELd48iS6wrDCOq3Dpof+X4HEEggrgLDYu+TIyIKnN4pI1nx/P0hg3vlZoJvPohWBCIRpTl+EzkGvzKu69VjymyYFavVE0kSdiwHhjMML5SbwUKb4RY2BiRJNA1mfFcvaVwevjsEis1k3zDYXsiwpGRdl6cLLJSM/n8c9P85iOX6M9E2dOXpjOpc9eaocHefrGnrFRNRjuvDLHWZu7q6ub7w9o201SuyWD7tU39WtNpZYctlpqbPlbTdpnINVDkKyrpjbBQNjAcX9iFbLoJ+63GwSqpZCM8dznPuYUasiRxcrbCcMcrs9AbmyjjdvWlUUPVyeAmnyPAfOVKTsnZxc3t0jxfNOJdT3jXb4R0NNJiCce19T/zE7cN8fxEUSjUajaWt/l7ejVWZ2UVy8cpiczV1atAlSUSuoLnB5xdqDKZa9KW0HBcl0LdomwIpX1zycV2PLGHmA5N2yMeUVAlcZh1/ICVmkmyqPBr793JT9wmVMdPjeX4nScuc+tQlgd2d/Ovfmwv//2Jy+TrJlVTNA+imkJPOsqungjPhnvK2uu6YjhYjseWzgTdKZ2dYf7Bs5cLTOWbTOWbbOtOsFy1+ONnJmnaLn/v/m30ZaKtAY8k5Xnw0MYM2B8Uu96Bw69VrOapiTPNjZGeLi5V+Ztjc3Qkdd61rZNvn1mkajpUw3vptx65yO2j7XQkdOqmh6aIoPS7QnvphuXyZ89Ph9bsMhI+MU1GUxVSeoTFsnlNBljAaxuAgWhElpqC6a3IEo+fy/HbP3eY//rYOLIscXahekNDMOWdKPX7EcbVNrZPXMzh+fDZd42S1FVuH23n+YkCWzoTPHUpj+H47B9IU2yIwVRnUhcN7iAgrqnkqsJB4vhsmeXvXCBXs2g6HsPtcf7R+3bwvfPLvDQlrKLftV3kXBVqJmcWqrTHI/zLj+1ludzkz16c5eJihabtCyY8V9SPq5d4zXKJaiqOK37mO2eXsVyfzmSEpy7l0FWFvmyMUtPB810cT9h4fe/CMkgSU4UGmZhKJq5yYamO5wWYvoeuKth+QDSikowo5GoWDcvDsEWzLwigXY1gOB6yJIgpD59ZZK5s0J6I8PWTC6SjKjXDYbA9xq1Dbdw63EYQBFxcqqEqEtu6ksQiCqWmQ1RTKDYs/vLFGY7PlOhI6rx3dze3DmX58svzBAR86taBDR1c1vZbNEXCvY4EVJElEhGh1PACmUsrDWzXJxVVGV+p848/sJMTsxUiqsxc2WChYghSiiIzXzLxA4nbRtpayodLyzWevZzn9FyFmKawtTNJQleYK7voSoyy4bQGDF94cYbFiklvJsrP3CGsYa+n2H+7YiJXZyLX4JahzDUOBi9OFjkxU6ZiONRMh8srNRRFIh3VkCX4/nieQ8PZder7q/stbwWOTZd47nKe7d0pPrz/ytl0Kt9gd2+KhukyXzZo2h5eAIHj43rr85JA7D+qJOrFuuUBHqfCzFInrMW8AGrWtcNa0/GxHR9NEW4qTVvkRbm+IOcmohE6ExHqlsvu3hTbu5KcW6zguIIIJ0sS55fqWN4iC2WTvnSUhu0xkI3x3XPLNMPez0rNok+WKDUdEvp61eHqmWOgLUYmqnF8tkwAzJcN5ssGA1cNaROh5aHnB+vqAkmSuHtbB49fyLG7L9Xqgx6dKvKdM0tIwEvTRYp1u5WdXjYcjk0LVdmtQ1lGOkSOaLkpyO/Fhs3T43m60zp3besgpWtcytWQgEREIV+3adjCneDJi+Jv7UtHqVkusixx344uFsoGL04V6U1HSegK2dAKMRpRCBBnR1WRiagSzbqLpmgkIgoDbTE0ReY7Z5eJqjIjHQnGV2q4XkDVdPACsY/s6UtzaanGeK4R9kUCGpZwyIpHVBbLgjRWbDqcX6jwru1dPDOeY67YpGw4YcagWMsPD2XJxjUqhoPj+eSqBhXTZXdvmrrlslgxCQKhDrJccXC4dTDLbMWgYjgYlovjB1QMBzesx3/xni3XqEzbE5FNVV9zpSaPXVhhsWLw4mSBX71v2zUW8mPLNV6cKrKjO8UdW9oxHI+dPSmqhsMfPT1JZ0rn1FwJJxwAn5uvbvhcm+HCUo1sPNIi/EkSaLJMIqrRmYxwblH0NXf1plAkCdsN2Nef4sxijaFsjBcni0jBxtbYQfgZ+YGIF6k0r/SzDMcnpsocHs7wqUMDTBebHJ8uMVsykCWJXb0pxpbrFBs2Tcslosqh2EP04f70uUlmSiZD7TE+vL+XrqSOHbqJ9aajTBeaaIqEbQh7RMcLWCibLFXMlp33QrWwrqcu3GGK6849V+PN2FESqwMwgCAInpAk6Sal/SZa2N2bJqmrqLK8ITN8M6w21KbyTe7d0dlin61lpj56bpkLoWR4W1eSW4ez7B/IcGquzCNnlzk5V+bAYIbOZJRDw2Jyva0rge36lBo2D51e5OnxPFFNpj0eYWdPio/e0se3Ti0wnqtj2mLDGGqL4QVi4TYdj6WKyUyhwbGpEookcXKuQsW81ttYUyUUiVdkHweSMDiPKDLJiELT9jA2aFz5CHZNoeGgKKApgmFuOD6qLNGwPZ6fFBtnWywiwrdrBpbjYzoWXz+xQL5mc3G5xr7+DEdGsjw1lqNhedy+pZ2fPjJ0TT7YJ27tZ7Zo0J8VbI/HLqywUDK4To/uhmF7Abbj0ZPSKTQdXM/n7GKVvQMZBtrj5GoW5xYrNCyP80s1fuunbl3HjIqF1hpBAIlXaZnwjVOLXF6ps7MntWHW1Y3i4FCWxy7kaE9ERBaD67+jh2Ag5Nym43FmvkosopCJabxvTzdfeXmBmiWaawB/fXSWS8s1etJROhIRSk2HpYrJZ+4Y4scPR0noKp1JnROzZc4vVtndm2JXb4oz8xWWqiam7ZKMauzsTWI5gml017ZOkUU2XgizwAxSMQ3H9wl8Ye0jyxIpRcH2AjoSOroiUQnVGrt6kxTqFnVTDGmXazaa4lBQZVK68An3wvBmUaytv8/qtk9ckwnV47iujxJmEWgy1EP/aS8Q93WAsDRx/eCae8LxBMtrrmiwXLU4v1ihZrggiWbBdLHBT6WHaNou4yt1htrir8qG8ybeHlhLHlidp199rlNkiROzJZ4ay1FqOLTFI8QjKoW6zfhKncWyIVQ9EZUd3Ulmi811h+rVojeiyvSmY1RMhx3dSf7zo5dQZIm/fe+WFrtwMxwebqNQt4XFz5o16j07u3j39k6evJSjZrmbstpAsPaKDZudPalrWKqSJBHXFCzH3zQzJqLK/MwdQ4x2xLm4VKMvG6UvE2VHTxLfD6gaLhO5+jW2fHduaacjESEZVelORdFkmeMzJfwgQFFE/sZwe5xPHBTD8z39aT7/7BQvTBapGA6m49GXjW2ofJ4pNji/WGM8V29ldDhrOsqWvbmll8yVJtzAJllmXz4+0/p34zq1wKnZCqoiLKJenily747ODX/ODLsNXiAywboy1w6cnrp0xY6wZmzOCP/i0dmWwulLx+b4+K0Dm/7sKro2UW81Lbt1aCo37A1/BmCtYDsT3fyabVlzSbBSsxjquHaPz9fNVt1Vt9Z/TrmaxWLFpG65GJsMp28EhuOjKkLBFlFl9vYJBv9M0WC22MSwRQ5BzfSww6aj2CMCFqqCLe16AUkdpgpN7tvZieMJpcSpuQpzJYPpYoNbBrN4XsDZcN8dW6nxwO5u4hGFeEShZnqMLddoS0RI6Cq7e9N85fgcDUvY8x0ZaWvVb5mYxmhnAlWR15GD+jJRLq/UiYf7+rPjhZbK+rceucQda+yLX8klYDMEQcDzE+K+u3dH56bZdu9U7B/IkIlpoRXPK79HQRDwly/OcH6xRkSRiUeEwm9HTxICGFsR9s5nF6p8aF8P+bpg0R4abmvlARUbdotlG9M1+jJxMjFhGT1TbFwzAHs9YLuiUSMHAdOlJk9eynFktI2zi1UODW1s1Xo1pvLm6//CbuJNw5auBLbni8Z8SD7NxDQuLQvFQdVwyGsKnzgoyCRdKZ3P3jPC+YUaf3V0Bsf1ubxSF3mRtkfT9qiFOTa/8chFIopCTFPY3pPguYkCTcvjcr5BUlcZbo/xB09e5uh0iaopiGiG47EZl0EoJsQ9OVcUmakBsFA2+Y3vXqI7pYdEVWHd5gJV08ZwPNoTEeqmg64pyJJEVJWpuj4ykKtbxFSFnGlhux5tCR1FAssJqDQFo992fdIxlYSusaM3xTOXCwRBwEyhSX82RsVwiEYUulJRlqomZ0LHlhcmioDIu/7krQNM5hsMtAmFr+sLoovr+ZSaNvm6hR8eMnJ1a8Mh2Np+y28/Onbdz9Z0A4LAQVMkDEfc60ldoS2u0ZeNMdQe53/58C7+6RdPUqjbQn0uCfu1Xb0p9vWn+Ynbhlp1YKlhY9geuiLs2XoyenjmS1Nu2uTrNn/8/Um6U9GWAqJ4nTrhauTrFo9fWKE9EeGBXd2v2Yb29YLt+nzz1CKeL2Ivfv7u0XXfj4c18EhHgjPzZfwAPDdgtDMKgXA2+v54fl2tu7bf8lZFLJycLeN4AecXq9y/q4uopmC5Hnv705xbqJCrm5SadmvotVm7wyccTKtKq0bbaOC1GXzEOSqFRDKqUG04wt5XCd0NJLBcn8v5hrC8U2S2dcQxHI8DgxkuLtexXJ++jM75xSpN2+X3nppAD60+l6smg21Rjs2UGGmL07TddXnzH9rXy/buOr3pKE3HY8dlQTYq1G2++NIsn75tcJ1lXWdS52fvHKZhuddkTf3yvVv56duHW8TYswsVPvfsFAtlQ5DZXI/2pM6evjT/68f28t0zS60cMk2R+cDeXrZ2JYidXOSFyQKaIjG2XOU/PFznxckiZcOhJ63j+gE1QyjtZEnGCnyKDZtczWKpatKXidKR0Hl5tkRXUqczGSGqKTieWOtOzpXZ05siV7OwHA9NlrE9kdFWbjpkoyq5uo3n+SiSyEw8PS+yqF0/aA0sVgkBhYaNItFas+uW6PMYjockSVRNYZ9e9z2OTRdDla9EUlfwAx/XF787U2zSlRKDk2LDId+wkAIIgipHRtpYrlrULZeqYWPagrD24ozITktFFGKaTqlhYXlQNT2eHMuHA/kbr3Gjob3gxaUay1WTxy+u8KmrzktPjwn735WqxcGhDFs6E4yt1KiaQj1puz7qGgXajdbGl3N1nryYQ1UkVFnkTN++pZ19/RlkWQotF4ViWpLhkXNL2CF58McPD/LL7+rkD56ewHB8gqu8RRVJiDC8IKBmelxdSsqSIP51pXTydZu/emmWkY4E5xdrFBsWng9/8cIUyagW1oyCZF5sOCR0hS+/PEczZGPNFpu8NFlkb3+SXM1uOdg0LIeGJZR8fmjvveqktlY34oWvR0LE42xGOl7Fm3HymJAk6V8jLBEBfg6YfBOe9ybeQbhe0P1maNgeE2Hmybk1FgxX/0y5abNUNTk0nOW20Kd+qtBEliW601FimsKH7uglCCCiSvzhM5OcX6xiuz6T+UYYmOjQl4nxE4cHWKyaPD+RJ1e1sDyPmKZSNQ16Ujp/645hnhrPo0gBFdPj2HSJ+ZIotjcqzP3QiuhqP+O1kBD+6A6QiAhvVMF62RyBJBQpMZVQUSIT0xRiEYVc3cJyA0zH5JlLOTpSess+qWm7LS/afN3k95+epNCwCALBbolHVB48tH5R11WF7d1JSg2bswsVpgpNcnWbbCJCw3LxvFCN9oqf6AZ/B2JQuL03QXvDZbFsYjoek7kG9+3q4ufuGuGffPEEDctDQcIIhyar6E5H+cztw9Qt91XbyU2FXrxThY09eW8Uu3vT/J+f3MfR6RLD7fF3JJttIyiyRCwi07A8OpI6n717lOH2BM9PFBhqj3N4pI0/fHqS+dBD+Y4t7RydKpGOaaGFkzgA+H7AExdXCELrkX/+kT18fyzHv/zKaUzHJ6KIIXLT9tBkiYimMFUQtoKLZUM0uSWJQ8NtmI6PYYkg+NEO4S2/OkgQknfhU182nFYGhg+hctGjZnnI4d92PVGA6Qg2pCrLWK6H7QQoSoDhcM29HPg+TqhYWHsWkCWELaMkmDnnFqqUVm3VwnUhV7P470+Os388SzS8f//Ou7e+pRYYN/HqkYioFJris42GB9+rLy8vCMjVxGFEKHg8htuilJsOWzsTRBSJqiEOlvNlg8WyiTN4ZaD+wO5uMjGN3kyUnT0pZotN/vLFGY5OFZEkiZ50lP39aRaqJrePtrfUCmvRl4mhyBJLFZMvvDTLL71rtMWEk2WJB3Z3X2MptxaVpsNfvTSL5wcsVc11zfUgCJguNLh7WwcB0JuKcma+wmBbDM8PGF+ps707SUdSJxuP8JEDfXzkwBXywf27ujg6VWKhYvC1Ewvcv6urFT4PYsC2o+eKesT1hdK5PaHTl9F54lK+Zd11YCDLgcEM927v5OmxPL4fcPtoO3/7XVsY6UyQq1lM5AQBoi0RodgQw5PV8F5gnSWUcR02dUqXqFhCpa1vYscr1qdXxnt3d/PMeB4l/Cw2Q1RVqNseigT96Y0VV+1r1IDXqyXKazJ75sqbq9TWQdq463F8ttJ6ruJ1cshK9SvEg7GVzZmQKV2h2HRRZdY1J9aissaq8upr9/vjeXrSOvCDr6cpXUWRxXOcW6zxgX29xCMqz4xZ+OGhz3CuWF4p4cGxaYmmrQSYrkcmFiEb03nPzk40VcbzfRbKJt89u8SWjgRfeGmWfMMi7Wm8N7wGoppCQhfNk2hEhEV7fsALkwW2dyd5ZixPbyZKsWHz1RPzaIpQf27EaI1pIh+iO5Ugpincu6OT5ycKLJSb9KSjeH7AXVvb2d6doiu1/j13PJ9j0yWimsLBwcymTbrpQpPnJwqAeA/ev7en9b0gzPxRZAnL9d8SC+vXA68mm1aSJPoyMcaW60QjMndtaadue1iOz61DGf7wmSmeGc8Rjyhs7UqSr9tIElRNl9VqfLHcpNS0SMU0RjviDGRjLFdMvnx8TjCf3wD4iJomAJYqBv/50Ut89p4t/IP7t9/wY2jvbD7YjxximoKx5r8zUY2krqCrMtOFBr//9ESY8dUkpiocHM7y6dsG2dGTYmy5xh99f5KoqiDLQhnUldT50P5eZopNCnWbHXGNE7NlFBmWKiZdySiW4/L9sQKm4+H6AV3JCL4vBul1W1idE7LUr6ds3NoRIxnTubRcw1hjP+gjMu7qlosqS9hrin/DCdjWGaNouKxULVRFZiAbxfP9sA4POLdYIxFRMB2hvry0XENXZXJVo6Uu9ixBbtNVmaQuVDzpqEZXKsotwxnGVxokI8Kaea5kcH6xRsUQ1lXnFqvUTJdfetcoe/rEMDEd1fjI/j4Gs3FiEYU7twqVaK5m4Qdw4Dp21av9lhtJMnX9cE1uvSUSP3/PKB+/pR9NkdnaleTHbuljMteg0LDZ05fipakiZxeExVzq7FKrjrt1OMvuiTQRRabpuNRNl62dSSKqwlS+wWLZZEtXgnLT4V3bO8jV7JYS/0bw4mQxtMQy2NGdojcT5asn5ik1bD68v/eawcMbDUWWQnKKS3IDl6PDw21k4xFimsyXX57n889NoasK79raSVtSI1ezGb7qNa/2W95K3DKY4Ymw4Z6rWaRjGn/+wjTlpk3FcNBk4RoU1WQ8L8D2g1Zj+upa0/WF4094K13TYL8R5K+qJU1PZB2vhK9NscC0BTk9X7eJRRSmSwZdKZ0nL65wy2CWUtMOHTskbh3K4GcD9g+kqRgObXGNqWKDAwNZjs+UefeOrlYEyer92Maqs0CB5y6L2mYju9HOpN4irlyN8ZU6U4UGBwYyPHJuGdcLqJkuIx1xfM+naLh0JCKcmS8zVWww2hHHsD360lG++NIM+wcyfGhfH+/e0cm/f/gik3nhDCKI1xIrVSu0sgtoTwgS/O6eFA+dXcK0hYXNagzETL5BtelQNV0OjySIagpPXMphOT5bOuPs60/jeAHbuoTit2kL9535qklUkUESJswNU9g1qopEPKIS1YKWTfOlJeE+pakyTtjTDBA2i7Isk9BlXM9D8kWduFyzWaWQeb5PXFMomx6qJCwuX5wo0JbQMV1hSRkEInZgsWLSltCYKzVpOv6VwYkniMi24zPUHqdQv2I9WDNszi3W2NZ9444EnUmdj+zv5eh0SZCPCteel0Y64pyaq9CfjRJRZPb2p9nalcCwXZ68JAQX793dxeWcgeN5/O13C2VsoW5RaNhs60pu2P85OiVIZQCfvWe0RXhdjSRpJCLsG0gxU2rg+wG5qi32PcPlsQsr5GuW6Cl4XqtPFaz5H7BpT2w1rme2bBD4Broq07Q9LNdr7ceGC0bdaf28JAX4jsg5Xpsz6oYKr4gq43gBox1Rnh6rYoZn7NV6c/VxdBWujv3SZOhJxzgy2r6h28xavBnd2F8Gfh34cvjfTwG/9CY87038kCMRUdjTl2Ii3+DgULb19ZWayeWVBrt6U3xgTw+lpo3nB0QUYSGwpTPB7aNtzJea3DHazof29fDcRIHzizXydQvP9zk5W6Zhu0RVIZvuTEXpzUT5lc8fpWq4hJmOBIFE03KJR2RWaia//q1zaFJAwxbT7pWahe8Fmw6A3HC4tRHkUMG0dt1p2B6vRIyKKBKZqCqYda6PJAkP7Xu2d+D5AQ+dXhQ/GIDreyxUDCKqTEyTScc0VFliZ0+S4fY4i2WDSlMwMfb2pjg7X2ZHd5I9fel1C7HnB/y771xgOQwg3t6doDetsxIGvV4dpnyjkIB8w+WhU0vs7E2xXDOxbZfHvICRrgQ9yzX+8ft28LnvT9K0PR45v3yNPc+rUReuxX07uzg9X+Hg6xD23p2O8tEDr11NthZBEDBVaJKNaW+qKsj1RPDoalNcU2Q+c8cwyxWT0c4EsizxmTuG+UxoXTFXajLYFiMWUXjPzi5296bRZJn9g+l1jS1ZlhhsizNbbLYaR0PtcXb2pEQRG1VDS5GAVDRCKqqhyBJHp4rMFJs4XsCO7iS7ezPct6OT33zkErrvUzJcBjKCxdW0/NY9uFg20NT1jTXHZ10RrmwgY1xbwPvhv33fpxSqKDxv459FEh7TqyyVVQSB8KD2fFAVURSsxUJV3Oj5msVMocn79/YQUaNi6Pc6NG1v4s2DFFz55CVfVIVXf4KuD7PFRqgwlEiHSo35sklbIsJy1UJTVRQ/YLAtxonZMiMdCQ4MZjAdD9v1uW9nFyDUWF96eY7ZYlNkO8Y1PC/g//zWeUDY5f38XaPXvM7vnF3i+YkCddPl0HAbNdPh+YkCuqpw99YOlqomX355DkmS+InDg/Sk9XWNbtvz8cK13lozcCg2bP7Dwxc4PVfh0HCWX3zXFh67uMJ0oUksoiBLCLXKRIH2RITt3Unu2dbJs5fzXF6pc+fWDm4baScT0/jGSbF/bXTA/NKxOU7NlTk0lOWFqSKn5irs7knxi+/awqdvG+S/Pj5OuelQqK+Q0IUlyL/+sT1oioyuyjx2cYX6SYd83SYbj3B+scovvmsL79vTzdGpEiMd8db6t/bzi6ibN+orlng/fKDStOnfgPCj3eBQW9iEiGGHeZ1unypfucbqtktqA1/0tQPDbGzz139oKMuTl8Sh/n3XGbytxXK1ye6Ba0lJO9Y0b7RNgsNh/TpZrG/eqlsdankeWLaHrl17pLHXLMzOVcPKpK4wU2igKGL9fy1lyupaX2y6qAgCkuv5TKzUGWyL0h5XKTQ8DMsNSU8Q0wQBa75stg6WAcK2RNdEsPVUoUm+bnFipkK5aVNu2vSko9RMh6G2OFu7Eq26Nx3V+KV3beUDe5ukdJWvnVwgCMRwdcfWdhYrBlXD4dtnFmmEtkNTeaEsA0KrcItMTOPkXBlVlpnM1zm3UEGSZP6fBw9QMmy+d34FWZI4MJhdx1Bt2i4nZsssVUymw4N/IqKsu8bKTZvvj4v7e1dvClUWzOBMXOPYdJGa6bKnL8W3Ti1Rt0Tods102NWbZk9fmn396WtcCH6Y8Nl7Rrl/VxfdqShtCWFnI0vCGvbvvWcrH97fQ1cyykyxSVQTFmWr1/9SxeS/PjERksBU7tnewdePL/CdM4s4fsAG8ZOvG3xA9q/Yh2/kUHE9JF7/SLmbeANx9U71lRPzKJLEXMlAlSUqhsN0oUFnUme0I84Du7rpC89g3zq9yEROWOqt5hvGIyq/fO8W8jVb2BZXTabzDWzPpyupoypQbHi4pjiP7+pNM9IR4+Gzy5QNp0UgiCgSsizj+Btf7DJQaLgsVR08z7/m7whnaOsGYCCIpPmGjedDoWHh+rBQMVDCul6RJWH97/qoMrTFNVwvYKVuYa55LC8QVna7ezP8g/u38eH9vfzWdy9RNR1OzlTY159uZZmVmzZjKyL7ZF9fmoblMrZc4/vj+db5CoTidKFsMJ6rs1Qx6cvEXnfr9CAAe81boikSkyt1vn1ygQ8e6CMd1fjEwX4uLtdIR1X+zdfPslg28ALY2pXgiYsrHJsOiVgpnb29KT55sJ/HLqxQM12eGc/Tlohg2C6Xcw0URVgo7utPc36xds16Ml82KDVsdvemrtkPBttiXFyqEY8otCcjLFVM5ktiZHtmvvqWDMF++vYhlirmhs8tScLmEuAnjwxRatr4PuzpS3FkSzuSJF1jp/ZWwfF8XC8gFlE4MtrORL7BfMngq8fnee/ubo5Pl6maDlFNRlNkBrMx2uMax2dKAK3aZ8PHDiCqiEzc12urkpDCGBCf9mycsZUaAWKPUiWwvICqYZOKqpxbqGA5Dp4PFUPYCSqyRNVweHGyRMVwWjEoW7sSnJmr8NUT8wy2x/hbd46s62fcNtKG5wfoqszOnhsfVjYsMYwAWqra7d1JtnUlODLaTiau8ZcvzjCdb/Cbj1wiqiq8PFPCdn2qpkMiovL0eJ7FisnP3jFCd0rn+csF8bkFoAXi3FhoWCKb1w+oGg5ThSZxTcawPALEelY2HDpTOhXD5eBghkrTwdZ8cjXR3zs9X+FD+/pI6Aq/8u5t7OtL8+vfPIfpiggKCbHW6aos1I0BBG5A3XfCNV8hGZEYX2lg2B6SvL7+VhWR42vaPlFVFtlvqsJy9Uq9LKzQBbnQ9cGwXWomrNTs8PMXa7rp+lxarpGNa+RrFhvxFaOajOsF665P2ws2zO1+JYx2Jbl9VORZ7tnA0vu9u7s5MtJOMnolZsUPhD3mp9YIDP74l2/HcQOGO+LULZcvvDSL7focGMisI42tYnt3ioWySU86SnqDgXt/NsanjwxyZr7CctUKzwEiT3l8pcZEro4eWhQGgCwLV7GIAqoit+xJN4IXKlhX4Xg+jutTv3o6FUL0zsX/rLDOFYMxQQ50PR9dlUlHFU5OF9c999pPRJFgo3LT8sRe/eF9vaRfYf18w4dgQRCUgF97tb8nSdJvAUeAl4Mg+Eev+wu7iXc8JEm6JnwyCAL++ugcl5ZqJHSFn759mO1dSQazUSKqwoGBLEBoJ+jx9HyOb55eQAI6EiIUMlcTdk5IUAlgqD3GctUkmBW2DWqYBaSEskxJCv2Jw7tzPdvl+l2V6333Nc6NxMbv+Vhh0WK6PobjcnGxymLVIghfpw9UDBFUL8ti4YlFXCbtBnOlJgtlg3zdxnIDEdBYt5BkiUfOLZOrWeuY6IsVg1zNDJk0AaWmRdP0GM/VN9x0bhSrv2p5cH6hhiRDEB5GlssGD51eZGevsB5qS0R49NwKox2JdQoBwxa5Yq/WGuHWoSy3rhmuvl3wzHieo1MlNEXi5+8eveEiudy0efziCumo9qqtIgzb4y9enKFmOrx/Tw/7Q5ZhOqptqCg5Nl3i/GJV5I64vhgQf/0sDdvlgd3dfPLgAEi0XvuDhwaomQ7xiMJ0oUFHQudjt/RzZr5CVJP50svzeJ7P4T1Z9van6U7q/PVLs9iOi+kG1C2HtphGVJU5u1DBDW0RI6qMcVWz2ArZP2shsf5+28iR7OovVU0Xz9t8k1+FuckNEHAlj8MPoNTc+LEcHxarJtPFJp86NPCOt9L8UcR05QrVoWStctmuheMJZpMkCRXEv33oPOWGi0yA4fl0p6K0JyKcnq+wVLVQFIlt3Qn+7PlpGpbHu3d0cmS0HdsVQfJbu5IMZKMMtSdIxdSWjUBtjTomCITdwLmFKhO5OqMdCZYqJvds6+B751eYLTaJqCLsttiwmcg3iKoyf/LsJPGIyof297byhLpSOh850MtUvontevzFCzNoimDDnpmvkKuJpn7ziNca4uSqJqbrkdBVjk2VUBUZTZHoSkZ4YaJI3XJp2MI3fVtXkvt2dmLYPrePtlNpOmiqYBiuVE3+5tgcfhCwUDEwbI9C3eKU63NytoQir1qGOdw+2s7vPjXBQtlge3eSf/qBnXzp2BzfO7+MEx6G7gibECBs3662xF0rrjBvsPH7nbPz7AlrkLXI3mAW6vMTOSbzDSQJTs6UuX0TW8qyKa4uNwBjk3yutYM79zoHHDm4sk/cqAJ1rmxs+PVc7QrT0rvBAud6wulVG2kPYVuVTlzLsD0/X77ynGu+vlQ2+dPnppktG/he8JrrrbW/5oVfaNo+J+fKTBc1Viomjr/esiOqqeiqgiZLeF7QOtjVLY+pXINvOwts6UqwqydNOqZSNx1mSwZffnmOvkyU20bbw7xb0fw8OJQVpJi4UF99cG8v47k6t4208Z0zSy2LngODGZK6iuV69K/Jq1itKRK6wp7eFMdnShTrNsdnS+zvz/LuHZ1s707y8YP9GyrZH7+Q48x8hdlyk/50lFhEpWm5PD2Wo266vGtHJ98fL3ApzCtcqhhMhY1yy/H49uklLufq4VBdDMRPzAg1yDPjBT56oI+y4fCecMj/w4ioprQybafyDb7w0gzThSbv29PDg4cGGGyL8+3Ti1iOx11bOnh2Is/jF1Z46lIe1xf27VXDYSLf4De+ewnLdrHc4HVrKl4PkiwaJXeMtq1r0t8IcjcoLr2JtweqprOucZSrWuiaTLlpkYlF2NqZYE9vkkCC7mSMswsVnp8o8MDubrZ2JXh5ukRUk+lJCyb8bSNtdCZ0FElifLnG85NFTGe1Ce2SDi09Hc9HVTT6MjHGl+vMFo1117brB9dtaPkI9XHAxooUNvla0wEpZNiv7vm+D0jC3twPBDm1FrgokkTD8tBU8f9rawRNhpimElUl/ubYPD9/1wi255OrWUiSyXLVpGo61E2HquEyX25SNlxOz1Va9dfR6RKKLHFoOMv27hSm43F2QSilT8yW1517Aeqmy1NjOfb1p1/zAOjq9aNpu3zu2Wl0VeIvXprhs3dv4emxHPMVg6SuUq6LBmsyqnJqrkquZoakBjEYSOgqP3PHMEPtcWqmC1JAqW7x9FgeXZUpN4WjzqMXVviDpyewXJ//3wd2ct+ubooNmy++JKyjr+5BANwymGWkPYGuyUQ1BU2R6E7rYmjW99ZkTKai2g3lQvakowy1xfnmqUXOL1b5m5fn6ElH+ew9o9dYf7/ZaFguf/niDHXL5YN7e9nbn0YNa0EfoTi/uFRFUyQsz6dm2DRtHysbQ5ZDpifX73eZr8Uq6DpYHWZXDJcLy1WRsRSef0qGE5JQJYpNJ8wAFKQcJJ8XJgvEIwozhSaKIgaR27uS/N33bCOhq/wvf3OSqUKT2VKTD+3rZbAtjuV6XFishdmFG9uUXw+i6a9yabmO5wcMtkVZqVns70/jeQFT+Trjy3XGc3XR21BkkX/li9q1YblkYip+AGPLVSZyNWRJuDBJgO3DfKmJIslkYiplw6VR9ZgpGleGP0FAoWGT0BVyVRfb93lqLAeBqCNqTRcXiCoSE7kanUmdf/JXx4moMtU1jhEBUDFdZK643/jhNyTfB0lisXblapB9SGoyHlLLetH3A+oh0VF1fDIxYavpeeIxDcdfp0xa7aW4wfqBWj0c9jiev67GlxFDF0FKE/aLa446JKMas6WNzzEbYVVhpysSx2ZK5Gs2+zcg0EuSRCZ+ZT04u1DhkXPLJHWVn71zuEWy7FtjYe+EpBHYPL/5tpE29g8Ile1GDgxV0+GrxxaYLhq4XoCmiDNgEIjX7QegBgGWF6p+w/fK8sC6ahioydfPknUDmMjVXrH3KyGui86YSiXcIxwfCg2bmuFQNNzrrhnXe/yG7fM/f+kEmfjt3PlWZoJJkvQI8JNBEJTD/24DvhAEwYeu8zuHEVli75Yk6XckSbo9CIKX3ujXehPvTARBwMm5CnPFJjFd4bnLOc4t1EjHRG5RNiFyDWqmYDV88tYBHjm/xPMTRaqGiyzR8tVe26xYxcVlYYc3XWi2vldorNFvBetloj/AzOd1gRdA+aqKwvbg3FL9mp9dXUQCH1RJ2K+Zro8swXzZJBVVxcKuypQMB01TMB3vmnDkzqRObzrKY+eWKDSd1xy2fT24a6Q0NdPjd5+aIBMLm0mqTCKisrMnxeMXVpjINahbLtmYxkS+QX82yk/eNoQsSyxWDE7MlNnWnWw1b28EF5aqFOs2h0facDyfk7NC0vxmF6i1kF3heIIJfKNDsJemSkzlRcdhS2fiVb3uQsNqFTkTuTq25xMEAbcOtV3TGHU9n6fHclxaqnF+qcpwW5xvnmwwWzJIRFS+fXqRsWVh9bG9O8WDh0RGTzYe4Wsn5jm3UGWm2GyFMl/OWbi+sIc7Nl3iV9+zjV//+hlmS00cX2zIC2WTh84s8vnnp1sHTy9gUybP1V+93sH4emhs7uj1qvBKbkWuD49dyPH0pRy/9Zlb+bFbXjmX5ybeefARtgHg49ZNvn16fV6KKkEqqiLL0LB8Pv/sFNP5BpoicTnX4OEzi+wfzLCrJ02+bjJdaDC+Ir7fndQpmw7ZeIRsXGUq32C0M8HXTy7w+WencDyf3kyU4fY4nzrUz0S+wbPjeeZKBvft6uTMXIWnx3NcztWpGS67e5OUTZcLS1Xeu7un1XR//54enrqU49Rcmal8E02RSURkTEfYI1Qth0LD5L27uvjisTkKDZu4pnBsqsR0sUHVcNFVmRcuFzg6VaRhuWzvTlFpOmTiGoeG2jg5V+brJ+f5/ScvM182eff2DgY6ElxYLON44PkeSDKyBKWGxb/5+llAvHe25/Pw6UXqtoeuyRybKvLYhWWqDYuSKW7EqAKn58vs7Enhuh7belLct6NrHXFg7S3buEHxQ+cmWVnH50o39PtHpwqtof6J6RxwfasHgGfGVtjac62l0JeOzbX+XbtOYNDjY/nWvz//7CT/80f2vuJzDqY3/jsncrXWv68mJ2yGTbgB16BiWAxy7X4+kbu27gH43acuc2q+QnUTtuJrwdpBV93yWgfwq9EwHWqm08pHWIUPWD5MFw2miwbPjudJRTVs16VhBRQbFpbrM9gW56+PznJ6rsJgW5w/fGYiZMCrHBrOcve2Tj64t4czC1WiqkSxYbNcsXD9gJSuMFVo8si5Ze7Y0sahoTZenCoxtlzD8Xx++7FxAt9na3cSVZYZX6kjS/DCpMhP+Mj+Xr7w0gz5us2h4SyaLHNppcaZuQoBAX2pKDXL4YvH5pgpNFEVie+eW2JrV5Ka6ZCOaS3bqnxdqNtWs9pWsymKDRvbdZEkGT+wmS0235aEpDcCpYbNt08vcmm5RsPyeHm6xOHhLA1LqPcWKiYzxSbnFquUmw5lwyEb0+iIayyUDWqWQ9MSgfdvxgAMREOkarpC5eP5HJ0qMdgWY6lq8si5JSpNh48f7Oc9u25MSXoTb180LZe1u4mPWMu/dnIJGbhrS5adfRkWywYXl+fJ1UwiisS5BaEC9wMf0/Z4cbKB50NHQuWf/fXJVt6HHJJKBVPcQg5dVzxfDHW+eXqB/FX2wQEhG/16HuasX59vFAEiB3ij5wNBhHX9qx55A7cWx4dLK3Uu5+p0p3TmCnUWKyblpg0BFBsmQVjnBwiG/Co7PuKJJqjt+VxcqnJmvo3/7eP70FWZHT1JLq802Nd/bcP1Pzx8gQtLNaKawn/92cOv4q/eHIYjOqSmCy/PVHh55sS677fHVJCgZjpYrkfT8rA9MXxoOj6y5PLNkwv0ZmPEVBnH8zm7WMN0RdaMriq8MFXkhckCCyGZ5unxPPft6ubCUpUXJopEI8qmZ/e1DWZdVfhbd44QBMFblp91ozAdjwtLoj6aLxvMlJpoSzVcP+D/fvDAW/ra8nWr1XeYLjTY25/mI/v7uLhcY6li8h8fvsBsybjmvpoq3vgQ4Y1CgCAlXfNFxHoheetJiautrYrpUTU9sjEVWZY4Nl3kf//aGT52Sz9zJYPLoXJm1Ub1Pz16ifHlOoNtMf75R/fcUJaT5Xj8j395nPOLFVRZom57BH5AfyaK4wdMF5v4fkA2pnF4pJ2FsrFOXbP2/XYDmCuZfP7ZSf7gqcs0rqqvvUD8TeBx9cey+jgNJ6BRfuWMTtMLeHGy9Ir1hc/6c5IfiF7k1WpbP4Bq+BmZjrAyXE9wWN9zXR2obfq8G3zvajJyyGNAV4XyTVgnXvl+4Ae4viBSdmxgX+l6Pi/PlIlqMkNtcb54dBbH82lPCAUqwLdPL/KZ2wUpaKlicnG5xu7e1Los3elCkyAQfb18zWZ4g1zjtkSED+3rZalqbhj7swr9KkeSUsPmm6cWUGSZ3X1JSoZwRQsARZJayi/D9kjoCsWGc0M1440c3W5kqO0jCCUr9SvP6/j+NfaGrxVlw+PkXPmtHYIBnasDMBDKMEmSXqkSvht4NPz3o8BdwM0h2E1siHOLVR45u8Sx6RIdKZ2z8zVxELQ9lqom5xarXFqq4yN8gsdW6tRMl4rh4PpC5XQjlvlv9XDrjURKV0BCyKRDmaofBHx4Xw8Xluq4oQWXrioMtMWuYeRarsfx2TJL9ddpKnAD8ILQgkh2UWWZ3b0RAgK8IGAiX0eVZU7PlRloi7NQNmk6Hkld5ZFzyxTqNpeWheohch1bplWsVE0eOr0EiCDXhuUyXWgiSxK/fO/oDTG9Xi+8e0cnEUWmM6W/qmD6vozI4NE1mY4NGPPXQ38mxp6+NIWGRSau8eTFHCDCMq9mH6qKTH82xomZMgPZOD7CDtLzYblmEtVkzi5UkRDs55emii0bxFJDhDuvNi5VWWakI04yomLYYvj67dOLTOYbV1iZgchSmS83qVlXbuS2uIbv+2Hhtx5XD7wiinicNyg643WD48P/+uUzN4dgPwLYwO0PN2Bd094P4LnxHLKs4PiicVQ1HS4t11iuWNRMB9vzUSSJmins2CqGy589P0Ou5vC3372Fpy4JtcZi1cRwhHo4GdVoWA6Fho2mSqSjKl8+Ps9yVTSuU7rK8dmKyL2oWZxfrGK5Pi9MFGiLaZxfrLJStVpNDEmSSOgiC8PxfJ4ZyzNTNDAdj+XQ8rQaMqBtL8D2PH7j0TE6kxFkSWKgTQTHZ+IaJ+bKPHkxxxMXVxjPNfADeOT8CumYSm0d+9q/xuKubKyvrlcPx9OF9adCcVb0OTVXIVe32NKRJBPTrlnrXi0eP7/Cz9+z45qvT5dvrOq/nL/yOo/Nbp6VtRZnFzYesD1ydvmGfn8tbnR7/8rRed6z71pFyFePz7/q57xRPDeeZ9/gtQzciYK1wU/DbKm5oaXmmwHrBvcZ27vq8O8BQcDphQqOG4j72/W5tCJIJcWmTVRT6M3E+NaZReaKBovlJhXDwXRdzi9W8fwAzwuYKRrMFJs8PZbHdPwwqFrkxUrAfMng1uE2klGFyUKDrZ1JTMfj2csFTsyWqTQdzi9WSOoaQ+0xVFliqCPBdLGJ6wcoEpQNm4gqGMsSgpX/C3cP861TS0wXm7TFNe7Y0s7hkTaevJjj5Fy5lbunaQrJiMrhkTZ60vprYle/E/Gt04tUDAfD9snEVAayUbpSOpmYT8V0mC81qRkOvi/qHl2RydctbNeDQKhT3CAgqsn4gfeGENI2gh/A6fkqX3xxlprl8sRFYRv/8JllYhFFKPluDsHe8Wg4/roh2Fr4wPNTZRYqNsWGTcMWWdhN4LnLBS6t1KkZDk3LwfKEheHnnp2hLxujYth0JaMkdbV1Njccj5rp0h6PMF8W9Ym/ibL5nQIvEBbn37uYw7CFFZRPQBBIKLLITjJsMQBDgnhEIR5R6UrpFMIshJliUwx2ZJkfu6V/0yFPPXyvbNfHfpMON47nE1EVGraHZ3uoisgGcj3xtwWA7QdM5RuCFBHV8HyfTEyjPxvjx27p54WJIo7r053SiWgK+8MBX75us707ieF4r0rZ9XYfgIFQAh0YzFBs2HQkI4yv1IlH1Dcsz/HVYLAtzq7eFKWm3WrCxyIKtw5lGddr67JOXwuZ9K3E2td6TZ434rykKBKlpsNC2eD4XAVVEsMaVZL40+emeWB3F6dmy8yXDcpNm8u5OgdDq+nr4Q+fnuCJiznsq8i6VVO4f6y2LnI1m+cnCwQbkPTXwocrueJvMN6oq/IVeAyvKwJEn1OVZUzPX3cN255PuenyzVOLfPae0Wt+9+h0qZX9tqsn1TpLpGMqnUmdiuFw344rfdKvnpjHsD0uLdX4O/ddIS/eNtJGqWnTHo8w0LZxfjPAnr50K3/uRnF+qdoijGzvTjDSniChFwl8iEUkKoaLLEmoskQmHlkv7ngT8UaucPYrFMA/8BBMkqSjwB8DfxFaH14NX5Kk4SAIZsKfH+WV18gscDn8dwXYt8Hz/irwqwDDw6/OfuEmfrighfJPRZbQwmBw2/NJRBQ+uLeXU3NlLq/U8X3RtF/1pDUdj4QsE1UlFqvWm7r4vt54tYWHKgsWREST2d6d5OBQG5O5BtOFOrm6TXsiwgf29nDfrh7+yQd347g+D51ZIqrJfPRA3zVh5Yoso8rSW1IARVWZeETjnm0dbOlK8t493Xzz5CKlps0Du7vJ121GOxMtZk4mplGo2ySjakvS/0pQFZENt6qKcz0l/LqEKr+59nSpqLahJ/ArYf9AhoFsjKimEIu8urB5WZb48H7hNT++UuPl6TLAptZ8P3F4kP39acaW62zrTpKrWVzO1cOgV4fpYoOIqtCV0tnSecWm4wP7eomssqtMl85UhAcPD3BhscZ3zy4T1RQG22I8eHiQ//d743iBz7auBIW6g++Lw5cEjHYm+Nk7RvjzF6Z4carcevyIDLGIiqpIRNRQ1Wh7DLXH6ExGeHGyhBeI+8MPXrsl6RuJG2GY3cTbH6/uDrwCVRbMMNcTA69YREVTZQJUaqZDKqYR01Q0xSYWUcH2iOsyHXGdfMMW1rCShBL6sO/rz1A1HFRVYqgtBkjIoaVaru7QHtfoSUeRZcjGI1iuT1dKR5XFPVQ1HPwgwHJ9ZEnsv1u7xNAoG48I5WjY0JAkCdv1SegqSV1FU2T296c5OJTl26cWWaiIYF4JkZOVjmnomgiLH2qPhX//FYvCC0tVbDcgEvrGS5KHRNDag2KajOX61x1urwbtXn2rS4h1T1dkJInXZZ3/+KGNh9e7O3Uu5Dce1qzFzu4UJ+YqgLBrvBF8+raRjR+rK86ZV+lFpt/gRfvxw0Mbfv3urR08crHwqp7zRnH/zo2zULa2RxgvXkvN3z+Q5vJKnckNwqvfDNxorSSt+VlNkfj5u0aZKDQ4u1BlpCPO/bu6ycYjPDOWR1EktnTG6UrptMcjzBUNMvEI2ZhG0/ZEjSYJRYWEqJlVRSYSCJVk03JxPaHI+Mj+Xg4MtjFfNvCDgC2dCXrTUTqSOk+P52jaHh1xDdMLSOoa79+XIR5RmczVMRwfSYKPH+zn0nKNsZU6bQmxHmRiOj931wgfO9CPJNHKNd3eneSPn5mkZjrkahYD2Rjv39tDVFO4d3vnDZGVfhgQUYSV13t2dfGZ24eIRZQWw/dn7xjh6ydFM8X1A24dymJ7HoW6gyLDcxNFYrpCWzyCqshhNl2N+kb+zm8AkrpCIqpQs9xWdmEiqiIDAxtkId7EOw+xVyg/NVmiMxnB9X1sz8N3xfAjHlFIRBRM20OWQisqWaItoaGrMild48hIG5IM3zu3wlLVRJUldE1h/2AGWRH52w3LpWa4G1qWvx2wUZZ3VBXnxGY4FIppog8x1BMLSUoydculLR5hqCPOCxN5XBeyCY1/+oGdyLKEafuM52uUGw6jnYl1DhybDXn+4QPb+capRQ4OZmjfQIX+RpzXD420YTo+M8Um/dkYWnhGnsw3kGWJobY4mZjK6fkK8YjKQHscgoCDQxk+fdswpXCI0JHU+Ufv24mmyq3By6GhLLmaRWcywkj7m5vv9UZDkiR+5vZhHjw0QDyi8ux4npdnyty9bXMVw5sFRZY2zTTf3p3iN3/qIP/4CycoNETvqD0RYWylju+H976uUDHeGsLRK2H1HojIkIiplBvuumGIqog6KQiClnqmIxGhbDjENIXetE5bPMJAm8hu2t2Xoi12Y1ntPRlxrpK8K/ehIkE2rhHTlJbla1JXGMjG8D2fhu0Q+BtHNlzvb1zFD3q/S+FrfK0xJ29Fj1CTxXDt6n5OPKIwmI2SimmsVC2KDYum7aPKEv3ZGKnwjLoR1taj27uT1G0X2/W5Z1sX79vdS8106F5DUo+qsohm0dY/Xk86yt+6c+Mz2g+KrZ1Jjs+UUWWJ7d0pfu39KfINm2Ldoi2p8dRYQcSMDGfpTEWpNG0atnCXalgutU2cLN5JGGy/ft0pBcEPdjlKkrQd+CXgp4HVgdh3g/CBJUn6MPB7wJPhr9wH/GoQBA9f5zH/ByAXBMEXJUn6cWAwCIL/stnPd3Z2BqOjoyJjxRUXcMV08PyAdEwjosgiQO8dwAb5UcPU1BSjo6Nv9cu4ideI1/r5OV5AxbBRJIlsPMLqrRkg7C1lSRKHA1lCuXnfvmF4J99/qx7MP0hG1mqorCpLZGJCSfhO2SdWPzvb9VGUm/fJ2xl+EFBq2ASIQZIqS0xNTdHeM4Dp+qSiKjFNIQhoBcbf/Djfvngnr5tvFFbr71e6dstNB9f3SUVF8/PNem3BmjPA2/XzqxiOIGeFQ+K3Cm/n89Lb9bN7u8MPrmRg3CjW1lgVQ6iK07p2TSPn1WD18/ND9crb8yq7CRDrQKEu6pb2xJW6ZXhkBNcL3raD6avX+7fydVTC/S4d1d7y9+tG1s51Z6J4pHV/2q6Pqkhv+Xv6avF2uRZeD/yo7H2b1R9+ELQcYa6+Pt/ueKM/u9ejH3I1/CCg3BQkx9Vz6+uJ1fHDO+HW/FG5915vvFFnCdv18YKAhuWiKjLZV4iFOXbsWBAEwTU3xw88BGs9kCTJwI8Bv4NQt/0R8J+DICiG9oe/CpwAosBKEARPXeexDgN/NwiCvytJ0n8DPhcEwYub/fyRI0eCo0eP8uWX55guNDEcl0tLdZK6ygf29eB4AbPFJv3ZKJIksa0reV1fzZt483DkyBGOHj36Vr+Mm3iNeC2f32yxyaPnlpnI15kvGfz44UHu2d7Bc5cLnJyrEI8odCV1VmoWEVXmF+4eeVPtBn+U8Ha5/1zPp9i06Uzo63J3NsNKzeQLL87i+QHv39PDgQ0CSNei1LCZKTYZao/TnrjC0vr6yQUurwjrxZ60znLVYktngk+Fig3L9XhmLI8sS9y7vXNdgTmRqzMTZpVk4+IxfT+gZrqkY+obbsFx5MgR/u/PfYMvvDRLV1Lnf/vEvpsqsbcpHruwzL/91nk8P+DX3r+dBw8NcejwbfT8/G+yXLO4bTjLH/ziHfzZ89PkahaDbTF+8sjGapqbeOuxum7arlC8XO/gWWzYnJorM9qRYLRzc/ay6XjULZfODfzn30qYjsfTY3kiqsy92zuvyYBcxdfDPMeudJRfumd0w3V8qWLyly+KYPvRzjgPHhp8Q187iNf/u09eZqlq8pO3DXF4pO0V972lisH3LiyztTNFQleoGi5HRtuuUcDfyHOPLdfpy0Zf8XM9NVfm3z10AT8IuGUgy7/46O63xMbp2ct5Xpgo0p3W+cztw5t+3lejagpm9OvZhNkIb5ea5Z2ES8s1Hjq9RCwi89H9fSI3J4CZUpO2eIT+7LU2PCs1kz97fprZYpOYplBqOmzpTDDakeCnbn/te9ORI0f4jT//Nr/39AQD2Rj/xyf3v+r76ibeHDx8epH/+Mgl/CDg77x7K5+5Y5jbjhzhV3/jryg1bW4dyvLh/RsrRN5obLb3GrbHX7w4Q810eP+eHvYPXDkbLFVM8nWLXb2pa37P8wMKDYuOhH7Da94rYaFs8FcvzQLQkYzQkdAZ6Yive02rf8vRaZG5eGgo+4at+5utnUEQ8PxEkXLTothwWKkJVfqnbxtkqD3O4xdWeGmqiKbI/P37t72q+3WlZnJuocqOnhSOK2x3d/Ykr/kbPT+g/jqfnZq2y1+8MEPdcvnA3p4Nc9PeSfhh2/vOL1Y5OVtmX3+aA4NZLNfj++N5Ts5W6Ezp/Ey4z3hBgOcH/O6TEzx1KUdCV9nbl+Knbh9ie/eN22K+lXgjP7tczeIvX5zB8wPet6ebW27AivFGcHahwndD2/RDw1nufwU7Y9Px8PyAxA30IWaKDX7/qUnSUZWfvWuEgQ1qkOvBcj2OTpVI6ioHX2Ve7PGZEosVkzu3tLfyvnI1i1RUJaopGLZHVJPXrUM/bPfeD4KqKWwThZVtgOv71+SRAXznzCLnF2v0pHX6szEGszHM0EnmRqJcTs6WmSsZ3LGlna7UlfPTt08vcnGpxlS+wXB7HFmW+Ft3DpPQVRRZ2nB/kiTpWBAER67++uvSMZMk6RaEGuyjwJeAPwfuBR6TJOm3gX8EDCKGYHcBzwHv3ezxgiB4WZIkU5Kkp4GT1xuArUWxYVOoW7wwWSRfM2k6PstVg129KWZLBl94qUZfJsqe3jTD7fF1byqIQmSpYtKd1m94kz+/WOWpSzlGOuLIksTFpRq3b2nnrusEsd3ETfyww3Q8vnp8nqbt8aF9PXg+dKd1js+U+OrxBWzP43vnV5Akiarp8F8eG8NyfJK6QiYewfeD1sbWtL2bQ7Afcnzp5TkWyibbupN84mD/Nd+/em2uGkLpC1BsbpBCvQan5yr8v4+NYbs+t4228fffsw01PADv6kkxlW/QlohQatjMlZocmy7RlRIZJKfmKpycLTO2UufRc8v81JEhDg5laVouf/j0JG4QsFQx+cwdwpL3K8fnmSk22dWbWmcf8eJkkeMzJfYPZF7XbJP/9OglLi7XUWWJjx7o5f7dr94m8ybeeDx2fpmJfAOA75xa4sFDQ9iuz8XlOgHw6IUc/+6hc8Q0sc6VXuGavokbx+Vcne+dX6Y3E+NjB/petwbXfNngKy/PIcsSP3VkaNMhx3fOLLFcNTk1V+FX79u6YW3ZsFz+xZdPkavZfPJgP5+58+1j8f34xRW+8OKssDaLKBwZ3diG8dnLBc4vVmlPRPi5O4fR5Wv/zo6kYJPOlpo8sKtrg0d5dTg+U+LFySI7e1M8sMkBfbrQ4LmJAkEAD51Z5PBVBLi5UpNUVCMTMglLDZtf/txLzJUMOhIR9valiesqTcfhg3vFmm65Hl8/sUDFcPjIgb5ND/APn11iIvf/sfffYXKl930n+jmhcuqcGzljBgMMJnI4JEeMEjXMkigqWFawZfvavnft1Xq967Deu49sX1+v7L3rJMuWbImiSIqkKMbhkMPJAAY5NzrnyvnUyee9f7zVhQbQjQEmiEH4Ps88wDSqq6urznnf3/v7fYNBWFf59Se333JQbFguf3Z2BT8Q9CTC9CcjZOsWo92xH1iOyWx7ncrXbZq213lfbodT82VeuFYkEwvxmUe33Btq/JBhrmgQCMFCqcV/fGGaXM3C8nwysTC7BlL88uNbO7aULcfjz86usFhuMVNoMls0yNZMomEdPxBkYjq//Y0rOF7A7sEUnzw6umED5Hb4V89McHW1ga4p/OT9Qzy1917d8sOI5yfzTLVJYs9ezvLpR7YghOD4bBnD9rDd4C9kCCaE4NuXcswUmuwdSrGjP8HXz6+iqgo/c3T8hl5OsWlTN2WTbrZo0JMI840Lq4Q0lZJho6CwWrN4/02W8l9p1+5beuJ88ugYQSD48/PyPnj3noHXJdpthL5kRGZ5NWXWcanpMJlv3GDPD3ByvszxmTIgG4u7BpJv5G26BU3b4/JKnbHu2IaD7jV848Iq//XlWVw/oCsepicR4cEtXZ33danS4uxiFT8QPLajh8d3bn6GWSy3+PalLN3xMI/v7OX/+Ppl8g2bZETn/tE0iqLScvpvyVf909NLLFdM9g+nO9b7bxbFhkOjnaE7V2z9yA/BftSRq1n81p+ep+V4/OoT2/jGhSz5hs3ZxSq/FtZ47mqeE7NlBlKyQf7KVJH/9OIMsZDGX31iG5O5Bl4QMFs08EVA1yWZIxcP/+Umf9bW90OMt+7sON4TJxWVuXQ3r0mG7XFppc5od4zRrhjFps2fvLaI5ws+cnjkhpiLjfCFk0tcy8ka4B3Fvjsagq1UTb5xYZV0LERPIsSFJZmLXGzanF6oMJSO8smjY7e9HsqGw/fbmfam4/PJo2O8PFXkxGyZfMPC8wMUReHhbT186ujYj0Se4N2g2rY8XHu/v3NZ7qtP7Oq7hZyxERbLLb7cznb+4IFBXpwqYtg+P3X/ELsHbxxIr/U8vne1wMGRFF86vUwmprNQNvnAgUF+9uHxjsvAl04v4fmCjx4ZYSAVpdZy+d7VPCBr0vWk4LVrPBHREcBQJkrZsPnjE4uENIXD412kYyEOjqRf9/N7KzLBTgFV4PeAfyCEWAs2OK4oyhPIAdjDwDEhxFOKouwD/rfXe14hxN+9m9eRq1nk6havzZUpGzZNx0cFvEAQDemYrk9YU1kst3C8gJsVcJbr82+evUbD8tg9mOQn7x++I0bQ6YUKLcfn0nId1w+IhDTOL1Xf0BDMcn2euyoHA0/t67/lYOH6AV8/L7OO3n9gkLENPNZLTZtERP+hPIRO5hqcmq+wZyjFg28yYP5HBdv+wdfv+LFz//zDb+Mr+YvFXMlgtWYB8F9eniUZCWF5Hs9fLVJomAA4rkek7XuciYVw/QBfqCCgJx5mutDk8HgXE9kG1ZbLjv4EnzuxyPHZEo9s6+GXHt/6Y7dB/bjgarbO2YUq+4fTt7B0XD/g2EwJBYXHdvSgKgrZmtw2Vqvmhs/3b797jcl8k/tGM/ztn9jNtp4Eqahc1x/ccv35Cw2bqXyD/UNputpNnelCEy8Q1C23Le2Xj21YLpdXa2zriXN0Ww/5hsWp+QqZmM6x6RJ7h1I8cynbCa59clcf55drPDDexVShyVzJwAsEo12yYA8CwWJF5ssslG/MmTkxW+JqtsHJuQq253NwJHNHTJjXw3SuSSDA8QVXV2v3hmA/pMg37M51V+wcUsQN3ujPXS3w9AOj2I7PodG/vCSalapJOhZ6y1SNZxeqGLbPdL5JqWnf4NP+ZjBfMqiZLqqisFQxNx2CxcJy4B7W1U3rycVKi9WqhRcIzixVNx2CeX7Aa3MVwrrCg1u6N93/pgtNXpsts2sguenQCu5MfVYxHBqWi8J1BuBGmMzVmSk0qbTCBJs4TBi2hy8Eg+ko2bq16XMZtsefvLZAPKzzqaNjHdLCzTg1L+vvswtVnti5cW5UJhpiptCkafvs6L+xZj4+U+K7V/JMFxpEdI14WCNAsFQxMWwP0/UwHI/x7jjT+QQckN+3VDE7jzk9X+kcKGumy6WVGlt7E4x2xTqh9tOFJp9/bZH37h+8oRk5lW9SaLPux3ti/NShYVwv4L37b8+4fTvx2I5eXpkqsrU3cUcDMID5dq5azXSpme4P5fnjLzOObOmm1L6PLy7XmMw1EMi8k3hY419/Z4KeRISfe3icSsthrtjk5FyFsmHjBQJfyEFEIqxSt2Tzq2LYXFmtY9gev/LEtrtSAM4Xm7iBwA0Eq5UfTCbfPbw+pguNTo0yVzI6Xzdsl+WqxZ6hW4c1QggKTZvuePgtU4XWLY8rq3WurNZ5ba7MWHeMkuGgKgpzW40bhmCjXTH2D6coGQ4Pb+vh7GKVhuVhOj6259MVD7NaM/ndF2dYrpgcHEnz9AMjnf1o7c/JvOxXdMdDXFiudYZg55eq1E2P/lSYSyt19gymGO+JoyhygLUeYV3lFx/bih8Inr2S4/JKnWREJ3zT+7J+vZzKNzg5X+b9+wc7KgWAZy/nmCsZPLGrj/3D6Tt63751MctiuUVIU/j1J3ds+rjnrhZYKLeoWR73j6QJAsFEtsF/eH6ah7d1s3coxbcuZvEDwdVsg8d39mF7PoWGzVA6Sslw0FSFIBD8389NcmW1wa7+BNdyDabyTYpNG0VRSEV0tvcncW8KYPf8gJX22W+xvPl6UG056Jp6x7XhaHeMfUMpyi2Hh7b95eg5/TDj86cWubhcww8CfufZyU4PUwhomh6G7dMVC3FyvkxYhS+cXMB2A3qTYf4/356g2JQRGqPdYQ4MpbE9Qc10/9IPwXb0JXh4Ww+G43WygvN1i4iuSdX3G0Q6GuLX3rkdIcDxA84uVDi1UGUgFaHQsMjV5XD715/cQbZm4XgBubrF774wzYfuG+ZdezYnuvUkwmRiIRQF9g/fmZrv3FKVyyt1AiGH8TOFJtm6zTOXsuiawsGRDI9sl8KXNSyWW0wXmhwYSTOQihIPa5QMm+l8k5WqJCyfnq+wWGmxWG4hAoHtywxryw2Ihe+8lg0CwXev5qm2HH5i38AN6/dfBAoNm3RM35SUVDYc/ujYPF4geNfuPparJl84tcTWnjin2yTtm5/v5akiA+kI72gTH/INCz+Qysw/ObnIUsUkEdH4ytll/sZ7dt2wNr9zVx8vTxZJRDRqpswazjdsLNdnvtwiW7MY74kzWzTI1y2EkHOCiWyDXN1CVaSNd28yTNP2WKq02NqT4H37Bzk5X+bwli7GuiTB4zuXcpxZqNByfeZLRnuQ2c3Hjozddo7zVqwcPyOEmFn/BUVRtgshZoUQn1AU5TUhhKUoCoqiRIQQVxVF2fsW/Nwb8L985QKvTJewXR8hQFMhEtI4MJJhIB3hQJDGtD1sL0ABXrhW4BMPjuG3PVRfnCxycbmO4wcsVlqUmg67BlMbqhLWY/9wmkKjwNa+BJmozkSuwf7hNCfnyvQkwuzol0Viw5LNkkREx/b8zkU6kW1wNVvn0JgM/LyabQDSmutmpsxK1eywNM8t1m4Zgp2cK/PiZJF4WOMXH9tKIqJTMRzmSgY7B5K3FGggJeim67/tNlpBIPiPL0xTaNhcyzW4fzTzttum3MMPDmPdcdKxEJbrE/Xltf7qVIn5UhPLu978VVXBSFcILxB0xUO8d/8A5xdrXM7WSEZCfM/IsVqz6E9F2Nmf4CtnlsjWLSayDcZ74jy17wfXLLqHzfH9iQKm45Or2xway9zQrD2/VOPkXAWAVFTHCwKatktYV3nv/uus0nzdYrlqMtwV49xiDccPOL9UIwgEl7P1DsNvumBweLyL1ZrJb33hHPmGzf7hNP+Pp3axo219+8p0kabtEtWVToP2xWsFLi7XydctXpwucmA4zf1jGV6cLOIHgs+/tsBc0SAR0dAchbNLVcbbIZvRkMZ9oxkalsc72squ//ryLGcXq+zoT/DBg0M4XkDJsBlIRbFcnyurdRTga+dXmcg2+c1373jTQ1xn3Vny1ekCv/nUnjf1fPfw9mC8O9bxrh/KyMLY8YMbHrNvKMW1XIPtfQlOzpc5uq2bfMMmEdY6dps/TBBC8Op0iXLL4Z27+t6S1/jKVJHjs9IW6Jcf33pHthprmC40OTZTYntfolOwA+wdSrFUMRlIRzpqh7cCmqJwbKaMrip87PDopo/bO5hiKm+wsz+xac0z3hWjZNiUDYeHtnZt+lxnFqscmykBEA/rmzbDXrxWoNJyWa1Z3Dea2XAo0bRc/n57vfy5h8f5uYc3Hrxt7Y3jBYKQpjDWtXnIcKXloSoKpuPTcnxiGzQmFGQGkBDcdu37o1fn+a+vzqKpCn3JCO87sPFwvysW4thMiSNbujbNWzk2U6Jp+wSB4NR89abX7HBltc7phQookI5o9CbCbUIOCB8apoObjrBnMEnNdPmzM0s4niBbMzk5V+FqtsF4d4xDY11888IqqzWL0/MV/tq7dvLBg0O8OFmgZrody5qfvG+Y/cMprmYb+L4gEdHwAsHBkQyzRYNXp0us1ix+8bGtd3UAf6M4NV9mqWLy+M5eBlJRdvYn2dl/d0qEx3b0YnsBQ+koA6nXP/h/88IqU/kmj+/sve2Q9h7eHKbyDRxPsH84xc8/soV/+a2rFJuSJKogCGkar86UCGkqnh/w7YurvGNnD+eW6lzLNVAUiOkq3fEQ1ZbHZN7A8gLqpsNyzSLatnpdrVps6b19APl6tNzre99swbjNI+/hB4mVynWiQqEph/V+ILi4XMf2fL51PstnHtl6wz70zGU57OlLRfiFR7bckb356yEV0dnSE+fEbIlISKPYsLG9AFVV8NcRLlw/QFMUntzdT8N0SUQ09g6lmMw1GOmKEglpLFdMGqbHRK5Orm4T1VWurNY5MJym0LA4NN7FbMHgt79xhZWaxf7hNO8/IJVJi+UW370i2emT+QaWG+B4S+waSNKTiPBT9w8T1lRGuqId4oZoW7m9f/8gB4bT9CbDt+xVR8a7UBVw3ID/67kpHC9gMtfgH/30QUD2jy4s1wA4OV+54yHY2lv/eueMTFyX5PBAMJlrEg1pTOYbpKMhzi5WODicIR3VCYCK4SKE4POvLVJsOqiqwmq1xXMTBRJhDa+9d4Z0lR0DKfqSERbKLXoTYUqGzS8+vpUHt3QxU2hycr7C7oEkR7Z08+TuPq5mG5tGlVzLNfjGhVV0VeHTj2zZlLizVGmRioTIxENoqsJP3v+Dsev8y4xi08YPxC1Ez4Yl8/Fatk86qjGUiRAEER7f0cuh8S7yTZtzixUKdYuq6aEgiRprdmt1SzbSHT+gaZV4z94BwprCn59boTcRbg9TlBvq/Fzd4itnlonoKp88OvZj6Sqkqgrv3H39zLNmY6ipCp9+ZLyjrHsjCAR87dwK376cpeX49CUjzBRUliotbC/g8HgXigK7B5PMFg1miwYjXVFOzVd4bEdvZ63L1ixemioynInyxK4+PnZ4lN0DKbb1xelJRGg5HsWGw2h3bNOhha6qrNZMmrZHWFdREWRrLZq2j6ooHB7rYrznOsnM9QI+d2KBSsvhxWsF/t4H9zJXNJjMNSkbNiFN5ctnlvADQa3lYLkeCyUTTVWYzjfvuv5eKLe42F6nX5urvCWKVj8QfOtilmLT5r37BzYUvwC8OFng5FyFdCzELz22dcPzkLz/5H65WDGZLTaJhzVW6xYf2eAM+/JUkdmiwVS+Scvx2NqT4OBIhmzNZjLfYKHcYqVqoioKEV3jv786z6+9czthXcX2fO4fzXBspsRYd4yG5fGJI6N89sQCuqbQGw9xfLbEK9NFtnTH5XkogAfGuzi3VMX2Au4fzfDwth5Gu2L8watzVFsuQkhXsabtcnW1IfvDyTDjPXF0TSHkK5QNm0rLQ1MVtvcnbyu6eSsmH18EHtzga0fbf19SFKUL+ArwHUVRKsDKW/Bzb8BkroHj+QRCBmEqgdz450vypkxHdca64yxVLRbKLf5/z03y5+dXODCc4X0HBikbNjsHEhQaNslICEVRNlUlrMeDW7o5PNbVKfTef3CIZy/nODlXQVHgFx7dimFLewlNhYFUlOWqyf7hFB84MMS3L2VZqZp86fQy793f3y5aFPpTERzPZyrfZGtvgkREZzAdpTseomZKtdrNWFPetByfmumSiOh88dQSTdvj4nKNX3p82w2PDwLB508ukq1ZPLStmyd3vzl7msVyCz8QG+Ze5Bs2phNguQGG7d0bgP2YIxnR+dUntiGEtI168VqBiuFgezeqH1wvYKrQJAjkQOSFawW6YiH8QFq4OIGg2vJ4cEs3hi2ZQpYbMJDSsD0fIQTfuZxjodziXXv62TP4o+EP/eOAfMOi1nLZ2Z+85aA73h3nWvvgefMBLBPTEUIwmW/i+gGW45OKhQhpSsff23J9vnBqCccLGO+J8cC4PDQ9sbsPVVWIrWvqRtsh7SfnyqzWbKqmw7mlKn/w6jyP7uihPxmh0nKJh6TXfK5usVqzODZT5lqugeH4hDS53j+6vZewpjKVb3JltU6x6RALayQjOq4d8IWTizw43k1vKsxP3j9ESFM5MJxmpdrimcs5yZRcbZCM6PyrZ65yLdvk8V29CBT6EmFydTnUeDuWv5Wq/foPuocfCBbKrc66t9xmujptQs4aVmsW4z0JgkBwrWDwz/78Eq4fUDM9nto7wMeOjP7Ag9XXY7lqcnxWWvhoylvTbFhrtFmuj2F7dzUEe2WqSLHpkK/bPDDWhecLvnxmiUDAzz08Rs30aFjeDZmAbwavzZUpNS0UReH0YoX9Ixs3pr55Mcul5Rq5msk7d/VveLC6mmtguj4hTeXSan3Tn7l+3YvdRm0zlIkyUzTY3pe4hXW+hmu5BpfarMpvXshuOgSbyjUpG5KBu1g22DO08R67vS9BpeXQl4qQiW78ucXCct+eK7V4at/m9eY3Lq6y2lYHf+9qbtMh2KUVqUSZyMq9ZKO6cqw3KodagSBy0/3zjl19/PGJRQIhcNwA1/MJ6xohVcFqsxAdX96zf3xsgS+eWuTCUoNABIz3xOmOh1goGfznF2f4qUMjLFdNSk2bsbYyIBML8f4Dg+TrUjUTCMG3L2WZLxtcXZWEtw/fP0RvMsJEtsG1nPxa0/ZoWC6xsMZUvsl3LucYSEX46OGRTVVxbwQVw+GFa0UAXF/wqaO3ZrQJIXj2Sp75ksE7d/exb+jW63ykK8bPP3JnFp6W63fIfueXaveGYHeIIBBMF5p0xcO3WPlvhKl8kz8/t4oQgrLhyGu1bGB7AbqqtAfRYLs+uZqF7QsUYLpo8MBYhkREp9CwcdyAwHTxAkk0GO2KcmS8GwF4bUXHQPruGM/BOv7HmlL2Hn74kK1frylrpg/Ippzl+vgCapbLM5dy7B5Idtaltb5JqWnj+AHRdba4QgimCwbJiM5Q5s4bs6qq8MmjY8wUm1xYrhENawx3xdA1tUNMu7BU47+9Okc6qtMVD/Pc1Ry+gKcfGOFvPbWLYtPmj44voKkKTUfWAU3LQwW+dn6FZCTE4fEu9g2l+e6VHNWWi+n4lJrX3wNFkfp9BYWm5ZGtW9RNF8cLeGCsi88enycVDbGjP8FHD49iez7//rlpVusWn354nCNbumnaHv/91TlsL+Ajh6X1k7RszmO7PrbroygKrnf9pJwI64x1x1iqmOy96Yx7brHKdKHJQ1t7bhlEf+i+Ia6sNhjrjm2qzr2arXNitkzVlKRCx/cIhMDzA5lxbPsUGw5d8RAPbunGFwH//JtXWamZ7OhLcGahysRqnVLTpq6pZOIhtnTH+cDBIZ5+YJipfJPhTAzHC+hOhHl1usRK1aLQkHa7K1WTgyMZjm7t4ejWzfeC1ZpUCri+oNi0NxyCHZ8p8cp0SSrwHt36plQw9/DGsFhu8aenlxACfvrQ8A0Waf3JKNGQSsv2mSm2KBoOfckIxaaN6fl84sExXpstcWy61DkvhTQVFMg3pYOGqkgbO6nU8fnmhSyFpsNp0+W7V/LEwxqP7ujhoW09REMaE9kGrTYxa77UukHtMplrcGG5xoGR9IZ1zY8qiu33yg8EFcPddAhWt1yuZRts6Y1v+piFcovzyzVKTYewptK0PRLhCPuH0qzUTBqWx5+8tsjHHxzl6QdG6IqHODlXYUd/4obz6stTRRbLUm21ZzBFfyrCO3f30bCke8KLk0VMx2fvUIp37+nnT15b4IVJOSD52+/dTX8qwr6hFLsHUkzkGtRMl/lSC9MJCGsKw5kYv/menR1V4Mm5Mp89Ps/VbAPbCwjrKqUvXSBXN8nVLJq2T08iQioaotC2q6+3HHwB4ZDKUtWUJP67cDXoTYaJhWWm2Fj33WWcbYbVmtk5F5xeqG46BFuuyLOH2T47h/Vbz7lbeuI8tqOXmuny+M5e7Is+oPDk7r4b6nDPD1got0hGdKoth6blIYTgwlKdp/b1c2mlylfPLlMzPUa64gx0RZgrGTRtj8+9toDnBVxcqdOTDDNXNNBVhaNbe8g3bPYNpRFCMJCJcnKuwlS+SW8yzEAq0hYJBVxcqtGw5RDrw4eGURS4utpgpWZiOj5P7Orj0kqNhukymW+yXNGYLxkUmrLOjYViOL78zPXXIeG84SFY29bwIJBRFOUT6/4pDXTuJiHEx9t//aeKojwHZIBvvdGfuxl2DUi279rC6SMtVU7MltnWE2ex7JMI6+iKggs0LI+pXJOwprJcNdnaE2PPYIpff3IHx2fKnFqo8PShYfxAcC3XoCcRZjAdxfECzi9V6YqHiOgamqp07E2EECiKgrquplcVWKmZBEIQ+FJK35uMMJlr8qH7FHqTYU4vVIjqKqWmy88+NEYyGiId1flfvnyB6YLBtt44D27tpmF5fPDgIEOZ2IaH/cd39uL6AX3JCL2JMGcXKpQMG11VO9Pf9Wi5Ptn24GyuaLzuEKzlyCbSRjZes0WD33txBsPx+aXHtt6Su9CdCPHQti6OTZdJRHQuLNXekMf2PfxowHJ9Ti9USEd1Sk2Hi6t1HN+/5XGuQN6sQNX0aK40CKugqHLx0oXAdn2647IZNN4T5YndvRwa6+LJ3f3UTWnNAnByrnJvCPYXhLLh8LkTi/iB4OFtPTewkAB+8r4h3rGzl/QGdkq7BlK8d/8gzfYwvCXk4SsTC/FfX55lOBPlXbv7CQKBEALXC/iVd2zDD4KOlVkqGmK8J8b2vgRD6Sj/769dZqnSQiCtblUF6qbDZ48vsGcwSVhVmSo3GEhH+OaFVRYrJmXD4b7RDBXDZqFikgjrbO2Lc3k1TMvxWCzb2K6P48mDKSi0bI///esXGczEeGCsi6f2DfDVcyvsH0rSlwy3Q0CjfPb4PN+4sApCoeV47BlMUTVd+hMhRrri/MzR8bfcytPxNrcqu4cfLBbK19num9nAOZ5PsWljOy7TpRaaoqBrkmF1aaXGfaMZDmwyaHkrsVbHvN7X07EQYV3FaQfdvhV4cnc/mqowkIretW3hlt4ExabDYDpKLKRxJlul0pL3xBdOLlEzXeZKBu/bP0hXPMRqzeLJ3X1vOFi70LSotCRbtdra/N772rll5ssm8bDGP/npg7DBEKwrrtOwpFPBzVZB63HfaIZYWCO8rvm3EZar0q5PVxQ2e7aR7hi9yQi1lsPB21xXl1ZqFBo2KlJZ8t4DG7MbH93RS29cpzcVxRMbHy7migbfvJDFcDwSYW3Tppfp+p0BcfU2+XhzxSZXsw3qpkMQCNjgvGo7gqgum4rrHQ9ajsf3JwqMd8e4sqpTNRyiIVkrhzUFVUAA+AJKps+zEwV0BZmNFtGpmR4RXSUZC9G0ff7zCzP4QhAIweM7ejs1etlweHh7N9t645xbkizR9W6RvoCvX1il1HRw/YAd/QmGMzEG0lGZS3NuhZWqSa3l8OJkkaNbu4mGtLdkIL5G8JCWmBsPh+uW12G3npyrvOlmUTSksX84zVS+wQPj984Ad4qXpoqcmq+gqwq//Pi2123wrineL6/WeXW6hECgqwpbe+NENA1dg6olh612e81ZG2xZrk88rCEEWOvWI9MNuJqtUzJcHt3ew3RBNjBazt01i9ZroM8vVu/4++7hLxZBcOvX1HU1gKYIepLhGwbz79k7wMm5Mr3J8C19h9fmKrw8JYfuP/fQGCObNPQ2wtnFKq9Ol6RNre3Tn4ygKrJhB3KQtVBuYXs+O3qT5Bo2sZDGK1NFDoykCetqp0F5aCSD4Xg8tqOX0/MVXrhWJBXViYU1nto3QE881Blwbe+Lc36pRncizFfOLOP6Ae/ZO8DugQR/dnYFywtIRXS29iVk1p7rc3KuzJHxLmqWy5+fX8GwPa5m6/zLT9zP9yaKTGTrbOmJM5FtMJCKcnq+ymtzZRTgXXv6EcC+wRTVlkNXPEzRsHloWw8fPRwlvM7qynJ9npvII4Tsaf2Vd2y74T2Lh/VNlVVr+N6VHNfapIQ1tGwfTVPQNRU38JkpNAmEYCAZxnADKoZDKhqiOx5ma2+cXM2k0LTRVJWf2N3Hzz+2nftG0+Tq8v0Y6YoihGCm0OJatsl4T5xHtsvX1Z+K0LRcvn+twFA6yjt29XWs1XRNkRElA0ke3NJFteUQC2ns2kSpvFbvOV5Aw3bvDcF+AFhTa4DofB5r2D2QwPEEqioVhXXTZbFkMpSJsKs/yen5CoWmtNZUfUFIVxhIRlhaJ0gIhKzdruUb7BxIkq3bnF2skImHGMnEuLRSY6ogh1t/4z272DuU4mq2TkTXbiHof+dKDtsNWK6YPxRDsKm2uvTAcPoNK2ifv1bgykqdVFRn92CK3bfJF/ziyUVeuFagbnn8zNExfvL+4VscPfqSYQbTESpGjB39CR7b3kNXPMxUwSBTCNFyfcqGw0zbkefJ3f2STNyuTyeyDS4sVztnx1RUJ9UmyQWB4E9eW6RsOEzkGhwcTviSkTcAAQAASURBVFNpOTx7Jcefn18lX7dpWC7nlqocGs2wXDX58KFhIldUDFs6mM0V5fBlW1+io0ASAn73+Smeu1ZEBIJMPEQmHqZi2FzLGSjtOr5puVxZqTNfalG3XJxA1kB6INg7mKBh3Z21dyoa4lfesQ3bCza0Ej81V+bFqSIPbevmnbvuTHTSl4zIPqrhsLN/85w1x5dWlL3JyKavWVEUHt95PWrhZx8ab7t8yM/KsD1miwZXs3UWyyZzJYNS06ZmeuiaQiys83svzXJhsUqhKRXBLcdlJNOF5fmsVk1eniwwVzbpioW4uFzjffsHqFs+P/vQGLmGLZVjqkIirGM6PpqqkIzorNQsdFWSZwzHx/EDVqsmz10t8MGDgyQiGt3xEAjpXmF7AYmwJNMUmzYzRSmmqFsuDcvn8JYM94/K/26HN6ME2wv8NNAFPL3u6w3gNzb6BiHE82/i590Ws6UmN/cOfAGKgJJh4wsp7VdVqURYU4zpqkJYUzg5X2Gb4fCBg0MslFv0JyPMFltYbsDZxSqaqvBXHt/GmcUKZxYqXFypk4nqjPck+MgDwzx7Jc9M0eBnj46zbyjN6fkqY90xuuPhjtWhYXscHEmxWLE6H8zPHB2nNxHh6mqdHQNJRrpkILbl+h1l12yxRX8qgqaqXFppMN6z8Y3Ql4zwiQclk/M7l3OcW6xwZqFKJKTy1J5+6pZ7gyViMqLz8LYeZksGj7czzBqWy5fPLON4AR89PNppbrUcj//26jzZmsXh8S4+duRG6eRK1WSyHaD78lTxliFYSFXRFJVySyorjs2U7g3Bfozx6nSJFycLlAyHUsMi17ApGS4bnKlugBcIQio4ro8e1dFUhYbl8ucXsjy6rQddU+mOhzEdH88XJKM6o10xlqsmezfwp7+Htwe253eCWFuOHGKt9+yNhbXbWo/tH05zYblGsWnzqYfGGeuO8c++dpm5QpNEJEQ6GuLde/r4189O8vXzq/y3V+d5bGcv/+jDB1AU+MrZZUzHp9pymS22uLBcY7VmYtg+uqpgu4JzS1WiusaUIhupdVPmYXTFZBE2ka0zWzDoTUk7Tk1VeGA0Q0RTmcw3+JMTC1RNDyEgsH00DVxFZSpvkKvbFJsOTdsjX7f5wslFPnZ4lB39CQIBhu0zlI5RMRwysRCVlgzGrmoqZxcr/LV3SX/+U/MVLi7XODSWIRbSeG2+jOMFfPj+YYYyd8ckKje9N/hp3sPbDW9dcbJG8PUDcUMBtlQ1WapYnfzS/lSEw+M9WK4cMg3eJdv+blFoF6jPXyvQn4rwqaNjneL4GxdWuZZr8Mj2no7VYDoa4q+8YxuGvTEx5mZYrs+ZhSr9qQi7BpK8PFXk7GKVQ2OZDgGnJxHmpw/d3oJ6M7x7Tz9HtnSRCOuoqtJmKVeoWy4TuSYrVRNdVZjINnD9gN5khG9dzPH4To+DI+m7zjHSFPADHxS43TxitSbz4Fq2z2ypwaH4rYOfXNXGdKSTwetl5NyJVd3Lk0UWyi2KDRvDdknHbl2L47pG3XSptNxOI3EjrFRM3Pa/L1c3z/H6o2NzLJRNEmGV3/rQvg0fk6uZrNRMfF9woT0Q2ggfPzLCv/7OJKqibKpQAzi9KPNZDMfHa2fy3oxYWCMRCeFoAZl178O5xRrT+SbZuoXleDgBOFZA3dr8d/QE6IpCJhZitCtKKhrifQcG+S8vzpKry0y3oUyUb17KkmtI+5Kvnl0lEIKjW7t5/4FBIrrKzv4kw5kouqqybyjFmYUqIIkgn3zwehj3heUaJcNmqdIiX7dQVPjiqUV2D6Z43/5B7hvNkK1ZxMLaHed3rWG+ZFBsOvzMQ2OYrs/QBvdwqWmTb9gMZ6Ks1qwbshbeDKRNzJu3ivnLhLU6ywsEtucD8vNey8hIRjQ0VcX1A16aKjLeE+e9+wa4sFxlqdKi5Xj0JaOM9cR5975+vnZuhUAITOfGe18AF1caqLBhvZ5vOHgBWK5H3fJYqVr0p+b5zXfvet0M7Y2weptswHv4weJW2iJ4QdDptbg+/OxDN6pHZTa73HcvrdT5pce3EdFVCg2bhinVVZdWaxiOx199YnsnT3Ej5BsWXz27ghCCy6sNFsstFEWqQ6IhDUVRqJsex2ZKzJUM6pZLdzzM7qEk2bpJyXBIR0N86dQyhuPx9KFhDm/p4sXJIitVi3zDYrHUomG7qIrMeP+9l2Y4OVcmpCmkYiEWKyam6zGRreP6AiHAsHx+6v4RjmztZr7YYiAdZddAkolsgz94ZQ7b8/mfv3SBAyNpLFdmZ5UNh5//3eMc3iJV6r3JMOPdcYQQ2L6s+XJ1i+WKie0FnJgt8/y1In/nfbv44+NSrfzO3X08vI6xH9ZUehPhNvnn7uvDpu3xxVPLnSH4+s898AXVlstQOky54SKAr13IEtFVwrrKnsEUkZCK5wvGe+JUWi6BEFxYbfDAao39wymurDbY0S8V4oEvaDlNbM9HVaRCL6RpdMVD/PY3rvDCtQJ9qQi6qvDKTImm5dFyfDLxEPuH0zx9aJiP3sZ2GuAdu2Qfqzse2lQxcQ9vPYJA8NJUkbrlMpSOYLs+KzWTg+0+Z7Fp85Uzy1xerUuFoQBVlQMtBdBUjcVqi//j65e5lmvieAEBYHuC+XLrln3I9gWKL3juSo6fe2QLewfT0M5ynSxIG89ay+MTD44xmI7y196184bvPzFb5vxSFcPy0DX1LcnnfqMoNW1miwZnFqo8eyXHcCbKLz2+dVOC2GSuwatt2/fD4100LK8jxDAdn9PzMmoirqi0bI9///wUvYkw7947wPC6nsJzV/N8/cIqZcPB9QUvTxVRVIVPt+vtIJCKy+5EmF95x3bcdlTQNy9kAfjYkVEe3NLFl88sIwDTcfn2xVWS0RCP7ehlvmTwp6cWeWmq1BGL/OOfPkAionfOWgJ5LjQdn3rLZaHc4sOHhpkuGIxkopSbDv2JMLv6k/zp6WUs1ycd0/mb79mF7QVcyzX42rkVlqstLq3U+DfPTnbq6mOzFZz2uta0fUK6z1TeIB3TaZhuJ/u30LSJ6Fq75pZqeC8QnF+q89vfvMonjozdQvK+HaIhbdOz5O+/Mke+YXNhqcY7dvTd0aBTCHmfaKokVC9VWoxkYjd877GZEi9NFhHIKCU3CIitYwRu1tdXFIWQdv15vnxmmULDZirfZNdAkiurNfJtNfhIJsK2vgSzJaNja6opCploiJ5EhOlik2LTJRqSTk/ZmkVPIsSZxSr7hlP82bkVhIDZksFyxeSFa0W29Mb5iX391EyPIAiYKrTI1W0G01GaltImekrybSysMVs0ZLZnW4k+mI5w32iG567msVyZXasgyHsmr0y5HBrrwvUFYf1tyAQTQvwZ8GeKojwuhHj1jT7PW4FACOaKtzYOFKQSyw0EtisXVSHAcHyGM3H6kiEOb+nGcgPyDZuwplJu2qRjoXbT1MFsHzyWKi3+80szeL7guYk8K1WTaEjlyBaP3QMJvnc1T6FhcXymyH0jGXqTEVZrCis1k7HuOLsHUnz7UpZ83eZnHh5jtJ2tENZVPnTf0A3eoWXDYaVqcng8w6szZT54cJDpgsFEto6myhDBq6t1BtJRHlhnxbgefiBZGMsVs2P1Eg5p/MKjW2943Dt3991wg88WDUptKe21XKNzszQsj6Vyi8l8k2zN5MBwipYbYLk+R7d2c3A4zba+BK4fsGcwyVKlJUNnRzMkIzqfPbHAF08tdcJUD411vZmP/McS2/7B1+/ocXP//MNv8yt58zBsjzMLVZarLQzbo+UEmzLSb4bjQ0hT0BQFH4HjBwjL54V2czYZ1TizWGWm0OTXntzOaHeMn9g/sKlH+D289RjOxLh/NMPVbJ2DIxmm8g3+8NgCyYi07fh02xpptmjQtDwOjKRvaJCEdZXPPDLOM5dznJgtcy0XYmK13t4ABcdmSuwbTtOyPUoth6iuMpFtMFcyuLhSZ7li0pMIE9FVxrqilA0byw3oTYSoWdIvum65OJ4MX3c8H9MNWK5abO9LMFeSxU+t5WLYLoloCNP1OT5X4atnV1iqtDDc69dsAKQiIUQQULd8vMAlrFttr/4qluvzH1+Y5h27eglpGr/wyBZOtwkT+4dSPD9ZJKJreEHASrXF/+tzp8nEI6zWWjie4HMnFkjHQpSaNrGwxtfOrrJvOMU7d/fRm4ywvS/xuoV6494M7IcWTev6h9Oy1tiq/g0FWE9cNjN8PyBQFQYzEf7p0wcxPR9dVW+w0VuzuCq21SN3whxcrZmcmC3Tl4wQCMFIV6wzUHl5qsiJ2TJzRYOxnhjZmkWxaXdsbCbaTOHLK/Ub8raSEf2O80S/P5HnyqrMmfmlx7ZyZqGC6wvOLFQ7QzDL9fn2pSy2F/DBg0Ov29ivmy7PXyuwfzjNrnW5p7NFg+l8k/ce6OefffUKV1frpGMhRrvjmK50BZgtNAnpsmk8lW9gWB4rNYuHt/Xwnn39m4YLr+HUfAWn3SU8NVeBd2/8uLCuYHnSSmlL98YEptWa2WksVszNVWWm4/P8tTwhTeVde/o3tZVeC6juS8kD4UY4NlNisWzgBfDNi6v8zx8+sOHjUrEQCrKevt3nsVCWTgxNJ+DCQplDW3tveYyPtM4UKre19VupSl9+VYHl6uZDwYbpIdq/r+l4JDbIezgwkmZnX4KVmsWH7rtuq9ifDLNSldYojvd69JzrEELg+gGn5iuMdcewXZ/5skEQ0MmdG0pHaVge86UWfhDgBYKm6RLSVGpCsL0vQTSk8ep0iZJh85HDI7w2W2KhbPLCZJGHtnbxwrUi+aZNdyzMI9t7MRwPx5P2qEJIuzvD9vje1TypqM4vPLr1jjPvSk1bNi+EtER8995+yoZDTyLcGcA1bY8/PrGA6wvuH83wyXVD8Xv4i4UQgmQ0RCKi89iOno5K9mq2zrcvybyIiuGQb9gMpiPsGkgxV5Sq12xV1joqEAmp7BuSKhmz3XzarC7f7I4w3QDT9fEagrCmUmk5HJ8p07QnePrQyF2rlbvib28e9T28tbiZ0PPHxxfoS0UYzsSoWy4nZkpM5Op4vmBHX4Kq4fDCZIFi02G8J8Zod5Sa5eJ6Ad+6kOVTR0fJbJAn2rQ9/vTUMivVFlFd4+xCBdOVzPGd/TJHKqSpHBhJ8/uvzLGnrehWkEzxSEjl8HgXZxaqkggdCPwgwPYEsZBGoWFhu/J84XmCuuVRN12+eHKJdCxEbyKC6fr0JsJ8/2oBc4dswL42W2euaPDZE/PsG0rx0LYeTs6VOTlX5sOHhjm6tZvvXZW5Ybbr4/m+7D35gqbtMZlr8q7d/fQnI3z5zDKpiE6+YRMIOUzqSYR5aapINCQtngzLww8CpgsGK1WTWDuPGKRN5M89vIVKy6G/ff4VbQWooiisVE1emyuzrTfBA+Ndt7zHz0/kWSxvnMknkNl982VLvn5kI1YIQSqi0xXTOT5Tpi8Z5lquQcv20HUNBYWFcouq6bJrIMnl1To9iQj3j2aYKxpEQipBIPjfv3aFbb0Jfv6RcZ69nKNmujIuw/GotVyWqyaqAvNlg9mCwbVsg8d39vKOnb2bumiko6G3JIfnHu4Ok/kmz1/Lc2ahykA6gmH73D+a5vdfnuOPjy+0c/FkvlcqqpNWFPQ2wdnxBVvaZ46r2UZncLGGzfYhATRsn/mSwa6BFIoChSWbWsvDcgIGUlEMe+ND8YnZkmyOayqffnQLvW9hVvDdQAjBn55ewrA9Xp2Wr2mmYNByNqIfSBybKVFqOqxWzU62+jt29vLojl6iIekQsVhu4QXyjHJhucbewRSRkMbHj1wnLJyYLbFnIMWZxQoRXWGpanJqrsKDW7rpioX4x392kZbj8779g3zsyAiaqvLCtQLPXs4S0lS29yf42OFRPv7gKP/nd67x6lQRv032SkZ0/vjEArNFOfAYTEexHJ9MLITedl87OVdmKB1lS0+CctMh2c6HN2y/nX0Vw2vnwL84WcByPbJ1m/NLMobj4rJ0qNjaG+PyagPb8/nmhVW6EyH2DaXpjodoWPJ8oLSDiGNtZyrD9tAV6UQVCNEmpiVkrJIPXgALFROBjN64myEYSEvQlyaLREIqT+7u7/TR16I71oZkMmMyx0A6yocODnXO8EIIzi5Wcdo5u01b1vx/dGyBrb0J7h/N3GARf2GpSjSkYrpSpZy+6Rx0aaXGc1fzBEJal/9UO7rg1HyFV6aLZGIh3rt/EMuV193Wvji7BxI8q6rYXoCCQnc8Ql8yTFhV6E1GsX1TzhlMl1LTIhXW0VU5Kyk0bCK6ynzJYTAd47mrBUqjDlOFJrYbULNcgiBgvmxQbNps70tQbnlkYjoRPcJQJsrHD4/iC8F9oxmEEJiOT63lSGJ6IHCFoNpyWCy3KLdc1kTnAnAC2XP53pU8h8e7eWT75ja7b8YO8beEEP8S+IyiKD9/878LIf7OG33uu4Xric4bsB4hXWE4IxdCXVXA9jtWM4uVFvmGSs30OLKlG8vxeXm6SCYe4oMHBvnu1bz8IEMaewZTmK6P6wfMFAwUIKKruL5k0Un5ryBXt2XGjRsw1h3jke29pKI6r82Vudr2TJ4uNKlbLn/zqV23NO2n8g1sN+CFySJNy2W6YPDo9l5WahaGLUPH83Wbzx5faAfV+Xzm0S08/cCtzOn37O3HdDwWyy3mSgbllsOJ2TIfPTx6Q9Pq2EyJ2aLBYzt62d6XYGtvgnQshOcHN8hoB9NR9g6lKTZttvTEuZZvMpmTyi8hpBXj//D+PRSbNlt74vyjr1wk27A5OJxG1xS+fGYZ2/UwXcFAKsKzV3L86ju3vwWf/j38MGL/cBqBwPMFtnfnAzCA7niYasuhYbkoikJUV2m5Hn4ADcej2nIxHJ+z8xW+czlHXyrCjr4Ev/2JQ29JCPMPO6oth5enSvQlwzy649ZG418Eyoa0IDBsn//68izxsMZErsFAKtJpxC1XTb5yZplLK5Lx/wuPbmXXQJKT82UeGOuiJyHtA5erJqfmym2WpWD3YILeZIQ9g1IZu1BuoSoKewaTvDZX5tJKnal8g8PjXXzkgRFZrNkew5kI79zVLxvgBWl1Gwup0tPY9nA8gRKWB1HL9Sk3JXMxEdHYNZDoKHJN16PQsBHieiGqKdDTVnTpmkIgBKWmw6szJUoN+fwK0sZrz2CKL59ZQlXl/vKNizkeGOuiOx7m3FKVpYrFZK5JSFMJhGQdRXSVfMPGFwK/HuD4AfMVg2OzJR7a2o0XCP7hTx14y2zn7uEvFuttQVrtc5l/U9Fy30ia+bLJcrXFlt4ED4x1Y/vBhkHOz1zO8ep0kYWSyX2jkm38etk6Xz+/ystTRbJ1i8d39JKJhfnVd24jFQ11VOeJiMZqVSo+1poqYV3lgfEME9kmR9oBs9WWw+WVOrquYtge941kXvfaXBvGKChoqsJ9oxnOLV63Rfb8gKl8k5mCbMqcX6reYtHseJKNOJyJEg/r/MtvX2UyJ8N9f+fTR8jEQrh+wFfPLpOtW/yH7zeYLDTxAlkjHhoLsVKRHvcCQU88QkhTeW22zNmlame40ZcK3zafAuDSynULoVemi5s+bm1soAB126VrA7LG+ppM3aTBA3ByvtwJvB5IRbh/EzLRXMnA8QNKTZuW7RPfYFCZa5i47Q7D2ue/EVJRDUWRTbX0JllfwA17fHdi42the18Mocg1r/s2VkXnl2pY7Rd3brHGZx7d+HHrGyQtd+PGwaWVOpdX69h+wFfOLvOxdiMg37DJxHWyNRNr857DLRBIS9MggCt2g7liq2NbGtJUtvbEeG1ODsjiYY2pQpO6Ja3EkxGNsC6ZoheXa9RMlzMLVR7Z3kPd8jpB0zXTYTov74P7xjKMZKI8f63AUsXk8R09NGyPwXSEz59cZKlisr0vQdV0iUc0XputkIhonXv19RAIaUlTaNjcN5rh/e3DtesFHTszw7n7HF8hRIfBeg93jjUGdlc83LEUurLa4LV2/uJ6u1TRtoYqNGyu5aTCtWTYxEI6pxcqPHc1y2pdKrdAZnrl6xYasqlwG+fV26LWcomFFIiE2+4lcHW1TkRXGemK3mKpdDvM5huv/6B7+KGB5fqsXwkqbQa/EBXSsRDTBYOIrqIq8ODWbka6opQNmT3z1bPLvHf/APuGkrw4WZK1/0KZjx8Zu77u+AEt2+fzpxZ5bkJmcw1nJHEnFtJkfm/N5A+PzbG9N8F9o2mObOni+EyZ/mSE717N07Rc4mGdi6KOLwRNy8MLBM9PFLAcnz3DaXRVpdi2dAppKsmIzkKpRTSkYnkqHz08ikDwhZNLCCG4uFLnf/rgXnI1i29cyGJ5Potls8Nc19oq8w8fGqYrLq2gliomiqIS0RR8X75+TQVfBBSaDsmIzmS+wVAmxpHxbpJRHdcXkgQxWeTJ3X1s70/y8PZu5sstepNhvnM5x47+RCf7JqxfV7KUDYcvnlokEPDJB8d4biJPvm4zUzDYtYEtWr5hdWqAzbB+jQhrCiFdIxCwULEIqXB8xqbQdABBWlMZ7ooSD+n0xMOoSYW/8vhWnr2SZ7Vm8pHDI0RDGv/jF85RNhzKhsNIV5Sx7hgtx2cgHeHolm6+dTFHPKyRjoaIhz1ajsdUvoGmKmzpid/WCvpHDY4XMFNsMpS+u3XzB4XldlbSekeCrpjORFZmx9peQERXuZKVuU1OO4NSUxXKhk255dAdC/OBQ0NMrjaYzDc5t1TDsL273o/cQGC0rXgzMZ3pQgMvEKQ0hd5EmM1Kj71DaS4u19g3kv6BqsBgzRpbYedAkqvZBr2JEMXG5vneZcPh+Yk8u4dSDKej+IFgKt+kasp89k8+OIrdJi4+czlLLKwRCakIAZdXalxaqXMt12Sp0qLacuiJR4iEwPVgOBPl2EyJV6eLvDJdQgip/F2qtJguGliO7KGriui8xheuFbmyWu8M6A+NZSgbNooiRShb++Ic3dLNobEuTsyWGcxE+cLJRWxPDrhGu6JUDIf5cksquGaKTOQa7OpPcGq+wudeW6Rpezy0tZtMLMTuwSQvTOS5sFonCKTds6LIwZXpBBi2S9X0SEZ0RrsitNyAqK7h+AGOG9C05MAkaCuKAyGwvACvuWbjKeF5cvQ/cJtzbbUlrTvXn9HLhsMfHpvnlekiuqoyka3zd9+3h3hY568+sZ3vXM4xlInw75+fJl+36YrrVFouR7Z0dZR613JNvj9RAGRv/cBImuWKzMMC6W63hlPzZb4/UaDSctk7lGT/cJqy4fDdKzlSUZlJHAjZbwiEwPN8/uzsMksVk5l8g4lck4FUBEVR+MgDI1zJNtg9kOTsYhXbC1AVhWhIpWo5/LdX5lFVhVRUQ2+ouL5P1XB4abJAbypK2XCIR3SctnOI5QVk6xaOH3BuqUrZcEEE6O0zkO0GzBUMwppKSFVIhENs75cKx4OjmU79K4TgwnKNxYp1Sy+5tckG5gayp5CO3X7M9WYoWFfaf558E8/xliAQG78JIU1KtSO6xkh3tNOsLBsOfgBW4Hek514Q0HJ8np/I88K1IoEI0FWVR7f3IITg1FyZuXKLZFjnwEhKDsG8oDOx/ZmHxsh9b4p8w6ZpeZhugKrAty9mWapIb82FUgu/Xci9NFmkbDhs70vw1L4BruUafP38SkfutzZEcDzJRPIDQb5hk4zqDGeinF2sEtZVsrXrXrmW63N8tkwirHH/aIZHtvcwWzToT4XxAxmWPplrdA7Ha+wDgGcv5/jFx7aSiYX4tU2GU595dAu7B5MoyKHY2hAs0p5uD6ajDKajtGyPhUoLIeSQzQ+EDJcVgAJNy6XUdGhtwtK4hx99jPXIIF5dVTYcUG8ETQFNlQ0XTwACdEUyYI02Y1W6T8lDi7MW0BwISoZDIAQqP/4Nl5emikzmmlzLwZbe+A0S97cSc0WDkKYwepOtxHLV5AsnFzk2U8b1pffxWHeMfYMpehJhPnBgkJbjEQSSqXFusYqqKvzBK3OEdZW5ksHWnjj/4lMP0J0I8cK1Aqbr43gBewZT/NJjW1FVlVQ0xF9/907GuuOUDZuJbINC06bUcNqMRLi0UuX5awVajo/lBoQ0lS29MZYrJmXfwXZ9apYMdQ+1L42zizUuLNfRVdBUlYe29TKVb1I3PX5iXz+XV+oMpCK0HA/bc1DbxdLju3uZLxhcWqljutLSoWq4nZBwkMqU822VYkRXsT1BEMiMsrGuGOmoTr5mSnWa73eKdE1R6YqHGO2KcWVV2q74vkBTFOZKLcK6yvcn8vzMQ+Nvy2d9D28vtHXeUmsNJHHTunh2qcoTu/o5NN7FYDrKgeE0iZsyjC4s1RjOxNoKb7lW+kLcMFCzXJ9Ky2EoHb2BMWu5MhwaIa/T3mQEXVW5uFxjttjEsGXYtEDBdH3yDZueRJhoSOMn9g3yE/uuM8++fmGVbNXizGKVI1u6WCq3+KXHt932PXj33n4G01F6k2G64mHes3eA9+wdAKR988XlGlt6YoR1FT8QjG9gZ/NnZ5c5Plsmqqv8nffu5sJSjWbbjjFoB5icXah2GmFhXWYeWa7ProE4C+UW03nJtJQMQA/T8Wm5Ho7r4wm4slpnodR63SFYSKXTXF5j+G0Eoz2c8QT4G4WsAOtpIsEmjwFpKyNJAVC9jWLM9gM8X6AoPpqy8QbctK5//83X4g3P5Ym2XQjU73BatBnt5eXJUsd+bS3LcyM4rnddhbtBluhGCG3S8ZgtGNQsyaS8unq94X4t3+DlydItuRWvh8AX+LTL2QCECACNVEwnGlJZKJtkolIh+dxEHt8PaNg+Y5kox1dq7fvTxnIC8g2L7niYY9MlTEdmb0VDGk/s6gMM/EBwcCRNxXBxfcFgOtr5PL53NU93PNS2MoywrTfOS1PFDju4Kx5me9/GysPeZISPHR5ltmiwoz/R+SxW1mVvdCfCfOi+IbI163VzZW5GzXT5/GuL2J7PRw+P/lg1Ld9ufPtSlqvZBi3HY7wnzsPbejrNgEAIyoZNy/GIh3WG0xFydYuFskHDdNA1jURY4f6RFCfmSpiOf4PK0fYEfuCiKndel28EX4DhCMZ7w6QiulTkd8cJaepdZ9WpmyhV7+GHE64fsL4tqCgyimGNRb5/OAVIy1hVUXhpqsR79w/wlbNLtByfb1/K8R9/+Sh1U/YfepMRrmbrJCM6IU3h9HyFbN1iqdJCQaqBay0XXVXRVYHn+8yVDHRVpdBw+P8+M8FAKspoVxQhAizHa9v3CmJhDc8PcFQFzxf4QnB+qYbZzvFas0kXyBxILaqDIglJHz08QjoWYrVqMVcyqBoOl1ZqPLK9h1emS5QNqcZfqrSwXJ+xnhhbeuJEdJUHxrsQBHznshziKYrCeF+MZEQqES6v1PjJ+4ZJREO8Z28/SxWTkKZwpb0/nVuukYmFOb9Up9y0eWJnP8WmwzcvZMnEQvzJa4v8yju23aKImi0aGLb8HGYKTfqTEfJ1m0wsRGSD+/J2VpQboSse5gMHh7i4XKNheTRsD8v18AOBosgeUyykcXGlxjOXs+wZTFFsOswWJaHj0kqd/mSEHf1SrdKXiuAH8n1MxXQe2trN2aUa2/viVE2XHX0JdvQneXm6iNF2+Phxy/n61qUs0/km0ZDGr75zGxFdo2a6fPuStJ780H1Dr+tK8EZxbKbEZL7Jo9t77ihPfanS4gsnlwB4at8Ah9vqwnQszL7hFCFNoWa63D+akRZ5tk/RlQrzhiWtty1XkPNszs5Xmcg2aLYb+290P7qwVMV0fWotSXQVQhDWNTLxML/z7CTDXTHeu2/gBpLg+w8M8p69mzspbAQ/ENJdIRl5S/JYQRLLPnl0jNmiwWhXlC+eWpZnuU3aWI4XcGmljq6pFOoWpuMxkW3Snwzz0LYeJrIN/tq7dnBuscqZhSrd8TD/9OmD5Os2L08XOT5TYrVm4QeCnkSYeFjj4kodBcGWngSqqrBSMZkvmW3ykqA3Eebiihzop6Mh4hGN7b0Jtvcl+NbFLItlg0RYpycRYbRLRgCdXZR17MePjPL4zl5Gu+L8y29f5cJSDcPxSYQ1FkoGtheQq5kkIjryp8ncyErLoW56jPfEyNZMXF/wvSs59gyl6U+FqZiyhw9tS00BEU3WJaH2mS8T1Sm1BLbnEWtn6DZttzP0j6oKY91RmWeqa5hewPrlNKSpjHbF+Ojhje35J3MNvn5hFU1R+ORDowwko+jtoZofBFRaLqYjB/glw+U3372Dc0s1AgHfvpgjFtbwA0FIizPaHaNnnRpx/VodC2k81ia7n12sslhuMZKJ8uzlHPePZTi7WCMR0fEC0cm8OzVfYaliAia7BpIcHM7wrj39OH7AWE+C568VsFyfiyt1mrbMNi42bH7/lVkEsGcwwcXlGp4viIVVdvQnmS+2KDZt4u3XLUSAiuw91C2ffLNBWJN15a7+JNWWg2J7BEJGjXhBQERX0FSdRFhD0zRUxScW1jBsj+5EmN5EmKWKyXLF5EunlzmypYsP3TeM5/mdfe1OIYCq6RAPvU1DMCHEn7f//IM3+hxvFTYjztpuADEZvHllRX5AcrK9lgcmw911VcH2BK4XMFUw0BWlIz9crVn0J0PUTA/X80mkIthuQF8qzNXVBqt1i0srNS6u1Hj33n5OzVeItb2qKy2XbL3MYtnE8XwOjKbJ1mx6kxGKTZuG5XF2scpD27opN6WlxGS+QVTXqJkeA+kIvhB86ugY+YaNrirsHUpjez498QiVltPxQAbpc/vyVJGZfJNC08IL4N27++iJR0hGdSIhja298iaZyjfbdkQB5xarrNRMZopN/qcP7duQjVJs2hybKTGciXUOxO/e08eXTi/xldPLXFqu8d79g4x0xZgrteiJh1mtWxwey3B2qdpuCAf4gQza3tar3NYO5x5+tFA2HL58ZhlVgU8cGSOkK4x2xcjXLfLNzYPt18MXMtderO/IKWB7gWTP+TCQCvOuvf28Ol0mHdV57/4BmrbPBw8Oda4nzw/4ytkV8g2LDxwY2pAB96OM3kSESZpEQuodW5HdLZ65lOX3Xpqh5QT89KEhPvPo1g7bpdCwadkeIU2hYfmkoyG29cV5dHsf491R/ujEIr4v+ND9Qzy+s5dnr2RpWh5Xsw10TZFNZ8en2GyrDxRps5WOhXhsZw//4fkZNFVh92CKdFRnOt/gaq4JbbJDVzzMSrXF+WU5bJLXh0I4pHJspkTDdmm0G8RrIakKoOsK8bCOCGShHA1pBAhenSkRBLJp/G+XqiRjIbrjIQ6NpTk5X6VpeWzri2NaPmcXq7QceT12xUPEQjq2H2D7PgoyC8xSAyqmSyaqE4/olJo2CxWTiCabBbqmEhWStRQgG+jb+5P89XftwAsE37mcY7na4sBIho8fHuUPXpmnJxG668yXe/jhwfoD3tpfxU2Th0LDZt9wmo8eHqXclNmZ1ZZkC+uayrNX8kznm2iqwnv29hMLaRwe62JbX5ylisn//dwUT+zs5dRClbrpcmgsw3v3Xx9cferoGIbjEdE1Ht4mD72xsLSW1VWVTEwWu9MFabP22eMLREMqnzw6dsugPaSqMpuj7bV9J3laIU3dNAd0IrvWhLf4jXftQAhwg4Arq/WOdRzATMHo5IL86+9cQyDrvPfs7ac7IRsq37mSJaIpENHxheDIeIYPHBzi0kqD71zOEdZVdE1tK/o1hBDcN5JmMt9EtIN6P/faAu/e00/PbSx2D46kObkgX/c7dm6uyPXW1e7VTQYuS6XrwwfD3bwbkIqEWGMT3W7tb9lyMC88QbBJgZyKXK/zbiM+4wMHBvneRB5dVfjQfQObPk5Vrl/n/iZTtfXe7DcrIddjrnxdmXZmqbr5i1uPTX6HnkSYsCYHq/3rPk/bDUhENFSVjcNvNsHN1C3TE2RikrU+2hUjEw+Rrdmcmi+jqdIuLqyprNYsDMtjsdpitWaysy9JOh4iGdU5t1RjW2+cnf0J8nU55Hh4WzcvTRX51sUsTz8wTCqic3apiun4DGei9CYj7B5Ism844Km9/dI3v32f5BsW5xerDGeiN9ybrh90Gj+KAueWqpxfqrF3KEnT8nn4JtuQfUPpNxQYv1wxabZJbtOF5r0h2F1gtWYRtJv1KxWT4zNl/slHDvDh+4f5/rU8z10t8O2LWf7eB/fwzKV8xx4JBRQ8XN/n1dkymqK0LZ/k+XbtbvMDQBEy01Cwybj69SGQjaB5TWWkK8bjO/r42JHRjkLlTuG8nhTlHn6ocLNS+W+8Zye6ovDM5RyrdYuPHx5pW4+3eGlSkmyf3N3HgZEMZxcqJCMax6ZLKIrCU/sGQIGIpvHKVJEr2TpTuSaaKmuKdCxEIAS5hrRmjoYUHF8jX7No+C7Vlo3t+W1igUs8LJW24bWhgUASewR4QlowmZ7PlZUaAkhHdRRFbTeEdenwYDi8OFmkULf5Jx89yNMPDMtaSFe5sFzn5x8e5337B/n8yQVAqtdbtrTvW6lYPLS9h8lcg9PzFSqGg6ZCJKQxlI6iKQqLpRYVw+EbF7M8vK2HR7f38vQDI8wWjc4QLKxpLJYl+e2zJxb4lSe28/EjY5SbDnXLo2l5UmV70563ayDJpZUaQSDYM5giEwtx32iGnkR4w37LfHFjK8SNoLWVHReWa+iqQiKiE9ZVTMenafskIjr7hlIsVy3KhsO/+OZVtvcn+cSRURYrLSzHZ/dAkj98dY7pQpMPHBhEUxX+y0uz0h7TF7w4WWRHf5KeZIT5cgtVVXhoWw8PbeshV7dI3IX99o8K1iJXHE+qWHxfcH6pyqn5CsWGjQJ85HWy0N4ILNfvkOBfnire0RDMXGfTVzFsgkCwUG7xlTPLvDRZQFVkjk/ZcKi0HPxAqoZWqyZV0+2omANBeyAgM/Y224NU5L/dbo8qtzxOzUn1u+0FhDSZc6SrCqs1i0wsxMn5CpWWy1zR4IldfW0Xmjrb++NUDJdUNPS6faKvnV9hpmDQn4rw0LZuLi3XuX8sc0fv2+3Ql4x0XMEe39HLxeUa72xbzjcsl+cmCsRCGk/t7Sesq/Qmw9RMmfNbbckBY9V0cfyAdCzEl04t8eWzy9Qtl7CmMp1vMtYdY7bYxHR8Gm1ntG29ca7lGohAYHoBddOVjjyBIB6WWbXJqI7jC1aqFqoiyZE/saOfI1t6SMdCPHMpy5XVOumYjqYqxMNam8Aj+yG/+e6d9CTC/NvvTfKtC1kChHQEEQEhXUUg18YgkPXJtp44hYbFUkUOvvqScv33haxVsjWTuunQtDz0NglRUyEe1hjtiuIL+dnbrrTaazlBZ2hzaDTD8blyZ9hm+4KZQotAyFnAzYrAAIHpBp28tZuRrVsIATXL5T89P0t/KsInHxxjMB3hJw8O8d0rOaqeL8kClsvLUyW89sB/qtBECOhNhNnSE5e//7qLfFtfgqcfGMb2Ag6OXD8zHx7v4v7RDP/uuSm8QLBYaTGYiqAosG84xRM7+/jDY/Mdy+JYWKPleHzjYplUVOfxnT14gWChbGDafju/TGX3QJKXJgtcWJZDui+eXGK8J46myutzZ1+CUwtVhLhOsnVlHDaxkEI0rBG0beIFck3IxHR64hGqpkMipNG0PWJhraOc0zS104fbOZCUeV4K5OsWC6UWthcwmWtgOj4Xlmv4QYCmXM9UhxvPnBuh2HR4ba7Mlt7Nzx9vxg7xz7nN2iSE+Mgbfe67RUjbuAHjB4JiQ/oZr4UJ+8H1F+348rDekwjTnQgznW+gqooMaWsvzNmaRaFuoSqgaSq+kLK+astts/gVwrpCvmGTrdkc3dpDfzLC5ZU6puOTrZls602gqXBotItHt6sslk3OLdXIRHViIZ1vXVglV7dZqZltRYNPbzLCdF4GRM6VDB7eJpssUlqs8uFDwx3rt1PzZZYqZjsfIMdyxexMZE+2p/b96Qjv2tVHKqrj+QFfOLnA964WcP0A03bRNJUTs2VydYvZokFIUzk4kpYS2tU6L04WqFseXz27wqeOjrFzIMkfvDrH1dUGSxWT+0YzZOJhPtIVY75koKkKmajOeG8Mxw9YrVnY7YwdX8BKzb4hkO8efrQxmWtQbw8epgpNDo6kqRrOhll9t4PjQyKsoCtyU0xE9HaRqBAPyYH21WyTo1u72dqb4K+9awc10+XEbJkzCxWObOmm0LRZLMufe3G5dtdDMNvzeXmqiKaqPLGz94duWPv4zl629MZJR/UNrdLeDIJA4AYBk7kmlhtQNmzOLdXY0V9m31CKXN3Ccn1WaxbJiE6l5dCVCBHSNEqGzf/6lQvya7Ew55er7OhLkImF8XywXQ8hVBzPJxpSefFakdWqSSqiQRDw6LZuvnslz1RO2pddXK4ylI5QNX0qhsxtKRuyodiVCOMLWVCFNAXLkQzQK9k6IkAyO3WViK6itFmg+4ZSCGAi3+woKUw3IIcc0mqK3NTXVBSGHaAr0JsM8ci2HmaKkrkUIOdxW3oS7BtKc3axzGSuiRNcP5TqqgJCYNo+TnvXtn257q01nzQFFJWODeR4T4Id/XHOLMhQ8SPjXbw6U2IwE6Gr7dl8Dz+aCKtKJ3x8bTW5OYy8YQecmC5yZr7C+aUqo11xxnvjKMAH7xtkodRqD84ULi7XWCi3GOmK0Z2I8Pw1acf3zOUccyWDgVSUwk2WGkOZGH//A/tkVuo61cyB4TQvNgts7Y3zwYODXMslWK62uLLawPUFyxXzliHYTz8wzGSuySePjtFyfHqTYb51cZW+ZGRDW8Zay+VKts623gRDmRsPG69Ol2jaHpqq8PjOfjmcDgR/9PI8DctjtDvGz7YVkO/Z28dcSR5EYyGVWEhjS2+cVDTENy6soiC4uiotUca643TFw/Qlw+Tr0jvcdD1SEZ3hdBTT8xnrjrG1N06x6bCjN8F0sYkfBLi+4MRc5bb5EldWm52/H5spbfq49Z/yZrOWorm5/cl6RDSVUPu/29nMGevYtfOFOr3J/lsesz4L5HaRWN+8uIrl+CiKwncu5zk4urEqaP1hJL1Jo8pe10Sxvc0nT+stLsr1za0a18Pb5Jd4cGs3mZhOzXR5cs/19+HweBeL5RZLFWlp9UaHAYGAoiEzDZYrcGK20rEr0VVFEu5iOmFdoW67eL4gCAKuFZr0xEIYtsdwxmO+aPDyTBHHkw3kke4YpabLfSNpmpbP04dHaNheOxRa8NOHhtl9UwPm6NZubM/nu1fyzBQNXposdrID/uzsMjMFg31DKd6xs69t+Sv3yqFMjAfvv/FznWoP3DdTk90OvYkwi5UWni/42JE33sCbzEm7pAfGu+5atfCDhufL887dsM2/cznLQsmg2HQIAsFcyWCsO87/9d0pAM4tVqRtcpuVLuC6rWH7Aq6ZHhPZOo/t6OP0QoWG5ZKr2Z21R3BjI+GNQkEO1FpBwEzR4NuXsxwczXB0a/ddWWBW7mzpu4cfEtxM3vnr/+0kg5kohiUtU6dyTT754Cin56sd14eueJi//4G9fOHUIr1xyfYOhFRkHN3azaWVGn96aplS06ZmuZiOT18yTCKik46E8HzB7oEUfhBwYraE5fkEQt5brh90nq9peQx3RYnoKrm6RbUVsFo3iYdUoiEFIXRM1+/sL7bnoivScWdnX4K5skGp6aKp4Pk+/88/PsPuwRSBEFzJNriy2mClarLadnNoWL60/Q+kbVTT9pjMN+hLRAhpkpiXEiFiYQ3HC1ipmJhuAIro5HZ+8dQCf+up3cTDsiHp+oI9A0nyDQtdVTi7WOXr51f4+JExfvL+Yc4v1dgzmOzcYxXDYbkqGf+ZWIhfvkmRv1kTF+RZ/U4Q0RUimkq2blJtuXTFwxzd2k1XIsRcMcTF5TqqorC1J0EyGuL8UhXXl1bZc6UmvYkwobTK89fyPHs1DwK+ezXPvqE05ZaD5cqGrOX6fH8iz2A6ykAqykr1+t7/g7atu1PMFJqUDKczhLwdLNcnEdKlJX9/gr//+fM4fsAHDw7y6nQRPxAkr+pvyxBszbp2pWqxrff19/j5koFhezy2vYfff3WW716Red6P7+yl1M6jdFyZWfreff1M5WXUQcOSA5F0TCcRVqm13QRuzv7aCHdKj/AFtJwAAoEVCFZrJvMlg71DSSwvYGtPnPOLVeqWy6szJYQQNCyPb1xcZSQTBRQe2tZNw/JIhGVf4/B4V0dZA3TOU6WmwzOXcnIPblhvegi2hobl8szlLJdW6pxdqvJPnj7I+aUq03l5j27pibN3KMVvPLmD1+bKPLa9h+9cyXNsusT79w/wnn0DhDWV//PZyTYh1yNn+xTa9UI0pLFrIMk7d/YSait/JvNNImGNaFij0LQxbJ+Rrij7hlJYbsB8qUW+YZGJh+hPRklGNOKRELm6RSSksFyVw6qBVBQrKsUhS+UW17INEhGN4zMlHC/gWxezbRWWYGd/nIbld9wzWo5PLKxiOT7nlipEdDnMNF2peouGNITwCQJoOj41s21n2L58vACals90wSAe1hnpilIzHRqWrItcU6qRDo9nuJytUzPl0HmtFw3SOm+5eqPVnt+OqdiMXXdkSzfVlstSpUWpafPVs8t8/rVFhjJRTNcj33BQ29l3W3vjREMqj2zv4Z9/oySzKV1BQ/No2h6llTqXlusc3daNEIIXJgv80bEFUhGdTz40Rnc8zN5BmXt3fqHSsb5+cnc/xabNviEZifAnry2wVLEY6Yry8SMjnF2o8q+emZBqZwGff22R+XIL0/EY747Rm4wwmI4xkIrwvYm8tD8X8lpcbNtTjiYiVEyXVFRHVxWWKq1OFrZAuojsH0wyUzIkgcsDoclenedDfzpCw/KwvYC67RNSoWnLrEwhFMq6iq4p6O38sYF0mFhEo+X6qIpCy5EqsDVxka7QVtApN1iDb4SW4+H5t19F3gyl4l+9ie/9C0EAWD6srru4b76ca4bNjB9wdFs3S7pGyXCIh1QsfFy5pnas2VQRtFVdQWcyrSAIXDnFzdZM9g6lZNh6EOCZPk3HwxcBT+2RKqn/8QvnmCu1iIe1Nrs/zJnFMoFQpIRfyMn4aFeUq9kGXhAwV2xxdEsPL00V+bffvUa2ZvHojm5+/pFt7OpP8pUzK+iagmF72K5URZhuQCIs8z2yNYsXJgt8+fQyj27vpScZ5plL2c5NH1IVwjps7ZMX6x8dX2Cp0uIzj2xhqiAVYyFNpWo4FJoOV7J1fF8GGNq+j+cLziyUqZou2Xag+YXlGsWmzVyxRTIq5d3rD17KJhY99/CjiZ0DSc4v1VAU2NGX4LPH5/neROENNZZsN2AwHaXp+FiORySkdlgmM8UW8bAsrp/aN0A8rPGnp5c6w9vdgyn6klKWnW9Ydx3SDTKD5NyizLGSiqCuN/BbXEe+YXF8psxod4wH7zCn4/XwdjSEXD/gD4/NU225HBxOsVRNM1NoMpCMoCiC//D8NAvlFnXTYaVmEQ/JEOQrK3VyNZOZgkHDckGBhunRtFxOzJWJaQrl1nW/77AKJT/gD4/Pd4qVdDTEU7q0LlkbNC1VbZaqkgmnyJkSpucjhE/BcEnHdAoNWbgpilRhhTSpULFc2cjOxEIkItK7eKrQJKKpCARNy79lCLH2v74TkIxK0sRaVs4fv7bISCbWlnULdFWu17sGEhybLXUk9l4A3XENgULTdlFVaYW4/ketrYOKArqi0JcMEwlpLFdNPndinj89vYwArqzUO5ZW8aHUvWyVH2E01ql71pqRG9Vv37qcRQiFsK6yWre5sFwlaBfF79s/yM6BJONdcb57Ncds0eDqaoOW7bO9L85i2aRkuER1lROzJdQ2q2pgXfNgo2toLbC8YrgUDYf7xzLs6E907quSYfMHr8zxxK5edrXD5+Nh/Yag9a+dX2nbIzcY647fMuj68pkljs2U0FSV3/7EfaRjUoVUa7kcmykR0TWGM9GO7YOAjr1StmbxrYtZehMhTs5XGe+O8RP7B3h4aw/fupRF11Qur9RZKBm8OFmUyn5fKroM28V2PVZVhcl8k0RYJ6RrmJ7fHvgLYmGd5WqVcssloqs4bZvr22VWARjrBjUV486snU1rY1W0697Z959fqTKZa6IqCtP55h3tTZlNciZS0etfv90+fX6p1l7fBCfnNh/2rcd8qUlf+lb23bnlSufv1h124lt3+LjoJgqUL55YINeQ7/t/fmGa3/rQPgAe3dHL4S1dGI7HM5eyGM7dK1KuE+oEU3kDXZWhzGtwfUnmcTyHVyYLnWFFRAfL8Vl1PHJ1GXCuqgoKUgFRarqs1iw0RYbH9yYjvP/AIKPdUl3/vgODnQGYaNuhur7MktozkOLkXLUT+F1sWtRaHtfaRKU/PlFhMt/kI4eHOTCSRkGqGtfjxGyJ5ycK6JrK0w+M3DWRaL7c6tiZlg37DQ3SPD/gGxeyBEKQrVk/UhnC+YbFF08tIYRU4N6ugSuE4ORcmW9dynJpuUZ/KsJUwcBu51CbboPpQpOiYdOyPNxAnmOPz5ZRFYF109LhC7Acj29fytJq2yG+HVorSceQCARM55tt8phyg31my/GYKRjsGUxtaCN17yT4o4WbVb6vzpRIRzRMVxLodFXhmUurKKpCXyLMlu4Yn39tgaWqSXc8TLFucXK+0nFoODFb5uBImsd39mK6HnOlFl4QUGzaKIrC1p4YiYi0ml2t2eQbDm1XZyAg32bkCyQzPKJDpWndsJ7X/IB4SOHIlm4Wyia5uoXnCzwh8ADLcKmZ1c616AawUnNYqTkslFukY2ECPyDftKm0bGnH7/pkYjqG7dGyZWZ10/akC07VRCDtAfuSEVqObEbHwjphx0NTVFIRnTMLVY7PBnx/osi+4RSFusxlPLdUxXUDCpZLRNeYL7WYyDa4f0xmr64N1j0/4E9OLmI6PlezDT51dOyuPstzi+U7elwgZN6xG0irYssLmCo0GfViqMghWSoS4uxSlV99Yjsfum+Qb57P0XI9Kk2HU4tS6bxGHl9rYqZjOr3xMI4fkIjqdMfCpKIhtvclEEgV39qAbMPXFQhqpiutN9u1ren4rNRMxrpjb5uN4Ga4lmvw+y9LpdveoRQ///AWLq7UqLZcHt3Rc0u99qXTS3z13AoguLQcZa5oUDVl5vfatThWvTsi8Z1CURR+5ug4Tccj/Tpk2nzD4stnljvWupM5A9vz+c6VPJ95ZAuD6Yi8nwJBw3Q4vVBluWZhtmMsBFA13974E28dC6thy2zfka4YfUlp2btaN5kvtoc6sRANy2OxLHOWtvUm+P5EnpCqcmG5RncizJ+8tsAHDw7xyaNjpKIh3rd/kLOLVfYMprjUtgcceosHs5WWix/IAflCucVwJsZZpYquKvQmw1QMh6+dX8UPBEtVi19/cge//uSOzvd/7fwKCpI8/ui2Hl6eLmFYHo4v+yGG7THWE2drb4K//dnTGLZHSNfY0Ren0JDuZJbnk61baCqUDVeKR4QgEw0hwipL5RbnTZulExaWJ/MhG5aLH0B3TCMZ1Sk0LVZrgv/1yxdklImAkKYQC2tMZJvYbptM3F63o20rQ5kh63WGLC0nIB3VCWkqviLd2tbcItfvQgGSQO+YHg2r2RGxwPWz5L97fhYhNjNqv7UOkarG2KbWl8mIztMPjNC0Pf63r14kW7dwPelw5AUC15Nr3HBXjLlCi/OLNT53YpHpQoOm5RPSFeJhleeu5ig0HZ67lufff+YoyZjO770ww2tzZXwBz1/LsXswzWgmxsvTRQpNm2hIJRUJk4mFeGhbDwtlg/PLdWzXp2w4NG2Hf/OsIfsBbWJFIASNdhSRAKYLBr2pKA9v7+bkbAWv7RqgawqqorZtfMFyPSZWA3RNEthvdiqxfcGllRpuoBDRpLsSioLlBvI6rZhobfW4FwiZ3ea5nc9QcXzmSy0iIRXT9ik0LB7f2ce1bB1PwH2jaSothz87W5E2jMh9XlUUNFV0bDE3+lwdX5Jsf+6RLZt86m/ODvH5N/q9bzVuFyQON745N79Rli8/hKurjU5OhOn4PLqjj4lsjULTvZ5NsMY2uOn5pCxdYSovczXuH8tQaNjMFJptNZlNXyLCq9MlcnWpaHC9ANvxqRiyaawrCr4QdCXCbO2JsX84RbZhs1I1sRyf331xhq9fWOHqagPHF+TOrpKIhNg/lOGFa3mqpsuegUQnw6MnEabQsCg0bJy2BUosrLNSa1Fp2VQMp3NAj4c1epIhhtIxKobDa7MlLC/gd569xnhPjEvLdQQyFLVueZLJCuiKlFsqQha/xUa7WZWUG4wfCIqGg+muTdOvv/t18/UntPfwo4O+ZITfeNf1zXih1HrDh1tP3BjYa/s+UU0hCGlo7QFHMiL4+vkVJnMNFsomhYbNI9t7iLatrn724TeenbTW/FQU6H4Lgmqfn5CB9lP5Jjv6Ej+04bevtK2XoiGVwXSE3/7EIf7w1XlmiwbnF2tM5ZuUmjZV0wGhUDKctjewYL4kQ2rXYHuS4eILuJlr6AQQRpCrWe2MHAU/EHz3SpbVmnnLdbPGNlG4MbvGMD0cXSpe177uBkFHIh14AXXT6Wy8igKuJi1Z17/WNazFNkliAFRbdkc57Hp+h9kukN9/dbXOv6sYNOzr65iiSIvdxTYzVfgBYU0+XxBAKKRit/MiexJhMvEwnh9IIoKmcCVbx2tbM5b9QLJHay0qLYfPtNfy4cyNWU/38OMD6Ywi8+LiIY2mt8ZYtrm4XMPxff7w1Tlarqwf+lMR/CDgIw+MoqoKf3hsnpenipiuz6WVOl88vcTffM+u2/7M5arJQls5e36xymiXbDo9uaePU/MVjs+USUVDPD9RIB0N3TBUW0NPe00L6yqJyK2Nh1zdptJy0VWFy6uNzrArHtHojoeotNwbGMuaqvDRw6NMFZpcXK5xZbVOvmHRl4gQC+uAgqapfPjQiDwwllq8vFSl5fh4gbyfJvNNDgyn2NKToG65IAS9SamqXKy0yDVsWq7PUqmF40uL1oiu0RULs1K1+IdfvsCnHx7nN961c8P3bV3MG3cq9phcqfHk3uFbvr6W4/R6qDSl2jpA2mpshpBKZ/+MhzduBJ2YKd7Rz2ysyx6r3uZnrsdSpcnR7bdaJ9beQCNkvYXi7bBSMehP30oO+eqFlc7fb55zKSgkIyESER3DubPfbTMEGzz/2i7jC1ibk2oKuELBF8ENCjyZAQmpqEZE1yg0PDwhSLfZ5LNFo6OIPDNf5u99/iyWKxmSfe3w7oiucWAkzacfGadiOByfK/OHx+dlcHxUJxAw3BXDDyQR5IMHrysd83WLZ6/ksVyfK6t1lqsm949mblHsNW2Pl6eKpKMhHtvRs+FetLU3zmtzkpDyelaIpabNl04voyjwiQfHOtkImqqQicnQ8O7Ej5YV8GK5Je34gflS67ZDsGMzZf7TC9Os1kyyNYvLqzJzdK3WUBV5zQgUguC6PdTtmPTlltshcb6dCCkg2vWWqshm2M35iP/wSxdZrZnsH07zTz9y8O19QffwtsP1AtavsrYnqAVycXMD8BQhcx8Vec6/mm1wNdug0LBRFOhJRHA96e5xebXO0a3dPHMp27E27omHadkeri8oNCzyTZvAl8rHkKYSCak4foAQ0p3HWreIBgJmihsrhyO6hqpAIqJx/0iay6sNzHXf6wVymOMi0Lmujs43HLwgwLA9XB8sJ0BRIRUN0XJk/nuHQOcJik0HvR29UTNdDgylcQNBveVweqGCEwhCqoqmqTRsD4RgvmRQNmyiurQWjYY1XCFIRnRiIWnZPJiO8Py1AqfnK+waSPL0AyMEQn4e8nO4u8wUgOXS68swFeRarKHgBgE+cvg2X2wxVzJomB4qoGkOThBwebVORFfpTYUZUqOcWiiTq5sEQcCuwRT3j3aRb1hoqspkvsm2/gQKCn/jPTv4/kSBxYpJueVQaNicXZC2gL/1oX1tRYjg+9cKlJoO797Tz6szJabzTbb1xfn4ETkA/PzJRcqGw2hX7E31AWaLBt+4sEomFuJTR8c2HcR5bSXiQFpGpRhte8NS0+affe0y2brJkXGpjr15CFZo2B23hWzNZrnSwr2phriwXGeu2GRb31sf66CqyusOwKA9rBAyJ1xTFdQ2CdQzXf7Jn1/C9wNcP8DxA0AlVzc7lp0/KBSaDobtUWyG+dzJBSqGi+V6nFsy6UtGqLUctvbGaDkeT+7u5XOvLXFpucpK1cIXgkREpy9ZQddUjmzp4uBIpqMM2zOYpGw49N7GLv1ukYqG+Kvv2MZXzi4z3hNn10CSZERnIBXBcDy+dTFLy/GwXEn2bdoyb0pTlc6wN6prjPfE2d6XoDsRomH70mpeiM7f/8U3rxAL6+3BlRyOXF6psRa5VGw6dMV1HE/m/KmKiusJrrTrkjWrSTcQWO0hJwqoKCyqcj3ayOHY9gWKK0nOG/Xh17A+AlggFW2K2u7xKNcHZ5tho7LI9cEPvA3/bTN0x0P82jt3vO7jkhGdvYNJvnxmGT9oC2Pa/xbSVIoNi4lcg4iuUjc9zDa50/YE1ZZLy5UOdVXD5XeevcbPPjLOdMHAbJP/ioaHuVSjbrqs1uV63bQDFFy+czkve/mBYDAZYSLfIB0LUTEcCk0X3w/IxEPcN5pmIitJcGv9MV/A1dU6R8a6OLtYwXTlZ9kdj1A2HGlVGkClfWbTCG5xMolotKOfPFDkWVMRSpsk0iZftcVCN/Nv1w8pnSCgWnNwA0j6PhdXKqxUbPwg4J9/4wrxiI7vBx0yvC/Av519SRsq0Je8fb/1zdghfl4I8bOKolzgxmtS9iqFOPRGn/tuIe6i3b5mRbWGaPsdqLaczlDGE9JiUNrOKK8r2w1psjhQFIVyyyHftgyzHBm0bjk+C5UWhYZ13aYGQBF0x0JYvsD1pKLK910ur3pcyzURIiAeCTGdb5CIhUhG9I78zwtgMtfkymqjPVAS1C2Pv/KO7Qymo/SlwvytPzpNy5WUKRWBrkLFcKkoDiFdIxVpN22jIXRFJVsz+fzJRbxAFqO268uhnS8vYK+dn7H+4s3EQrRcD9WVSozlmgmKzMtRFHmwFwjETbuh6QZ3JIe+hx8tCCF4ZbpE9Q7tnTbDLZuoorClJy49dZs2LcfnxGyZ6XwTRZFsiwfHM+iaVIkpCnedTbCG3YMpPvOoDHXuT21c5JiOz8WVGsOZKGPdt2/y9CUjLFVMEhHtlkJ6utDk0kqdA8PpH3h2Wcmw6UtGaNpeR/FRs1w0VeHSSh0hJJPID8C0HTyhdDy9N8Ltbm83gGhIoTseQSgK490xTs9XO2yuiAY352Bqa8Ot9v+rqmQUrv/6+rVJIPNa1sbvQkhmfjKiUrNufXERXcFqP77lBnjB9bXO8UH1bywCnADKpt/5PdeGdLPr8n3k61TwfUEkrNITD1FreXhBgCIE/hobNRB87rUFFBR6E5L9qCAwHJewrlNu2vz+q3NoinJL1tM9/Phg/VXp+T49yQi1thVBy/E5v1ij0nJxvIBERMf2AvpSkQ4L9lNHx0hFNeqmPOCMZG6vGF0st3jhWoFC0yKsaXhBwO++MMPW3jjzJYO65bFcNdnWq5CtWfzR8QWe3N3Hzv5ke4+XP/fxnb2M98RJx0IbWrR+8ugo1ZZDVzzEWLd8TQulFifmyhwYSbNrIHVDMDDI5vl4T5xyU7Kx+5MRHC9gIBnlvtFM53FhXeUzj26h0LTpSYTJVU0WKy0qLRfbC+hu30+OL6i2HMIapCI6814gB/FCyGZARGdnf5KQpnB5pY7l+jxzObfpEGz9FmXdYf8pFtm4IL/TBtYDW9J853IWXVM4OLq5ynn9/lkxbIa7b91b/Dusm531DFvnzl6n62z83Nv7ksCdDd/WcOcD/41/Zkzd/PcM6ypbe6I4d6jEeysgMwgUNhq5yX+TjVDXFwxnorx//yDhkEY8rPE7z17j0kqNuaJBy5FKoWQkxLbeOIbjMZyJ0Z+KMJiOkozofPNitmOxrikKH7pvCNcPiIY09g3daONzcr7SVtQ36Y6HGe2KsW84zYHh69eZ5wd8+fQSK1WTsK4x0hXt5Ayvx2A6yl9vk6Jez056pmh08sNmCk16EtJOVVEUPv3IFnJ167aWXj+M2DOYYiovGcn7hje2S/L8gIbl8fxEjoblslo15VlLvcnmRcgzaUjb3E5VgRsU59eVMm8vfAWiukIiEmJrb5KDI+kbMizWLN8Alipvj6LhHv5i4QW3Np/cNslMsK7ubw9obE9mogRCoAhQFYEnZD1faTl88dRi5wzRnQizrU+6ePiu31YLy38sNBxGMlHuG8lQbNrULZe66XSUkTerA9ZDU+X9kavZFJq2zJnZ4PcIBCTCOiLwabT3ME2BuuUDCnq76Re0yX+OL7jpVgUh2s1Q2YT7yIOjzBUM/vurc1ieJD4Izads2OzokxbM8ZA8t0IIx/PZ3ptkKB2l5fj83MPjPLq9l0RE58tnljFsqer1/ICwrvKxI6PMlQzuW3ff3Slad9BIHEqFGcxEmcg1O8QfN4DKOnKMQA7EYyEZX9By5J7dFQ8R0TUysTCxsM47dvQykI7wey/Nci3bIBrSeGr/AJ9+aAt7hlKcWayhqSqvzVZwPJ9i02G0O8b3r+VBSHeN+VILVVE4NlNisSwJgpOXm9w/2sXO/oR0IwFJfLoJ+YZFOhoiGtJ47mqeSys1HtzazTvaGUzrcXW1juMFFBo22Zp1gzXeenz9wiozBYN0LMQvP7aVnzk6xpmFKi3Ho9CooCoKubrFp46OYbk+Xz23QtPy+Kn7h/no4VGydZNi06LQtNmIF95yA750epn/4QN7X/ezerswmI7y9APDPHNJpeX4bOmNc36hyqVsnRcni6iAt5bvJQRVw/2BDsDWYLsBXTGdyVwT1w+othwiusZqtYXhBJQMlwe3ZDg5V8F2ZV6W3/49AiGV9UuVFoWGPFus2cLrmrohGfDN4uBohkhI45nLWb55YZWPHRmlOxHm4nKNs4tVgkDw6I4eBtJRfD/gH37pAiNdMT798DjZus2B4VRH/TZdaHJyrsLTD4xQt1y+dyVPtuZKYrItrebCqnRkWF9XCMC0fUK6KgcjApx2trovZIa50FXCmkpLyAF4ICBQBK7HhtfwGiwv6OS83Q7r+z+eAHyZ26VxY5/nTnHDvrQBQur1wdAauuM6W+4wy/bSaqNDmF5/WjEcmZ9lOj6Wq9yS4difipCtW7QcOeAZSIU5Pl3uDMpoP188rN6yXzVsH/D5/rUCI90xkmGNWktaThqW2yFxeF7A8ZlKu+5XSUZkflut/br+6Pgctiek612bbCKz/G60zb757dMUuS7kGw5+e29HCBQUTMe/gWguhNyDvQ2eR1fknuv7Ar8dH+J5Unns+ALHs9A1VfbjhNxT75TukY5qPLH71rX9hp9/h8+1Ef5u+8+ffhPP8ZbgThdbBTpyv4YdEFYhEQ61AxvlwhbWwHRlIJ7tBcTCamdYo3BrI1ZTZeZAribD/Bqey+kFyeqVdonyQ7+WrdNqs36gHegWQCSsEQbKTZ9UNIRhuTTt6wyKhu3z7NW8XBw1lVREpWEH9KfC7OhPsFI1URSB1j44DaWjBELwD794gULdBiGn0bqmUGtJi5W18Oz+dITuWJjhrhiLlRYIwWS+yZaeKMWGQ6sdoqi0R/NCBJ1iNazCQDrK4fEMx2YrJCNyaXNcn8srdRIRDd8PaDoBG532BbT9Vn/0sO0ffP0H/RJ+6BAEgucm8kzmm5SbNqttG7u3qg6K6gqjXTE+fGiYZy7nODZTwnAk4yIWktlPYz0JFsstvnxmGQX41ENjt2TZ3Clez3/8mctZZgoGuqrwq+/cTuI2Yb3v2dvP7sFkR6W5Ht++lMV2AxbLLXYN3F6x8Xbjke29GLbPQDrKQ1u7MWyPbb1xvl8sMJyJUjZkjl+hsWZtKgirEAlJNmYQvP7mpCKHV2tMorrlkYmFmS8asvhsP05TVRT/RsaQoihS4eBLmbmmyq85vkCsq15SEY1quyt9S/tUSOaO4zuYN52RHF+0rROFZLGsW7/bddgtuPkAvFG71vUEuiYVYEtVORxWFXCFVDnkyg65moWKwkA6TDSkUjbsTrjpaFeIbf3JjqT85qyne/jhRyIERvt6u92ut37NFMBAKkpEUyk1LWotl1hYpS8ZZTCtdSzQmuvUNdGQxkcPj7FvKI3ri1tszlw/IN+wGWhb6rw8VWS60OTETIlMLMyF5SqPbe+laXukojqqovDwth6e3N3HV8+tcHmlxqvTRQ6NdfHw9h4+eHCIhuXy7JUchYbNA2NdpGMhXpkusbUnznv3D6AoCrsGUvzjpw8iEB1ywvev5Sk1ZVbX7Wz9nn5ghKVKS2Z+KXKgnIzo2J7PZK7JUCZKw/IQQhDRVJJRvW0rEtCjhHG8oD0Q8/GDACOis1xtYbs+iqp0aqRUNISqIOsjRbKfn9h1+wL6brGtf+NDVX8izASvn32VrzvSalsolJu3Nnk2grvZorwZe+EmrD+4xe/QXmjP0MaEjpZ9Z695Pe7UMUDfxC72dgNKw/aYKrZouW9VpfL6WPtJChDRFNlMbf+Kugp102G2KDMsP3J4lI88MELZcPhXz0xQatpMZBsoSKb52h7VtD2iIY3FSot37u7j+EyJ/lSEx3f2EtFVyTgPAs4tVkm2B+rThSbv2tPPviG5RmxtB6XvHkjRkwzTEw/z/gODNwwhv3Upy/mlGqs1k4e29dw2k/ROs1R39Se5uCztp9eIQLbn8/2JAkLI+ulucrV+GJCKhvi5hze3YBFC8NkTCzIP0fLY1psgV7OomPLcpXG93lCA7oROTyLMcsXC8oJb2NAR7bptP7x1dffrwQ+g5QhCWkDL8W7JRwnrKp9+ZJxj0yU+eJt8xXv40YG6wTq7RjKDmwZSCpxbqks1cnt41BULsbNtd5etO+iq2hmUWm7AUDpCSNfaTa/rKisB6JrCB+8bYrQrxlfPLvG9qwVULcC/TYdTQTrtiCDAdKRDxUZKBYE8Azi+h6pAJqISj+iSve8FKEAmrstBloB0VJdDvpvuNukgEkJRFfYNp6k0HZIRna54mNW6hefI4dXewTQ7+hMcGuvi+xM57IZNy/E4NlPmwHCKh7b38Mmj4wyno7wwWaBheTQsj4lcg10Dyc76OtYtiQ+bKZVuhztpJuaajmx0slk6juyHdcXDjHXH+OB9w8wUmnzrYpZ83eITR0b4k5NL1EyXK6ty8NWdkBaIbhCQrVo8czmLF0iHpELTYltvnEAa17NnMMV8qUXLlqQPx/NJREKMdsfY0Z/g3353ku54mG9fyvK3ntrFTx8aYSLXuIEoBdLp5PhsmWRE5xcf28K5pSpCyPiDjYZgB0cyLJRbdMVDDHdt3g+otQ+STcsjQPDO3f28s53VU2lNMNod8BtPbufASIbJXIMrK3UWKy2atsffee9uDo11YzoBL1wrEOhBRwGyHsuVO8tuezuxayDF1t4EE9kGvhDUDIfL2Tq6Kpv7ilAIh1USYYVs/e7rvLcDPjK7NxpWpRhAVRhIhTEcD1WRe5auqrw0VaRmOqiKdBIKaQpD6Si/8sR2Lq/IvLtw+34LArHhGvhW4dJKTfYKKtLhaKQrhi8Ey1UTFem+9e7dffzNz55hMttgIivzoXRVZnR9+P5hXpsr88fHF/CDgIsrNXb2JxnORKm0HGl7p2skI5rMYg78zuBKQfZlBTIn0Vv39bXhk+kGaIpCOiHPYK4vSEV0WraH58kcdU+sWdbdmje8pkS6HW4mQIN8nrfrXVc2aFa6vqx3f/rQyI2vzfM5t1ijOx7qWJJ3x8NobbXaWlbV2pZUMz1iYY1MTM4a1hBW4ciWLk7OVVmtSuesiXyDminzs0Lt50tG/v/s/XeYZOl934d+3hMrh8558szOzIbZHIAFiEwQJEBQgiBSlxQpS6IsK9mSbd3ra9myfX1NS4+vLPmxrGDJCkwgSIggQEQCWMRNszu7Ozs5dg7VlatOPu/94z1V093TPdO7OxsA7/d59pne7gqnzjn1ht/vG3QmyxlqHe8mEQ+oOcvWNbK2QRi7qskY3/g4Te8G3dELYiaKGWYG05xdarHe8eh4MbquESX1Nj+Sifp38/uM5C1afkQcSdKWhkAkDk3qAsco0lMobyal9JqQ29WEU6bOnoE0L826xKgezUw5xbV1lVkdxBDH8ab18G5h6Orc3fIxr+H1NkFKuZT8e10IMQY8gvp8z0kpl1/v674e7GZ71Dv5sVQXOWUq2x4/UB3YMIYoVj+z4bGaUAN8b9NhaAKExAtVAfP+6RJR4kscyaSbmqgJTF0ghMoy8kNJpaN8U3UBpqGsQtpeyEg+xeRUmgPDOV6crfHcBmucMIbVlkd6tY0XxUqRIKDpBHzvQgVNqI3jQt1FCMF/96UzeGFErePjJ8ViSwcvimm31Jeh5UbkbZ0gVt3btbZHlHT7dSFoezFHxvOcXmggknqrTLrEvfk5bRkcmyhyYaVDHKvRydB1ur6fWEqqwfJW12P13WLuTwzmal1enm/gBhErLY89Q1lOXqtxp/jVQSSZLKd55mqVvKWjJR7J98+UGM2n2DecY2Yww4uzdaJkhl1quK+7CXYnIYTYUS02lLVZqDu3ley+Feh4EQdGcjwwU0bTBH94apGVpotlaAxkLUppgzOLzU3sEE0TeNEN+ftGi7CN6E1cGkqFIQRJWCZ4oUssb8iljUThtXHCFCgLQkOAZQp0oSWq2hsEhR7zsrGl6qlvYLTEqPf1t7kxFUNKHX0gotvK7nufaeMxmoZI1F03HhdK0JO5oYc4YWPlUxG2qRH7kjCKWai5IOizigxNcGK6zK//1EE6Xshstcuj+wZvcVTv4p0Iy9D6GVK3cneTqHvYNgVjxTQzgxmebzo4oSSSEj+KmRnQ+V8+c4K//+VXWa67vLxQ53eevc6xiSLHJ4romuDIWIGOF/IvvnuFpy6sce90kf/sI0f4wosLLNQcRvIqY2i6nE6yY2K6vks+ZXBqrs57Dw3x2YemuV7tMjOYIW8bTJczXFppE0nFFpuvKcXji7N1Tl6r8fSVdb57YY0jo3lyKZNXFho8vG+gHw6e3mDL54cxY4UU622foZzV32BuhRtEvDhbp5RRlnX1boCZdGX+zQ+v8dzVKlnb4PH9A2Qsg4xlcK3aJWXqtFwVBl1LFGj5tAExjOVTrDRdChmTtKkzlreV7Yem0XJDTs3V0TXBiakiv/bEvjd+8Tdgobq9GsLcpeVfzVG2kppQdq27QbW9/eNsc3fvmbUNmp5iMt0u6L2HuZrLvXtv/v1i/bVbDu7W5WljxtlGeLdQef3JmRVOzdZusup4s+EmirqetXivMBDGUHdUUeLyWpsrax2+cWaZ339hgdn1Lk4YKbuZKCZjqaDqUsbi6FiBcystwkjyhRcWODpeIJcy+MCREfYPZ7l7ssjJ6zXma12srsaVtQ77ExsqU9fYO5hVdj+DWSxDw9Q13OBmrWDTCTESW3RLV6zSHi6vtVmqO9ybNMJ3i3LW4tfes/l7dnqhwZnFJqDsTB7aO/C6zvPbha+eXub8cpP3HBza9ti9UIW+Vzs+hgaDOYuDI3kur7VBeiqXME4KT8n+876pMk1nDbft38SGdaPd7YPfLLhBzIGRDP/umVk+UHP44NGRvkXTp05M8qkTk2/j0b2LO4mtri5wc8GrT2ZL1vltN0QTgnLWxI/g/pkyXiTp+OvMVjsI0avNRLw038DStb4NoIiVskoT6nvze8/PKTtXLyBt6viRJEDuqAaTKCsuL5I0PG9TEVFD1XHiWFkM9wq2sYSmFyO0GC+K+2v3aifsN+MqbX+HYq6g5YUcGMoxmrf5P566QsrUKKVNJoppmm7AnsEM/9GTe3n6yjrfPFvFMnTSlk7Xj3CCiG4QMVZIM1lKc3mtzYuzdUApmR6YKauaVaTy33//hQXmql0e2lvmyUPDr/Fq3h4bP2NvfWok5I2UIfAilSt/11ie/+8v3EO1E7B3UGXKrrY8GqcCjk8Uee5alZWmy4WVNo/sGWCu2mWl4dLyAs4sNrm42sYLIurdgIf2lvnpu8copE0cPyaMYr5+ZoWUqfPZh6cpps1+rMCH7hrdtIfeO5TdVrW1nDRa215I24u4Z7LIq4tN7p0q3vRYgJnBDL/+/u1dADbiI8dGOTVbZ/9wblMG2VDO5u9/6jhxfGPtO1FKU2l7dLyQ9baKJTGSet7eoSz3ThY4NVfj9EJr0x7yoT13loz1emHqGgL4x9+8SM7W+dBdoyw2HKI4Jm8bTJQyhFHMbz4793Yfah8xKsbGNgSG0IhkTCFtcLXSoZyxEju3gHo3wPFCspaGZRoUUiaDWZPjEwVFDMpafPGlRa6stXl03yCPH7hz+/Bvn1/l1YUGD8yUOTZeYL7mMJyz+05EewezPDRT5pmr6/zus3NcWmmz3nJZ7/gUUgYLNQchVKbY01fXaTkhkYxZbLhYhiAIJQM5i7vGCjx5aIgzSw1eXVDrK00oEo2Uqi7tBjGGtpk8t7Uv6wQRdTfE0JVCyQ0iDF2Q0ZRCbGYgS7Wr7ChrnaBfExLbvNZrwZtB7kmbyhLdDaJEXaXgRTHNbezbf3CpwktzirT1S4+ajBZS/PLje3j2aoVaNyRj6XS8kMWG1ydG24ZQTaYNai7L0Pn5+yd59loNNA1DqHVUx4sII9WA1DXYM5RFwA3ryW2wUHdpugFSStwwQmwoxG2sT2VtA01T1tpDOQtdk6w0fdxgM+Fcoq7/xt/1lLWmLkiZGk03otEMNjU53ahn3y3QxI1GoCbo3ytbUUjp1Ds+vVPd8WOevlZDCEHKULaRW5WKu0XW0m4iZm3FG1GCASCE+IvA3wO+hTrP/0QI8d9JKf/VG33t13AMt32MmRRCe11OhMTb5sJvJMfqGnS9G4oCTShrGEvXKKY07hrPc89UidPzDTreZv/bG6ozLSnKK9suzdAYyJqYuqDphDSdgFLaZLyQJ58ysHvNucQ3NYqU5P5qtYulqZsokhCHihlgGhrzdYc4+cL0FGG9rutkOU0URVQ7Id6GW6njRYzkdSodD5Es2pTftk46DHnqQoU4Vh3/vt/1hs/nhSEvzdWodwO8SCYMhRjTEPgh/QC7nSBRA8O7+MnAQNai44W8OFtjejBDsxvcsQYYKLbAF08t0nADXF9NuMP5FF0v4mOPj3NiugSoEMWlhoOU0HFDnr9W7Td17iQ+emyMM0sNxovpW6rAboefv3+S1ZbLSP7OS+tfC1abLn/8yhLVjs/zV2t89O5R3GQVNFFK87Hjo/zu87ObJM5KBi/Z6JC1U9u796wQFZC71cIwjm88148gpctNjKH+8xNKiRtvXxnd+lulPBNYyP6k3vJu9qTeKrO/HVNJQN+fuMd8ylqCgVyK9bZHuCUcxo+2Gw8lectAF4K0oVHv+rSDzZ23gazJLz++pz+R3z9TvvWBvYt3JBrOjfthB6e4PrK2TjFj8fj+QQwtsejcIEm0DI0vnFqknLZpOREnZ+u8OFsnben86hP7+MVHZ2i5Af/wa+f5+pkVojim1vUVs3VdNWG+eXaF1ZbHiZkSTx4cxg0imk5AMWOxbyiLn6gXe2zaMIp53+Fh2l7I5dU2k+U07z+sNuYTpTTztS6rLbW5nxnMkMNkopTaVCTv4csvL3J2qcmJ6RJ/7rEZSmmrPz53vZA/eHGBlKExXkrxz566QscLuXeqxC8+OoMbREwPZHhxtsZ3L6xyZqlFlIT+jhRSXFptM5QxWbB0LF1jspTm6HiBkbzF6cUmpiYYKaR4MjNMOWPy6Qem+P7FClcrHc4vt6g7KitVIKg7IVcrHU7MlN7w9e+hlN2+UVPYoYGzFX98arFPLvrK6SV+6bG9t31Oz35yK5Zru2uiRTLe8PPutiBusD0TeOIWjOod3393QjAWah1mhm+2iDQNE3ZQ2f2rH15jrurcMWvu3arfJWrf0tvWyi3zXNOL0LSAphvwr3+gcjkLaYOcZSCkytrVBBRTJkfG8jxxaAjL1HhhtkYYx1xYaXH/dIlvnllB0wRZW+fPPjLN9fUOP7q8znrbxzY0rlY6fPHUIscmCnzs+Fh/LXPyepXvnFsjnzb4s4/MkEvUm0fH8vz+yXkqLY8/emmRmcEMP3vvBI1uwOeem+P0YoNyxuK/+sTRmwhIc9Uu3zy7wmDO5mfuHttWKeb4Eb93co65apcgsQ5rbpVsv0MxX+vSckP2DmT42qvLLNYdrq13tm2CpUydD941wuefnyeMlTp3MGdxbkWSsnRMXaOeVAViCU035IXZOvXuzjZTu/ya3FH03FFMXbBc98inY84ttxgrpt5dq/yEYrtyy05jXj5l0OyGxIAQKgMliiVfeHGBQtpktqoY8CIhHJuaRill4IQSJ4iS2o5MMvGU+rXa9kEoxUIhlWSFcKNBc6vxd+swbxmqRmNagjCStDew5iX0v4M99L5jQSQRvaDiBEZSf1EEPo1Kx6Pth1Q7Ll4QU0ibTJUzjOZtihmD56/V+dxz89S6qgg5VU6TSylyw2Qpw3rH48Jyk+F8CsvQ8MOYD941QtePODyax0iICnMJsebSavtNaYJtRYxy88hYJsWUQbWrMqIf3FPmzFKLH11eT2IzJIYmGM2nKKZNimmD5YZDNmXw5KFBWt2QjKmxUu8yLwX1rhrn9w5mMXSN8WJ6U+bScMHG0rWbMrV3u4d+76EhhKgwVlDKuQ8dHb0jtvLjxTTj92y/xrK3KOeztsFnH57m2atVylmLf/ytizx3tYppCB7ZO4ChacxV3Zvu0x7h7O1Gpe3xW89c59yyUkf96hN7+djdY/zOc7OcWWrRDWIOj+Vek2XZWwVdCB7fP8hC3eHyWlsJGqTklYU6zW6Am5z0hheRNkNsQ+d//ONzPLinzErLY7w0xdmlJi0n4JWFOo8fGOT0QoPvXaywZzDDx+8e61ulvpZ6k5SSl+YSVeJ8g//4pw70FUY97B3KMlFOMXeySxBL1js++wYzigAQSdbaHuW0yWQpRSltMVHMYOgCQ2sk9rOq6VFOW3ztVWW/XHMCvCS7UdcEUkjcQDXWdW3nzFENKGXUelDGEk2oVo8mwA8kURwhkfzcvRP8wQvzN9XY30kwBBwZLRBEat2yEY4f8eQWK70wijm71OLF2RqlzA2i11LDoe1FtN2ASttDEwJDU6S2UEKjG5K19U2OE14YcWm1xQPTJZ6+WqWQ0nECpYbtzXtxDNcqXd5zaCix5W1uqxTt+iFpU809brB97V2grIzXmi5z1S6aJhACTG1zDW8nuKGqTUkkbc/fZL+9EcrSHVK6mtOdUJIydExd4G4jjOkGMUKEm+bdXp5YeBsi+lZsJeFrQnBuudl3u9gOb7gJBvznwP1SynUAIcQg8EPgLWuCuTv6vdxAkFyYoCcT3HJmTYANYeIC5ddZ6/j9bBghwBSCtKkxVkjxa0/sY7Bg0/Uiao7H5dVOkoOlXr7tx+giRgdWEk9VQxOYus5gzqTWDYljSbUT0PVDnrm6TqXlkzY0hnM2903l+crpFdVplaoQlrYNQifsK9WiSPbDkqOYvhoN1BdcSknaMnAbfr/wLAFdT/J+EpuAHmxNY6nmEESqCCZRzbXee/TPeQhu6warN0Z1sTOWjmUIouj21+SdNiD+uOC12DFe+58+8SYeyQ0Ymkatq6xcnrmyvjnT4A1CoIITnU6An0wqMpR0/ZBcyuTZq+v9JljGMvjUiUlOXq/x3QtrgGJhHb+FX/rsepdLa62+p7obxMwM3lpCm7Z0HtzzxtnJlqHdNlPsrcKltRbXKh28IGal5fDovkE0TfDo3gH2DGYxNBUsLSVYOtimjreLsbe3GOhBcoMNpAvImhrtONpU3AljNda13fCmcWI7G/teI2orIkBGUgW4b/j9Vkl+T7ofxNur2QyhjrU/PwhlA2lrqqlmaEoJK6XE3+YAe2+VsTQcP5Gdh5JXl1qYulLWbuybaULJ5Q+P5rlv+t1i0o87XksLPp8yODFd4k8/OMV/9YXTdP0AIQRZSzA9kOHuiQJjhRR3TxQ4NV/nlfkGl9fahLFksaE2yytNt7+QbrkRpbTk5LUqTTdgZiDbb4xcr3RoegEnZsqMJJY6yw0X29TQk41cEMX89rOzrLd9Htk3wKdOTGDpOsVkE3BwJMdHj49Raav1wOP7B/nY8XHCKOb8ShMZw77hLJkkjPl3n5/DD2KcIOLDxzZbZP3L71/lB5cqpE0dy1A2SU4Qq01exmI4b/P9i2s8d62mmuixUrtfWm1z12iWhZqDE4TYus5oQVnuHJ8ooGsCU1OFlqcurDJaTPHgnimGcjZ+qBqAi3UHxw+VFUgUs1h3OLfcuKNNsNX69o2nngL1dljZsOa6tNbZ1XOa23mLAN4u1mgA3oaNW8PZnZJra6Gqh67/2hsau1W4yB0adI/sK/LKUmvbvwnkpqyBN4rdrnqUtcutH91yQs4vN/EjxVy2DY0n9g/y5VeWiGOJZeo8vK/MP/jMfdiGzkN7yvzL718lCGPOLjVxo5icbRBGkmLaVMW6YpoDw/m+8u3fPX0dKZVao+urws+LszX+zQ+vUesG3DtV5LmrVV5dbHK10k6a2hIvUaO1eqHZuqDlBoSR8u2/Wunc1AQ7NaeaOPXEln16m7yFhbrDetsnYxnoKUXWe2m+wXjSzH4nYbHu0PZCDo3kWG15fP7kPFLCo/sHFOFRCHRNwwujm4qhAB87PsZAxuL3np/l+Wu1viIwYxmkTaVK7a1pes4ib0ej61boNXPzKRM/VhECuiZuayf+Ln58sVtSggB+5bEZIgm/+cwcQRSjCVWvWe8EgNN/nK4JspZOIW3ykeOjBJHk6SvrXFlr910RoFd0k+hAINQ6eqRgU2l5xKhxfJdTKaBY5l4Y3TZTbCtyto5AKSJMXWAJSSxAk2pfYOoqY/T5azWaToimC7p+xJVKG8eP0HUN21R201IqhfXH7h7jY8dGsU2dv/eHr/L89Spfe3WZv/PRIxyfKJBPGTh+zJGxPC/O1ql2fJ48NMRDe8tcWm3f5BDRdAPmqw77hrKbVPhvFAISeSqJZaXAMjSeurCGm9hGiqRB8vJ8Ay+MODiSY6yY4nxSaP7B5XXqrqp7ZUwdL4qJ4phC2mJmIM1P3z3GQNbiWqVDLmUwlLNvanLFseTaulLz7GYPPZJP8en7p+7YedgJnSTfcidy7HsPDXNsoogh4C/9u5PYpsZizeHb59YYzFl0gpv3vM3XYSN9pxHHks+fnOf0YpOWq4r6aVPn2atVTi806HgRF1eavDhbf8fNU6CI+XeN5bm63lF7+UiSMg1qDaffAOvBCSQNx6ftBZxf0jm71CRn6ay3PRbrbt8R4dRcnbYX8O1zq5xZrPOd8xWmymn+2gcP3WTHeSscGy9waq5OIWVycaVFMWP27/c4lpxZanJ2qUU+ZbJQ79LsCoJymvceHORLLy9RabtULIOH9w1wYqbE8Yki//r7V+n4IZW2T97WsHSRqImkEin0mviJcsePevnukqxlEsUh3pbzYmpKmT9ZStN0I+pdHz+K0TXlMBZJIIKX55ss1V288GbC8TsJoYTrlTZOGN/U0CllTIItk91TF9Y4Pd+g2vGZKqfxgpjVlssPL63T9eNkXZwIXpLX69WaOls6TUGs1noXVttJ/lxAwwkQQgloEs4raUvHC2LunS5yYaXVb4L1bBdB1aOCIKLrb3++e+SQrh/TSb6dWUujnLFodCVbdz+WBlt43JjaDZvKXj1jqxtSPzMyUuptmfQt3CDCDbefX70gJIrC/uuZmjppWixJWzodP9rRSnFrrU6JcOSm9cKl1fab3gSbBzbuMFvAW6qF3ckufqtEf6cMUIFSKIxkTVZbQV/CWEqbdP0IzwmVEkwTlDImXhAxW3P4e3/0Ku87NMzBoSzLzSx+EBPEkrWWi5sQiCKpCrFGJMnaBkN5m8f2D3BtvctoIcVctUvD8Xn6ahXHD4liCOKYfNri5GwD2zQgjCmkDMJYokk14PSCV3UBUlPS9ImizWpbeb723rfWUZ/H0pW8MZ9S9gFeEBNIiUwWn2mSrDRX5f1EUll4WYaOrolkMx2z1rn1ZJw2dbp+yDYq0m3P+7v4yYAbRAgE6x2flhtg6eKOZYJJ1ATbgwCyKYN7JwustVw+emyEKJYsN11+cHGNc8st7tmwALmVV3ocS7740gJBJHllvtFXg37grpF+Y+3/Dnj2apUgiJmvOmgCrq93sQydQsrkuxfXuGs8z7/+tYf4f33hFZbrLroGlba/axupne4FKdVGdGMDSwDTA2nKGYuLq206XnTbRfWtIl1iwNvwdwnkLH2T9D2Qio0qkgPQ5ObJde9gmoW6S5x0zjRJktmlClNxrFijLefGBkYTyiZEStlvnumJve5Ge0Y/gsgLEcmIqAG2rjGQM5kZyHBxtX1bSfe7eGcjYwtayU14q0WXBozkbdwg4n/8ylmWGw6xVIvioVyKvG2y1vb57CMllpseY4UU+QMGLTdkKGfxqRMTfO3VZV5dbGAZAkvXmS4b5FMGDSfk2noX29D5yLExlhoOTxwY4iunl5ESxospPnjXKFcrHcYKKSSS//N7Vziz1MTUBaOFNC/N1Xk+sWv+hQcm+4XsX3hAFRc0Ifjo8TEsQ+N3n5vlqQsq1+e9h4b4tffsY6XpMZyzWW15DGXtmz5/mATyukHEsfE89a6PxCdn66w0XbxQBYuvND3FdtQEZ5dbxFLy7NU6TqACnzO2zmQpTcMJeHG2zuXVJitNj6WGg21qVNo+Lecqf3hqgVLa5EdX1pPCnFqEZ22lJKt0VNOn0vZ4cbbOnsHMG/ou6juo36vd2+eBATy4p8x3L60D8DN3j+/qOUG4/ZrtyFiBy9XKbZ+/keiwdSO3E5br29s+zu1gB3krWLu0bczvYMG3kdG69ZUe3jtIteNhGRr1dsBbVWraOF2JHX6v8ixa3DWWo5wx+cQ9EzTcgIlSmpoTkDJ0Zgay/QbLYM7mr/7UAZ46v4ZtqGyLY+MF9gxmSFs6YRTTdEN+/4V5HD/iZ+4Z48NHR/lBkofxz566zGDOVo0uAdWOl1i7KAvGxbrL0fEChqaxfyhDylJNOFA5mx85NsrV714lZWoc2eY7cnAkx5W1DqWM2bf52YqpcjrJ+AuYGcjw7NUqYRzz5ZeXuLzW5qePvzNypVabLp97fg4p4fEDg0yW0n01nx/G/MoTe3n2apVDo/ltG2A9BHHMQsOl40cU0wa1boguBI2uJGPrtNxIMa+zNmEkeXC6xLmVBvVEWWwnxYq3s9AUSYllaJQzNo/vH+QzD00hhEgKIO/u8v7vAkODPeUMlY6n7lsNXplvcvdUkcf3DRBKuLrWZr6+WdWi9lxK+WXoGiev13DDiHxKscc3uk/AjYzKKJZU2j73ThVxgpiWq0iSlthZbW8J1b/prcc31oduh94eRhfw4HSJ2ZqjMlX8mBAIQkBIDAmWqbHYcAhjSJkaxbTFUN7maqUDAhwv5KW5OodH82RtA1MX7BvKcXyyhK4Jte6RsFBz+d6FNQxDo+mEDGQtvnLaYyhnc329y8GRHE8eGr5JASal5HPPzdFyQyZKqVvmE74WCFQGdylj4oXqe28bGkEUkzZVTu1UOc2RsQIP7inz4lyNatvnf//2JR7aN0A5bTFSsHH8IHktnYGsTTlr0nJD5WQUS164XuNapcPZpRa6Jvhzj85sUoUBfPfiGi/O1rEMjT//xN5tXQfeaizWHX7/pFK//MIDkzs25wYSR4D3Hhri5PUaM4OqGRrGkuGczUrT3aTO+MBdI2/B0d8evX1CteujIXj66jpnF5u03ICOF9N1NzuqvJMQScl3LqwSS0k5azGQtchYBvP1Loa22Y0GVIO7YJtcrnTIp0w+f3KegyM5HtxT7ts9H58o8MyVdRpOwFdPLyGl2iu8PF/fVRMsiiW/9/wcF1ZanJqt40cxf/zKIu89NMzP3TfB3sEM/+oH1zi71CSIIo5PFqg7Pl4Us9RwOTyap5yxWFluqtzji2u4QcTvPDPLDy6v4wQRUSzxgoi2p/IWw1jt08YLKa6uK9ckZ4MQIoiU+n47NVsUkzgLGJxbbtPxo35e2EZIYLXtb1vjFUDe1tg3lOXccrvfaLtT9cLtYCcNo+3qSLUdQoOXGh6Vtsf+4Rv5xn4YU8yYVLsGw3mbuuPxJy+ocz5ZSiESglgcSzK2oRqEKLWTJthUcwL4p9+5jOOHNJ3wRo6Y3Gw53HQ8Ts3WOLesE8QJIVtXGXVRQh7XNUHGNmh4N5MU9Q0E743o+DF7BnVqnc1n3RA3X09Tu0EaF0AupVOwDSptb1Pmcu95kg0qsQ3/bneNnXBDXIpQbkd+FFNpe0SxUszJSD1m49nTEwXjxv2dt4UJ74UxhVvkFsMbaIIJIf6z5McF4BkhxB+iPt+ngGdf7+u+Hmja7riiO33Ber+vdoL+xcindKqdgGJKeYUi1cR191QxUbrEVDs+37mwyjfOxEyWM6x3AnQBAxmLtXZwQ0GWvObB0Rz/8U8dIAgl7z0o+b3n5/EC5f/Z6AbEUhIkFoS2IZBSY2YgQ9rU2Dec41tnl6k60SaLsJStowvVnKt3E2WXBilDw9QEA1mLnG2w3PSIY4ltahSEymxQk65Sb+m6IJMyCKVEehEyVjaMXhSqHB5DoAmt30zb7lzGMgmYT5s4gbetVHIjbhWq/S5+vFDOWjy4t8Ray+XaehfLgFh6Nw36bxQaMJAzyVomTU9NLCtNjy+/ssTLc3X+5Owqw3mLuhPwn3zgIIYm2DN4sz94D0KoJlkQKc/6MPlytdy3n3n1VuHKWpsvvbLEKwt1vDAinzLJWmoD6vghpq6am3PVLgeHcqQMg4W6apJ5oUBjc5NqKztjJ/IByeO8DQ9Q5AMDIQTnlpW9wk643aLJSjbQ2wkEgkhi6fQ3GhsXa7FU9rkbM8GuVJwtMmtFvnC2MG96d7shIJMyyJo6a21v02bbNDVEGJO1DaQEP1Jhsk6obGU1odhW+bTJ9y5VWGt7/MX37ueRfQPvFpV+TPHoviG+eU4pU49N7NxEiYFzy20m3JAwVjlgqaSgrWlKlTWUt1lsuJxKciJm11W+T8sN+O7FCmcXm4wUVNF0ZjDNQk3l+oHE8SMurbbJpSqkTYPFusMvPTrDWstj72AGQ9c4MpYniiVX19p85/wafhRj6oJ7p8oU0wYnr9dYrLt87bTOew8PcWgkT8rU+aVH9wAqz2et7VFp+9Q6HvM1l1rH48hIjqOTRd53eJimG/KxYzdb0Xz6/kmajseVtQ5nlpsMZm10DcoZmxfn6kyV0owWUgmzLGKylGG15WNogk4QcmA4y0DW5qPHRjF1wdfPrLDUcKi0Axw/RNdUs9syNdpeSMNVzYTGBss11ZiP6QYx902VAPjmmRWWGi5nFps72gvuBgdGt5+LOt5tFksJUpbWH6viXVoTOjtMwWl7d+xwU9dwE0Zk2tzdliFtbb+2GyukgOauXqOHrUXQnWDs0GxYad7YGG59pclyinLGZqnReEvtezZuTG/16dwgYqnhUkxbPHVxLWlIiiSjTzVeolgSRDE/vFzBNnTumy6y3HC5Xu2w1vJYabp85/wqxbTFn3l4ilrH55WFBmcXmxwZzyOl5PxyO2lMCY6O5fGCmMOjeYZzNvfPlFhtuTy8d4CRgs14MUXXj4ilZGBDI7uSKEUBzi03eXWxycxAlo8dH0UIwdHxAgdHchiaKvgFUYy5hcGYMnV+8RFVsP23P7qmMnL8kD2DBhdX2hwdf+1N1DcDXhj31xU9i9aPHh+l6YQ8sKeEbejcm4wdt8Jw1iZj6uwfzmLqgpGCnWTrxkSJyjWfUtf60f0DCARCE7wwW1PkofiGLfPbBSGV+uUvvGcv98+U+ebZFa6sdTg0mrspVP5d/PhDrSVuxvGxPB+5Z5xzS02ev1rFC2Nmqx1+dGWdIFZrW9PQtlfsShjP22i64MJKS619YrnJetEA0NS9LvpFPclyw0XKG3let7Kb9nv0+tcIXVPNLD+U6ELwwnwdP4jxe6x/XUOL1V4gY6majGVodLohsRR8dN8A+bTJSM7i6as1BrIGHzgyRL0bcd90kYlSmj/94A2V0q+9dx+/+fR1LEPjlcUmd08USFnqvA8mDZS0qXF2qckLszWePDS8Ka8zljf2VdtZUL1eZG2d0bzFQDaFH0WEEWSKBrqAsWKKXMrgsf2D5Gy1Tryy1uHiapvJUhpdCJ48PMTh0Tx/eGqBw2N5vDDiFx+ZYbqcYbyU4je+cp5qx+Mrp5cZztmJfbJG148YRBVEX5lvMJizaSVMcz9UmUTvhCbYUsPp1xCWGu5tFWp//YOHAPjGmRX+/dPXCaOYx/YPcmaxyWytSxBJ7p4okLPfvlpZFEsaSWzLn3pgknunilyttDk111A5RmHUV1/cyQiMOw4JF1faDOZsDgznWG64rDQ7CATljNlv5q62VE7bVDGNbWi0/VCJIQKHPYMZLEPjE/coAtr9M2V+5h6XL7280I+AyVg6D+8yw7ThKFX8XM3herWr8rmSLMQrlTZrLZcziw0urrYZytkM5XUMTeCHMW0v4ON3j6EJNWYGUcxK0+PZq1VFCAhjpUbXVY3cNjT8SBJFMaGUELKtpZ0kUdMmYzZsbm7UuwFzVYdOklF1q+F0698EKgbnrvECewdzLDU9HD9CCGhu6KboyXM1jU1K4N1CT9RUPeGK48fUErvVnur3dqOiIVRDcyPef0SNsylTY6SQ4l9+7wpzVYeDIzl+6sgoxbTBQNZittblwlKLiVKaC6stXpytE4QR40VbxWXEihBd7wY0nLCfidnbF6QtvX8+IpnUsZKGo2loZCydMFaqW1NAKWWwnghetkLK7W0LAc4vd7a9/hsFcAbq+RubYENZi4W6y2st7+5kodjrkxRSOh89PspLcw1ytsG1tVa/RqdtKSzmUwZ522Ct7eNuU2TUBBwYznL/bZxc3sis0avkXE7+6+EP38Brvi7sZIOy3W/1DYuqrRcjitUXNE4YbHuGFNPYNJQ10OP7B/no8VEW6i6rDRfHD2l1fWIE1yrt/k2SSxm899AQsVTqkiBSftB/4T17+fDRMdpeyP/6zQt0/IhYxhi6RtqCtcROSDdUUPLj+weZr7sMZEz+w4sL1LshUt6QVwoUe8E0YL3t44UxRuLzOVaw2TOYZShnQyyptD1afpRYc2ibzk3HC9A0lV2WMnWGczZX1tr9QPJQwnon7OeiGRsGpo2vY2jQ9gJg+8LzVuzGxvJd/PjgFx6YYjhn89SFCk+dW77jDTAA2xRMFNOUMibNboBlG3hhzCvzdYQgCX1UxbYDGxgcO0EIwWcfnmax7jIzkObl+QbdINr1Ima3iGPJUtNlMGvdUpn2dmCu5jBWSHHONLCMmI4fcbnSIZcyeeZqFVMT/MHJOdY7AUN5m3zKYO9Ahort03ZDlpsOzgYpVsz2loIbYYob6q2tj7MMjYYT3NQAG8iaOF7Yl4PvNMQYQrHij4/nePZ6nfaW+1AAMo77cm8dtbmL4vgGq0SArQnc5CBvYjpJZRO23TEI1PjcdkI6brhpnomjSCm/kk1qKW3S7USEUmIbGm6g2EorLY+a46NrGs9fq3Fx5WXKWZMDQzn+9seO3GQ19S7e2TgxXeqrou67TVaKG8Ys1B32lNNMlzMYhkbHDROmtODBmTIrDZdzS6rZNTOY4etnVlhpulxZ6zA9kGG16TKcTzFaSFNIKUVhxjJoexFpU6fhhKRNg+vVLk8cHNpUQFlve3zu+Xm8UFn9dPyYw6MFfunRGS6ttvhX379G0/U5s9TguxfX+Ol7xvj5E5NkLIPVlss3zqwAqlgjhMBP/Nb/4TfO8/P3T/Erj+/d8bOP5G2QSsHe9UOG8ymCSNL2AvYODqIJQcrQyNoGjW7AatvlPQcGaXkhGtDxQ/7K+/cxVsjQcHy+f2mdphNwdCLH9WoXK4oZLdh8/O4xvnN+jaWGS9MJyFo6jWTTIQSUMxYSyVLD4cxiEzMp/KVMDWOXpKvtsFOzy9hlC6bS8m+Qtrq7syaMdlhnXVxu7+r5k+U051aU9eKtbIU3Yqe1XTm3u+yzjTB3ebqLqe3VRZM75JB1fZXJO1frEsa33xTfaRTSOtXO9mHXvY8cxpK1pkfLDbmw0sY2wAtiNE1jKSn+nl9ucX6lybVKl3rXV7ltEgxdsNRw+cGlCot1ByEE900XySZWXutdn5fm6hTTJpPlNPmUwVjR5kuvLKJrMD2QYbSYYnogw198cj+gchLCKObb51d5cbbO3/ncKT51YpJPnpjg2ESBpYZLzjZ4+koVAZxdavL4gcH++GLqGo4f8dvPztJyQ37mnrGb8i+abkDbVYHqo4UUThChaxppS1PjwzsA0wMZPnR0hJYb8uAeNZ7v9rvRQxjFfOv8KoW0yXA+xd/6yCH++VNXWG54XFvvoCckxqlyGk0Inr1apZAyuLTa7jNeI3jbafdpS+P+6TInpksYuuB6kjvZ+/dd/GRB32H+u7jW4nitwKGRHPNVhwurLS5XnE23p58suq3EIr23V9B1wUi/ue7hb7PGj1AODJqWuCkkBZeVhouui9vuOXaLrKXR2eIFJSW4fpLHLiRhdMPNIZRgofamYSwYLdh8+Ogov/XsLLomKGcsBnMW+bTFjy6vM5izmCqnmK16VNouQSQppDfPi4/vH+TsUpM4VjWXT56YZKyYYqnuMl60+d6lCqam8fJ8A1BxBD999w2VrK4JPnnfBJfX2q95XNoJllBxHhlTqWeQap/d8SM6fog3X2ep6fBHpxYZytvMlNNUOz4zAxnunSoxkrd5/lqVZ66sM1/rcnRM2VQfHM6zfzjLv/r+Vbp+yFLD5e6JAlPlNMcmCgzn7b7jwPcuVHhloYEQ8PMnJkmbOqOFlKpzvQNwfKLIQl3Ny3e/hvP+kWOjPHloiO9fVJ9vtJDm0GiOSyttZgYz3Dt1Z67h68EfvDDPfM3pkxpGCimeODBI273Et8+vMVZIsdLcXb7s2wHBjUgXP1I2zhdX23hhjOOFWIbg0GiOR/cNKPLdUpM4jllsuGiaIIxi7pks0PZicraJpWuMFW+sKT94dIST16vMDGaJY8k//My9DOVsfni5wv6h3KbHbkTDCbiy1mJ6QH1PDo5kcf2YI+NKHfrSXJ2OF+GHEUEU0/VDzi44feXPY3sHePZajZ+7b5w/emmB61WlsF1teooYg1oDThdTFLIpUobGpdU2lbayjs3b+qamxE6kYlMXfbWWRCmIrtxibr8VOVmisqVemK1zYUXZAEopcbaMt1qi2N0aw7NbCAkZU8cydT501yjfOrdKwwn6n9XSkzihWFnoeeHNtZy0qdY1G9H1I1ZbHiN5m8trHbK2QcbWExJGTKXtJw4tNh86OsL3Lq5zabXdz/maGciybyjXz+TyggjdC5U6T4O9AxkmyhlOTBf5Nz+8RttV9frxgs1KoqxTSjP1eqauIYRkrb19AwxuPSduxy+8qUklNj9OAktNb1eRN1vnZF1TcVFbkTUTR6QYnrm6zuXVDrah0/aiPhHGNnRkGPUbdHUnpO2F2AbYCaG9d0QCVdebLKm1863wuptgUsq//3qfCyCE+P8BDwEvSCn/5obf/7fAp4Ea8EUp5f9yu9cKX0P+0K0equuK6WoYgpSpJwGDKXK2yVQ5jRDw13/7RYIwZihnYyeZFaFUTR9NU4uEwazNeDHN3RMFfuXxvfzPXz1HGEu+cnqFl+eb7BvKsNxwubTWpuuFZE0dTZP9G8YLJdW2y/cvrRPFkuc6Pq2kmCpRFlu9m6mUNsmlVHaOUp5JwkiSs01ylsEzV9bp+hHVjt+/mVRw643uaywhCGOcIEYQ0LR0tqthyOT8Sbn9FyuI6ReSdgNbv/XN+S5+vGAbOuOlNA3HZ3aH7JM3CkMTxFI1OQZzKR6YKVHr+qy1POZrXT778BT3TJb6odyXVlu8utjk7skiewezfPX0MpW2x4eOjvRZWlnLYLKcJm0ZPLp/8FZv/7rxzbMrvLrYpJA2+ZXH99zEgH47cWKqxHLDJYojvn1ujUhK6l2fpy6sUusEm5SnLS8kbWpEMX0mynYZAbfdjO6wUpIoRvl2TfTaNkwXS1PjrruBghZKqLQ8ng/CmxpgvffYmBsQoRbHWs/CR1NSc1MX+EG47WfZaZTTUEXbvkXRhgO2NUAIVaQEnCDGCW58T8JEVabGZEkcK0KDocFyw2G+2uXSSoecbfDffuruHY7gXbwTUen4fdJItXP75kUQSWpOwFBO5/BIjm+fX8MPY7JWyFQ5zT/+1kW6fsSRsTz7h3N4/iJhJJmvOVQ7PgdGcgznLWIgY2a4vNZise4SRBEfumuUe6ZLLNVdnjhw83g3W+2y3vawDY0P3jXCy/MNspbB2aUmp+bqRFJZcfhhjKkJPv/8PJWWz/sPD9F0w34w9J6hLPuGslxb7xIla4zFHQK+HT/i91+Y56nzq1xYabHe9rFNHU142KbO1UqbL55aJGcrj/CspfP9hTpNJ2Sh5vCLD8/w75+ZJZaSv/Hbp5gZyPDQ3oEkkN1Ux50wd5pOwL9/eo5YqjyQMJTIDUuRIAY/ipgopvm95+b40cA6902V+Ln7Jhgp2Dsy4XeDzg7ZDlVnd8rjS6s3VFQvz9Z29Rwhtl/0OsHummgbn+3skrgUx9t/npX67mwfN+JWSuKNiOLtj215hwLN5dVOwiYXb4uSptmNtp0GN67NpVTZX44fJYxsia6BQYxlaBQzJl97dZmFepfZapeWE1JIGQSxJG3qHB7LE8YSN4wYzdsUUia/+MgepssLfO3VFfYMqpyw9xwcYrSQ4rP/7EestT2GcxZ/+sFp3n9Y2WxdXmvzu8/Nca3S4fhEgdFiihfnaizVXWpdn7vG8xyfKFJIGfzGV87T9ALKGYsnDw2T38LQX266NJwAKSXnllubmmCVtsf//u1LmLrGsYkCq01FTnrfoRFKWfMdtW7ajdJrJyzUupyaq7PaVGqBgawqkDfdgEOjOWIJYRQxWkhDkuGx2nJZrKm12TsJewezrHd8/uevnmMwZ3NoNEetG/RVtO/iJwsbM8Q3ohvA7zy7sHn9uwP8JM7BAAxDo5AyqDsBR0bz+GG8bd6lJCH/SrmpPhFICLYLBH4d6I29GxthInnz3ltuV0PSNdG3hl9t+nzr3CrHx4tcWG2Rsw32DWb498/OstZyMXSNaidAEyGLdQdd03hxtqasmg2dgazFV08vE4Yxryw2uX+6iJ9EYmjlNE9fWedapYsbRGjJXmU4fzO5ZHogs23u4uuFLyFyQ84st9A0EAjcMCKOVWF2ve1zfb2LEIK1trLwEkIwXU7zG79wD/N1RZBaqDu03QBdU7aK3zy7QvPFgOvrHRw/5mPHRnlgbxkp4cR0eZN17sZ6Zj5l8OFt3AS2QxxL6k5AMW32s27fDKRMnU/e9/rUr9WOz4mZEmPFlCKu3SaX/M2ElGovUUwbLCZrtvlk7X6t0uHSWpvFhkfTCRPyPezSKfstR2/ciAEZw2rL61uzCQEl28INY84uqQbRWsvHDSKVbylAaIK2F1FMW4RxzD1bGpK2oXNgOM9z12qUsxZRDH/08iLrbZ9Tc3X+yvsObGst+MVTC1TaPhlL57/46SO8utjg+atVdE2RgFcaDmeXW0hUo6jhBLScAIFgJJ9C0zXOLze4sNQgiCRG0tDqfV5QNYZLFQfWHVXP2NDsabhR31VCF+pcbF1rp0zB4ZEcZ5ba+Lt0ZNjNo8IkPmInBFsVFjtgJ+JDCFSdEN0L+ZOzK/2oiR5iCYauYejqO5u1Vc2l7YZ928DBnE2l7TNeukE4/sGlClcrHa5WOnzgrhEylsF9UyUePzDI//rNi9Qdn32DWZbqDj+6uo7nR2RtQxErszb1rs9oIUUhrdyW7p4sqEy3lo8G/Ny9E5RzNs9fW6flKoJc041wfEWKcnvkp4T9pLG9xeNu0COfaMhbKrq2Tq0SiKLdZb1tPbadxgg3VHWujh/xrXPKzl0ACIGlKbGCQPVINr5EGEPo35wbLVH30LfPr/Ho6eVNKuuteMP6YSHEMPBfAMeBfstbSvnBWzznASArpXxSCPFPhRAPSymf2/CQvy2l/OZujyHaYVF2O2z1ysxYBo/sG+DcSgs7WZgtNByKKZOMpfOHpxZpdFU32Qm6WMmGTKAYwoW02qR5UUza1Di/0mKx5mCbOjYq6DVnG5i6xuHRHGlDo+1Iqk6ArW2WnF5a6wIOtqExPaBsimxDjQxpy8DQBF0/VFZausZDe8vK8/b8GmlDp5QxqXUD3DCmm9x5vaKsH8m+qksTMJxPUWm7hJE6hk6g/Lx3Oq23Otu3syjbiO0kjO/ixxcvzNb48kuLfOfc6h17za2TXDeIubjaou2FPLpvgLsni/zxK0ucX2mRswyuVRw+eNdoX231tVdX8BNlxSfvm+DCSis51jpT5QxSSj7/wjwLNYcT06U3zXu7kqg8m46Sqb+TijnFjMlnH57miQODdP2Y75xfxQtj/HCz9WoPhiZwgmgTO6Q3nuzUIN+KnvR7uw3lTkSFjb/WhVLcWpqg2g1uuk8iNsvrbweVo6jGxZSucfeE2sC+1q21qQvStk68YTEFSvlmGnp/LN4OcsO/UQyaAVOlNG0voN4NEqKF7KtS3sWPD4wNntq7uXpSQq0b0HIjdF1t+NtOwGK9y3/ymy/QcAM0IbANjVhKjk8W+e7FNUDSSRQuHT/isw9N850Lq1xf7+KHMU034Hq1y/uOjPCBI9uPdSevVXnqwhqFtMnf+NDBvkK966sG3FDWYjVlEEnV7No3lCWIYn772TlGCymKGZP3Hx7mwHAOU1eN3FfmGpQyFp+4d/scK1XE7/DctZryAJdw11AGJ4iVBc5ClzOLLbREHeH4EastH10oFfwfvDhP2w0II6Vk9cOY9Y7PAzNl9g9n8YOQSErCWKrvUnKO++PVli96OWWQT5nMVrvECI6MKSu3N4p6d/uGTHdrCvEO6GzweqreJp+1h/XW9o2nYJfeNZ0N1sBBuLsnLde2P7al+vZN0Ftht8P4cq3N9NDNAcjWDmSr6YE0xbTJRCmlLMlfw3yxW+y0Hs5aOk4QYWoisUG/8beN84CMASkYK6RZbDqIZBApZywe3TfIYNZmoe7Q9SJaTkjLDVhtudw9WeTIWJ67xvKYmmAkZ/HogUE+fs84uiZ4/5ERleshBL/4yAy2qfOllxfVuOGFmLrGoZFc33731cUmF1dbXFppo2swkliSKsJMQDpZb33v4jpXKm00IfjAkZFtN59uELHccJirOThB1LdJBPj6q8u8uthE1wSHR3N0/Zi25/D9y2t8+v6dN7I/TlhuuPyPf3yOSttjrJjigT1l9g5m+crpZTpeyKXVNtMDyupS1wTVjs9ay1WW+ey+KfxW4VKlzXyyT37i4BD3TBX5c4++a4P4kwo/kuxkMB+zmWB2O1VABBhIGm5A0w1Zabi0vahPAtj6fMmbe/9LlE1VxtKJYx8/VMd4u32AJWLyGZuFuocfhiw3JW4oMTRBIWXwv377MuttjzhWdmcjeZlYYamxs9bx+Tc/vEbaNPizj0xTzlqcvF7DEIJzy230lxf51rlVdE1gJvNZPmXw6Qem0IXYUW1yp9Hbm8UR6EL2LddiGWNoGm4QY5vK8tIyNGUtb2h8+fQSA1mbjKVyw8ZLaTLmjf3QpZUWbmIx+6cenOIHl9dZa3lcWGnzl57c3ycePXlomIGsxWDWvikj7Fb4o5cXubLWYWYgw5+6RUH07cKLszW+c34NQxN85uEplhsekZTsG9o5yuHNxFMXVN5a2tLZP5Llxes1Hts/QK3j8x9OLdByQ2bXO2r9LONknfA2MIl2iY11jI2Ep4ypMZAxWW95zK93aXkhbqAK/BqAgGJKxzSUQd+55RZZ2+CusTylzI3Gc4wkaxsEUUyloyz+QI0lOwlReocRRDG/9cx1vvTyEvO1LlIK7psqqnVd8jpZ20DGcGAki+PHTJVVPvNczSEII6JIEssb5Kme8k1yY3+zNS9p4zH0sqg2wtYhn7JY6wRoGujxzuTftwu3amf35opqx6eUsSikDdpeSBipxlck1fgVSbhnsoCUcGmtTTPJdU8Z+k0uEqOFFFfWOmQsncOjOe6dLCIEnF5ocmg0hx8qNdiFlRZtJwAhCOOYDx0dxdQ1jo4XuLDSoukEFNIm+ZTJsYkCP7y0jqYJvnx6GV0TWJq2SaUXxNvbwr/WqbBXoxOomsRARlk7ztbcbVVh28FIlGF39NsuFRkm8tUc0PFjNJSS0TKUc8WtnMV2Og9CqNe4Fe6Eie5vAr8L/CzwV4A/D6zd5jmPA70m1zeBx4CNTbDfEELUgL8jpTx1uwN4vRejkDZJGRrrCUs7nzIYL6UI4pisZZAyda6udzh5rYauKXZ270YJYyhn9P5EnzJ1jo7nQUIpY7HeDai0PM4vN3D8iIxtUE6bdIOIUsZkpenRdIK+zNSN1M0VSjX4yqRjZRsak6U0ewezXFptsdrykBJShsAPNcJYMjOQ5hcfmeG//g+ncfyQrheCLPDz94/zhRcXWGt5gGS9EyCQyt82vOGhXe14ZG0D148JYomhb8+s6hW6b6WmK6UNnCDqd6xvhbfT5/hd3Hm8cL3G89erdO6gDaJETcbQs84QyfdDMbv+ybcu4QURhZTBWsujfs1nttrhlx6d4UNHRxnKWSzWXYZzNk0n5MxSA0PT+NBRVQD2o5iFhOF0pdLhA3fsyDfjA3cN89y1GnsHM2TfAd7lWxFEMTnbYLqcoZi2aLoBfnDDqqmXVaXrilOzUVzQm1AtQ2Bogqa7O5aIJlQwcnsXFDJT2xzsKZPVbCvZML/RfXEo1fEoi1nJWtvpW8u+FpWAoWtocrM6ztLA1HWCOO4fp0pounWBoO0rG7keY03XBR88MsLfSHzk38WPD5pe1L+POt7tGwm9BXwcx6y1PHKWyuuMga53o5G+1vQIxxVrUwXlqjcZyds8tm8AP4qZrTrkUwaVts9w3masqArYjh/x1IVVLEPjfYeGMZLG/CuLzX5w94HhHClDbRjumyphJASe3z85jxPEfPCuEWarXbwgppVYy/mhUqkM522eODCE40cs1pW1SI8MsBVT5YzKLZUq5zFl6RybKPLkoSH++XevJNYlAaahYyQbi5wlMA0DCay1fAxdEMWCYtokjCUDGYsolnzn/CoxMJgxGcnbzNUcZdcnEquPbdYqK22fUKrPP1q0+bnXye7dinJmezvAjL67pKw95QxXqsqK5PguLXLCHQYwc5dK/JXWjWt2ar61q+fsGdk+966ctYCbWf53AsOF7S1ij43n+cOXlUWnueEjlzIWv/rEPi6ttqh3/TvaBBPszFI1hbomhq7hhzG348MU0joHRrJEMmK16YOAckZZGL40XwcheO+hIcUUdgP2D+fI2wZ7BrPsH8rxh6cW6XoR44UUpq5R6/j8f758hlo3YO9ghh9eWeeJ/YN4foiuCYQQ2BqcXmxS6Xh88+wqaVNjttLBCSLOLbXYO5hlKJdiopRhLG8zkbBlo1gVRSMpOTK2/T3w1IU1wliq8HUBv/nMdYZyNgs1h2vrbdpOgBRqDPvuxQq2oXFo9I03oN8OhJEqEG5UH9QdH4kKqw+imPceGiZt6vzx6SWuVjp0vIirq20MQyOMJCemyzh+RNYyWGm5+KEqcr1TmPduIJFxRCmt8qffiELuXbzzYe+ChNUb/253i0qUPZaRjIkbHR16Bd2Nr/lWlNk7nlJY9fYVt7NZ1AR4EQyaGoWMiRdEdP2InBXR9iKWmi5dT3k1SSSDOZOBjM1C3UUI8KKYuhPwynyDE9Ml6t2Anz8xSdbW+c65VVZbHoYmaLkBpYxFKWPyxIEhShmrv057q9EjVEsJuiEomRZCgKnHzAxkePzAIOeXm2hCMJJP88VTS0gJHz42wv3TRb57scJEMc0vPTrDYkPttS6utimkDM6vtPnuhTXiGE7MFNloVGYZWt/l5bVgISHfLLwOEs5rxflEvXNkNL+rDOe5apfPn5xnpemSNnV+7/l5wkjl4f3iIzOMFt6aBudG1BK1cdcLObvYJJ8yubDS5uh4AYHoR7J0A0W88d5pzIxdQAMsIbBNnbYf4kXxpvy8GLVW0zWN9bbHUhhTyph85ZVlTF3jsw9P969NPmXy4EyZS2stTl6vYekak+U0h29xD3zyvgl+/+QCryzUma12Wag5dLwQKZWNddrS6XgBbS9iupymkDaJgbShyGTLDZeOG95UR+gpV1OGUg693jHTj6De9QljeUebHjqJKu8OvNZulkBKBSgppCzyKZOmE1DKmESxpNLyiZG8NN9gIGORs3S8QB1dMWNyfqXN4xua7Y/tH2T/cJa8bZK2VGGy4QQ8fWWdSyttDo7meGC6SNsNqHY8nCDm3skif+2DBzk4kqfpBlxOLCnPLjYxdI35apcoVgTNpYaDH8ZMllKMFy3m65v3y0ZSj3q9Sz9DU8SqMJL4MSwne7vXoo3VtJ4i+8Y1TOk7kxVNnU3K7e3m8QiQkep3hEhkEkNiagIh5a5Joltx13ienz4+dsvH3Ilq7KCU8v8UQvxNKeVTwFNCiKdu85wSN3LEGigVWQ//WEr53wohDgH/CnhyuxcQQvxl4C8DjIxPspuElI1qhZGCzZ97dIaVpsfltRarTZ/Do3lyKZOuH3NuuYYmlGenCmFXnclSWqflRiAEuqaxbzhDte0TRDGz613KWYv9Izk+cnSUf/Oj67S8CA1VZJZIyhmTwazFueUWXnjjzkhbGrYu0ISSiDuBCvv8qSMjTA9kWGooGX05a9F2AsYKaYTmcXA4x71TJf7pdy6zUHfwI/UZ52odJkpp3nd4mNlql+evVpksppImnBrcqonVWRgrT+mH95VYqHfxEvtEZ8sAahmCUsba0f9XQzUWO7vcnb0GF8t38Q6HlJLLa22urzv0SEF3YtOiCeiZd2YsA02oJsxkOYNtaNS7HpqA/UM5bF2j40dcrXT42mklgf6FB6b44aUKpq7x8nydo2MFolj2mXO2ofP4gUEurrR4eN+dzQHbiPFimk/e99pznLp+yPcuVLhrPM+ewTeHFTZX7fIfXlzANjXee2iIiystZqsdWk6AlmxBDB2E0BjMWowVbc4vtwnjmIGszUQxxbnlJl1fjXG72bhGUv0Xbhgres/b+vjtttxZW0PTNGIZqcJdLDGSRtnWAM+eFd1GGKiF2Map1dAgbRlIqSy07MR6E9R9aBlixxwwgJShLBS7GywUeyrhMJYEiQJXoF5rspxmvu4mi67t0VvgCgk5U+fPPbaXfPpd8sCPG0xxwy5Hfw02wLauFoKmoWEbOromKKRM8olycXoww5OHhnhprkExbSIEHJso8LP3jPNTd43w7XNr/UX3vZMFBvMpxotpHtxT5k/OrvC9ixUGMhajhRSjhRTVjs+H7xrhS68scWg0x0jeZrbaBSn76rCH9w7wVz9woxF7/0yZtZbH+ZUmyw0HU9dYb/ucX27x6P5BWm5AGKn7f6cGYMrUeWTvAEs1h8trHR7bP8Df+vBhBrIWI/kU3zizzPX1LqNFm2cuK6JFGMNIwSRnm7S9ED+KGMzaGIbGE/sGmRrI8CfnVlhuuFiGxkQ5k1h+KPvquuPj+AEBav1laAKJoOOFtN0IL3A5MJLnVx7fy2TpzmTw7bTmGSimWXZuX6D5ez93lL/5uZcwNMHf+8SxXb1nKbt9EeXEnjIX11du+3xbv0FAGMrubuxx/O2bnab55hFAGu7242gsbswgGxt/bhDxj755geeu13H8GJ07x3QVAJqaZ8It1mCaRpKj4WLqWmKPe+MR+gampUQR0tbbPqWMTcOJyKUMylmbxZrD5UoHy9D4U/dP8sgnB/j6mRVAUu0GrDY9qp0KxbSFG7h8/ewK902X+K1nZlX2qR+y1nKxDY3Lq22aTqACuuOYlh/zlVeWyFgG19Y7jBRshgsphvKqsWMZigl711iBuycLRFLScQKytsF90yXiWDKSt2m5AV94cQE/jPnUiUmG8zaFlMF8TWUFXat0mRrI8OL1GrO1LpoQGBrcPVnk3z09y2rTpZy1dpXv+k7DStPl8yfn0YTgTz841bf1OjSS59F9A3ytu0LK1Dm9UCdvm2Qt5RIyVkzRckPqXR9dEzTdgI/dPcpc1cFe1ZPz1sHQVNGguSV39K2GBtimxlQ5zUQxvWOj/138hGCbom7OVJZGQlPj10QxxVrbp7VBFtbLYYmT5knvlhWodfjG8VfrvY244UjTc464U7e6QBWKZwbTXK04/TxgRTRS6wtdqKZfN7iZ2GckxyeAUAq6XsxUKUWtozJGW15I3jY4OJKl4SrbZkMTDOVSHJsssthUeWC2oTEzkGYga3HPVJFDIzk0TfCJeyZ4z4FBvnuxgi4UI77a8Xhs/+CbthfcLTTAMASDORuBcuXIWjodLyRl6tSdgIxtcmgkRztZ8zXdgEurbS6vtgliScsNqbQ9PnjXKIdG8vzo8jrTAxkurbY4OJJjreXx8XvGsQ1VbA6imCtrnWReCRGCXds9fuDICC/P1+9YPtpOOLvU5KunlwEVO7Kb9zt5vUYhZfLyfIPJUorLq20my2kMTXtbbJoB3n94BNtYZ6yQ4uT1Gm0vJG3qlDIWv/DAJC/N1wnCmNlql0LKTGyl35nQNZRaMZb9yAPT0NAQSCG5vNbB0jWCSBGSev08Na/pSvzgBdiGjhdEHBzNE8WSasdnJG/z6mKTqXKKkbxNLmXQ9SOWGg5hLFmsuwzl7G3v02LaZLHR5fxyi8WGIioGUUzK1MnYOnsG08zX1H4qZeocGM5xcaXJbMOl6YR0veBmokBC7BvN26RMg6uVdn/tLlDZ544XbVrn7kTIldAXafSQShoaW9fJr6WxJTSV7fha1iwpUxCE8rbP0YQiTPd4+CkdNF3QciM8PebwWIH7pkpkLZ1PPzDFb3z1HOeXm0l9JmZmMEfK9BFCEKPyrLdiJL95P3VptU3bC9kzmGEkb1PpBEwPZDi92AAJdSfg2as1Do7k+cMXF6i0PXShcXQ8z++/sMh8rdv/XF6yWcjZBhOlPG1nnboXJeo+wZ6BNPfvKbNcd7m81ma56d3ynG+tv/kRiOjmGtZuL4UhoJS2yKYMKi2vr87aaZyyNJgoZXCDkKYbEkQxSJFEN22GF0lytsZg2sYLI9qJI0XHC/v322upKRtCZTT2XMF2fNwuX+9W6PmeLAkhPgEsArfTG9eBnm9JIfl/AKSU1eTfi7diUUgp/znwzwGO3H2fvF0CUcrQKGdUkWgkn2KqnOZLLy/S8WM+cc8oR8eLfUXXi7N1Wm5IytQwDY2M1JMmFqRMgzAW5G2dh/aW+fQD0/yL715hqeFQ6fjkUyZIODSSY6KU5th4gflql4YT4PgO5azFeDGFLoQKw0MNXMWUwUhBPX6t5ZEyNVZaHjIpPvXsfVKG2jS3vIAP3jXKB4+OMFftsN7xiRM1g6mrQs43z67yy4/t4d/+8BptP6TtwaP7B/D8iB9drWIl1o0ZS8MyRN/GpOkGNw1+moCBjMV0Oc1a09uWGRUDs1UHbefLtgn+Lq113sU7H1Es+dHldbpegKYJ0prYxKp53a8rIUqaB3qorD/DKEZD8sCeMqfnG4RxTK3rMzmQSVSPUEiZ1Lo+yw2XF2brAAzmLHRNY6JkM7Bho/7Y/kEee5OywN4o/uHXz/PqQpOUqfO//dL9any5w7i81ubyWptr6x2evlzhxbl6ohRVE5WuKVm/RKpMGCnRhfLc7bg+I9MlrlY6N7E1dKGYe85tmjwbH7+RcWQmyliEstSQQdxnZnphjK5pjORtvFASxIqkoGuCrh/jhhG6EJimxr1TRV5ZaGySe/dGHkNT42UsBQMZi3unCryy0KTS9ogiiY4anzVNEMfqZ0sXWLqgmDKpOyFOEKEJwXDeRiJxgxhdKJl9ShdEUuCFEYZQrMkgWYSst31ShiAIEhsWTfTDvrfCEGph1HKDvtLmXfz4YLyUgh4BJ1lE32qa7NXqYxQzuetHRBKGczaf+/XHaHoh1bbP1ECGUtrixPQ6372wxt5Bi/unynzw6BgZy8ANIupdn6YTcGq+wT2TavPlBRHPXK1yabXNaCGFrev8zrOzBJHkxHSJf/KLD2AZGk9fWeeZK1WuVjoU0gYZy+DiSouH9g5weEOWj5Rqg+mFMfVuwLnlBmstl2vrHd5zcIjTC02iOOZqpcM//c4lTE3j6ESB9xwc6r/GfdNFfufZWUYKNlIqG4uBrMV906V+Yf1zz8/xJ2fXVHYfMFFKM1FKc3g0xx+/vMxiw2G0kOLYRJ7jkyWGcyb/x3evIoBq16frRThBxEQxhRdGuF4Iia2PbmroSeNbomyfzi+3sO+gde2BHRRSR4aznFm+fRPsOxfW6CQFh6evrHPXLoosxR2a5mP53TX2DozkeWlBKcDunS7t6jmD+e0bbzn71huS7bDblrGxw5jobaAhblzXLjVc/CjG1jW6MkTTts+3fD2IUfYx6AJdk5ssvNKWjh/GyCQUHHnj+64s8NQLRFKFc2uaYK7WwdBVhsDHjo/y4J4Brq13WOv4jBdTrLY8Vlse7z88TNMN+ObZFRw/JJ8yGM5ZXF5ts972+YffOM9Ls3XaXshwLsXB4RyWoY5HJHNYwwmI4phiWl0rJ4jQEPzKY3tYaXncM1ng6atVShmL+2dKfOvcKl9/dYWVlst81aHa8XhgT5kLK226fkSl5bHW9vjCi/P80iMzfPyeca5Wuqr4O5ih0Q1w/JBq1ydl6kyV0hRTBi/PNWi6AZah/Vg2Vq5VOspuJ5Y8e7XKh46OkDIVkeHYeIEvvrTIc1erXF5tc2gkj67Bw/vKNDoBz1yr0vZCNCE4t9yk5QbcO13k8QOD1Ns+a00XTUiE0EAImt3gbbMqEkKRyeaqDpfX2vhh3GdJv4ufPGxXlvGjZK0egdRgpRVQSBm0PEWGsHSBbQhMQ2cgY7BUc5VbjFAkn2zKQKAsoHuQScPM0gV+JG/KJnm96M0SMWpdH0TK5WcjetZTkVRKrZ5Lj0yenzIFUgq1L5CSOI6pdnyKaZPDY3kuJvZ+g1mLe6dLaELjwkqTWMK9U0X+o/fuI28bvDRf576pIhnLZL3rqc8ZS6ykiHKl0uXVhSavLDQ4MJzjsw9PM3OLxk/DCfjiqQViqZQm5TdBKZY2lVXXgeEcB0dyPH+9nmQoRbznwBDPXavx0lydWKqi+6GRHGstlRU4kLGodXzWOz4526CYUWuTjfllowWbp69Uef/hEQ5tWC9988wK55ZbtFxlIWnoGj933zgHd1hTbcTR8QJHx2+2Sr7TiDbs33ab0nJwJMe19Q5HRvOMFW0ylsFDe8sMZO23zOZyKwayFj9zj7IuPzCSY6HmsH9YNV6nBzIMZE3+5feuUGl5hHF8xy1K76TqM4qVEsjWYSBrIoQipVZaHrFyrCNO9hPDOYtKO+hfR9vQsQ0NL4zJWAZPHBzksf1DpEzVmPrO+VVOzTUA+Pg9Y/zSozO8PN9gtelybb2bvP/2n0QIwZHRPF89vUzG1LF0jQf2lFVD2TY4PlHkBxfX8SPJ2aUms9UOUkpqTqiaNFLVBYINLz+cNRjJp9kzlObk9cam6zKQVfnIa9KjtUWosNtz7ceqXhIl42WP1Pta1h5xrIhg/eabvLXa1tCUNWEYhduS6zc28UxNkLJ0UlLihTEpS61/lxoug1mbetfD1AWVjiRtavxnHznMv/nhFZYbHmPFNPuHMlxa67BUd/j48VEev01dMI5VRuvz16qsdzwe2FMiZajaYytp+lxf7zKYtfiTsyucX25RaXvKTrTaUfEWuqYy6VF9CieIWKg75NMmKVunICT5lIkA2n7EE/sH+MbZVeI4Tkh9kii+uakogLQpcIPNuWGv93slgELK4NBojqG8zUKty0tzDYJ4swVyD6am3svSBLmslVw35YpQ6/j4UdwnokihEceKhG4aGn4cM1ywqTS9TZ/rJiKKltTmtlkf6Ind4+1wJ5pg/4MQogj8beCfoJpa/+ltnvMj4NeBzwEfBv6v3h+EEAUpZVMIMbTb49tpkNkIPWFIu0HMweEc16ttVpoeXT/id56d52fviZgZzLLWdoniiOGcRRBLHpwpk7J0vv7qMk4Qs2cwy92TakI9NlHk4EiO+VqXZ69VCUPlbf3Dy+ucWWry4aOjfOz4GEt1l6+dXqDSCWm5IYsNj0LaRNNQknig7UXk/JCXFxocGy/w1PlVWl7IbLXLoeEcmlDh8c2uYmuuND2+cWaZ+VqX/UNZXD/C0jWkjLFNnaFcilziUfvCbI0wUjaIl1bauEGEpeu0ibANDUnvplRh2lKCqWvEUhWaw1iStXTKWXPbwNqNkAAC0jrcIvdQPfZ1Zrm9i3ceXl1UzSgJiT/x65dhbwdJwlAO1MB5ea3DRxA0nIDr610iKblnssjPn5gkbWr88ellFusOlfaN9vjBkRyP7RvcFFJ6tdLhexfXmCqn+cCRkV3ZF9wp/OjyOstNh/ccGGJkB8uDHsPKD2McP3pTmmD3TBb5B187R63jc3qhiZQ3bF8lahEpUCwcPYy5XOniBJHyKY4k3zi93GcBCZRyQNM0/EgS79ZomBsBnIKE0WRoEElMXTGNhvI2LdfHDyVhRKIGkeiaIAhjihmTgyN5zi01cQP1t5bjE0bxtkwVXSgbg2LaIIrgp+8ZY6qcYq7WVe8TqRVXxjIYylusNJV9yVjeTpTAAj+5v7K2zv0zJS6utDE0Qa0TEElJIWXS8QKVFRnG/XBZpUaJEEhMXTW/tFt8YwIJThDyO8/OYeo67z00tONj38U7D9fXu8hEEbKYWLLsdLV1oRabbqjsOYw4xtQ00qZOy/X5u3/wCoNZm4/fM8YzV6ocHMlxZCzP5bU2o3mbAyO5vk1OIa3UBaau4fgRpxeaLDddHt4zQDFtcu9Ukb1DWUpZEy+MCcKYjh/2m6y9rB8rsUG9VulQaXn89rNzvP/wMH/jQ4ewDI2RQoonDw1R6wYMZk1OXq9T74asND2ur6sQ93MrLWQsWWt7HJso0HADHt47gCZgttrl5PUaTSeg7YU8vLfM/i15CG0/5IXZGlEc44Ux5YxJ1jb4xUdmOL/SYrnp0vVDFusu//J7V0EIHthT4vhEgfNLTSotj4YTYOk6mqZh6TrdUPbZ6YGntKEaN6ypqx2Pv/fFV/nMg1N89PjYG7ay3Vjk24hrtdvRuBS+/PJSf5z83POz/Op799/2Oe0dWLovztZ29Z4bN9LRLrtEeXv74tti7bXbEe22nD64Q8FvpXEjE23jdDRRSnF8oogfxszWOrw0WyPw79yqJQYKtkHa1FjZsJnzg4g1P+pvXHvv2FuW+JHK3bQ0lR3mhTEdLyJjK6vPX358H5W2R8cL+dSJCUppi1cX61ytdKl2PI6MFZhdd2h7Abqm8lmCKOLqWofFepecbZJLmXzinjHef2SE1abHiZkSS3WXlabDueVebmqDTHL8KVOp7O+eLDIzmOGpCxWCKOZrry4TRJIwjjm90KDWDej6IZpQ+ad7Dg7hhjHnl1ucW25xfb3Lf/qRw/w/HpthqeFy71QR21A5MZeTDM6xgs0//+5VYqmKcY8fGHzbioFvBHeNF7i81uGluRqRlKy1XP78E3sRQlBIG6w2PYRQhetSRqlZB7Mp9g3m+N6lCoYmCKOY1abHatPjwkqL0YLFfN0jDGOEYBPL++1CJKHR9REI5mvdXdnlvYsfY2wzRPob7sM4VusFicDW1fwRxRInkERxzLwXESQuM7qAtG0wXlDqHidQ93XXi/qFu16GeU8xthMEynopjCBl3FADbCTWacljen/r+jHXKt1b7lXjOCEmyBu28ELT8IOIKFRNoYMjOVaaPksNh+vVLoYmFInB0vnW2VXaXkA+ZVLr+LhBxJ9+YAoniLAMjZfmGxybUDZzl1fbXBpuc2ziRsPGCaJ+jevb51b55tkVjozm+fg9N+erXlpt9y2nL6woJf6dxgeODPNXfuoAd0+UuLTW4r/4/EucW2qr3Fov4q6xAgu1Lu0gpNoJ+O7FCoeGc3hRzMeOj/Gr79nHWstjueEQxUpZbGwgGu0fzrF/G+VvLx+p66vzZmz43ZuFa5UOJ6/XODSa25XN6/EJ5TQjk593g7snixwazSFjmK11Va7uO8jto5hWzRMvjPj+xQpZW+fccov1tk8US4JQ9u0R7xTutABOouzalpt+0vTakL0qIQhjLF3g+BG2qRGGERLB4ZEcpazFKwsNIhkzW+3w//7EMU7N1flnT13GC5UNcCFtIqWqJ7zn4BBhFPPSfJ20abD3Frlun7p/kn//9HWuV7sM5pRAotL2KaQEC9Uupq7R9nw6bshqu+csoyyrt3OIazgREo9uoHKhN57H9Y7KFjd0wUDGwA8lXhjxWrjqsdycTdVrPm2HrKVqQD2iV2/fopGM5Qn5S9nYK/vP3h55Y+yOkeyHS2mTuhNQShvMN1xMTcM2BH6kmlEpU62PBYKGGxLFEbqAo+N5Ht8/xAuzNfww4uJyCyeM+Mv/9iTFjEm9GzBSsPkL79nH51+c59RcgyiWnJyt82centnxXIRRzO89P8efnFtlvqbcUrxA8pGjgwznU7w816DlBbznwCCXK22evrxOJKWyJi+muF7tUu8GDORSjOuqvt/x1d42ZepkLIMgkpi6TsbUWai7ZG2df/C181Q6PomjP2lT21axJgE/lMq+8DVc456Qxt/iBDeYNRlIG1xYaXNlrUMxbd4UU7IRvd9fWOugJ4ppQ1dK6JG8zVLTI44lY6UMHz06yh+9ssRay8MNIoQQuH6khBQ73GACyJkaGdtkre3d9Dgvgj84OcfP3z+1Y30V7kATTEr5peTHBuwuUkdK+YIQwhVCfA94SUr5rBDin0gp/zrwD4QQd6O+K393N6/nBCHbTRlpQ20oIwluoJRUnz4xwTfPrrLe8VUYm6byJb56ZpmBnIXrx3T9iLxtcM9kkclyBi+MOD6hggoNXXB8ssjB4TyfPznP0fECv/ToHn7+/klemm/w+ednieKYuZrD89dr3DtV5NP3TzBX6/DKQoO8bTBf7WAYOnsG0vhBjB/FmLrOTDnDaCHF/uEs3zizgq6pG2HfcBY/jDm71AKhCuJeGOMEES/MKqny3VNFXp6vU2lL7p8uMVHO8L7DQxwcyfHAnjKfPzlPNwg5s9RE0wRDOYvBrEnbDfuFdolaVGhJcXjPQI62H1FPNrZXKyrvo1fsvlURbzBns9zwbsne0rV3N0s/Kdg/nGMkl2KxrgpOb4ZFdI/Q3RtMqx2fZmIbE0QqS+a+6RLzNYepsmKVWYbGn3pgiqYbcGy8sKkBBvDs1XXW2z7rbZ/7p8tvCnNuO1TaHk9fWQdAygq/8MD24tm/9oGDfOHFBe6ZLN5yIH8jGMzZ7BnIsNZU2YEbF4gCNSkGsfq560ebcrIkN1RVAhgrWICg2vGSv7/28kyP0SNljKYJohgMU6lMROI/YiUzl+tH/THGa3nMlJUkXbHZZZJNsP0gFEtodAParqKDfevcqspaSib2XgakE4akzBTHJoq03ZDVlquUaEKgCYFpCJUvaercNZbHMjQajs9z1+rUuz6mLtDFjTPRGz+DSCaba/U+t5P6O0HE9WoH23x33PxxQ48gANsH3G6ELlRe0VLDVUwnBClDJ5aK8dVrVJ9fbvHg3jI/urzO1Uqb2WqXRinNB5K8w995bpbfeuY6K02XlKlhaxrrbRcpY75wap6/9OSBvg3HmcUmbhix0nCRAtZaHnsGslQ6HodHcxiaoNL2mCyn+corS7hBxA8vC548NNQvtLzv8Agp02Cp7tBwFIFnveNxraJR7foICU4Y4/gxS3WXqXIGQxN86eVFLq91OLvUYDBvM5CzeHDvAJomaHshp5KAbj9UthBu0MvsEOwdyvKDSxW+c36NSEps08API04vNZNcV42xgs351TaNbkAsJcW0xWDWouEE29s4CBgtWrS8GDNhrZ1fbjJWTPH4gTfWfG60trcJ9LzdNcGiDQe8G/IXqCb+driVQncjFurd/s+9BsntYO6gnpseTPP09cauXqOH3Za5Gl2fsdLNBYcegxlu5IuCYvn+mYen+TMPT/P//P2XeeF6nTtZfhFCqdA0oSxxnSBWORo7kMN6l1Zw49q2vYjJUoqGG+IFEastj7bj88+/e5nvXawQhDH7h7NcWm3TckMyls5kOUMYx+RTJo0kd0uglNyjhTSWobFnIMsjewe5a6zAXYllfmHMxNJ1ZQ0TxizWHKQQjBZsqp06w/kU8zWH0cIk55Zb1Do+7z8yzN6hDI4f89i+AZ66WGEoZzFWSPOho6MU0yZ/+sEpVpsuSw2XKJasNlUTfKOl18nrNX5wqUK967N3MEMoYw6MZClnrFsWIt5piGLJC7PKSv+BmRK/9OgMbhDRcAJlWxirstE3zqwyWU7T6AY8dmCAnzoyguOHPH11nVNzLhlLNQZb0Y0c0a4fMbvuECZN+4236p0uGr5WpE2dvUNp9gxmb1pjv4ufLGw37wiU3WGY2JG33LBPoFEWxKhCaAyauLEWCmPVLPfDCFAFdV1XzjQbc8V7a+bboZwxMXVdjTXJ09OGwEleSwKx7I2Gty7igmp+mZqqVeR0na4fKoKnlP3mWD5l8Oj+Qf7k7Cpr7QhLV+qw4ZxN1wu5tq6abHHdJWcbXFhu8U+fusSVtS4tL2SmnKHhBBRSFqYhGN/Q8D8xVUIDXpqvU8pYikwl1Tz8kWOjm5pHAHsHMzxvKcvUfcN33jJRBzp+xL/43lU+cfc4D+4dYCBrY5tqjTBSsPnosTG+cWaZtKkTSbhSafPqUpPBnM2Prqzz5x7dw+mFBs9cXWe8mKbjhZscAXbCh4+O8sJcjfFCilpXzWtvtr3ht8+vUu+qrNu7xgq3deAQQnDfLtXyG9GzfNzorvB2wg0i/vDUAi035BP3jjNeTPPMlSonr1e5vt5ldr1LKWPScgNieeeVYD30mt/9htUbfL14mxfRhfoeh1LFM2iJFV7a0Ailssnzw5hqJ8L1I/6vH11lvR1wtdJB1wTvOzSMrgu+d2GNetfn8QNDGLrGg3tuH69xZqHBettHF7De8Wl7Ub+h9vz1Wj8rqnd6JUkG5041DaDjBf1G+NY6bSSBUGKmBMW8tWltv1vsZtthG8rKM47kJis7QVIvim/kRpqGYChl0/JCYhknNRil/tU1GC2kKaVV5mDdCWh6YZLdpeaLgaxFPmUwWkixnpAM1FpLZdp99qEZCmmLctZivtbhSy8vJeqzEL8tCSNFMF/v+IQJCVQXgstrLfwoJqXdTMOrd31emW/wzJV1rqy1cYKITCIUeWz/ELah8dc/dJC5qsNUOcU3zq5yvdqh7YYMZm3cMKbS9hjK2bhBxL1TJTpewNnFJlEsKaVNpstpXplvUOl41LtBv1kbbFn3dW+xjwuTCa43agmhfg62XMPe3Gr03DCkImf7G4pS3STr0gtjDF3gBGG/Lni7WyLhk2Og+i2WYUBS38tYBnUnoO2GBGGMlDEZWzUzRdIN3foePdcoJ5K0Wt6OtbP5usultfab2wQTQhwG/ikwKqW8WwhxL/BJKeX/cKvnSSn/5pb//+vJv7/+Wo8hb5u42/y+lLGJpWS15RMDry420YWg40cqlFkXDGVsGl0lr45C1WDqFdl7gcaljIWpC2bKaSTKm/S3nr3OlbUOry40eGL/ILm0wUtzdfIpi/VOwEDGou2GfOf8Gl94YZ6OpxZHjcS/PQ4i0qbB3//547xwvc7+oQxfemWFtbbHX/3AQU7N1zm71GQ4l+L0QpPr6x10DUQMw6UUbsIOHS+mGMmn+MBdI1xYbpEyDbxI8ld/6mA/rPrT90/x9VeX8YIQPwYdieNFHJ0ocnapiSFUIVkDDF1DAMWMSSQFDSckiGNl1RX0vElv3eTIWcrSpOlGtJLgxu1gvYn5EO/irUU+ZfKz945xrdqh2Q3uKCuoh8RdiJxt8Ovv24/QNLKWhhvGiXJRLQ7WOx5DOWXdaRs6hbTBzOD2FhL7hnIs1l2G8zb51O7vx64fcn29y/RAhtzrUAfkbIOcbdD2QsZuMUDvGczytz58+DW//mvByWvVfoN/qpxmtenSDW5sGvMpHTdhcYaxKtZZiXoJeaNIKYGmGyovcwSWrvKP/C0z1EY7ku1gCNg3lGGt7aMhcMOInK0W3BJlq3JwOMN6O2C+fmPkj2I4u9zCNlS+YqQJIgSWaTA9oDNb3TxLmLogkrKv/ltteggkXhSTs5U9ixfEhBHUu+pzxVJtEKJYkkmbDOYs3DBmrJDih5fXGcnb7BnMMF3O8uJsvV8AGMil0BPWt6FruEGUMDyTY9HYltnVg0Cd97Wmx8pbEO78Lu4sJoppdKG+Iz1Vw3bbaVsX3D9TYrbaxTI0YilUppyUTJcztNyAtZZSgXT8iGrX5wNHhul4EeWMxWgxxXsODrHe9vitp2f76sWH9pRZa3vI5F4fyac4MpannDH5zWdm8SPVmBorpNQ6wtB57toch0byeGGUqEkka3UHTYh+WPJk+YalXssNOD5RYKnhkLWNfiDtfN0hZem879Awjh/xykKdctbi4HCW33zmOt+5sMZwzubgSJ79w8oSAgm/+9wsbhBR7QScmqtzdDxPOWNxfLzAq0stCikDXcBzV2vUOh62oZGxdLq+YiCmLI1H9w0yX++qwGlUQ1/XBANZi6XmdqtG9T1zA9gzkCFjGaQMwan5BpPlzI5NMGOXdV+5wwMNwwC2b5BtxMHhPM9erwFw92RpV+9ZTG9P7JgcSHFy/vZNrYJtUnfUKD9csG/zaIVL610e3+b3d0+U+L0XVGaGtctefmGXvJS2s30jcSB3Y37N7qCkrnX9hO3sveG1S8rQ0IVS+4ZRTMuVhL1d4BZkDOWYIFHraqWCViwTMykkVLsBqeTeXml6/DdfPMOLc3WqyYa/2vFvrH8kzNe6/JmHpllreSzUHVZbHuWMhW1qzAxkubCiVFn/6E8u8o8+e4LTiw0Wag7vPTTE0Yk8udMGHamKvYoRGnPXWF7lEaZNDCGYGUhT7/o8c2Wde57cz6fvH2Gl6VLMWKRNnc88PE0hZbLW8pgZyPArj+/hh5fXOTCc5dDozSz/pYZD0wk4u9Tk8lobL4x5aO8Av/6+/ZR+DKwQpVRW0WeXWnz/YgVQjaFjEwU+enyUl+YaikygayqbRBOkDI1UIcUvPjLDSD7F//atS5xeaOL4Kuc0lzKIY0kQBQghSJuaYkHXd9cwf7OhAwilFDg6lucvPLn/tvZB7+LHH9uZZViGxlDWYLnlq2FOQCAlhq5jEBP7my2ZsrZOzhSstMOEfKvqLpoGeUtDSkEUB0TxjQbY7aZYCVTaAYYWbCqKOVuaaWqfJ/uF0t66oJcXv/G5Qqo5I2MZRLFkOG8xXc4wW+uyWFd5PQdH8gxmbQ6O5DD0Do4f89DeMvdNF3nxeo0rlQ5xrFS9uqYsZ3O2ybGJArGUlNIW98+ox+ua6DdEQFk9nZgpc2KmDMDz16o8d63GXeP5mxpgoAiNf/l9+5PrdOeb0YYuODVbQ9c11poeo0Wbh/YMMFd1MJP94+W1Npah0w0ipsppjo5PcLWiHIiCSPKDS2u8utjg3FILL4h5aE95V+9dzJh84MjIpt9dSxoRu80Ge60YLaSodwMGc/amPNGfNNQ6Pqah9WsZc9Vun9B8eqHJeDGNbWgs1B2uVDqEUUzUy6+ydNpu2HeH2Q4pQ6l9XovqqPctuBNaPyshtvbJvQJGcza2IUhbysr3Ru6fxNKVWrvSUhE0KUOj5QY0XMkfPD/PJ+6dZKyYQkrJh4+O8htfPcezV6v83sl5/sWvPMjeod1lmI6XMhQyJrIrydkGV9daRMmer9rx6SRNOSnkbdelKQEDOWU32vvqb8zH6iECVtoBaTckim5kLd4KBiCTxkMve30jNjYpMqZGxlLRDRvfeivhwEiy2twgxvFd0pZOkORfSAS5lE4soeOG1B2Vs+gEyq1EaIKMIZBCOZTYpsFIPkXGMji71OwzykxdYBkah8dyzNW6nFtWQpRuELN/OMdowebCSofhvM1I3sYyNAYzFlLAo/uHts2TemmuzrfOrfLKQp2zSy2CSK2Pj40X+cxDU30r6FLa4nvrFb55doW9g4pkLgQsNrrcN10kaxeotwPCKGah7nBoJMt12yCWLnO1LrXT6vrHvTkKdd/q7C5PrZjSCWNFWujFeLih3PH7lDZvRJcEERja5jdxNxSoDE0jCG/YvGdMbVMzztQ2ZyHrwEDGoOlHrLc9ooykkLYYylt8+Ogo4yVb5RkLyFgmP3PvGLV2wA8vVwgjmayblfDH1FTEiBCKSL7xXKj6sE7DVZ9yIGvd5CizFXeiC/EvgP8c+GcAUsqXhRC/BdyyCXYnYRn6TU0wAfhhhBSCwaxF3fExNMFSw+HYZJH5KpSEyZGxPB0vwtAEGVtnve1ztdIhnzbZP5zl4b1l/uX3rtL1Q2rdgEf3DTBX6+L4IatNF9vUWGx0mdQy+GHMQNbisf2D1Ls+J6/XeC7xdneCiHLaJGVoyUUVHB7NM19zsQyd33xmjoYTkLZ0zq+0+IefOUHTCfjvv3SG75xfo+uH6JrGZMnmiYPDLNS6jBfTHBrNMVHKcGA4q1QsSZNA27AAOj5R4OBIXqm8/JCMpXw9758ucX29Qxir4xnMWMzVHERiZdJ2QzpeqOwtemoQqRaLRjIgmrpS2238ujTciFeXWrSSQL+d0PXfWZlge//ul9/uQ/ixRj5lYulJAehNaIL1GNWT5TRLTQ9D09g/nOfaukPXDzl5vc7f+u1T7B3KsNTwGMlbylogY/Hnn9i7bbPqkX0D3D1ZIGXor4nB+oUXF1htepQyJr/2nn2v+bOkTJ1ffnwPTTe4KWjzrcZLCw0qLZ8gkozmLXShcb3a7TM+3SBm72CGa+tdgliiobx7NQ1aTrjJPrHjx2gi7tuixFspJ9ze0sQyBE0nxNAEbVeNVwMZkyCKVfCyoTNf827KHtQBxw9xA7WbHSsq1nspY5JPmbh+zGrCkNKEKlLZhmJ9pQxBOpGf+2HE3kGlvr241sLxIxqOjxdGTJVS5FMmUSw5NJrn3skCOdvkW+dWCaKYphMwV3U4NVen40dkTJ3RQoqMbfBz903w+P4BZqsu/+ibF7iy1iaIY3KWgaEL1tp+PzA8pW8I6NVF34fbjyRPXazwsycm38AVfxdvNQazFmlLLepH8js3EgayJkO5FLWOz0g+1bc+Tlsayw2HrG1i6DeyKHK2KqwcGFYM/L/xoUPYhs6S67JvKEvd8clpGjODWT58bIylhkM5Y/HJ5P4xdQ1NCCxd4/hEgXzKJJ8ykMBdY8raZd9QlpPXa6w2PSxDYzhvkzZ1PnTXCE9fqfK+wxovXK/x75++TsbS2TuY7ec9/Mw94yw3FMkgZeo0ugG2qWEZGrW2z1fPLDOUs0lbOp88McGR0Tx/cnaFr55eZryUpu2FFFImhqZUl+WsxX/5M0f51z+4xlDWouGG1F2f+YaLpQl0YWMbOp+4Z4wH9wwwkLUIY8lYIU214xFEEfM1h995bpasZfTnqp7itWdPV3OUunj/cJZ9gzn8GC6utlUWWbK22rjx260DWH6Hzk/e3p39zaP7BnhhTilNHtt/e6YpgLVDPs9ONolbkUsb/dTe8i481gHuntqeoV3p3LCD3G0wtrO9g+RNyKW2b5a4G7Jnw21sQ9bbHoamcnTvRJkrimO0pGDmb6QeS9R8IyVBpBre90yVmKspWxTVCBPkUyZTxRSXKm3CSDKYNUkZemKfpTNf75K2dIY0i0Y3YLSQwjI0ul6Ipgsa3YDzKy3+5ocO8cJsne9eWANUHvDxiSL/0x+fpdrxCSNJwwl4/ppqqv7w8jqfvn+Kp86vcb3aRU8ywqZKaT51/wQzA1kKaRPb0Ng/nOOluQbVjs9vfPUcL83V+YtP7uevffBQ/zw8c2WdH15eJ2vr/PJjexP2q8onHMzZOH7Ey/N1xotpnjgwRNMJqHZ8lpsuMwMZxgqpH4sGGMAfvbzE5dV2kh8SYRt6XzUwVc70nQlAFbZ/6vAI81WHcsbk/HKLjhey3HRxgohSxmTCSpNP6Sw3XJVniuTYaIHLlc4mJf7bBR21TiukLZwgZLnlcaXS5v2Hhzc97sxik1rX58E95R0Dyt85xl/vYjeIt7n5hIxpJkrUMFLxCZam0YqTZnqShasJpUwezltoQqMTJNbQSYaLrmkM5lIEYUzW1ql3A0DiBpIgvpkRDpvzZFSG9O2Pf7KUZrwEF1baRJFUhTAh8Le8h3KLCEkZBrqmMVpMc9dEASeMeXDPAIWUyUP7VDZ1ytQppW0e2pslbeo8faXGlbUWOdsgZeocnyjwX//sMcpZi6+8sowXxvzsveMM5m5NLIliybfOrdJyAz541wgP7b31vP9aml8FE5q7nF9tQyBiRYbq+gEvzzf4vefn+S8/fhdnl5qstjzOLbf40F2jzNccnMRFaLKc4TMPTXN+ucXBkRxXKx2CSCaFevmayKcbcWaxyddeVYSaT52Y2NZC8Y3ip4+P8eCeMuWM9ZZGJbyVuLDS4o9fWcLQBJ99eIbhvM1kOU0pY9LxQg4npJWmE6ABrq9sLrt+mFgAGgznU1TaLi032nZ/796mICRQjTJ/Q1H7Thld6oBt6mQ0QdcPCSKVcW7ogo/dM07bjai7KzgNr99sALXvsoyAfFpZGtYdpdRquCF7BjJ0/BDHj/jyK0ustT2Wmi66EPzOc3P83Y8f3dWxdf2QR/YOUGkri+NXFpt4oVIVGZpQhFt54/yUs5ZSLEWK8NQ717oA29apdvy+g42ZkJbW2tuT6/rkAHlrNY8mFDlBWWsn1rDBZkVSygA3VM2PnjKr64fYKOeTXl2jB0NTVrEdL+pf766nXBPUkllp3QxN0ApDcimLUtqi7oREmmroDOSUha6yC1dkiuGcjT5ZoOUGeFHMsfECD+4Z6Oe+BSHJHjpm33CO9xwYYLLcJpPszQ8M5/EjyVQpzf0zZeaq3Zsa7L04AzdxjEtZOh87PsaHjo4ykDX57//oVZ67ViOWKi/MDWIMTcM0NLpeBELy/PUa+4dyHBzN8cWXlmguNHnuahVdSLpJs8nx/U126THqPi6kDRZuQ4QyNTg2XuT8Sgs3iFSkyAaix3bf0U0WoWwmZRsJeTSKJZahMVlK0fUCOg11bxVSOkEcb3LrshM1tyYUMbATKvV0JNWxzAxmcEPJc9eq/Dc/d4xffmyGL7+yzFDeZqaU5erqGoWUSSzhxFSRjh/T8QLQUA56ocpb6wZRvzk7WUqTszQ6qx2QsHcwx2zVYay4c/71nWiCZRI7w42/e0u7G9E2hpc5W6DrGlGsGMGjVhodeGz/AP/xTx3k91+Y5/xSi+WGy/6hHNODaU5er3F5rcNA1mTfYBaBYLyUBqEWFqPFFIM5m44f9jvYtqHxh6eW+DsfO8KTh4aotH0ePzDIpdUWC3WHoZxNOWOy3vEZzimrn72DWX7hgUkOjeb59rm1/kLPj2JiH0ppg8trbaSE9x8Z4tmrVbxQNaPGChl+9Ym9HBjOoWnKg/0PXljg7GKDmYEMuib4uXvHGcnbdJOGl0QxtTK2zv3TJX7uxDj3TpX53PNzaEJwcCTLQ3vKNN2IWneFII5JGRpCE7Q9Neh13Dixj1RqsW7i3a1rAi3e3I2NpbJxgVvLJN819frJQilrMZgxqXZ87qRBS6/ZUcqYHBrJs3cww4+urJMxddKWzvsODfHctSqVtsf1ahc3VMyHtZbLQt3l0X0DOH60o2JrI/Nut3A2+JNvLIy+FqRMfcfCwFuJq5U2kZS4QcRax8P1YzQkmq7CVzWhstM22q8fn1DkgVY64Epls6S+F9gKr+0uUBOnRiFt0vXD/gIplgGXK2Gy2LYTH3i1GSukdJoJ68M0BIamNtsZ2+ChfQMqVDuMaXsRD+0tKYtCxwcEB0dzDGVtTi82Gcha/Ox943RclTtk6BrljKnuJ5T9LDKm4ZpMldNcW+9S6/hIBHdPlZivO33mtm1qfduwXNri7qkSLTdkreURScHR8Tx/+2OHeO5qjfPLTUYLaWYG0nzu+XkWE3sCL1ArU8Vk0immDJpeyEje5sTrsNt4F28v3DDqWwl3A7U82m7EWG76/OByhdF8iiBSlmaaUA3lY+MF6q5aK3STNUgpbZFLmWRtk7Fiqm8xtmcww599ZIafvmeMx/YNYmiCr59ZwQliHhnNY+kaf/zKEot1h0f3DVBIK0KQrgmlPkhyyKpdn7yt8mvGi+nEk15HEnNhpUUYS350eZ2T12sEkaTWDZgZVAy/w6N5TF3btIn4gxfnqXcV2afrhRRTJm4Q8atP7GWqnOH8SosXZ+ustNQi/zMPTZNLGXzyxDj1bsj+IUX2+RsfOsRq02Wh7rDeVpvClhti6BqHR/P8mYdmuG+6xNOXK3S8kAf2lEDCdy6s4ASJVYZ/4zpoPRuIBBrKfnSh5vYL8Zah8epik7snVYNn49i222iKnawrTuwp8YNrjds+//RSXZELkLw83+AzD9/+PfUdyB27tVXd+Ozd2t7IHbLDBrI3St63sxbqYRsexbbI7NAE67g3jmW7l5qvdam0/cQqa3fvtRXGBneEIGl89ebBjfUfDYikUBa9Qt1jI/kU1W6ALkR/vkITlNImThDTdkOKAzaGodF0AnTN4lefmGbPYIauH7HWUqHfnz85zwuzNXIDButtj0urrb4yM5aKHPcfXlzgwb1lDo7mmCilWWq4ZC2djh8xXc6QMnX+5ocP8/VXV8inDSaKil17/8zApvvozz48w3rL49vn19AEVNp+3zKqh+VEadnxIi6ttnnmSrX/t0/eN8E3z65wabWNJgS/9t69/PLje7lrvMBXX11iKGPzyL4BvDDiP7y4QK0b8PG7xzZZKL5TIKXkylqbjhfywmyL/UM5Hj8wyFLD4dJqi/ceGu6vPRtOQMrUODSqbOpXmw6OH/N/fv8aq02X/YNZbFNnrJjqf1curbapOwFX1js0nOBt9T7sKXI0TTmlaJpgIGMzkLV4aa7BSstjMnEgWW64/SJ114/4yLHRbV/z3WToHy9sN7RLqca/saLNUE6tUb93qYIbRCB0pdI2DZwoJmcplVAUhUwPZNCEYKXpEknVRLt7okAQSy6vdohiSbXrK9cJkkJessbvKcRU9kx8ExlXQ+XnuMFmFVrDCXGDNoau8hIBYoFS60JSfFVrrgiVN7PWdvmzD03T9iLGi2k+8tMjVFoBJ2ZKrLZc/sVTVwDJ4wcG0TWNs0sNVpseXS8ilzIZztl85sHpvkLko8fHCKOYwZxN2wv50aUKl9Y6zAxk+Mix0U1z49VKh9MLam3w/LUaH97he/R6IHZZhDGSQqZEkLf1ZH0mubjSImMa6Hpi+S0VUeeu8TxfeGEBL4w5NVvnyYNDfcvDkbxN01VkqKxlbPv9j2JVPL3VvtoJbpQZ36xsME0TjL5JMQTvFCw3XGW1FkkqbY/hvE3GMvi19+zbVNtoeSFuqPYkHS/i/8/ef4dJlp3nneDv+vA2I73P8t6092igG0DDESQIgp4gxSG10mglcaXZ0aOZkZkZabizkkbULCGKcgQp0IEiCG8aaIP2trzNSu8zvLv+7h/nZlRmVWZ1AWiSaKpfPHiAyoqKiIy495zvfN9r6qY4g2uuj9uyOuqL7weaIrIBsdwtys0tjwmtSd3g9uvtDVWq6wcUkoZYMxwPzwvIxDR+4b5RupMRur+t81vPXsN0RCZwEFzPOau2ndDSWLxo3XTZ25dksSaUoCs1i8f2d3N1pY4kC6PVDSLMW6Fle2RiOpmYjuW6LNdNFivt0I3CE+TXMJvJdoV6NRPVcHyfcvP69e8FdD7/jTvG8wNqbXvHAdfmn9+qpPADYXUry8LBJqooIs7B9sM1ViYZUdEcj+FcjIimcnI4w2tGhWREoW17XFyuUTdFP0eTQVPFzzeIhxt1hR8u6poqd7LxJMDQFT58pI9Kw+bZq0VihsJILsZLUyWKDZuG5TLRHWdvT5LzS1WurjZxfR+Q+N2XZvjAwV6urDQYL8RZqbeJ+TLpqMZi1erUZj3pCL8wPMrF5Tqvz5Q5s1Dl/FKNX3xgbEvv8K6xHE3bYyAT5bWZEjFD5eMnBkgYGt+9us5rs2XWG8KO1/WES9Cx4QxRXRaxA45Huelw2asztd6g0hLDLjf8PPzw81AUkZG2MZxSZbF2SpKEodhYN7AIUxEVy/VEbqUsEyAUVBFNRAkIZbZEbyrCSs3E2pT5JbGzvb4MdKcNelMR5kotbE+4HkR1DVUSxG1NVTg2GOPiUo2mIxSfchAQUSUsN8B0/c7vFSDcLWTZpDtpYLk+z1xe48kLq9TaLkeHMhwaSPHydIm+dIRCMoKmysQlib6Mwdn5KnXLw/N97hzJcHqxRhAIlfLe3gRXV+rIkoQkBTRsh1T01mOut2MIti5J0kT4uyFJ0ieApbfheb9vyBKkIgbFplCL7O9Nsb8/JWSH5Tb/7KsXGcnHyCcNhvUYiYiGLEkdRVi55VBp2RwZSjOYjfIPntjPq9Ml7pvoYq1hMlds8dK0SyKiosgSTcthrtjk5Ei2s2Ec7E8zlI3x4O4uKm2Ho4Np6qbLQqVNbyraCT597EAPe3oSuL7PV84sUUjoTK42ubLaQFdlPni4l//u4XFemSqFQ7ECu7oTnddZDn32V+oWi5U2ri9yQ37/lTlWaiYH+lNcWq5xdbVBVFM4v1xHPStzer7GhaVqmDEW8N79vbw5X2G8EMd2hVVjEO4gpYawiJFlMejwfDGwU2UZWZZIRyVqpksQFo0bddVb7VM7NWfexTsTPakIbccjeAtmyfeKjSn/+w/08LP3jvLkhVVsz+f12QpHBkROU0RTcTyTRETlvoku5sttKi0L0/FZrpo8c3mNjx8fuEntNVtq8vsvz5GOanzqruHbDqT98JF+LizV2N2TeEczxIJAqBDiukLDcoWVJRtMYyF3Ft73179RH7BcP1S2BOjKVsm9LkFXyqDadpHDRh8BRHWZurVJUh0eaP3QU1HXFHpTOpoqyAv1TlEtmoMxXSWqyTieaAwmIxqyLCPLIi9FUyUGMzFsz2dvb4p/+KEDqLLEucUaXz27xORagw8c6uWZy2sYmoLl+PhBQNt2WfF93pgt4weCbVNq2tTaQilTSBqs1i10TUGSYG9vgtW6je36lJs2vSmD1ZqFLEnEI+I9inBRhUf2dPGTd4/wlTNLYcitwz/50jlmiy0UGR4/IIKi/+3Tk+TiOusNC8v18RCVT+AG9KU1orrKw3u7eXR/N3ePvWs59E5DteWihY2Neisc2m5zRgqASsshoikM58RQKKYr9KQMejMRxrUEcUPhyYur+AFCYXikn9myyOv8zacmOTyQ5oHdXdw7cf06mS83+b2XZrBcH12VGczGOLdY5dJynTfnKvyPH9yH4/koslDEGqEPelfIUv7YsQEm1xoMZqN85cwylutRbgoW2EAmSi6ms1w16UtH+HuP7UFR5G3tejYKbVmC3T1JZFninvE8qiLzmacnaZjCSvfoYIZjQ2l60xGGsrGb1u2+VISm5TJXFLaR903kGcnHWa9bpGM6E90JFsotfvPpazRMh5+6e5gfOznEP/yvp/mDV+ZwwsOFrgoSj3tDsZKJ6diuWFOimszunlT4vrdf62+3kduT2J6RJkLXZwBxSNwJ0+vNzmtNrTd3fFzCkGlYvsiX28EOMQhub9+6YyTH5FoTSZK2XFO3Qjq2feMosYn1favyb/PwqPcWfoiZiEzF9NEkKKS2/2wP9CU79UhmGyVbueUw1hXn7ELl+6pZDEWo4H0/oLopX1eVQFVlNB9szw8bxUGHTasrCn2ZKBcWq+gyuEEggqClgLrpoCgyESRhg1s3BRNbkrhrLM+P3zEECHusN2ZNnrq4xnLNZCATRZUlIprCl04v88k7h3hwV4HVusl3r65TaTmUmvCz94zwuZdncf2AoVyUn9jfSzr8bPb3pdjdLZq1z08W6UroN9XqxabFz9wzwmghzqvTZXZ1Jxi+gTF730QXfhDQnRQ5x9FJ0fjoThrCElASzNKW61Jt2/hewHNX10noGtm4zjfOLzNfbLHeFAfthKH+hQ/B2qGVzAZZaanaRpVFTbABSZK4f1cX3zq/Qn9GMOjXahZzZcEYNlSFR/YWODVX4ZvnV1itWx0HgkrL5rtX11gsCzvqeJht0bBcMtE4EUXC9nxhPxV+ZrdbWW9WyNwO3uqZN64ARRbEyXLLYSBjUGuL+m5fb5LCJlWLpgj1rh8Ewk1kB/T88M0138UtEDe2Fi4ygCSRjKikoxr96Sgt2+XT949SalioisybsxVenirRtFyIG7xnd56lug0SrNVM+jNRVmomvSmDqK4ymNBRZYkXJi18X9hAabJEgCDKSXjYnqihLM/H9yEZETZcKzVBaJBksEPFkSqFWSj+dTtH2/U6xIWkrtK0r9sjarJENqGxXBNRGq4X8OJUiRMjWdbqFpDuDKO+dHoRPxwW9GdivG9/N6fnK3zm6Wskoxq7CnHGCwnuHBMKrqVqmz98ZR4/CHjicB8Xl2s8eWGF5apJ3FA5v1jl0w+MdWqvQsLA0GQsx6cv8/YOZHLxCFVre1voDRiqcFMazseRJZEXGzEddEXhztEcVVPkmWWiHsmISswQ/z06lOGV6RJ7erZaN0qSxGP7e+hJRnB9n6ODmS2vN7Xe5EunFoXlvKHQnYzwoSN9N+WMHh3MYLsBiixxoE/UZ67nM7Uu7M2+HxXxhlXtf0s4MZKl0haRMBv7/gY29zbes7ebxUqbuC5yd9caFpIsRAjmbTCVZMJm+w0/lxDnbD9UmdiutyVHSuRGycR0mUxMp9Z2qLcdNrUSbtq7NpQoAaLO3IifsF2fwPeRNYUHdnWxXrd58sIq8+U2qixhhPENqiyutbiuko3pJHSFq3KDwBeuHrt7kkiSxKm5Cvv6kuzqTpCLG3zt7DKuF/AvvnGZX3pg7C1z3A/0pWjZHgvlFlNrTfrSUdbrFq4vsotNN8D2nM6AyHJ8LMdn51QwoXxzCfs0N3zYukzHkrVp2hTb1z/EDReeiCpjOj5BEHTUQKYNkixEFT5CFaaE2Y6KFCDLMv0ZnTtHc6iKzGy5zXghxr3jXQxlo/zjL52n1nawXI9CMiIGr7qw34tKws0tF9OptCzajs9ILs5ALkpPMsLdEzkO92eQJHjhWpG/89geDg+mWay0ObtYY71hcXw4y+GBDK/NlHl1ptzJcSskdYoN4S6wvy/JC5NFDvSmKbdtyi2bHzsxSC4u8sb60lFenCzym09fZa1ucWQww0AmehNZNZ8w+MTJQQA+eefQlr/bHV4HpYZNvWWF0UoyJ0eydCcNsjGd6fUGfiBsOFu2u2XQqUjCISIT0+lKaMyVTRFD4vlYvshEy8eNm+pAWYKRXJSZUgtVFuKdStsJM/uEe5MSEqrb9vWBFFzPATPCQ5ckXVdtg9jvPS8gaajs6k4QBBI106EdZnOrikQ+YSDLComojuXZQi0eiH0z4PqgU5YJB31CJef4AY/t76bYtFlv2tiex2qtTbnl0J+OMjKeY75icn6xxmJFuNQ1QvWf5wcMpEUUlO8FDITkdNMV60hfOsLfe/++LcS87fB2DMH+BvBbwD5JkhaAKeBn3obnvW0o8tbN0Q9gvWlDEKDKMNoVZ6bYYnKtThBIHUVBd8pgT7c4IM9X2sR1hb50hHRMY1chwSN7ujFUhT09Sfb0JHn2yhqvTpcJgoCH93QxkI7w7JU1vnu1yNWVBo8f6uWvP7KL1brJ51+b59pak0xMMKz70lH6MxJ7e1PYrs8fvjLHbKnFsaE0j+ztZqlikolqrNRtvnpuman1Jj2pCIcG0/zi/WPcO97FldU6+biB7fkdlsGhgTRLVRNVhmevCNuTL7y5wOGwsHj+apFURCFhqBSbIveg0nLIxnRaljiYH+hLkYqqvDFTwfZ8BnNxHjvQzavTZboSOi9PlbBdHzVkdV9dbXQOhb3pCHXTpSclVBDrDRtVkXA8Hzlgy/T3RgTBuxzAv0r4neenWayYHduK7/UQfiu4Pjx1aZVcwmAsH+elqRL5uE5fOsIL10qi2RfTeGRvN7/y8ART6w3+3TPXKDabmK7HbKlF1XR4ZaqE6fo8uq+bhKHyX16a5Y3ZCqmoxv27ukiHLP+3Qm860sn2eacgCAKurjZIRrTOe5ckqDQtFiomrufTldBxwiyTjY3QDwSrY4O1o8rCL3ip2g4Ltq2vEzFU9vYmOb9Yo9Z2CAk5Ye6aT7Eh/MePD2WpmTazpTaW4xE3FBqWx2jSoO14pKNKJ9NtsWIyV2qRjCrEdA1VEX7H3XGhJDGiGpmoRqllE9NVSg2L33tphlLDptJ2GCvEiOsZdFXmfft7OL9Upz8ToT8VoWm7FBs2C5U21baL5fj0pg0O9AlZfaXlkI1ryJKMocpcXW0R1xUSEZXTC1X+j69d4vhQBtcP6EoajOXFIO7KahNDE4yloVyMlarJi5PrzKzVWak7aIrEF04t8sp0ueNdvF63WKxeP5T6COaq7QV0pyI8uu/tY4G+i7843Leriy+cEs2S+/cIRuxOh+0AcZj3g4C+dATb9dFVhaSh8dFjAxzoT5GJ63z59BIEAa/OlPiR4wP89rNTNC2XL55eZLRrqwXXy1MllqsmDcvluSvr/NL9Y+iKTN10ycV1fvu7Uziej64ofOhIHyfDnIbT8xUqLYe7xnKdXMVPRlQqLYeRXAzL9YUNM3D/rq6bfqdyaG82UUigqzIfPz7AldUGu7oTZGM6r82UiGgK11Ybnd/zUH+a/kyEZ6+uc2ZBKK82VATVtsMXTy3y5mwZH5gvt8lENQYz0c5gYAOfe2mGq6t1HC/g916a4Zmra9RaLgOZiMgHDETx7/rX9ykJyMYUkhGVunm9wR03VHZ3J9nft31w+a3aJsYmkkDXDgOdb51b7fz/W+Um1DexbdcbO1tiRBSZBn6YgbZ9A/rRfb187bzIL7rV4O3uiRx/dnoJRZY4cpv742YLws24uFjr/P/mLUIQe1MG81Xx+20QxraDH37yUmjVsR0m15qd+rO+DVv58ECa//Tc1C3fz07YaLAgSaTjGnFDoW66mI5HEGYb3D2eZaKQ4JsXVig1bdq2Rzqm8/iBHhzPZ7VuYbqiZkoYCgHQl4nyxKFenry4SqXl4HmB2DcVifX69e+9Zgovq1xCpxUSkI4PZzqKNtv1+dypWdq2Jw7DkkR/JkI0JHSAaIpsDMBMRxABVUXmPz43xdfOLiPLEv/zh/ezv09892/Mlvna2WWatsuvPDTOR49ub81bSBp8/Phg588/fnKQF6+VWKq0+dffvkJcV1mrm6w3bP7pFy/w0J4CiiThBgGzpRavz5Rp2i4t26MnFdnWyvL7wWrdZKbYYk9P8pakp5liky+8uYgiS/zEnSJj7Wtnl5EkoVDdUDwB3Dma4+hghm9dWMHxfI4PZViqLuL6ogn/maevcWmlhu36LFZMrqw22N2dwA8C1uoWsiyu86gqU25atB2PqfUmbS9AVxV0RXwOyYiK4wlW+sY1rUphXoe/9Zx1u5+WaNSENjn+zv9u47n9kKCUiqjMl026EgaP7C3wNzZZYYJoFn3yzkEqLYc9PduvmwCt27Rjexc/HPCCYIuFpSyLplZvaHk8U2piOx6vz1ZIRTQe3deN6wcdZ4eW7fKegz0QSCzXTDRF4lvnV8nGNNYbNmcXquzqTogmZkLHdn3ajkvcUDEUBcsT7hteIPJ6N67XmincGoyQfe75IaNeEte2ooh9wg0t/TZcHVUJ9vclec/eAv/5hRnWGxZtNyBouYzmY8xXRN7VYrlFJqpQSBqdgf+Z+Sqn5yoUmza96QhjXXG6UxHed6CXA30pnrmyzvOTRUDiuckiHz3aT6lpdywliw2R2ziz3qLUsulLR3C8gDPzVd6zT+RfpWMan75vDNv1O+v024XbyblSJIn+tMFipU0hIciNuqwgSRL7+lKkIyr7+1Lk4vqWzK77d3Vx73h+2zpXkiSO7uBocXW1geuLs2ourtO0POZKrZvsDlVFvomU8+TFVc4v1jA0mU/fN9bJ57kdfPn0EldW69w1muO+Xdtnv/5VRMJQ+ejRfgCalsvLUyV605GbPu9sXOdvvGcX19YafO7lOZZrVuda9m9DQn/jviIhiLGZqEpfOsJIV4Lnr66HOT8BXkgYIgBZEk3utbqN6frISijVDLGhCk0ZEpYnappURENCqFIO9KX59P2j/Ifnpri22sAHZkptXp4u8mdvLlFsWluuU9v1SegyQ9mIGIqrCqmohumIHsnF5RpzpTZjhTgH+0VdVGzYvDlfwfcDetMRPv/6Ar/68PgtSdJeEHB6vsyL10r0pyPYrockSQS+z1rdoiuucbAvwWzJZLVuvqWtJNxafGD7YEjizGMYOrSv9xoSuoSqqiQNlft3pTi3WGW+bOIHYqimItwjdnXHOb9YF2R3CSwvIOoH3DOe4xcfGOPffHuS2VKT+XKb12cqBIi8s3xC5+RIDsfzhftB02a21GS1LgjEB/uTnFmoUWraqKpMw3IpJAJalsdwPsZ/eUlkXC+U2wxko3z3yjr7elPs701ycCBNEAScmqtg2h4j+Ti5hEZvKoLpePSkDI4MZnhgd4HPvzZPy/b4yNG+LWdkILQP9InrKt1Jg0/cMUh8BwepzQiCgDMLVWzX55989ADfOr/CP//aRRwv4NJKnS+dWuSRfQXuGsvRn4mihYOjIAh44WqRF64VRWaiL4ZVSBIzpbZwm9MU4hEV3xRZl03LwfX9Tl9dAvJxjWLLwVBEXT+QjjJbbqFKoZo5vAYVWSKmy7QcGd/3UMOhr67KWF5AXzqKHwjVZMP0SBgKV1YbrDdsXpoqYagKluuTMBQyMR1FEk3+tbqF6wVU2nZHXS1L18+yEmEGnCwhb8SnSDCUifD+Q71ENYWvnFnGdHw8H/7Vt64Q0WQyMZXjw1kuLtYoNy26kxG8QBAforrCeHeChKHyzJV1rhWbjHXF6UlF6EoG3D2av2XduYEfeAgWBME14H2SJMUBOQiCt07afpthOlsP3ApiEVNkCVmWmS+3aDt+yCgKuH8iz+MHe+lORejPRHl+cp2Xp0vs70sxmI2yUrNIx7QtTe7XZ8t87qVZFqtthrIxGpZLuWVTNz3atsts2ePJCytMFBIUkgaOF1BsWiiyxGLFxHL9zuBopWYytd7kzbkKk2sN/EAMsxYqbRKG8EiOGyptx+PbF1bZ25Pk7GKV71xcZSQXww8CHtoj2J1PXlglHdX4xMkhnry4iueLLJxC0sB0xKHp5akS9+/K8/Debp66tMpKzeTEcJqelIEfwB2jOX7rmWucnq+IgNuEx9mFGv2ZKIYmM5qPU2077O1Ncmq+gh8I+8O4oRKPqJiOT6ll4zgeni88YIUSQtpoUWBu46NT+wHk0+/ihwuW47HeELYVnaHn2yAH2/wUSzWbz74wzaH+NPv7UuiazGP7e7Bcn6Wqyf27u/jAwV6qbYdXpksUmzaGqrBQafPEoT6WKibnwiZcNqbx4O4CqiwT1RQgeMsAxXc6Xpoq8cJkEUmCn7p7uJNFdq3YEoNrXzRMdXWjCe93DrxSaEEC4kC5VLOZL7fx/dAzmuvfU0JXeH2mgul42CEThADmSm3U0KJWDQJyCY0LSzURdCoFVFs2PhJG1WJXIcFUUVgD6qrSeR7PE4qwbFQjEVFZrglJdTYkB6iKjOv5FJs2Xz2zhOmI504ZCvfuyqMrCg/tKWB7Pt84t8zZhRp+IBp2hirCPse6Yox1Jai1nQ6TRUJiOBcjH9eJGyqlps1a3USTZZqW2wltzid0/u3Tk1xZbZIwVCRJ4tJKndliC8v1eOrSGmtNBy9sjrmuyGXxA2FBZ7oeMUPGD/zQuxzqpoNpu7wwuc4HD/Wy+zY29nfxw4VUROPQQBrf9+kKh0YbxeJmyEBME9djfzrCQqWN5wsm/YYf+NXVOvmEQUxTuLhS58pqg+WayUg+zu88P00qovHZF2Z434Eejg6Kwe/e3hRRXenYzDQtl19+aJyEoVK3XCotm5liC1mSeObyGkcH0yzXRH0B4Hg+790vBlF96Sh9ocd2RAtwPJ9Xp8tENJljQ5nOoc90PD73yiyW47O7J8GHj/STTxidDIxXp0s8d7UIwP278uQTOroic//uPK4f0D4v6oNy67qn/eWVOpeWa7w+WyESqkLrbQdDlXhjtrzl9TNRjXRUY6VqMltsMbkqGHhtx+2ENPveVkalIov1RpVl+jNRIqrMV88tYygyHz7Sz8FNQyCV677faeMWB91Npc9OOVwNa3vf/hsR1a6/Tj6+c0OsZonXcXyR5ZDbJnekkLr+s+wtnuuPX1ugbgo26hdOLXF0+K2zyLwdhmBr9VuzzjeQjKgQDsHSOyjZ4HoNaXsB5aZJ3Lg5F6S16bO1nJtrTkNTqLad76tUUSRo2B66EuC4Proi3guIBofreFxYrvMz9wxzfqlGuWER0WT29yb52LEB/uzNRaxNjY2YrjKQjfCPP3qQ4VycHzk2yFfOLnFxqc5CpUXb8ahbLtWWQzqmcc94niCAVFTjxHAW3/eRJIkzC1WSEY3u8Bxgu8I3/xMnBztW6j96YpDFSrszZDy/WOMb55dJGCqHBtKcWaji+j71pss3zi0z1pUgoims1S0uLNVoWi7/8ptX+Psf2HdbhKDXZspcXqlzar5CfybC5EqDAHE/pqNCBf3JO4a4ttbsWDQnDJWxrgQThcTb0pj0/YDPv7aA6XhcWq7zM/eM7PjYuZJYez0/YKkiCAQg6p9Ky94yBANh7/nE4b7On3/u3tHOMMt0PLriwgYsE1Gpmg6JiEouplM3XdJRjXOLVXx/I7dOYrVmc/+uHC9eKwkFCz4t2yVlqNQkr9PEd4OwQRVmMHwv2FhN5PAPt5Nj4CHWZMtV6E7oxHSFXOL6PVptOZyarzCUizHWFe/sFTvhdjP/3sUPCW64xFz/ep1aark44YbnBwGVpsXTl6AVZt2VWjaeH/D1syv8Dx/YR9xQWa6a9CQj/P+euspUsUlSV5EkYe9UNV1ihsqJkQzpmM53L6/TMD2CkOBx4/W6se9tQA7dJmKasPIKgoAgVIMFmx5jOh4vXCuxtzdFY6aE6wsF6KHBNHeO53jy/AoN22OhanN0MN3JxpwuNhnKxYnqKo8f7OHeiTyu5zNfbtOdMvjI0X4qbaejgAWRtbpWt7BdnxMjWabWG+zvT0EQkE+IQeJ4YetZNKor39NA53Yhskjbt3yMLEmCNCSB6fr0pAzWGzaZqMbV1QbPXFnH9QMe29+zpT6CnYlet8LhgTTz5RYH+5OYrk8qqt22JWEz/P5t18f2fEQIylvDdoW9N8D5pdp/U0Owzfj2xdWORfEv3D96E0lEkiQmupM8uKfAM1fW8HzwA5+EIVFqOm+Z86pIW7NgHcdnybZZrdksVoVzT0RT6M9GqbRsVmtmSKQX16DtuCBJKJJ0U3spAMxQxdWfifHXHhjlsy/OYrk+qajKbKlFIWlweaVOMqIR0RVimoodZo0DJCIiziMA2o7PdKlFf0YMSg4PpLm62iCmqx33IBBOGA3L4Te+fYWGJTIQT45k2cYI4yacmqvwn1+YwXF9Li3XqbTEgEOWxBDfcn2qpoPjbpxYNn0Xm37vzdgYjOz0VQi3MJ+W46PJ4vvoCpW3paaN6XhcXK6T1BW6ErrIGfM3zjESvakYpYZLy24gS2IY3ZvUGe9K8L9+6QKvzpQ6GV3llk1Ek0lHdVzPx3Q89vSk6E0bNC2Psa443zi/DAFMFBJYjrC/lSVYqJjMSi1kCe6dyIVEHbFGPn91nbWGxWrd5J6xHJoi84evzhHRZCKqwcdPDHCgP83Xzy1TaTl868IqP333CAlD5efvG93x+3jsQDcXl2tosszP3ze6bV6j5wdcXqkL1XNYA15dbfDVM8vUTZsLy3VatosbZrP5fkDT9rBd8b8RTeH8Uo39kiCb/d337+W3npnkyQurtB0XXRHqedP1sb0A23MxFeHc4Xo+Xbko6w2r8x0rkiBKHx2IcXapLuwyPeHU0rKFWk/XpHBAFtAIX8NThfpSDdfodEQlnzBYq5sECFJWJqZyfkn0yISt4cb+GpCLax1b0oYp3GtcN0AJreH98AKVJZETZzluR9E2kovSsMTA98hAmmzc4H/7+CG+fGaJYt2i2KwTUWUWqybj3QkhUjJUWq7Ho3sLgngvibzdP3h1jvWGTVSVOdCXClWaAbomM11svmXm5g88BJMk6X8Hfj0Igkr45yzwa0EQ/MMf9LlvF+4NK6+iSGgSRDWF7pTBXLnNUDbKSFecHz85yBOH+5Akien1Jr/x5BVOzYvpcURXcPyAA30p7p/IsVxtk08YJCMal5frVFo2yxWTctPmsQM9dMUN+rMOkhQ2agKJN+cq/K337ma21MJQhR/ngf7UluyfnlSEQlJIMAuh6uEXHxjjI0f7aNkel1fqvDxVYqbYoith8NzVdV6bKbPesMJJrniu12fKLFdNlqsiG+PQQFpMzXNR1uoWmZhGuWl3DiL3jOeJaArfubjKqzMV+tIR7pvIc2Qgza9/9QJtx8PxAgoJg7MLNQpJnVLTIRvXieoK6aiOIkkhU92jLxWnPxUhoas0TYfWJiZiJJQjllsOQXhD34iut7g438U7B9+8sEIqqpJLCLm6FwBBcNt5Hjtho5DYuHxqpsfZxRo+wqJrttRiOBcjYWis1kz+7NQiyzWTwXBz6k1HODGc5X0He6i2hfrG9QN6w6L6w0f7GM7HONCXQlNknr60hk/A/RNdt51Z8k5BO2wABqGsfgMfP9bPTLFFVFNIRjWRXeUHxHSFQsKgbtoUm06nuFIVSfz78Ls1FAgkCcsRG+ByzdrWa3rDYjEATMfnqYtroec4yJKCpIpNv9Z2KLVs0lGViKZi2i4JQ9iV7O9L8v/5sSO8MlshF9d4bbrMqzMlVmsmx4fSTK43mSy30VUZ1xdDMcv1ubRSZ6rY7MjQ753oIqYLssF9E1186s5BVFnmxakic6U2V8OQ+6btoSsSY91JHtlTQFdlnrwgQqp1RWi7B7JR3ru/m4FMjO9eWePFayUMVSZuqAxlY+zqTvDmbIXXZ0uhD7ZE3JBJRoQNZc10iRsKV1bqocWcFA4aIlxeEVkjbgCrdYvnJ4vvDsHegWg5HmZov7mRX6AqNx/QdU2iJxPjQF+agWyE0wtVCgmDcsvhvok8r8+WubBUR1dkklGVliVUgl86tcgHDvXRldBZq9ucnq+iyEI18sHDfRzsT/M/fGAf/+m5KbqSEU6FTONfenCcIAh49so6LXsRVZaFpVroJb5hZxXTVV66VmRyrcnd4zkmCgm+e2WdV2dKSIiD1YYqZuP69PwgPLxdz1DcjM0WOYVkhLtusPl87EAPc6VWx0YIRNaZ5wd0JXUUSabSEsrzMws1vnpmiabl8cBu0cAYKyQYycdxvYCVmknNFI2tjeaxyJwQhztloykWiPedjmns70vy6lSFqYUqqahGKqrzvgM9JCPi8KspdGwUlVvtFeFpZcPSZDvcMdrFVy8Ud36OEA37+hOs3iLRfvPryNL2L7pcuT6Qat7om7IJtiMcA4R19u3pS2R5+6Ha3p4EnBGD1Vu1x6RNYSW3uwtr6vbP2L3JJjGu33zkiesig4m56m2+0nW4Pkh+AIGHriqsN8N7W4akodK0PSzH418/eRUJCUmWOyqJF6eKRDS5c00qMvzYiUEKSZ3Pv7ZALq7zyTuG+NixAd5/0OPaeoP1hkXcUNkQ98V0tTOcBlBCG9Pjw9nOz5443MfvvzyHKkt87ewyv/zQOBFZoT8T7RziQTR0TcdjtWYyX27TFdepthwyUQ3PFw2bu8fzTHQLS9Zq22GtYfH51+f51Ycn3tLefLbc4sxClaimoCsKhVSEdETFdH2GcjEe2NVFIWnw5MVV1hs2+/tSPLg7zwMTBRRFftvrsbdysT48mGapKmqJ3T1iuNqyXXRVfkuLFRAKjjQahipzablGV9LgY8f6+ezz01xarqOrMr/80Dhvzpb5J186TzG0nU/HNBw3oOV4xPVufvzEIJ95ZhLTEc2rpuwT0wQj1wlv9I1B2G3/7hu/v3Ctuck26a3+bcv2cDyfoVyUn79/lA8cvD78+8b5ZebLbd6YrfDLD40R2+ae24zbaRa+ix8ebLebSIgBSS5uMJCNAhIt22WtbtN2PPJxXZwvIioNy2VqvcnF5TrX1pus1y2urjSohLmIju/Tstwwh1fcc23bJxcTSoSIK+P5Ep7vdwgH270fWYKYLohDtiOagY4X4AY+mgIBopnuBwFTxRYFy2OikOBHjvbz+TcWCRB7w52jOabXm8LlxPP55rlVSk0H1w/YVUhQbTsc6Evy4K4CXz+3zBdPLRLVFPb2Jvn0/WP83L0jfOvCCqfnK2ihNdYjmxRTd4zmaVgeA9ko7z/QG2YB/8XcFAcGUrw2X7vlY1q2R8v2UGTQZJmDAykcV1gz9mUinJqrIEkSL06VbhqCfT/oTUf49P1jgKg3VFm67WHao/u6eW2mzEA2etvRBiAIDMeGMlxaqXNiJPvW/+CvKDaUgcJBYOfP/L6JPPeM53llqoQqS517tGl7Ow5fIMxE3fTnjf6QGwjXCFWWiUcU9nQnuLbexHHDPG5Eb8FThBtLbyqCqkqcmtt67VouyCp8/PgAd47lOb1Q5epKg7lyi7WGCYHIDfeDgHrb5sVrRVq2h6aIaBfX81FlsR8Gkhi+HR1MM9oVp5A0eHW6TDamk0towuJeEf2E/+tbl6m2Hdquz3hXjPcf6uXY0PV4nJ3QtBzqbRfLcdFVFdP1IBAxFLIk+qyO522bgSayn7Z3jlB3+DmI7zVhaOzri3BmvkYsdLVZrpodFd70egtdldBVQRJ3LQ9VhnRU5RN3DPL51+bRVRlFFmtqV5jtNFtq0bKF4jemKx2V1uuzFYZzCRRJ5DZtkB+PDaf5nz50gPNLdb50epFq2+bESJb9vUm+dm6FS8uiJ/I3fu8NdvckeXhPgfcf7OVbF1ZQZZmjQxlOjmb5+rkVpNBe+8E9XTy6rwdJut7zatsexYboa93KorI/E+Pvv38vsiSR3sFO9fnJdV6dLiNLEj99zzBdCYNq2+HNuQrlllBExXWFmK5gOh4xXSEf13j/wV7myy1enS7TnTBw/QBDk+hOGTywq4vzizUm1xq0nYC+tErNdDqml74PyajKof4UtbYdukxcr/0ishCaDGVjxA0FTVUxVKWTde24ATI+QSD2Vwmhht7YZQxNRlOVzn3fsj1Wam28IMJoV4y5klBDixmBOF+6viA5eH6A74MqCzvvIAjQgq22ip7nk4oIpzuJIBTVpDgykKbUcogbGtW227FSLsQ12q5wjfr3z0xRaztIksR79nXx6584ylypRbFh8bVzKyQN4UzTlYzw1x+ZoGl5/PrXL7Fed/iRY9u7VGy5V97yEW+NDwZB8A82/hAEQVmSpCeAv7AhWFRX2JyOINg/MneMZulOCU9Py/P5xfvH6E1FmFxr8o3zy0ytNUPbG5f9ofWVrsh8++IqXz+3RMP0uGM0xy8+MMrJkSxfPL1IMqqRiao4fsA9Yzl+9ZEJVusm/+wrF1mstDvNpx89cd0GJAjlwhsbua7K/OID49y/q8BStd2xHiqEyoyRfJyH9hT45vkVTMdjer3JSt3CUGU+cLC38/iRfJyLy3Xiurjw8nGDQkKi3Bas3bW6xwuTYpH/aHgx+EFA03KZKbbQFZlSM1y4Cwl0VeHwYJqH9hT41vkVfD9ger2C7YkbuWG5RDQFTZZQdRUj9NVda9osVdo0bE+oPBQRJjrWFWf+6voWputmqLcRHPku3hlYq1uMdSVYrVs4rs98pU2xYaHIYeFzC5uVWyKAVEylaXqdMGTXExvaXLFJ3XI7jdpq26FlC9uMStvB0BTycZ0HdnVhqArdSYVfuH8M1/M7fuH7elPs6xX3/j//2kXOL9bY05MgrqucHMlSatrk4jdnYrwTce94HjW0CRjalN/xyTuH2dub4stnlqi2bM4v1UXeVctGV2VaznW1hIzIuGiHxa6miGKhaYtiDYIt1mJy2ODbGJ6lo8LyxA9ZTqosmuHDuThB4HNtrUlAwGLFJKIqxAyfX3pwDNP2yCcM7h7P88zlNRKGyn3jedbqFl8+s0QmpvHyTJl8XAdEIRfVVGK6CHMutcSamInpvDZT5t6JLh7d181IPk5XQu+wRR7e081/en6KtYbFWk0QCVRZ5mfvHub9h/q4tFxntWbyzJV10lGN40NpPnHHEIWEWLtdP6ArZNP8xB0DPLKvh5enSqw3LBIRTXhZl3XqbZvFmkXDdMjGDTRZwvUCdEVGU2RihkpUV+nPRLi21hRsq3SE0b/iasW/qhjIRDkxnAHo5Nrc2NSVJYiqCglDIRfXSEY0DvanqbYdhrJRnry4iul4LFbaZGN62DAVGZ09KZGv0LQ87LBBocgS6w3BvFZkiWPDGe5aEsqRzU2FjcPLcC7Gg7sLHAobGTNFYee8pyfJ0cE0//aZawB898o6E4UE55eqBAFcXK5RbjlENJmPhLYqIJTiHzrSx0tTRRKGyrmFKotVk8MDIuvr6GCaqKagKRJj21zXhwbSnfey3rC4sioUlT977wgzxRbfOLdC0lBYbVgiK8B0KbWuW8W9eK3IhaUatbZgI1qujBeI4n+jCbxh6aEqoqgXgdQB+3qSfPzYIN+5sCpyX03BYvvcy7OdBs3meZB9Cyu9XExjteGgSjCY3V4Vsd68PSVYwlAoh/5hmfjOCqktQ7AdHjPSFe+wCW9l+fHT94x0vOY3vPC3w2b2aWYHZVl35vprZmM7v+ZK7fqAbq7c2vFxm5nF8g5jtd50pMN4LWyjWJIkiX/y0UO8OV+lHBLNbscaUUOwHYMAPNEx6cDQFA4OpJlebwBS+Jyh1aAsoSkyV1bq5GI6mZhKrS0Cz03X42xoQ7OrO8FStc14IYGhyrx3Xw+vz5X55MmhTgbZds1B0xFNy1x4fezpSXJ4MMX0emvHZmLNdDAUmUvLdXE/FhJEVIVP3jnExaU6AcIi5epqnS+eWmIwGyMVEWuUIkudYO0nL6xQN10e3dfdsUkFwYattRx6Uga5uM7fe/8+Ts9XqLYd7hzNEdEUvvDmAs9eWadtC5uW+XKb0/M1uhKRLUMFBYEeAAEAAElEQVS9HwRyeA3PFJtvSSZJR7WbLFY3DxxvF9m4zi+Ea4bvCxeNsYIYJCqyxGszFVZqJg3LI6op3D+R55XpcqcB/J793XzrwjLTRZH7GBAghVkMzqYb3XsrGv4mBIAcbJ/PAmJN3LCy1xVCFb74uSzDhqAyCOCu0dyW+tgICZ9qmAn2VojdQkX7Ln74ISF6MOmITj6u8+j+Ho4MpPmdF2aotx0mVxtcBfb3p7hzNMullQZJQ2V6vcFXTi+hyDJ+4GG6HlFN2DLVTZds3GAkH2e62Oy4PKQiKqYjLkRNArNqIUmirk8YCusNG0UW7ylmqOiqTNLQmK+0kWWZsWykk2eejqosVS2qbRvHDZgrt4nqQoXyiZODXFyugSQxXzEZysYotxyymoYk+bwyXaIvHWW+3EJXFKotm3Jrlm+cX6HackSuWTaGE0ZXTK42CYKApy+tcnggvaX229ubZG/vXw6xbSdl+gZkrpMFVEUMOy4s1ehNRxkvJPjUncP80WvzLJTbjHXFbvlc3w++V+JDJqZ/X2s0wHv2dXcsKP9bxaP7ehjIxOhOGSQMlYvLNRqmy9GhzJbBbLFpEdEUupI686UWiiwjScGWGnA7yDJogajFbjTCkCWJQlJnOCcsRU3HY3qtRSGlUzc9DFXm/okMhiZzYalOteUykotQajroqtwhXzu+z8vTJfb0JikkIsyX29Rqbpjz5RHTVZaqJnPlNklDkElycZ2YplBs2iBJSIizeCqqcddYnkf2FsjEdD50uJ+2I6yAZ4otMjGNVEQjqisMZKNUmjafunOYh/d031bPqCcV5VBfgtOLNQwVLFcSg6WwTgC2bNIbjjtB+ONNjpBhtprYcwsJg2LTohVOwqKq1LFmVmSJ3ozB8aGcyHpebfDs1XX80GZuwx3DcgOSEZlURCduuGRiOidGstw30YXt+rwxW+HcYhXX80lEVPb0JIgaCqmIhum4dMUNfvzOIe7fVeAX/sPLvDpd5tBAioFMDFUu4foB/ekYu3qSzJXbIcFO9EH60lEyUV0oiFzRV662bFxfZFo/dqCHiUKCYsPiG+dWuLhUZ3dPgod2C8vBjTr3Y8cGuLxSJxvT+d0XZ/GDgA8d6dvRJm9qvckX3lxAlkSd2J+5+by2QSD3g2CL6nk4F0WToW65dMV1oobC+cUaUV0hrosIpq6EzrNX1pheb5CN6/zPHznIK1NlLq80kCSJbEwP+2IKEVWhZW88P2HckLAg3Qwp/H7nym0cL+Ch3QUe2ddFqWVRaYvselmW0BUZJySWRHQF2xPEBg8JSRLZs3KYJ7xQaYe2nlEGMrEwoiDK5FqTqfUma3ULTZEZzsWomw4JQ0NTZRTFpTcV6UQ6rNaEaKhuCfVZIaFje74gtVsel1YE2fy1mRJvzpWFcxMSu3tTnJmvUmpalFo2UV3Uygf702iKzMXlOn/y+jym7bGrkOCn7h7mxHCWoVycV6ZLHOxLMVtu8e2LqwznY534qO3wdgzBFEmSjCAILABJkqLAX6jER7tho9RUhYgqsdZweGCXYBHeM56nZbv8p+enWSi36UoKdZMfwMmRLPv7kqSjOqfmKhiqTMsSwW9106FpeezuSfIvfvwo//65KeK6yqfuGqYnFeG5q+vMFFuh56lBKqpiOdetD2umwx++Msdi1eThPV08tLvQYQfcqvgxVIUPH+nH9Xw+8/QkxwYzJCIKH97UZNrfl2IkH0NTZNYbFm/OVnB8nzdmxOGyPxNBVWTihtQ53BwbzNC2PWzPJxvTSUc1uhIGn7prmIVyi4f2dNOVEBvCc1fXsF2PmunStj0USaLUsnG9AFmGWtvmX37rCoWkQVRT2V2Is1A1qbVdVmptESr99n/d7+KHEO/d18Mbc2UalsNCuS0sp3xh8SbLEsXG9+d54gVwpD/NQC7GfKnNG3PCjrPUdDi/VMd0PE6MZGlZLoWEwb6+JPfv6uIb55ZpmC5dSQN3U7WV2NTsW6wIG4j+TJTFionvB+K5WzapqMqfvrHAbKnFWFecHzk+wAuTRUpNm/t35XcM3T23WGVyrcmJ4cxNfsN/2YhoCg/uLtz0c0kSg3NNkWnYHu870ENEk5lab7JQblNs2p3DkodgZkqShCIJ2ypRHItMLwKfmhlKsMUf8RB+/MeHMkx0x/mj1xZE0LUC6YiGoYnMwprpkIxqrDcEm8bxfHJJndPzVfJxAySJ03MVLq+IId1KzaTUtEhFNTRZ4tF93ZxbFAe0uunQmzLY05OkbjlCzbvaoDdldCyLnrmyxtXVBveM5ztDsKblYrsBB/tTTKrNsIl5Xcnan4mQielMFOKkozrTxRb/9Ivn2d2T5Nce38vdY3nOzFcxVJnpYpvfeWGGC0s1LMdnT0+CE8NZzi1U+cKpRWzXw1AV0jGVfX1pDg1myMc1Ts1XGczEqLQdRvMx9vUleeJQH8eHs2Tj76pn34kY7YrzqbuG8fygM4C+ke17x0iaSystZkttkpEaHzs+wE/cOcSpuQrPXS0Ki6lsjMMD6bCwjZCL62SjOvv6khzsS9EwxX2YiWoUmzaLlTZfOr3Ix44N0J2McHQww5tzlS1WektVMwx7F2vi0aEM1ZbDM5dFXtRcqcXdYzl6UhFWamYnD+PkSJZXpsuMF+LU2i5qOMDdjO6UwVrdYqVq8sVTi+zuSTJXavGLD4xRt1wm1xqkoxpjXfGbWJMLlTbJiMqbsxVeulbkzEKFuKHxwmSR/+UjB3lzroLt+hweSFM3XeqmS2KT6iCmqzieLwp0RSJhKFTaYh3z/YC24+P5fmg7QmfN8v2AxUqbmKFwfCTHbLFJVFcY64p3FBAglEdOSGWNGDsX2Y1QZuEFUGo6pGI338Oj3deHgLd4Kj5wsJd/991pJODjx/t2fNxGliNAe4fm+JWVeqdhUW7sPIQbzEbZ05NA1xS6kjuvP6mIQtUUjNHMDhaG9090kYoIq+97xvPbPgbA2mSnWGnt/N4MTaJlB6hARNt+8BY3VHpDhuGews12iSBUDD96bICnL62xUm9j2v4tsxWUcBigysJSJBFRaDs+uiIR0WQODaZ5z54Cv18zsV2fmunStFy8wCeiyox3x2jbHpfqDcbzCdYbNtm4xmKlLRTXYbNiIByaXl5psFBp05OM4PoBn31hmldnyjyyt7Ald6thufzuizO0bY9H9hY6w6NcTGdBafP4gZ4trhQgslbfmK2wVrc4PJBGkiTuHRf2pLu6E9wzlscLAnJxnZeuCQbvhgJNV2VGcjFkWWJyrdGxm351ptzJ8QMxfBrOi3t8X3jmORLmFgN868IKf/TqHP0Z0Vzd25MMrVvF4f7tGoKBcN8o3OI6/vOELEs8frCHS8t1jgxmaDselbYdNuhc0lGV0XycV6fLVNsO3zi/wseOD/DQngLmuRVsXzBqH9yV5/nJdU7P1zuko+CGDuSN1lMSWxniG9e3DJ28Vzl8jo1/J0HYCBENEFURTSDPD4hoCrqq8PnX5vmF+8c619X7D/ZwtRCnNxW56VrbDunoOytb97916Dfs8ZoicaAvSU86ymg+Tiasi9cbFvOVNq2QMHd2ocqV5RqZmM5SJeDqSh1DV4npCoYikTI0Qa4LM0MCRA7QYDZKV9LgU3cO8V/fWOT0fJnlmont+KF9mswv3D/G1dU6lhvwyN4u/uzUEouVNp88Ocj5JZER5bg+u3uSYdaMwYnhLNW2w1fOLnFtrYlEgO36RFThIJSJ6fRnIrw8VaIrYXDXaI627XFhqU5UF8P/TFSnZFqcmq9CENCwXLwgYH8qwvsPXV9r9/Ym+XqYJ/i5l2f56buHtyjh/7LQdnfe5QxZWCYf6E9TM10Wyi1iuiAWDmVjHA+tpz9xYpCm7XYU8u/inQtdlTk8KIhnc6UWXz2zDIi+RtzQODmSJQgC/uzUIm/MlLm23hQWZ66we1MU8G9ROGmKghcEBF4gcv0Q+08iolJI6Ax3xbl3PM8Th/v43758gXhEwQ8kcjGddExjd0+Ccsthar1B0xYk2p+8a5i7x/L8h+euMbXeIqor7OmOU2s7yJLIx+1JGZiOT90KYxcCHxmRU5iOakRUhQd2dzG51uSla0Uiqtir9/YkOT6U6fR7dPW6In0zIfVvvXcPycgUazWT2G1kSG1gIBtloWrRsj0sx2cgG2XxFqQvYbd93fJQDa3nAsBQxSAxEVEIpGCLa4OuyvzE8QFeuFaiYblcW2t1hp2ZmMFy1cJQFca7EtieiBcxHY+opvLp+0eYKCRYrds8vFf0j3Z1J0SvJRWl3LQoNmx+49tXSRoqd4xkmSm1iBsqixWL6fUmMV2ojPJJoRT+uftGcT2/03e5b1eeluOyWrN4ZG83Y11xRrrizJWanF+qs1BuE9dVJleb/M9fOEshqXPXaJ6a6aLIMvv7UjxxuJcD/VuVqAMZUbucXahuymG0YYc5+WrNDEltIudquyHYA7u7iOkiE6svHWWh0ua5q0VmSy08P+CeiS6OD2eYXG0wU2wRBNC0Xb59cYXVmsXvvjgr8h2jGoaqsNaweHOuIvK7/IBUROV/+ehBfv3rF6nMlDv5WZoiMZCJYXtiQFpu2J0artz2QmWgxFy5xVMX11koi9xrXRVxL7oiEVFFRMdEV4xSy0WSoC8TYbbUJhfTkEOLiZ5khPWGzZWVOnt7kgzm4vzUXUP0pKN86dQC3zi/QkxXOTqUBiRWqiLqZCgXxfUC/ui1eWRJIRMXLjayJK7bTxzrY3Kthe15uF7Anp4Es8UWT11a4+xilX29SR4/ICJuGpbL5ZU6CV0hHdO5a0yQrSbXGnzrwgrllk2p6dCbjvAjxwc7e+2BvhTPX13HdDyh0JsVDhY74e0Ygv0u8KQkSf8RcS/+IvCf34bnvW1ICM/nDY/Tia44XgCj+RgHB9LcMSrsdL52VizoqaiKhFjg3nugB9v1aZgue3uTPLSnwFypxTfPr1BpOTy8t6tzYOpJR/kHTxzovG7NdHh5qgQI1nI6prG/N7UlvHSu1GKm2OLySp1iwyIT1XcMBN0OqiLz0aMDTK43OHTDDQ50rCb60lH6Dkf55vmV0LpHY7Qrxny5jen6PBIuXrIsgt4P9qdEuH0Ydn9/6IHs+wH/5eVZ1uoWTjiR9/yWCM5zBYMqCCfgC+U2bdcnCAJajmAt1kxXWCM4AX5g39LKZrtMlHfxzsRwPib+m43xmWcmySci6GHB0zKd2x6CdZqVLdEEM1SZXT0pHt3XzUtTJWRZYq1uCRssWeKeiTz3TeR5+vIanh9w70QXfkDoNysGP9vdN1dXG3zx1CIAHz3Wz0g+xoH+FPmEzkN7CuzrTfHNcyuAaMYuVNq8GDaAJIkt2Q8bsF2fb55fIQig1LA67N93AjbY6Xt6kvzUXcPIssSvfvZV5sttDFUmYcjULFFUSZJo9AV+IPy06yZ+EJCKauzryfL6bBnT9YVVFKCpImvMCyRenQ5zL/yATFKnkIrQtHxkWRQKUmgFIocB1k3Tpdy0ycV0Li8LRs/peWFb1bJcFiomQ7kYf/d9exgvxPn86/O8PlPm/FJNhHAqEp+6c4SVusnffHR3p6gxHY9Tof3VazPlTkOuOxXhwd1drNQsHtvfzb/45hWATh5IMqLxSw+MiWvMdPm1P36TuumK39lx0VXRKHb9gJYtBmp9qQgrdYv9fSned6CHpy6toSsSiiwzXojzDz54gCtrDQoJg8cP9HBtvcmr0yUmuuN0JSIkIyrpqPYXZpHyLv58cGNB7fnBlgJsuWbTDu+BxUqbwUwMXZXJxnRKTQtFgnRM5ZceHGe9bvHslTWOD2d4z95uEaYcBLx3fzerNYsHduf549cW8HyhqtzA+SXRpH7q0hqHBjLh+4rQn4lQaTmdkOeornRU8oWUgSxL/MSdQzRMt1PfnBzJcXIkx3xZqLJycf2m33FjXbEDr6M2SkTE/744WeTSsshhGMxGOwo5ECquFyaL6KpMPGSBmY5P0zLpz0T5zqVVFEkil9BDNpq4PzcTon7hvlEalsNr0yWQZAYyBvMlE9MVarmpYoN2OF8RapYASZKRZXhjrsyfvL7A33p0F8WmhesL4sWenmSn5hovJDi7KN7/kfCz3A5uOI0KEGvWdjg6kCWiydiOz+7unVnhV9caqCHTfeO1t0MuLmwxDVWmewfb6Y1rAbilbfHL0yXWGzaSBKfmqjuSO66fuSWajkdiG9FbqeUwmIthOd4tm2Yj+TjnlhoAHA0VlNvBDl0GPKBp2SS3sUDqTUdJRUXTcjC3/XvPxXUalkvddmiY7luq1gNEw6ErYZCLa0QUhblKm3xcpy8TRZHh/HKdlu1jqBKlho0sC1//sUKcT5wY4rmrazRMF1mWGchFKdYtlmsmnhdQSOr8zffswlAVaqbDZp5fy3b5+rmV0JprhZgmcv0e3ddN03I71qNLVZPjiPrl9dkKAFdWGzcpoGZLIq9SksT+15uKbGHTbj7PHB3KUDddFEXijpHslkZuV5hnY7ke/ZmbBxs/enyAuumSim49djqez5n5Kl0Jg1LD5mfuyXN4IE1AwHrd5p5Ndqh/FbDhPrCB+ybynJmvsN5U6U1FuGcsz++8OIvt+ZxaqPL85LpgCcd1WrZHPm7gIzJcb7ab3vrnaHhuu349b52UqZKIDygkDJq2h+/7mG5A4Aoik7hmxQB0uWYykI2xrzeBoaq8PlsO7fz9LZnXhqp09pHbQfxdJdg7CjduFZoiccdIjqPDWTw/4L5deSpNh+9eWSdhCDtzzxdKxZYX0HZELSPJUFBkdnenScU03pytYDl+J/+qPx1hptjijpEsP3fvCJNrTRIRlQd2F7i80uD8QgXXD7Bcnz9+fZ6BTIym5fLUpXWurIi9Y7rU5mfuHeUzT02Sjev8wyf2Y2gKpZZNPi7ygcotGwmxXiajGpmYyv27unD9gG+cW0ZXZFbrJseGskyuNTA0leF8lLtGc9wxmuM/fHeKroRO03JxvIDDgyKzeiQX518/eRnXC/jlh8YpNSzWGhaTaw1mSi0mdiBk/EXiQG+ar51b2/bvulIGf/uxPciSTESVieky85U23ckou7oTnXpNlqV3B2B/BaGG1oieH3B6XtR9k6sNFAXKTQfTFYS7paqD7wkHGE2SSEXkTlbrBiREDrssBZgOuIg9SfQHhFL+vl1dPLi7wOMHewGhzFtvWPi+6Ddu9HW6EvomBY7osf7THzlM1XRYqZo8eXGFF66V8ANR75iOz3AuSibsHVRVGWzRW33fvm6qpnAPajs+Hzvax0rNpG46tB2fa+tNPvP0JD9/3wh9mRipiLqtxWE6qgkFTAAL5TbVtkM2pnFtvUnSUHe04HttpsRq3SIIwA0Cyk2LGz46opqE44rP1/RCK+ONz1UCTRb/qysyuqaKOjcTo9J0aIS1YNzQ+NCRAZKh0MMPRG/lT14XhGRDFfnK94zn+euP7OKzL04zU2wyU2zxxmyFb5xfJaIppMLs88FsjF99eAJZgv/8/DTzlTZfP7tMISn6Q/fvEmqxfX1JDg2kuXs8z3LV5GfuHul8XpvRtDzats9gNsZIWKN3JyN0JyMM5xIsVtqcXaiyUjO5vFLH8xO8OlPmU3cOUTcd0lGNvTdYVLft6z3Afb1J1huip338FueJI4MZik0bRZbY37e95XVEU7ZkBl5YrLFcbWO5Ppbjc3WlTk/KIB26CMV0hYvLdYZyVc4tVklHNYoNi+6UgaHJ5GMa+3qTnJorE9UFsWi21OQTJweZXKlTs1zhvqbI9KYNDg2kcf2A//jcFKYjrCe1sF8W1WSyMY1Sy6JpOdheaCPqizw2RRYxHbMVkxPD2Y5l77nFKr/51CR96QiFpMG1tQaWq7BStyi3HOq2xxtzFd6fivDQ3m6KTZtT81Xh+rC3m3/znSKTaw3601H+7uN7ePFaiZn1JklD4Y7RLHPldvh3e/n2xTVOz1eYKbbY05tCDS1Fjw6muWe8i4f3FgiCgKm1FheXahiaQk8qwr7eFMeHM3zt7DLZmMblZZ8DfUm6kga1kMSvyBJxQ+VHTwwSvD5PENBxxNgJP/AQLAiCX5ck6QzwXsS9+U+DIPj6D/q83wskiQ5T3/XhH3/0AFXTwwsCjgxmMB2PL51eoty0ycREAfMjRwf4zqU1/v2z15heb7G/L0mxafHg7gKD2Si/+IBoYF9ZqXNpuc6ensSWxa9lu+iyRFfSYL1ucXgwva3KYqwrTi6uY6gyhYSB67/V8fpmbAwYbgd3j+eEjYYisVRpM9YV5+MnBhjOxVmtmXz5zBIxXeH9B3tvClqdLbb48plF3pgtk47pJAyVvkwkzNcJuGM0y6WlOpm4xun5Cut1G0USeSeaImO7PnpoOyNJkIsbWK6H6Tk3ZWFo8rtDsL8IjP6/v3zbj53+5x/6gV9vrBDnYH8ay/FYrZvEdJUvnlq47X8fVWUe39/DpdU6q3Wb44MZfu7eUYZyUXpSBru643z97Aq1uErdcjg2mEZVZFRZRpXFcCMX11EVibGuBPfvujnbazqUPK/WLHrTEWpth4lCYlvrm7OLVY4MpklFhLWG7fqh5Z54nlPzFfb1ptjbm0SVJTJRjXLLuSVj/ocR9010sVhp0wzDKmeLrY5E2g984oaG6zs4no8iSSQMweCsmy6WIwpUy/GptGwMTcHxfLxAZAMmIxoxQ2E4H+U7Fxr4QYCmSORCm6OG6dKTipCP6cxVWuTiOkGACIyPaQznYgSIgve5q+vYjoemyVxcqWM6PnFDISCg0nKYL7WRJImDfSm6kpGQTR9BUYRqbQOGKgZQ19aaN+V7bJAmGpbLPRN5LMffcmDdUMGlYxr3jOV56VqRPb1JTMfnt787TcMUyrP7d3WTiWl87ewyo7rIYNEUmUxMCz9nGMrGWGtY/Ow9I53n39WdYFe3eL2VmsnvPD/Ni1NFBjMx/tb7djOaf9cS8a8CNg6ZGzAtl6imIElwfCjLS1OisGxZLqWmQyam0zBdPvvCNE3LY09vkof3dHfqEkmStmRNvHe/UEYeHcyE2XsSfWFjqTd9fUJhqAo/cecwAJeW6zw/uc6J4Sw/c88IldDCDMSgaHNDfAOD2VinXroRMV3l4T0Fnrm8xo8eH6CQMjpKuI01Ulflmw5FG5YPtutzz3iOl66V2NOTpGm7jOTijOTiLJQF+2yiO0EupvPN88t84c0FpotNfvzkEJWWgywJK9TVusXlFYn7J/LIkkR3OsLa6xa6qjIRkoW0MD+w3LJxvIArK3Wihsq//rNzrNQtHt7dxYePXCc/xDfVT1Ft5wH1aFeca6sN4hGVoR3uXREerdGUXfpvoSCO6Qobuv7N69mN6E1FxPoZ1VC2yZ4DuG8szx+8KvZm/Rbz9aQhlFuyJJHd5vvfQKcx4Qd43vZ1bk/SEJaTrk93cmcFyFhXnAvLDSRgomvnoeDmEjKu7fR5CAMZYTe7/SOevbKGpmyER4tBwa2sfTJRlZbt07Id8nGdYmjFXGrZVNs2w/l4h+QwudogbqjEDYVsXOPQQJr/+sYCC5U2BPCevQU0VeaqJFFsWFTbDrmEzkrN4spqQygRwjwpP4BCwmAwK3KX+jLRzjDzlekSjx/o4dhwhnLT5u5weLRd7bIZhwfSPHtlnaShcqA/xYlbqK4imsL7Nim8giDgmSvrFBsWD+8p8On7R7Ecf9t1Qt5h/dCU65lbd4xmO4SUR/eJ12laLmt16y9NvfXniZWaSd3y+PQDYyiyzOGBND2pCI/uK/C1s8v0pAym1gWbOKqrWK5oZjx3ZZ3pYgtFEpkQcPO1GtVlQCIaEkRB2PaosqilZAm64iKTuiuh0yi2O0Hrnog7JWFodCUirNQs8gkD0/ZQJFk0LlSFVETl0X3d31P+zo3IJ27dpHgXP1yI6gqbKY3JiMaPnBjk1Zky5ZbI8hvtivO//+hhzi1U+b2XZri23mSxLBqFnh9QtxwkX2KiEMcLAtqWSz6hs1BRUGSZ0XyMUsshFxPnqSvLDV6aLrJUNVmtm0RUmZlSm4Ylcnk0VUZXxHnz0nKNattGUxSm1hskDJVH9/WQiqpEdNEk9v2Azzw1yUK1xULZZHdPkuPDGSKasDn78uklXN/H8Xy6UxH29CR534Fuvntlna6EzkAmxnv2dWO7PhPdcaK6woE+QaKstByODWf4ypmlTvZNV8LgPfu6+f2XZ2lZHl88tchPhm5Cf5m4lYJ9OBfj+ckSqiRxeVUQED90uI/HDvRwbrHGn7w+z/HhbOessoErK3VhR9eT5M7Rv1oEhv+W0JeO8vHjA9RNkXe03rA5NVdBU2U0RajFn7u6RlGWaXvC9SkIxDAmYYRKpEBCkiV0VVihrTcdLFfYFgaIPMikofK33rubEyO5zuDB9wOShspEaBtsOj6aItxeDvSnePbKOqfmK6iyaHx/++IKHzrcx7NX1nhpqkQQBJxdqIWZvz5HhjIcG8wwW2yx3hBqLj+ApbpJV8zgwmKNhuXy0rUiPakIfgCq7NGyhRrlf/3yRYZyUR7YVeBDR7Z3YDg+nKV2eZXBbAzfD3jq0ipvzlWRJYmfunv4pscHQcDllcamQYawIOxYlOsKRwZSpKMaz1wtdrKkN1RgCV0mHlGptFxkKSAREbEdrueTiqrcNZ7j2loT2/XY25Pg2atrfPx4P3/6xgLllk1cVzgcfiauF5CJanz8xADpmMbP3TfKuYUa37qwzFrdYr7cppA0eOriKveO5Trr6NmFKqYr1HQP7O6i1nY4PpzlI0f7KTVt9vQkUWSJX3t87y2vtZenSsyVWswh+h8juRhfP7fMldU6i5U20+st+tIRUlGNPd1JkhGVfb1J8gnjpr4diMHon76xgCxL/PjJQbpTkS1n450Q1ZVtCe474cpKnTdmyyxWTJIRjV3dOk1LCEQWKm0yMY0goOOesq83xcmRLDXT5UeO9hPRFO4ez9N2PJq2x3pD2FKmoxrHh7NcXmlwdqHCUtWkEJLM/vZje7iwVONP31igbgkrUFWW8H1hvb2rO8lXziwhSxK5uILrQdMOkAIgCDAdca++MLnO+cUqpabNJ04O8en7xzi7UOXYUIaVmsVvfPsyIAjvmZjGn7y+QKXl8Mk7hhjMxvjqmWUWym2alssbs2WWqyardYvPPD2JoSqcWayGFqcGf+exPezuThLVVe7flccPAh7eW+C+iS6RQ1y3kJC4e1zsF8Wmjel6FJKGEDuM5ztRC33pKHXT5e7xPKbj8eK1Ik9fWuPwYJp/9JGDxAyVoVyMn757BD8I3nKPfTuUYARB8FXgq2/Hc30/8PygcxgOgD9+bZ6H9/Z0DmtnF6rMlVq4vk+55VBIGDx7dZ2ZUgs/CKiZDl4QiAbTizPU2g5PHO7Ddn2+cmYJAMfr6eRTnF2o8q0LKyQjGp88OdgJM94OMV3lb79vN2cXatiez7HvQQV2I3w/4NR8BVmSODKY3jKU8/yAN0Mrxw8d6ePsQpXzoTXJ9HqL4Vycs4tVKi2H5arJ/+uPThHVFT56tJ/HDgjmxZvzFUzHx3YDFsttupM6MV1l93iC2XKbdFTjiSO9VFoOpu0R0dpUmhaFVIT1ukVUU1AViXxMZAUkoxqvTJW2DYPvS0feMjTyXbyzcHahynLV5AMHe2naLp97aZaFSnvHTLgbocpiE1pv2jiesMobzsc6zWJNUbiwVOfSSo2VmsVYV4wnL67y8J4C44UYpaZDXzpCPmHwyTuGMB2P8W3Ydt+5tAqIpt2xoQyHdwjzPdCf4kD/9QHJz907QsNy6QsbyN88v0IjzNfb3Z1AliU+ddcw6w2r85h3Ciotm8WKSa3t8AevzHLfRB4J0YSORDTkkC2UMBQ0VaZl+UgS5OMGXgCW5dKdMKiaLo8f6OHbl1aF1UBM4398Yh+uC988v8xANkLb9YiGz3V1tdHJAGnYLoaqcHggw0eP9PP5N+aZLra4ttbkx04Ocm6xxtR6g3zSoG17JJIiSyUZ0SgkhNd/gDhwjhdEkG0+pvNPv3yB9brwMP/w0X5+/KSQTn/s2EAnL2k7JAyVn7t3lLrp7Ph9fvr+MT56rB9Nlvh3z07x2kyZ0bwYBN81liMIAr4SiP3phWtFjg5lGM7FhCrGcpkutfjOxRVSEZWH9hRuWhO/c3GVr51dYrVuU2+7/OnrC/ztx/a8zd/+u/jLgCbLW5pJ+/pTpKIa6YhGLm7w7JU1ZEkStguZCDFdYa7UYn1WMKBF5pe1Y5F3sD/NRCHBH782zzfPL/PE4T4+dmyAYtMS9qI3YLVmduqdhuny+MFeetM/eG7nG7NlUaxOFfnUXcNcXm6QjWvMlcS6+dDeAqkbmMT3T3QhIVhcJ0dynF+qk3d90r7GT9w1xFLV5OhQmt5UhF3dSRYqbeZKba6tN6i1XY4MZHB9kf/Vtj00WYQ8n1moEhBwn57nQF+KybUGw/k4x4aynJqvkI5qzJZaSEjs708ys95kvtzG9X1en6t0Mk8BFjYp7GZK7R1//wd2dREEAcO5GIqy/VpTbdu0LBfb9Vmrm9s+BuDB3d28Ol1BkQVxYSdU2w6eH9B2PGzHhW0GZm1vq13KThjOC4saRRbKu52QjKiUmw66KhHbYdrkBXB4IMla3b4lsavt+J3ctqq5s4o8H9coNhwiuoS7g/n2lZUGs8UWjufzzJV1/tb7bj6QX1yuc3ZB2GYpsmjO+BvhC2wdMGiSGBxvBHHPllp0h4NiERIvGjYfPNSL7fh87pUZFismiizx1x/exaszZZZqJg1L2Ap/+9IqjicOaxOFBLOlFvt7UzRtUVsArNfFPbtxzvi1x/dSadkUkga//8ocbdtjIBMV4dE3HPaTEe2m2mUzcnGdA2HzaT20RXVD5vVbZbIsVNq8PlMG4MVrJT50pO+2LPBuxIeP9OP54gz2289ew/UDfvT4ABFd4XdfnMFyfB7eW7jlgO6HDa7nc2mlTi6u05uK8NpMmbrlcu94vvMZffaFaZaqJv3pKL/88DipMOvt8ECGuVKbwWyU1brJ1ZUmh/qTPLC7iz98ZY7nrzWFHZIq0xPTRM3sBhiKhKpAVBODa8v1OgrNjbtDliQiqnD0kGSJwWyMtiPWtbimU2k7dCUMfILOGnLXWI5nr6yTi+sdQk4jtMXe6V6/XVTbtzIefRc/bNCVrXWLGIIELFfFvvWtCysYqiCnaIpEre3SnTS4eyxHRFNZrLT41oVVfN/nylqTti2sjMcLCe6fyOP5YLouE12CuOvj82+euipsZdsODcul7Xi0bU/YnakK411xHt3fiybDucUalXZoP+sF/MM/PctgNkpfOsqeniTjhQSfeXqS5yeL1Nou/ZkIElEGsjFs12e9LrFcM+lNRXjvvm7ihsZ4IY6myLx3f8+WzKkvnlpkrW6jKTLHbrDAH8xGOw3twWyMoVyMO8dyvDFbIQjoNLX/MtG1g726DFTbLpV2jZXwe5WQuLhco2V7fOuCcDyptJybhmDPXFmn1nZYrVkcGUzfMo/lXfxwY8Pyb19fitlii/OLVWqmS1ciyn0TXTx9eZV4ROQLxXVRE9UtFz8QlthCveUyko9z73iWL51aRpaFZaKhCZVMdypCJq6zvy/VOYufWahycblOwlDpTUc40JeiJx1hPLRN/42fPM5vfPsqz19dZ7nS5g9fmeNAX4r7Jrr40zcWOTVXJmFonBjJoCoyHzzYy7NX19nXlxIOM1aVpuUyV2zTtjyC8D9zpRarDYsHJroYzsVYqYm6ba7cptpymCk1d/ysNuJtrqzU+d0XZ3hluoSmyuztSXbU+ZshSE71Tm56RJXY8IlQgP60Qallk4joHBlI8+ZcueMqoSsymiqHRGSPtuPTslz29SVZrFis1yyeONLH33//Pj738iwXl+u8MVOhabms1kyQJHE2ckTvJRlVycR02rYvbGtX6xwbyvLg7gJvzlWIaCquJ1S6n3n6GmOFOB892s8zV9awHB9FlvinHztEqSVce1RF/p4G/IPZKK/Plik2LIoNi4gmcp/W6hYLGxbhsiB5vmdfN952TeVNWKi0xWflByxU2jsq8X5QVNoOqiJzfDhDT0oM6a6s1vHDbPihbIxd3Qneu7+b//r6IqWmxa7u5Bar8ErbYakqYgYKiX4Shsqdo3nmyi0e3dfNw7u6+L+fnkRCODVYjsefvD7P7p44SxWTO0aylFo219aaDGWjrNRMVEXC8yXuHuui1LQ5Ffb2DVWmK6njeT5rDYdq2+WpS2uMFxL85F3DHUe4P35tjqODGRYqbSYKcZ66vE4QBIzkY0wXm2iKHJ5/fE7NVig2bfwgwPU8JlcbLJRbmK6PIgky+8eODXR+X/G1iHP5188uETc0njjUtyWvOKIpJCIqJ4az9KYjfPz49X//wUO93DmWJRvT+YNX5jizUKVmOlxZaXB+qdYhsd8uae4HHoJJkvSjwP8BdHNdqRkEQbC9lvDPAaosE9EkUchLcG29yXRxCtNxOTacZSATJaor1No+RmjfsVqzeHB3F69Ml9jXm2IgG0WRRKMyG9O4tFzrMJaBLTfd1HqTtu1xZl6EAt4znqc0a3NiOLvtMEySpI7P7g+CMwtVnrokpOuqIm2xnHhtpsxzV0WGR0RTGMnHyMY0LNfv5I7t7k5yfrHGYsWm0nKomy5nFqqdIdjeniTT60129SSwHI/LKw0Gs1EWKiYJQ+WlqRKKLFFtOUQ0mdFcjEnfo9pyODSQZk9vkguLNS6t1JkqtvC8oLNob4Ym32wN9eeF70UJ9S6+fzx/dZ3/8xsXaVgudwzniBoqL00VSRgqPSmD6fXWLS2GRGC8KLxfnSnjeQExQ+GrZ5aQQ4XVlZUGs6UmDdPBUGVMx6fadjk9X2W+3GYoF+PLZ5Z4z95uLNfb0W6iLx2l0nI4PpLl4T2FHcPib0QyDILfQFdSWCjl4nrnOSKa8kOXBXYrBMAfvTrHQqXNWs3k8mqDtuPxnYur+AGMd8VZqopwSze47kMtSxKuL6NIYujtRTWCIBCMYsvjjpEsC2WTXYU4j+3v5aWpEneM5jBdn1LTQlMV4oZGzXQwHZ9Ly4IRFTcEw2i1IYqflZqJn9Dxg4B7J4RN0mszJdbqFj7ifTy8t4uYoZBWNJ443EexYXF8OEtUV5grt2jbHq0wB3G9brFUNRkLi/u3Cq9NGOqWHLkbocgS3ckIs8UWmiLRkzLQlOuMFkmSGC8kmFxtMFFI0LRc7hrN8uZcmbW6TURTmCu3+czTk0Q0hbvGcpyar+J4PseHMjRtF9cPMF3B3tnf95cToP0u3n7INww837uvm5+8e5Szi1WevrRGIRmhLy0sNn7irkHemK1gOh6WIw493SmDlu3yynSJQ/3pm5TdAMub8r4uLtcZLyS2VeAEQcCp+SpXwj3/xpzVHwSeH/DKdBlZhsm1Jt1JA9PxKITv447R3E1DsHRM44ObGHnDuRjroUf7QrnNs1dErfOBQz08fWWN03MVzi8Jko/vi8a+4/nUw6aZ6fgkANPxadkeKzULQ5UxVJlXp0voikyp5dCXMnhkT4GVmoXtikyi8UKca+tNUobK184t86HwfVnO9YOttYPyCWBytUGxYeP7O6vfm7bXYclX2jsPffozUR7cU0CRJDK3UGXpqoKhioy2YIclbjQfQ1dEEPXALfasPd0JPu+4RDWV8VsMrsa6YjSsGl0Jnai+/XtzPI8Xp8q0LJeedHRbFidAwxJsYYKtn/ONSEd1Si3x3uI7rNO269N2PHxfZLJth4Su0JeJMl9u0p2MMldubrJ33IoAsc8noyLDJqIpdMUN8Tq2R086wocO9/Pc1SLnl6qUWw4t2yMV1fjy6WXGCjH29iQ5NVfBCwIqbRdFlqibDqP5qBg8SWC7XkeFOZyLdc4WZxeqPHVplaFcjI8U+vmF+0ZZrLRvWk8248baZa7U4spqnQN9aYZzMe4czVFtO9wzkafSsvmDcLCWjKroqsLjB3q2bWpkYiJbuW179Ka3/r3t+nzx1CLllt05qI93JbZkaWyGIktMFZsda9Orqw0Gs7FOEPlq7fpw2HQ8Pv/6PLW2y4eP9G05q/2w4Nmr67w5WwlrlEJnzZottuhJGfiBGBg0LY97xnNcXanzx6/Nk40b2K7HrkKclu3y8lSF5arJYqVNw/LIxnUiqiKaUpJERFeQwt5cTFe4O1S7npqrbLHClRCNNlmWkSTIRDRsP6BpO0Q1mbF8nLWGxbHhDJmYxsvXymiqRC6mkoqq7O9NUrMcYrrOQqXNesMiaSicnq8SN9Tv6Uy3WWV5cuRdtcg7Cd4Ne9jjB3sYzsfpTUeYKTaZW2rRldB5cbKIoclcXBaWRjFd4W8+uptzC1VxX4SZipMtmwCwHY+PHu3nuckiz0/WadkNZEliqtii2nYYzApXmoyiYVY9NEUiHeahDufinJ4rk4nptGyXnpRBsSExW2qTMBQur9QZzsb46bvEfuMHENUUWpZHTFdIxzQe2NXFG7MVqnHRlLxzNMuJ8Nq8slLnG+dX6E4afPz4QMcGdjgX5epqg2REvcl26e7xPP/oYwdxvaBDoL5nXNybcUPtnEH+MnHPxPZZKZoi0bJccgk9VOwHoSLXZqbYoicVYblq0hfa3jqez8tTJVRZYigb5VyYSX9jfty7eGdCRBSIjLh8wuCO0SyvzZRo2T6lpt1R9+uqghNasGmyRLXtCEt0WeJvPLKHo4NZfvu7UyyUWiBJSBI4rse//MZl/stLs/zMPSN8+Eh/x/p/rWFxdbXOkxdW+Km7h5koJCg3bZ6fFArLAFiuW7gB/Mlr86TjOhCQiGjUTYeZYovHD/aSiupMFBJcWq4T1cTAejXMa01ERNbZs1fWqbYdHMcXZ4m2he/D4cEMPWkRS/DArgKTaw2WqyZHhzLb9gZW6xaVto3t+qHzi94hfG2uWx7b343t+J1Mr5YdICvi3pMlUaO5gcRc2WSsK8be3iTrDRvPF7Z7QRBQNz0cT9THddPl1HwVWRIWkzXTZV9fiof2FCi3bLoSBroik40LterhgTTHhrOcXajSsl2yMZ10VOULpxYJApgpCjJgEMBP3jXESD7On51apNwUA5eG5RLXVdbrTQ6Hjky3cnfYiAY62J8ie8NaeWggzZtzFTRF4rtX1/npu4fD9TTgQF+KtuMy2hXn3nC9Oj1f4enLawxkovzoicGb+jiHBtKhU8jOtoZvB44OZmhYLookcd9EHlWRWatbNCyX/nSElu11ftemLXKzL6/UtwzBLi7VccIQ1ieO9HNxqcbvvzJLtW3z5lyVastBkYV70uRag9948gqvz1ZYqZpYrsd0qc1KrY2hKkwXmyQjKtW2cEG5ttbADYlMvh9gqKrIFXN91hoVQTJs2/Smtg6M/ADKLYe5UpvVukk8dH1qO8KOeygXo2k5zBTbvD5bxAgHsgf7U5iOsNRWEMT5T94pMouLDYtXpsucXahwYalOw3I50JckFdXpSRnYno/rBRweSJMwVH7qrmFKLZuxfFxknW06s2ycNe4czfHqTAnLEUTXL51eYnKtwceODdw2Ge/tUIL9OvCRIAguvA3P9X3B8URWla4IyxbPDyi1HV6frbBcs/hrD47z18Icl1PzFebLLe4d76I3LWTuANWWw3947hoLlTaOF/CJk2kGsyLkzQ+CLWqRO0azvDFbJqLJlJo2n3t5lp5UhHLL5kdPDO70Nn9gbL7RVVm+xd8Jj+bNmUSlphh8ffq+MebKLf7jc1PUTJfHNrGa9vYm2dWdQAJ+86mrnF+sEQTCrmK21GKpaqLJEpWQZWy5Hp4PuwpxRvJColhtO5RbNi1756aQripEte29dd/FOxOXV+vMl9u0bY+nzDX29CbDTAEJPWSn3or4pisS2Zhgofp+gKYKpoHl+lxYqlFuOmiKJDIlIjrpmMqhgTQrNZu1ukVUV4RScq7CK1MlhnMx3nugZ1vmcDam4fg+vWHWzXy5Ra3tdgLbn7y4SqVl8+i+7k5w53b4yJF+lmvmO9qmx/V8ZkstGpZLbzrCpZU6M0XRUenPRJEJqLadLZY7Spjzo6synh+wGjbZI5pCMqIxmo+TMGRWahZnFmt89vkplmoW5xZr2K5LIWl02CAnRjJcXWlSSBo0bZcTQ1n29CT47IszFBs2tbZDIWmwVrf5wCHRfJ5ab7LesJgrtpAliacurpMwNB7Z2x0O/K8PigbSUT5ytJ/XZ0qkonon/+jtxlAuysmRHOOFBA/vKXSCdAE+cqQP0/GRpIB/8sULWK7H/RNdPHGkn29fWOX3X5lFkoSq5/JKg+9cFEpFCUhHdJHNmIpwZCjD+w/dvlT/XfxwI7jBwOq+XQV0VebEcJb+dJSYoXSGQ6/NlLi8LKx93rO3m8VKm4WKyb//7jT5uM5S1eSjoV3AZvSHwcDlln1TNqLj+bw6XebCUpWzCzUWKm329CRIxzQe2sba+fuFJIGuhkXsSp2YLmzXuhIGMUO9KSNoOzy8p8CxoQyeJ2xGbM9HV2RqpsubsxXemC0TBOIAiRTwr5+8QiamUWza2F5A3FA6FmB+GGB/YiTL+aU6xdB6sW2Lg0IyonJltQESnF+q8viBXk7PV+hORbiy0qCxRzTp7U2Dr+2YnhuYLbdxPJ9Sy6ZpusSNmwdEsZAt7YXvcScM5yNcDpuKQ9mdm86/cO8In3tlljtHc+QT2693vakoEU2mHfg3HYI240/fXGS2KJRuT15c2zKc3IyZkgiVLrcEC9/Y5hCyUrNoWq7Yd4o7s2o3MkEBlmvWjo+rWx6KLGF7AabtbatcUhRB1gikgMgOtpV3j3dh+wFD2Si//8oMt5i74QWi0dGbjpCLaxzsT3N1rcFEIU7b8fmfPnQAVZH4zacnw7wZiVxcx/MDWo7L4wd6uWsszzOXV1msmLwyVewMQV+ernByJMtqzeQ/Pz+DHwT8jx/cz57e63vamYUqjhdwba0p9mY/4IunlvCDgAd3d3WYkDthI9jedn2urTX5aw+O88Du66rCc4tVWrZHuWUzXWwyko/z5lyF94dZHZuRMFR+/t5RWrZ7U620WGkzWxJKts+9PEdvOsK5hRq/+sjEjvmW44U4p+fFnrenN0k+rnNyJEu5ZXPPpnDr+XKb1fC6OL9U+3MZgvl+wFLNJB/XdzxQB0HAU5fXmC22GMnFODGa7azZG8H0fhCgqxKyJLFQbvHGbJmD/WmKTYtURMV2fQxV4Y9enefaepP6nFCKNCxh0315pYHleLh+wMXlGuWmTVSX6Ukn2NeT4PlrJUBClsV+YtkeA9kY3ckIqzULxw+QEerGdEz8Lv2ZKEGYmVJuObRUhSODWXb3JPn779/Dv/nOJLbnUW57+L6ErFQ5PpRhb1+SbFTjv7w8R1dCJ2aozJbEkGInS9ztsNnGMfp9KAffxV8eNobSG/itZ6ZYqpr894/u5j8+J5SNL08JYonnC2sn0/UxHZ/feuYarhcQM1QOD6Q5MpTm91+a49p6g4iusKsnwRtzVXJxA9+3aNsedVP0G3wfHtlfIG6ouK7Pm/MVcRZRZZ6fLGI6Ht3JCEPZKF6YVxzXVVq2R1xXURWJK2tNejMxHpjIc2m5zvsP9vBrj+2h1BZEhXRURZYldvUktqyjZxaq2K7PfLnNesOmNx3hhckiL00VGcnH+PCR/m33nhut1iOawkN7rtdWL10rcia0oHqrdfvPAzsJKpyQwKzJMveOZzr2ypoqc2mlxo+fHKTUsjtKsjfnKrw8VQLEUPTusTyJHfKT3sU7D0EQ8JUzy+RjIsforrEcz15eQ9kgxIZuJ5bjhTW2hB8IRX+AUAwiwYePDmC6Pr/74ixxXThHzRRbYnBgu/zpGwvs7k7y9OU1QegYy/GFN0V2+8XlBu8/6PP7r8xRbtmsNSyGciI3uW66/O5Ls6SiGqbjEgQSmag4g7ccF9P1ODKYYalqoivCCvFTdwiLwpF8vJN5OV9ugwRrDZuVuoWhKBiayn/+xbsA4bDwH5+bIghgvWFtUbhs4PhwhsVKm2rbZTAT5Z7x6/f15rplcr3J1dV65xToIXITZYnQtlvkPPmOR6nhsLsnIVwuhjOcWaxRbNgEQUDcUKm2XTzEmU5XhD3eRu/r0X3dQtkdBEQ0hemicEDb25Pkvok8903kWa6ZdCUMRrvidCUM1uoWcUOlERKSaqYge98xkuWZK2uM5eMsVdoUGxaaIu/oprQB2/X5wpsLOF7ATKnJT989ctNjRJ/HwlBFH+ln7xnB9vxta6+Ly3WCQHyeddPZ0m8BUZf+2Mk/v178BnRVvsl5oZA0Oj3BzWegoWyUZ6+s88jerWfrQwMp5sstMZxs2syX25RbNlPrTSZXGzieIPE5rs/F5SYnR7O0LJeW49K2XK6s1ulLi+iPli0cmVZqFpbrM18RqrCophAA3SmDZERlrWExkImy1rApJAyeurTOe/ZdnwV84FAvX3xzka6ETi38fEfycX75gfEOGe99B3r53RemmSu1yScMDFXuED17U9eJrt3JCL/97DWWwqHdxaU6QWhPLwbmovf14jWxf/hBwPHhLNm43hkgbndmATGz+Fc/cZyvnFniK2eWuLBUQ5bgmctC3XajSnk7vB1DsJW/zAEYCFXUtS/8C+pXXkaLZ/jV3/sGV9caguETepWrirB/mCgkOD6U4U8+/8f8o3/0j5AkiaNHj/IvfvM/ABKH+tPs6012DlVHt7Ev7EtH+aUHx/mvr8/jB9cHUBuB6X9eONifCmWIdIZ3GzgxnCGqKRiafBPT0vF8/uCVOUzHYygX4xMnB/n7H9iHpso3MbAVWaLcsnjmyhpN28X2fH7uvhF+/+U5koaG6wubmjfmKtiukBH7foDlwJMXV2jaLr5/6zyFVFTjsYM9O/ztu3gn4uRwjt5UhErLoT8TpZDQUeUkqYjKhYXajsU2COuFoVyM/nSEC8t1PD/g/l1dnFmoosoSluOjKmLDk2WJ9+3vJmFoZOMaiizjeAG/8vAYz10tstYQ/sW6KmPe0JgsNW2+enaJ568WGc3HOLtQ41B/mj9+bT5s3tkMZKKcXagCImPjA7cYOqiK/I5SfW0HVZEpNmxOz1fY25ukFjKYFAkUJJph8wXEUCaqy/QkDVRZIR5RKDUdDC2gGjYtW7ZHT9qAAGaKTRRZ5stnlxnJxyk2bTRZoti0ccLiZk93il95cBfX1huMFxKkoxorNZNMTGetbjGcj3F8OMuB/iRrdYvT8xUaltiUI1WTAMjEtB0PW7Is8ZN3DfOTd93syX27qLaF8vBWzBJJkrYcbm/8u6iu8OyVNabWGyLXJWmQjmp88HAvxaaJ6wlFzHy5xeszZSRJ5DseHkwx1hXHcn1GbzMX8l28M3Ajey1hKDx5YYXZUosHdxe2KCs2aouNYNvlmoXnB6FNmr6DEZwo0j955/Zqm9dnyrx4rciLk+vULS88TGh88FDfWyokvxcs10S49WrdRpWhbVv0pyPcNZbnxEjmtuumdFTjt5+9Rq3toEgSHzkqFCDnF2tENIW+dITLKw0apstytd3xpB/IRogoCo/u7+bKap0rKw0URebjx/tZrIgQ7FdnyhhRGdvz+ZM3FjpqsnzCIKoJexfb8znYn+qwPwczEarLYpCzu7Azq/tgX5LTvk8urhPbZgAGoknghXVT48Zk7E34v751lal18Zr//rvT/L0P7Nv2cR7w3v29SBJYrretJdFcuYXjiaHb0i0GTdm4Lj5zWdo2U2oDUU2mJolBpLrD9ZOOamSiGm3Hu+UQ776JPNfWmsgSvGffzgPZiCZDIIhfmrr9ayqSsI2TvGDHNfzwYJrDg2lMx+PLp5dYrzs71q8AmiLY0X3pKPmEwRtzFabWmqSjGn/02jx//wP76EtHReNBlfnYsQHmQ0vxF64V+Zl7RlBDQtkvPjDGr3/tIqWmjel4ZGIapuvx8nQJCYlzi7UtQ7DDA2mKYQNow77TD9UZGyqqW2HDws52/W3VcxOFBCP5OumYSsP0CEJF+E6I6sq2KlQxJNSpth1G8jEsV9jpKLdojKYiGj937+iWn223rw5mo3SnDGptt2Pl+HbjWxdWOLdYIxUVdpLbDe5Wahavz5R59soahirzgfVePv2AOKA/vKdA0lDJJwz29iZRJInffVEMNmeKTR7d30PNdFip29RNh1zYUFYVGQXwfJW1hk0mpuP5PumoRsxQKTZs5ostEhGVlKFyfDDDWs1C8sS9KhjhFQYyEaJ6jqsrNUotF0OVieoKqYiO64mB70rdwnRk+lIRoSQMAn7z6Ws4vk8youH50Jc2UGQJSZIYzMQYK8S5Z72F5/s0LI/1hsXV1QaaKvOJE4PbXgs3wlAlXEdcs7fKJXoXP3xQJNi8yqxUTV6dKnF2QTDLR/NxEhGVbFQTiqqRLLOlFqoi03Y80lGFthNld0+S9x/sxXYDrq010BSZVFTnsQM99GeirNZMXpspcW09IKorfPhIP3eM5riwVGP/SJYfu2MQxw343RenOTtfxfcD1hoWhipRaTlIQH86Qj6hM11sYWhKJ3vw2atFHM/nqctr9GaitGwX34cDfUk+cXJQqC037RWHBtIsVU26kwb5uMaXTy/xh6/O0ZuKdKI4Ts9XKDVt7hrL3VTTPHN5jQtLNe4YzW5RPr40VcLzg45Txl80EjvcqwHQdn1ihsr/8MF9GKrCl04vslqzODqYuUn1sdkSNa6rO8aDvIt3JjbXDPmEQaXlkIpqxHWVfNyg2raFIhnh/BDTFaptt+P+s1q3+JXPvsqHj/STjGgcH8pQbdv4fsA138cPBInJ8wNemylhhiykjx0bwHQ8Fspt7p8QWUKO5xPVFO6b6OITJwf55d95hYWKSdsSuayj+bhQXMqSyBYORMb5oYE0E4U4F5fqRFU5VDyLevbycr0Tp2G6HjFdZbHSxvN9ig2LM/MV9vWlQsciYSVo3DD0Xq6afOHNBSKawo+dHOSJw320bG8LSfrGusXdptT3A7Dd6yTJIBAOCpNhTzsWEXlRp+YqHQVRXFdZqZkQEq7++iO7eGRfd+e72+hj+37Awf4U19aaRHWFY8OZm84Gn7xjiFLTpiuh88p0mZbtcle4Nh0aSHdUra/NlJEkiYim0LQ8yk2buKFuSwaQJVHXOJ63ozr0fft7mCgkOtlXABF5+/Xp+HCGZy6vMZSN/UB5pH+RWKyaDOViW2z0QQxhf+XhCUCo5d6Yq9CTinCgN0m15bDWMCm3xHnEdzxmiy3uGM1RvSpiiZKGiNKQJYlK02a9afPjJwf5xrkVWo7L7p4klVAEM15IkIpoLNdM9vWlUFYaJCJa5/ywgVRE49MPjPK5l2e5azzHE4f6yCeMLWSzybUGb85VkZDozxgsltu8MVchoskM5+LIEvRlonzx9CIxTWGm2MQPxLnpgYk8mbiOpshkYxqpTd/hdr28tzqzZKIaXQmDUtPG9nxeny1zbrHGE4f7Ok54O+HtmNq8KknSHwB/CnRO0kEQ/Mnb8Ny3CYk73vcjVB7+MSY//+v89+/djeP5LFVNBjZZNHz93AoXlmpQXeJ3/tk/47nnniObzbK6ukp3OsJ79nVTbFjcPb69RHwzBjJR/ruHJpAkkZ+x1rBueVB8OyBJ0o5fqCRJW/KLNiMIhOLD8XyurtZZqrZvmVn0W89MMVNsYbk+w7kYfakov/bYXmZLLXIJnSCA//NrF/nmhRV2ZaP8P96zi3OdEMqAkVyMpZqF5Xidm2uDPKbLcHgg1Qm/fhd/NXB4MM3v/fI9fOvCKnt6EuzrTXFtrcHZhSordYvDhsK+niSvzpSYXG91hmISkIqq3DuR58JSje6kQTam85593WiKzGKlzUA2Ssv2aFqC6Z2O6uzrTeL6AbW2Syam0ZOMcs94noVymyAIODmSvelQcXahympog1VpOTy0t4APnUOM7fnkE9ftfd7pA67bgYTw5g4CeH6ySEyXSUZUDFVmMBvh6lqLiCajKwqP7ivQkxLZWxFVodS0KTYs3lyohkx3nxPDGY4OZnA8n3RMx3I8DvSl+NixAT738hyLlRYxQ0FC6hyi0jFR1Hl+QN10mCu1+LETg1iux+H+NGo4gPrsizOs1y08XzBV/uaju4RazHQ5tMPa94Pi4nKNr51dRldlfuqu4ZsYR98LMlGdPT1JSk2bDxwSrPqIpvDXHpzoPGZytcF4GBYe1RT29qb4hx86wHrD4s6xWx+Sh9PvBsy/k2CoChtJUhsZDKfnrw/gN7OY9veliOkKiizRl44yX26zXDP52XuHiWgqB/tTeH7An51aYLlq8b793ezuublWWK2ZPDe5Tl86SkxXcH1h2SFLHkcH0zywu8B9u3bOmvp+MJaPoysyDdOlYbt4vrArGcnHvifiUBAIdrckSeTjGru6xe/3M/eM8NGj/fzxa/MM5mKcma8ynI9zsD/FeCHBz4Z5SONdcf7w1Vl8P6A/E0ORFR4/0MtcucVdYzn+9M0F1uo25ZZDNqaxpzfJXaM5zixU2dub5KfvGd5yYPzkXSP8f79xGVmCHz2585D97zy+l2+eX+bwQIbENtlcINRyUsgcutUA8nojXrrpEL4ZubhOsWGTimg3uQZcf4xBOqrStj2Gb7HX9acjHOhPockSmVsMwe4Zz/H8pCCYRHZorg3lYtw3kWe+0uaJHQLGAXrTgkgjgtN3PuQe7E9jqMLiZSc7wF3dSfb3JGnY7k0szBvx5myFAGH5u2GHeKOnQVyXSUZ0xrvi/PVHJpgrt5krtTrqt0xMQ1dl/tVPHOOFa0WODwsm/X96fpq66ZKNCevgzQS7h/YUeP7qOvHQBuQ7l1Z5faaMIklk41t//82NCBC5HQ/u7qJuulvUUrfCJ+8YYr7c7gR2b0ZEUzqOFp4f4Pr+95XrEtEUfv6+UfxQlTFTbNGfidy2/fRbPfd2bOK3E+sNoRCttZ2OtdGNSEc1am2HYsMmGVFZqLRZrZk8P1mkNx3Zspb2ZaJ0JyM0LZeGJexbDFUhE9VYrln8ysMTRDQFzw/4zacmsVyP3lSEtiNyvT5wqJfJtQZ/UBTKcQkJVZGZ6EkyvtYkEVHY25NksSoUmROFOJmYzqfuHOI3n5qk0rLpTkboz0TpSRpEdJVPPzDG6fkqi5U2L02VKDVtDvSn2N+X4ufvHSWiyRzoTxPTFVRF7li4/cw94rNv2yKfQtgiWcyVWzcRNLfD7t4kZ+Zr6IrMyaF37RB/WCFz8/oXMzTqXCe5yrI4w+0qJBntSjBXajHaFWdytUk2prE7zMRZqLQwbZ/lusljB3o6PYD37usmHdUYzEZJRbQt61vNdLi0VCMR0cjGdP7v71whGdGotIr8P9+7G8/zWa1bnQzDPYU4e3qStGxhxf/w3gID2SgvT5XRFRk3bBpnY4KIIQELpdb/n73/DpPrvO+74c85Z3ovu7O9o/dKgCAJ9k5KlChS1aq2bMdJnDeJ47x5/Dixk7xxmpM3fuP48uMSR5ZkFUuiRHWJpCh2gCA6FsD2vrOz0/uc8v5xZge72I6dbeB8rosXUXZnDnbOue/f/SvfL4qm4bObyRTUOadKt9U4S/d1KidzbTyhSy6mcjyyu4bJVI6fX9EVHHKyOmNqVk/s676Jp/siM4pg22qcXBmNL+mZWQ3mTFijNyrvqXfx5L66Uow219TLFLvrdQkrqegxWOH2Y3rMEErm8DvM7Glw0z+ZxmRwoBUVs0RRYF+Dm//rOxdJ55WSt+tkMk/nWIJ9DS76wikMgm4fUOu24rIa8VhNHGjysK1Gl/2rc1uodpr5fLGpZIoP7K+nP5xmX4Mbi1GivcpBz0QKm1GkwWtlX6OHO7dUsbPOyXfPjmA2SqV9a0vAya/eY8UgCTNimiafjW01DgIuM9sCTlI5mevBJKFkFoMo8h9+2Mkju2r45PEWnj/SRDCRm/XMTvnlpfMK/ZMpdte7ZyXsb45bdtY7uRpMAjesJjQNBFH34CsoGiZJoMFrxWTQhzr2Nrhp8duIZQo4zAasJonxaBaLScJnM/HUvjqeOTj3s3p5NE5OVnFaDOxpcM0Z15kMYqkB88455FKTOZmrY3HqXBaOtvoQBN1T/qXOIF6bkU8en90wZJBEPlq8f+abzpFEYUmTO6BP2N48ZbvR8dlNjMWyCzYSNvls/Oo9bbpvq1Fib6OHt/sm+e8/uUaymP/8wP46Htldx6WRWFFlQOShnTUMRzJ0jiWodlnoCNgJpwqE03me3FtHvcfCS50T5AoKwUSOjmoHx9p8fOyOJjrHkjy9r45wKk/PRJItAQcem4kHdtTwQHE6bCiS5gcXRnFajHzooC41mM4petOJSWJnnRtV1RhP5Ep2TK1VNgqyRiIjkyqe+/0OMyaDxKfubGUgnObSSJxQMo8kCjyxt45CsdF0LhY6sxxv9+OxmXBYJMLJPC8XbaMKC9gUTFGOIpgLSAOPTPszDVizIpgowD/61Ad5+fQlwj80IYkCkiihxsb4wKd+i4mJCWw2G4/8+u/jqGnhe9/4Er/xm7+J16uPiwYCesX8wBxTXwsxFUBMH9tbT17vCtE3meJER9UMvWmTQeSZgw185e0BNA3+/t0hvnB3+7wde6PRNJqmkc7JDEezfO3UIJ883lKaMJvyrWj22al1Wbi7w08ur+odqqkcB5t9iOhdTtF0vjSGazGImI0ST++vn3GIr3B7MLVATrG1xonFKNE7mUJRNb5wdzu/uBbkT1+6Tk8ojaKBxQDbAk7sRglNg7F4lnCqwJn+CK1Vdlqr7DyyK8Cf/LwLn91Mk8/KE3vrkBWVKocJp8VAbyjFmYEIR1p9fOp4C4qqzWmE2eq3c24wyrZaJx890oi32Hn76O5aYpkCh1r0rpjPnmglJ6uzOkwmkznODUVp9tmXvFkvhWAiy9WxBFsDzlm+GmvBiQ4/b3VP4rMZUTWodYrsb/aCINAfybCtxsndW6r4Z49sR9N009HJZI5//s3zRFI5al0WGjw2NEGj2mmmwWulymHmj5/bz2hMP/AaJJGjrT6ujSd4s2eSUDLHjloX9xe7lV69NsG7/RGCiSwBpwWzUeTXT3bMSAg7zBKhhH7gPtDkRRJ1T4DVRC+q6hIwoWRuRUWwvY1uPDYjZoNIwGVBUTXODEQwiAIHmjwIgsDWGieXR+NIou4lBrCt1sk2Fj8k37nEBGiFtUfTNN4bjKKoGoea9XtXFAUCDt382Gc30l7toMZlYTyendPPsMV/Y0+f65AzHs/SF9Llx84PxeYsgr3WFaJ/Mk1fKM2v3NlCrctKqkb317hvezXH2lZ+D8WzBYbCGdqq7FhNEs8cbGAsluVTx5u5MKx7RgWclmWvdYIg8KGDDXQHU+yY5o1nlET8DjN3b60iW1DZccTFAzuqsRolvHZzaQ3pnkjw5bcHGAzr/pEui4FzQzEi6TyfPNbCr5/s4H+/3kdWVrmrw8+vnmynquh/YDPN7nAMOPSEsigKeBfofNZUDRFhXj8wgBqPFbfVSKag0rHAVNkffGA3WVnBYTLwW/dvmffrHt9Tx/7GDFUO87xFta01Tp7aV8dwNMvHFpiUNU/zuVzI48MgStS5rViMRoR5ZhNTOZmRWJZEVqZ7IsXJbfO9loBWrAwaFnjPZw818L1zI9zR5p9TfhH04sOT++q5NBLjI4vIlfdOpmivtqNpGpqqEM8pJHMKBUXvy50yp/7Y0Sb2NXnZXuvCYpS4OmbDapI42OTl6aIsaZXTXPo1wCeONXNhKMY7fWH+8rVenj/aVFJi+MjhRn1q0WPFYTFyR5uf4WgWs0HkcMtsSeebWe4Ugd1sWLRDEiidpaajaRpnB6PI09ayhRBFAYsoLen9NhL376jmVF+EVr9tzu7TYEIvNj2xt5Z0XqagaDy6u5ZfXg8xEE7TG0qxJeCgqigT6bIY+egdTfzVa700SiI/uTxWkpe+b3s122qcdE0k8dvN/H8+vJdgPMdPL48Rz8o0eq08sCPAAzsCPLg9wH/5yVUujcbJKSpei5E6lxmjQeSxPXX84toE4VSex/fUsbvBzQ8ujLIl4OD8UBSrUeLJfXW0VTlK3hH1bisD4TR7G9xcHI7R4rPR4LHOuHfnw2qSuHd7NS+eH8VhNtC0xAT4M/sbGAzrkzW7KmfBDUvAaWAsoc99TaU4DJLA1oCd/sk0VU4zh5q93LOtCoMk4rMaS81t/rYbExC/vD7B986NYDKI7Kh1ce+06U6v3TTDIwX0faJ/Mk2z38bRNj/ZgsJf/LKHWKZAMJ7jiX115GSVv32rn2AiR7XTglES2FHrKvn9uKxGWvx2HGYDbquRaDrPUDhNo9fGJ4+34LIa6Z5IUu+1crjFSzwjs6XGwUud49S5rfN6ydhMEttqnBglXWXiYLOXSEpP5CmqNssnSBIFdtQ66RxLzHrNx/bU8sCOwJzFqLXAaJCosRsYT92Y7Wv127h3e4DnjjSyfYFE8/mhKJm8wqEWL0ZJnBGfVri96AomGY9nSznSRFbmgwfqsRgkXjg3wsXhKK9eC3FlNMFv3NtOTlFp8dvIFBRsBpHmKjsGScRv16cy0znduua+OjdNPjuRdJ4al4V7tlaxJeDkcIt3XnWXqbzQFL/35C521elx2AM7A8iKVsrHTsmmTWeuvdxqkvjnj+wglMrx8yvjyKrE3kY3EwkLA+E0ArpHUjqnEHBZ5swv7ah1cW08USwCLO1ZONzs47vnRlE1vRnZKAk4TAYoRpvbap0cb/dhlCRMBpHHdtcScFnI5BVe65okmi7wmRPNmCUDv7gWJFNQeHDXbNnqKWwmCVEQ8NhMVM0jk74YP7gwynBRbenX7mnHZBD5u3cGgBs/I7dt9nq2UfLk68WHDzUwHssteu6d3hi6u8FNg9eKoGn87Vv9OC0GJlN5Xu4MUuey4LebaPLZ2NfoYWedC0GAC0O656asqtS6LBxu9WIQRSzGMIlsAbfNiMtixGYyMBTJEs8UGIpkON0XIZmTuTgcm2GlBHBpJE4qpw8iTBUyq51mDjZ5UDSNh3YGePZQIz+7PEZB1e0GZEU/K32h3c+b3ZMcb/czFEnT6rczHMugqhqRVB6bWT83LjbRt9CZpaCqRDN5NIzsa/SgaHrhfSkqESsugmma9rmVvkY5+OCBBvZ7Cvzsv984sH3xi1/kz/7sz9i6dStvv/02/+Sf/Qv+yX/7Elp0lO6uLu666y4UReHf/Jt/w2OPPbam16tpGj+7EmQ0luHebdUrDiDi2UJJk/mN7tAs09Umn41ttQ76Qmk0bbYfyXTu7KgiU1C4MpLAYda7G6c43RdmIpGjoKiIAtgtEv/px9d4qXOceFam1W8jnMzR4NUPjlsDdjrHkuxrdNM5liCVV7g0Eufp/fN3FVXYvCiqxo8vjTGZzPHgzhqafDb+4f1bS+PQY7Es8ZyCIIDVoE8diaLAWCKHy6J3A2loXByJcdgg8v96eDtWk8SHDjVyfihGtdPMl97qI5NXaKuyIwgCeVnll9dDHGjyLOjh1ey38ev3dpSuZYqbJygtRmlO2aSfXh5nNJblwlCcL56cv4i8XL57doREVubSSJzfuLdj8W8oMw/trCGZlfl5Z5BTvWGSuQITyQJNPitNPhuioHf3CUUj20avlW++O0S+oJDOKQxHM6iaRkdA94HrCiapcpg50OzlwLT3EUWBHXUudsyxMXWOxQFdXmhKZ/5mnthbR/9kmtqi/vFacLjFSzRdwGEx0Fa18sLn9C7Ts4MRXrseAvR7bmedi2qnec7AfSmEkoUVX1+F1eHKaIJfFLuTREHgcIsXURB4aFcNPaEkHdUONDQ+drRJN4hVNX5yaQyPzcQdi0wATuG3m2jwWBmPZ+edCq9xWeifTOMwG3CYDTR6rYSSOURBTyAtVHBYCpqm8fVTgySyMnVuCx+7oxmTQSwZQz+wY2VF/jq3dd4p9t31bnbWunh3IMJfv96HURLZVuMsacOPRLKMx/XYpTeU5Etv9RPPyNhMEj+5NMYffnAPHdUOXrkWRBQEvvPeMLVuC4/sqp0zSTWZypGTFQRBl1+aj//5SjcXh6N4r5g42OTFPsc0WMBpospuJpIpsK1m/nXmejBJm1//+/5wulQovxlJFBb1STIZRP7VE7vm1d2fYn+jPglikmZLbU+no9qOIOjTMfNFl6FknmRWRhQEBsLze4Jp6PKKorhw8TCUytPks5HM6TLcc00ZXR2L86NLYwD81et9/N5Tu+Z9vd31LoLxLLUuC69cHZ/hTUbxmj58qJG8ovFm9yTRtO5Vub3WhVFKsq/JPW9cYDMZSBcUZEUjocgMRzK46vSDn9Ni5K5pU0M1LsuMWOBUnz6lc6LDj9OyvvIvnWMJXimtZcyYbLidqHNb+cD+udeagck033pvSJcwFfT9+2Czm5yscXk0jqyoNHptsxLiAaeFB3fW8EbXJA0eKxajREe1g48fbeYX1yY4P6RLgO9tdNM7kaJnIoXXbuLd/jChogTmyW3V3LOtmni2QCor83/e7sNuMmAzG0jl9GerymHm4kiM3Q1utKKUa53byrZaJ9trXTR4rMSzBV4seslZjCItfhtP7K0rxjpLP482em3Ljlt/2hlE1XT5unODUe4uowdlhfKhajfWU03Vfy0rGmPxHIIgUFBUqhxmvnVmmOtjST53dxv1npnPjKyoXBrRpySi6QJNPpmCcmOycmAyzWtdIZp8Vu4p3gffem+YUCKH16Z7m2uaPiHRVuWg3mPhA/vr6ZvUvYybfTZimTz1Hhv7mzzc0erj2liS/skUv7g2wcePNrOnwcUb3ZO82RPGbjayt9HNr97TTk5WMIgikijQM5Hk/3m1B9C79uvd1jll/QRB4Mmbppi9dhMfv6OZWKYwZxPL43vreHR37Zz703oVwEBvIDIaDUwXuDQbRf6vJ3cuGAt2TyRLk2+KpnGio7zqARU2DtF0nhfPj6BpuqXEeDzLG90h8rLKZ0+08uFDDbx6LYiqasQLBf6f13r50MEGZBWqHGZMBr1A2uS18ekTLfzgwhjniooX22qdHG31zYrdluMlZzSIfHQFdgdTnBmIMBBOE07mMRlELo3E2V7rxCQ5aKu2szXgXFDms9Zt4Ysnl7cPhtP5khJRtqCiyICqx7+1bgtHWrz85n1bZ33fUCSNSRIJOM0MhvVG47bqxT0526sdPHekEVWldCZbNnOE43dtqeLN7kkafXOvmRV05Zfl/swjqTx//Xovv7weIpQqkJU1zvRHeWS3BVnVMEm6DQDoa3mmoOh51oheuLWbAU3fz37tnjYKisZrXSFimQLba53T/PYSN+Q357iOHbVOzg9FGQynebc/UsoNfvRoM5mCwrYaB2cGojT77Rxt9fH3Z4bI5BUMosBdW6o43u4v5ex+dHGM84O6+oDdbMAoiXpxbgWylm90T3J2IAqAx2ZaUuPgFCsuggmCYAG+AOwGShkOTdM+v9LXXgnJZJI33niD5557rvRnuVyOjx5t5ktGgevXr/PKK68wNDTEPffcw8WLF/F4PGt2faFkfpr3UGTFRTC7yVAyFmzx2YllCrxyNYjDbOC+7QEkUeDR3bVcGolT77EuKEP07KFGTm6r5gfnRxmNZXnmgN4ROBLN8Mti0ratyk5eVjna5uNv3xogkZXJFBRAwCDpN/vOOicBpxlBEEjmCvSGkmgapWLdSmj9l99f8WtUKD8j0QxXxxKArhlc77GWgvz3BiL8/Mq4PhFokHBYDJzo8CMKAoPhNA0eG3d2+Lk6niBXUMjKKu/2R7h7axX37whw3/Zq/uaNPoaLxpF1bisdATt9oTSNXuuSErgrOXDYigkNi1EsaxHGbBBJwLxm8auNIAh86FAjBkng4nCMWKZATlawmQ08va+eyVRuxuTbH//kKj+6NEYmL6MJesI1npWJpvN4rEa2Fr82lZMZi2dp9tkW/bcdafVxui/MRw436gatftusn7HZIK25bIjHZlo1g1WTdCNZWo6DsN1a8dbYqJiNNz7f6TJ2HzrUwNs9k2ytcZakKSyiXpS5NKIXhuvclkULGqAX9p8/2oSmafMeIu/aUsXWgAOX1YjFKHHP1iqqHGa8duOCDQRLRdN0OSCgGA8sjYvDMbonkhxu8a5ITmcimeO16yE6xxKYDOKMgP5wq5dddS4ujcQwSSJ2k0QyKxelkEw4LAZ+2ZXgnd4wyayMy2pkd72bjurknF3hfoeZWpcFQRBwL9Dh2DORJJTMk8opZGUF+xxhdyiRR9Y0JAHG4/l5XyueKXBtPIEkCsv6+c7H1JTOQgiCsKR198l99ZwdjNBR7Zh3PeuotnPfjgD9kyk+cmhurzqAeo+VJp8dgygseF9OJnNcDyZp8Or+W+IcE2h2kwGDqJuMzydHOcW+Rg97G9x899wIb/dOgpBD0/Rij1ESaPbZCadypPMqNS4LOVlFVtRSzPPLa6EFZVp217voC6WwmSRalxjzD0XSpWYJTaMkpbteTF+/pu9h7yeiGT15pagaE4kc9R4riWyBU31hHGYDNpPEhw818HJnEKtJ4uTW6lKS72irjyMtXmRV48ponCqHGY/dVHqeC4rKDy+MEkrqXbKNPivjcY1Xrk7Q4tebkkJJ3fhcUVRcFgOpvIrJoFLrttBWZWc4mmFvgweAB3cGUDWVzrEE22qc1BQ9SiRBQBJBVWBrwMnje+eXJy03YvHfqSFiXaAAX2F90fMEeoPH1HMvCCCrGrKqIQoCiZysF1MMImPx7KwimEES2VbjYDyepdZt4bE9tTPyD290hxiPZxmPZ9nb4MZjM5X8nLPFWGI8nmVPg95gsLfBjSAINHj0RJzLauSxPbXUuy2luOcDB+r481/04LObeKt3kqOtPsZiWUaimRlNRdPlwH54cYxwKk84leeuLVXzekzOR7XTPMP/52bKIQO7GuxtcDM0zadGhUXP0tMnwheSZa6wuZlI5JhM5pAEAVnTn/mfXxlnJJpFVhS+eWYIEGivsvNuf6S4JujJ+99+YAs/vDRGKifT4LGgAXlZ49lDjXRU2/HZTaVJw/V+NmLpAmcHowD4HSb2NnpQi9LkrVWWWT6l5cJp0X3Ups4pkqQ3fhVUjUxBoXGec1+j10a100wyJ7Ozbnk5kZXKlT6+t5bOsQRNXlspzm/y2ZZ0Rn2/cnE4xtWxBAeaPXOqvNyMrKi8en2C4UiWaDqPhn62UVSNBq8VoyRQ57bgtBhnnPX31LsZiWbx2kxYjRKiKJAtehEZJBGDRGnqWtM06txmOseSPLSzhnqPhe6JVCl/N50Wv50jrT4Mom5R0zORYmedi2a/DVXV+PZ7w/zgwiitfjsFReX5I00MhNOl15qey7NP84A1G0TE4iDDSjBLN2KTUCKLURTmnNaci3LIIX4J6AQeBf4Q+CRwpQyvuyJUVcXj8XD27NlZf9fY2Mjx48cxGo20tbWxfft2rl+/ztGjR9fs+txWI1UOE6FknvYF5G+WiiTqo/mpvIzLYuSlznF6JvRO2xa/jS0BJzaTgaNLkE0xFA2/v3DTRIJetdV1ar12E6mcQlcwScBlIpq2YDIIfOZEC8fa/AQTOQIuM9UOM3/44mUKioZBFDEsYJpeYfNT7TTrPgnZwoxuUkXVeOHsSClBuq3GSXu1nV872c6/fuESkXQBg5TlPzx7lGi6wNdODaIWk5NTCIKA1SQRz8qgwZ4GF4/uriWelXHOMeJebh7fU0tvKEWNy1LW7r0PHWqkL5S69c6cMvHwzloujyR4rWuCaqeZJ/bUkykoxDMyv7weYnutk3imwOvdk4SSeQQBdtY68RUlx3bWuXh8by1+hxlF1fjqO3pxvL3avqCePMChZi+HmpfevXE7sLfRjdUkIonisjqvp2OUYCoXvqUMk2oVVoeOagfPHGxAUdWSlxXoCdG59uQp2QiDKMyaJliMxboopweHBklkb2P55KhEUeCDB+rpCibnnUa7mZys8LMr42gaRXmP1lt+f7vZgNko4rEZGYtlSRY9Bpt8uv/YX3/uDrqDCUKpPK9fD3F+OIbXauSBHQHSeYXO0QRD4QzpgkJe0TBIArXzBNN7G93ctaVKn3BdQOqt3mMhmi7gthrmTRhJoqgXcZYQG9nNBiRBQFHmn5BaD2rdFh5zL5xIN0jikqZGHtgRwCSJmI0i+xfwj70yGqdnIkksU2C+gbFGn43fe2oXfZMpHtweWPS9BUE3F692mhmNZpBVDZtJL2xYjAKiIGKS9Pjjzg5dBqzBa2U4kll0Dw84LXzursU7dqfjmB53b4Au2/biWiYr6pySq+8HdtW5CKeKUu8GiaFIhkMtHt7sCRNK5NjT4ObiSJzOYnG03mOdUUgWBAGjJMzwRr5vewCnxUiNy8yfv9pDMidjNUk8sCNALFNgKJLVvRjyMrKi4XeYMEkiqbyCxaDR7LfRWmWfJWFmMUo8vb+Bp/fP/DfYzQaeP9pEMD7b32S1OdbmYzSWxWU10OCd35+6wvrS6LHSF9aVYGqmFbem/EkDTjO/+9h2fnk9hFES55Qf0jSNYCJHjctCo9c2q0mg2W9jNJbF7zCVpMqe3l9P55julTUczfDt94YB3ftj6mtMBpGPzNOg1lbl4Eirj4FwWp+y1zRcFqPuUT7PPuG3m2irsrM14OATdzQvy690M/Pw7lp+eGm89PtGz+LJwyafjWcPNZamACrcfgTjWb76jp6H2dfoLqlI1LqtjMWzCJrIRCLHy1eDugSgz0Y8K+O2GjnS6uO+HQHu31lDLF3gzZ4QVQ7zNK+pjTU56LAYSlL0+xo9HGv30+yzFZP9q7c3hpJ5RAFUDUwiPLKrhkujcZJZmUavjWOtc8vTW01SyZdzrXFajEvKI1fQUVStdL6NpPNLKoJ1jiU4NxhD0zSafTasZgN+h5kGt5X7dwa4f3uAF84O0zORmpE72lrjZGuNk2xB4XRfBJfVMO+ZJFtQCSXzuK1GeidT7G10L9hw2Oa3c2EohtkgUj9NjWU4mqErmCz6fmY4ua0an900I3c7nbs6qqhzW3GYJfon09hMhnkVTZbK8XY/XruJ8XiWlzonEAR9mGdJzcMremedLZqmPScIwgc1TfsbQRC+Avx4sW8SBOG/AUeAM5qm/fa0P68H/hZ9quz3NU372a1clMvloq2tjW984xs899xzaJrG+fPn2b9/P8888wxf/epX+exnP0soFOLatWu0t9+aBNWtYjKIfPJYCzlZLZusmiQKJY+BGpcFiGEyiPjmkRdbLm6rkU8dbyGRlTk3GOV6MElB0TjS4qPJa6fRay3JHE4l2lRV9wlyWYwcavHisRmX7b1WYW1Y6nRd3x89Oe/fTZmhF26SWNI7amxcG9c7SJ470siuej2wavLpC6rTYsAk6aacv3JnC3lZnaWfu7vezdGWFEaD7gMjCMKKxmiXw5S8VrlxmA0bwiPPYpL43cd38M+UbaQLCi6LkZ9eHmcsli1NjuhmthYmU3l8dhP3bw/wiWNNoIGiTa07IKsqqZxenYln5YXe9n3N9ILIrbA14KBzNIlBggOt768i4mZjOYXOo60+al0WHGbDptNRb/TaltVtaBRFPFYjkXSh5J9zqzjMBj51vIVXr05wbTyBIAjEMgWmZo4kUWBbrYtt6IXJb5weRNV0nwGbSaLKYabRa8VmNtBeZeczd7bimmd/afTa+LWT7YiCsOCk61P76gk4w9R7rVjnSaw1+qw8e6iJ0WiGp/bPX0iq81hp9FqRhKV3um1GLEaJh27yiZkLRdXw2EyIgoCiacwXCeysc83r8TIXO2pdHGvzU1D06bxUXsHvMOMwSaiaXnC4b3ug9Ll/5FAjiZyMa5FJs1vBYzOV4u6N0m17q00btwsGSeS+OQqqrX47qbyC22rk0oiu9GEQBbxL8BJ1mA0lr6THdtdydjBKo9fGthonn7+rjVimgM2sx8hfOzWAQRRxFX0E22vs2M0G8rI6p9n9fASclpKH01rSUmXnnq3VmIuSpxU2Jg/tqeW9oSiaBg/u0Ndjgyiwv8nDRCLHXVuqqHZa+PACXouqBsniGSCemS0bfKKjij0NbmxGqTSBVOu+4Rk6GE6XvlZRl9748eFDDbonkcnAeDxLk8+Kqul77Vx8qOjZUuM2L+sZ2uy4rEaavBZGolkcJomT2xZvFIEVyKlV2BQkcrJeNEaPm/c0uMnJKs0+G80+G5Kgn+0dZgMmo0i9x0abUeTpffU8Nc1P0m0z8tietZsyvhUkUeBjR5tm5GPrPdZZU63lZluNC6fVSF5W6Qg4+P2nd/HeUJRTPWECLgt+5+Y6+1WYjd4sohdYa5Z4ZvM7TEiigKrBye0BttU4iWcLRFJ5motngKf31c975rAYJe7eunChWdU0prZTdQn7amuVnV+/tx3pJp9mn92Ex2ZkX6ObA81e7lnkfUVRKClL1c5jbbBcxGITfqwYX2ia7lu4FMpxYpuKaqKCIOwBxoDWhb5BEIRDgF3TtHsEQfhfgiAc1TTtVPGv/yXwe8B54EVgSUWwj3/847zyyiuEQiEaGxv5gz/4A7785S/zm7/5m/y7f/fvKBQKfOxjH2P//v08+uij/OQnP2HXrl1IksS/+w9/hM3puYV/+soQRaFsBbCb2V3vps59Q4ouW1AW9H1YKh6bCY/NhNtmxGyUqHKY2N/oIZrRNT01TSOWKeCyGEveJs8eaqR7IsknjjUjq1pJjqPC7YGmaVwfT1DlMONzmOc0U09kCzx/pIn7twcwG8QZi9+/eHQHp/vCHGj2lg7E83URTC10sqot2CFeYelkCwoFRS15jRgkEVdxk3twR4Dd9S58dpMueSKJ/OeP7KN7Ikk6r9DotWEx6nJT09cXs0Hiib219IRSHJyn6J3IFjBKYlnWpbVEUbWShvFytMtXg7/+3DF+/zsXONTi5eS2xZPGFdaPTF5B1bQZxszZvMx4IjenHPJGSXivNqIo8LE7mplM5eeduloOLouRR3bX4ig2Vdxc/JAVlWROpsZl4VPHW0jnldJh9xPHmrl3exXBuP6ZzFcAm2IpybLH99RxoNmL326aV0bXbJD43F2tTCZzNC8gk9dR7eCzJ1oRpzU8bTbyskqmoJSleeUf3b+Fr50e4v4dgRXvI1P3hcemT4F98WQHj+2pZTKZRxAEwskcAbeFBo+1tB9OIYorb8aJZwtYDNKcU+ZTcfd0crJCTlY37X2wEZhrTV4JBknEbdU/vxa/nY8cbsRlNS773nh4Vw07ap347CaEYsF7etH7MydaSeVk+ifTGCSBUDJPk9e2Yr+46c/AanJyW4BkTqbVb1+XIlyFpfGZO1uxSCKpvMzn7tIbhQVB4A+f3sWbvWGeWUThAfQk4JP76rge1L3B52KhNazJZ+OxPbWkcjL7l9FAKwhCaZqrxmXh83e3oWrMO1l/K54ta0k5n83LIzHMBomOgIMHtgcI3reF3lCKh3cGuKN9Y03pVJiJLMu80xdhX6N3UXnnldBeZedEh59UXuZ4uz6RpMuVW7EV85YXh+M0eq1UO808c6ABi0HEVwZZ9fVgNfOx0xkMJwknC+xv9vLMwQYcJom3+sI8squGKqeFh3fWsr/Rg8tifF8V429nnjvSSCSVX7DJc3o+rM5t5dN3tiCrWul7XBbjjH1y6syhaRrRdB6nxbgsmxa72cAzBxoYjmbm3ZdvZq770W428JkTrWTz6rr6wSWyBXbXu8gWFFRVo3meZpebKccK+ueCIHjRC1ffBRzA/73I99zJjeLWz4DjwFQRbB/w25qmaYIgJARBcGqalljsIr761a/O+ec/+tGPZv2ZIAj88R//MX/8x3/MYDjNt98b5i9f6+Ejh5tmTZ5sZnx2E13BBN8/P4bRIPCxo83zFheWi8tiLGmLTr0XwPfPj3JtPIHfbiKR02U7ntpfVzFOvY35jz/q5MVzI9jNBv70k4fpuElT9tJIjJ9eHsdilPjkseZZB/WAy8IT++pZClLRaLFCeVA0jf/9Rh/ZgsKju2tnJYxFUZjVDeWwGNnfpE8ddQWT/OUvezFIuhzr9PVlajR7Li6PxPnJ5TEsRolPHGveVIm8vz8zxHAkw84657p3uP31a71cHInTG0rzwQMNZeusqVBegvEsXy9OHT1zoIFmvw1Ng9/5+/ME4znu2lrFP35gtgHy+wWLUaKhjF2XJsPckxqKqvF3pwaZSOTYXe9iMJIhnilwz9YqjrT6sBglOqqddFSXb+JXFIVF/205WeHrpweJpguc6PBzrH1uGRRg1RPUq0m2oPDltweIZwqc3FbF4ZaVyap89/wol0fjxLMF7t7iRxRvTaZYUTW+dnqQYDzHgWYP928PYDVJbK918XbPJG90T+KxGXlod82qJCbODkZ5uVP38P3k8cWluFI5ma+8PUAyJ/PgzsAMWb0KS2M8ni1Ngn7oYENZmw56JpJ879woBkngo0fn976bjyujiQXjI6fFiNNiLOt+P31tPNjsmXP9LBffPz/KC2dHcFkM7Kxzbeo17XbmymicFy+Momqwu97D8Q4/qga//uUzhFN53uie5L8+f2DR12mvdqxI8mg5U7zzsZnlDRVV46unBgklchxq8ZYmRm+Fv/xlD//fn19HFODfPrOHp/c38Ilj6yOtVmH5fPjP3qR3IkWVw8zLv3P/qr2PIAhzxqHTp1nu7Ljx96s9NXU7cKY/zK/+zWlkVeP5w4383tO7eWh3LQ/tnunzWmkMub0wSuKCyh2dY3F+dHEMs0GP99xW45Jjop9dCXJxOEad28JHjzYtqzG72W8rS+OH2SCta8F2ej7xgR0BfnxR91T/yJFG6haJkW85KhAE4Z9O++3niv//n8X/26d9XQcwpGlaThCE+9CLXNVAd/FLYsDuaa8laVpJ3T8GeIFZRTBBEL4IfBGgubn5Vv8ZjEQzKKqGAozEMrdVEQxgKJJB1TRyBY1gIlu2Ith8DBSlC66NJ/E7jIDAUCSzJB3UpcrxVdhYXBqJowHJnMyV0fisIthQJIOm6V23oWR+xd2qFcqHrGhkiibUg+H0sg+bw1F9fcnLGuPxpa8vQ5H0jXsikds0RTBF1RiJ6h4Jg0WvhPXk4kgcgFRe5tJIrFIE26CMxrIUih5Ow1HdO0jRNILxHADXxxbt86lQBnKywkRC/5l3BZMlj8rBSJoj66hzH8/IRNOF4rVkOLZuV7K6xDKFkiTWYDjD4RXm3rqCSUCPMdJ5FYfl1opgOVkpPYtD0+S3QP88QPerS2RlzI7yH/amJL+SOZlwKr9owjacypPMycXvzVSKYLfAzWtyOYtg0+OisVh22TKv6xEfZQs31sape361uDKqxy3xrEz/ZKpSBNugXB6Jl56RSyMxjnf4KSgq4VQegOvjyfW8vPcNmYK+DsBMechb4a2eSTRNQ9HgteuhkoVFhc3BcCQLwGQqTzIrr+o0WIXy8lpXiIKinznODEbX92IqbBiGwnqOdCoGW45ywNR+MBrLkleWJ4d9uzA4LV7uHI0jF+UdR6KZ1SuCAVOtstuBo+hTYABPA69O+7q/B44IgrAF+Mvi1z0MXCj+vQuITvt6Zdqvb/67Epqm/Tnw5wBHjhy5ZYfwPQ1uRmNZBIE5TV03OwebvISSeWwmaUmFqJVy77Zqzg1FuWdrFePxHNmCUvEAu8353F2t/K9Xuqn3WHhgx+zu0SMtXmJFuczm94nE12bBbNDlwuLZwi0lgQ806t4AVqNU0vldCodbvESLsqlzScFtVCRR4OS2aq6OJTjUvP4eXF+4u5U/eamLJp+N+1bQHVphddle66Q/nEZRVfYWpQcMosAju2u4OBznwwcriYi1wGYycGeHn95QijtavQxEMgTj2ZLcy3pR7TRzqMXLaDQzo7v2diPgNHOg2UMwnuVY+8qLjs8faeT7F8Y40royaaDp98WxtpnXdWeHH1lRqfNYV+xZNx/H2nxk8gp+h2mG6fR8NHis7G1wE07lOdq2/vvQZmRHrZOBqTW5zJ6s+5s8BOM5zMZb85Fdj/jIbr7xDKz2evjckUb+5o0+mny2sv/sK5SPh3fVcGEkjqyoJZ8fs0HkgR0BLgzH+dTxW29ArrB0HGYDx9v99E2muHOFz+ZvP7SVvq+lkUSBf/hAR5musMJa8eyhBn54cYw72nyVAtgm4/N3tfPzK0FimcL7WvmjwkwOt3iJpPM4LQZalzmZdc/WKk73R9gacLwvC2AwM8d8osOPqgWLNZ3FY0vhxtDVrSEIwk+AZ6ckCwVBcALf0DTtseLvz2iadkgQhN8Bspqm/YkgCJ3ALzRN+3VBEP4U+N+apr1T/Pr/AXwV3RPs+5qm3bfYNVRVVWmtra2ALhMy1SHptpqwGG+tM7TC2tDX18fUZ7cRUDWNUCKPhobZIFY6FBdho31+FZZH5fNbPsmsTCqv7zFem2lOD5e1oK+vD29NA9mC3jfid5gxVEzmNw23+7M3fS81GUS8t9Feejt8doqqEUrq3eUWo1QWj67Nwu3w+W1m8rJKJK1Pk9hMBpzLSOZVPrvVIZTMoagaoiBQvYq+zZW4ZXOzWs9fTlaJFtcEu9kwr3dXhVtnoc8ur6hEUre2JldYGzbj3pfIFkgX1Wa8dhMm6f2Zk92Mn91iJLIy6Q2QC1kLbsfPby4mU3lkRUUoxoG3S2T27rvvapqmzbpBy7HLNQP5ab/PA63Tfl8QBOHjwGfQp8QAZCArCMIvgXOapr0jCMKfaJr2j4D/BPwfwAr866VcQGtrK6dPnwbg3GCUlzqDAHz4UMOmmjJ4P3LkyJHSZ7cRyOQV/ur1XvKyyvZaJ0/sXV/Pn43ORvv8KiyPyue3fN7pDfN6VwhBgI8dbV43Cd0jR47wn/72+5wbjCGJAp850fq+SmRvdm73Zy9bUPjL1/S9dEvAwdP7l+b7uBm4HT67RLbA/369D1nV2F3v4pGbfAluZ26Hz28zE0xk+crbA2gaHGv3LcszuPLZrQ5ffrufYDyHy2rkC3e3rdr7VOKWzc1qPX+D4TTffHcIgJPbqjncUplwLTcLfXYz1uQ2Hycq3tsbjs24973RFeLt3jCCAJ881rKqDRYbmc342S3Gm92TvNUziSDAJ+5oXtD3arNzO35+c/H104MMRzLYzRK/enc74m3SoCQIwpm5/rwcRbAvAe8IgvBtQAM+BPzNtL//HPAbwL/XNK1XEIQ24G81Tfuj6S9SLIChadoQ8MCtXsy+Rjd2s4RJkspi+Fbh/YXVJPHRo02Mx7NsDSxfxqTC4izH+63vj55cxSupUGH5HG314rEZsZmkdfeQPLm1mjq3Fb/dVEkkVdhQWIwSHzvaxFg8uyyp1Aprg9Ni5KN3NBFK5NlWU/l8KqwdAaeF5480kcjKbK2sDRuCZw400BtKrcm5uRK3VLiZJp+NjxxuJFtQKvHCOlBZkyusBsfb/fgcJlwW4/u2AHa7cqzNh89uwmEx3NYFsPcTT++rp3siSZPXdtsUwBZixUUwTdP+vSAIPwTuKf7R5zRNe2/a318G/vG03/cCf8QqIQgCWyrFiworoMphXjXvhwoVKmxuBEG4JZ+P1cAg6Z5uFSpsRPwOM/7KXrphCTgtBJyVw2uFtafes7j3WYW1w242sGeN/LkqcUuFuWiqeEavK5U1uUK5EUWBHbWVtf52RBQFttdujFxIhfJgNUlrFgduBMoi+qtp2hlgzlEzQRCeAv4t0FJ8P0H/Fq2yKlaoUKFChQoVKlSoUKFChQoVKlSoUKFChQoVKlRYFdbC+fK/Ax8GLmiapq3B+1WoUKFChQoVKlSoUKFChQoVKlSoUKFChQoVKlR4nyOuwXsMAhfXsgAmKyovdY7zo4ujZPLKWr1thQobknf7w3z33AgTidx6X0qFCpuSt3sm+d65EcKp/HpfSoVNSEFR+fmVcX58aYxs4UZMcm4wygtnhxmJZtbx6iqsJsPRDC+cHebicGy9L6VCGRgpfp7nh6LrfSkVKiyJvlCKF84Oc3Ussd6XUmETMV/ccjvSFUzywtlhuoLJ9b6UDc9YLMsLZ4c5Oxhd70upsMl5tz/Cd8+NEIxn1/tSKrwPmEzm+N65Ed7umVzvS7nt6ZnQ99Tr4xs37lyLSbB/AfxAEIRfAKUsvKZpf7xab3h1PMG5QT3h4LIYObGlarXeqkKFDU04lefVayEACrLKs4cb1/mKKlTYXIzHs7zRrQdMqqbxwQMN63xFFTYbV0bjnB/SYxK31cjxdj+qpvFSZxCAZE7mk8da1vMSK6wSL10ZJ5TM0xtKsSXgwGKU1vuSKqyAlzqDTCRypc/TZlqLY1SFCrfOTy+Pk8zJ9E+m2RpwvC8MzyusnLniltuVH18aIy+rDEUybAlsWe/L2dC8cjXIaCxLz0SKjmo7TotxvS+pwiYkms7z6rUJALIFheePNK3zFVW43XmtK0TPRIquYJK2KjsBV8UTebX4yeVxMnmFgck0WwIOBGHjxZ1rMQn274E0YAGc0/5bNfx2M1IxyK9yVkzZ14JUrsD5oSj527xbbKlcHokRTa//1IjNJGE360m3yrNQ4f2OqmpcGY0va6LLaTFgNenPUPUGfIYuj8QIJStddBsZv8OMKAgIAlQ59HtIEARcVj15MPVna0m2oMzovszklUo35iowtWa4rUaM0lqE3BVuJpTMcnmkPJN4U5+ny2LEtAk/z0gqTyxTKPvr5mSFsVgWVa2o3m80pu5Zn92EKAr0h1IMhFPrek2VuGXjM1fcAnrsMB7PMiXwE03niaXLv6asJdXFf1/1OsRim42pe8FpMWA2rE1Tj6ZpjMezZAvKbXG/VQCrScJh1puIlnu2Hotl6J5IIivqalxahTIRTuWJZwvEs4UNoaQzdZ9ZTRIOy8ZrYOudSDIYSa/3ZZSFqb20ymnekAUwWJtJMJ+maY+swfuUqHVb+PSdLRQUbUMmLW83VFXj975ziZFohu01Tv7wmT3rfUnryp+90s3LV4M4zAb++Pn9uG2mdbsWi1HiU8dbiKYL1LkrHQ8V3t/8xWs9/PyK/mz+p4/sw7+EA6/NZOBXjrcQzxaoc1vX4CqXzl+91suPL41hM0n85+f2UeWoPOMbkQaPlU/f2YKiaTeKYMAnjzUzmcpTt8bdaNmCwt++1U8iK3Ok1cvhFi9ferOfdF7heLufOztu347vteaRXbXsbfTgt5tKzVkV1o5QMsvvfOM86bzCo7tr+fzdbSt6vYd31rCnwY3fbsKwyYpgXcEkL54fQRQEnj/SRG2ZYkJV1fjaqUEmk3l21jl5bE9dWV63Qnl4al8d44kc1Q4zr3eF+JOXuhCAf/rwVo62rf1aX4lbNgdzxS0a8NV3BoimC+xtcLMl4OA7Z4cREHj2cAONXtv6XvQt8qFDDQQTOQKVnNGiPLgzwK56F16bCZNhbfbAX1yb4L2BKLKqIgkikijw4UMNNPk25/1WAcwGPT8VSeeXlZ+6OBzjv/3sGpm8wuN7avmVO1tX7yIr3DLXxxN8/8IomZwCgl54enJvHVtrVnUOZkFOdFTRVmXHZTFuOBWHX1wN8r9+0Y0oCPzOo9s52Oxd70taER84UE+wGHduVNZi9/qZIAhrWgQD8NhMlQLYGpFXVMaLHeRD0dujgr0S+if1DstkTt4QPlw2k4F6j3XDVuIrVFgr+if19SmZkxlbxtSL3WzYcAUwgL7iWpPOK4xEK13VGxmv3TRr4stilGjwWNdcniqVk0lkZQDG4zkSWZl00T81mKjcR+VEFAUaPNaKDOI6MRLNlu7tqfVyJWzmzzOYyKJpoKgaoWT5YtO8opa6fMfj6x/zVpiJQRJp8FgxGUR6JpJomoaqaXRNrM80WCVu2TzcHLdomka0OIUznsgykcyhabpU+EY4794qxuIzUpnWXhxBEKj3WEsKGWvBVI4pGM+RkxX9fivjHlZhfbCapGXnp8ZiGdI5BUXV6A9Xco4blfG4vjckcjKJbAFN2xjxYZ3bit28sQpgAN0TqVJ83n0beFMap8WdG5W1uAt+C/gXgiDkgAJ6A7SmaZprDd67whpgMUp84lgzb3SFeHR3pQP0V+5s4StvD9ARcLBlHTseKlSoMJNPHm/hq28P0FZlY2ft5t+CPnW8hS+92U+zz8q+Rs96X06FTYLfYeZEh5/RWJYTHX4CLgvH2n0E4znuqnioVriN2Nfo4aGdAQbCGT51/P3tu3egyUM0XcAoiWyvLV9sajFK3L89QE8oyeFmX9let0L5eXp/PYORDCLw5N71Oa9V4pbNiygI3Lu9mv7JFHe0+fHbTYQSOQRBYFf95o+pK2xM7t0W4M2eEMfafMSzeipxd+V+e19yR7ufrokUk8kczx2u+IhtVA42e4hlCuyscyGgIatwqMWz3pe1YXnmQAOjsQxGSayoKawRq14E0zRtwZOWIAi7NU27tNrXUaE8jMWyOCyGko7vFE/tq+epffWA3rHzeleIeo+17Ea6eVnlpc4giqrxwI7AmnYiLZVd9W7+3Yf2rtrrTyb1A4fPvn4yixUqrCaF4nRpjctS1s7MXXUu/u0GkWvN5BVe6gxikATu3x64pW6ZbTVO/sH9HRVj6g3OfPtWtqCU5BDXehrs2E1784mO90fxK5mTebkzWEzcV28YSbt0Xi7JFlemtsvLrno3VU4z3mVKU8ezBTJ5hZrbxDzbZjLwxAoLH3lZ5eWrQWRF4/4d1SVJmf1NHvY3ecpwlRVulYKiluRn5osnPDYT/+qJnQC83TPJcDTDiY6qskljLgWvzUR7tb0iZbZJ0bSp/zQsRonH16mYuhA5WSGUzFPrslRkiJfAUtaOKWRF5ZWrE2QKCvfvCMzKB60GtW4LHzrYuOrvU2E2b3ZPMhbPcFdHFYE1joVCyRySIOCdlu9yWYz8xr0da3odq00qJ/Py1SAmSeT+HYHbYiLVbjbw5L6V7w23Wxw+Hz6Hif/ryV3r9v7L2QM2ErF0gVeuBXFZjdy7tXpZuZSNMA/4JeDQel/ERuPSSIzBcIajrd4l+dasBW/3TPJG9yRmo8ivHG+ZN/H6y+shBsNp+ifTbKtxlrVYc2U0zpXROAB+h6nsRbZb5dp4gp6JFAebPau6UPeGUrxwdhiADx9spNlfOURWuP349plhhqMZGjxWnj96a51eiqrxZvckBVXlRId/zQycl8rZwSjXxhMA1Lktt9QR/dPLY7xwdgSvzcS/fHzHhhzxrwCdY7P3LQ348tsDxDMFdtW7eHR37fpe5BLJyyqvd4cwiiJ3dvg3XYLpTH+ErqLURKPXys66W+smLufPIVtQSp5sh1u8nNxWfcuvVWEmY7Es7/SGARCFEB880LCk74um83z57QHyssp926vn1OcPp/K80xum0WtlT4O7rNe9Ubk6luDyiL6W+eymin/gBuKFsyMMhtPUui18/I7mBb82ksrzWleIoUiGS8MxfvfxnWuW+PibN3o51RfBIAq0V9lpr3asyftWWB7TY+i7OqowGURUTePVaxMAZAoKnzy2dtO1w9EMF4aibKtxLnjPaNoNj8KOgIMP7K9fs2vcjFwdS/DVdwb057HawSeOLbx2dE+kuDAcA9ATj5V45bYllMzxVs8kAJoW4sOHll6IHIlmOD8UZWuNk45bWOOvjyd48fwooiDw3JFG6j0bz5KgXJwdjHJ9XD+X1HtWP56ca23fiIRTeb7ydj8FReP+HQEOVBqtysrVsQS9oRSHmj388nqIgXCaGpdl0T1gI/F27yQ9RWnvNr+d1ir7kr93I9z1myuDsgYksgV+enmcK6Nxft4ZXO/LKRFK6pr/uYJa8hOZixqXXrRzWgzYyjypVe00I4kCgsCG6QrIFhR+eGGMK6NxfnJ5fFXfa7Kov65pEEqtv7ZuhQqrwZTW+0o036+MxjnVF+bsQJSzA9EyXVn5qHGZEQSQROGW/Stf75pkIpHj2niiLH43FVaHKseNfWvKeF3TNOIZ3VujnP48q817AxHODkQ51RcuFfY2EzUuC4IABlGY5dG2HM4ORsv2c0jlbniybaZ7YTPgst6IQ2uXETNG0wXysgowr9fNS51BrozG+enlcWLFZ/l2p8ppurGWuTZGg14Fnam1I5TIoWnagl9rM0uk8zIj0QzhdJ6zg9E1uEIdUdRTD4IgIFamXjcsM2Lo4v0hCAJem94AW+Nc2zP4Dy+McmU0wffPj6Kq89/fsqoRSRVjq03sU7YWZAsKP7o4RldQb+TVcwwLrx1+hwmjNJWHqewBtzMO8w3lp+XETwA/ujhWel5lRV32e0/lHFVNK3mO3q5M5QMMK8gHLIe51vaNSDSdp6Do61FlLS8vU2v/ldE4P70yXoofl7IHbCSmVAxMBnHZah8boW18XX7So7EMsUyBrQHnhutkNhlErEaJdF7Bbd04Mld3bfGjoeG3mxfsyLhnazXba524LMaym4fXe6x89q5WVFXDs8ybfbUwSiJ2s0QiKy/p88rLKteDCWpclmUn4fY2ugmn8oiCwJ7690fncYX3H4/uruXSSIzdK7jH3VYjgqAXjN229VlHC4rK9fEk1U7zrMC2vdrBZ0+0IooCrluUMzzU7OX6eIIqh5nmirTQhmWufUsUBI62ejk3FOWuLZtnmmLqWRIENlR8slS21zqpdpoxSsKKZESn/u2CwC0/v1P4HWbu2VrFSCzLnRtkun0zkMkrdE8kafLa5l3jbSYDn76zlWROnjO5EE3nGYpk2BJwzIhXW/w2jrb6iGUKHJ9n2sltNTKIbu5u3qCdtOWmzr3xYvAKOo/squHCcIxdda5FJVXNBomP39HM104NYjMZcFlnpwO6J5KIgkDbMjprl8KnjjejqirbahzL6tqtsLa4LNNi6Kn9Dnh0Ty3dwSRHWmdPx64mbquRRFbGaTEsKHlklEQe3lXD9WCCg01re42bDYMoYDdLtFc7EAR4bE/tomtHlcPMZ060UlC0OZV+gvEsoWSebTWODSM3XeHWsBglfuXOFuLZAoFlFr3dViOxTAGnxbDsPOtQJI3DLLGj1onZKLKjjB6mG5EtASefudOMJN16PmA5TM+PzLX3rxU5WaErmKTObZ1zLWmrsnOk1UsiK3OsveI3W06m1v6p3PWd7X4uDMd0D7dN1Jy0r9FDvceK1SiV1JD6QilkVWNLYOEJ1I1QBFtzwqk8Xz81xEQyS0HWuGdbFU/sqVtzT475MBskPnGsmVAyv6ESmx6bqeT7tRjL3SyXw1psEMtBEgU+fkczwUSOJu/i49o/vzJO51gCk0Hkc3e1ljwVloLZIPHINNmsdF7mO++NkC0oPLW/blV/7hUqrBVbAo5FN6/FaPLZ+MQdzciqti4yCqqq8R9/1EnnaJwtASf//NHts7TzV5pETOYK5GSFVF6mIC+/067C2nHzvqUBF4bj5GWNM/1RWv3lkYRSVY0fXBxlOJLh/h0BttWU9/C4o9aFy2LEIApr7g9QLsoh0by91onTYlj053BhKMbr3SE6qh08vKtm3q870lo54C2X750bYTiawW6W+NW72+eN4a0maU7/WFlR+dqpQdJ5hc6xBB85fEPqRxAE7t66sE/eAzsCbAk48DtMt9zwdXUswStXgzR6bTy+p3bDnEMWYqPF4BV02qsdy5IW3BJw8mv3tM8ZI53pj/D/e/k6iqrxW/dv4Y628hXnLw7HkESRvkm9GXUzNlO8H/DajZgkkYKilhoINA2+/d4wuYLKZCq/ZHnZpaCqGj+8OMZQJM192wNsvynx/cEDDQxF0tS5F4/nd9W72FV/a1LH7ycMksihFi8TiRx7GlxLlq2br4EolinwtVODyKrGaMzNgzvnj3kqbA4sRumW4pun99eXntflJNVHYxm++e4QmgZ3banijrYbsfFLneNcG09yvN1/20njectoHbMY65Ef0TSNH18ao38yzT1bq9lV7+JHF8fomUhhNop84e62WbYVgiBwz9aK3OpqYJBEPnZHMxPF3LVBEueNH4PxLC+eH8VqknjmQMOc56n1ZPpASfdEku+eHQHg4V01C0qLboQWjTWfcc3LKqqmMRbLks7LXB9PEklvrFFbp8VIW5V9w02pVZgbu9lAW5V9SV1PWVmXPZIVDXkBSYel0BtKMR7PEssUuDKaWNFrVahwuxFwWdZNRzyczjMUzlBQNIajGRSl/EPP18aTSKJIIiszEsuW/fUrrCIaJYmQXBkLmJF0nuvjSdJ5ZdVkQOs91k1bACsnS/k5nBmIkMkrXByOkc7PLyNdYfnkirHUVEy/XFSNkuTh1GstB0nUp2RWUhQ6OxghnVe4Np4g+j6RVKywcZgvRuoNpUjlFLIFlatj5T1bZAv6M6eoGoVbkMmqsDZ0T6TIySqqpvuagt68Ixdj2VyhvJ9dJJ3n2nhCj10GI7P+3mTQk3QbLQG32bk2lsBilOgKplYs6ysraimvUc64tsLm41af11xBZSqcmx6X5WSFc4MxMnmFd/tnrw8Vlsda50fiGZkro/r6/l5xfZ/aQ2RFQ60sF2uOY4m560ujcWKZAmOx7Ia33pgelyx2rluTSTBBEBqAlunvp2naq8X/H5/j6+uBF4FdgEPTtLJmDmrdFh7dXUuVw0QwnqPBY63IeiyRaDpPMJGjfYkFn42Iqmr0hJJ4bKYVeYLcKg/trOHsYJR6j3XFHbVNPhtOi4GcrK54cqZChY1CMJElnpHpqLZvqrHs6XisRk50+Dg7GOOhnTWrIsn49P46hiNpWqpsZZ/4qbC6CAJ84EA9/ZNp9pbRBNltNdLgsTIay7KjrnJPLIV0XmYwnKHJZ13WZPZS2Fnn4o3uEG1Vdqxllod+v/PgzgCvXJ3gULP3luJRk0HkmYMN9IZSKzIi1zSN3lAKm8lQ0qdfKjtqXYzGstR7rJWJmArzEs/qCYhWv31NTOzv3x7g3FAUWVV5YGegrK99cmsViUyB1ir7upzBKiyNFp8Nu1lCUSlNCIkCfGB/PQPhNPsbPWV9P4/NRIPHykgsw866pU9x5WSFvlCaeo9lRRLH71d21LkYjWUwSSLZwvKbQabjd5h5Ym8dE4kch1o85bnACu8rWqvsPLgzQDInc6TlxhSY2SCxJeCgeyJJi9/K1bEErVW2WdNDm4mhSBpF1Wjx3/6ywE6LgWafjcFIurS+P7q7lnNDUZp9tkpzwwYhL6v0TaaocVlKZ5KtAQeXR+JYjBKNS1A8W0921jnJFBQUVePAInLIq14EEwThPwIfBS4DU7urBry6wLeFgQeBb6/WdU2NyquqtinkRzYC2YLCV94ZIFdQ2Vnn5LE9det9SbfEa10h3u2PYBAFPn1n65r7BTktxrKN97osRr5wdxuaRuU+rnBbMJnM8dW3B1E1jWPtPk50LCxJtVExSCKfPtHGp1Zxj4lnZXbWuTAZRLKysibJsQrlo8VvL/vhxyCJPH+0qRLbLIO/PzNMKJHD7zDx6Ttby/rad7T5ONLirXwWq8Ab3WHG4zle6wqxrcZ5Sz/jJp+NphXKjp8ZiPDqtRCCAB+/o5maZUxJ7m/ysLfBXbk/KsyLrKj83TsDpHIKbVV2njlYPgm6+fA5TPzBB3YDlL0R6VR/hJFYlolkjp31roq85gbFazfxa/e0AzPvgdYq+6p4uUmicEuxy4vnRhkIp3GYDXzh7rbKWrpMDjR5SOdk3u4N8/XTQ3zyePOKitPba52zpCwrVFgO++YpsD+9v558QeF/v9nHhaH4mu2Hq0FfKMW33xsG9GLQ7S7fKooCzx5unLG+u21GTm6ryB1uJH50aYzuYBKbSeLzd7dhlEQavTZ+894OBKH88WC5EQSBwy1L8wJdi0mwZ4DtmqbllvoNmqZlgexa/KArwdLSyStqSTomlVtZt9B6ksrpg4WyqhVHJTf3AUwQBDb4mlShwpLJFJSStFV6E68zU6zmHpPOKQiCQEHR9BHwikJdhSKV2GbppIsxwWrFNZXPYnWYiuUyeX3PEFmfn3OyeN9oGqTzy7+HKvdHhYWQVa0kIZhaQ0nV1TqDT8V1lbhl47MeCa/lrodTMsPZgoKyjvvAZiZTnABTNY3MLexhFSqsFZpwQ1I3mdu8EuPT9/K13NfXm0q8u7GZOldlCyqyojElYHI7fm5rUQTrQa8yLLkIthQEQfgi8EWA5uZmhiJpuidS7KpzlQxcy0U4lef6eKJogP3+lW5wWYw8vqeO4Wiaw81LN3FXVI3vvDfMaCzD/TsC7K4vn/TTUrgwFOOVq0GafDY+sL+ek9uqsZgkqh3mW/I1Wc/7IZjIcmVUf++GdfI6qlDhVjndF+a16yEMBoGHd9bO2S3Y6LVx/44A0XSeY2U0Y19vro0nGItlOdTixWEuz9brski83DlOa5UdzxpPtFZYHfonU7x4fhSPzcizhxoXNaQejWUYDGfYWeesSAHNw2gsw7XxJDtqnXNO6Ty9v54ro/FldS/LiqpPlEsCh5q9K0oWyorKd86OMBbL8ODOmmVJQa2Egck044ksexvct2R8vt48vreWC0MxOqodZZPnlhWV88MxnGYDW2+SmM3LKqf7wtjNBvZPM2U/1uZD4IY37Hyoqsb3zo8wMJnm3u3V83Y7V6gwHYtR4ql9dfRNptjX6Cmt+bvqXUuOJV69NsHZwSh7G93cv3158oZT6+fOWmdZvCDv3V6Nzayfwcp9Xq9QPqLpPL//wkXyssb//eROGooTs989N0J/KMXdW6s42Ly0juvV5LE9dZwfitLqt3N2MArAoWbvgp7qU+u8w2x430qJK6rGt98b5nRfmL0Nbg40efDaTSuejF4LVFXj4kgMURDYXe/a8NMJFfSzzfcvjOKyGPnI4cXPNjcTSeU5Pxyj1W+bsR9OkZdVLgxH8dhMJfnWjcyOGicXhmIUFJV9S5DjHo5m+O7ZEexmiWcPNWIvUx5hvUnmZM70R6hzW2bF3BVm8+NLY1wdS3BHm4/j7eXPkT2yq4ZzQ1GqHWZO94epcVlueY+MZQp0juoTmxvRR3wtnqA0cFYQhJ8zrRCmado/XsmLapr258CfAxw5ckR74ewIeVmldyLJZ+9qW9EF38y33xsmnilwfijGr51sL+trbzYWGnPPFhRMkjirWhxJ5xkIpwG4NBJfcRFMUTVkVV2yDvDFkRiyqns2xLMFPDbTsg+B01nP++HFc6PEMgUuDsf4B/d1VAK/CmUnW1AwG8RVubcuDMcYjKQZimTI5BQ+erSZZv/sA9eBaQnG24FIKs8PLoyiaXpQ8PT++rK87l+93kcomWcyledU3yQnOiqyApudK6Nx8rJKMJ5jNJZdMKmekxW+dWa4pOH9/JGmNbzSzcN33hshW1C4Pp7gU8dbZsUp9R7rsg2izw1FeaN7EgCr0bAiKZNwOs9gMUa6OBxbkyJYLF3g2+8No2oaE4kcT+zdfPLWAaeFB3cufrBSVY28oi4p6fJWT5hTfWEAnjsi0ei1lb7/VF+Y0326obfLaiw9mxajtCRJl0RWpmdCN5W+OByvFMEqLJn2agft1Q6yBYW/+GUPBUWjfzLFc0eaKCh6V7xxgULwheEYiqpxYSi27PPP9PXzV+9Z+ZnHYTZwZ7sf0yb1lX6/8JW3B3i3X1/v/vrNXn7vyd2omkZ3MAnAxZH4hiiCVTvNPLizhvNDUV67HgLAJIkzGhVu5p2+MG/36Ou89bBUKvzMl8e4HYmk85zqnaQ3lGI8keWfPbx9Rd6Ya8mF4RgvdQYBMEgCO2pvbym5jU5OVjCI4oKF5yujCXIFlYlCjuFoZtmFqh9dGmMsluX8YJRfO9lO+03f/1rXBOcGYwgCfOJYMwHnxku6T+f6RJLRWBaA88OxRQv3V8fiZAsK2YLCUCRz20iOvtQZpDuYRBDgs04zHptpvS9pwyIrKpdH4oA+4LEaRTC/w8wDO2p48fwI18f1z6XKYcZnX/7n8uL5EYLxHO8ORPj1kx1IokC2oGCUFl4r1oq1KIJ9t/jfqjIazTAQTrOvsfwb+NTnVKk3zM97AxFeuTpBldPMx442zTiMeW0m2qrsDEcz7F1hgJXMySVt/Cf31bElsPgmurfBTTiVp8lnw2UxMhRJ8/MrQfwOE4/vqVv2g7ie94PFKBHLFFatSFHh/c3rXSHe6Q3T4LXykUONZT8I7mv00DmWoMphxiCJG3pNVVSNH14cZTKZ58GdARq9t94daZAEDKIuW1jOiQtF1ZhM5TEZRDyWSuB4O7Crzk1vKI3HZqTOvfAhTpgm+7OBH6U5GYtl+cnlMdxWI0/srVswgbtSLEbd8H0imeN/vdJNlcPER482r8hDb3oTjsW4smv32820VtkYiWbZuwox7FxomkZXMEE8W6DKcfuuHdmCwtdODRJJ53lwR82iP9/pW54gCORk/fvDqXxpilAQbu0zd1oMdAQcDK7SWWUupu9jD+2qqSgIbHJueDJoCIJAMJ7lG+8OAfCRw43z+tHtb/RwdjCCzSTxV6/1srvexbElJlCm1k9zmWKXC0Mxft45jtdm4mN3NC25obHC2hJwmsgUFDQNqu36fSUKAttqnPoUxjoWTAqKyg8u6E2hj+yqpdZtmRFbLxZnC3NETO/2R3j12gTVTjMfvSmPcTvitZmo81h5uzeMs6AwMJmiK5gkkS3wyO7aZXlbrjXTz45zfZYV1o7OsTg/vjiOw2Lg43c0YTPNnVreXe+ibzKFy2JcNA5J5mS+f34EVYMn9tbhthpLMZfRMHcCfXpObDPcE1PXOJnK8a0zw5wbjPKJY83z/vx21Lq4Pp7EZjbQ5CtPHPdS5zj9k2nu3lK1blNYluI5zCAKZVN0uF0xSCJ7G9x0jsUXbPJYKd0TSV67HiKVk9kacGCUbu15mrrHp/5/eSReOvd//I7mdVcgWfUimKZpfyMIggnYVvyjq5qmFRb6HkEQjMAPgf3AjwVB+Feapr0973sADouBRq8Vq3Hhf1JBUZEEYVnJ3Q8dbKB7Ikl71cYfr10vuoqdYaFEjmi6MEPiQhKFshlXjsWyJLK6XmnPRHJJRbA9De4Z3U1nBqKEU3lCyRz7Gz3LHv1fz/vhmYP19IZSm0KuoMLmY+o5Ho5kyMrKvMHYrXK4xcuBJg+XRmLYTIYNfR+PxjJcH9d/Hu/2R+YtguVlFaMkLFiUdlqMPH+0iclknq1LWLOWSp3bQr3HgtUokS92g1fYPGiaRkHRZhRjmv02fvO+jiV9v8kg8tzhRgYjGXZssq7As4MRJpN5JpP6FNTNXZ3l5COHGxkIpzk3GGU8niOUzBPN5FfUKbqnwY1J0g9tK712SRT40MHGFb3GcskrKlUOM1aTdFtPZIRTecKpPAA9oeSiRbDDLV6sJgmXVU/UjMezTCb17zdJIk/uq8NmkqhzLz8JIYoCHyjTFPBSGYne2MfO9EcqRbBNjtkg8ZHDjQwV1/ypyWGAgXB63sT13VuruHtrFX/6She5gsqbPZPc0eabN27JyUqpODW1frb6559KXg7dE0k07cazeSvPUoXVZ0uNi7u2VKEoGnsab0zaPLlv/aeGhyKZ0lTt2cEIj7nr2FbjxHhQ38sWmqAHuKPNh90szTiHdE/o6+REIkcsU6BqDrsDVdVQNO22KJBJosCHDzYSTuURgNFYlmimgCgInB2M8uju2vW+xHnZ2+BGEgUkUbhtJmI2Kz0TKVRNI54pMJHI0eKfO2/Q5LPxG/cu7WxzbTzBSFSfkroyGud4u5/H99TRPZGkwWOd8/m7e0sVXpsJr81YykHmZXVFzW6ryfZaJxoav7w2QSIrk8jKBOM5Wqvm/vnVe6z8+hJ/fouRkxWyBZVzgzFAn4xdryLYAzv0JuNqp7lsVhG3Mw/tquGhXTWr+h6nesNUO81IosBje2tv2Wrh6f11XBtP0OyzI4lCKfaLpvW1oslnQ1E1gHWZDFv1u00QhPuAvwH60JuVmwRB+Iymaa/O9z3FItlDS34PYGedi56J1IKSNF3BBN8/P4bTYuBjC3Qr3IzHZuJwy9I9sN5P5GWVwUia3fUuUjmZOo91VbuKm3022qvtxLMyB5o9t/QaHdV23u6ZZDiSwWMz8sljLcuqRq/n/WAzGeaVkwzGs+RkdUMXFipsbI61+3ize5L2akfZC2BTSKJQVhmoTF5hJJah0Wsta0dxlcOM12YkminMW2x/s3uSt3omafLZ+PDBhgWbKwJOS9nlGbbVOHmtK4TTsrAXTYWNybfODDMQTnOs3ceJjqpbeo2Ay7IhtbYXo6PawdWxJHaztOKO40S2QDCRo8Vnm7OT0GkxsrvejcNs4JWrE9S4LFSv0M9zNJbhp1eCSKLAc4eNm84v1mMz0V5tZzKVZ8caeZAth8FwGrNBXPG9XeuysKPWSTCR49Ai0l3j8SzffHcIURD4yGG9KFntMLOzzsl4PMfRVt+c8r0bmWqnGY/NSCxT2BQ+GdNJ5WTG4lmavLYNm8haD2pcltKaub3WWUret/rspSThfGearQEnF4djbAk45i2AvXB2mJ6JFIdbvJzcVl1aP8vF4RYvsUyBgNNMzQaXrHo/4zBJhBI5ZFXbcP4zNS4zLquRZFaesa61VdkJp/L0hVK0+G3z3uNznUOOtvpI54LUe6z455B+SuVk/u7UIKmczBN7l6ZEs9EJOE00+2zkFYVoOs+5oRjNfjsd1Rv7PCEIwpr7y1eYm4PNHkLJHF6baVlNNqOxDJrGnFLkTV4bZqOIpkFLMeayGKUFP3OjJM6wUphStmnx2/jQwYYNqZ60o9aFx2rip5fHcNtMNHpXvyHkpc5xzg3G2FLtoM5tYTSWZWtg/QrJBkm8ZTn5oUgaoyRu6KnVzcBUHm0qdtxa42A0lmV3vXtFAx9Oi3FGvvxQi5dIOo/PbqLeYyUYz/LNMzeUDNZawnQtopr/CjyiadpVAEEQtgFfBQ6X800+sL+enLyw5n9XMImqacQyBcbjOdrmqba/H9D13ZPUui0LGhOPRDMki+OQc20g378wQl8ojdNiwGc30T+ZoieUWrXDtskg8sEDc0+VdY7FeeXqBI1eK0/sqZs3Ib273s2hZg9+u4l4RmY8niWdV/DbTeueTNQncTS2LHNDGo5m+MbpQTQNHt5Vs2l0vStsLJp9Ns70R+kKzjRBHwynyckKHdXzJ07WgtFYhslknu21zlIn2NdODRBJF2jwWHn+aPk8kSxGiU/f2UphAf/B68EEoP98MgVlzRMFV0bjpHMyAvpa7a5oaW8aVE0reWVeG0vcchFsoxLLFOifTNFWZZ+zi2xrjZPf8NsW9RGYj3i2wGA4TYPHytdODZLOK+yodfL4At5WLX47nzmx9OTO9fEEL3UGqfNYeWrvzJiiN5RiPJZFEGAwktl0RTCTQeShnTWMxDIr8jNbDoqq8eL5EcZiWR7aVTNvnHhxOMZPL48jCPDckaYVTS+JorDgPTGdvlCKdF7m6liCsViG37ivgzq3lcf21JX2HllRVyTZMh7PEknn2Rpwrknno8Uo8ZlF9rGNiKZpfO3UILFMgWafjWcPr+2k5FKQFZXvnR9hIpHjoZ01qzrNOh9Oi5HnjzTRPZHk/7zVy0QiT0e1nV87OXfH+MO7arhnaxXmeYqKeVktTdhcG08syetuuWTyMv2TKVRNRdU0xE0gXfV+5PpEklRORtOgcyzBgSa9iSCSyjMSy7Al4LilNaVnIomsavPmFZaCzWTgsyda+dHFUX7eGSRTUNjX6CGWLvCVt/spKBp3tPm4a8vS46q2KjttVfN7yo/Fs8QzupBR9xKVaDY6P748zhvdIcLFc9X+Jg+tftuycxDlRlE1OsfiuCzGSmPvBqfObeXTd7Yu63t6Qym+894woE+LNPlsXBtLUuM2E3Dqeckv3tOOxmyvS1XVuB5M4rIaSlPEmqbx40tj9E2muWdrFbvr3Vwb18/n/ZPpRfPD68XbPZOcGYiyp8HFPVvn32uDiWxJSWalkoFXx/Smme5Qkn/8wBbyZbZpWE3G41kmEjm21TjpCib58aUxBAGePdR4W64To7EM8Yyeg1+qgp2qanSOJXBalq629M13Bwkl89S5LXzsjmYOt/jYXe+e13onk1f4ztlh0nmFp/bVLbkI2eCZuVb0h9PkCkUlg8n0bVkEM04VwAA0TbtWlDssK4IgLPoQ72/yMBbL4lmjavt0kjkZm1Fa8k1cUFQUdfUWph9fGqNnIoXJIPKFu9vmfJ9gPMvXi4WVOzv8cxrwxTNy8Wt1GURJFDg/FJ0zufFuf4RTfWG21zi5f8fyjJmXwrnBKJm8XtyLdhQWNPG7o81PPCsTyxT4Hy9dR1E02qsdfObOVty2st+egL4wLSQxd3UswQ8ujJJXVJ7aW8fuZRSykln9oAKUgvQKFZZLXyjNeFyXILg0GifgsjAUSfPNoufEyW3VHG5ZeyPsyWQORdX4xukhFFUrJVFVVSOZ09egeLa89322oPDt9/RN/sm9ddTO4c90tNXHG92TtFfZ16VT9t3+KLGMLqPQG0qxs9IZuWkQBYEDzR6ujiWWNFmcLSiIgrBpJiK++e4Q8UwBv8M07wF5JUn5r58aJJGV8diMZAoKsLI1oH8yxU8ujeOzm/jAgXqMksjZwSjpvEJ3MMlkKj+jYUgEBiNpJFHAuEBcd34oWlojHtlA8kLxbIGvnx4kJ6uEkvmySB8tFudOJHKlBPt8cSLciGE0TZ/yg7WJ13fUuXizexJNA6tJ4uxgFJ/dRDavlvaewUiaB3YEbunejabzfO3UoL6HNWe5b3v54+C5EEUBs7ixkxwvdY5zbTzJsTYfB5u9KKu4t5eLiWSOvpDeyHB+KLYuRTCAs4NRXrka5EcXx7GZJMZiWX7lztYZ57qCopLNKxgN4oLnSpNB5FCzh2+/N4zXZqJ7Iln2psavnx7i0kicy6Nx7uyoYkftxptErQDxdIHBcApNg1A8B+jJ5j988TLBRJYTHX5+6/6tC76GomoUlBsJ6J6JJC+cHQHg/u3VbKlxYjdJt1QMy8kK16ZJve5r9JAuyBQU/TBc7rNwk9dGa5WNeEZmfxnVLNaTgckUA+EMk4kMo/EMD+6o4fkj5WsmvFXe6pnknd4wggCfuKN53RuUKyydgqLyvXMjTCbzPLyrhtY5VEqmP5uxjEzn5XGujycxSgJfuLsdq0mat9jzZvHeEAWBTx5vpsphJp6VuTKaIC+rvNsfYUeti70Nbs4Nxeiotm/YIs+7AxFyBZUz/VHu3lI15zqYyBb42juDyKrGcIN7xVJ4x9p9nOmPsKvehSiKWFbpSJnKyaiqxnfPj5DIynzoYMOKJrYS2QJfP1X8OUQzuK16rlY/J8jluuwNQSav8KW3+nmta4Kt1U4e3BVYUqNsJq/wbn+YU30RBAE+drSZWreFnKx7e871HGiaRjw7O9Ze6Jnpm0wxFtNzhZdH47f8uW6vdXJ9PIkgwLZ1kLVdi6zdaUEQ/hL4UvH3nwTeXYP3nUWd28pn75q/y2e1ePXaBO/2R6hzW3j+SNOihbBYusDfnRogJ6s8ta9uVQ5WU0GiomqoU9WTm8jJaqmwki0mmW7m0d21nBuK0uq3cWYgytmBKE6LgXODUc4ORqlxmRmNZbkwFCOV12ULzg5GuXtrVVk1tcdiWa6MxumbTPPgjkBpcZyPJp+Nz93Vxp/9optsXiGUzBclAfSKdF5Web0rxGQyRzInU+u28siumnk/u4HJNKf6wnQEHDPGsadQVY2vnx5kNJadtzutoKj0TCQJJnKYJHFZRbCtAQfH2/1kZYXDrWtfpKhweyAKcGE4higKPF30LskWbnhN5eZYB84PRTnTH2F3g5ujrT4UVePlziDpgsL926tvWUt4iq++088LZ0dwmA1sqXagAu/0TuJ3mDjY7OWpffVcHU+UffqxfzI9bZOPzVkE21nnYuc6SolFMzlUQNWgIM+9RlfYuLxxPcQvrk3QPZ7kXz25k5c6gxQUlcf31M1oxugLpfjuuRGMksjHjjbhXaDBYyHODepTnkdavbSUyd9lPgrT9tJyo2kaueLraho8tqeWgck0h1ZQoL8wHCOZk0nmZMZiWZp8NnbWuRiJZqlzW/De1ByTUzREQfcCzCnzP3vvDejNOZdG4ty9tWpFMrPBRJbvvDeMURL58KHGReOchcjmFd4rNg7ZTNKKi2AvdwY5OxilwWvlucONcx7m/Q4TeUVlKJzmri2zm6qm2Fnn4tXrE9hNBtpW+T6dIprO84trE5iNIgZJIJjIcXYgypvdk6iqSjCRp8Fj5YcXRumZSPGRw43zHvxUVePNnknSeYW7tvhLn3m+2NwGM/fV9zs5WSl5U5wZiHKw2Yuh6L/WFUyybxEft/XCbzdT47Jwuj9MOJXHazdx7ypMTi2Gfi8JBFxm4plCsTiQoL3awcvFPaVnIsXZoSjbAg4e2V1DOFVgW41jzomP7bUuWvxRYOFi9a3isBgIJXO4LEY8K1jDKqwu18cTxDL63tZZnKpQVF2BIJNXOGOILvj92YLCV94eoDeUpMFr46l9daXcA8DLV4O8fHVi0Qnu+bAaJdqr7fSGUuyqdxNJ5fn++VHimQL7mjzcvVU/Z+dllZc6g8iqyoM7arCabi0hbjKIa+7dudocbfPxF7/sJZ5VELMKF4aiG8I3cioXo2lQUOfOUVXYmIzFMvzsyjiRVJ50XuG3H5pdKN9d7yKRlVE1jb0NLn5wYZSzg1FcFgNP7svOK++vaRqn+8J0jsVp8dtL5wun2UAyJ3NxOMYhwcvfvtVPOJXn/h2BOXNyG4Xd9W7eG9Dzw3/+ag8Wo8SzhxtneGO91TPJxZEYjV4b2ZvO+QVF5YcXx4hnCjyyu2ZJkzSHmr2LSoMvxmA4zYXh2LwxxJmBCL+4OkEyV+DqWIKComExinz2xK3n4FUVlGJSuqCoHGz2kC0omAzipvPEXozeySTv9ocZi2ZxmAylaSnQ74fO0ThHWn0z8l5nB6O83BlkMpXDbTViEEUKikoomePrpwdRFI1nDjbMmg4TBIGn9tXROZZg9zyqIIlsgZevTmA1Sty/vZpGrxW3VW9Abffb+cbpQcbjWR7eVbssj0aXxcgnjjUv86dTPtaiCPabwG8B/xjdvutV4E/L/SaqqjEWz+KzmzZcxb9vUu98HY1llySZNRrPkM7rC13/5OoYxj+yu4YLQzEavdZ5kzJNPhsP7awhkS3MW1ipdVuodevJE6fFyFgsQyIr87VTg9jNEpeGYyiaXrUXBbg4EsNnM/F2T7gUoJaDq+MJ3FYT2wIiHdWOWTIzY7EsDosBRdH47jl9BPsD+xvYVecikdU9fx7fW1fq9D43pBfxOsfieGwmIukCB5o8cybCQQ/mw6k8A+E0O2qds+7BdEFhtJhQ75lIzlkE21Xnwm/Xjeo1TVuW7I4oCtzZMX9SqUKFpTAYybC3wY2maYAebGwJODjU7OGlziDXJxLsa/KUAjRN0/jRxTEEdP3tIy1euieSXBjWE1oui2HF3e7nh+KlTp89DW6ujMVBE3jl6gRNPhutVfY5O81WSsO0TX499bIBQskckiDMKn5Mb07oHE/wwbW+sAq3jKppvHJtgnRe5sxghFP94ZI84sWR2Iw9oj+cRlE1coUC54ainNxaveSp8imyBYWXrwZL0zWr3RD0oYMNdAWTbFsFs2VBEHim+Po765wEnJZlTxO81Kl3nh5v97O7Xt97u4QkfoeZgEuPA/Y0uNld75qzoCMK4LWZ0P9q/s9iV72L17tCtFXZsa4wNr0+niSVUwCF/snUvN6KSjEe9i8SDzd5baRyMv4y+Lj2hvQ4dziSIa/MLb0XSecxSSLt1fZSPDQXF0diKKpGKifTvYjX72LIisr3L4wSjOd4aFfNvMmVt3vD9EykeKd3ErvZQM9ECoMoMBbL4rYaqXFZ8NpNWE0SeVllKJKZtwjWE0ryTm8YAKMklPbAgNPCY3tqmUzmOdTiueV/00YimZNJZuV5Y+OlYDboHgRdwSS7pjWVdFQ7NrSPmckg8oljzYQSWRQNzg9Gy14ES+VkXjg7Qk5WeHhXDUZJJOA0z1iTjhTPZ3saXPzg/Cguq5Fzg1FimQJdwSQTiRyRdJ6CrBJO5fneuVGqHGa6gkl+6/7Z5yW/w0St28JEIldaV6fWlCqHacWymg0eK1sDDjw2EwutnRXWl8ujcaZSb91F6e+p2y6dl7EYRYJx/Ww9Vx4hlNTvu+vBJBPJPEZJ5PN3tZItBMjLCq91TQLQW8yRLJWxWBanxYDdbOCDBxrQNA1BEDjdFyaRlXFZjTR6raUGvM6xOFdG44BeuK6clW/w6vUQoqif9lQNQqk88Wyh+GzOTU7WG4drnOYVS7PNx4kOP1ajhNtq3BBFuQpzc2EoxhvdIdqrHTxcnFByWUxk8goa+r0yFwZJLOUAg4ksApDO6WvKjy+N8Zk7W+csVg9FMuRlFZvJQFXRVwj0HFid24LDLJHMKUwkdJuTq2PxDVsEU1SNaocJu0ni8mgcm0kinddj+ynvs3Aqz8XhONUOM5IozMinyIrKO71hro0lkESBswPRNVOb+PGlMRJZma5gkn94/2ypvr7ieSBbUJAVDUkUVrzTu21Gnt5fz3gsy4FmD2aDtGZqCgsxPUZ7en89VWWQxi8oGpm8gsUo0eSzlfYsWVF5s3sSRdXlP3fUOktrcG9In4r2WE3sqnfR6rfT5LNxfih6Q3IwnJ5TIrHFb1+wMfalziBXRuOYDRJNPis7al18/u42NE0jmMgxFMkAcGkktqwi2Hqz6kUwTdNywB8X/1s1XuoMcmE4htNi4DMnWss6ZTSFpmmcGYiSkxWOtvqW/B4nOvy82T1Je7VjSZJZbVV22qvtpHIK+8u0eOdllYFwilq3FYfZgMtinJFki2UKXB6J01plK2nsAuxdRgem3WwgL2tE0jnsJonzQzHsZokddU4mEjm21jjRNA2nxcjp/vCCncDLQe+s1Qin9QfRIInUe6ylxPg7vWFe7wphNorsrncRSuYBuBbU9e7v3lI1awEPJXOMxjJ4rCZsRgmf3YTXPn/HYq3bQjiVp8phwnTTfTEY1o0bD7d46QomMRtF3u2PcKjZM+MgK4oCzx9t4t3+MNtrXasWXFaoMB8+u5FYpkB7tZ1G742N0iCJeGwmwskCPRPJUvL1F9cmGAiniWUKPHOgHkEQ8NtNGCUBWdWodVuYTOa4Nq7r5y/kPwiz1ymAZw7U85W3+2ny2Xl4dw1Oq5Ez/RHMRhHbEjo6B8NpuieS7Kp3LUtv2GE2lDb59fRB6womefH8CAICHznSOONAaDNKZAr6GPuexoqk0GZCFAQaPFYuDkfZUuPgQKOH7mAKWVFpvilI3d/oZjiiTxuf7gtTULTSgXOpmCQRv8NMKJGj1r36SYUal2VVzYobPNYlJUcGJtOMxDLsa3SXEnXZwo3Jk3f7I1wPJukN6ZIMj+6qmZHkne/Zb6uy01plQxSFWZ/XdI62+jjc7F120XIuttY4uDIaxyAKCxb+f3xpjKtjCbw2I5++s3XO9652mtnb4KYnlOKO1pXHYrvqnfzg/CiHW33zJsntJgPpvEwklWfvAnJS2bzCqb4wBlHkAwfqV3RdwWkSjOcGo/MWwercFi6PxAk4zXqBy2lmIJxG06A/nMJhltjf6GY0nsUoiuysu3HQS+VkRmMZmnw2zAYJl9WIJAooqjZDllvTdGkwp8Ww4oLoRiCRLfClt/rJFVTu2lLFHW2Ly7rOx1P76lFVrSzPyVpzsMXLucHovEXp+UjmZLqDSZp9tnmne3tDKcbjWWRV5U9f6abaYeZQi7dUbBuJZuifTLOr3oXTbCCcynN1LIHTYqTWZUEQIOA00RGwc20syY5aJ0aDyEQih80k8XrXBD67eUZHsVES+fgdzTM+jxfPj9AzkaLKYeJTx1tWFBPFswUi6QI5WaVyzNm47Kl380aPXszfWnOjGK2vafo09pffHsBqkviV4y2z8hv1biu76pz0TKSocZnx2owIgkCNy0JBUTm5rZrLI7GS19hiJHMy33lvmMFwGo/NxKfv1N9z6l7sqHZwfiiGVvz1FNVOPYGsalqpWJ+TFU73RbCbDRs2Sb4WWA0SyaIUlkGEu7dU41pEvePrp4cIJXK0V9vn9WhfKWaDNKcFR4WNxZmBCOm8wsXhWGnq3WU1lHwqj3f4uTwSx26W5k2ye6wm6twWTAaRbEHh/FCUv32rn6f213F1LEGL316K2zw2Iw6LkWZJ5Mi0eCOTV2j2WRmMCBxvd/J69yS9oRRWo0ROVjakH+oPLozy3XPDRFMF9tS7yBYUat2WGT8nu1nCadHX1aOtPsLJPBeHY+xtcPOTy2NcG0/SF0qxo9Y1b2xbLqbnwF1WI4ms7kc+HM3MKqzc0eYjnVfYXefiri0qk8k8D+5cmYwjbMzGqJ6JVMlG5MpofEFvt6VS57JwpNWHoqo8uLOm1MxokERa/DZ+cGEUSRT4rz+5xufubiXgtHCkxUcyKxNwWXh4p65cNhhO6+cNk/4c7FliQ2EsU9CVPTwWUjmFU71hekIpDjZ5ZhT5pnJ+zT4bY/Fs2RWZVptVK4IJgvB1TdOeFwThAlMjBdPQNG1fOd9vIqnrVSeyMtmCsqQCVV5WkURhyebU18aTvHptAtATWEvdoLcEnMsyGTUbpLIHFj+4MEpvKIXTYuBzd7XN+jf/4MIoY7EsZwYifPFk+y0VEU2SiCTqEgVGg8iRFi9SUVbtN++1oKgaZwejvDcQZUft3N3Vt8JrXSHO9EcpyBpbqh0YJZFgIldKEk0k9HsjV1Dx2cyl7pKpDePmQ3f3RJLOUf0QeazNx8lt1RglccH75JFdNRxs9uCxmhBFAVlR0dB9vqYM3p891IhREnmrZ5LhiN7JdnOX/K5615qZ1Jeb1n/5/fW+hAorIJrO89r1yVLn3fQJgo5qB+eGohhFcUbCNxjP0VHtoKCoPFD0+fM7zHz2rjYKsorXbuIvX+slnilwYTjKF+cxa5/ixfMj9E/qm/bn72pDFAWOtfs5Nm2tPbm1ivYqO26bcVFpMUXVeOHsMAVFoy+UuqXpl/nWqWxBmdc0tJyEkjk0DTQ0wsn8jMS/Mk1RKxjLr+p1VCgvU/rcdR4rZknCazfxq/e0oWrarAObx2biAwcaGC/6coSK8c5yEEWBjx5pIprOl6VTbTOQyBb49nvDqJrGeDxbiqvMBpGOgIPuYJKddS7ODETomUgRTeexGCQ+f3fbomtLo9fGr51sRxSEReOlciX2A04Lv3pP+6JfNxXzRDMF8oqKZQ4/qEROZiyexWwQ6ZpI0hFY2cHyejCF02qkfzJNQVHn/JnkZRWDJOCwGMnPI7ENMBbXJ18BxuM5dq2gDlZVnOwLJfLzdigqqsaOWldx3xP5yeVxeidS5GSVnKxyYSjK1fEk6cIwH9hfP+Mwr2kaf3dqkHimQKPXynNHmgg4LXzqeAvZglLqVAa4NBLn51eCgH6GWE6T2UYknpVLHaa3sibdzGYsgAHcs7X6lhIf3z07wng8i90s8Wv3tM8ZSzR5bTjMBmKZApaiH+RUwiUvq3z7vWHyskr/ZIqP3dHM0VYfA5Np3SO0zsVnT7RikMQZ0/upvMxkUu8wf7c/CujTX3U3NUdM/zymmgfDqQKKqmGQbv2zqnZa2NfoxmQQqSidbVzGihMacOPzFwRd4aGgqIjF+zWTV4hlCrOKYKIo8Pjeeu7fUcN4PEu9x8pgOM3fnxlC03Q7hV+Zxy90Ll44O8xr10OkcjKHWjwkc/KM9/TaTXz+7tkxvm6F0YqmUpKZfqc3zOm+CABuq3FWAllRNRRV2zQerLdKJJ1DQ5/H9NhM/NGH95ae+ynZ6elnQUXVzyFwI86o8P5lR62TN3smafXfUDoQBKEkb/pOb5gfXxoD4LkjjTOaa6cwGUR21rkYi2W5PBbHbzeRzMm8eG6UZE7m/FCMz9+le1w6LUY+c6KFTF7BP+0c8/dnhphI5Kh2mrmzo4rBcKYUQ2bzcysTrDdXxxJMJHKEknm21zj5nYe3z5DBBz0f/KnjLSSyMlaTxF+91oui6ueZiaJ1yvYaJ1882YZ1BVLrS+F68EYO/Girl2avjde6Jvjmu0M8srumNL0G+vnoU8dblvS6qqohb+K1ttmnx2h5RS1bgS7gmvsMAbrKSl8oxbmhGOeGonzrzDC/frKdJp9txn56ZTTOjy6OEUnnEQVwW030TabZv8CU7xQ/vzJO90QSoyjSEbDjd5ixmw08sa9uVv7AIIk8e3hzygSv5hPz28X/P7WK71Hi/u0BvnVmiFi2wLXxxY3mu4IJvn9+DLtZ4uN3NC9pQmt65+bUr2PpAuMJXb+2XNNn8yUQVkI8owct6byComqzCjpTm8VC+dx4tsDAZJq2KvucPy9F0zBKEi6rSI3LjMtqxG4y0Oq3YzSIpYmKFp+No2X0rZKLmeAqh4kmnw231TjDQ+CuLX5UTcPvMLG30c2eBlfx33oj0Jv+ewF9BNliFJEVjW+dGSbgNPPgzgCCIBBN5xmKZNgScJSCQ0EQSlMmk8kcXz89hKpppYKBpuldbJF0nsujcXx206KdwOs9gVLh/UVBUekJJcnmFZp8MzfdWreF3zjZgSDMLArdvbWKd3rDNHqtuKymUueww2yA4j45lSsRl3AvT5mbpvMKiqYhzjFALwgCTT5b6bmdjqyoXBtP4neYqHFZEAW90FBQ5FnSCoqq0TORpMphXrbH0mvXQ5zqC9Pks/HsoYYlP6fhVJ6fXh7Dbjbw6O7aJa3zB5o8RNMFjJLAjrqZSVyzUYSiqliDt2IcvakQYDSWIZTIYpT0vWYhrwqH2cD9OwL0T6Y41nZrHbImg7gsg/FgIksiK9NeZV/VvSiWKfDjS2OYDSKP7q4tm6S1KAiIgi7zMxXzhFN5hiNpHtoR4Km9dUym8rw3ECEvK7RX21FUlpyYXcrBOi+r9E2mqHVb5u2w1jSNV65OMBRNc9+2wJxyFcvhwZ0B3u2P0FHtmPdnqU7zgy0oK/enGphMcXYwqk+fzPM1oiAwHtN9VpP5+Zt9GrwWAkWppRrXygq2JoPIQztrCCVybJ2j0JfMyfzdOwOk8wp3tvtwWY0lKZ8n9tZxbihK52icYCJLnds662elarqMz9RrTeGbY0+ZHneLm/O8PyNebvBYOdbuI5zKc6IiMbZsZFW/lwqKhqbdOH9FUro/ndtq5N5t1fzqPW1oGrw7EGE4kpnWgKmVnrWp5rtUTsEgieQKMj+9PMZT++pLDYEFReVrpwaZSOS4d3s1sUye80NRqhzmRdeyh3fW8N5ghG01zhWrVNy9pQoBCDjNqzotXGFlWI1iqYPZVFywBARcViM5WWV7rZP2ajtVDjP1HivxbIGxWJYWv23G/WQx3pgCSWTlktd4IlsofY2qarPOF6DH9K9cnSCVl0lkZZp9NkbjGY63+WfcO4qqcW08gcdmnFXMBWbtvTcS9mAxzryfI+k83zg1SFZWeXp//apPWKwnTV4bogCI+mfw1VP9PLG3gWS2wAtnR5BVjZPbqko5NUkUeHRPDVfHEu/rCboKOsfa/Rxt9c3bwCJPi5dkZWZgPX3S2CCJ2MwGdta6qHNb2Nvo4ZWrQd7pDVPvsfAXv+zFapL46NEmPLYb+bOhSJrXu0JcGY1T5TCXcgj3ba/mzZ5JPSdom3+yMZYpMB4vbw53qRxv93E9mGBnrYvH99XOe50Wo4TFKJHKyaWRElEQeHhXLeeH9KGC6QWw7okk7w1E2VbjYF+jZ1k55VROpjeUotlvm3fNBN3+Rh8O0F936uc+MJnm1esTNHqtS5IqTOdlvvrOIMmszGN75veTmp4PlRWVnlCKgNO8oGzrWuG2GUsxWjkbueY6Q4C+Rz65r56BcBpFVVEUXar6ja5JGrzWUnw4dR5RVY3CTWc9TdOKzUw37otktkDfZJpmv42RaIbTfRHcViPPH2lEFERcVsMMufK15MxAhEsjcQ42edjT4C6basSqFcE0TRst/vIfaJr2u9P/ThCE/wj87uzvunUCTjOD4TTJnMzLnUEONi0sP9M9kULVNBJZvRt2KdXbZr+NjxxuLFV7c7LCV94ZIFtQ2Fbj5Ml9N4xdb7WQ9bPL41wYjrGr3rVio3LQH4KvnxoklMzR7LNxpNU3Z7X9yX11XBtP0Oi1zbjuqWKQzWTg66cGSWRlAi494B2Y1M3Np6bcHGYDzxysZziaYV+jB7NB5JvvDvE/X+5iX6Obgqry16/16ebgmsZzR5pW/O8DPRFvNxvw2U1sq3GSLSgzkg0em4mn999oJQ4mclwaibE1oHt3/f2ZIQTg2UMNTKYKnO7T5R+ujCboCibw2Mw0ea2E03kSmQKXRuI4LQb2NLhn/BtCyRzXx5PkZKXk1SMJ+nSX22pke42TN7snqXVZMErCgoe/17v0JPuOWieP7blxXymqhjjHQWE60XSet3rC1LjMHFyh+WWF9wehZI7XuyYxigIYpVlr12A4zfVggt31bmpcFrIFhW+cHiSSLvDE3lqsJgP/+oWLRDMF/sWj22meNs7/oUONdE8kaS8eJIejGV66Mo7fYebR3bUzntXH9tRyfihGR/XCAelwNMN33hvGYpR4/khjSfv/1esTnBuMIYkCnznRittq5MOHGhiL5WYdZF/qDHJxOIbJIPK5u1rnnPzIFpSiZ46ZVE7m9a4QLquRa+Px0s8lW1CXbLT93kCEkahetdpek2LrEvySLEaJx/bMvRfEMjeSCEOT6SVdQ4WNgYDeQR3JyJgMOQQBro0nGI5kONTsnfNAdKDJs2aJh8lkjq++PYiqaRxv98/w0ZgrvsnkFTIFZd7AfSEuDMUYLmqKXx9P3vKEjKpqM3xX7WYDHznSyFgsy846F693TfCnL3eRk1WqHBY+fKiB0ViGnKzS6NUPy/duq5phSj0fsUyB758fKU27zzc59sOLo/RMpLCbJT5/V9ucCeSxeJa/faufVE6f0PgnD22b87U0TePKaAKTQVhQXcAgipgkccE1dCouCsZz7G9a+URSMiuTySuk8wqFefxMs7KCx2bEaBBZKDpur7LjsBixGKVZXZDTOTcQ4a9e7+OJfbU8urtuzq+JpQt87dSg3j2byPLAjpmSLGMxvdDbORrnBxdGqXKYuD6exGQQ6JlI8tkTrfz8yjg5WSWWyc862EuiwFP76+kKJrEYBf7kpevsqXdz/47ZCYCddS5EQUBDY/sqeOWtBl3BBLKqX28wkeNbZ4aRRHjucBNeu4kTHeXz9r0diabzXBlN0FZln+Wb9tS+ejpH47RV22ecV9/pC5c89qambnbXuzna6uNoq/41Q5E0/+XHV4lnZJ470oDTYuRPXuqi3mPhaIuXv3mrj2iqwOn+CL//9C7e6QmTyStMJHOIgsCX3+4nlMjhMBlKMU00LXNnhx+31YisqITTefx2XUqu2W+j2b+y4vwU2bzCpeEYmYBjxpR/hY3FlK8LwGBY9xvR0Lg4HGU0msVjNfBPH97G1fEEl0fivN4VIpmTaa2y8aGDc3eGt/ptHGn1ommUzqfnBqO8cjWIw2KcEc+PxjL8xS97uDaepK3Kht9u5sQWPztqXbOepde7QrzbH0EUBH7lzpYF45CConK4xYunqCYxvWg2FEnzF7/spTuYZHe9i95Q8rYtgmmaRixbQFVB1vTp8L8/PcwbXWEkUSCYyNFeZacrmJzRWL6j1rVsD9YKty8351pVVeN0fwRZUTnQ7MFoELEaJVqr7MW/C/PzK0EsRpHd9W5aq+wcafFiM0lYTVIpH/unL3eRKchcHNYLXBr6dMvProyTyMo8va+eb783zNnBKFajPjF199Yqwqk8DothUUWtvKzy1XcGyOQVtgQcM/KEa8HdW6tx24xE0gXuKDY2xjIFzvRHqPdYZxWEzgxEmEzlGI9n2V3npK3KPufa9HJnkERWZiiSJpIq8MvrE7isBr54smPRBsPvnB0mGM/htBhmqU40+Ww8c7Cenxbz1Ce3VWE26I0S+4tS0G/2hJhI5JhI5NjX6JlzHZ5egAnGc8SLeYyeieScRbCfXh7n0kiMg826DPRPL4/TOZbAbBT53J2tJPIyXptpzYuY0xEEYd4hkoHJNF0TCfbUu5fVhHp9PMFPLo/jsBh4fHdt6XvH41nCqTxbaxz0T6ZBgF9eD3F9PEFvKMn2Gideu4mdtU6SuQImScRuMqBoGgeavBQUla+f1puhHtpZw54GNz+7PM5X3hnAaTGwr9GD12aio9qB3SxhMRlm1DduZq6CWrkIJrIMRzK8dCVIMifzbl+Y+3cE6A2laPXb+WDRhuVWWXVPMOBhZhe8Hp/jz1ZE10SSRE5mPK53VYeSuQVvtgNNHoLxLC6rcUE/B61oXj8cyXByazVNPiuXRuKcG4zSXmUnVyx2pKZ1gP7wwiidxS6ZuQ7CMOVJEaXaaaZ9WgHu6rhuPnt1LLHkItjF4RhXxxIcavHOWhAHi349Rkmkxm1hy7ROWFlRUTW9U9ZuNswqmFwYivGzK+OYjSKfuKOZfLGCHEsXCBZlmd7uDc9IxkyZ62maRv9kSh9vHo3zwtlh8rLCeCKPURL4yaWxshXBprSjB8Npvvr2AD0h3dz+o0ea5pzw+P750ZIH2pFWH5m8/hm+cG6ErvEkk+k8fruJgqLis5sJJfVAsDuYYCyW5b3BCAZRZDye5ZHdtbitesD+7TPDJHMyZoNIg9fKaCzD2aEosXSBHbVOXBYjdW4LsUyBaqcZ4zQ5kbd6Qvz44hhbAk6ePdzIpZEYmqYX4h7epRcKBibTfPecnvj/6NGm0kHhZn5xbYKeiRRXRvWR5MV8mCpU+M57w4SSOa6MJXCYDaWENOgB7XfPjZCXVS6NxNlT78YgCiV5lKtjeuH3F9cmUDWN//KTq/yPjx8qfb/bauTQtLXl3f4IoWSeUDLP/iYPDR5rqXBtMUjYzVKpqDTX1CrowUFeVsnLKoPhDLvqjeRlldeuh7g0EqPBYyMvK3zrzDj9k2lOdPhJ52V+cnkMv93MXVv8pTW7oKhFo139tbMFBZMkkiko/O1b/aTzCie3VRFN6wVwgL0NbgbCabYEHFhNEpqm8er1ENF0nnu3Vc/bndTss3FxOI7ZOPdETragcH08Sb3HMkPqYT6y8o3Oup9dGefzJ7cs+j0VNgaqphFK5ijIKpF0gVO9Yd4diKCoGu/2R3hib926SuOm80ppUiidvxHfvHB2mJ6JFEdbfSVj60S2wJff1g+T922vXnbzRZPPypkBXZq6znNrkwGqqvHVd/oZjeU41u7jnq3VhFN5Xr02gc1koNln5T/+8CrDUb1YnJNVXjw/isUo4rebGAynsZtdvN0bJpaV8ViNC3qy/vL6BN87N4IoCNS5rZzcNrccWm8oyfmhGH6HGVnVmGvgQlX1n2EiJ5emiubi3FCMlzt1Ob0PHBDmbd761ntDdI7G8dnN/L+f2DHvlIdYPLgtZlk9tT4vdMh0WPRGJJfVOO+hxGUxki0ohJM5nNb5u3P7J9OYDCKioBuhz7ee/ur/OU0sU+BnV8Z5519VYZ8jJiqoKn2hFKm8TP0c91azT++EvzIWR9MgnMoRSRcQBYGzg1H+84+u0jmeQNU0+ibTpZjaYTGUEoFTyYjf/eY5Lo/Gee36BAGHmfMjUfY0uNnb4KF7IsnAZJp9je4lre2gJ2lEgXXzh70+nuDF83o/Y0HWSOQKpQavvsnUsieo34987/wooUSOMwMRfuPejpkNekXvuN6JFFUOc+n5mvKnk0SBb7w7RG8oRZ3Hwh99eF8pifWji2OcKe4XP+80ltbc4UiGx3bXkcopdIeSWAwS/+eNPkLFs5fJIBJJ57GbDTjMBnKySq3Lwpvdk4CArKo8saeO//lyF5F0gYPNnjmTiZ1jcS4Nx9nX6F5SM890/uDFS7zVPYnZILKtxrFkT6gKa8vVsUTp14PRGxKc18ZTKKrGTy4H+fkV3Y9dVlUSWT0ZmcwppPMyP7o4hqrpzW0Os4Hr4wl+cGEMm0niY3c0YTKIvHpNl9OKpvPsa/QwFMmws05fx7uCSSRRJC+rnB2MsafeTSxTmFUAA30/VzWt5Ls4Hz+4MFqaYrp/R4C+UKrkn9k1kSSUyOMonkEEUWBvg2fRn9PU+y03CRtK5ugOJtla47yl5qGVks4r/OxykKljRF7RuDoep2siidVkIOA0k8zJuCxG/u7UAFajVNZJ/QoziaUL/OL6BC6LgZNbqzesPLCqapzqC6OoGne0+WbEJzlZ4epogte7QozHs/zNm33sqXfziWPNgC4J/YMLY7zbHyaSzvO9c6M8sruGDx1snOUn5LEZGY5mEAXoD6c5ua2ab783zC+uTiAIuh9mpqCQkxUEYapAH6NzTG8U+/ChxjmnQqdQVK0k55xaIO5eLVRV4/JInJGoLjt7z9Zqfn5Fz1mcG4pS67bgthopKCrv9Ib54YVRLg7HCCZyhNN5fA4zR1pnq57Vua0ksgkCTgsXh2NcGI4C+uT+s4cXzrtO/Tzyikq2IBNNy7zVM0nAZeZERxWKCqPRLPFsgfFYtnSPdk8k2dPgpsVvZySaxWIUuTIaJ5ou8P9n76/DJMvv+178dagYmnm6e5h2Z3eWZkkrrRjWsmSUScbYYXhyk19u7pPcJPeXxMkvtuPYsa/tGGKQRZYlCxa1zMM808xdjKdOHT6/P77VNT0zPbCrnQV53s8zz/YWnqo65wufzxtKhnAK2NqbwHQ8vnRwkWrT4eO3DLClJ86W3jjVpsPtox2XHU8QrH1HTSazdbb3JdoKJ9v1efR0hvmiQV8qzE/eM/quc886Ml/mD16YYSAVYb5o8PPXGcmxWDL4s1fnOZ+pEw8prFZM/tEHtxHVFL56eImFYoOTy9V28zFfNzmxVCUdFQq9uUKDvzm+QkiV+VxLPbmGYs1q1/DPZ+rsHUpxeqWG6/msVppENIVP7xvE9nz6UxGmc3XKifBl+835YoNq0+HoQpmKcXUl33pYrocmy9cc3yzX4yuHlrBdn7JhM1ds0BHV+JtjK9wynGa20MCwPVwv4NmJHKmoxvvf4Lh5IzPB/h7w94EtkiSdWHdXEnjprX6/XM3EDwJCioxEwJcOLvLA9m6OL1bZ3BPnAzv7CIJANJkCwRD+qQNj1/yySg2bYwsVAF6dKWI4aZ48kwVgojNKsSFYdT997yiLJYOQKrUbWecy9XYTbLbQQJWlts3NM+dynMvUkST4/H3j7QXQ3eNdHJov0R0PMZWr07SF5cCVvFIdz+eps1lMWxShP7Knn4/uvRDsPt4dpz8VwbBd9gymyNaafPngEtGQTNPxIYDP7B/e0H5npSoK4ZYjinSfvGWQqZwIVv6DF2YoNWzuHNt48/I3x1eYzukYtlgMe0FAtSm85DWZ685hu14EgSjUT2brFBs2+zcpfP3YMlFN4QM7+9qL5qBVeMxUTXYNJtnZn+BcpsZkts6hOQPL9emIaewcSLK1N0HFcPjAzhiFus2LUxVmC4bItZB9FAm+eXyJ9+/ooz8VRZElHNdnuWywvT9JbyLMt0+ucmalysnlKocXKnx2/zCqLGG7Hoslg9HuOJO5Ov/lsfPUmw6zRYMdA0nuGO3k4FyZXYPJ9nc1la/jeAGO57JSMdk5IGx7FFlsbJfKBhXDIdUK0QxrMrHrVKjkaiaqIr8jC/GbeOehyBJhVaErHmLXQLJd/AbB8opqirD1KjRwvYCAgJim4PoBEU0mXzdRZAlVki6zSq2bDg3La1+DW3rizOR10lGN7niIJ09n+fKhBQbTUXqTYVzf58h8mc6YxumVOh/c1ceH9/TTsFzmiwZj3TH2DKaYzjeIaDLjPTEalstfH13i1ekied2i6Xi8OFlgrtBAkiTOZWrkdYuZfIOZfIMtvXEe3tVHar7EYDraXiAcXSjz7Pk8Pckw79/eg9FqkK9UTDxfXNsjXTEGOyI0HY90VKPcsKmbLkfmRb5AWL1cuXVkocxTZ7Js6U3wS+8bR1OUDcf0R0+tMlcwCGsyv/TgljfkkV1qmNf92Jt45xEEUGs6eIFQ0axtKlerJiuVJgfninz+vnE+tW9jduIbtcutNh2+c3IVWRIKhGtZQG/qivGBnb1Umw4HNndzeqXKRKbO63MlkmGVc5lauwlWMZw2mWS1arL/ktdaLBm4fnBFRvVYd5y/874tyPK1LQZ1y+WJ0xlhy7OuIDNd0PnWiQySBNGQwvu293Js8YLyslAXGzdFlkmGhU1zTyKELEk8sm+IVDSP6fgslIz2dd+dCG2YYQBCKTed15ElqW03vRE0RSERUYlpCkGw8WNimoxhe5Qb9lUbUt46n8b1f1+KZ8/lOL1SpTse4l9+fOeGj6kaDl8+uEjDdinULR65Agt2sWTwRy/NElZlfvmhrVdcI/zAbUP0JUts77+yBWNRtzi9XKNmOZxYrFyR6OUGAeczdTT16lmslusTBOD6AabjbdwEc30KukXFcKits99aQ0iVGeqIctd4FxOZOq6n4Hg+uunSsF0m8nUalosXgITN/355lpCqIEkSP3f/+EVr55rpUmrY6JbM/3xuiqJu89SZHP/iozv4/RdmGOqIkqmZ/MQ9o1f8TGtYKBp849hyaxM7elVLnxuBIBBjke36rYKTwZ1jXUxmdRRZIhlRmcrpbO29MVapr0wXObta486xzqs2o9/tWLOaV+TLr+yzmRovTxcBcR6uFbT2jXS0xp2Af/P1UwA0LI+CbjHSGcOwXXoSQqElSRKW4yMj9quZapM/f3WWgVSYhaIYew7PlZnO6wQSyEBXLEQspNKVCLG5J0623uTMSo3tfQmCIMGh+RKvzBQJAjGW/uC6Y57J69iezxOnMngBZOvmG26CnVyqUDVdZAkWS42bTbB3Kax1uY3rIxw9PyBAkCOeOJOhPxVBlWUe3NaDIkvsG+ng7GpdsNQRv/da0coPAnTLJVuzCKlye56qtMin4+tcJHYNpJjM6nTv6iNXt0iEVZyWpVoQBDx+OkOuZvGD+4cYTEd4/LRJbyJMOirIFkslg7rpsqk7Rk8ijN+yTISA1+dK9CRC/PenJnE8n6GOCP2pKBIBfakIm7pifPq2Ybwg4MRShbGueHsMPrVcZa7Y4M6xTmRJ4quHlwD40TtH3hDTf404e2qlxi9ekmU2V2jwzPkcA6kIH9s7cEMaIjXTwXIvzuY0nAAJ0VgIKRKOG+W3n56k2nTZ2ptga2/ismbFTbw1eG22yHROx/MD+pKRd20+/JnVjeet44sVca6YLps6o0y1PothiVyjkCrheAHJiMi4rBoOmuqRrZk4nk9Rt1iqGGztTZAIa/zcfeP8u2+eRm5ZdWYqTbI1E9cXuZa65TGYEla+fhDw9aPLmI7PWHcU0w3I1Swe3tW3oS1fptrktdkSg+kIXXHtMuKe7focmisR1hTuGO24IWsc0/VYqYhsr785tsLmnjir1SaLZYN4SOWvjyxz26Y0jhfw+myJxZJBXrdxPOFi9tXDS5xcrpIIq5iOx8daaqFP3DLA3Zs7aZgu//2pCRZKzZYTj/gMddOhbrptR6/jSxV2DiTZ0Z/kkdsGObdaRwJ+77lZ5ooNYppMSFXY1pegM6YxU2hg2C6O59MRC7FUNvADn5EOYcW3dyjFlw4u8uJknpPLYg33ynSRrb0JcjWLUkPslyazOjv6kzy4rYeCbtN7CTms3LCxPZ9dg0leny0ykI7w7Pkcn7hlkKOLZUY6Y7wwWcD1fE4tV1mtmld1jni7YToez00IBdNsUWS0Xg8s1+PJMxmWyk0sx2Ou0KCg23TFNH7pfVuQJdFfCAKoNG3+/m3beGWmyK3DKSzPp9JqGHl+QNP2WCw1ObpYwXF9HtrRS08izPb+BJmqye2b0rw0VSRXNxlIRaiaDrrp8D+fneaz+4cJKRKPncoS0iR+/oHN9CUj5OsWK5UmT5/LUW06NCyXrniIFyfzjHfHaNjCEeb0cpVnJ3I8sK2XRFjlhck8BKIWkYpq3DHWQUc01LbrvhRBIK57gB39CVJRFc8LqDQdZBn2DKaJh1WeOJ1hJi9U65u741d8vY1wI5VgXwAeBf4z8K/W3V4PgqD0Vr5REMD/++wU57J1LMdnIRYCSUZVJEzH5+hChbvHuzi7WuPZ83mOL1XY1pvgns1d3Lapg+5EiLCqUGsNDMPrLqJUVKM7EaKo24z3xC/KtVkoGXTFxUX78lSRZ87n6E2G2TeSJlO1uGOsAxALprXG2Wf3DzPeE29v7GVJam+SAO7Z3MVcscFsvsF3Tma4bSTNcsVo+7qOdV/846qyRE8izMHZIsvlJl8+tIgsw6duFQWNaEjhh+4Y5q+OLPHVw4tM5XRWKiaKJOwt+lMRZguNDZtgBzYLlVQqKgo4Xz2y1M6RSEc1DFtYomWqTT6zf4SQKgv/7okcT57JMtYVoysR4oO7+njqdIaK4RBWxQT4M9cZmLgRTi5VeW22yPb+JO9vsa8lSWwwJUkoTzrjISYydcqGjW65bVnvTKGB1PpetvQk6IyHuWe8m2MLFcqGTU8izK3DaT539yb+7JUFdMvhufMFlitNAgJSERVZlnBcj6OLVU6u1HlpqsR9W7so6SbPTuQFG+zUKo/cNsRQOsKZlSpF3UaVG/zVkSV6E2FenKqzUDL4yQNjnF2tQSszTJGEtedY60KuGE7b+/SWoTQLRYOVqslXDy/SGdOwnIBoWOFje/v5xrGVlsVEBz98xwjpmNYudH7l0CLPns9z75ZufurA6EUL6vOZeqs4KvGjd428qyaRm3h78Nnbh3lpusDO/gSFhs2tl2xyfuTOEb51YoVyw8J2PSpNl+54iJmCzsvTBca7E3xgZx9hVebnHxxvP6/adPjzV+exXZ8Ht/dw93gXtwyn2daXaPlJSzx+JkOhYXN8sUJYUxjrFratz08WKDVs5osN7tncxdePLVPUbboTIT5/33h70+j7AX/88hyH5wSzLAhEwWi20CCsKrw2W6RmumzpidEVD9OTFHmFibB6mTXWVE5YvhTqllCEqTIhVaYnEeK3np7CsFy29cd5+myO1+dK5OsWD+/sZf9YJ5oiFvgbZdh8+4RgcB2ZL6ObNtGQyoPbexlMRTBdD1mSeG2mxESmTkhV8LzgokYkCDVOqWEzlI5uuCEu6jebYO8lWI7HmkW+j2iU7h5MkYwonM/WcTyfP31ljvu39lymuJjO6zx6cpV0LMSP3jlyXczcs6s1MlVxjpzP1i9SZ14JaxtD0/H41vFV8rrJRFY0sO9YR4AZ6Yxy+2gHFcNel1cjcHK5yp+/Ok9HVOMHbhu6YgFFkuAbx1Zo2h6fuHWAvmSETNUkGVEvatidWKq0i2vnM/V2gTxfsxhIRygbNqNdMUoNm2zNom469KUipKIhHtrRy1zB4M6xDgbSEb5zcpV83WK12mSsO4bpeOzf1Mli2UCWpKt+rwutApskSaxUr2xFmoyoVAyH7niI8BWa2vOlBnNFQTB4ebpwxde6fSTN8cUysZDCjqsUnk+vVDFsH8u1KDZMYqHLFWNNx+XEcgXXC0hFNB65bePX+uLrC3z54AKyJLG9L3FFJum+EfGddl/Foz9bs8jrFo7nt4qRVzj+pSqzhQayBHMF/Yqbx4/t7efps1l2DKTouoK6qtp0WCwbLQWDvuFj7hjrpNp0eHBbNy9M5pk/qRMAVUMwTtdG4qbj8ez5HP2pKKoiM5PXmSs2GOqIsrU3waduHWxZbYbaVrUVw+bzf/w6tabLYDrCP/7Q9vb7en6A7W5spztT0HH9ANf2WK40b2gT7OBciemczj2bu9rOFC9OFTg8X6JhOfiBYHAjCZvhbM3kL19fIAhoz+tvFscWK+imw11jXUTWKcBfnRFFtldniu/JJli+btG0PT59+xCT2bpQHF4yb6+3UF1/DlQMm8WSwZbeOL/w4Ga+czLDLUMpSg2bLx9cbF23sHsgRW8yzKnlKn/00hxhTUaVJJ6fLHLHaAfDHTFqps1UXm8pZcTrNx2TTR0R+lJJnpssYFgu/ckwrzXKLJab7N/UQUdUI1+32L8pjel45OsmyxWTV6YLgNRW6Q+8iUyvQl2wkP0AZq5wTd7EOw9rXX9kbQwMgqD9txeI6/Oje/r51L4hbt/Uge35zBcN0hGVXN3EcoRC69UZkaHbn4qQjKiMdcf4yqEl8nULw/H4Bw9v48CWbjw/oGG5xMMqvckwv9Ba509k6pxZrfLwzj5Mx+NPX57jr44skYpq1EyH8Z54u3aTrZk8ez7PC5N5VFli36aONqnMcX0ePbXKYEeUc6tVzq7WUVp5epIksVIx+dS+QX5o/zCqIvNnrwrb0IgmSCC2K4jHQSDIPzsHktiuUE8slIw31ARbK/1s1N86PF+mYjhUDIc7xjpvSHaeaYtG4aUIEOr0UsPhldkijucjIQmXne8TouzT57KcahXoH9j2zln6NiyXw/Nl+lIiH/HIQpmzq/X2+Ho9yoq3G+vX42tz2PMTeb74+gIrVZNEWKUvFWEwHeXYYplkROW5iRzZmkVvMsxgOkxIkQiQcL0AKYB0VOW3np7i2fM5YiGF//TZW/m9F2bI1kXNoTfhcmShjGW7aK2GTF8yzMO7+/ns/mH+/d+c5tB8mcVSg0LDZHN3nHQ0yXS+wQcu4YFN5XT+f4+dY6FssH9TB7/0vi2XqfMPzZd4bVaUqtNR9ar2428Wa9/d67NFtvUl+O2npzizUkU3XTrjITpiGs9N5PnQrj4gQJFlHtjaTaXpMNQRoTMWZiYvBBapqMbrc6V21ngqovE7z0wzmdOJakJ1s70vwdGFMt8+sUpet/jonn5eni6yUDIY7ozyHz9zK33JCH3JCF98fYG66VBqWBwuNIhqKp/ZP8zuwRR3jXXw1Nksr04XURSZuCbTsDw0eZ5//OHtJCMaass5Itki5a+RGwY7Ioz3xFgoGmzujWPYLl88uIjt+mztjXPP5m4G0hFyNZMvtmzMH97Vy4d29zOV0zk4V0aRhcpPU2RUWeJ/vTCD7wd87cgSv/S+Le8apaqmyHQnwuwdSpGKaIz3xKiZzhWzodcwkdGptvYLW3viHFssU266PDuR5yN7B5gvGswWGiTCKpqi0HQ87hjtYCqnYxgOX3h9gUf2DWLYYh51PI9jCxVMR0T1BIg1WBAIB7RszWKgNS8nwiqPnRZk0sWSwWpV4tSKiBgxLI85q8HXjy1TbjUyUxGNkCoxka3TdDz+2ZeP4fsBH97Tz6MnM+TrFq/OlPjYnn4qhsNEay28XGkym9dJx0L8+N0j5Oo2nh9wx2hHW1m6FgVyZrXGcmtPPl1soMgSj53MEFJkPrKnn4F0hNMrNUKqTGcshOkIZej1ZHbfyEywKlAFfgJAkqQ+IAIkJElKBEGw8Fa9lx8EvDxdYk0A3xENqDZtJrMBpuvxgZ19RDWFvG5h2C62KzKpnp/Mcy5TpzsR4tO3DfFfHjvHXKHBT94zyg+07B80ReanDozRdLx2TkRwqwg0Dikyz57PM9wZ5bnzORbLBgslg0/fPsQP3HbBPqK5jkK1xjD+wM4++lMRepJhEpELP4PnBxi225b0B8BK1eTs6iIgGhzr/bAlSeLH7trESGeU3312Gs8PWCpdsDIDwczO1Sz8IKDWdFuqD5kd/UnCmnzFolRHLMTHbxmgZjostzrSM4UGi2WDmKZwdKFCJCTj+QF3jncRblkbLJQMaobDwVqJ+7Z08/JUkXLTpS8RYrlq0nR8Xpkp8sD2je2D1sP1fKpNh85YCFmWaFguXzm8iCxJ1E2XA5u72gNeQEAspLKlJ86P37WJX/rTQ9SbDppS5ksHF/D8gLAqt4oUYUoNi//62DkczyfTstG8dTjNLzy4mZWKyWROsCGKDYtq08FyPEa7Yxi2RzQRFgxq3aZi2KKT3mI4pCIalabDcEcU1/M5u1ojWzWRJImBZISG7WK5HlXDodyw0WTxHSqSxHA6QiqiiebBK/NkaiZRTWGsJ8YHdvRx13gXv/vsNDN5nVLDojMWojMRYu9gss0yNx2PQsNqNwTnSzr/47uT1JoOE5k6d4510JeKkAirRDSFYmNtQxpQNmxUWSIaUkiE1XedtPgm3noYtsvvPDfNVE5nz2CSn753jLmiwUIrIBMgr1tkaxapaIjeZJjNvTInl6pMZgUbxXUDhjqjjHXHmSsY9Ccj/PFLs3z3jLBT3TOUbtsUjHfHuH1TB03bozMeYv9omslsHR+hbM1UTe4e66RqOExm60RDIrdvbaPZsNyLVDBeIDbNm3viFHQTw/ZJtWyGtvUnePx0hqWygecF/PL7+7hzrJMTixWSUY2lssFAMsLe4XSb0ZapCkbWq7MlbNcnCETOkOcHhDUFw/YxbJEVZtguuuXy6nQR0/EY6YyydyjFqzNFuuMhlitNji9WabbG9HhE5fRKnd5kmPniHB2xEA3LAwKOLVbRTYdbRzrY2Z/kufN5tvbGiUdU4iGVLx8SmYy3DKf5yJ7+y37H8s1IsPcULtXxFOsmz9UtFEmsOxzPZ6ViMlu43HbsfEaoggt14Q9/KTlmPeZbjLCx7hhPnskiyyIM/Y2gYbmcy9TI1sy2ven6Yo8kSTzcYltmayavTBfZNSB8yb9zYpW5QgNNkbhzrJM9g6kNm7izhQbL5SYNS6gqUxGN12ZLREMKP3VglGREIwiEfUmpYTOQjjC4zhZp73CaxbKB5wdEVJnfenqSimETD6k8uK2b2XyDzpiG2xnFDwIeO5VhtWpSazrMFho4rk8kpPATd0v8yF2b6IyF6EmEeWEyz1zR4L4t3RfZSc8VGpgt65C5wpUvviCA3QMif9R0vQ2zw5qWh+36uF5wVVuWb51Y5fHTglA10hXjwW0br6HWSFYSEL4Cg1xTZMKKTLHepC955cLWK9N5mrYPErw4kb9iE+w3n5rgpakC4z1xfvWHbkWWL2/4paIylaaN7V79c07m6+imsCScWZdLcym6YiGGO2MMpCO4fnCRxfQaQqqMIoliSyJ88aYoCEQ+RURV+MUHN3N0oczvPTdN8yrOOE3HQ5Uldg0kePx0Ftf3GUpH2bcpTbFh8clbB9jWlySmyXznZIZTyxXOZz1kSSjWPrRbjN1TuTp/8tIc0ZDCJ24dvKwpfetwmqVyk7Aqs6VXXN+CCWyxdyh12QavYtgsV5ps79vYOaLadDi9XGVTV5SRzlh7/jRbqmkQuQJbehMEQcDp5Sq65RKPaHi+KBCXGjYF3eIrhxY5tVwlFlIY6Yy+6SbYbKHBt46vcHa1xkjnCv/Hx3ahKaLBsqU3zky+wfb+a+c1v9N4fbbEqeUqd4x1Cqv9utnOU3xoR+8VHTM298T50btGcL2AgXSE12aK9CRCPH0uj265nFwO85E9/Ty0o5fhjgi///wMubrFbN5AlmDW84kowt7QCSAd0ZAlGOuJtd/zfEZnoSQspfxAjAl+AIWGzcHZMvm6iR+AabstpY3fcpFQiWhCPfyF1xeZytWJaArj3XH2DqV5YFs3W3oT9Fynted62Ovc6kqG9Wa+8pt4G7CRqeClAmTXCzi5XOOz+0eQJInvnFxlNt9At1xqTZvZfIOzq1W29CaIhxR++f1bATifqXFkoURvIkJ/KsKBLd04ns8XX19goWQwkIqwezDF9v4ksgTfPrUKAURDJTpjoZbFrYckSeTrFsMdUTzfZ7Vq8t2zWV6YzLcIOyrpqMbZ1Rq3DKU4tlQhAGZyOtGQUP2mImE+essAhbpFOqKxXG5SNmxOLFV5cTKPLElUm85FGcS1pkM6qrFrIMl0TkeSuKhhEQQBx5eqeH7A/k0dG655fviOEWYKDbZtYGu8vT/BYtmgOxGm8yrEku8FibCKcwVFeQDIUoCERFcsRBDAvVu6N2zGHZwrsVJpXvH+IAha8/M7l9mzHkEQcGJJRE6cWKq+o02w5ybybdvRn7lvjA/v6UeWRANhvth4R5tgTdvD9vx25AeIdUamarJ/tIOIqrBnKEXTFu4MfiDqWEPpCJ/eN0h3IowiQ1iVOblUw3Y9jsyX6UmG8P0ARRI1z+NLVX7v+RlWq0IR1rQDfv3JCRZLYj0fUmSmC0ZbBWp6Hobl8vMPjDOZ1fn2iRW29cV58kwG0/Hx6jY7+1N0J8Jtt6etvYn2+bdSaZKti7X/2UydVETlzEoNWaZtcR1d10i5EU0V3w/45vEVnjufw7BdzqxUcXxRo3X9gJAm07Bc9g6luXWkgzOrNc6s1KiZDj9x9yZGu+P82hPnMWyPTZ1RsnWPalPUaj93zyim41E3HREzoSnsHUzx0nSBMys1Ds2XSEdUFosGkizWBAtFoy0EWCqLDPjpXIOQqtAVC2G6Po+dyrBzIMmP3TXKY6czWK6HZ7s0bYXORBhrnQ3tZ/ePMJXX+fz946iy1Hbb0RQZ3XJ5ZaZIoW7yi+/bSrVpUzEcpnI6RxcrKLLEWFcMy3FbThsuP3lglC++vkDZsJnO6fzWdydJRjR++M4RtvUleepslsVykwe39nD7uvWW4/koknTR+Gs6HmdWa3RGQ2zuvXF5j4os8eN3b6JiOHzr+AovTRU5s1Lj565hiTiQjhBSZfpTET61b5C+ZJgnz2bZOZDk1emCqAnEhBDlxFKF33jyPLdv6mT3YJKXp2wOzpU4vlShM6YiSzIdUQ3Ddjm5XCXbqiknoxqLJaNNpvT8gO54iId39RFSZWExmQxzYqmC5/ts7k6gKhLZmtm2UrxtU1rU41CJqDKZqsXRhQrDHVGeO5+noFut+rnN8aUq1abDbSMpdNvHtF0OztUIKTLj3TEWWxEsigx3jHYyka2TqwvnkKbj8upMCcf1KBs2rge6LWrkuukS0cQ+5ON7B1itmXzr+AphTeFH7hy5JnnkhmeCSZL0A8CvA0NADhgDzgJ736r3cDz/osVatm6hKTrpeIhczaTcsCg3hCKo2nR4/45eNFXi+IJgwa4F0j96MkPT8TifrdOdCHN/a2JUZOmioPT1k9KaDcRiqcGplRqaInFqqUpHNAQSvDZdZKbQIKop3LOli12t566d4K/OFpnN64x0xnhgWw9/fXSZpu2xeyjF+3b0CmsfTeHZ83kWig2en8jRm4zw9z+wldtbm+aQKvPQ9l7OrNR4ebpAxRC+/WsD92A6wkA6QsVw+Kl7RynULSpNh2rTYX/vxsGFICbAP3t1joblsX+0g3RMw3LEgGs5Hk3bpdhwGeuKUtBN/sdTUyI7RIJywyEZUXl+Ms9ES6EnSeD4EJLhlenrEwN+7ciy2Nj3J+iKhfjz1+YpGw5BEPCZ/cNtZnUQBCyUmuRaRTrX99FkKBk29SWH1aqF6/vsGUyTjKg8cusgv/3sJIfmysgSdMY0dMujato8dnKFiZwoHGqKzEd29/OVw0t0xjSSYZU9gykRWh0EpHtiDHfG8Xyf44sVyg0b03EZ6Yzw5JkslaYtWHExTRQSszUUSaJiODSSoludjKoMpMMslgyeOJsjHtFQZZkvH1qg2LCRJYm7xjpptAplq1XxOQMJig2bmunyxdcX6YhrFHWHsmGRCGuEVYWfu3+cx09lKdSbgtUnmXzh9QW642GSEZUfuWOEW4fTNCwPy/E4n6nzx9NznFmpsncozb99ZM9Vsztu4r2PyazOctlgpdKkqJu8NlvC9Xz2DKX5Jx/aTiKs8ujJVb5zcpXuRIh/+PA2YiGFrx1eotp06I6HGeyMtrMVXS/gu2cy/NZ3J2nYLuloiI5YCMP2SEY0FooNXp8tCluylkpi50CChumiWw47+pNoqsIjtw1ycK5ESJXJ1y32Dqd4vqW0/MMXZzmwuYvpvGARd8VDxMMKvckwS5UmmWqTuzd30Z+IsFAyaFguM/k6r0wXOZ+pU2rYvDZTwnI9uhNhfvF9W/j0bUO8Plvi6EKFbM1ksCNCoW5SNhw2dcb4+N5+qqbL5+7exESmzlxe5MzUDZczGSHFj4ZUXpoqkKvb7BlM0Z+OiAVmSSgRRNNbotK0iWkKB2fL3LYpTbYmlGcSommx1OpolRo2EVWmM6bh+DDcGaWob1w0evsdzW/iemG5Hk+0CuYf2ztALKQSVmXW01VmCoYgJoQUhtNhAiLctqmDlWqT3lKYFyYLDHdGObC5i/GuKN86vkpA0FacbIRXZ4r8p2+fxfE8fujOTW173NMrFRJhjVuG0xdIJFexV9Qtl92DKTZ1xoiHhVozV7P466PL7B5MtjeOvh/wV0eWsByfyVydz983jiSJJlqxYfE/vjvJ7zw7xb7hDn72/jGGO2PolrD2Gu6MUmpYTOV0NEVmc68YT85n6vzmU5PsH+0kqsn871fmCKkyn9k/RF8qQs10iGoK6ajGj989yqMnV/n2yVWem8gTUiS64iHOZmrMFQwcz2dbXwLPT+C4PrSKM54f4AagWx5fO7LMZL7BQrHBps4Ye4ZSaIrM46czjHRubn9fs/l6u5E5nbuyqumV6QLPTeQZSkf4px/evuFjDNvFbm3ws7UrKzpXq00WSwayTHsjshG29yU5s1qlKx4mGt54fbdcMXhpqoDrB3zhtQU+f//GG7NUNCQ+ZwA9qSsX475+bJmlUpPJnM6/eWQPycjlBa/zGR1ZkgmrAYXGlS0kczULywuAgMpVHvf1Y8sUGzYzBQPH9TYssummLRQJrs9c8eJm5f/zrTM8fjpLPCTzgZ39PH0uy3zxyk0314dkSKU/HWGx1GS1taFcqTb5m+MrNB2X3QMpfuNz/SyWmoz3iKyDY4sVHC9guCPCbF5n91Carx5aarN0l8pNRjqj/PAdIwx1RnlxskCslTW5UjGZKzYYTEf56qElGrZLptLkk+tsUi3X499/80yLHarwuXtG+cQtgyLrbLXGa7MlzqzUiIcVZgsGd4118mN3b6I/FSGkyPSlwuRqFiOdQklxcK5MsWGzUjH5zP5hhtJR5ksiB/DQXBnHC1qWNiGWy01cz79ibtmak8FGiGgyVdPB9QP8AA7Plzif0QkIuGUozZ6hFEPpKH/44iypiMqnb397g+uvB0Eg1Ju+H/CHL86yayDJ1p5EW8m9kQXnGpYrTV6dKZEIK/zWdycpGWLdgAQEggT4zeMr1E2XP3qxQq1pYzo+qahCpmohyxIly8b1fJAldNvFdX1sz+PUcpVi3WKprOP7AUEAYQU8H9wAGraPYZsXVI5uQNN1KBtO67cNqDeFDaimiGZ+RywEXXDLcIqpvM4r00XuGBNh9W+WMPfaVZSvN/Hug32JfV5IFbb7HXGxTzy5XOP0chXDFhntTdtHUxA2Xq5Ppm6SCKn4gahtLJUNHC/CN44uk4ppHJkvk9dtXpst8cz5HPtGOlgs6hycr9ARVTm5XOWnD4zSmQixbziFYXscXajw4lShnbF3fLFCQbdQFRndEsSTp8/l6EkKtU2uZlK33HYmelSTWS4b3DbSweOns0iSxNPnckxm62zqjPHabAlVFg2LD+zo5SfvGeU7J1eZyNYp6hY/fOfIZRndZ1fr7fxOWWLDnNTOeIg7r1B/2TciCM+aIixPD8+XmC0YHNjctaFzz5tBMqrhXiE+TUJkhEky9CbD7BpIsnc4TdmwL1LNfOngAr/+xASaIvGDtw/zqX1DnFkVWYE7+pOYjscXX1+g2hSZMYossuS39iYucw14uyBJEreNdHB6pcptI++steNas2VNOXP7SAfZqkXNdC5yW3i7UW7YfOH1BRzP5+O3DLTX+H/6yjwvTOYpNWw+trefc9ka84UGh+ZKKLLE3Zu7gIDHz2S4baQTy/VZLBnUmiIHvDuuka2KfbUfBMiSRLFh8ejJDFu7o0hAteli5UQDGwTZb60BtoaZgsGfvTrHlp4Ej5+uMN4da68jbE/Entw93sn/fmWOuKZy53gnd4138qWDS/hBwEAqQmc8xGhHjC8dWiJXM9uNml0DKRqWUMwc2Nx1RUv07wXZuskz57KczdSwXRErkY6qeL6P5wunkMWSwZmVKktlg9OrNZYrBrrp8TvPTqPKEk3Xp9KwmcrpbO9L0BkPMZ3TsV2f7X0if8tyPMa6Y8RCKkcXKxyaLVEzXWpNh7BqsWMgSVl3GEip/OZTE+wZTDFTMPB92D2YYqgjzDeOrdJoiHX0rz95nrGuOCFVIUCiLxVhZ3+SWFhkN/7ec9Nkaia3Dqf5yO5+fu3J8+TrNj//wDh3jXeRrZl8+eAiRV0Qqj6xb5BSw6Fi2CiyxGJJ7NMqDbtVU5f55L5BIprCg9t7eOpsjiAQWb+65TCT1xnrjtER1cjWTf7s1XlqlstAWtRgM1WTgVSYT+0batvkPX0ux5NnBAnyM7cP87l7RgmCgHyrthLRlGuqta6Ew/MlKobD1t4EDdtlR3+S/lQEr7UeFE1ej7AqkalZdMS0y4iRvckwP3//OC9MFZjM1vmRu0ZYrDRZKBrEwwrRlvik3rKzPTjnsFRu8rE9A8RCCqYtzp2K4aAqYly5b0u3WANqMsvlJkEQsG8kDUj87H3jPH0+yzPn85QNm5+7fzNfO7LEbz89Sc100BSFVFTD84QasWwIUnzQEhMB7B1MslgxsV2P1arYz+wZTDKVl6kYNiFVZnt/otWwzPHCVAHDFpEilUviBH732Wmen8wz1hVDtzy29gr3vMniBeKp4/lUDJc/fHGW3YNJdg6k+KvDi0zkdKKqzHBnnELd4h98cNtViVo3vAkG/H+Be4GngiDYL0nSw7TUYTcKnh+wUm0K9n8gCjC263PnWDcrFZNSw26dQMLzv6hbjHZGCKsyDcuhacOfvDzLpq5Ye7FRNRy+eHABVZH5kTtHCKty284L4MfuHmWpbJKIqJxdrXFmtc5iqcFcUVjmPLCtmx+6c6S9GczXLb50cJHjSxU6ohogcXiuxInFCpoq89COXu7ZLNiVvh+wUmny/GSexZJB2XD4k5fn2DpZ4LZNHfiBUEDFwwrxsErTcfn952fQFJmP7e1nS2+inUEwlavzl68vMJnVuXdLFxNZZUO/XIC65bRUCkL2/xP3jBK0bPtemCyQq4scqdHOKM+ez3F6pYblevSnwvQlowSBj+n4OK6PF9BWKtk+OJ634Xuuh9/KRwHB3FgoGW2P0Pu2dnPflm7++KU5ZFn43C+VDBJhhTMrNf7unx+hZjp0xDQsR6jJ/CAgpEp0J0Js60+wVGpSa4qMkHhIeBR/8bVFviIvElIVOuMhtvcl+OSt/eweTJKrW4x1xVismCyWDHJ1sQnN6zblhvjn+AG+7XNqucZ80UCRZUzXg0Ao1aZzOmVDZKPl6xZbemKENYVTy1UqTQfJhC++Ns+tmzop6HYrh0IMzpmq2c5S2txijtVNh9WqycG5ErGQguMHaBmZTZ1RHC8gWzWYzuvYnmDwieyZIrePdLJQ8slUm/SnonzslgG+cXSZE8tVFosNaqbDdF7n5ZniFXM7buL7AyOdUUKqTFEXlh+WGyBL0HR8/vilWcKawlLJQFMk0fx2fE4sVZnI6jRsj954iH0jaRw3YLQ7xoEtXfzXx89Rt1w8XzDQm47H6mqd4Y4IddOl6biARM102D2Y4rWZErolsgNt1+PYYpmTS4Jpbro+PckQr0wLy1c/EGP8F16bJwgCdMtr2/L8xIFRTi9XWamY/MfCWfZvShNSoCmDosjCTsEVtqZV00FGqHNN28P1fJ44k6Fq2mQWmuyykrwyW8R2hULyx+/ahOn6/MlLc0iSRK5uoskSBxdL1JtuW+V7dlVkPZ7L1OhPh8WmmrUcBR85CGi6AaoqU9It5osN7tvSzZ6hFJ4XYHk+xxZKlHSbputiOWLsGExHKehWO2D4Jt47eGW6yP/73BS+D4oEn759RBBG1sH2hOJQkuD9O/pQVYmXpooUdJu5QgPHCzi+WOZLB+fRLZEfpZsu//Krx/mVh7by6duH+daJFTJVs6U2Cfirw4usVJpoisTLk3l2DaZYrZk8N5GnOy4U8J/ZP8y3Tqwynde5f2tPe92xHqNdMe4e7xQqJAu+fWKFsuEw1BFlJqezXG4SDSkcGO9q2zuvWUfXmg5106FiuDRtD8cTFnABAaNdcXTL5f6t3RzY0s2dY13thrksSfSnwswXG9iuz7dOrDCQCmM6Yl1RbTocni/xV4eX8YOAf/7RHfQkwpxeEUV/AnEMhu1RbQpWuiRJzOTqFHQLw3JJRVX6EiEC36fYsr4zbJeTixVCmsxUXmfHQJKlcgNVkUWz6D5h5TxXvNCsOrVUveJv//xEjqYTMFswmMzW2Tl4edHlufO59t8N5wpVKcRYWmxYSEDTvnJxPSBo51ZdKUrk0Ey51Wjiqmqrkc4oEU0Sv0fyysUAkfsGZcOh3nQuKwoC3L+1m3hIpma63H2VAs9E5kJT8eDslQlT5YaN69NS5XrEwpe/59lMnZopxuYTi5WL7juxXKFqmKxUAiZyM1d8n/WYK5tYfol4SCGvC+bsps4I51br2K7IlPunXzyK6fgMpqNs6oqxZyhN03Y5s1rnH/7lUf71p3bRGdeQJDi2WMX1fbpiGnPFBsMdMWRJNFf8VuPhfKZOKqJxcrlCwxaq5PVNMMcVgdZ100G3nFZuV4bFksF0TmeuaIi85JYazXJ9JjJ1khGVWEjlx+/aRN108QO/XUCOhVR29CfZNZBkrDvOra1i4Vh3jLOrNfqSwtYmHlbb17rnB22L0Qe3dfPqbImq4fDJfYOXhWqDCHD/xQc3850Tq/SlhE2x7XpMZGscnC2xf7STl6YKdMZC1JoOi5e4XLwbIEkSW3sTnF6uQiDGtkLD5IFtPTQsl3s3X1zoPb5Y4eVpYX9U1C1Wq0Lta7kehi1yv3TbpWq4/N0PbGG2IIoZddOh2BANqp64RkdUBSRqBERDSnudEgCW5/OVw0uYjkfNdNsFxEu3XRtpQNxAXMPr0VraYNkud493kqlavDxVYKVi8vpciWOLFX7xwc0bXvPXwmT+po3zewkNy2U9tzod0Xj/jh4mMjqH58scmitRawrL7/5kBN0SbgmpqMZrs0VOrdbojoumylBHFAkJRZb4xnFBaGhaYg3UlxSFq9dmipzPirG12nRo2D6//8IMewaTzJeaVJoO9VYRrWI4dMZUslWLRkuxGwsJksKRhTJ+4PMPH97Gf/jmGVw/YLncRJUCdNOh6fqcWanTl4owkalxPlNDkoRrjut5LJdNIjWTLx5c4Ofu30zZsFmtmLw2U2Qqp/Pp24e4e7wLSZJYKBp87cjSZQqUN4o1Ra9uuTw/IZrFpuPx099DnMR66Fdp0LsB4AX4vstUTqfcsDm6WOH12RL/96f30h0PY7s+j51abdlsiRz5p85m2/WNHf1JslWTU8s1XN/nzGpVOOAYDrmaxe2bOt4x67KHd/Xx8K6Na19vJx7a0ctgR4SueKituPrUvsF3+KigoFtt95WVSrPdBMvWBKHIdn2m8zpfP7pC3XQwHZ+ueIjHT2epNR0IAvYOp5krNvB94diyqTPKfNGgYbv4vlCayog8V0UOWKwIR6ZYSKFhufi+T8mw2/PPpXjydJbP3xfh7GqN40tl4ViAaOBars+vPnqWk8s1VFkiq5u8kKUbAAABAABJREFUPF3kxFKFnkSIT+4bYld/ksdOZTi6UCZXt3hoew9nVoRiTWQ0+5zL1HhgWw/5utirb+9PXqSMe7MQtm0+tivsZV3PZzAdw/MNfD/AdH0OzZdpWC4nl2ukwgq67eF4PqYjyLuW45GrW/i+L+qdUY1UVOP5iTzHFisslhpUDIdsrYyiSMzk9JYDQ4Dlivc4s1xntDvKydUqE/kaM3mdO8a6WKqb5HWLshGjLxnGdASxZu9wmrOrdSzHY6Qjyod396PbLo+fFiKSNQcNGaEQfeZcDrOVa/UHn7+LimnTdISTjiQF/PoTE6Ih12o8NWyPqmG3SVu6BV89vMi/+kSSbX3i35cPLfLVQ0sMd0bY1pfgf78yx+mVGg1brHW+cmiRrX0JDs4KhWoQBDx1NsdPHNjEj90l6ti5moXvB8wVGhycK/HqTJGpbJ2pXIM7xzv5u+/f+oajYRZLBs9PFLBdQV4a646L5tTeAfaPdvIXr85TaghVVH8qQjwksuF39CfpS4XRFJmophAgnEbOrNSgdS53RDWimsJERqc3EWmT0RzPw2/1Ob5yeJEDm7uF64jj4wU+eDLTOZ07RoXta7Fhib2xLLG9L8mD23sIqzL/5usnqTYdTi1V+MvXRcyR5fp4fkAyIvZO/+Krx/nw7j5mCw1008NxXCHICIS9og9EVOFiM19soCkKuukSUmTOrFQZ64pzeK7EuUyNWtMDScxnYUWm4rs0HQ/HDQRxLBDRBzXT5exKhVtGOjFdv01aFRRJ8d0slQws12Mio4t5C+HY0RFTOblc4eGdlzsnreHtaII5QRAUJUmSJUmSgyB4RpKk//KWvoF3cdHAC8B3L/hWV5suRd3BCwJiYZnplsrHsF2hBAOenSjy+fvG+O1nprBadn3fPL7C3394GwBfPbLI0+dyWK7P6aUKnfEQIUVmrCfObLFBWJHpToSIaDIH54rM5BptJqAXwGS2znPn8oQ1mYd39fHKTIFzmRqdMZV83aIrrqFbLrbn43g+Z1aqzBZ0SrrFZL6B54lNbs108YOApZLBpq4Y3z6xwkA6StUQEsia6ZKvW/QlI0Q0mYFUuO3xD4IZPpNvYNgeh+fLF2X/uK3vcY3R2ZeMcGBzF9m6yY6BBKWGzSP7BvmTl0RYoheA4/h8+dASEU3FdFxkWWIgHeWW4RTPnMvTtNwNLRWuxl5fgyxLPLyrl3OrdfaPdpCrW1i2RzKq8si+YSaydVEU0oWyzQ9abLPW5zAsl8F0lB2bk0gBdCdD3Lulmy09CTw/YLgzRl63UBWJaEimbrq4Abge2J6H6TRZLjd5dbpANKTi+rBaMfnUvgGeOZel6Qi7yrJu43NhQ+l7AUXdptwUijVFlhjqiOJ5PpWm02Z8G7bHH740h9KyKQkQjcKy6bVDqUEUTTU54OvHlpEliIUUtvcmKBkiL8n1AhxXEkV9SagWC7pNsWFxYrlKVJOF7Lw1amQqFk83cvieCAC+Y6yTrx1e5OXpIh0xFU2V29ZC29fZPzVtD1m+Pp/Vm3jvoDsRZqwrxkpvnELdJh2RyTdsAgJmCg0298RJhBXKDZu+VJjZvI5hC5l6RJXwA4nD82WimsLBuRJzBZ18VSxmPd8nokqcz9RJhDXKhs1YV4ynzmbJ67ZgwQViIqubwgbgyEKZvG6xVDbxAp/bRzr481fmyddtoprMQEeUQ7MllitN7LUZD8G4fmWmwEhLLVU1bB47naWoOwRASBHXZSwsk6+7dEQ1mo5Ld1zjzrEOvnNylWy1Sb5us3swxXypQaFu4wcBJ5erzBUaBC12dGc8JMZiPyCsyYRVGT9QhOzc8WjaHrrl8q0Tq6KY6SPGKD9gpWKhykKeH9VkDNvntbkSI51RBtJR5goNFotNLM9nPfmt3rTZN9JBSbfhnd+73cQbwKHZEudbQbbPT+T59O0jNCyX9VspETTvYziiyLOzP8lC2cDxarwyXSAd1Wi2LC5oMfBWqyY9iTDfObnKeHecJ05n6EmEee68CKydyolsI0mSiIUVcjWLkCwR0xQMWxRdF0oGT53J0pUIcXqlumETTJIkhjtjqLLEd06tYrtiw9sVC1EyLE60mkDd8TA/fMcICyWjbWOWjgklaLPlRS5JPmFFpisWQm9Z4q2RXR7c3oPj+RycLTFfFPbSmiLx4lSBHf0J3JaaJhpSuW9LN391ZInpvFA6/Oqj5+hOhHlpMo/n+YQ0iXBIwbBcKrrdWhwHGPg0Kk18HwoNBwmIhWTU1jysKDKxsCJ80tNCdf/XR1dEkHfTwWoVBtava65mn2c6QfvxV8oEW2MJXgunlqu4ghnDyeXaFR+3UmkKNm2rYbIRSsaF4vOlLNv1EOM4+FJAVLtyMW89o7xqNBnagD2bqVl0xkNENAX3Kp+5brrrnnPlxsearVoAWM7GP0LduMAyXP85v3l8hdWKScMONmwGXA2rVYuIKhFWhQLxgW29rFYtkTkrwUKxKYLbTZfNvTEiqsTpZQPb9WhYElNZnY/sGRCqSdfDdnzynk9Ea7QshiW29IhsTEWWmM7V+cvXFlgsNUlF1fY5eHi+xKG5MpoisoEdX4STSxKcbgWFNywXVZYY7Ypxx1gHOd1GkUQW1+GFMh/c1ce+kQ4yNZNfe+I8lutzx2gnd451ko5qjHbFWCwZJCMqHbEQW3sTJCMK4z0xdvQn+dDufmRZWBg+dTbDS1MF+lNhnpsotK/v85n6hk2wU8sVzq7WeeS2IXb0J3E8n68dWWK6ZafmB8I+sml7JCIqQx1vfS7OW4FH9g3yoV19PHk2y0JRZDjvG+lo318xRAM+HdU4slBuF5R2DyVZLovQekkSxe6BVITHT2eEVddilZ+9f5xTK1Wm8qIQLUug2y6KLDOYClMzHUotxq8qiWvCD4SCsun4G+6/3ixqrQbEvVt6mMrpLFeadCdCTGQ0/uO3z/DAtl4+devgFZV/G+GtPL6buPFwL5krJvN1TixXyddtCg3B5g8CiYgqs3MgyWh3HE2GP35pHtMNaNSEDVl3TOPTtw0xk9f5i9cWKDQsPN9HU2QG01H2j3ZRM20eP7mK3iLjakGAbrmcXamhmw6rFRPD9trqCU0R+416q2puewG5moXtCEuno/MVVsrCGnSl3MT2AmxAcn0Wiw0alogqyFSbVE2XIABNFmunmikKt0+dyXForsz2vgTLlQa253N6pUpRt/irw0ts6ooTBMKmKluz6I6L/KON8NdHlnjiTJZP3TrII7ddWeUaUWW64iGRCfwWjoF/8uLsNR/jBlC3PHSrSVgVRNr/62sn+ccf3s5kRqcjFqIvGSakyfzMgTGmWrbWa1bVhiMcPgxbOF2MdccpGxUG00KF/Lcdiiy1G0yXwnK9d6zesrknzp6hFIbtcufohT3BTx8Y489fm8N0RK6rbrmiWB6IZpbrC5JaEIj1akCAKkuAxIkN1qw+gjxjuh4N20OTgQCc61iUOT48ejIr3KHW3e4B2aoJQYBhOXg+nF2p4vjQMF1ydYuHd3nsGUrz6KkMC8UGni/WRC9NFdjZn6Q3FeHoQoWBVISpXJ0nz4hmzrlM/YpN6NlCg4gmxq9rIaIpPLC9myfPZvECCKkKPUnR2Co0bAZTYSbzjXajw3TEdxNIEsWGTTqqtprkAbYPriWur1hYpW45zJV0DNNrk+qeOJVjtEvkiTuuUIbLkrg+J7N1bE/8f9Wo4AeiXuF5Aaois1oRZIO+ZJiKYZOtmcwWdCQk+lJhIppCvm4JgpXj0ZsI8dpsiYWSgW65KBIslBr8868cZWd/ijtGOzg0W6ZqOhxfqhIEIqomHlZbjSCZkCyRq9uEVZnXZ8v866+d5NbhFImwxl+8MkvT8VEV+NbxFb5zYgVVkZARjSjDdomoMFtsoDcdHF+QAo8vVvmxu2DnQAIvCFrzFfz1kWVenSlQNV1USezRx7tj/MKDW659Eq5DPKyiyBJ+ELTr6Gtr9ddnS+R1i+Vyk/5UBNPx2DmQ5Oxqndm8jtnaUzcdcc1HNQXb81s2haK5WWs67OhL8PpcqXXNiYavpsgi4wuYyte5fVOHIFOZDg4+Bb3JM+dz/PS9Y3h+wPlsnbGuGM9N5PnuuSx9yTB2K35ptWYKkqXjrxkStBqWEieWykxm6zh+gO14LFUufPa1dYHjeciI3D3HW2taQVSTqTYdKoaFYYt1qRxAKqryzeOr5BuiKZmrNbl1pIO9wymePZcj38ouq5kFkhGNUsNuWzLLgKqIfkKhcfEYUDNd5osG1lVIpfD2NMEqkiQlgOeBv5AkKcdb7Nzkb7DJDy75e6ls8KXX5wFJBAT7AYoimMLzJYNSw2KuUMcPxKBcNz1emS5guR4vTBYIKzK65bBQbDKdq2O6PoEfkI5pdMfDLTsuYXHktk76WEghrMoEAYQUmT99dQ7L8Tm9XKHSdJnI1hnujHLLcBpFFoVkSZLojGk8cz5HremQrZv4Io6BatPB8UQmRqFh8cy5HMmISs10W5ZfHiFFFqokwyYeUvjkrRcYJdmqyeOnMhR0C8f1kKWA33lumq8fW2HfSJrJrM7WvgS/8MA4iizRnQgz1BHh8HyZLx9aJF+zaTqCUW1Yfvs7LhkuEi6qIpEOazRtly+/voTd6lD7/uWMw5px7SYY0N5MBkHAcqXJcGeMh3b0tjPawppMSJUp6CKEui8ZotgQQehRTaHatFkqG/QmInzq1kHGexJkqib/5ktHeXmqKAZoWcKKhZCkC0cZICZYgIYT0HDE8dZMhz9+aRbLvfD5NyKpeIDUslhy/YD5gtFW2Vz0Hl7ARt/EpUWpcxmjvVmsNd3WhHPhftcNiKgSSisMUJElii0lme16FwJ4ZUASRSbf95F1iZWywenlCrNFAxnhRzvcESURFsyDlYpgBHzzuJhoPnf36BUtNG/ivYfpvM5ssUFRt9nWHyeqyRRmLJaKDUq6TRDAUEcEVZFYKDU5NF/mjtEOEhEV05bY0hvjzEqN5UoTiYDnJ3KCiNA6hRuWD1hYrrBErVsu5aaL4/nYnmAvJ8IK2ZooRpYNF9vVsb0APwg4t1ojWxeFTC+Q2dYb47GT2XYDrG3nY/tMZnR+8sAYswUDRXbI5/X2/aYj/M2LeoCqSPQkRPCzYen80UtznF2pMJkVCoSVskGubrb98nXLa2/EAYyKydr+rel4KJJER1wlFpKpNB1M1ydbM4lpCm4rS0yWwA0CvAA8LwAvoNkaZHJ1C920ObdaJyDA9C6E2K9hc2+CPUPJtqT/Jt47ODxfao/Xx1pqFNv1uZRPuDakG47PSrVJ3XSRAN0LcD0fy/VAkpAIaFoO6ZiGH4jF8/OTeXI1i/OZOqFdfQRBQCyscs/mLhQZprI6VdNlvCfGcGeUHf1JfvD2Ib54cJG65bJYMvjUrQOC4V81uXtchLHP5Bv84YszrFSa6K08Pk2RGUhHGO+OUWk6HF0oC2ai6/GF1xfa+XjJiMYvP7SZkc4ouZpgYgaBsDr7ew9v49BcmWzN5P6t3fi+sFi7d2tXy0ZJNJNLtshTqpnCkjHhqByeL/PPv3KcA+Od5Gsm0ZCw4nh9tsR0XhSmkmGVqiFYq7JES13TsvjhwrgRIKzB1hDTZNLREAOpKBFNpjMe5mO3DHBwtsR4T/yiUPBLf7eNcJFVd6XBeO/lGQ8F/cqWf+uRjAgbKSmAzquwUTM18XqmFzCTq3H72OWZFwX9QnPpavWGyVy9TdyZyF658bYeCyWD3cOXWx25ns+5jLCwdd3cZfe3H7fugK6HMAVQMy2GubzRIq2rs9nr8nmPzJdJRzWyNfOKllBXg+kGmK7L6ZUqf/SS2Oj7nk/VsGg6YneqGPDbT0+12b4Aluvw9Nkcr86UyFUtrFajwvEDpgsGigSqLF67Px1lS2+CrxxeotxwkGWx6SvoJkfmS3zl4CJTeaHcH++Oc8doJ//4Q9tpmA5fOrTEUEeUdEwjGVK5Y6yzbd++XGny5YMiZ3iu1bSZLTRwfaFkMmyXB7b1IAF/8vIcJ5eqjHfH+Nn7N2O5HnVTbNSDgDYr+rnzOZ45n2el2kRTBNlvKtegYtgXke3WcHKpwn9+9FxLUSdUA7IkYbsBpuMjIVQcsZDK1t4EBzZ3bZin926AIBmo/ODtw5fdN1to8I1jy8iSxKf2DbJrIMnT53J0xUMsFAwc32dLb5KQqvDAtm6Wy03+6MVZ6pbLneMdxMMqp5drVA2batPB8310M2izmdfOK7m1qw4QlocN/8a0l4oNhyfPZNpqxaJuc3K5Rl8qQjysce+WbnqT158T9kYb0DfxzkK9pKFj2D7fOr5CdyLMvVu6GUxF0JsODcvFdDweuXWQrxwWNq6aDBKiRnJsqcKvPnaunbtt2h6aKmNYHnMFnS/VTFIRldy6uVGRJdFYDwLOZ+q4l9QWLC8ge4lNsOn6ZOritvx08Yqfq+kGwibRdNBkqT0neF6AaYhj9wNhI7xUhjOrNTqiKg1b1DkKukU8rJKrW1QNh/PZKpYTIMvwF68t8Evv23KRjeHzE3n+43fO4vsBr82K2IyP3zLQzmiZK+i8NF2kPxnhQ7v7+Il7Rqk0bXrfRAbflfCnr1y7CbYGwbqHXN3k0LzPv/36aW7f1EEyrHLXeCeG5fHEmSzjPXFUWaJsWHzx9QVh6ziYoqhbHF+s8LFbBviZe8eQJC7L6TmXqdMVE2TJdCzEWNeF7EoQVvERTblizst8scGjpzJ0xUJ8Zv/whtmY7xV85+Qq5zN1bh1O8+ENMqBvJHw/YK4oIj8sx+fIQpk7RjtJxzR2D6X4j5/dx98cW2YiqxNSZfwgwLY8qubFpV2jXYAOuNovsb5OfY2a9WVYuYJ9uFBAe20VWb5uk4ioNG0XL1D49SfO86cvz6HIEnndIqwqTGSFxflUTueu8U72DqVQJInTyzUWSwbRkNKe2xqWS6jlCAZiX/fMuRySBD961yaGr0NFNNIRQ1VkAs/H9X0Oz4mYiJAis1K1MFs1h5Yos6XkFiPeXFHUOD3vAslOtzxWK01CqkSxcfFv4QNLlaZw0wpAlWkp9C4U5EW90GcqW6MrHka3PIq6heV4GJaHFfGJhRSiCjitY3lpqkAiorb3CKbt0xtXharXFvtXxwfHEra1U1kdSZKwPaEm9PwAORDzSNO2CWsyqiwcPBRZamVNmUxk63zz+DIRVaJithSK5SZnVkR+MK3oIE0Rc8jjZ/IYltseZ7J1ky09Mb56eIlc1RT27vEQKxWLmYJOqWHTbJ0sri+Imfm69YbWMl3xED91YJS6Kepb2ZrF7aMd7fssR5Cje1txPn4A+ZrF0cVKKy5Eodxw6E2GuWO0g6OL5VYum1CL/d8/sIe9wx386O++3O57rGXoun6A4fgcX6gym28IV7JWPyNTs0lFm0xm65xarjJbaFBt2ox3JzixVGW1KtRy3fGQ+E1ak+ra3CquydZ55rs4G9T0Lz3X6tbFlXHD8ZltZWevPVeRxfl2bKncvk4lxHfTHQ/zwkShvVevmWIdsG4LRwBXVIlKSDhecE0r07djR/GDQBP4Z8BPAWngP7yVb6Ao0oaNhPVwA9Dti0dXzxNSXB8x0Oumw3oy6emVKpM5naJuEVKldmB0w/YuNIAagh28UJKJhhQ0RbBDI5pMVzzcbj40HU80E7yAR09nKDccXN+n3LBIhlUhoS/oFBsOA+lIy49fMJVkIB6SMB2xkTYcH910aTo+ddMhUzU5sLmTUyt1aqZDtmYhS7CjP8ltm0QDqWa6/JMvHeH0cq3tqWnYHnXTZrVscmS+TCKislAyOL5YQZUlSobw8A6CgEzVwr5KgGqAWKAmwypnV+s4njjW9cWm9SibLt51WCKuIVcXgXsAf/LSLGcyNWzX519+bAeZmmj6lRtCki0DWit3q2Y6LJabjHbFOLxQZrwnwfGlCqeXaxfYI17Aas1sF52vdMxAiyFxfce9vpDjs35B8MbgXnIwAVxWtFnz79YUmZ39CU4sV9sDmedDSAG1VQQUnJwAAsFQPTRXQlGE+ktp5YzFQyqbexL8wQszxMMit2m+2KAnEWa12rzZBPs+wky+ztnlGiXdZKncwPUvnF8NxxY2rarUYlyKsey12ZKwwPD8li++2b7mL4WHWJxJkpiUfN/HsNzW+Smy/CLaxUXpNaYIQKa+jsnv+jw/WcRqsVZapLH28xZKTf7bE+eIaSrJ6MXTm+PT7szZXsBKVWyMXc/n60cWMZwLx79aa15UGL8Ua4WmdiM8CMjVnZbiWNzmB1BrLQSude37Aeh2wMYtdbFg/fieAX7p/VvbFrw38d7B2dULzYOFVi5RzfK4WjtTt0WuZ6OlptYt4SMeVmWUlgq9ULdwA9F0eGGqQFRVsD0P2/WIh1R+/oFxXC/g9dkSp5ZrWC27gbHuOL/SCqj3/ICG5ZKIqGRqFicWK1iez1NnMmzqinF4vszp5SphTaErprFvUweuF/Ar79/MwdkKJUNYFxiWsMQ4tlDB9QN6k2E+desg3zm5SjysMtyyXTUsF9PzCSkyD24XzZnFksFvfneSatOhKx7i9pE0HtCbCvO1w8skwgpjXTHu3dLN7z47zWROZyqn8/JUAdcLCKky3fEQmRZhQ5IEYxkJpLV/0GbOXQ31pkNIlZlpOPQmIzx6apVP3DLI8P7LC9xvFEeXqhzYfrm98HT2ynaK62E6F9aeTef61iEFfeMigXudRfLT66weD89fX5Zr4QrqrX/3jZPtv5dr19f4u95avudv/Ms+e+5Cs81cRy76xK0DLFeaLJYa1K033zCw3KDd2FsPCdBN77I5MUCcB1FVwg0uNEnd1kbTQ2z0LNfmyTMZBtNRdFNYBfuemGsOzZX55fnDyBJEQgqShLD0qZk8ey7HRE7HDwI+vW+I5WqTI/Nl5koGf+d9W0hHNTLVJsmISkRV2NdqUN0x2slCyeDQbImJTJ3/9O0zJCIqz57PEwQBi2WDoc4YP7hvENMRCtL7WpkuDcvlu+dyzOYb9CbC/My9o+wYSLGlN8HXDi/x2KkMP7h/iL7kheLl2UydWEihZrrt/IW5YoO+ZJjRriiz+QYnl6sUdZv7t/Xg+gEfeZuLgevh+wGnV2qEWgqXNQSBuH3N8cF0PLrjoTYTeM0uZrXW5A+enyEd06g2bVYrTabyDXzf58XJPJt7hUNFuWFRMmxUWeL12TJfeG2eE0sVlitNzJZq8NI9Aby9iip73XUk+X7LrUIQOHXT4ZnzOca6Yhx4hzJ/buLGYSNlse0JdewLE3kG0lFM16NkOBi2z4nFMl86uIhhebh+QGdMJWgV7RZLDSxX7DtlSSIVUSk1bOqWT92y2+Q3WLM4u7Zqd6Nr41pYX+xzzI3n1bUl/BoxTvICMo6NhLj2BAlZkE+DIKDpiCLkYtHgZblIANw51slIZ5SueIjD82VkSaJhuyiKxBdeneO58zn+9Sd3U2k6/NkrcxQaNtv7EuwbSdOXirTHz2zNJBFWNyTkvBHU7Df2Za0VHcsNm4phU9SF+qOkm/hIbOmJc2KpQt0StmR3jHagKhIf3zvA/3xmilzd4vRKjdGuGKtVk12DSX7loa30pSJ88/gKiyWDqbyO6XjtvJ61derxxQpPn8thuz4/fvcI4z0bKYtrNG2PZbvJarXJcEeU75zKUG7YfGRP/xu2N3ur4fsBz03m0U2X9+/svSh3aE2FtKUnzsf29jPRImRO5OpvexPsmfM5npvIM5kVwoD+VITlSvMiBdRcQRBcEmEVRfK5QlR1G2+34lfUSkW0gx/QcmfxWuRz4Vq1VG7i+qKC6WsBmiZTNYSr1OuzZfI1i750hKm8jqZIHJzT8fwevnFsmZl8g1RU46cOjDKb1/nN704QUmR2DaQwrOvTeewdSRFSJCxXjG2W67b3J9e6MtcaS5d+5rrlwRV+i4uI81f4QdxA7C0cP6ArHmK1Yrbze/WcznROv2gT5fiCuLwGD/jWqXx7XFzf/DTdANd3WvEwomYst1yq1urIjuvjy1KbLKybQsnnrXuNNeiOT8hrrYcCMCyPdEyh1nTQ17ojAShBQNV1+c+PnmMoHeGBbb2kYioTGR3PD8hVhcuaDKiqjERAxbCFkGODTFvb9dtuPgBFXZCRehJhulv/gDbpDKAjppGtWXTGQoRUmU/sHUBRZM6uVIlowjUppinICbFfPblUYTZvYLTcYU4tV/kHXzjKjv4kZ1draHKrKRoESMEFQrUHlFvWJGtH7fmCaDmdE8QK03Zp2i6Zqkm+brLWu65b17Ybv0pZ7Jq49Jx2fMjrF3dv5kom/+xLxxjvjtObDOH5viCnXOdcFZbFeScRsHswcZGryEa4oU0wSZIU4BtBEHwYcVz/+0a8j3mlVuB14AJP4XJLm5LhstYjd+yAs6v1ywaOtYaE7/uYrTs1GfpTYTJVg0pTXFiyLGG6AZLERSqesuHy9NkMngdrv3G1aYtwY//CMerrCrQBgo0nAd1xDVmWmC+Z3LYpzWOnsjiekCIvlhr87rOTZGqtPKlslbU1ZUiGIPDbAw+BkAlbtke+brUZFKJhcn0TmOn4WI5YAEqSYCtf7XnWddBv66bDt06sCLWFLBp3i2WDhaIIT/y952fZ3pdgtWLi+QEjnVGWK2u5QT4NW1gvzRcb/OnL8zx+MoPjiaDO9ZfU+nX9e5GZGCAaXHXL47vn8xfdt8Zg8wJhrdiw3IuZN7aPhE9YlZEVYdkylI6yezDJwbkSp1dqEIgQ31hIZewtCuW9iXcH/uyVBWZLxhUtsYqG0242yRIcWyhhOWJ8kgHH9TBs/6rXjQ9UTRfFdC9r8wTApWT/K40Mjn+xauLSx9Vbi88yLlxfXVmoNS/xXrieouiGDb8bNHgEAXzx0CK//IGtN+YNbuKGorKusHK9i0jT9gRrr/X/Pi0VkxSgETCTbxBSJFLREEcXKqLxo8gkw8JeoCcRZqbQYLbYEHYTmky3EkKRpYvUhB/a3cfBuRIScHyxzAsTBSpNh/GeGKVFuzVXBgRBwObeBP/5s/tIRFTKDZvTy6KQPV9qUDNdpvK6UBhLEmdWqqSiGuVWBsS9W7roSYR4OSvIOr/25AT/4mM7Afj2yVUms3VydREUfGyxTGcsxN6hFA9s6yZbs/jAzl6ePJNhIlujYYksTz8I8FpZalP5hsjVRNgsxCIqtuejSkJZ7QXBda1jmh4sV0TuVqkhLI4+vnfgIkbym0W1sfEmY6l0fQ2hQ/OCyR4AL09lgVuv+ZzSFZpgZ5euT9W1/tydbzVwr4VXz6/wUw/suOz26Xx9g0dfHder0nLdjTc7Z5crG94+mI62LHFvTHnmWlNB8yrV2gAxl1RNh2REWFRbrt/y+ndbSilhubJ3OEWmalJqOMwVDX7/hWkSEQ3fh5HOGImwyrEFkSV2x2gHHbEQ/+uFGepNl+0DCfK6xUAqTFhT+OiePr52ZJGVismrsyWUlv21Ksts64vzrePL2K5wIqiZDs9P5rl3azfzxQZL5SaW69GV0JjMN/jSoSVkKSCqCZLfZFa/qIgb1WT2DafpTIT43F2bWK40KegWHXGNdCyEJBvYrk9et6g1HeKhd9aG++hihecnxNp6rXjjtzJJnzmXQ7dcKobNatVkz2CKuzd3cnShwqbOGNt64xi2S1hVeGW6gOv5lJsO5Za1i+f7LBQNmrZQubi+KGocW6hwdrVGKiJsdiSCN1Xkv5EIAvF7/qtP7Objtw7yhdcWyNZMlstNdg+l3nTA/E28O3Ele10QpOBa02kVoaAmOfynR8+Sr9vt8bBiuMRCMpoqipWKBK4k0Z0Q+d3uVV7/3XTqBxv81/IC8rqNzDpyQwCTreLxE6dEbk5UU0Qeo6YQUiSqhkO+4ZDXK/xf3zjJgc1izbNUaWKYIncFSURUvDZT5OXpIhFN4WfuG+N8ps50S7myZQPL2RuBtWiFnG6SjmiYnshpmcjWSYQVIppwRTq9UuPwnMh7btge0ZCC4wWcWaliuj4nl6qkIiqDqQj//buTKC3b7WzdQrcc/uK1BTb3xPno3gF0y2W1Reg4vlTh3//gXrb3Xayq3z2YZK7YoCOm0Z+KsFIxRdEeOLpQeVuaYFM5YXu+vgC+hplCg2MtMncspLSyewWOL1awXZ9zGRH/0Z8K8/ipLHdv7tywEH8jUTfdtosVCIWNfMn6d7aV1dto/bbvVqwNJ+vnzbW8u/UjSsPxcNc1lRq2UCaWmsINR+TPBjieL2zmA9qChf/P104y0yIePbSjh629caqGQ6I1b18Jp5dEM2M93g1jnG4H6IXL1/ptmu41DnL9N3vp6nr9et7boGAiImku3H6t/fL6+z2gZFy+l1p7OdeHhbJJ4dgirt8ib5QNVEVqq6Zcx8d2fCZzdb58cInt/QkeWZe/ez5T58sHF+mKh/iFBzeTr1t88eACrhfwmf1D7BkSpLKJbJ3Vqskdox2UGjaPn8oAgkzWEdVQWiSpse44z03kCasKmapJxXQYTEUY7Yrj+Bf2S7brCzWtLRSIRosEafvg2peT7eDiuclxXZ44k6VhOUiSRLZm3bB61feKmultaJ16PVhfupvON66pyLyhTbAgCDxJkgxJktJBEFxnSfKNo2E5V2VUv1W42mZ8/V2OD0uVS1rxrZE4CC4ejDdqvl2qWFt73kX/3/pXMhzCqsx8ocqRhdJFdnslw+XPX11Eky/fcHsB6NbFt7UHn3UKrYuniasjABarDlqrAXataTG4jhyM75xc5etHVwD42J4BNEWhmfBwPZ+QKpOvNQmrMo4nAiIztSaJsELVtAVrLAAr8JElmYlMnZNLVRT5zbHF3qtYfzq5V/hBA2g1cYW0dvdgiv2jnXztyBLlls97VyLEQzt6KBsO8ZZ68Sbe2wigHWJ7NaydQl5wcYPIh2s2wNbj3btUfnfDC4TdSlG36Em+O3NRbuKtxUYLVC+4kBsGoCC8u52W57Dt+URDMpbjsVxpMltsACKLKh1RqBgumYrJoydX+OQtAxxdrPC/np/mlemC8PxerlJpiLXLWo6kHwT0JCNs7Ynx8M4+kVGU1fna0SViYZVkRKM3GUE3dQq6RVSTkSWZTM3i6HyZM6s1BtNRPnf3CL2JMGFVxnYDpnM6tutzcrnKdE5Ht1xqTYfJbE1YiKoKlutx11gnwx1RpvI6j5/Okq/buD6EVYmoplA2hEVjtmYhSeKzjnZHW0p3F8Ny3zB7bW2adFthnYbtfc+sa4Dj84UNb9+4TXU5auaFk2I6fw3qbQtLucaGt5/OXd+7rj8Nr5eNV2lu3Cy7Qp/qqrjeOSNX2bjBeKXffqncpGTYb8oK8e2C64l8sYgmGiCG5aJIohlkOAGy57UzwUzbIyBgvuBjuQEdMZVvHFtmpCPC+WydkCrz2KlV9o10cHKpih8EGI7L5u44T5xeJRnR+K2nLVbKBlaLAKcqEpoSMNodxfECFssNll6cw2hlUg2nI7w0VeDpszkcV2TmnFyqcWKpSt106Yhp3DKUZqQzxuaeOMcWK0RUmcdPZ/AD2DWQ5J7NXTx+JitsdcIK0wWdhunSbIXAb+6O8aN3bdrQUvGdwnyxwYlWlsVYtyCFGbZLtelg2C4vTxd4caqAIkuMdcX4Pz+5i7s2d/GF1+YJazJ9qTDFho2qyCKXwwpw/ICXp0vEVBl/ncVR0/FpthQn79ZtS9MN+KOXZvERBNBszaQrHsJxfZbKxjUtaW7ivYOm45O6wn0+F4+3julyqVuZj6hxRH2xP7cDUCXR9K0ZzhWJKu/Wc38jbPQZfGjbMlZb2e2aKrXJhb4viM7nVnUWi4awWA0pREIyv/bkeXJ1m3RUY6QziiQJ152CbrYb88aEy5beBEtlQxTtDZvzmTr7RzvZ1ndjmmMNy8ewLliyun7LWlry6UtF6E5ovDxVb1tSR0MKjivIyQGCtPjHL82Jpr8tYhtkCboSYRqWS7lh8f98+wwA79/Zy6MnV0Vmuefz0mSBgVSE2UKDse446ajGlt4Ee4ZSnFmpcWShzP5NIteybrps7bvxVcJzmRqPnswA8LG9AXuGLr5SuuJCBWK7/kWWjrrlslQWdmX7N3XwhdcWeOzUKqbj43o+P7BvmNHut28MfXhnH4mwyod29ZOOqjRdn+19wglrqdTkxak8Z1drVJv2Rcqc9zI2Wge6AWQqFpoiYbXm5JWKSaJlXZOvW/z1kSVqTQfTFbaoXz28zOnlOqWGzUM7evjJA2NXfM+Xpgptt5ibePuwPo3H8sG6hHjhA8cXa3TFQyQu2fc9fjrDqZUqsiTx/p09rFYtXp4usFJpcmqlyqbOKPm6RdPxKDYs7hjtYqCVAbZSEY5jJ5crTGfrpOMai6UGIUVmsdyg3BCuL4tlg75UhI5oiHzdErl5YivaGvtl4cCydrzXcQlWmh6aIoi1V8uA/n7CVFZnIHl117K3ww7RBE5KkvQk0N6NB0Hwj9+qN7iUofD9Bk2+sk+uF4hF6ZXstlw/2HBwv5HXwPUEWgLtTJ+rIRZSUFtBg/PlBpNZHcNyiYYUIUH1Ia+XsV2f3Dq22Xp4wcWNxRtklf99AcsNmCsa/MnLs5xZrdKw/Va4ocR4V5RM1eSrh5e4Z3MXD2y7PGfkJt5bkIAP7Ozl9Mqb5yj87ZhO33nULY+P/fqz/NZP38X9W29ee39bsX76ajvGBxeIjcW6TSysYthu2/9dwidf87ADod48tVzld56Z4thimReniu2crEZrQyash/yWL7xLOqLSsH0OzZV4biJH1XSoNFxCCox2ixzBNWZaMqyiKjK5mslC0SARljk8V+Tv/8URGrZHSJUZTkdRJIlP/ubzSJLE+3f0kKvDYDrCSrWJ5fg4XsAz53IcnisTVmV6k2Fy1SauLwoltuuTCCloKnhuiwHWUlUUdRvL9QXD73v4riXADXz+6sgSn79v/Ht4JYFS/foaV28lTixm3/b3zOQ3nhUaN3C/f3alxEdvv7zgcCXXxc09MTLVa9t/vNMQVtri+1QkqDZFVoIiCZsT2xWmMyFVwvMlmo6wLa6bLqvlJrmaScNyaTqSyApwxebccQV7P1+3aFgui+UmDesCo1QC4poIK//xuzZxPltn9VSTYkPkmEU0mZPLNXRrnmhIZF+mIxoLZYOQIhMA5QaMdEb5kTtH+I2nJpjM6kRDEvMFA0WRiYcVcnWLV6YLvDZbQlMkfB+64hqaDMloiIbt8epMgc298bdVVVRu2BxdLDPaFWdbX4L9mzpQZUmwcG2XY4ti37GtN8G9W7qIh1Vm8g3+8uBCS0VqC1KCplBqOGzqiqHIMjv7U+RqJiNdMQo1i55kmGzdZK7FvG5eg9X7bsXrc2WqTYd/9+m9fHBXL33JCF88uIhuuox0RfjRO0ff0xk9NyHwVm2f1xNz3QAq15kT/v0CD/CuUANp2D6qLKzaG5bLZFZHliVCisyJpQpdsRAHtnRjOwGzBZ2VSpNP3DrIdF7nb46t4AfCzisV0TiXqfH3PrCNnrcwS2w9gkv+tr0A33SYyNaRshdslwMg8Hxs98L4FgCV9SzwQGTx6LYnrFUth3rT5X+9MM14T5xfef8W/tvjEyCJeeVffvUEnh8w3hPjn3xoB7GQwvHFCkEAxxer3L+1h5+7fxzH9wmrN0ZJnKuZHF+qsqU3fpGCZSO76a54iM/fN4bl+hf9HnOFBrGQwm2bOpAVmMo0WKmYOL5Pw/YIXyoXegtR1C0ePZUhoik8sm+QiKaQjmmXWTAGQcCvPXGerx1ZJrMuPuT7HT60G2AglLBSAKbnkwirPHc+T1dMY7ks1kyFusmEBIosc2q5iuv5bWvk9QiCgFdni+9qEtbfZgTA+VWdf/3JvRfd3psIo8oS0ZDC2ZUax5eqTOcbraZ9kZenL36diWyDiALrXXZNN+DDv/E8mrwxSc/24Nhi6SKHpIDLs+nf6Od5Fws2bwjcAH7xTw/xZ7907xUf83Y0wb7d+nfD8P2uSAmuMUi+V+ei0wvXLs58eHc/r86IjIJywyZXM6k0HRRJwvUDsnWTsCq3u+Q38b0hQIiCTDfglVYob1gVmRN+IOEFAaokUWxcn33TTbz7MZnTCWvKZf7SN/HuQ9n0+OqhpZtNsJtoo2y4yNIF62IkYdfVn4xQbFjYrWL32qbVBwI/4DsnV5nO63it9UXQer4sQUiR8XxhB7i5L0F/QrzWqZUqtuujWy4RVbAjLS/A9YQFYgB0xcNs6YuhSjKH58sslpsYtkdet0lGFLoTEd63o4c/fWWeckMQV86s1kmGVZYrBqbtieyuIMDxxCZdkmC+3GxnWvqBKLas1i+fhwKELRO0wp+/h4WBH8BiocGfvTKPpsj8xD2jb/7FgMr1uQleF653tK6Zb39xcfl6pW1vIU4ub6yyuxLOZ3WSkbdjC/TWoZ032TqpVVlcDyFFRpIlbNfHsESeph+AR0BJt7G9gMALKBk2M4UGditbp6DbyJII1770OoloEl2JMGFVoWI4JEMKEVWmpHuYboDjBSTCLtmayc6BFP/0wzv4wmvzlJuOGI8kiKoK0/kG/+Gbp3luIt9WBGiqjOn4fOPoMh/ZO8D5bB3L8bBd6IhqgMTu4TQrFRPL9fnu2RybuuJ88tbBt+27fuJMhpWKycmlGr/80BairSIlwGS2Tn8qgu8HvDZboicZ5o6xTj6zf5jBdITffW6asuGgyqLRB2sWihLJiEq2DqsVE6k1VkuBaHC+10n1c8UGj5/KkI6FiIYUbNfn6XNZ/ADOZ3T+ww/e8k4f4k3cxHsCri9U+GFJkKBlP8DxhFqq2LBJRlT+8vUFDs+ViYYVjsyXuWusk1xdZBCmoyqHF8qUGzb5us1//ZFrWye/lce+vgkkI8a3iuEQXKNe5wRQbTporaafREB3IsLXjy7z6duH+I0fvx3XD/j2yRV0y2WxZFBu2Hz18BI/e/84tw6nOb1SY9+IUA7LskRYfvMNsLrpEA+pV7QjfPx0hoJuc3a1xi+/bwvOTqFyu2Uo3Vp3i6z2NSQjGpcaJY52x0hFNWzXx7QdVspGK9YkIKzKhG8geeDkcpV8i5w1ndfZO3S54vr5iTxfOrjAs+fyNK4zi/b7FQHgeD63j6RZLDWpNB100wYEWb/WdBlKS2Jd1J8UluwbNMEkSWoRmG7i3QpFhp7EBSXR0YUy3zyxTK5m0Z0I89+eOE++bl+ILLjC+m2jmMmAq1s9XhoRchNvDofny1e9/4bvAIMguCE5YOuRiKi8CZeV9wy+Xz/bxEoFEIuMx09nUWWJj98yQES7sGApGTYzeSEgnMjWiWgKvYpM0/FIRFQc12NbX5LJnFCI/S1Reb6lUICg5bWy3i0xCIR9QTSssK0vwQ/uH6YrLuS59219ewKvx//V9fXP5371Uzf4SL4/ESCYTbGQiud5l1mz3sS7CzKwb6TjnT6Mm3gXIaRIKDIgScQ1iarpI0kS/emwyA/VLVRFoumIrNCYJtOVEAqvsCrj+KBIAbYn2IkdUY1bh9NMFRrEwyLE/p4tXZR0m3OZmsiIBMKaQjqm4gegKjKKDJqisL0/QVc8xHK5yb6RNEcXKtRNobipNT0SIZe66SFLoiicCKts6YkTUmVemMy3CS2JiIrvi5BmpAv2yWvNuqtN9Wt7i+8lxBdgIBmmbvtoimga/sidIxcVNN4oEm+Hb/elkN7+LKUbwzm/Bpw3tmtMRzTmrjPj7N0KIQILMF2Prni4bd3SdDxiIYVbh9K8NlvClkSQt2EJyx611XBZq0eGVJmumMZSxVzHTJbwfOhNCnu75ybymK5osKky7ZzB3YMpfuLAKH3JCEEgYTk+sbDCjr4Eed2m0rTpjoszQlMkUhENxwuQkIiGVEa7YmzqjOH5AUXdxg2EjdQ//+hOfu+5aZ45n6PpeCyX31rVXtP2ePx0Bs8P+NgtA5fZ3sRC4v/DmnxZrsdod4y7xroo6BYF3SIIAp4+l8WwXO7Z3MWu/iSJsMpqtcmmrhhhTSYd1fixuzaRrZmcXq0RBD7lhkO5YaFb3vfF3kWRJM5m6uwcSBINRblnvItHT62SiqqsXMGu9CZu4iYEQjIMdkZZKDbb65t4SMX3XSKagtFS0sdCCge2dHFyqUZIk5GR6IqHUGSRHUkgCMQLpSa+H5Cvm+itSuz6esuNwvpMNFp/+76oZUnS1Qc6CUT2pevTl4ywpTeOLEnUmg6PnszQeSBEfyrC9r4kuwaSNG2XW4bTYp0IfGh3/0VZW+tRatjEw8p1qcJWq01+++kpirrF+3f28bm7N21IuE9EVAq6TSykoKkyfS2bw1LD4r88dh7T8fiHH9zGzoHLTUR1y+XRk6scXSjTnQixVDb41vHVi5yfVqomL07meeS2YYC21ePuwSR3jnVd83NcDUtl0UB0PZ9UVGOk43LLxUdPrvInL8+xVDYw/5Y3wNawpS+OH0AkpNCrSNSaFm7LzrRhudRMl66YRqZm8uVDi3z+3nFAKDufPJOlZjp8aHc/HdEQ6wzSbuJdhkrT4bFTGT7XIj9+7cgSKxWTcsOmqFtUmu5N8cW7HFt6r77pvuFNMEmSZtmgXhEEwZa36j1UWX7LG0UykI4q+D5Ur0MhobAxM1cG0jEVz/Wpfa8Vme8z3LtjhN9BMFEWS6IYcS5T5/YW2xKgNx6mOxGiqFt8fO8AuwZTFHSbB7d1k6lZFHWbmbzOeE+cg7NFMhWDvHHhl4iqEFIVqhu14m8CWYJNnVGimvCYDYKAgWSYStPBcAMUWeLB7T18ZM8Ad4x1fk8FwJt498F2fVJRtbXxUPEC92+dZPq9AkWCR24b5PP3fW9qlJt4b2CjRk9Ehc5YBMsVKoNYWG0VlX16U+GWzZhPRFPYPZhm/6jM0fkyxYYId7Y9n86Yxj96eDsnV6o8O5Gj1nTZ1hfn9HKNdExj92CaX3xwM189vMgrM0W6E2FcL+CffHg7h+fL/I/vTuL6AcMdEbb3JehJhDmf1ZnOi7DoW4fTlA2HvcNpGrbLy9NFNEUot7vjGpomciEe2tGDbrp8/JZBLMfnyGKpzaRTZPjpe8cJKzLPT+aFn3rVpGG6+IHPpUsyGTGXBbx1Vs8q0HQc6qaHJEnU4g6vz5a+Jxvg8Z4rpancONy/Y+OC0I3EgfGN1wlRCZo3aNe4dbB3w9s7Q1DeQLiejmnCcqnpUH+Xr82v1vT1fZHl23Rc+pJhEuEYtabDvk1pDmzu5vhyFdcPGEiF6YyFMGwP0/XpiqvUmi6aDLFwiL5kmPFum5eni/gBdCfC3LYpxc7+NK7vE2vlwI50KiJnz/WJqjLLlSZTWV1YlqbC3LW5k/dv60XTZOpNh/u39vDEmSz3bulClSUe2tnPjv44Xz+6wkhnlAe29dAZC/HU2SxnVqoosozjBWRqJhFNYTAdZaw79pZlujw/kedcpkY6qrFSEZLFU8tV7t1yMbHrY3sH2NHfYCAVuczGL6wq/NjdmwB4ebrAwbkSvi/2L5oi89DOXp48k6UjprGtN8GmVibWQDrCbF6n1nTI6zae7+P535ta9d0CWYLeZITt/QkG01E+ccsAY91x/vEHt/PqTJGP3TLwTh/iTdzEDYFMS5Ur0V6bKBKkIiq65aLIksgoX/ecuCYT1pSWvaqHIkFUk7lrrItMZQXHFwqif/TBbXzzRIaZvE5/KozrB/zK+7fwsb2DDKajbOtPEFYlHtrey0Kp2R5roiGVnzwwytePLrNnME13S9Gwvt5yo74LuTVhrZ9VlZbiWJYkHNcHSWqrgu1WnlJEU7hrtIOFchPbC/jo3n7+zvu2cmypwpH5MrIktZt3twyn2dGfpKCbnM/q7Oy/VF91MV6dKfLKdJFkROWn7x27iGy9EY4tVFgsGViuz7nVGra3saXip24dYqHUYCAdZa7Y4M9fmWepYtAdDzNfbGC5Pr///Az/5yd3X2ZJ+a3jK/z20xOsVKyr2oz+h2+eaTfBXpzK07A8CrrF7Zs6LyNoXC9s1+frR5dxvID+dISfOjCGIkvk6iapiEZEUwiCgPPZOumIxoTltsnSf5sRUWUmszqpiIaqyHTGNPzgwvrAC9aarSqO32S53GSulc08XzI4l6kD8Oz5HEOdIZi/8ntJQEdEomYGyIogpnv+3/qf4G2DhMTAuuy+vUNpXpoqENJkNElYj1vuBXLmTXzvkOAim0hVFiRfWQLTCd7Q96xI8Ec/d/dVH/N2eIHcte7vCPCjwPdGX7gUV5kDwqrwcJcJQJLRJBFKulGEliyJL01CTN6uLzGYDtMsNK7KKFZl6E2EkCQJy/VQZJmK4eB6AbGwgqbIpKMhjLLRHsDW5hIJ8SN3xcUGs2I4bauStX7D2nPW2JtrHzmqyciyhOWIBUQ6JljbuuVdMUPs3YSB1mJtU2eMw3IZWZYY6ohc9JiQpvCrP7yPlUqTZETlfKbOg9t6GO+JM94jwl6fPJPl1HKVvlSUO8a6+O7ZDKtVIe/eOZimJxHipekipu0TUmUG0xGqho1hr7EvA6KaCFs13e+vwWztPFMksTh1WnZSg6kIuu0SUmVuH+3kH35wG7P5Bl0JjeGOONN5ncdOrTKV09tFiZsNsO8/qIpEpmohy2sBzTKy5F9UlIlrEo3rDfp7G7F+PLwaFECWxTgqS8IeYzAdIVczL8olAIgoYlPWdHx8/43nH2iyKEqu1eiTYZnP7B/mrtEuHj+b4fnzBWzXx/ZFBpPaKtwLpYsohq3NCx1RBU1VKLUaGKosMV9s8uxEng/uevsL2zfx9kGTQVNkJAk29yQY6oiwXDHZ3B2nPxWmbrk0LI/BdISeZAjHDfirI4s0HdGweeTWAT575yYqhsOtwx1s70vwJy/PMZPX+cz+YT5yywAfuWWALX0JnjydxXJcfvb+ceqWy4/csYnNvXFuGU7zB8/PoFsufhAgSRJ3jXfxo3dt4rFTqyyUmgymo+weitCTjBDRFLoTIX54/zDThQaD6ShPncmwqStGqGaSCCt0xsPcPtLBjoEks4UGnbEQsiRxcqXKSrlJbyKM4/uMdsX42fvGmC02GOiIYNgeH987wJcOLfLMuRwLpQa66eH4PjFNoT8VYSAlmNAH58t4rQupI6ZSMz1832/ZC10+v2+0r5cQ13BOF0w/GVGUf3Gy0LZEezPYNbRxoWbfQJQTmWsrJUbSIZaqoqNz79j1HceW3svtbQD29kc4nb22b+H676fjOiVeH92/fcPb797SwfPTlet7kTeI3cMdG94+3h2jvHp50W+4I8r7d/RxaL6M7XocX6rdkOP6XrF+r7C2N1mDIkFEk9EUmYFUBMcLGOwM8+8+vYfhzhiHZksMpCLYMZ/hjggF3RbEpm09fGBnL7sGU3zp4CKeLwhPnh8w0BHlfEanZFicWq6xUrEY645xx2gnrufzQ3cMk6lZ/MHz0yyUmsyXmoz3xEhELuQQjvXEuWOss32c3YkQ2/qSxMMqP7R/GFmW2Ddy4f7+VISHdvTyhy/McHCuzP7RNIEfEA+r7BwQjP+3wgLY8fy2PYpuuoQ1Bd8PGOmMXvbYkCoz1BG5ZpHx/q097BpI8YXX5nG8gO5EiKmcKJLFwwqfv2+8baV1bLHCo6czIvcrABkJ5AA5kHDeY50wCYiHhPJEkUBVFO4YTfPgtl4+sqe//b09ctsQj9w29M4e7E28ZyCaRwrl5tvHxouoEumohiRJNGyPVETlwOYuDs2VWVinQO2MynxwZx+vzlWot2yGR7vi3DKcQpFl0dyuN5nJNxjqiLFvJM1iuUkipJLXTY4tVXFcn7Aq86l9g/SlIyiSTMWwmcjW0S2X7f1J7t/Ww3ReZ6w7zufv38yP3z3G//GV4+R1i/dt7+HnHxAc8n0jHRc5Q+weFJmJfhCwZzCFJImxfr2CaX29JaaA8Sa+5rVamarIomipiBwzgHRUI6TI6KaLrEgkQyphTWHXYIL9o528Pltmudyg1HCwXZ/OeAhNkbhjvJOfu38c14O/OrxIdyLMLz+0FUWWOLC5i0ylSXciTPe6RpIYo2MMtRRMruczV2zQkwjTEQtddMxrStS66VI33Ws2wbb2JRjrjlPULT60u++K6rGQKrOtT6zrXszWeXmmgG66bO9LoCoSeV1Q9B89leFn7h1rPy8IAh5rWSlea585kL7wWca645xZqTHSGXvTDTBo/YayjON5RDQFRZZ4aarA67OlixqFt2/qQDddsvUm0/kGTfu9qVoW56tETJOpNL22dXxIkTCvUUhQJJFTGlIUklGNrniIVERltDvOJ24Z4HeemaJqWJiusK9MRVVuHxHN3KJ+QQnfmwwTCyk0HY+pnE5YVds1gJAiGmiO16pTAKmYxgd39uEj7OzHu+PsHEjwn759lnzdRpLBdvyL6iCiNizhuAHvwrLN2461pookSRdlu10P9o918IFdfe3//9w9o4x1x3hpqojr+5xeqRFVZY4slCg0ri7FiagSgR+I7OoWuqMSlWbQrhcpiHPhnSzfyxL0xDVKunORuEgFFFXYuaqtuQ7E3rjpBq31LMTDykXCIVmCu8c6OLFUxVxHBFElCGsSthvQGQ+RjqqUGjaJsMbSujk3pEr0JsKUGjYRTUQv+AjXAccPRMPsCnPYrcMp+lKXr+3X4+2wQyxectN/lyTpReDfXu15kiT9BqKBdiQIgn9ytcdaG3R8JEQBpDMeYjgdIRlWsX2x8ZnM1akYjvDZlWA4HcP2PCFjDiCvm5iOT0dMY7wnTjSkkK2a2F5APKLSFdPI1y10S2z4oppCWFPYN9zBx/cO0J+O8tvPTGI6Hjv6k3QlQlQNhzOrNeKazGzRQFMUOqIK4z0JUhGVe7f2cGBLN+dWa3zr+AqpqIqiyByaK+MHAZbrkY6E6EuGeHWmREiV2TfSQTKi8NjpLImwyt1jnWzujZOtWVSbNk+cyVJvunTFQ4Q1Gd8HRQ6IhjRKDQvddIloMnePd1M3HSKawlBHlJ86MMpvPjXJc5N5PC+4KG9rbXAOq9ARCxMLq8zkGniA1hrMkxGVZERhoXz1EPhkVCzYNnXF+MUHNyPL0oYLk0RYZUd/kr98fYFM1eTEUpVffmhL+7Hv295DVFN433bBLD+2WEG3/FZQeMBoV5zx7ji5usVD23tZLBtkqyZLlSa66bJQMghrMo4bgOS2WEpcFFipSAgG0w3YqIZkwbp1/YC6YWNu1KAFehMaZcO5psVTb1zmwe39WI5PXrcY7Y6zqTNKQbc5slBGVSS29iaJa2Iy/sCuXrb1JdsLORCM1Yim8OTpDGFNQb7Z//q+hCJJPLyzl/PZOrGwymBaI183aTo+EqIR77geSquJtAYZiIZkDNu/ZtP4UmuMNawv6oVV2DuUYqQjzsmlCsWGTViVqDRdVFkiEVUJKQrd8RD3b+1BVSTOrNbxfZ9Ty1VMx8NrFbo7ohqyIkMQYLk+6ViI+7d287E9A3zt6DKWIzaaL08XmcjWsVs5JbsHU9RN0Rg2HZ9dg0nqTYfz2Tq2G5CIKAykIty2qYOvH11GN13SMY14WKNh2oQ1lc5YiGrTpmLYuH7ArSMdxEIaNcvl3z6yl9+MTnJiqcJ80WjnNClSQIAk7DQUsSH2fLEgllrNZ9sV33OubvLN4ys3m2DvMVwajAsQ0y7ewKbDMj//vs14vsSxhTIzhQapiMamrhjb+hJs60uiKTIP7+ojEVb59okV/AAsJ+Dhnb1888QKlhuQiqh8ZO8AUU3h5ZUCnfEQW3vjDHVEGeqItm1jAAhgW18CRZb4mfvGiV9iCfbZO4aZyuls70u0b6sYNoNpMZ+4fkC16fDIviFuHU6TiKhoitwuzHxy3xC9yQhhTeKusS4M26MjFuL5yTwgVPyzxQam41Fpuhz4/7P3nwF2nfd1N/rb/fQ6vc+gd4IAexVFUVS1uiPLVS6JEzuO7RSn+CZO8U3u69hJfB07iUtcYsuSrGp1URQpFhEE0XsdTD8zp9fd9/vhOXMwA8wAoEjVYH3BYOaUffbZ+3n+Zf3XmhD8qL9z9wh/fXAG2/XZ3BvnffvE1MX79w0T1hTO52q8fKVIqe39lQxreIGEIkncNZqh1LTpTxgcmipjqDJd0RCLNRNZbrOO/QAfkRiJ4D1Y9f1cu6YFCIm5luMSvknx5EZ447ahNX9//+Yeji3cgBLaxpt29PMXL00hAW/aeWv+SBv61m68bR/IcDI3d9Pnj2bCTBZFUrJn5NYaEXtG157KesvugU4TLHyD7GPl/bKlO7T+A1fg7o1rr4lv3zvI4fnzgIjjlqGrMv/sLduYLbeIagr/+ONHeOr00utCgtLa++V6+56MaLLqMkQMlYbt4axI0CUgZijsGUpxar5CsdluxkqQNBSRt6Qi/PyjE3ztzBJxQ2Oy2ODyUoNS0+FyvokfSJycr1I3XaKGguMHbOtPUGzYpCI6G3vj9CZCvOfOQXJVkx0DSaqmw1ShyZ++MIkXBOQqJjHDx/UD/sVbt62aiHrqVI583cb2pHaTTqJlC5lyP1h9FosNm6MzZWzXZ7wrSsvxGO+KrirgKrLEj98/RjykUbdcuhMGu4eSyJJQI7iWhLWcg41lI7fsC60pMht7YlxYrHPXeIa7xjId2e9rcTnf4DNH5lBk+MBdw/TE178OM1GdH7tvjJbt0ZcMcWK2Agi2vR8ESAEcvFLiwKUi1ZbItbpiOnXLxfECeuIGAQHVloMqSzRsl4b9vVnBSoQUYobG3pEkW/uTTBeaTBYadMcMRrIxdFV6VcXZ26nF9xdei43i8toXCclISPh+gCSJ+zIe0rhjKEVPUtxnnzkyS6Fu4wcQMRTCqoQHOLZL3WkXjtvTV2FNwfUDUhGdkKZQqNtIEp0aj+n4hDWZiWwUD3Fvm45HzXTRFImNPXESIRVFlpivmKQjOtsHkvyDN2zi33z2BBcXG4x3RXjPncOENZlNfSnyDYuwKiPLMrIk8eP3jZKKaPzlgSkWqyaKLPOhe0bQVfHZQHg5nl6oMltqkYnq7BkSvoffuLCEqshs6Y3xzjsGedcdA7xypcSe4RSSJBHSFX7rA3vIVU1GszeeiN3Wv3ra/Nq1cWW9pW6a/P4zN487ll9heQ9KR0Sjqy8V5lcf38wXTy1wZKpMNqYzkDRYqNrcOZLi3XuHsD2fS0t1BtMRLizWeWSzyl1jm6mYDotVi7MLNQbTEd65Z4CwrvDNSwWihobl+izVLPqSIY5Ml5mrmMxVTMa6IqtqFSvx1JlFTs1VMTSZDz8w3qkRHZoqMV0UPlv3b+iiO349m+fUXJXzizX2DqcZyUbY3Bvn19++HVWW1vUDuxbZmMFAMsw8Jj2JED/30AY+e2wWkDpxY6XlcHiqRH8yRBAE6KqM54vG0lrlJR3445+8u/P/J7b3cu9Ehrih3dIxrQdVkfnhu4aZKTXZ1D6fCxVBiio3HT52cBokiTfv6OWe8Sy/+fnTmI4vJBEDj/mKje2LWMddMZ20Xr5/q9BlYc/xWpQXVxK3QqrEaDZK1FAxFJkAqFku5brNUCbEQCrKZL7O6YUqvh8Q1tXOdOZEV5QHN3UxXzF5265+BlJhPnd8juFMlN2DSeIhjZFshN/6wB38+qeOcy5XQ23f94s1m0zM4N4NGZIR8V0lQhrv2DNAqWFzeLpEuWkTDanYrk/cULFcDxCDFKmwznAmTCqq0xMPUbdc7h7P8rljc6iKgiRL9MYNFmsWOJ7IZwIh33znSJo9wymajsfFXI2js6L5rshCkaM/YbCpN8bh6SqlhoUssSZJMKLK2O3CjyTBQCrMpp4or1wpUzVdJEkiFVbZ3JtgptRkttRClmG8K8oH9g/z+eMLHJ4ur7o2QprwTrPdq9fJtdeMrojGhowgEsfDGoOpMMdnqzTb9X6Vq1ZBEmKP8DwPyxVxfjysMpgM88CmbuYqLWaKLaqmg+V4JEIKuZqN5/k0bB9dkwktE47br5kIKcQNjVLDJh292oS+b0MX94xnxQCKK2T9P3d0jn/8saN4AdwzluTsYhPL8ZAlQV7e0BVj/0SGr51ZZKbQoOUJkvNbdg9y4HKBS/kmhirx2JZeRrvD/Pnzl6lYry7+W0mWCwBDEfe47/sdmxNFEvX57phBvm5SbnlENIm+ZIS+ZIhi02aiS9TLXd/nufNLXFxqENJUuuM6A8kw2wcSRHWFr51ZZLZs0p802NKfYDQb5Zkzi1RMl7TjUjddbC9g50CCu8azJMPCguHkXBnbC1BkmQ3dEfYMpfjVJzYTC+n8zaEZPnJgitlyCwJxvKmIhqHKRA0Vy/XxFBldlbEcDx0RY0sEbbKqaJotN7Uja8T11+I7IYd454r/yojG1g3nltvPiQZB8JAkSb8vSdJdQRC8vN7jVVlipRvA++4cZL5iYrmCFZ2KGLQcjx0DCQaSYY61F4RNvTF2DiY5PlshXxdNofGuGBt7o3z05Rk29sT4yfvHyNdtYoYidIodn5ihYnkep+eqHLhcZK7SQkIiaiiM98TY1p/g371LGAAPtaedFiomYV0hGdY4n6txZLrMmYUaMUNlx0Cio2G8fyzD/rGrg3It2+V8rs7ZXI10ROcN7a70Ys0kGzU4s1AVGqVNh819CX7i/jFAMB7fsnOJly4XOL/YoNpy2D6QYDAZ5uce2cALF/KczVW5cyTDtv4Enz06R7nl8OTOPgZTYX7/R/fxh89d5uJSnXLTYb7cwg9EQfnH7h0jYqgYqkzNdPjj5yfRZYmehMGpuRpe4LNQNjs341qbYiYsd8wij06X+FefOoEiy/z2B3Yz0b325RHSxON1dbVGf0hTeHCTKM68MlnEcnwcz8d0fEYzUVIRjZ96YJyq6TKQDPFHz10GJLoTISQJpotNAl+MfVMLGOyNM1tsUGy6+AimyEgmQk/c4MRclYYlJGS64gYtJ8BxPZqOYHYGbZ8F0biLcXy22pGBslyflu0hSUGH7XHXWIYf2juI5wecy9U5NVfhcl5Iy5SbDpoiM5gO8U+e3MahKyXO5moU6xZRQ2Vrb5wnd/VxpdDk4GQZ1/e4ZzyLH0hMFhrIEvz6/mHqlktvMoQsSZSbNks1i55EiKWaRbXlcPf42oOZ+0bTQi7Ictc0S72N73/4QcDRmQqjGbEJ/ug9o3z8lWlyVRNJkulLGHzldA5sD0WT6Ivp1Byf+yYy/MxDE/zDjxzm4pJg2YcV2Nqf4Mkd/Xzh5Dylppgg+fCDY3zw7hHqpsvP/dlBLuUFm2y5oNafDPHgpm4+dO8oByeLjHVFuZRv8MCGLnYOJtFUiefP5zk6U6Zle2jtTfC3P7CHf/nJ46QiOvm6TUiTMTSNt+/uZyAV4ukzS7i+Tzaq83MPbUBVJMa7RAKpyhLb+xPkqhYEAcPZCPtG0qiqRLnhMN4d5UfuHkVTJM7masyXTTb2xBhKh/nSyRyX8w0imsJ4d5TFqo3t+bz3zgFSEYNLS3U+dXiWZFhj20CiLV1ho8gy//yt2zg2XeL/98Vz5OsWNcuhNx5mJBvhh+8aYbbU5P+8NEWhbqHIEtmoTqnlEPiCYZYMa2xdp6h9G9+7+Ku/ez8f/IMX8AP4ow+LhDYdDa3aF7cPJvmlN25BkiRcz+fwVJl83WLvSJpMVOeblwoossSuwSSKLPH2PQMcmSozmo3wzLkl7hhKMVlo8PY9/ewaTPH5E/Pk6zb5us2eoRR3jWU4s1BdFV+8aXsvx2crDCTD1zXAALpixnUSLg9v7ualS0UmuqN0xQzuacuIrUwUlpEMazy+/WpzItz22XlkUzdDqTDpqM5i1eIb/hLpiM6mnhiPbOlGkiSevyD4Uyt9CPqSIX7moQkcz+evD0zz6aOz9MQNZootsjENRZZ4dEs3OweS/NenzqNrCjFV5p4NXSTDKk+fWWIoHWZzb5wvnpxntmSKQoSmoCrCJ6iTmMlC9syQJZwgYCAVJqIrYsoM2NIT5eyikDm5f8P64gYRXXh5yBJkY2sX0h/Z3Mv/ePYKAdAbWz8sTxgq2aiYnrtRgJ8KK5RbHqoEA6m114sfvW+MTxyZwwtgInu9F8QyNvfGmSm3AInt60yyAWzuiXJxqUE6qtOfXrtQd++GbnriOjXT5W271pdHu3dDlmfPie//0a3rP25lsUOW1z5vsnL196nQ9edsMBUmCALevnsA1wsIfJ8Dk8U1/TF1BQxFxvYDorpCwxL70c7BGH4gCic9CYNK06Fpu8iyhNOWekpHNAIfbD8Q3rZxg0RI43K+Qc20uZRvIeMjSTKpiMbd4xn+9Tt28C8/eZxnzy1RtzwMTWbPcIqeRIhiw+aZcwV+5U1bGM5EODhZ5L997TwxXWUgFaLctJEliXRUZ1tfHEmS2DGYZNdAgq74VUb9UDrSyVNCmvBLGe+OUrdcRjMRuuMG79k7eJ0k4K++eTN//fI0PfEQ79o7yJdOLhDSFGzXZ/Sa6+musQxHpstkIjpfOZ1jIBnmcr7Bxp5Yx3sLYKbUYqEqCnHncnXevGPt736pZvGXL03hBwEPburirrH1779r8Y49A7jrmNWvxFy5hR8E+B4sVq0bNsFArHXJNrHvwU1d/NWBKbLRCH4A04Umz53P07RdclWTsa4om3qiHJmuMFtuoqvie31oUxfFhsOhqSKHr5Qp1C1sTxBgBpIhVFkh37DoSxi8844BPnJgmobtUmu5IIEmy0R0mYbtYrtCpURTFVHICsR1l4npGIrCdKlBzFAZ74pSMR0KdQff96mtUEpZWfzWZYlMW1Jtx0CCO4bT/OzDG3A8n0Ld5lNHZrEcMcX7anDX6O145vsJ0WuK77oi9riG5ZEMqewYTHJpqUmxaeO4XkfJJhPTecOWHkazEVRZ4sh0mZbj43oerg+KItGTDBHRVfJ1i029cQy1SW8yxDv29DPRFSOsKxRqFh95eZoLS3UMVWEkHaI/FeHBTV3t/Fri1FyZQ1MVJrqjRHS1I9X5E/ePEtGFoszHX5mm0rKxHJ+FqkXEUKk2HSa6Ywxnwrx/3zDJiMYf/Oh+LucbDGcinfvbdDzKTYdsVOfcYo1MVO/EP0/u6OPYTIXRbGTV1BIIFYodA8lV+fSBySJLNZuYofLEDuGJ3pcM87bdqxnsIU25aQPsVrCy3vILj46znh6bIkFXTEeWJZIhjaW6he36JMMae4ZSIEls7YuzfzzD3RNZXrxUoG46nFmo0ZOIMJyJMpSJ8EfPXabacvj88QWG0mEkSUJVBPka4G27V7+v1WYfB4EocAKr9p4b+XnVTbFp266P5fqdJtiLbYlfQ71aK1oJp+3V5AfCl/LDD45f9763gj1DKT50zyilps1Dm7voS4T58IMTzJVbndzzqdM5rhSaHAoCBtNhZEkiFdH5wP5BaqZHzFC4uFjn8JUCD2/p4V13rpa//60vn+XLJ3PcOZrmP71391qHccvIRHUyK+L2hzZ18fzFPL4PU23JzGPTFR7f3stvvHMH+bqF5frMlZv8xmdPUWk6VExHNGEC4TfckwwxWzKBAENTqLcDqeX7oSdusGswzpdO5ZgsNHG8gISh4ANb+hKE2vvVbLnFSDrEXLnFXEVce5mYzg/t7uejr8xSaNhrNg0NGe7f1MXRmQqeD3uHEnTFQwxnImzqjdEdC7G5N8b/fuEKfhDQnwzxm+/eyb/73Clajs+94xm29MXpiotpwmu9QncMXl8LS4Y1fvM9u1momIxkIuiqzGLVpGo6bOi+SiC8sFDjJ//0ZUzH48fvGyMT1RlOR5ivtAi1vUd1VWEwHeYNW3rY3Bdna1+CwVSYpu2Siugcny0zWWwQNRS298c5NFVmoWqiAJmYQURXuXMszRPb+xhORzBUif/1jcscmSkxlokymW+wfTDJk+0Jtm9eKgABMV0haggZzGLD4a7xND2JELbr8dTpJSK6zGgmwsbeBLqiMlNuEjNU/vnbthHWVHzf59NH5jizUGMoHebhLT08urWH3/nKOY7PVtjQHeM9dw5yZr6KF4CuyGzqiXBoqkqpafH1s3lM1yNhKFRNF10R5IhHtvbw79+9iz9/8Qr9qUgnLouFVIIAclUL3/e5dyLLWFcMXZH45JFZyk2HrkSIDz8wTm8yhOv6XFyqc7nQ5PhsmZcuFZmvtJBkD0OVmeiKoSkSL10uIMkS+0bT3D2eIbYG62O5Kb68Fr3rziFGu6I0LY8HNnUxV27yh9+4jKEp9CYMfvxeoQbw4QcmePb8IrYbcNdYmonuGGdzNT7xygxHZ8rULJcnd/SztS/Jv/ybo9QsH12F9rImBlA0iVZ7xE9MU8k0bL/T4No3JmxrZEkirKm8eWcPL10uETdUdg+lqLRsJvOCECC1hzt2DiV5cGMXz55b4vR8jYnuKMOZCBeXGri+qL1PdMXpTRroqsK79w3zyJYefvdrF3A8n4c2dvP2PQPsHkwxXWrSHdNZrFls70+wqSfO5UKDXUNJjs9U6E0aLFRMQVRB4myuzitTZR7b2ssH9g/TmzD4z186y0xJxMV7h1PIkkwspFKzXJ7Y1kuhbvGNCwWqLeHNVmrY1NvjYKosKIayBIO3EIt+J+QQ/zNX81QXmERIIt4ITwKPS5JkAj8G3Aus2wRLhDUsQ6FueWzoivCv3r6dmVKLp04vcnqhiq7KPLCpi7ft6ice0ni0nWT1JkK8dKlAw/IIayqPbunh7rEMqiLzhi1XCzfXBjICGj1bQjyypYcTsxW+cioHXO08LieVy+hLXk2gNvXG2dQbJ1+3WKpZq1jW1yKsq+weTrH7Ggme/qQIkHYOJPnZhzfgev6qRFAwxntBkjBUldlSi0RI47F2s+3+jV3cv8Lb4r37VjOUFUXmpx8cp9Jy2gW4It+8VCAR1nhsxWh4peW0WVU+79gzwKePzLJYNXnJLeD4AY7ns6k7ymSxRcP22t5DMj/78KYOQ+ljB2coNoTEzycPz/GrT2xZ81y8dVc/FxcbDKRC60rzDWcjdCcM6raLocoMpsP0JcLEQ1qHjSXYLy3GslH8IOAb5/PMlZukowaVlsO77hzk2HSZjxyYomV77BtN8447BhhMhfnKqUVc38O0Azb1xVBlia+eXmS8K0LddHnhUgFNlvH8gD3DKZJhnaWaxd0TGTIRnalik4e3dLO9PXWysSfWCdRmik3+5IVJNvXGaFgeDcuhNxnmLTv7GeuKcniqzJbeBBt3xdgxkGCivbnuGc7wzjuufn9fPLHQ/kkioqv0p64G0zFD7Vybg6kbj4kCnfe4jR9M+IFYB0XxLsSOwSQvXirSn4rQFdN5aFM3lwoNFsom779riF98bLOYoggCVEXm8W29mM48xbrFRHecf/qWbewdSVO2HCbzTXYPpTrSHSFN5c9++h6+cGKBb14s8MpUEU1R+Bdv3cqj7cmmctNmrmxy34Ys798/1ClUbe1LUKhbfPX0InPlFlFDJRnW2D+aoVC3cbyAXYMJPnjPaMezZ0N3nJcni4R1hb5kCEOV2TEgmPAj2QgvXSryvn1D/NAdAwymwyxWLXrX8P/Y2pdga9vU2PMDTs9X2TkgmnNv2zXAZ4/OI0uwqTdBbyLEzsEk905kUWSJhuXxzLlF+pNhutqSuXeOZnhwUxdnFqposkxfKsSP3TPGxt4YQRAQ0VVmS0029ca4lG+yWDUZ747x6KYumo7PxnX2i0c2pNf8/W1897FQMdnTNrFeHvUPqTIrRdp+5U1bOnuiqsjcdQ054eHNq6drNnTH2NAdo2V7fPNSgf5UmPs3dvGuvYOdvy/LcnXFDIYzkesKAFFDvc4L52YYzUZfczFGliU2tT0cumIG2weu98p6+55+Zkst7hhJXfc3TZH50ftG2TeWbnvv6KQjgjn5w3eNYLs+d4ykKDdtBlJhfuENG4mFVLrjISzX5227+lAVmY+/MoOmCFP5VFgjHlIJqTJncjU2dkcZ64pz11iGk3MVig0bXVVwfVGY+eUntvDrnzqJLMEvv3Hzup/1PXsHePrsEiPp6Kq9eCVGshE2dEdp2t4NPcce3NLDK9MVVEW6YeH/rbsG+OblIkOpMInI2ozhPSNpfueH7+D8Yp0P3j287mv99g/v5d997hRxQ+GfvHnruo/7qQfHOXSlzGAqvK7UUEhVuHciS9V02LGOfCHAj903xmzFQpdl3rd//WOLhxRqpoemSJ0G67W4f6KLuKHieD67htdeI5u2x+V8kz3DacK6zFTZFKzowKcnGRYkNlVmvDtGw/Zo2R4DqTD7R9OUmg47BxN88O4RJElMQ9muz+HpElPFJg9s7CIV1vD8gERY4+BkkbrlcnpeeEM8tLmLvz06z0A6TMP0eMuuft66q7+Td/zS45uZr5pMF5sMpiK8b98wx2YqTBdbJMMBR2fKDGci7B/L8Lt/504qLYfhTJhGOync0B0jGda4czS9quC1HpJhjX/0xs2dPX49DKQi/PKbtqx63kAqjKHJ1zXUdw0meduufpba5I7FqkUiJKYJVmIwFSYbE03SG5E9mrbbmTZbliV7NbhZAwxg91CSpZqFpshsvonfzLWYKbUIayqFhs35xRrdcQNZEkoXOwaSRA3RqOyKhTiTq5IMafzcQxNsbL9PMqzheTBZaFBu2miKzH0bs+wdTlNpOQymwjyxvZdiw+FrZxYZSkVwg4CW7bGxJ0ZvwiDXLkKMpKNMdEf4P9+cQpIkHtoscuHfe/oCLUc0cWumy2ShQa09iWa6HvGQxr7RFL4vZOqTYY0Dl4uczdUY64oy2M4jNEWmLymKTZ4frDlVdy16Exq5qvje/sEb1l9TbuO7i5Vyect3TMxQWWmx+IH9I2zrj3PoSpnRrihv391PsWHz59+8wly5hel4uF7AeFeUx7b28JZdYoL51FyVXNVEluDgZIn+VJgHN2Zx/IDpYpPPHJkjE9XZOZjkA/tHOntKEARsH0xiqBKn5mpiz9zURSJ0dZ972+5+8jWLUtNhojva9hWROvHVlr44//Jt2wE4cLnIJw/P0BU18IKgQ7LTVPHYqKGy85rCt2hUieO5liCajRkdsvKtoCtuMFNqETPUm0r0vR5YWW85OlvjHz62gd/92sVVEyBhVaYnYfDAxi6atiDX3jOR5vkLeTb2xLlzNM35XL2jGAPwyOZuTMdjvmJSM1362zWvqK5QbdeRJElCUyTSkfX3ofsmsuiKTDykMtImU+wdTonzoyoM36Cw+cZtPbxypcRAKtxpWIJQOzg1V103d1JliXRUo1C36VpjSuxWoavyKtIXrCZHwNUaoaEp3DvexeV8g7vG0ty3Qu73/o3d/Nj942u+x5dOLNByPJ47v0TL9m5pvb1V9CRCvHvvEDXT4SMHhLz6eLeI9WVZEmpZiGnCn3pgjE8fmcd0XJq2T3/CoC8Zbk9TttjcGycZ1vj0kTnqlsOdoyk+dO8YE10xJBk0TaPastnRnySsKxyeLuEHYlqqbrn87MMT3DeR5b9//SLTxSb5usWP3TfGfRNZii2Xp8/kaDk+IUVGkkUt0tAUntjWyy88tgk/gI+/Mo0iy9w1lmb/WKZzrdquj6HJtGyPiKESNlT+8Zu3kquabOiOvermJ4h1ceX11ZMIdc7XMr5wcp5KU9x7Xz+7yH949y7mKyImumM4xf0bshyfreJ4Ph+8e2TV83VV3DM/eu8oD23qZjgTwXF9fu/pC+TrFm/Y3EPVdmiYLu+8Y5CBFbnGL75xE+dyNV64kOfhLT080s4l/+EbN6FIEpPFJnsGU+waSuL4PncMpcQaqIjG3IXFBrbrs3Mwhe0FbOyN8ZbdfWzsia+aPP2VJ+IcmS6hKTKbemJ4fsA77xjknvEsb97ZS28izDva3nbLeMcdYkL2t79ylpcvl5CkAEWRWapZdMcNfvWJLSRCGjsHk9iuz96RNO/c00/D9hhMidj846/M4PoB90xk2DGQZDgb5ZsX80QMlYghvnNVldnSn2BzX5xMVGeiK8aBSwVmyi0atss79vQjSaKfoKsy/+zNW8jGby6HvYy9I1dzi1hIIxXR8fyAnnio0zTrTYZ4//7VTe0dA0leulTkxJzwHXQ8nzdt7+XMwjhHpsoMpyO8cDFP1XQZTIX5mYfGeep0julii7fv6ucbFwqcnCvTdHy29iX4vR/Zx4WlOl85lUNXZe4e6+JN21erhixWTcoth43dsVVTrm/e0ceDm7qJ6gqSJPFLj2/ia6cXMTSF9945SKWtYjCYCtOfCPGj947StD0e3izWrrUIBiD8G5frYhJwdKbMgUtFXrxUQJLoyIUCPLK5h+5YiJlSg6W6hesF3DWWJawrDKXDndr/j9w7ypdO5DgyXeLkXIXJpQa2F9CXNFiomsiSxJbem3twS0GwRiv9dYAkSb+y/CNXp/Ro/0wQBL99g+f+a+Ak8AvAbwL3BkHwb695zM8BPwcwMjKy79DJc5zL1bhzJI3RXugWqybVltM2wNbXTHymi00+eXgWCXjf/qFOc+nV4tJSHU2Rb7hBfzeQqwr5rLCu8O69g6tYl68WwuxRuY6J43o+XhBgqApfO5Pj6HSFwVSYVFilNxlmz3CKi7kqH39lFsv3eNeeQXa3ixH79+/nP/7Z3/IfPn8GRYL/9L7d7Bt9bZZxTcvl2XNCbmk4E2HDikbTerBdn+cv5pEliQc2ZJElifmqKRYDpM448zKCtkcKCFaYrsht1q/PcxeW6IobTHQJmalS06Y3LqbOVrKTboT5SosgEFMyy+8z204oNtykMWW5Hidmq/TEjW/79bh//34OHjwIwNivfe7b+l7fDUz+x7d9tw/h24r9+/fzJ596isWayV3jGRIhjbMLNS4t1dk7kqYvGaLasrHcYE0Jicl8gz97cZJkSOND9412pkZKDZtcTQSUazWsT84J4kBIU/iRe0ZWJbAr76drYbke08UWAynBGK1bLmcXqnTFDNJRfdXrgLiPhDfH9eveVKGJLF9PWLgZnj4jyBV3jQk5pUrLQZGl6xhjN0LTFrr0rh+gyhK9ifVZ5ivXmpXYv38/P/87f8Vvfu4c2ajC0//0jdexdG/jewO5qsn/evYSnh/wkw+MMZqNsm/ffsZ++r9wdqHKW3b28/98YO+3/PrzlRZz5Rbb2wnlMsx2kfO1eAd8ryMIhB55qWmTDGudOM/3A2xv/f3W8wP+/MVJcjWLN2/vY0tfvHPuTMej0LDpT4gEplC3ODRVZiwbYVNvvLPvLVRMVEW6blpuJWzX5+xClZFMhOQNij+n23I8b9rWS/gGa0m1JaZK11rTlrFQMTk8VWKiO8aW79DkqO36TBWb9CdD6x6b7fr89cFpCnWLx7f1XldcXImLS2Ii/kbr83/64hmeOpVje3+c3/k7e9eVxTs9V+FsrsY79wg/qpVxC4hraHnC94GNWfxAyHHdNZbhLbv6CYKAUtNBluDMQo2pQoP9YxnGu6IUG6uvu1vFyv3n8FSJr59dImaofOjekevi9IblMltu0hUzyEQN5sst/vLAFKos8eTO/u/Yd3wj+H7AZKFBNmpcFy9f+7j5qkk2qq97b66358HVmPOVKyWqpsO949nXtRD4euDiUp2/PTqPqkj88F3DdMUMlmoWTdulPxmmZjpkYwbTxSauH3SmBFY+/3PH5gmpMu/eO8DphTqO5/PAxq5V5ywIAgoNm7CmoMgwUzIZSIWwHJGTrVyXZsstFiotdgwkOxN7VdMhFRbTiNmozoHJIpfzTR7YkL2OeAliAs/xPFqOz2gm8qqveRDf3//4my/zv5+/zEgmwi88tvl77vu7DYFzuSrv/r3n8PyAv/jwPeyf6GLfvv2E3v8fyVUtHtjQxe//2L7OenVtXqwpwjukULdIRTQyUWPNuH6tmD8IAnJVi2RY+7ZfH5WmQ6FhMZQKc6kt7bk2+fn1RxAEzFdMUhHtNdVnbgXr1VvKTYtPHpqj5bjIkpgkfdvufsayUQxVvmW5WRDfZcNyO+fPdDyuFJoMpcM0bY+QdlUe8jsJ0/Fu+FksVyh29CVuvfD9rcDxxERKTzxEJqrfcK+7Fvv37+fhf/qHHLhcZEN3jD/98N03f9K3CM8PcH1/3cm7IAjI1y1KDYd4WKVhiaaE6YjGnFDO8vj6mUWQ4Intfdfd+ys/+3rvd6XQ4FyuLpS82o0d0/E4MlXC0BQ29sSomS5hTWaharG5J4bS3pcWKiZ1S0xjXXuOKy2HXNVkvCv6HfG7379/Px//4tf5iT9+mZbt8fcf28BP3j+O6Xj4QYDp+LdEUroWhbqQhR7J3Los9Eo0bZfnL+bRFYUHNmTX3NOrLYdS02Y4HaFuu8jSq6t33Aq8Tvwopu8uLdXpjodWKYwUGzbxtuT+quMzHSzH79SolmPRTFS/zhtwJa6tUzVtl9PzVQZTkVWDK8B1OcPNMFNqkqta7BhI3LTmO1tu8YlXZkhFNN6/f5iQphAEAS9eKtC0PBJhjappc8dw+rpc87nzeZ4/vyT8Z+8fIxEWn7fSdNBV+TXvna9mfXq1r/vchTypsMauFbLo38rrABydLgMQ0hX+4sUryBL8vUc3dtYMSZJeCYJg/7XP/3Y2wf51+8ctwF3ApxGNsHcAzwZB8DM3eO4/AJaAvw/8/4GBIAj+23qP7+rqCmra1S5sIiSmXfwAtLYJQMNysV2fqKF+S13+ZdiuT81y0RXpu7KR/6BhcnKSsbGx1/U1A0Rjbnmh9PyAUtNGlaUbLoggFns/CIiHNGRJ6OcuX0N+ECBLoqlVM8X1tKxH3psQmr2Vllh4EiGhY7osnSS0fsX4bNV0KLVHucO6Qn9y/cm2teD6gWByBZBs66Xe8HwE4ti/HYHdtd+f5wcstr0aVFkiHdGQZQlVllHl1ecOIBZS6YoJlqyhypiuhyJJ192jlZaQF1JkiZCqEDVUSk0bzw+Ih9RXlTz4QUDL8TAUBVX5wS0O3wq+HfffbXxnMDk5iWlkOj6FG7tjt4tJ36PwgoB8zcIPhDmyKktMTk7iRrpotbXDw5pKT9y4Tn7Bdn1URcJvr+Nuu7EjrxGYur5Y54NA7BF+IJioN9sjboZlmRg/ENMsa/liuX4gPEOllYWsdjGsLWHself309cbTVv4AkYNddUxiORayInark+hYaO096aV+27T9qiaDrIkCRmgGwT+y+tmwxIJ4Y3uu7lyi6opJtPHslHWe9ma6QgPw7C2bjzgeiKWkSRIR/R19/TlPU5XlBueb88PcL0AQ1v/+mjaHvOVFrIkMZgKrxs/W65PpeUQ1ZUbNujKTQfH80nc4LoUsnEWEsKH4LXE7CCaxKbj099mrl+77wWBeE/XD/DaCgaaIhqNLVt4HyRCGo7v0zDdzpSULHHd9VZtOTTs9nSatvpcCP9JaVXcUW/nJl57wjqkKR3meM10qFtehz1/sxhuOUa9EUpNm3LTIaTJa5L+LFf4fsRD6g1fy3Z9yi0H3w+IGqooikhQbtg4fkAipHUkzF9P3I5ZXn8EgZDYt1wfvT0JI0vC86JhuZiOT0BAWBPMatP2Ol5OibCG6Xg0bY+wppCJ3vg6nZycREn2UG46yIipnG+lmXYb336UmnZncr03btCTCInvL9FDw/Y6dRDHE953ybBOfEX8EgRQbNp4XkAi/PpMOgUBNGyXlu119vVkWEghm46PIouYQxDMRGHTcnxiIeERH7TXyOX8XZVlWo6H44nYgbalQdV02p694j5YuS5/v2KttdNyfcpNu3PuVFlMyCCJ+11VhLd6q33Pq4qMaXsd//dESKPccgjaEmWGomC5HoamYKgyQSDqHz/oZKzvBH4Q9j4/CLAcH9f3qVseiiytylGC4Gouocji2qtbrpCXlkRMJcsSUV1FkoSazWLNpNIUtTtVFoX/5RgrFRaTZS3bI2aonabK8p7n+QHZmIHSnhb12jGgJHHdpPprwY2+uwDRzFr2KOyOhbA94VUe0hQCxLTiShTqNi3HI9xuKmuKTNV02jUxrRP3l5s2paaDocr0thu8jhd0fN6Xz1Ot5XTuaccLKDdtJEnkSZbr4/vi/r5ZfHkraDlep9aaiRqr8oCgfcyOJ/ytb7Rn2K5PyxHfqyKLNd1rr+9NS/i7r5WLLLc9lj9KgMiFrj3HK/GDcO/dCtxrzoPt+Z3vSsT0ynXnr2l7lBrCFsRQZWKG8AWO6Ff7LbbrU2ra4u8h4bWmKUL6fT0UGzZV00GVxR4fD6md46uZbqcmLEviGOzlIRMJZCSyMaNzH7zyyitBEATX3dDfNtpJEAS/ASBJ0peBO4MgqLX//2+Aj93k6S8Cf7f98xuBP7n2ASsnwXr6B+n/8f+y6u9qTCcaUhlJRxjvinA+V2esK8rWvjg/vmLMuFC3xMatio37k4dmqbQc7tuQ5cxCjURI403bezub98cOTneCwh+9d3TN6YjbuHW82u76zeD7Af/8E8e5Umhw70SGrf0JPnpwhktLdRwv4MP3j/HTD0+seo7w46rxheNz/Pk3p/D8gDvH0uwdSXN2QXix7RpKMlNqkY3pfO7oHGdyNRzXJ6TJpKM6puNTrZjEgUxEY2t/gpFslIuLNc4v1tElCQlRADUdj8WaScvxCWsK2waTPLG9jw/dM4KhKfh+cEMj1pcuFfjfL0yiKWIhUBWJv/vQBvaPZ/jmpQKzpRb3b8x2GKf/56UpKi2HsCYz1hXjie29r5vswsrvr2V7/M5Xz/HpwzNU2h4FMV1lJBMW+vBeQL1skrrmNRwZsjEdXVXwmjaqovCGLd18+KFx/tezl3jq9CKS45KQRRA9mo0w0RWjNxkiqquMdUV4996h645tPXzkwBTzFRNdlfm7D0/8X52Av973321857B//37yj/9G5/+aBgf/3Q/25OL3K/7gmfP8zlfOEwQB771vlF9/+0527tlL/S3/vrMeGgokwgbZmMadIxk29cV48UIBx/fxvQDT9Sk2be4Zz7BnOMX79g3z9bOLHJkus3MgiSzD0ekK3XGDu8czfO7YPL4fYLpCui2kyiQjOo9t7XnV6//lfINPHZ7F8XwWaya6onDPRIZ37hloe3BU+dLJBTRF4oN3j3RYwJ8+MsuR6TIRXXgglRoOG3pivHPPwOtyXgt1ixcvFVAkiTMLQl5uW3+CJ3cKLyHT8fiT5ycxHY+dg0muFBp85VSOxZrFeDbCWHeM99wxgCRLvHixwFdP51AkiV984yZatsdg2z/sWuzfv5+f/q2/4r89dREk+LV3bud918hcLGPPb3wJoyVIIR//Rw8xvoap++WlOm/7b99AcX02jaT4+M8/sOZrff7YPH/18hSKJPH3Hp3g3om15Sf+6sAVzufqJCMaf//RjWs21Up1ix/7kwNUWw7v2D3AP3lybVmyn/zjl3jmXB4J+MADo/yrd+xc83G/+JeHmMw3iIVU/ugn7iKyRvJ5YbHGh/7wJRqWy+Pbevmdv7P29OM//8QxPnFoBlmS+JUnt/KTD6wtDfSZI7N87JUZHtyU5e8+vHHNx/zt0Rl+6SNH0QPIpMM8+88eY//+/Tz93It88vAs1ZbN6fk6ZxYqbO6N43oBi1WTC/kGkiQRQRRJdg8mOTlXZaluMZqJ0HQ8hlIR3nPnAO/YM9hhS/7SXx3i5GyFXM1iQ0+Mt+7q5+ce3sAfP3dJyGJmIuwbTTNVbDKQDPNHz10iVzWJhzXeuLWXwZTwvfv9Zy7wN6/MUmzY9CUMumIhNvfF+eXHNxFrE/DOLtSYK7e4czTN02cWOZurocgST+7oWzVld6XQ4Cunc5i2x8ErJVHkBH77A3s6snYAlZbNL/7VYSzHZ+dggl9/+441zykIOZ/nzuc7fg9v3NbD1r44f/DMpY68z7I064sXC7x0ucCmnjhv292/7mu2bI+/PDDFZL7Oe+4cWiUxs4zbMcvri8Waye9//SJfPZVDlkRBaDAd5vJSg3LDRvECrhWVWdaikAA9pLKjJ4aqyGRjOu/ZO8gdI2kyEeEn9CfPX+blySJPbO/jXXsHO3HLcvv1zs1Z/vjD937HPu9t3Domfu1zrLxbD/7Ht7HrjjtpvuXfEW4XwuKGQkiVaTg+411RfuGxjTy5o4/L+QYNy+WrpxfFa3VHedP2Xp4/nycRFp6HN2OYt2yPp87kOD5TYTAd5q27+nnpUoGPHZxhutSkZbukIwbvv2uIDd0xDk6WOsSUr53JMVc2ySjQckRx7rGd/Xh+wNmFKnMVE9cP2Ngfx1BkWq5PKqwy0R0nQMgiSgh/7Q3dQtrrlx/fhKLIfOP8Ekemy2zsifLFEzkyEY2ff3QDPYmrpIJy0yakKd8RicNbxVpr5/9+/jJ//fIUpxfqnd8tRyiqLIrwLdsjpkiiSG6olFsOqiLTEw/heR5m1RJEkYjGtv44uwZThDSFn390A188scCFxTohTeHDD451Jn3qltsprN7GreH7Ye9zPJ+vnVnEdn0e29pzHQno3/7tSY7PVGhYjrD9sD3GuiI8uLGLi0vCaztov87OwST5msVzF/K0HI+xbJT5iknMUEhHdX76gXE+8vI0Xzm1gOaKBUkGVFVCQmI4EyYR0ri4WEN3ReNn62ia//BDOzm3WOcPv3EZEA0mxxMNFUWSmK+2mOiK8Wtv2ca2/sQtkbDKTRtDVdYlxN3ou5spNfkXnzjOpaUGmiqxYyDBhu64IGZ5PomwzpM7+zrSg/PlFr/6saNM5hu0bJewobJ3OEUqonFpqYEfCHJWNqJxdKZCzXKIGcKf+cWLecJtT9qumMFoNsLOwSRfPimUeXYPJrlSbDBTahEPaewcTHB8poIfBOwZTvOm7b1M5ht88eQCmYjOu67xi12qWfzFi5McnamwayjBYCrCs+eX2NaXoDtuULccPnt0nittzzlNkXjTlh5+5pENeH7AS5cLHJup0J8MM5yJ8O69g3z++Dy5qskbt/Uy3hVlsWZi2h7/+jOnaNouE91RfvnxzfzlgSmC4OpkmOcH/Iu3bSMZ1jp11ULd4q8PTpOvWbi+z67BFKYjpkA39UYZTEWwHJ+Zcos9Q8mObP/3w733WvHZo3NcWKwznInwvn1DmI7HV07m+NrZRWZLTSKGymNbuqmarvAGLDW5mG/geh7ncnUcT0jCjmQivHVXP0t1E1WWeXhTF//j2UscnS7h+eCoMklVYiQd4R13DDKejQr/NUPFD8RrFBs2//nLZ3nhYp6orrKhJ0a56ZAMq2RjBgcuFwCJhUqLQsMhBPSEVDRZxvE9dFXhHz62sdPvkSTp0Fqf+TvhCTYCqySkbWDsRk8IguBQ2w/sDuBkEAQH1njM/wT+J8Dgxh3XjbMt1W2W6sIA7puXQJFkCm1Tx//xzEXuGElxeq7KuVwNP4AP3TNKLKRycq7CixcL/NWBKe7fkKU7HmJTr/DeaNou+brFTKnJrsHk684KWqiYnJitsKk39roYoC5jsWbypZM54obKW3f1dxashYrJcxfy9CdDN/Sh+H6A356GqFkOVwoNvCDg0FSZAGFMXmk5wmun0rrueR85MMVkocGXTy5gOR6OH3AuV+f8Yp1cpYUXQOyYSlfUQFVkmpZgltmej+v5NG0f2/Vpe0mz1HAoXyxwZKpEw776ewnRVe+Jh/B9kBAMs1NzVWZKLfJ1i4FUiGLD4YkdvXhewBdOzJMIa8yUWpzL1Sg3baoth4ih4rcZMrIk8W8+e5KRTAQ/CNjSl8A7H/CB/cPkqiY102G62ODQFTE+7no+77nz1ptGt4rDUyVOzJSoWQ6WKxj/putRajksVi2ay27b18DxYaG6conw+NSRWY7OlLicb3ZMuvGE+eNMqUWp4bCtP85jW3tetafNbdzGDyLKr94a5Ta+Q/j6mSWsdpL27NkleLuQtVuZWlkeFBsW5ZZNrmpSaGY5t1hDU2QqLYeeuMF82eTlySKSJPG+fcOcnKsSBHByrkqxYXEuV6MnEeJtu/sYzkS4UmjgB8LHrm65bOqJE/gBFdMV5sXX+Iyth5FMhO0DCZ47n+f0XBXLFazhN27rJWao5GrCZ9XxxATachPs4lKDU3NVZEk0p+IhjcW2J+vN4PsBluvfcMrquQt5Li01hKSIH1Bukz3+9AXR+Kq2HC4s1emK6nzlpJATbtmCtZyrWZiuz7+frTCUiVBumBTrYlrvd586x1hXTCRtpouhyWzvT6wq2n384AwtRzQT/vrA1LpNsFrLFUm9H+C6a++Bnz0y29kfD0+V1/28lueRr1moipiqW/e8nM/z0qUCg+kIf+/hDbDGKTwxV+X0nDCp/vzxuXWbYCdnqwSI4vjBK6V13/PFi3nyDQdDla5SLa/B0SslFqsWAfD8hfy6r/XSxXz7fgl46XJ+3SbYf/3qefINi3MLNf7O/pE15SYvLzZZPlWLtavX3mS+SaFuM1NqcnKuQq5qMlsSHjXXxio1s8lsqUUQBDg+nJitEtYVig2bE3MV/vi5K/z2B3bzqaNzPHs+T8N0cAMhFzxfMambDk+fXWKu1KJlC+mvcsvhpUsFpopNTMen3HL5q5eusG0ggSxLfPbILLlKCySJXE3kLg3b5aXLRd64rZdK0+ELJ+bb0xYW08UWVwoNIc8rSWRiGiFV5eRshafO5Difq7N7KMVQOsz5XJ2hVEisK4mrqgkvTxaZzDcIa8Jj+VocmS7z3Pklxrti3DeR4VyuRqqkkYmKXGihYpKrmjQslzduu+qLc3KuQhDAuVyNN7m96xaVzuZqfOPcElXT4bnzR5jojjCUjuJ4Pj/90MRNpcBv43ocmS5zLlfjjqEko11RdEXmcr5BRFfpS4a4tNRAkcT08GLDxnUD5sqiQXAzBEDVdDk9X2HfqJDPPrNQ4/hslfGuCKmwzv/55hWSYY3PHJ3tNEVX4vh08dvwqW/j9cBau5XleKzceprtqSDP92lYLidmqiTDGs+fzyNLsFizWKpbPLK5m08fnuMzR2fxgoD+ZAhFlnn/viEMTSiiXDuZ+sKFPB85MEWuajGQDHF0uowkwfnFGkt1SzDW29K1b2z7CmuKxNn5CpfzDRRZouWIqQ7P9jh0pYRPwEyphd+e9jg5U8byIGi7Yh2YLDHRFWUgFWau3CKsKVxcqpMMqbzlv8yL31dMyi2bhuWRimjUTZfDU2X+/bt2sXMoyfGZCl84Mc/lfIP+pPAJfuPW3lUysc9fyDNfMXlwY9d10lvfSUwWGqsaYCvh+tCwxPfbasevpusgAV7gU2yYNG1fXA9BgOV4mLYoPkd0BUWSaDmi/nJhsc7FxTrbB5IsVEw+dnAaP4B37R0gZqhMFoQP8nJTrNSwefrsIsmwxhu29NyQGHwb3zs4NVflG+eWiOgq6Yje8QlaqJj8r2cv8rlj80IZKQBNlXE8nyuFJlOFKRHzez5q27/v0FSJ4XSEStOhYQsFJccP8Dwf14dnzyzhXvP+HuC5ARIBVwpN0hEdLwDX9XGAVyZL/OJHDvNLj20ipAm/uoLpMF8xcTxx7QYB1M0S/+Wr57hzJM079gywUBV/v2s0wytTJT5xaIahdIS7xzOYjsexmQq6KvOj946QDL86WcPT81XCuozpeHQnwhiqkMMzHb8zjZarmnTHDWZLLSzHQwp8lupW55ydWagxno3QtD2KDRvT8VBlGUkSOVnNdPn6mUVM1ydfs1mqW9TbqgYDyRC2F7CtP8lsqUnD9rhSaDCYCtOyHD5zbJ6G5bJrsESxYXNpqY7l+lxaqnPHcIr+VIg/f/EKTdslpMn87xcnqZkuB68U0RShAnXgcpGJ7ijlhiNqhI6H057G/eqZRV66UsTxAsayUWbLLYYzLYbTIX77y2c5NFUiFdZwPZ837+znr16awvV9Sk0Lzw+YLbWomo6wx5ivUmx7y0d0hY++HKXUFF5Wb93Vx/lcnYu5Oi9czOP6AafmamwfSBA3VD55aI5kWGWhanLXWJalmtVpgv0go2Y6fONcnr9+eYqGJSRrF6stpopNrhSatByPXMXE9nxmik3uGEnRtD3OzFUptRwapoPdDhZs12em2OCZs4vMlJpoqsLBySJz5RZt7h0NxwcHztl1nj+3xNe8HP/rmYtcyjcwNJn33jmEHwS8cDFPrmqhyxaThQZBIJTXWo5QzwgQe9QyqqYraioSGJ7HhcXGTT/7d6IJ9ufAAUmSPomImd8N/OnNnhQEwS9JkrQH+KWbPVaWbhysixPvc2GpwWy5xcuTRT53fJ6YrnB+sY6miATgZx+eoGq6mK5PRFeYLrUYSIX53LE5VEVmvCtKuekQ0RVmyy1+7+kLvH/fEKbr8dTpRfqSId6+ewDH8zkyXSYb1dnUG6dpufzNoVlkCfaPpdnYE19zLPxzx+epthzOLFT5+49ufN02/aPTFfI1i3zNYqrYYGObifz8hTzTxSbTxSabe+Ov21Rb03b54okFPD/gyZ19xAz126IpuoxC3eJjr8zgBwFv3dlHIqxyOd/k0T3dREIqd4yk6U8JQ70nd65moX7jQp7nL+Yp1i3RpZJAVyQiusxMyWS5DlBuulRaLroMEV1FUyQ8X9yAge9z7RXoBODYq1OIAERBTbHY2Bvl9FxNSDtYrphCPDzDpp44PQmD33/6It84v4TpeCCJhpntebieOL6W7dOXDFFp2dQdn0Ld5lyuiqYo9KfC7E+madouT59ZZLrQ5PRcjaWahSxL/PenL3Bxqc7fuWvkdfUMy8YMFms2zrKRsgSGIhP4/i0l1Cvh+DBZWNEAQzB8UhENpT36mq/bjHdFO4nThcUaz57LM5yJ8Pi2nnWvubft7ufMQu1b9jS4jVvDq/GI+0H3XruN/7sxU7oajC03jGoth2sdkXzA84QGd9wQHhEt22MsG6HcdNpa+0I2Eej4uGzsjnJ2oYbl+YRUhXTE4H37hnj27CL/6YtncXyf3UNJXC/g9EIVRZbJVU12DSY7EkGfPTbPZL7BQ5u6rpvAUGSJN+/oo246HJ4qYbk+82WTzx+b49EtPewfTVM3XaKGwsSKQvXWvhgzxWaH+d20Pe5Yw2tmGbPlFgcuFxhORzibq7FYtXhgYxd3j6/tE5qNGlxaapCO6vTEDY5OlzkyXWYgFWaq2GQ4ExFJUqXFQsWiYQn5hHfuGeByvkEQBJzJ1ZmrtKi1RDotpFRkzuVqFOoWpi2kfTw/YPcK7fJC/SqhJle7QWNv2RUXaPlrN8FWxrA36G2hShJyu0BwI1mSr55awPKg0KhQbJj0p64nVZ2cLXXea7rYuu7vy7C9q8dsrUNkAcg3RBfecgNmyk02913v92V6V2Olhn1t+eIq5leQlc7MV9d9XKEhJGQsxUdbJ162/avNHH9FHDLaFSEZ1ijWFRxX+BytB8FMDjrH7iMknpZlrstNm5/445cp1C1a7eQsokloisxjW7v50okFZopN4d+kK1RbNt84lycb0wkpEq02gcHyAo5MVzgzX8UPxPvGDBlDlWnaHrrqMdKO2TRVvL7t+sQMjQc3RinUbRIhlfO5Gr/1xbMgiWZpb0JITl/O1xlMh9nWH+fCYp1PHJpl70i6M531zNklwYi2PR7a2MX/+eYVjs6UeeuuPgZSEZ6/sITjCeWER7Z083MPb2Ay36DQsNk1mOTQVKnDVo5oCvm6xWeOzHGl0CQeEk2XcssmE9H50skcVdPh8W29dMV0JEliKB0mGlKZKTXJ1y0qLZsj01U29sT46MtT/PO3bl/3O7qN62G7Pl8/u0jDEjnZ7sEkSEKidSAZ5oP3jLC5N85XT+WEh6Ltc33r8+ZoOgHHZqps6092+t+n52uENMGMr5gO921Ym2hZb317LBlu49sD95o9bFn+0vMDtvbFeXBTltPzNQ5eKeF6PjXTQZJkvnBinkxEp2o65KoWlxbr9CXD/O7XLjDeFSUR0vjFN25EliSqLYeeRIgrxSbTpabw7KqbDKWjmK4gvKiShC7LLNUtKqZDseHwyOYuLMfjdE40dTxfrNnL12Sh3qJmCQKPLEuoEthegB9c3XcrLeELc2KmghOAJoupimk/oG55nFtqoMriNWUZ8nUhcVto2ByYLLBjMMHlfIMj02XOzldwffjmpQKVlsNPtckc08Umz13Ioysyz1/I8959rz8p9Vbg+QGfPz53w8esvDt1RUipyZIIayK6iu05eG6AIkEspPFTD46xULHY3iZzPLG9l1cmi2RjOl87s8i2/gS56tUm+1y5xbGZCtWWw2ePzjLRHWMkE+l4iQFMdMeu8038QcJK353FmslTp0Xz74ntvd93NYrzuRoXl+pIksQ77hBxxcuXC/zu0xdYKAtStudDWJNRpADHC/A8F5+rBW2rfdW1bI9Sw+nYZ1wboa0fQV6FoUrIkkrUUCg1hFzghcUG/+OZi/y9Rzdy8EqRr51ZbEtJB9jtC952A1IRDdcP+Ntjcx3FiS9ncxy8UkRCEEyKDYtKyyUZUrmQb1C3XP7eIxte1ZBE1FAZzkSJh4R0Yyaq0x03aLkembDOcDbCaCbCb3/5LC9cLNCfChMEENMVapZL0/aZLbUotokBji8sYQLJoy9uENIUdEVmoWqiysJ6pNZyhGITENEd+hIhIrrMbLnViT8dz+fwVIma5RIEAWdzNb58coGm7TJVbDLeFeWVK0Vyxy3+5tAMIU0hqstYjocfCMKE5YgmuizB5SVRw/N9sW+Umw6u71MzhbSj6fjkqhbD6RAnZmocunIa1xdDBiFF4txijU8enqXleCRCmpDBbLkYqsSv/c0xQOQyjudhu0Lq/fPH59BVldFshN//+gWOTleotRwcHwxNwvI8Aj/gzEKNy/l6p5GyfzRD/3eRnPCtYrFmEjeEj+a1fl5z5RZN22NDd7Tz++VBkKfOLHJ5SVy/uipzeqGGFARtKVtFNGltj2JgcXa+hum4zFaaWNfchAHiPj01XwUCZMmlabm0nDXu1kCQMWMhhdmS2dmDf/+Zi0R0haYlCDfNFU9ZJt2AqAlrkqi3L8Nvv67pwDfOL/HKlRL7Rq9XlFjGt70JFgTBf5Ak6QvAQ+1f/VQQBIdv9BxJkjTgC8Ae4EuSJP2LIAheWu/xjhesRXS9Dl6AmNoptyg2bO4YTqEpMrGQ2vZnUvmFN2zgP33xLBLwo/eOcHquyudP5mjYHv3JEI4XYDoePXGdqulRbtls7onTtD1Ozwvz86Waxck5kbh/6F6NjxyY5vkLeUpNmxcvFXhiR991ckC+HxA3VDHlo6uvSwPMdDw+eXiWy/kGvh/QlwzRmxA3dRAEnUJRPKQS1mReniyiKzJ7blCkmsw3ODZbYXt/vNNMuxZnFmqd4OXZc0tcKTYJqQrv3z/0bfFRu1JsduRdTs6LRGxTb5x0VOf9+4dx/WBdNnmhbmG0NfAt20NCFPyWJ5lCKlhuOxAMwPHEdSJLQkv7+vbXjeEFsFh3WKwLPXxFAkmS8H0oNhwOTZUI6woNy8O0vc6mr7S1jwNE0B6VAsa6IuwYiHPgcon5qonnQ0SX2DeS5qFN3UzmG9Qtj+FshMmCCEocT5iZPnV6Ec8P+JU3bXnNfhvL2NIXZ6wrSqlpUzddFEmiZjk0bQfvW8isxbSc+MyKBH2JEO+8Y5CqaXN0usxSzeK3vnyOhy6X+JmHxnl5skSl5VCZrbB/NL3KUHMl4iGNu8bWLqrexm3cxm283qiaVxfAVpsc4axBDFBlSUgHxnQiuozjeTheW6qhJ0a8YeP7Afdv6KLScliomgynI5yYrdIdN8jXLd68QzCiX7iQ5/efuUjNcuiOGWzvT1BuucyWWqiyzI7BRMd/rG65XFwUhaMTc9U1ZchATH6dmq/StITnxmzZ5MVLBX7ojkHesYbE4aNbelBlsb88tKmL8ArvxrVkf79+dpHFqsWZeSHrpikyl5bq6zbB7hxJUW7a7BhI8LFXZpgptYjoQlJ4Q0+MsCpDOkwAzBRb2J5PNqSTb9iMZaP0tv04nz2fJwCihkJ3PMRgKiwkhHWFXM1qT1mvfm9zReRdv0FDZ3nvBois48/VtG9tg7S9oE0qWt2cuhbL5J0AyFVaazbBllZM5Lk3CGOWGz0gvDlvBaa19uOimoKMSFRu5Bu24i07E5RrwVAVVFl4Zq0zZEdIvxrfrOwbJkIaH35wnBcvFvjmZAEq1rrvAyKJX9mg9HzQlavnerFu4rhBJ+HXZBlJkvjDZy+TieqYrofdZr8+fzGPIovvPR7WaDoe1jWfWZKE9FRPXMTtsZDKlt54h5ka0VU+ePcI+bqF5Xgcni7z5M4+kmGVTx+ZY65sUjNttvYnqLZswrpMy/Ep1ETBwfUCZstNbM/nvg1Z0hGNMws1qi2XkKZwpdDg4JUSTdvjd792gfsmuig0LDIRnW0DCaLtmHqsK8pYu0C5bzRNEIjG5bPnlzBP5dAVmUxUJ6TJFOo2HzkwzUObujiXq2G7Pr/15bOMZCI8vrWHy/kGe4dTbO6J8ifPTeJ4AfGQ+P42rZNv3Mb60BSJnniIY5UyYU1mutRkoS0D5/kBL1zIc3y2yueOzZKv299SA2wZNcvlU0fm+L0f2cvBKyX2j6c5Nl3hDVu62T2U4vHtfWs+79bmgm/jewWyJK0qRm/tSzCYDtGwPAZTYdJRnclCHUUWvjW5qkXUUMlVTe7f0MXfHp8Tvj6SkNfz/YALi3U0RabctPn88QVqpsu+0TSxkEoypGG7QnmlYtr0xkNkoxpnFuoEgWhgtRyf2VKTTx6eo2W7bTkwBccNaK3YGMqm8NlZ9kqFgHJT7FWqfLUIb7tB5zM6PjQtd9X+HwTCDy8eUulPhbAcH0mSuLTU4L89dQHHF9NPdUvk8A3LZakm9pelmsUnDs1warbKWFfkOiWTQt1ioWLSnwqRjujfVgLxZL7OUu3W9nRxFEF7CgwShkw2FmKiK8Z8pUUirLO1L07TFt6gnz8+z/lcjb0jafaNZZgttUiGNSRJoitmEDWEf2CxLhQMinWbharJpaUGe0fS7B1JAWBoYv+4FkEgJvqSEe37WlLx7IJoLHTFDd575xCHrpRYqJgsVEy29Se+75p/mipzx3CKABHf/KO/PsTXz+SxXI+orqDKEpoi5AcDZHw/WLeZ5QUQeP6aE6k3gq5IhDSZANBUhbvHUyiyxJGpMrPlJpbrcWy2yh88e5Fs1CCg3ZRpOMiIInsspDGUCuEHPp4nyEQtz2OpbpKN6syVTeIhlXhIIxnWadou3TEdTZaYKTVJhpM3tTbpfE4vwLQ9potCbSCqqxyZLjNfMYloCv/mHTv464PTvHipgOl4zJdbGKqMFwTtKX6hSlXzhdduzFBFg8fxOwMXlZZDJqozmI6gyRKT+TqKLBEzFMayUTJRnUrT4UKuRrFhAxKm46GrMn4giPiyJDFVbKDKwqN2sWrxB89cRJIEEaxpCy/ZsK4SC0EmKtRLnHYBMBZSCYKAjT0xfD9g54DK+cU65aaY4pLaPnB106FqutgrAm6HgHzNpjuu43o+uapJ03aFH6Uvmi6yJNGyPQxVIqSpGB2PUuFzWGhY5KommirTnwyxpS/Bkzt6OTlfIx3VOTVXwfV8NEWiYTnMVVpcWqqvInZ+L+NLJxf41OFZumI6P/nAOF86udCpvddMl48enCYI4OHN3Z3GkN+eOAypMi3Hbf/rkYroLFRMMQXsuJiOhBcEbUWKGq4brBsv2u5VwqAsBbi+x7X8z5ACiiKRiWoU6vZ1uVXdFHvntXfPymxQkmBbf4xzSw1sN0AOIGgLkUiS8Dc7NFX87jbBQMgbAmvqMa7zeAd4/FYfb9xAczkdVkSHub3K+oigRgsCshGNbbv6adoeH7p3hGxU50+eu4TteOwfy/DKlTJfPpXj4mK9Y7p3/4YssiQJ2aKmzZn5Gtv7Ejiez+V8g6dOL3YaLrIkocoyQSBYMi3bIxFSV8kBeX7A3xyaYb5scv+GLHtHUgykrjervlUImQuF3kSImXbC47g+ju+zdyRNPKQxW27xqcOzGKrMu/cO0pcMcWym0pGnCakym/viawZfXzq5QNP2uJJv8AuPxdZ8TCKkMV1qEjNUTMfDcnwsx2eq2GTHwPXs4FcD3w84MFnE8wPuHs+gKTKbemKcnq/i+wH3jWfb3f95ruSbHJ0ps38sw7vuGORKsUkqotEVuzrx1rI9KqZDMqLheKLIZEgSEj5hXWWsK0pPTOfYbJWG5ZGJavTEQ6SiGpWLBewbdHdWEMDX/iyIYDyiSniB+GwO4JlCbnF5zUiGFEDC9YX0okTbENL2GUiF2dQbw/V9LNsjGtb43LE5wTY2Hb5xfonuuIGhKciSKM64ns9SzWS+Yt7kCF8dTs9XuXciQ810mS4KdrDjCbaOLK+oBN4i3ECcQ1UW3mKaKpGvmXzgrmE0ReEb55eothzmyi2miy0298ZE8pAMkfg+MjCeK7c4PV9lc2/8dZ3Mu43buI3vDWzoinJ4RhBj+pMiodfW4B4osoQfCB+G47NV8jWbmuXSFdU5s1BjMBVm50iSYzNlSi0LTZZo2h4108H2Ah7c1MVj20QTbKbUYjAdYabUImZobOyO8cpUmaF0hNFshHfuGeiwTGOGyubeOJOFBnuG1t+jUxGdX37TFgp1iy+fzFG3hKxisWET1q7Xw4/oKgOpMF85lePiUoMfuWeEZFjjzEKVL5/MkY3pvH/fcIeI0RMPsVi16E0YDKcjzFXMdRtgAP/iU8d5+XKRiK7yxPZeZEmYLmdjOtv6ElwqNJirtFisWdy7IctiVRSiCjUL2xXT1HuGUzi+YFKqisxjW3t4Ykcfnz06R8v20FSJu8bSYorimnOxUBMyvr2J9WO2lcqAur52yB3c4j68rT/BcEZMtd9IGk5T6Exkd8fXZjNOrJD50NdpzgH0xA2mSiJm3d5/a8ngekWLjT0x0YgKIHMDyRhFvnr82g2OrTuuUzVtEiENY60bCliZRq1MxF65UuKlywVOz1WIG9p1jMJrce2EXlyXhZxPUyQXsiSRiSrULSHhGdGFl8pC1aTScmharpDaXqxjqMLfVHU9PB8URSEsBzhtmR+AqC4zmA7zhq09Hdb9Q21poeMzFfJ1i7vGM2zujfPfv36Bo1NlPnV4lrfu6mdLb7yjwLBrKMlsqcVMqcnx2QpdcYOehNHxEAxpCn/83CUkSeQ4y5yoeEgjERaTqKJ4Ke7PD949zGShyfMXCtwzkVnlN6cpMvdtyHI534CWhCSJwociSyTauYfnC8PzqKFQaIg1bKFi8jtPnaNmuuzsT6AqMm/c3stizeK+iQyPb+tlc9+1zlS3cTNIksT79w/x0KYuvnmpwGS+QTqiiYaXH/DUmUWeObfYYdy+ViRDGkt1C9PxOTNX40fuHsH2/A75ci1Eb6ucfV9BlaVVReum7dIVDzFfKTNImP/17CVs16duegyno+iqQqxtxeD5AW/c2stcxWTnQIJ7JrIcmipyeKpCRJN54WKBozNlRtIRFqom94xnOHylxPMX8liOj+MFhDWFTExInF1YqHf2E1j2mQJdFmuRJK1ugkG7gaXKSATUTCFVHG97iVRNUYwzFEEY6BTyZAlvxQ0S1mT6kwaJsI6MRCQq1rij02X6kiFCukLLFkXdkCKTCGtEDaVNTBXHuHMwwY6BJPdtuNoEa9keH3l5mpNzFQDevKOPH7rjegnR1wtn5mu3XAFYlp6SJKGuLMsynu8RDRnINRm7LSVXbIgYa7bUIkBMDY93xYgZKj90xyB1y+VvDs3gtTfjhuWRjuo0LJfNvXEW6xYxQ+Ge8Sx7hlKdadJr8dyFPAcnSxiazE/cN3ZDUs33Mk7PV3H9gIWKSb5uMZqNcmahRlRXXzd1pteKU3NVFqot9o9lbtpwfHRLD4mQhh8E/PmLVzgyVe4QqSzXJ6zJmI6YJlwuViuI+EoCVKmtiNG+MJdJU68GY5kIiiwREOAFIoY8PlulZrlo7Xvb93zOL9SoJl0WqxbJsIquSViemGp1XJ9vXhYyfLbnk4nobOmPs6E7Rr5usbE7xvaBBFPFJoOpMJIk8fnj84Q0mYFkmD97cZJK0+Gtu/tvKuO8WLMIaQq5qokfBER1BQXwfR8kmUPTJQgCeuMGdctre1wJYkC5YaNIoGtizbFdn7vHE0Q0labtYLo+IU2l2LRJhVVyFRPLFeoWGVXmN96xg3TM4M9enOTAZJFS08Z2AyQpQFOgPxlhPBulPxlCUxWihlBCW6iaLNUtJETsa7YD9prpMpKN8L59wzy8qYt//onjTBYaOG31kERIRVdtPF+sF4s1C4JANOsCsbbGw3pnSg3EdTGUiaAoEoW6jSKL93P9oC2dKVQqgkDk0NlYiCd39uL7YpqtYrqdayIZFsSviZ4Yj2/vZbZioioSuYqFrsjkahYRXRF5c0jn+Gzl+6YJ9vyFPMWGTbFh8/z5pU7tfbrYwtDkTi66PDRyYrbCVEGov1wpNOiNh6iYDn2RMJWW1ZHBV2QJVZGw22OS/gqSyDLEQAeEVRnbDzrkRX/lKHYby1t2y/YpNh0muiMcnhbThyFVQlOUzjRfgNjPl4XVVtbVvQCuFJq4XoAuw3h3DEWSmCk38QOJ0UzkOvW3a/H9uWtch/W3ccsN0FUhd0K7CSBJEqbj89zFApt6YpSaDifnyoDE8bkKMhLT5SZ3jmSQJVAVwUhOhjUyUZ183eLhzd0Yl4sUG2K66/4NWQ5PlTmfq/GWnf1s6ImRjorH7x1JYzoeb989gKEpHYYLiO78ZL5Bvm5xZFrhZx+e+JbPwitXSjx7bomG7RJpBw6u7/PCxTwhTcH3hbfHhcU6tiv8Mmqmy1iX0ik01C2Xj70yQ3fc4AP7h6+bpsnGDJrFJtmYsS5D6fhsmf5ECEmCPUOpjh7r2Ovgc3ZqvsqLFwsAGKrM/rEM8ZDGh+4Z7Tzm7vEMl5YanJit4Po+Fxbr/JOPH+VyvkFf3ODDD00w1hXlyydz/PXLU1wpNAiA8a4IoYZMSFOwXY+wJrNYNclVLfoSIe4dT9MVD5GOGuRrJi9fvqplLwFGe2oMIBlR0WXBbLP9q2WYta7UqKGiKxKW57dHeK9OgKky3LshSyKk8LXTeRxPjPi6PuSqLcK6QjqiM5SJUKhbyMCJuQrHP10h37AJtQ0Gbc/rLEqGprCtP0FP3KDccuiJv3bj3krT4c9fnGSy0GSxZqHKMo4rAh2C1TJErwbL66ft+ZQaNq9MlRlIC2mwUNvfTJJhKB0iEdbZOZhEV+RV12bTdgmpyvespvjnjs1Tt1zOLNT4B2/Y+N0+nNu4jdt4nZGKXE1mk+HlguDq9chQBAHF8XxyNYtUWBdrnO9juT5dcR3HFyzb6VKTL5wQE1CPbukWckRB0JFKA7hvQ5aAgLfu7OW+Dd2CGSlJlJs2j2zuXiWzIklSRxJtGb4f8PTZRcpNhzds7SET1ZkuNpkpNdnYE+PH7x+lZXtMFpr86QuThHWFD90zQjykcWGxztfO5OhNhDqa9qbjiclrVebwVFkkQFWr7YUZxnQ87hlLM1duoSoSd09kbygpMl1s8szZJVq2S0VxKNUtFmsWiZDKTEkQC16eLFG3XLrjBqbj8f+8bw+Xlur8wdcvcTlfZ0N3lM298TZL0mgTd0Ti8P79w/zFi1eQkTiXq/PgptX+acPpcKcJNtG1PnlhZXE5V7EYyV6fUC2z0W8GxxMTPATBDSWGI5pKxXNRZYiH1y6kpFbEdqEbTIOvnN5DvrWp8VRk7aL3wStXJRiv9WddCUOVMduTbtno+tdApWljOgE1c/3zd3ah1vl5ZZPrlStFinWLw1NlQpqMpko4N+qCXYNW22h9oitCrmYSD+nEQyrJiJBTz9dsLNenajqkIiohTe5MhDqeTyKkU2k5+EGAqggz6ZrpQuBRMQWDd0N3lIiuUKgJwt1TZ3LsGUqJxyGkT374rhF8PyBXNamaLpeW6ty3oYtfenxz51inCg1enizxyOZutvcnSUY0UUTwJinULZ45l28rEvhs6Rf+COdyNUYzUd68o4+5sknT9nhsazeFhs2LF/MdA+u1mtQPbuzihYt5RrIR7m/L4DVtl5cnS2SjOht64oxko1RbDl86mePodImumMGFXJ2a6fKj94zQHQ/x/MUlqqbL+cXG7SbYtwhNkRnORDoEqwuLdUzb4a9enubQlRJ103vNVDhZgsGEwc89Ms5kXqiANGwXTZXXVWRYhvHq7FNu47uM5WLnMo7NlNk1mESSJMoth0q7rpBq+wE1bJd7xrPsH8tQt1watsvuoSSFhs1Tp3Ns7YujyBUOTZc5PF2hO6YzVWry0KYuXrpcJB3VqNsuTVtM/LZcj1ZbZqvlep36mqJI6EjYno+mSsRDgmG+XETXZVHLkZBIRDT6k2EuLTXwLYeortBqT3PJAWzsjRMzFIo1m6opCskNy8XzAmQgostcKZrYntjDVGBTbxTLC5gqNklFhX+NoQqvM12Vydctfucr59jcG6NmumwfiPPQ5tUSoa7v43oBxbqNJAkPxWslrV5PxEKvLvcXpFRREPX8gFrL5cJiA7vt7YMk/v6+fUNAwDNnl3CDAENVUGSJv/jmFWqWw+eOzhPWFd65Z0AQJQyVn35wgnLLJqQJm5IvnpznbbsG1lSqCYKgPa0iit8N2/2+bYLtGkqyUDXpiRv0xA0GUmFGsxE0RV5FMPluodSw+dLJBUA0OG7WlE2GNd6wtYcDlwtUmg6yLGTbyy0H2/UwodM4URXhDdiwXIpNF8+HZFjF8cU6Ew+pKBIsNZxb5lBLiNhSU2QatosqScQMYWESEJCNaljtydIgCCg1hYR0sengeT4SAVFdNHVnSy0WKiYhTWH7QELELt0x3rS9l+fO5zk5V+WBjV2dpszOwST9yRDllkOhLq7Pcwu1GzbBLi7ViRoKvu/jeEJaVVNkhvoiFJsOiZBKQMDFpQa6qvC+Xf0MpsL816+ep2m5SLJMf8ygO25QbjooisRQKkzUEHGzH/h88USOsCqzvT/J5Xa9WfgyhvnooRl2DiRpWB6KLLXVsJanXRXiIZ3ehI6hKPQmDOarJr1xgwOXi1iOi+NBOqoRaitYKRLYjsfFxTp9CYPumM50oU7dEz5tTVus2ZYbULeFYpSiiAaNoUlkIjobe+Ns70/wlVM5XN8nGdZ4bGsPXzyVE9K1rlgTZUQeU2xYHaWsiCaxfzRFKqxxaKpM0/awXR9DldnWl2C21Op4hz17dolMVCcb0xnNhFlq2PiBuPYCxFq2vf+1x52eL3KU5UnYbxfuHs+Qq5qkIzpb+xP8wTOXhLJMXCcT0VEkOHiliKoIz+D/8pVzVE2Xu8czDGcinMvVyLen5VptZTRJgoc2ZrmwWMfzLRwvWFXIToYUeuIGNctDlgRZr+V4bclb8RhVlYhoClXT7XxPliea35os4XsiB9Vk2NKfoG56XM430BQxqbZSDOTaZaBiiTdxEQ0xRZIIJJ/xbJx/+PgmhtM3Hiz4/tw1roEmy+uO0zYdH8kRJ06m7eHUPo2FhkN5sgRASJNp2n5bzzLAUFV+aM8AfiDGvxu2x+a+OJfzdY7OVHjqdI6BVIRSU+jbH5oqM5QO07Rd7hhJdeRBJvMNPndsnslCg1LT4Z89uXVVUpAKa9RMt23iJ6bEDFUhGdF44eISnzkyz70TGd65Z/CmRfyG5bJYNTk6UyYeEh4cE10xtvY1Waha2J5Izrf1x/nbo3MUGrYIYIeS3DGcIqKrojNcbIppr2LzugTmh+4YYKFi0pNYn6ES1VXUtsTgQDrMzzz0rTf2rkVsRaBzbdBzdqHGK1eK5OvCFHLXYBIvELIfZxdqLNYs5istvnhinnLTYa5iMlVsdmRuIrpGSFW42NZFlSQJXRFBdctxuWs8w088MI6myLxypUjohUlUU2gZG6qM415ljjUtD8WQUBUZRRZdcWUdpnHVdEiEdAaSYWbKLZr21Qf5AVxYbJCvmdRtMVIqSRBSYarYwnZ9FFmYrFeallhYJMF8sd2g7S/jdI5NQjCM+xKhjh/ZsUqZrX0JdFXG8wM+fWSWS0sN3rqrj+23OLmnKmIBWqqZmG1pKF2VcNsmo6+WybMSXgCm4+P50LJdjkyV6IrpxAwVXZFJGCp/e2ye99w5ROiaqdDnL+Q5cLlIfzLEB/YPv26NMM8PmCw06IoZr0r7eS1EDZW65a66tm/jNm7jBwdLtasF/3xDTNV412R1cUPF9AJM1ydoOQwkw6iKRCyk0rRcSg2XgVSE9+8b5re+fJam7eJ6Ptv6EpiOT75urypIhzTBph1bIafyyObVjZxr0bI9Dk+X6ImHUGWJYzOCkXzgcpHdQ0n+8BuXOLNQYzgT4Rcf28hoNsp8m5SyrN8fD2kcnS7TsDwuLTV4W3vaPqwrLNUtfvdrF2hYLkOZMLsHU/TEDaaLTT51WEhyGapEWFc5NlPmoU3XH2/DcvnKqRwHJ4udaZu+hMG9G7KEDJWLS3VazlVz6CAQTaaYofLJw7NMFZqcnK+iyhJfP7tIteWit4P047MV9o6kGMqESYQ0sjGdWts8+lqcX7pqJn9qtrLuOV35zGR47TV+peTgjXB6ocZsWVxLFxdr60rlNNv6664vrr21JqOrK6QN1/p8yxhIhjjX9ljZ0HVrjEhpnR2/aV99T/MGn7m+wk91eQptLcyUBVuxankU6xb9ayQ8d49k+cxRUcQJrTj9W/sS5KoW3fEQVwp1mq+iAQZCasMLAtIxA1mWqZoOVwoNbE/EPKok/OUkCXJVm0zMoGr62J5HKqzRmzAoNm08HyQp4EqhgeOJfCOky2iyKAZeXGpSaFgkQhpN22VDt8vJuSrxkJBNf9cdg8iShK7KJCPCR9ALAp49t8Td4xkmCw2+dCJHOqqxdyTdiZFCmsKP3DPC0akyL10udCR2RrNRBlJhwpqCJEnkqlan6ZYM61iux/HZCg3LY+M6xZ2RbISR7Miq30V0lUc2d1M1HY5MlxnPRsnGDH7knhGe3NnHXx6YYmNPjNFslERY4y27ujpNwlu9P27jehTqFl87s8h8xaQ7bjCRjfCvP3sKx/PJ16zX3AADkadULJePHZxhKB1h51CSu8cytxTTlm6sQnob32MI6wor6QuuDx95eQpdlblnPMNINkrgQzKisWswwZHZClfa/jE9iRA/dMcgC5UWv/zXRyi3HJ67kGe+3KLScjA0Gcv1GEiG+c3Pn2G8K4rri2aSrsiEdJlqy2G22CKkyfi+3yFV6EgkoxqVpvDYzlVaQm2lfZyyLDGciVCo2x1lmmUZ3aW6RTqsEzc0FBkiusJIOsLJuSpNS3jEBJKEKotJhZrprZLqchEqPLqmsntQNDWqpqghpKM6uirztTNLWI7HkWnhsbhnKIWuykwVmvQmDC4uNQjrCm/b3c/5xRqVloPpeN/Womm53Ui6VWiKxNb+BKokMVNusWs4Qb7uMFVoIjng+T5zFZOvnMp1jl2XJWqWS7FhEVIVzixUadgutucz3h3lnvEsAaJWdmK2SrllkwxpVJrOKg97EAo4f3NohkLd4v4NWXRFpicRomedaffvB2zojrHhkdX7aGQdxYDvBnRV1PJs1yd6i8cVBAGm65GOaiTCSXYOJPnyqQWOz1RWFLQD9ECiUHdQFZlldW/TFROfrh9QaDiven8KENehiKQk3EDsTz1xg9lSi5rvYftCQq/p+CQismg8yRKuK+59sy1H3bBc4iGVpu1ycbHGUFvVYv9YmuPtmD8b09kxkOyohqmyxI/eO8pQWkiq7xxcv4ZWqFt89ugcQQBdCYPRbBTPDwjrKomQ8HXqS4YxHZ+NPXHxXSjCn/ixrT08e26JuXKLXM0iHtYIEEpc+8YyZCI6T53JUW06JMOqeI+YTqllo6kSO/uTfPl0jkv5Bs+fL7CxJ8oDG7t47nyeSsvG9QNCmkK+bnJiVpAWHS/oqBhYjo/tioaZ7QpiXkiRkBWJhuPx3IUlzuZqJEMqkiIjS2JSyw98ooZCxBDTVpmoIK+fXaiyULWQsBnNRGg6PqPZCIs1i65YiKfOLDFfaonJJEUipMjYXkC17e+1fJ0EgcQXT8wjSTJIEt0xHcv1WayKdSmiKzRtD9f18dqSqotVU1yb7fhbliQihsrekdSaUqyvFn/zygyz5Rbb+uM3nUx6LXjbrn72jqRJhjUOThbZ1b72lmo2l5YafO3MIkt1i3LLYbogrI1MR6id3D2WYSgT4fxiHde/OumlyRKZmM6oF6FhuaiKyG/Mtu+b6YpxzlLDxg0CNMkiYmhIK2a2FEmQR1bezBKgKOJfSZZwfB/Hg8l8k4rpiNqxf/Pa8UoFD9PxBU8zgHOLNf7Vp07wux/cy5YbEOi+d1ba14KbBAkr1ly0FWN10DY3lRDsWpa1/CW29cU5OV9lLBulO65z4HKZ2VKLpi2k6kw3YK4s/CfmKiY/ft8o06UWQ+nwKja27foUGhau53Ol0OTLJxd43/7hjk6rLEvsHkqSaY+D/9k3J9FkhSd39vJvP3uamulwLlfjgY3dndHooK3LeW3Bvy9pMFNqkY7oYoJNlnh4czfpqMZMscWjW7oxVJmoEWJTb4wBy2OpbpGrmHzldI54SOXBTV186eQCiiyxsef6BHeZVXgjPLa1h/GuKF0xo7OZu57fYY6+Fox1RfnAXcN4XsBI9upxNG2XL5yY5+yC8BnYOZjkPXcOMZKNcHGpzqErwi+qOybYuo22AUN/MkTNdOmO62Sj4rydnK8hy2JTTEd0YWauKXhewNHpcqfY+A8e28AfPnsZ0xWSjyuN1R0vwPYEOyoZFtOD6/muO15ApWXRtF1kmbbh/fLigZhUC64yykXzykdVZUpNuy01EnQ8JbxlpgSi4dUT1Sg0XSzPRwbS0RBN2+NsrsBz55fYO5rmkc09dMcNvnoqx6Ep0Ri+nK9z13gGy/F52+5+hm7QUY8aGk/s6OOVySKm6zGYivC5Y/P4BJQa9mtWXQwAXZNRFYnzizUuF2R++sFxFqsmU6UWh6fLfPX0Ih/YP8yTO696D1xqFyrnKyZNx3vdGk1fPZ3j1FyVkKbwUw+MXXcvrgXT8TBU+bqk5t17B5kuiZH627iN2/jBw8qGl7S8jl/zGNML6ImHmKu0OvHBnqEUhYbFuVydhuVSN110FfoSBgvVgPHuGN2JEE/sEGve0ekyx2YqbOqJ8dmj89ieR0QXXkI7hxJ87tgCsgTv2TtEMnJ9Y+TrZxc5s1BDksS6FNIUTMdjKB0WmvhtFviyJvtLl4rMlFtEdYXNfXGGM2IN29ofZ6bUojdhMN4dZXNfnI++PM2nDs9ydqFGXzLEvaks79o7yHPn8zx9ZhEvCNBVielSCz+Aie4oz5xdxNBEYV6VZWZKTcpNh8v5hvCDCGukIzo//+gEu4fSXCkKScOeeIiwpmB7QmKuaXs4XsAXTyygq3InPHc8IcNRqNukozp7h1PcM55hoWLy9JlF7hxNY7v+mrFQpXW1MD97g0ruKvmGdeis410xINd5/HrQZIlc1USWJMI32HNWyv6p6xA/uqJXiUzhGxQ3NvbGeOlyAQkYucVp/oVKi9Hu6xMPecXep9zgk2or/LcyN2CrrzybzbWMlwFJ9jvfwcri0t3jGcoNm9NzFerXujvfAgKE54WhSCiyRMsRhdHlr1iSRSHY9UFXZKK6RjJkU7MCDEVMfCqSKKDa7eR7maynKzJIwvNMV2VkyWgXRSIMpMLEQiqO67d9fRtUTYcgCOiJ6XTFdI5Ol0m0vXSajocfBBTqNvm6tSqOS4Q07p7IsL0/iaEqNCyXiK7y9j0DLFYt4iEVQ5X5+tklIrpCuu3hosoy2aiyahpxsWaSr9ls6o3dkMH+qcOzFOo2B0NqhyCXier83EMTfOboHJWWw66hFC9PFqmaDn0Jg8e3977q7+c2BF6eLPLChTxfPpVDUyTiIZWlmi3IoK9HB6wNy22zpxVRULlR8W8lXsdDuI3vAK71XhT+2AGe77NUd3j7npRYM84s8k//5hiW47FvNIMsSbx5Ry/fOJ8nXzPJVU1sL6BpCaWOquQylo0x1hXhzHyNfN2i2LR5aFMXb9nZy1ShJWT82yx1TdWJ6ApOy0OSReHbcT1MR0h7er5QIlmeBPN8uHciwwsXiyxUTGzL78g9eZ4gBTy+vZf5chPTDTg0VaLacjvk0Zghir/JiEql5dFyrxI6OtNmqkyubq2wxBB+Ypt707TastU100OVRfPmfz5zicPTZUzbpT8VZigd4b13DnHHsJj2FRJW375JsP/5jUs3fYwqiyZCWJXbdhI6siQTMVR2Daa5UmhSM13qlstizUZXFU7NVSCAgVQIWZLIRnXOLVSxPeE/E9FVIobKlj4xhX8uV+N825M28AXBJBPV6EuuzolzVeGVBTBTNnnnGj60t/H6ImoI79FC3bpOFs7xfJ6/kEeWJO7fkO2oS3z++AKHpkp4fsBwOorteyLGusYjxPUF6S+uShiq8N1q2P5r3hNcD7IRFcvxyER1/sEbNvKnL0zi+EF7sEHCUEHXVPqTYUYzEUoNi+Nz1XYTSqLScoiHVHRVIRXRGGnnNl1xMTkEIp5NRcTPQZtIFiDWgffvH77pcYrJKzGhtrknwf7RDHXTZbw7yp++cIVs1KDWchhMhdk3muYTh2Y5OFlgY2+c/lSIR7f2cGKmzLGZKhLwxm09fPCeEQZTEZ46nUOWJGYrLWbLJhFdxJIPbuxiptxkKB0mHhJejbbrcz5XR1dFfbfLMaibDqPZKLOlVsdDVkzxiJwp0vZ3c9rdS1mScCWhIOIGAabtosoWdw4n2daf4Omzi5RaDklDpdx0OnkYBMyXTSHp73rEDZXD02U29sS4b0OW584vcWGxtqp+qgQBsiyjyj6B1LYRaCcMLccT6lOIeufy78sth4YtPHlVRcTrPoKs5vkBPhKGJiNLIm5//nwe0/G4b6KLn7h/7DVciz5zbdWL6eLa6heWK/YEZZ1c7VYhSVKnjri1L8G5XI2wpjCajXB8ptypv1dbLuWmjdMejHEcn2OzFUoNG12VCRwPWRFDDAQBT51eJKIpJMMaEUOlbnmUGyZVS6jUXFxsdJpVHuC0HEKajGOLPdh2QVcCIanoiYGQeEjFD4RcccP2IBDvl29P4y3jZnKoiiLhLEsvIvYPEDXwparJRw9O8+tv37Hu838gmmCGuv4k2ErIspj48iy/Y+gWMRRiIZX+uM5iw8FxA3zf5+mzizx9dpEN3TEiukgEdUXmvfeN8NVToptaajhkozpv3dXHO9cZET4wWSCsKVRk8f5Pn10kE9PJRHU2dsdJRjTesqufU3NVCnWLMws1/CBgus1SAmFImGoXrDzP59/+7SkuLtV5y85+PnTvKCCCg9//+iWqbVmYd+4Z5KceGEOWJR7b2tthWmuqzA/vFx4cL0+W2DWY5KnTOZZqFotVE98PGM1GuXcig6He2qi86/kd1gCAqsgd824QhokfeXkax/V5197B1+x7tFazQFNkIrpCNqpTajqkI1pnWs12ffYMp9jQHeXOsTR3jmTw/YDf//pFEmGVDV0xFEXq6Npu6Y1zpdBgS1+cnQNJNFVGBt6wrYdnzwnftNlSk3LL4U3b+1ismXztzGJnf1/2sXL9ANfzKTXFTa20H3Atp9UPwPbA9sT4aUiTichisXDWKZrJsoTvC01zz28JtgWrE8oAkGSZeMQQLLZ2Avwjd4/wqSOzlJsOLdvjxGyVZHscPGao1Eyn0yyaK5uENYXT87UbNsEA3r9/iIbl0rRd3rS9j95EiJcnC1xcalCoW9SsV8fm1SQIGwp100OSQJVlLMdHay/ky6a4UV1FlWUalsvR6TKPbe3pLPb3TmR58VKBsWz0dZ20WmZGW66H7V3fkF6JS0t1/vSFSYoNmwc2dl03kRbWFTavuF++1zH2a5/7bh/CbdzG9xUiK9Yere1ddG28q8li3wirEqYTUKgL39GW7dG0XEzHo9x0OD1fYyQbZSQbZfcK/658m/EfBAFPncqRq1mENRldVbBdX7CT29M/F/N17hxJA0LK9uhMmeFMpJPELid3P/XAGJbjdxpmH7x7hBcvFtjQHSUbNXj+gmiODKUjvGFLT+dYdgwk2daXWLXOVU0RLxmaMJS/ezxDpenw8mQRTZEo1Wzumch0EoFPH5klFdYpNmx2D6XwAqH/HtZFsjCciTDWFSUd0bhrPEtPPMTPPDTBRw9OU2zY9CQMfvWJLTQsl//vF85wer5KWBPT3r0Jg/5UmJ9/dAOuJwpof3lgCkNV+ODdw3z8ldmOT8PffWTDmt/pqr32BrnLyseVmmtPNW1a0WQLaeu/WLFuC68nJKGlvw6SIZViyxV76DoNLk25ytW7kcphKmLQkwijSBIR49ZiwvUkGIcyV5toN9ozVfUqW01Rbu0915N0TISuHou+ojlzdLrMl04tcGS63GEhv1p4ARycKvPwxi4CAlpWHTtYjgGFukTMUGjYLrGQ8CdeJkhVr5GhW44ddVVmrCvGjoEkvQmD3kQITZHZOZhgMBUmrKtUmg5nc2ISMKIrhDQFRZExVIWXJ0vCX6UvTkRX2NATJV+zyMZ0+tbwZjJUhQ8/OM7HDk4zXWzi+T6ZiMaeoVTnMeNdUUKaeJ9vXiygyhJ1y2UgJV6vbrl89OVpHC9gupTgzTv6rnufZTjtosS1cp66KrdltERR4qMvTxMzVPyAm/qQ3Mb6GEpHOHilKGSIoOO1Ia611+c9JIRv746BJE9s731VEkLfmyLlt7Eero1bpPbv4iGF+yYyPLG9j6+fXWS+alKoi+b82Zwglj5zThTTpotN/AC64wZ3jqSEDFpI5YfvGua5iwWePrMopsdVmZCqAIFQZ5ElDE0hrKls7U/wnjsG+KPnLwt5ZS9gqe6uup5WDjgrUkCuKkijSzULWV4uP4OuKLxjTz9jXTEm8w2OzpRp2ULeyW8Tpf0AeqI6hqZQqDmd3ymyxGhKZ6np0rI9dMUhkQyTCGsEAfQkQuwfy6CrEp84NMdQKszff8NGwrrCgckis6WWkFoMhN2E6/u8ffcAJ+cqRA0hITVVaFIzHfaNpW+5LnMruBUfwERII2aoFBsWTdsT/jKq0mmApKM6VnsUI6LJHS/6qKGyYzDJ3pE0nzg0Q6Xl0p8yuHciQzbalv3LRPmDZy7ieAFNx6U3HiKqK+TrNrPlFhcXa+wZTneOpS8ZYigdptCwO1MOt/HtRyaqrzkRc2ymwuGpMiCaZcuN5/OLVSpNh1RYZyQb5qMvTzNbaqFIEm476mmrZ2KoMpmIhoxE1XJx3Vu4KG8GSchkRtq+aqfmqtiO33nPPUNJJOCO0RQ7BlLsGUzy1dOLbB9IUrNcTs1XWaiY7BtJ07CFx1V/MsxMqUlX1KDY9tTcPiRissWaaCRlYzr3b+i6IUFtJVIRnfftH6JQt5grt3j+QoGNPTHGu2K8Y08/z57Lo8gSb9reJ/y/mg4n56rMllr8/Tds5L13DvO3x+ZE/CfLjHfFGEyJOt1gOswfPldhptTEUCX2DCU5NV9rS9g30FWZnpgg/+frNqbrMVducdd4Bl2RaVoeE91RNvVG+dRhG88TzYqIrrKtL879G7MslFt8/VxBTOiaLr7l4XoepuddlXXMRvnZByf4V2/fzl++dIWnTi9yfrFGKqySDwKWahYzJdEcEuQFMaV7Od/ggY1dzFdWDxCogh9GyxFTen2JEPm61ZGmh3Y+01bNKpuiiZivWe1aq4ehqh2rFU0FXVXxAhjNhLFcn0LDRlNkchXrZjM268LzA2xX+AM/vLmbswu1Ts69EmcWqnzxxAKJkMYH7x5Z0//wVlE1HQ5OFumJh8jG9Pbkncgt7h7P8hP3jzNfaTFfaXJ8pkImqqMpYlL31EK1I4EY0mS6YwZLDVF/sF1B2AtpCvtH07xn7xC/+YXTHGgr6fmwqv7dmabT5E5DazQbJV+30RXh7zaZb7BUt5EQSiSaIhFcI30oI77DhKF0pORXYiipU2i6rMyyVTEAiOuD44tBlxvhB6IJdrMlU5UFC8jzoW75na6ioUokwhqe5zNVtNjYHWGhZjHbllgxFDFpoygy94yn6Y4Z3L+hm/fvG+FKocli3USTZe4YTnFhsc4z55ZIhzWGMmF6EyG+eanAJw/NIbWDJdv1KfsOnzg0w3AmylPyIr/8ps3EDFEQEuPjopv78OYeLNfn+GyF99451GFWFho2Z9oeB18+tUBYV9g5mESVJSEXoCn0JAx6EjqfODzDXNlkojtK3FBFU8b2mC41KTUcVAk+/so0g6kww5kIqbDOuVwNvdBElSUe2Ni19gldgS+emOcjL0/THTP4+Uc3rGkgOFNqdYz4Lucbr7kJthY0ReaDd4+wWLMYSIYItaVcQCxGywn85p4E411RnruwhOP5bRkpi/HuGE/u6KXUtHl8aw9/eWCahaqYHrprMElPwkBXZb50YoGG7TKYDtEwPUoth4guY2hiXDwIxLhw0OZ3eJIkxkURN/RgyiBXs7BX3M8rm1cSkAip2K5Hc73RMcDyrgYSDdOj0dZjVdpuo8vTjp7vU27agq0iSYxlo6SjOu/bN8Snj8wxW25Sado8e24J2ublP3L3CFFDpStmMFkQLOOtfTdv0pSbDpbrU2zY/PFzlxjpitKwPWzXQ/5WBBElUSjRFAiQOpIHwlBTyDlFdJUP3TvKl07Mk6/b7BlOrZo23NQbX9WQfb3wxq09HLxSYjAVvmmB5uXJYkdi9NJSnYbtEr9d1LmN2/i/Bi37Kk3Hbi/O1yrQ1UyPrhhEDA0vcCk2HV6eLLVlB/y2l6mQ7tvaFydXM1c1z8OagqHJlBo2lufTEzfw/ID+Nht312CSly4XkCWJiRUyel86ucBsucWR6TI/ef8YfYkQXXEdQ5WZKbVWkU72jqTZ2w7kLdejNxGi1LTZ1h+/jrF8rfTsW3f1c2K2wuPbepBkidFshLCmkI3pFOo27903xN7hFP+fz5yk1LCI6Rqu76MoktAF93xUWSEV1nn7ngEuLdX4H89cotyyO+fy/GKNgWSYoVSY2UqTjx2c/n/Z++8oy87zvBP97XxyqBy7OuduhEYjAyTBIGbKiqRESpZkOY60vOx7bS+vmes1c51mZM9y0JVsSfaMRqaSKZESRYoEA0gARAYanXPlXCennfd3//h2na7qrmo0mETJ/ayFheqqU+fs2uEL7/sEUBSEkHaN2YTOwaEsHzq+n8Mj+a6l8pfOLXEwtkyw/Yhc0uCVqQp9GRPHD7ds2OgK3QX77TK1NqLtbT0PXl65Ya1o38aW776JIi9PV9BVlWNj2xeBsknZBDMNhXxiazuPcuuG1UzL2Z5Gdmw0x2dekwqPY3doj5xPbr2R80Mhg8/F5sbwzQg2PBw3Z9Bsh4S+9W616d6wfKt2bmyUezMWpZaLG0R3VAwEWQw1tRtrOoG04Li00qA3bVFMWziejx6rqpqOR6Utf3eh5hA7dWB7EcOFBLoCs7UbjVEFKKQM/vnHjnJ5tcmx0Tx7B7I8f7XE508vMVJI8OMnxsmnjE3Wp7/81D6e3NfHq9NVKm2PtabDgaEsCzWbl6cqPLa3b8vsrnXsH8zyxL5+/svzU7LoWukw3pPmzHyNhh3wwM4bNoqZhM6+wSyqonTXVmGcVQvgxlKRKyuy4HJ0NL+J4fqxe0e4stzcUl25Dk2VjNYvnF1k32AWO7ZTvQuJjhfwzKU1TF2S/87M1zkykuPJLexuDwxlGcwmmIttRbu2QUjy3c3kubcLXZFk0sOjBfJJg4PDubdlO77NUHEXP6C4Wc1s6Cp7+jMcHclRjDPTx3tS9KYtEqZGztLY3Z+m7cpM0CCKEELh8HCWpw4O8mMPjOMFEYamUGl7LFRtuXsWgCJVtufm68zXHPYNZnjq4AB7+jO8MVPl/FKDjhcSRqJLLt14f288UjeE8ws1MgkDU1doOXKcSpoag/kE+aS0HyumTfozUvFKXNjPJHRsL6TuBDRqDiKSTR9dlfPOyV19XF1tcXWtjeNHTJfb5JMmYRThhhG5hMGLkxVUBVaaDrOVFgeG8pyYKNJ0ApRYjTCUs9jZm+b8YoNvXl6l4QT0ZVYx4niJ6XIbTVU4MJTj3vHCd3wtd/ckuLTcuu1r1i1pvVCgKBHlloOmShWH/Bk8sruHqXIHJ4h46uAAX7u4GqtKkvRnTRZrNkEU4XgRg9kEn3pkZ3c8zyVldtu+gSx9aZP/56UZ1pouGUtauCUMrWtnZWh3prD5y4gz8zW+da3M7v407zs8+D21wfxuYT0KIhKCz52aZ6rUYU9/Gl1TmK92cIMQTVNwgxA3iDYpPASy6dF0Q5prdreZ/t3AetSH7fmsNR3emKmRtjQShkpfJskHjg7z84/v6p7jL51bouX67B7I8L7DQ8xXO2QSKh1PPpOqovCfn50kYxlMl9u4gcxsvbba4oeOwLNXSsxXbRaqHeYrNjv70vzkyfG3VPZ4gWwk1zoe5ZbMw7u+1kIIwYmJHvozCVKWRl9GZhoHkWxEGZrK6fkaL09VsD2f/lyCvozFyZ031ngHh3KM5pMs1WxWGy7nFxvcO16IVUexgktRODCUpbflMV/t0HKl4mswazJVqnFmoU4haXDPeIEoErRdmQH24J5e7h0v8qIfcWJXET8QBGHIxaUmDTvCdQSRIqjbkmj/K1++xJ/HLhyrTZcoimjaPkEk7fSEkI2LlKHSk5GktalSi1cmyxRSJi1XNsl6UgaKCqWWj4KgrYQsxdaz6zuwjKUxkLGYLHUIBbRjxzNdU6UFYiQbNOuXJoggqSrs6Uux0vBYqtmEAtKmwv4D/fzI/WNv696bq3QotVzOzNeptD3ecaCf+3dIJfDXL61SbrskDY3nrpaY6E2hqXKuq9s+a013k8PZ28VXzq/wwvUSaVPngZ1FOl5I2w145tIqu/rSPLanh//1zy6w2nAppE0ODOU4Mpzj3zx9GduTCmoV2TwKEYzkLEptD4GCF4TM12w+e2qBb15dY6W+mYRZSMp5/sxcA19Il4y0qeH4EZah0psxpcLZDZkpt6l2gq6CK6EpHB3Lc2W5KedDZGPNUKGYMjF0jaZj37JOFULckH7F8CO5Js0ldZ7c23dbK0T4K9IEu12eAUhmtRvIxsDGV4ZCUGo4CEWqra6WWjh+RBDFm9GcyUg+weGRPNdW2ygofO7UAj95crybB7Ru+fD6TIWG7fPNy6scHMrR8QN605YMYlVgd1+GtKmjKLDadHljpkra0vnKhRU+eEx6hCYMbZNf6IeOj/Ch45vl3v1Zi3vG81xebpE2NWbKsmP+Q0cG+eg9Iyw1bKptj//+2jyzlQ4ndhQII8FPnhxnvmZjaiqaojBRTPH1iyuYuuzUPr63j3vHC/zxqQWCUIZFvlVOkRCCb10rY3shk6UWf3p6gR9/YMctSq29AxkuLTe78svVhsPAFozU7xTZhHFLc2E9sLWQMpgtd6jFRZBq26fUdkHAOw/0c2g4zxfPLnF+sU5fxqLa8bh3vMBspcPkWovrqzJnxA1l1ggCLEMlCiNApS9tkdQ1IiCILWi09XZ0jAiwgxBTlaGb61jPJAMwNWl51L6JmrzdRlUAUTyYawqMFhLomspUqU0YSZuKphMvYgOBF4RMlVp8+J5RntjXz7//2lVenaqw1vIZyEp7iYm+FE/sk6x+/brKy1NlzszX37J5OZRLsH8ww5tzVRq2ZPjbfkjDDu441HQj/AhZZVQgqWu0vZC+tMlizcUyNK6sNDkymuPwcK7LCqu0Pc4v1tk7kPmuMuZuRjFt8t47tOjZO5BhtJCkavs8tKv3bgNsC7wdddn0v/7QX9h73sVdfDswNzRR1pv0NxMeAwGVjkdPyiBjJWjaPpWOhx8INE0qoGw/4ndfnmO8J8lYMc03r6zx4XiNkLZ0fvqhCUpNh5cmK6w2XZ7c389EbwpVUehJmwznEygbLDxANjeurDQJIkHN9rrNlT94dZbFmkNvxuRnHtl5y99k6TJTCODUbJX/8LVrjPckeXJ/P3XbZ1dvelMxdKSQZKSQ5Leem6TpBCxUbT71yE5+6sEdtL2QfNLgjZlqN3vg/ccGGcgmqNs+Q/kExZTJbKXDoeEcGUvnjdk6pTh8+o9en+PgUI4vnl0mm5Bq5tWmbHAM5iw6fsDu/rT0P9dUXpupcXJXL64f8t9fm6fp+Fi6QjZhcmGxQdv16c2Y5JIG5xfrnJi4tYGQMlUacShvbpusr5uR2UZ64W9o9NyunfbAzh7+adrE0BXGi9tbE64XvNue4Mpqg2NjtzIQq50bmxj3NoSbybUOZpwDcL3UZu8dkEqcbRp59+0okEsZtN3wtk2ZpKHhxPaGvent82c3otoJ6N1iv/MHr853v94oRt87kGG8N835hRot784WKOuB3jdjtSkVBu86OMBiVWZrffPqGkG4ed22zpg0DRVD0/jQPf38yakFlhqyUafEbMu+rEVv1oqtrmGy1CKMZH6B7YfUbJ+1hrS4WW645JIG90/0cHyswK994xpnF1yev7LGSDFJxjK4vNzonu91256bi2x7+tPs6ktj6SqllsdcpcPXLq4C0vboXQflmvChXT30ZSxyCUmUAlis21Q7Hrqm8MS+vm4WMsim2MZr3Zex6Nu7+Zr6oWRp6xuUen1Zk3tjFcBspcOBOyBi/Y+CN2drXFmRZMjJUhtVgabj88S+vluu60y5zcGRLOeWGnhBhCroOqdEYnOmwreDTMLAMhSiSDYy7pQF38V3gfh/F98/BDftTU1d5cNHh2kHUqn+9Uur/PRDO/jgsSGqbZdS26Pl+Nh+RCFlkklqlJseTSekkDa67wGyqD6QsxgpJPCCiJ29KR7b28s3L68iRMSuvhS/+MRufvXr1/jC2SWZK6Iqd7S/FECl7WMaOkEo2e5OXJhvOwGfP7PEB44O8/feuZc/eG2WN+dq+KFgrJDg4EiOMBR88exSbFMom2V+EGHqCpWOTyFtkqo50p1FyFyjsaLMVl1rORSTJnOVDjnDYCiXpNbxeN/hwTh7tUa17bPScLm62uK5a2tcWm6xUOswkk9yeDiHqZtcXGrQk7ZYqjscHcltGi+/Haw03jqQLxTS+aQ3bZA0dPxI0HB8FGAgq7OzN0V/zmIwn6TpyEzYH7l/lN97ZY4/fmOBI8NNBnIJgppNb8ak0vFYqHUYzie5stLk3QcH8ELBuYUa/+Vb06iKnA+SpsZUqcWfnVmi4QSbCvx/FXFqtobjh1xYbPD43r5bMu9/ELF3IMMnHtzBYs3mM6/Py/pe05WWe1WbWkeKCU5M9MjmTrj9cC+I5yNVPtPr2ap3Mj3cXB9LxA3YmXJHvg+SpJNK6zy0q5dMQueZy2s8trcXS9e4viaZSm/O1Xh0jzz3nz21gKVr/PgDY5yZr1Nquhi6ylMHB1htupxbqHNoWK5J+uNc47YXMphTuLjU4NJSgyO3USuuNBy+fmmFK8stsgm924Q/MpLvzuHDhQRvzFRZqjkcG8vziQd30JOW7hjPXytxYbEJCHb3p/mXf+04Y8Uk11Zb9KZNimmTDx4f4txinYGcVHtdXGxwaCTHO/b3sdLwuLbaImtpdNyQgZxFb9okY+nMV2xWmw5tNyBpqJRbHoWkQcLUSKDQcUP+67emabkyL/nQcI7JtRY128Pzo+4FCSNpw31qVpKz3EASFuQ1VrEMmW9WSEvV0nA+yUDW4lJsnbrSdDkykmOiJ0nTDdFVaWn+2kxVktcigSIEpgpB7Jg2lE9KUl98DAIQkWCdpxgKSSIyNJUwivBCqHZ8GvMNmYUV30jFlMnDu+4s13Qdqw2H33xukmrHQ41FB5Nrbe7fUeT1GWkPemq2JsU3kWByrc2Hjw9TaXsUU2bXWWE7XF1pMl+1uW9HYdMeHuS5fm2mwnRJqvzunyjKGCIEF5caXFttkTKlU4QfRFimStbUySR0DE1FVxVUITANDVWRjgGl2DqyJ6Wz1ooIwohmGCLwNpFhLEXO4QvVG42q9Qa3qUHHDXlzro6mSjHDYC7BXKWD44doKtihIHRCxoopFms2bhCRS6g4viBtaQghyYfyWb6BUicg3IIjGSE/s+kEHB8t3Pacfs9HWUVR/ifg00KI6vfqMyxdY/vobGhu2OCuD5baeqtRkQoxIQT1TiA3+4oM+2vaPuW2z+XlBsP5JNXYmujfPn2JmbJDIanzkXtHeXxfH3sHssxWOrGyyKHphkyX2owVkxwdzXN0NE8USVsAJ4hox1YmnQ2SoNWmwzcurdKXtWi7IaOFJPeOFzYVkhRF4Z9+8DBRJPjjUwucX6h1Ja77B7P8xMlxfuelGemLHQlOL9TZ0Zthptyh7QY0IsHTF1aYr3Y4NJzl6mqLExNF3nN4kJQpvX//5M0Frq60WK47/Nxju2g5AV+7tMLVlRYDOYv3HBpkvCeFEvsArzUd1loubTfk86cX+ds32QclDI0fOzHGf3tphjPzdS6vNPlbT+75jv1P7wRfubDClZUmp+dqHBnJ8dpMlUf39jGYszgynMMyNE7u6qXSlkGQUi0YMNErsxfGe1LMVjpcXWlSTJvYXiBz5FQ4uauHZy6t0XQCTkz0sKMnRd32ubjUYKrUxvYC6Vsrom7Bs94OiOL7T4jYq3zDU+2EsBxLcNfPjqnJc9h0wi31VKYqG0Z+JIsxhZTR/V0/tmOsdnySpsZMuU3S0Jhc6/CRe0Y4ubMom3rAUs2m2vb5tWeuM1JIsac/w/nFOkJIVu97goHbNpaCSHB4JM879rt86dwSQSiof5sNsHXoGuQSJoO5RNzAa9NyA1QlQNNUHD/qSo7dIOT3X53F9SOurbb42DYWpXeKdbvJ9QD6bxcnJno4MpLH1NTv6H3u4i7u4i8n+jYsWNetBdPmrQWMlhuQtXRGciZjxQSn5uoEuiCMBAcGpbIjFKLbZNA3+NiFkWC14cjXDmf50LFhCmmTV6YqVDseQzmLr12U2Vs/cWKciVgNdmQkx2vTFTIJgwuLDXbElnWN2Dar6QRMrrWYXGtzfCy/JYHlwlKDSAiurDSZXGuhqSonJoq3KBOEEF0btPVgeV1TySfXLW7bLNdt6o7PiWaRDx7bTAIa2UCwObGjwDOx/eNUqc1LkxXKLQ9NU8hYGtW2j2Vo7OrL8MP35vncmwvMVOR7jxbl+/zRG/N8/swiAH/90Z2U2x7/17emKLU8iimDx/f105/ZemNibBjLrTssRuUSWy+5f+ieUX712WkAhgrbBzFfWmrwK09fxtRU/pcPH950PrZDMbX1Z4Zi+8bXRizWOyzUbBQFKu23LpqBzMPaCk4Q4foRURSx2tx+1a5tVBRq28+Z0nZaft2f2/pc7BtIcnqhueXPRnIJejIJ2pVbWYZbYbvX+EHEbNlGRaEvY3J1rc1gLkHblYrOdWRNFaEohJFgptxmR0+SnoxF3QnwwghTVfjA0SF+95VZhIAPHR9m/2CWtKXzyrQMUPeCiKbjc32tTdrUGMjJTWVv2mS8J4Wpq4SRoNLx2dUnbaDXm7i1jiTIrTYdPnx8hHs2qAmG80ke3t3DWtPl/vEi11dbrDVd+jLmJiWkotzIC244Ps9cWu1mkKmqgndzaNBbYKXh8JnXZaPyh44MMVtpM5RLsqc/w1curJA0tLe0NPkfDQM5C0WRKkkvbooO5qwt1QM9aZNLi02CMJLs5/W9bwzxHUjBVEUWlNKWDJ9/35Ght63Y20Ycexc/oFAVZdM+NGPpDBYSfOt6ibPzDfYPZlioygzyid4MU+VVOX8AQ/mIHb097OzJoKkKs2Wb//j1q0z0pHjvYXnvfOLkDuarHV6arLDSdPmdl2Zi9YOGgsIr01W+eWWFUstFVxX29mdwvICGE8oi5m2OXUEqykfyFjMVmZ+eMDRsLySKBOW2y2uzFa6ttGjYPpqqYgcRSzWXHzsxRtsLGS40OTCYYaYs1fOllofr11A1lWxCQ9ckqdoNBGnLYLnu8Eevz4MC7zwwEEc2eHzh7DLLdZvVpoupa1iGzIwupAz6MxZeEJK2dJquT8cPeP/uYd6YqfDiZIX9g5ktG2BhJHh5qowQkqzwVk0y9Q6thhUFBrIJAhFRrblEkaCQNMinTfqyFpqqEobSVUdblRlgKVPDDwWrLZd9AxkODGS4utriSlxben2mymLNoW7L+IqLSw1G8haVts///KFDpEydZy6toipK18b7rzKOjOR4/lqJnrTJa9MVDg7nuiSYHxRIi8oWh0dyFJIG81Wb/qzF4ZEch5dyWIbKO/f389jePiIheOF6mULa5PFR+bfNV22i2xSEBDesR2+apraFodxKKHx4Tw97+rN85cIyc/HaztDg0HCOFydLfPn8EgPZBF+9uMK7DgzwyO4e/uj1BS6vNPnf//wiT+7vx/UjbC/k9ekKp2br9GYsLEPtrpnefXCgW895cl8fBwazlNsuf/rmIg3b5+kLK2QTxrbKnj87s0Sp6fDyVJl80uQDx4YYySe7ucogXYRenqwAkLY0HtgpCUirTYdf+fLlrkNGoyOjQKZKLa6tyibIzz66k6cODpIwNP7DV68SRQ6qCucXG/RmLA4P50iZGi9Olul4IZ4fUWr65BI+WUtjMJsgjGw5NmkKXhgRhoJ7dhS4ZyzPUt2m5QYUkiZpU+P6aoswjEgYKlp84VKmznLDlnEoToCqyr2SQDZbIgGDhQTHhnMsNhw0VWEwZ3F2UXavHD9iptQmaepdF4diymT/QIapUgs/gkonIGmqFNMGSUON98chSnwPpU0VN4xu7Ddjjz0FujaLUayAWtfTqMBTBwd5fN8Ni/87wVLd4fJyEyEEQ3lpSfhg3Lw/MpLj7EKdwyM5+tIWz15dY2dvmr0DmTtyq2q5AV84u8R0qc3nTi3wd961p+teAvDViyusNmQtfjiX4NJyg4ShcWKiyGuxbWFf2iKhK5RbPrqnslBzeHGyzERfiigShEKQT0nlbhhFMt8tUmi7IT1pAz8ICSLIWjLROXClxbYnJMFk/dkF+RzrqhQBocha6suTFX7ygXF8S9rfRgJUAaaqcHJHgUAICimDjhswX7MJopCFmkskZJbf+mOuIkks8vs3zpECpAyFji+b3sW0uWX2+UZ8P6gGQ8CriqK8AfxX4MtinYr4XcKdlpUzptwc6nHodBgJwjikTUQCVZUb2Lod0HEDOl7IQk3aARVSZtdCb6bcQddUVEVB11WeubzKvoEMTcdntJCQoZ4pg77BDMP5BJ98eCdT8Y270nBwg4gHJoqM5JMkdJXfem6Sx/f18X9/a5oLSw2W6g7DuQQ7elN86uEJHtrdu+nv8MOIz59eZK1h4wSSQXllpUnHl56ux8fyPLm/n+euljgykiUSgm9dk96yF5YaiLhYNZJPcHJXLz/32K5uYPhgTloJtt2QM/M1fvn3TuGHEQM5i6srLfYPZng9ZXZVQR84Nsz7jw7x316epdR0Sd1mA7Qeii6jIL8/WLfSKaZNIiGZK7OVDp89tcjVlSYndxbJJQzSpsbe/gxjxSQ9aZOG7fPC9TJjxST3jRUwVAVdU7l/R5FSyyWXNPmR+0Z54VoZxw94ebKM7Qd4QUTO0vFDyQSzDAVL1TCFoONHmxiXGlsrvALAUhVypobrh6QMjVbcLF0/b93BQCG2e1ovLEZdOamqSEaMHURysrQDNEVwfrFBPmXGbAiFHT0pJnrTXF5ucGm5iYg/pdRyu5ZBWUun5QRYme2v7+dPLzJb6ZBN6Hz4+DC/8ezkW4YavhWEgKOjOZZqDg0nlPe7ItULfTEj5v/40kVySYOnDgzesOTZwGx3fJnb9XZzJT5/ZpHJtTZ7BzJ85DsM4L1d/sld3MVd/NVGawPZZZ344vgRN2t5/FAwU7FpODLT59BghjMLDYZyFgM5i519afIJg/1DWRZrNvkNCqQvnVvipetlrpfa3DNeYGHI5v4dRb51TeZYXltVubbWotzySJs6f/ddewGZGbO7P0PbDdm5wSbxA8eGOL/YYO9Ami+cWZLhyatNHtrVw/PXyuzqS/Ph48MoisK94wWevVJiKCdZyiAX7TdDURR+5L5Rrq62blF2OH7ImfkGtY6PoavMVew4G1XlzHyNfYNZdm04vmNjBX79k/dzYbHBc1dL1OyA0UIC2w8ZLSY4MJjjgZ1FHt/XDwJOz9cZK0pV3I/Fljobx+Ugkir1tidtR4byCR7d08uO3hRuIK/ZRhKIs6HYb9+hZd9WKiKA+VK7+3W9s7014R+9Ps/puRoK8Odnl/iFJ3Zv+bqkrtD25UxuaFsv86MNE/N2TSuA6VKLtiutuucrne1fuAH1ztZFqzemq91sosvLWzemQBbW17FRsXYz0qZO0w3Qu9X9W2H72682n9jXx9curWDp6qbreSew4uBoVZH3RdLQWGm6rLZcbC9kMGeRTxpdyyhdhY/cO8pKw+XUrMzteuFameFCkr6MRdLU+KV37WG63OFPTy+SiYOjd/Sk+PqlVZodWUSYrXTwYxasG4SsNeUmcZ1U9p5DQ3zrWpmpUpuMpfPPPjLRLcRMlztcX2sxVWpTaXv8/fT+7lpeVZWuE8WbczVOzdViZnKOh3ffYOGvNV2+enGFfNLA0lQm19pxpkvIsdE8fRkLTVX40PHhrh3i7TBb6XQbZ58/vQAonKbOAxNFBrIWoDBT7tzW/vN/NOwdyPIzj1jYXsBnTy3gBRH37ihs+dovnllipemgqwpBJEl1m4oH38EC/cZTp5Ay9U02u3eKv/rl7b9aMHV1E+m47Qa8Ml1hLs6tOrdQp+H4ZBI6Hzw+xOszMvdKVQRriszePrmrSMbS+czr88yU2jwbCVYaLj/z6ASWLi2PBzIWi3WbSsvD0iWBcKXhcGauRj5podIiCAVtL+SHjg6z0nQ5PVej0va2tLdVADeS9/5yw0NVpEp1fa4xtCS9aYuvXljh8moLU1PY1ZdiueZwfrHBVy4sM5C1WKzZXFlqkkka8ZgrrcXaHY+WrnFsrMDegYxkzbsBb8zUWKo7FFIGhqqQTxr8watzzJTbXF5pMVpIMjGU4r2HB+nPSPVvw/Y5Nlbg1GwVP4yYLXfkfl1XOTySww8iqm2X4k0q6fOL9W7RPGFoHBvNM1lqMZRL3KIcANjRk+DVmbe+5pGA+boDUUTHDdFUhXzKYF9/llrbp+0F3VyfhZrNSD7JYD5B05Z5LasNl3zC4FBslTpfs7tKgsWaTdbSMXWNoXySnzi5Y5Pqq+H4PHxTDeyvIh7Y2cOJiSK/8ewkb8zWuLLS4hef3Hp99xeBKBJ8Lp5rpkpt+rMWl5ebZCydv/7YTj758ASz5TYzlQ6f+M2XWKrZ7O5L89JkiX0Dct+ywNbrx760QdsLsf0IN4SksclE6bYwdBURRt3XJzRpKf6Re0Y5u1BnsWZLuz0UXp+uUGp5CGC54VJuucyW23zw2DCLdZuluk2p5fLOAwNkEzoXFhsEoXRT6s1YHNjQrLhZnDCUTzCUT9ByAl64XgbACbbfF6RNjZVIKuOPj+V55tIqx0bzTJfb/I14Xb8xw3Y9EmdnX5qdfWl+6al9/IevXaHpBNRtGbOTTRocH83TcQP+5NQCEfDE3j5+/ZMn+PTLM1xcapCydKbLbearNg/u7OHR3b08fWGZlhswkNXQNZWhQpIIycT3/IjrpQ5ebKO42nT44pkldvWlGS8myScN/FDQcALsQBAKhfcfHWCh6nDveIGvXlqlavvoqkJCV7FMjZShocdZVEEoeHm6guOFuGHEQrVDte11G6ENJ8ANo+6+2fZtqrYPQunWdxVAiIhKO6Da9ul4gYxBgrieHaAgSJkqZqx6arsBmiptEVNxfE413rcoCjy2p3fLHLzbYSifYO9ABscP+eCxYd596IZb1LsPDfLUwYEuUel269mG4/OZ1+aYXGtzYmeRDxwdjvc4stHWmzF5ebLCwaEcQRixVHeotj1URZX17IQu1+SuR0KT0QNCwEePD7PScPjD1+cwVOkAM1Nus9aSRIwoiqi2fUJu1KaVUFB3Au4ZyxFFgoYb0JtJMFZUObdQxw1EN8ZJUWC8x2K16SFERFJXGe9NcW1VWojavlSKXlppYntRN5dtvmZTd1bpTZuoqsrBoSx9WYsrK00Waw7+TQqwCEmi1RT52Yj1HGbZeBNx1uep2RrXVlu3tV7/njfBhBD/s6Io/wvwPuDngF9VFOUPgf8ihLj+3fiMt7JDBNk57M1YtJyAjh+iApahoejy/2sxKzVj6QxkE1xYquMFgrQpH5iOF0h5YMslDOXm09AUrq20GMwlWKramIZKywk4PpqXG8ULKzy5r48wkjlRigL9GYtcymBPf5qGE/Cfnr2OiASvTVeoOwHlpoPthZRbDmM9SRp2wJtzNfb0p0mbUpHy8mSZL5xZojdjslhzCIWUDIZhxMtTZc4u1PnEg+NcWWlyZr5B2tRAkSyIlKnx2nSVhu2hKZBLaPRnNy+k3n9kiNPzdS4s1bm81KRq+/RlDHb0pElbOntuyv1SFIUfvX+U2UqHHfGG2g8jlmoOfRmThhPQkzb5yD3DXFlpsqNns01SEEa8EudcPDBR/K6qZd5zeJDTczU+eu8IO3pSGJrKM5dWZdabqtBwAq6XWnzxzBLVjsenHp5gtenye6/M4gURS3UZWjtT6eCHEZqqkjQNiimDZ6+scXQ0y+m5Oi0n4NWpKqauYumq9AvXFDRVRSWi4dw6o9+ubGZoKoWkwaIX0oxDcze+w3pzKYrteVRFqsuKKZ19AxnOLTRixZlkcETx77fckN6Miq7ChcU6Q/kkYQQfPj7Ch48P8aenl9jZm2Iga/HbL0zjhxGlloela/zJm4v8/OO7bv07IsGr0xVOz9fIJw0m19o4gVwo32nWxnaQ8uE6+aROxwtQFTB0jf6syf07iizUbBarNtWOz1SpzQePjZA0Ne6JJ5i67fO7L8/iBiE/dGSIQ28jsHu2LBdss3dY+PtBR6Xt8bWLK+SSBu85NPh9UWJ+L/B2bA7v4i5+EFDfwGRtx/lLWz1969a4th+wWLPZP5jh8IjM1Dkx0cOBwSwvT1X4zOvz2F7ANy6v8b99TKfU9vj1b1yPCzoKR0eleiyb0DE0BT8UcXZpk6F8QvrBx0hbOn/90Z0EcXbmOsaKKcaKkiGWMFROzdbQNIX5qk1fxuLaaou2F5KxdI6M5DkS50W9Nl1hsW7zxL4+XrheYrbc4dE9fd1C/EAusaWa7OsXV7gQb9KKKYOEobHScDg1W6XlhlxebvJ337V307iVMnVOTBQRMfvv6moTx484u9DkPQcH+OAx2aTzg5BcwuDV6Qq7+qQtYibO+8gndY6PFJgud7D9kAd39lCzPQ4O5Tg4nJNM7jekUuVH7x9jKFalBBsmtzttoDjb2A5eXm50v94uNwxks8oPohv5n9vA3XBsHX/rptrBDXNh5jbkpXPzze5m5eWpyrav24iB7NYWhpmE2t3MON72K6CEoXWPezsLSYBiyqDpBiRNbVMW6EYcGsnxhXMrgGwAbMRoMcnuvnTXWu7twA1lk3G4YGF7grrjSyVCJDB1FT+I2DuYJWmoXFppMppP8up0hbod0HIlUckNIsaKCQZyFvsGMoQCvnxuibWmSxgJLi42qLQ9VhsOVVvaie/oSfHOA318/fIabhAyW+ngBhHnFuqMFJLsHciwfzBLy5Wf8+Zctfvs7elPkzJ1EoZUzn/p3DI//sDYLQXS9VsrY+ns6s+gKAqLNZvffWWWxapNX9YiaWgcH8ujKHLzv27Vs479t2G3hpHgqxdXaNg+D+3ujW1ape31M1fWCCPByZ1F1kdJy/jObL/+KqInbULa5OMP7qDS9m7Zl11dafKt6yX+4JU56o5sFIs42wexzqaVrNlvFwldoT+b4PF9/fzoibFvy54t/ZdzGfo/LG5VGypU2x7LDYdavK/uzVgYqsJQThaG56odua9XZC54elIWHd+cq1Fr+/RlTRqOz+ffXIwz0fsQQP2Sj6ooHBrO0nRCdvenSZka+4cynJmvd/eZLS/AUKV1bscLcLzolv21LJSKOJ9cYAcRihCSDKIoTJXafPrlGQayUlUbxeunswsu1dgpZrXhEgGW5tP0AvozFjt7U5Q7LqEr99qrTYe/dv8os2Vpj7Z3IM3p+RrVtgsIqh0fXVUZyMkxtOX6rDRdwvk6GUtnKC8jDXrSJrv70lxaadJwAyxdFgel7Zzg916d41MPT2yy199ooZexdL50fpnrqy2SpsbPPyb37hvrLaW6fWfXXIAiBE4oyRZWnJ1W7XisNGzmKjaDcRxCqeWxoyfFvvjrz7w+jxtEFBI6R8byzFds/DDiJx4YZ7FuM1ZMcnm5yUO7e/jEyR0oCizXHfIJSXBpOnF2zNurR/+lhKIoWLpKxwu3nfNWG05MTsu8ZUTFd/fYZFPGCyIsXaUWNwzanmxkzJRb/OmbC3zx7BLLdQc/kplQYz1J/tmfnqfS8tjOdbvU9jHUG3si14+L23eA9ayx9ZpYIBRsL2Sl2eHsQn1T9ljoBF2LRQ3BfM2m0vEYzSfRFIWMpaMoCmlL42ce2cl/eX4Kxw8Zyif4W+/Y021EbYdvXF7l7EKdXFLnvh1F9m1RfD89V6Ph+Lz/6BCLdZtnLuk8fX6FMIp4c06QNDWG80k+eGyIExNF0pbGasO9Zb3/5P5+FEXmQL00WUZTFVKmxr7BDN+8vMY3r6yxdyCDrip84sEd/L137eXScoNzCw1enCwzmJVqJJk5Le0JS20PoTT5wNFBHtrVy2den6Nuyyabp6vYnk/V9tEQnFmokU0YqIpCPql3HT5CIQgCQX/O4tRsjeW607XQTZoaE31pWraPE0YcG8lTd3yurrS65LjFmrQGVwFTV9BVBV1RyCQ0okjgBkKuY6LN+y8nuNEIXW/gqIokxGcSRtfacd2Bqzcj44pyCYOxniQvXCtvsvL77ZdmWWn7fOLk+B2vawZzCf7GE7up2z5HR26tNW6X8+f4Ia9OV8hY8r6ZKXWYKnW4utri+lqLcwt1/sF7D/CphydQFUm6WG/sfPHcMi9dL7PcsMknZH7bWDGJoSlcX23z2TeXUBTBQs3hwlKDX3h8F20v4KWpMqW2R6nlSlmKELdka66LKQAuLLWotD38SLDScPj4yTFGiimurjRxvYAIBU2JSW2xI2YYRcxWHQxNwQukEnuhZrNct2MrY1m3VmNR0lLdoTctYwiurTSl7W5M8JOZ43TjqqJIkE/ptF1piSiQyr66e2OQqXXk3/cX2gQDEEIIRVGWgWWk0KUIfEZRlK8IIf7Rd/r+Nwe1boWEobLScGLmpoIfCXRNYbwnTRBGVNsKCUPDCwVFQwYRVts+oYAzC3V2eWl2xozgSswkUBWFMIpo2B51O+DERJ6VmsM3r5Zo2D5BFPGHr89T6Xj8tfvGODiUpZgyiATsG8zyn75xHdcPKbVcqh2ZQZFPmRwbSyGAI8M5fuPZ61iGxpHRHClDpzdj8upUmblqhysrTfqyJvv6s4wWU0QiYrZqU0gZnJ6vs6svw3LDoeUF6KrKyYkeXp2ukDI1Wq5CIWmyf/DGgxpFgslSixeulxnIJnhoZy+vT1cJwwjbi3h0dx8/+9jOLVUtKVPfJM38/OlFZsodluo2w/kkfRmTTz48sWW2xptztU2S3yN3GL5+J8gnjVssmY6P5bm03GC61ObxvX14fsip2SqRgM+8Pk82IRle8zWbkXyCjhdiezJcMWPpHBjMslS3ubgki0NpS5dhj0KgoGOokE7o2F5AQoNKJ7qt28j6ZtQPRFcp5sXFxYSu0HbFLQ2wjRDIySVl6OwfzLDadGk6MvE6l9A5NprnykoLP5Ls4eW6g67JjA/bb7PScPgXX7zALzy+ix+5fxQvkBaDfuzJ7Mczi76NLdHZhTovXi+jqwppUyPTm6LpBLwWH+udceS3hh9By/HpeCEJQ6U/azFeTPHo3j5+9tGdfPqlGaZLbaodD0OTA+WT+/p45vIqqw2Xnb3pLltkvmq/rSbYOw70c26hwfEfQAZyGIm33cR6bboi2XpVm70DmVuKJndxF3fxvcFc+Ub4+GpT2jrcPCdIUa9C0lRQBFTbLjNlld398ll9fG8ff3p6kSvLTcJIyE2oovDZUwsM5hKkTQ0/jDg0nKMnZTBT7nB6vs4nH56g6QS4QUhP2sTxI6mO2gBdU9nO6VZVFT527ygzlQ6FpIEbRJi6yq6+tCTYbEDHCzg1W4ttMmq8PiNtGJ6/VuIpfYBvXF6lP2ttYsStY75qk03oaKrCzzwywZmFOs9dLbHccBjKJUhZ+pbB2YqisGcgy/PXyqRMjelSh/6sRShubDq+eG6Za2tNlhs2XhDy9PkVTu4s8gevzrFQ7XBxscn+oQyWofHI7l5+8uQOaeegqbw2XekqVearnRtNsA2T8u0s4Az1hu3GaO/W9jaz1TsjWty/o8hXzq+gqwrHRrefy9Z5YV3r7y3QsL3u17ddQqs3fqjfYWViu8bbuQ22hBtzUW8H6zYq6rmaTSSkf73n+1tasT2ws6dbINm7Yc47t1Dn6fPLTJU6iG9zkSKAUlPuB9bJSGlTJW1qlFoeKcvml9+9n9lyi1995jprTbnBtzRpe3VoOMtgLskbs1WCQPCnpxdZa0qVQiFtMtaTJGXq0oomEhiaykrTpWoHHBstcH6xDrj4YdQtSgHcFze880mDezdYHmYTBv/kAwf583NLPH+1RMv1ef5aqZsrCJKF+vWLK8xVbX70vlH2D2YpNR3+jy9dYqFmY+oquqYQxAWjn35ogrSldd0k7gTXV5u8OiX3IvmkwccflNmC11ZbvDpTIWXqOH7ER+8dQVWUTQrQu9iMvozVzWZbR73j8b9+/jzX1lqISDa5q51IWr6LGwou+zsJAwP82ELHMhTWmi5uEL7tLN7e27hL3MUPHvyb5rpcQsPxZDZMEBMAVppOrKrwuGe8gBdK9chANkHLlXnREZBLGAxmE/RlLXb1pZmJiYdpS6NuexwYynJ+sUEkJGHhwlKDgWyCUESM9yRZa7ooCK6vtlhtutQ7PrqmkE1q1J0QHZl3l7VknqqqKBRjpxdTFfiRIBIRAoHtS2JzreOhayoL1Y60/xUCbcMcDjJbUnghK02XtKlhexEIgRPCVKnDv/jCRR7d00vd8Sk3vVg9BSt1h6YVUkwZHEln6bgBVdtncrXJxaUGgzmLfYMZPnzPMDPlDnv604RCFgvTpiQ7eUFEKGRxt+UGm5pge/oz/PgDYwgB4z0p3pyT6y/Xj7p1so31llMLN8g320EF8kmdo6MFmo60iMynDEaLScJIMF1qEUSCpbpNMaWTMA2+fnmVlYZDb8ZiIGtRbrsYukLHlZEj9Y7Pbz43iaVLMsaFxQZn5+v4QcRwXl7nUAgUIdefSaPM+44M3XJsl5ebnJmvcWQkz+Etis5/GfGjJ8aYKXc2uTJsxBfOLlHr+FxYavB33rHn+xaxoCgKP/HAOHPVDrv707TcgDdmqkz0yhzR+WqH12eq1G2/64ygKSqXl1t3FIkRRjf2RLJJddPns7Vrb7hhrasACEHL8fjbv3Oq25gxVFloV1UZd6MoCkJEcQaZwkrL5T0HB/jKpWWSusGbc3W8UPC+I4OcW6hzZCT3lg2wKBK8OVeLLasF9+8o3vKa2XKHr1+SOatBJHjn/n6+fG6FhKGhKjoo0q3qykqTx/f1kU8aNJ2QN2alMv/jJ3d09x8AT+zr5/BIjv1nMnzuzQVp/2fprDQcWm7AxaUGT+zvRwjB2YU6f352CV1T+aHD0nb6pcmyrF3GTmhtN0Rt+/z2CzPSti+bYN+gyYO7eui4AQ3b5/RCjfMLTbwwotaRxPQ1XSOpK4C0RX32Wpnd/WmatheTb6RF6q6+DMWMyaqikAgickmDnrTFSsPF8QL8DfdABLHbgcBRI/JJg/t3Fqk7PtdWWrhB0LXf23jvrN8LIJu2SVPDMjRGComYoC+buHt60zx5oJ/FmsNLU+VNziWaCpGIKDWljWPxbSjCtlqrXlxqcGWlyb3jBSZ6b/35S5NlTs3WAElu2tknhQjnFuosN2wadsDvZKf52+/Yyy89tRc3kGP/S5Nl5sptFus2thswlEvy8ZPj7O7P8NsvTHNlpSmblLHFYNv1+ZUvXWKt5cYEkAhFUUiZKicmepmttJmryBw9FUiYGn4QYhoqxH2TSMh9/u+/Moeuqzy4s5coivjapVVs/0ate92xK2VoNF15f4VCcGm5gRN3yfpSJp0gxPYiOq4r57Ug5M9OL1JqyX2QpqnoioIXWzGuX9+etE5fJoEfOXjR1rE7mqZw+C1qvt+PTLBfBn4WKAG/Bfy/hRC+oigqcBX4jptgb9Wl1RRZpLjhRCO/qDshYalNX9YknzTxw0huThM6a4aGqYcEoUBBMJi18EOBpqhoKgSh7D6X2x5uENGXsTg1V2eq1EZVZEfeCwWmpnJhsUlCX6Yva7HccCi3XEYKCe7fUaTtBUyttmh50g9632CWiZ401Y7LN6+sMVftoKkKfhjy8O4+nr+6RrXj03EDBJAy9LggleKhXb30pC1SsYXJazNVntzXz4XFBn4U8cJkmTASPLa3lzCCkzuLjBaS/PEb8wzlLS4ttXh5qkwxZVLOeXziQTnhPX1+mZSpcWa+Rt32qNuyYZgwVKZKbYbzUhK7Ees5U6tNl6FcgnLbww8Fpn7rhL2xcPF2NtIgbXeWGw67+tLbMoFvRm/G4hef2I2mKiiKXPT2Ziy8IGJXX5q2KwfXgaxFNmGw1nKZr9rUOx5zoaAT/7zUkszchK6SMjVySUPmMYSC1aaDEILaWwSur0s4NVWls6ESo+oKAzmLuh3QdG9layk3rQgcP0QBrq608EI5EClxEVDXNfYPZpgstfHCCD+SslRDhcDQiUTEYt3m3331Cp89tcC+gSyHh7PsHUjz8mSFYpwx9vjevi3/hnULzGzC4N2HBklZOl+/tErOMpjlzphmt4MfgakILENjvJDi8b19/PgD42QsnXcfGuBzby6QS+hcX+vwTz5QZKluc2q2hhqzqg4N52g6Pg9M3LoouR2OjxU4Plbo/lvETInvNIz4O8Wl5QZfPrdCT8bkJx4Yu+Oiw1gxxYUl6RN8c9HkLr77eDuKtel//aHv4ZHcxV803A1F9vUvb+4BCORGSjdkwUaEgrYb8rF7RnnXwX6+eWUNIaTP9VOH+vnG5TUQkEnoPLCzKG3XIoGmqTx7tcREb4rTczXesb+fQsrkv700Q8YyyFiwb/DtNcAHcgk+du8o11dbPLirh91bNNCFEJSabnczUWm79GZMyi2P8Z4kL0+VWao7LNUdDo/kGM4nCcKoOw8fGytg+xH7BzM8sa8/VjML9g6kedeBAYbzyW2ZdLmEznA+QRhFsaWzzvuP3iiaVNseKUNjriLtlYYLdd59qB8QtLyQXEJhutzh4FCWlYbbbYCBVExNxXaFG9VTG/sm3m0kz5mEQa0j7UDUbSz75iutLb9/Myptj0xC32TdsRUMTSEM5EYmElt/5vWVGxaMDWf7LtCnHhzn3zx9DVWFX9hCCb4VtpuTTkzk4Tn5dXabfDSA6gZLyAtL2xfqNj5DlZZLPn1rk3Gp5nSXShszzSptLw5mVjANheDbbAg4GywuhZBr2JShstxwqHR8/uUXz9Pxoq4aVAi5gfvrj+7EMnXmKh2WazZTa228MMTUVBKGxn3jBUxdY6yQ4PhYPiZjSVeFhK5yYCxHNqGTNGWw+bq96Jn5GldXWzww0cNPPzxBT9rctHYx43D3hZqN60f03mSp9ezlNV6Mi6RvzNU4sbOH3391Tga/+yET6RQfPT7CF84t8dp0BV1VbiGa3Q5RJPjS+WVen6li6tISp5CShZaetMx/9UNBb8a8S9T5NlFpe9LBQEinFF1Ru8VziMPivwufE0Yy0+3L51fJWCbFtLnJyuxOUL/N2HMXP3i4uehe6fh4y010TZWONJEgqWtcXmnxtYsrfPD4EKtNl4FsgoVqh+FCqkvg01WFkUKS9x0epDdjdZUXf/T6PFPlNo4nla+Xlpu4QYimKNh+yM6eNCOFJKtxHnkYCtp+FM+uAtuX46yPLH47vkBXIWloOH5IteN3FSEo6zZK8llRVKh3XDp+hNtwGS0ksIwEjh/SdAJ6MyZNx8f2IoIwwgtkgW6deBJEUm3WcUNKdZfpSodACMJArilsL2QkZ/HxB3fwH79+jbmqTRBGpCyd5brLF88u0ZMyeXRvH6OFJIt1aWWaTxt8/swio8UkSzWHh3b1MJxPEkUCJwi7tZOx4g110PsOD/HmXI0dvalunWVjvcXbxp55IyJkbuBUucXR0TzD+SQTvWmeu7LGkdEcuZTBbMXGCyPenG9QTOm4geCK1uI+SyeX0PFCeXw9GQtTD7D9kFScUW7pKnXbR08rXF1t4ceDVBBEXQLM0DaZkF+7tILrRyzHa8ofBMxVOgjBtllQb4VswrithXDK1Kh1/K671PcT+ZRBPpWPj0Pv2if//iuzfOncksyEi4vfYSQt6u40/OYWStSG30sbMkdqK9XyxlKYAExDZbrU2ZQTFglZEB/KWRwfLdBwfSotn5YrCdbDWZPPvLGApsCS63JgKEsYCfb0Z9jRk2JyrU2t421SzE+utTgzX+fgcJaDQ9Lm88hInguLDY5uQ1BLmDJGJxKia8HXnzUZ70mioPCO/f1cX2sz0ZsiG6s610ncIm4QgHTaWm/KnV9ocGquJjO3FJdvXSszUpAN6sWaw5fPLXNpqcFizWax5pBN6Lzn0CBuGNL2QtpuiKUrKEIhbep4gVSzZqs6mqLy4yfGiAT82ZlFJkttetMWlt4iQiEIZVPECUI0TUdXBJqhEkYyT01T1dgmTwFFYa3lMZJPEAmZa3t1pYUfhVTa7i0qQakOktc0jMD2wi7JYqSYYHK1TQCE2+y9TE1Bj/8zNLm/M1QFB9kPmK52yMxWub7WlmN/dONeCiO4vNLiod29FN4iU+qtEEaCp8+vEAnBWtPtWl1uxPrYrShyjsomDH7p3fs4Nprn333tCpaudfc6iiLr7//26cvMVjr0Zyzuia1zV5sO37i8xlrT5cJinabjI4Cm65FJGHS8kDfnqlSaLk4gLQMzlk42oRNGESOFBHXbJ4wEo4UkbhBKgmEsjEgaKl4Y4fgRbS9CU+CbV2Ru43rdGSRxopg0yCR1HC+K88HkSe54cp5WBPixElsKMuTxdNyQdiziiBSFrKXGzjUKG00RXV+w0nRoONvHB/SlTM4t1nl0z9a1a/j+KMH6gB8RQmxyHhZCRIqifPi78QEbw+G3QihuVc+sw4tP7kRvioShUbd9uWgJI1RVZoUJBOcWG2hqbC2HgqHKhz8SshnieAGltvT+DxDsySc4Pprnjdkajh9yba1J3fGpdiST5/JykyvLclFxYmcPf3Z2kbmq/H0viFio2TRsn4ShMZC1GC0keHO2St32aNg+DScgZWo0HJ/jY3mur7VpOAGjhSR122eh5vCxe0bJpwyur7V46XpZ+sDWbd5zaID3HRni0y/N8p++eR3HD2nHjKJdfWlqHY/DIzkqbY+zC3WCSLDccMkkbP6/f3aRPf0ZDE2hmDKZLrfRVIV/+L4Dm5gSP3RkiDPzde7fUaDS8dg3kOX1mSqvTFU4MJTpTp4AR0bypE3JAH878m4viPi9V2exPWmT8LF7R+/o9y4uNXj6/ArFtMGOnhSvz1TJJXQGcwme3NfHn56WTJvJUptcwuXxvX08vKvIZ99cIIrg+lqLY6N5Op6UVgeRwHYDiimTvKWz3HRQFAXHj7rdaV2qTW9RRQlkMLTv3vQTISTjf4sVRJfxEkMBRCSzZoIoopA0KaakJ+zuvjSuFzJZaklbTkOlYcf2ihH4kU/HlcGi02ttNEXKg5+5tErG0hguJLH9kKW6g64p/Pzju25pVO4fzJK4Xy5W1xd+P35ijP/41SvbsnfeDgQyK6fl+FxebXJgKMPllSZWbNFlaCqDuQRDhSTFlMmnX57l9HyNkXySdxzo35KRczPabsBnXp+n7QV89J6RTRsJkAuRP3h1jlrH54eODm5SPX6/cXm5SRQXnNea7i3Huh0Oj+QY60l2i2x38e3hrh3jXbxdpCyVui1XsUY8eG/HapSWIwJDl5Y4l1cavD5bASE9vMNIMFJI8A/fd4DLyzKnc99glhMTPSzUbP7w1TkGshb1jr+JPbunP8Na02U4nyB9G7KJF0QYmnJLw2lXX5pDwzky1q2/6/ghv//KLLWOz0DOwtRUHt3bRzFl0o6L3Kdmq0yutckmdIopGf796ZdnGS0k+bvv2sMje3p5eHdP93M/dHyYa6stjo8VbimCrDYcsgmjW9DRNZWfPDlOEKtlokhwaaXJr3/jGmMFmfN5daXJrr60VJMJwX95blqyE3tTDOUTBNE6eadNEEnWeM32ySdllsVzV0s8f3WNH9qCkbydzQvcWLoLIcgkth53d/ameWX2rRthvWkTI/a0zyW335zlEjpOy8fQFXq2yAIB8DeQbm43R19e6aDEVlaXVxu8l+HbvFrC3SYjzdINNOQ6KLfFfbTV8ajR9id3YxBzb3brQtlqw+6+X82+cVwnd/Z0LViWah06/neeTpTQpX1jzQni/YHg6kobQ5MFA4F0pfiZR3ayUHe4vtpkvupQ7viEocDQFJIJnRM7CsxVOgzkEgSRydRah3zS4P1Hhrh/okhPyqTm+Hz0nhFsL+DKSotffeYa/+wjh1lrykZfEAmqHY+UqfE7L02z1nT5kfvHODiUI5sw+NTDE909w0YIBZbjkPLRfKKbH3VgKEckBH/7HXv4/GmZl5oynbfVAANpUfLSZAVNlXkPuYTBazMVyi2XKystjo7muk3yu7hzLNZsLq802VFM8dWLK2QsncAQPHVggM+emv+OrclvRkJXuo4E682Hb4dclbxrdfmXCjdHuqdNnf6sScsLMUKNwZxB2wnoz1oYuirtMvf28dWLKwzlE9w7XsALJClgtekwXW7zz79wkcf29aEA5ZbLS1MVokiQNFR0VbBY68iCKoK67ZFL6JiaQtMJ8AKxqfimKQr+hmMUQlp0+RE4gYy1gM1Fdx0FQ5V5Kk076KpqQwFtL2RHTwrbl4Sdg4NZVlsupaaLENKq1Q1ClEh0Pz9j6VQ6Hh0/IBSy6KdrCooi5Dqj4/P1y6vSZiwICSNBztJYargs1Ry+dG6ZV6erHB3N8bee3I0XRvzWc1M4foQXRvzc47s4ubMHIQT/nz85z7XVJu8+PMgv3lRgTZoaPWlzUx72xnrLb3zj6h1d82pH2hK23VCSpNvz6JrK1ZUGiqISCfm366pC3Q6IIkEtJpxcXm5S6XiMF1N8+HiO+YrN67MVXptuI4TgI/cMM5hL0PFDHtndyz3jBb5ycQVdMXn3oQEShkbvhnFltemQsXRSps5IPimJ2IUfjLni2mqTz59eAuT69XaWwN8uPnbvKNPlNqOF7Ulh308EYcRr01XqdoATPyMikuuPIJIqrI0KjjuFoUMY17fbt1lg31xj6txkJ64SZ7aaMq7m7EKd4XyCtaZNyw2lcrXlIYSg40eEoVR+Prmvn81hH90AAQAASURBVOW6wytTZa6vtbEMlZ9/bFe3dvLViyu0XWlHvX8gi6oqvPfwIO85dKvLxToGsgl+8uQ4LddnT39GWlY7AYWkycdPjrN3MBvbvsnfr3U8rqw0qXY83nd4kKF8gj95c4GzC3VsL+TgcI7VeK1Wbnu03ZBdfT5HR/PUOh5N1+fVqXLcwDOwdJWG4/P0+SUODucoJA1W6g7VTkDa1LAMqfIvJk2W6w6HhnOcX2xg6SpnF+qcXajTjPO1VEW5ocQSUjllxtmNtheyVLfxQ0Eo/WYpt1xJ3rMD+jMJOl6EqanUmx7uRgURcl2fNFU8P+rurXRN4eJSg44nxxcvlET+TddakeuSvkyCmu3TnzEptVzWmh4g659BKNAUSYx8dapKLmlQ7wS3qH1rbZ9vXSvzS09tdtOIIsG1tRb5pMHgFrb+N0NVoCdtsNp0SZpaV3W3ESd3FulJmzKOKX7PthswVW6zszfNnv4MP/PIxKbfuboi7QnnKh3+4fsOcHa+xvW1FpNrbS4uN1iq2ZTbHlEk76eMZbKjmOTL51e62dQKUHcC2m5AEAlacUPJCUJaywGqquAGcv4aKyZ5cFeR12Zq8lrGx9FyA4jAMlWEFxEhc0PzSZ2GHdD2AhRViec/FVWJcAPpbtbo+OiaiqpuHhlSCQ1DVUmZKkEI6YRBFEU07KCbr97yQvC4LVp+1M0o3w7fjybYvwNQFGUjPawphPCFEBe/Gx/ghW/NJNtqCF33pNRVRTZDZqs4XkTa0vAj2WqIAEtVqXU88gmDXEIu+DKmxnLDjXM0VBw/xNAl2y5r6QwVEvTlEjy8u4crcXbG7oS00ntzrsZ8tcNsRSpz5KAR4QcRizWb4XwCQ1XY1Z/hyGiOgUyCz55aYLFm03R90qZOwlAZKSQZzCV4faZGMWXw4vUyQ3mLF6+X2T+YZa3p8PGTOxjOJ8gnDWYrHRTgmctrTK11YnsgmUEmhFS2qarCx0+O88mHJnj6wgpeIItBWpyLNluWSrfxYpKWKz13AV6ZqvDYBqXQeE9qU0NrrenyJ29ex9I1Li41efehwU1Ns+2k37e9pkLgxqOWfZt8iZtxdbVFJATllsdCzebSUoPVhsuDO4v82jcnmY8zFhKaiqHJ83xhqYmhaThhgKqqNJ2A0WKKtaZLreMTRTBf69DxZAaapctzFsWFD0MDRVHpxMdrqLLY2YkH//XG1jojwQlhse5uy/RZD42UrBtwZf4sQsjPfdeBQYIooidj8vR5mYfhhgI/DLqbYSU+hlCAEkp1WMP2mS61UZDWFuvHNVyQ2WHbWY/ezHpaiS0XvxtNMAUoJHXcUOB4IS9PV9g7mMULIuarNkdGcvRlLN55oJ8LSzJD4/hogYGcdUcNMJBWXOvqxcvLzVsaS2tNt/vzqyutv9Am2L3jBdaaLn0Zi6E7mIQ3YuNm6C5u4G5j6y6+l3A2bMzWGYpbjYtJXeXQSB43iBjMWoz3pIgElFuShZhOqOzuyxJGMjfpQ8c3NySGcgkODGXpzZg8dXCAgWyC03M1ejMmj+zp5d7xQjdkfiMajs/r01XWWi4LVZvRYpIfu3+s+7qz83W+enEFU1f5qQd33GIPsdpwu8qkQtLcdFyFlMz7yFg6P/voBBlLKqb/+I15FmsyjHq2MszBoRxCSJJJT9pkd39mS8XZi9fLvDQprQ9/5pGdm5jN5xcbeEHI5Fqbz7w+T8PxSRoaE70pSZTIWfRnLYbzSf7s7BJtN+De8QI/99guLizVObfQIGPprDU9Ts/XuLrSYqyYlJ7zfsjFpeamdc46bkcpqMVFt0DAXNmhmL61YDPec2P9c7uyRhD7sctA5+1fKWJ/dgVlW6vGjb2l233mTLklyTgCrq/emW3j1aUG+4YKt3y/5figghKxydP/drBvs7Tb+Ba2F5BL3VqEL7dvNLdCceOPTpoa7z86xD3jec7M11lt3Vne2XawNAVFVag6PpoiQ8AjAaoi11GmLlmUQgi+eaWEHwrWWi6OH3b97hOGxsdPjiMEXFppcnGxQdbSCYVkwA7mE7zrwAC//s3rks1aapM0pR13xtL53KkFPnLPCI4fkU3o7OpNc3W1xTcurRFEgvQG2/JswthkpdU9p5Hg3QcH8MOIB3f3kjJ1PnrPCE9fWCYSctOrayqHh3NomsKDb1P5o8Zkt0rLY2ev/Pz1HFuA6XJnU6D4XdweU6U2ZxfqnJmrkbZ0XohtYd99aJBdvWn+2v2jPH99jZXmW1QM3iakJY2FrsLfenI3Hzg2vKlYfacod+7MFvUufjBwc4H3yf39TJfblFpurFaIODpaIJcy+OCxYQayCd53ZIhXp6ucma+x0ljmH75vPy9cL7NYc6h1fApx/cLUZK1FBVBlpvb1UgfXF+RTKk3Hpy9jsVhzmOhJoioKSryS0lQFXYXhQkLagXkCDVBjBVgjJprKkuxmBJFAKEIWeBWZQ+PHk0vD9klbOglDkE1oNNyA8Z4UhZRJte2x2nRREaRNjf5cgoxldGtCxHOwqkqbMoEkGTlByKtTVRZqHVpOQCgEi3UXU1NIGCodP6AoTM4tNHjq4IBs5EWC/qxJT9riRLyvrds+V1elxfDr05VbmmB/fm6J6VIHU1f5G0/cUHGv11vu1Elvnbmvq5I4bukabS8gY2nYXkBKVzB0gwd29bDSkEXH4XyCwXyCUAjCSCq/G7aPH0aUWx6OL+eR66U2/+Hj93fXcX4Y0XED/FDwjStr/PRDN4q/r05XeP5qiYSh8alHJvjIPSOU226X6OP4IW/MVulJm38he/T2BjJz291eofCdIGFof6H1h5uhayondxWpdFz2D6aZr9rUOn53fRcKSJkqaVPH0GChvnkeWreqvvl74g6rR+vP882vNONYEkvXGCkkWak7lNsOTTdgvmoj4kaOoalkLJ1ffmofv/X8FAMZizCCr1xcYbrUZr7aYayYoun4vDFb5eBQjp60yUA2wZTbpi9joaqyyZOJP+92kIQ+WbdZrNnYfkTa0pmpdNg7mN00vl5bbUk7vpTJK9MVnrtSYiauG682ZDN4vJjCDSLuGc1TtT2ev1Zmse7EzSQFocixZ1efbLot1aR6pi+T4L2HB6m2ZR3UDSI0TcXQYK7W4fBQllLTo97xeOfB/q5rggIkDZ1cUqfU8ro12IxlSOKSAovVDtWOzMhFyDp70lTJJ3QEgt39GXozJrqqUG4n+bMzSzFRQJJibF/GsViGzmjaoO5IG1XHD3H9sOuscvPWRlNkrXK0mGKxalNte9jx8YUCOq6stwYidspCsH8wy3ytQ6kJjhfQFabHwoW67W/Kun3heplXpyuoisInH97xlmseRVH4iZPjfPqlWZbrDp8/s3iLYENRlFtyq96YrTJT7jDRm+bIaO6WtfqT+/v53JsyCuHTL88SRBEdLySpq0yvtSikLfb0Z7i6KvPWXD8kEFIhF0ZSdbbOVQwEVFo+vVmTWscjCON9S1y/joClus3BoSwP7ixyaq6GiCJ0TWG54aGbCv0ZS+ZmNmXderoiXcCEgGxCI5/UY9tUu9vojOL/G5qGp0o3s6G87JscGy0wW+nw3NU1/FCQTRuc3NnDi9fLrLbeei0rzTnFX7wdIvAGMA5U4+MqAEuKoqwCvyiEeP07/YC38mrdClpsit6fSUiW8GqLMIxYaznUbBVNVclYGqamkkvqgMI9sSVJ2tIZ70nx8K4enr+6xguTkinQl5Yh0nsGUliajq4qzFRsLi838ULpb+x4AU/s7cX2fKbLHTQF+b5ugOsHJA2NR/f0xr6/HveNF8glDf7ktJzgdVXBMlTeeWCA3f0pFqo2HS9ireXy4C6Z+dVwAl6drnBtrcVr0xX6swkShoYQULU9glBKcc8tNDA0lUATZCyZO/DgziIz5Q5zlQ73jOd514F+zi82SJlanKkGTccnk8jxyO4iizWHQsroynS3QtsN+INXJUvcC10+cnzk27pmNyNhaHz4nmFmyx3u2ZB78Fa4r9tEMGM2QIVICBbqDuNFGeiatQzcMMRQFC6vNHG8kP6sRcvRODySY6SQ4PJSgzWAmOkdxmqspKGhqwrJjM5K3Y2zXmQGhNtwiYTMKlNVBS+8ERa6nqlVj7vxNyu+1mFoYOgaXjwpefFAJbPFVNwg4muXVlBjVdcT+/o5v1hnttKm7UaoiiChq+wfSMeLclisSx9YNxSkTBU3UBnOJ+lNG+hqAlOTDJHra+1NGRNbYbrU4jeenSRjaTFLLuIO611bQldhvDdFqeVh+yHllse3rpV46uAAAKOFJA/v7uXZKyWEEBRSJpEQWxYrt8OOnhQDOYuOG26ZGzacT7C7P02p5b3l3/+9xkRvektJ9V3cxV38YKKY0lluynE9Fa+6tnJZ2DOQYqInxY7eFD/14ARXVptSSZU0eHWmSk9KElqG8oktG+CaqvDBYzcaUF+5sMK5hTqqovCzj05ssvPYiGcurTK51ubMQp39AxkWqjZt70bexHphwwsiKh3vlibYcCHBrr40lbbHPeObrVz8MOL3X5ml7YbsGcjw0Xtk/tDewQwLsT3Hjph08OzVtVjdq/Czj+7sfv5Lk2Um12S2wJWVJhlLp+PJtch68eTKSotnLq0Sxo0iK940GarC5Fqby8tNjo7m6ctaHB8v8Nk3F/BDgYLC0dG8ZG+3/a4l27WYLLNYc3h8by/Ptzx29qW6Sri+tE6pLa/p7v7t1bgb5z5vG7XRoQ05qClz+7XRl88vU217oMDXLq7ywDYNCNsPJdklimIm5q04ssFyJ7GFTfU6DgznOLPQQFWULcOet8Luga0Z0Dt603LNScTIbZQ+CR3WXS723CFBKthmDfrUgQF+87kpBDCyha2SpWscG81zarZ6W1vL7aAi7SfzKZN80qDcdrF0jQd39VBMGVxdadH2AuarHWxfkrcurzRRFakg0FS5IUeBA0NZfuGJXXzx7DKrLRchBDOVDv1ZkzCCh3f1oChgxYS7ZLwGbrsBF5YazFU6/NmZJX7h8RuM5YSpkkno2F5I2tT50rklDE3lHfv7t7R27stYLNcddvalu0zXsWKyW+B78XqZj947wuXlBoeGc287k6SQMvm5x3ayVHe4f0eRrKXH76HEuQnbW0Hdxa348vll7Njt4dhonuFCgnzC4OxCnUrH47On5sma+qZswu8UCpJQNVpMsn8wy+6BDM9fK/HAzp5blIVvhbtCsL/caLqybpFNStvV9aLdvsHsJiWMqat0vAA3iPj86SV0TeHISA4viGg4AR0vQNcUNNViV7/MY8lYGmstjzCKaLlyrveCiLEeg7rtk7a0rgqxN21xdCxPpeWy3HBRFdHNyLF0hY4foigKliYbXAo3rGxDgVQIqCAimRnjhSGRkMc9V7F5Yl8fM5UOmiJrQc9dLZGyNLxqRMcX6GrErv4MJ3cWObfQYKrUppgyqXZ8TFXl4HCOh3YV+dwpmXdyfU3Whfw4pz6MBM0gRKk7HBjM4ocRD+wsIoQkGeeTBisNh6WazR+fWuDHToxRSJmMFJKcX6zzxL5b97vr1oJRJLa0pTN04Da9GkOVdQ1VAUVVKKRNHtndx3S5w1DOYt9Amt95aZYwglzK4GP3jHB+qc5C1eHjJ8fJpwzmqx0Waw6P7enjPYcH+VdfvEiwHisgBGEo+PNzS/zI/WNATAbWVPwwvKVOtL4OdfyQui2JVQMbFODPXy11idmFpMlgzuIbV9aotDzeeaD/22rSvx0cHc1j+5JUvjFK4a86fvLkDjQVnr9axvZC3A3diUhA24vwQ69r8bcRatxs2KTmjMUJ7h1SqA0tJnzFtTBNgUzS4N0HBnnXwX4e3N3LF88s8X9+5TJtT9bNIiFrxxO9aX720Z3cu6PIpx6O+MqFFfYNZFiO77WBbIJjY3nOzsssvbPzdX7xid18+Pgway2X3rTVJeZlEzqffHjijp12dvSk4rVVwLEtLDB39aV5Y7ZKyw14/mpJ1lADubYPI8FLkyX0fX0kdJVCxmSu2kEIwXylg6HJZv7xsTx/44k9PLSrhy9fWOZ///NLTJZaHB7J4fghlqGhqQpBJMhaGmtNj4ShcWG5yWghxZfOr1Dp+OztzxAEEVPlDrmkxqHhPKfnalTbLsWkwSN7exnMJxkvJvnD1+boeCFqFKEgCWFBJJtyh4azLNYcrq+16MtYlFoOCV3WCdOmjhAKChFeINBVgaaqGDFx09RUQl3D3SB8WV996ppC1tIopkzU2FHN1FWGEwk6Xojjh9he2N2PaSoMFpL0pA28wMLxQhAQEiAiGC2m+Ni9IxRv2qiv591FQmy6z28HS9fimB2F+epbR8TMVTq8PFlhttJmV29my5rkx+4bYbnuoCgiFggEzJQ7NN2Qmu1jBxEP7+ola+ksNRwOj+Q5MVHk6QvLlFseYwWLSttnqRFnlAvBE3t7eWWqwkrTxfEjFOVGvrSiKFi6xice3MHxsQJn5+ucXajGzSaFTEJnqe6gKFIdum5nCfJa1Dp+NzonQkZNp0wVXdcIw5C0oaLrKjv7UvzUQxPct6PI5FoLXVN4Y7pK2w+pO1LEoau3NkBvhkDul7Y6dxvx/WiCfQn4rBDiywCKorwPeD/wh8CvAQ99px+goJA2FNpv4emvKpKtGSEXPElD4/6JAv3ZBGcX6qw1BbqqYukamYRKISk71SlLKsBena7G4fIG5xfrpA2NYsbixEQPYQT7B9L0Zi3+5pN7ODVbo9bxeObyGglDwwt8lhpSbTJTsSmmDIYLSTRFoeEEMh/MDRAIfuvZKYQCYwXJdDo8nOejx0f41WeuYbsBlqahIMglDDrpkLQl2N2f5uTOIi9PlRnImNLmMZI2jobaZPdAhoWaDXF47fmlBoamQAgTvSkODeXozZq0nZBax+ePTy3w/qOD3DdR5J0HB/ACwZfPL3FuocFIIcnje/s4NpbnZyJYqjvct6Ow6Vy7Qcgfvb5AtePx6N5evCBiOJ9gueHw5+eWKKYNTky8PQbpVtjTn3nbuQHjPalutoWUGvs4fsg7D/RLVpeioO1UGJ5J8OVzS1xcaqApahx4KHhsTx+9GUM+8JUbXe20pdGTkkGw9+wocG6hTq3j4fhCWsrEC29NhZYbkjQ1EoZGFKvYVEXgBuGmad/SVTQlYmPj2w8hl1Q5Opzl3EKtO6grimw4rg88hipZt6oKv/+LD/Nvnr7CZ16fx9AU7h0v8ODuXqJI8OHjQ/ybL1/h7GIdBRnwvqsvxU8/PMGzV0qAXHwO5hJ8/vQCCMGR0fyWjUwhBJ87tcAr0xXqHZ98QqPWETjfRnFJi/+mQsrggZ09JAyNS0sNarZP0wli9dcAlqFxZaUZnwOFExPFt9UUBckK38g4uxm6pt6x3eZd3MVd3MVG5NNWtwmWScgGkrdF8WG+6vDEfoO2G3JpudFtcqw0XA7EBaUfvm+UQsrACSKuLzaY6E1t29xaV+4KxLYqXrjhST7Rk6SQMjkwlNnEPDu5q4eOH3bVJTfD0FR++L6tx8cwEjI4Hrp2CwA//dAEj+zuo5A0uLDUYLSY7OaJ+aGI1SzSEuTF62WW6zaltseu3jSqonD/RAFL1yi3ZA7ZeiSopircu6PAkZEsqqKw2nTxgoiLSw160iZBCMfH8tw7XmC5bhNGgn//tSscHcnxs7Gy7IVrJdbifLOffWQn908UuX+iuImlmTa1bhMsn9g+OHnd/g8gndy6CLPxXrjdTJmxdIJIqoYK21gryveTnxhG4G3TBDOUG/P37XIuM5a0nVQUhcQdZrY2t/FpD6KIlKHhKpC0tj/+Ysrsbs6KmTsMpda2fj87iMgnNLwwYii3uUDvhxF/+Oocyw2HrKVTvk3O2pYfCWSTOo/s7iWTNKi2PSIhC44NO+CpQwO03ZBnLq/SsMPYFhOqcUZcb9rEjhm4mirVe//qi5c4NJRlRzFJpeWSMjVO7uzhvh3FLlv0J0+OM1+12dmbJmlq/E9P7eMPX5tlue4ShKIbCA+wo5jiUw/vpNx2ZXFjUSquBnOJbjbgRvbyTLnDvsEsHS+g1HIZzifRNbk5nS7JhtzVlSa7+zK3tSxcH280VdrYhJHgyEgORVE4OJS7hc3+3sODvPfwXQXY20VfxmKu0uHJ/f08tKuXHT0pIiGYrXQ4NVvjxckSQRBh6AqhJ7Z0RXm7SFkahbRBJASFpMErUxV5zzsBn3p4+3X0VjDumhP8pcLNLW9DVSikpE2vAI6N5lhpSHWO44ckDI21pstET4rdfRlZbE3o3LejiKrK/drkWosvn19GUxTefWiQ33lpmqPDOZ65vEbLCYhiJWxP2iQMBafnatK2WVUQAnJJgwg51rS8EG+deBmra4dyCT5wtMB4T4rJ1SYChTCK+OqlFcrxHN7xBW4gs8JyCZ0Hdxa4siKzbyxd4cXJMg/tKjJeTPHNKyV29aVZrNmMFpJMlaStWj6h05u2yCcMHtndi67Kho0fCnpSBtV2QMaS2Sy5pEEk5DhsqAppS2dyrYWlq1TaHvmUSanlMV1u89p0hSsrLeaqHY6O5JmLIzuCSLCjJ8WOnhTpLRoM7z86xLn5OuM9qS0L895tpjtDleczbWm03JAoEizUbHrSBv/o/feTtnQajk9vJsHvvTJLw/b5v1+Y5h+9/yCHhnNdctI/+cChrgV/rePR8cLYSkw6HfSmze5csdp0cP2In3hgnLlK55bs2kf39BFGsuG5FaFlPRdeVaT91nzV5s3ZGgAvT1U2EcS+F9BUhYd3935PP+MHEQtVmz94ZZ61lstqw2GrqLkwpJvbt+nHCuiKghACXZP1LcvQ8ONC+p0QqLMJI26C6Kw1ZessDAXz1TZz1TTtSwFz1Q6/+ORuGh2fl6cqoMB9Owr8jSd2M1qQJLapUpuluk257aIpktj08O4ezi3UmVprM1JIYsWsDV1Tu+ufxZpsbDQdaRt6p02whKHx4w+Mb/vz3oysJ//eK7N0vIBqx2NHT4paxyOVNFAUhVemqmiKFEdM9KW5vCztE6MoImHq2H6IH4Y03YDVuI4HcGGxST5pkDY1BnIWKtINzI8iPEc6oq0TF6ZLLcaLKRbrDklDQ0EqwobzkoD+7oP9XFpusVCz8YKIlCGVZ1K5ajJX6VB3Au4ZL7DadFms2ZSaLm0noBE7J8jcKEkGyFgaTTciYagcGM7Q8SJen61ixGvkjYQeAWQsjd6USTalM5xLIBRZ0wuciINDWd5zZJDfe3kO1w+4tNyK7yn5XkLIvLjhQoKz83WpXNMU7h3P8yP3j92ifH58bx8JQ6WYMhnOJ7ok05szCYUQ+KGISRQdskkdPxAcG80TxlblL09WGC0mbyHWt9wATVU4NlrgxESxuz8XQvDpl2c5u1DHUBWKaRNLV/mZ+0b5V39+KSaTCZKmnIc+cnyEi8sNLi432d2XAgFJXUNTFCqdkLRlYCgegZBNveevSTW2iqxpm5psPnpBhKVpPL6vn0f29vHQ7h7+8R+doW6HpEwVQ9NZqts4fkTO0hjvSXO91I5VzlIdvp79lTB0DFWq0vYMpGnaAXUHxosylmBHb5qG7fPFs0ss121G8kmuJJpYhswb7ctI0U3bDW/ZK69fKYGMICqm33px+f1ogj0ghPjb6/8QQjytKMq/FEL8A0VRvmu0jKF8kuul21u1rHv0+2Ec9ink4J0wdMYLKQazJqfmathehOMLln0XhCBhuNJKQsicjo4bIID/+q1JDo3k8AMpGPzzc8vousp0uU1C13htporrSRudYsqQdnSRoNRy6XgBDScga+mMCzi3UKfhyAA6y1CxNJVzi3V+89lJhvNJHtrdw69/U0FVFWYqcqB+abLCr/z4cTRVhl3/v/77GS4tNTB0lcf29MowWT9i72iOauzPnDQ1Ol5IJ5b9JwyF+3cUJesZGC8mySR0Zspt/viNhe7Dd2Aow6XlJpausrs/xf4huTgxNJWrK00m15r8/GO7ycY5FSt1l5WGgxuE/M4LM+SSOj1pk+evlei4IecX63zu7z3+3br8bwtCCJ67WqLS9nhiXx8/ev8YikLXvnGm3OZPTy+yWnfwwggTjbFei3zS4OxCjd99ZZYn9/Xx+N5+zs3XYz9c+aCjQDFt0ps22DeY4cxcFYFknC2v25EIWQxygggN0HUFPxCkTI36Td4/drxo2FhIE0jpaqVd27RACAWbff8VyYiptX2+dH6FHT1S5VZqSeuqPzm1wHhPigNDWQbzCep2QMPxsHSVa2ttTs/WODqaxw1CdvbKcOKZcodnLq9Sanm856aCxZWVJqsNl8Wqw0rdoeWGZBI66YSO0377eRsC2QRTFIWptTa/8ORu3nNwkH/8R2dYbbi8OVflHQekGuz4aF4yOaAbKntpucHzV0tM9KZv69N8F3dxF3fxvcSDO3q4vNwG4NiYXCxvtbdTVQUtHqfCSPDslTVySYN3HejnlakKlqHy31+bIxIyf6DlhhwbzfP337Nvy/HtxESB84t1hrKJbRtlAO860M9Eb4q+jNW1fvCCiD87s0jd9vmhI0NdBddbwQsirq22GMpLlb20bRxiutTh3g1kGUvXODSc449en2c2Zi5+/OQ4KVMudmfKMj8sZeoUUgYt148LaAbvPzrIc1dLfOtqiYYTMJhL8NjePn74vlGCMGLvQKZ7Pkotl29dK/HQ7l4MTWW8J0W55dGXsWjYPgu1DmcX63zp3DLvPVznl5/ax2ylQ1/Goi9jsbtfNv1uPr/lltv9eqHe3vZ8mLqCHUgCTD659ZL7lcnV7tc3ZxpsRBTb5ikoW+aFriPc8BbKNi97fbba/bp5cybpBhSSeqxuh0zizrYMN7Mn16GrCg3HJ4ig1HS3fA2wqfKReAt7mXXcnFWzjrGidcNeRd/c7Fus2Xz98grXVprUOm/fvihE3u8vTpZJ6HIdriiSVVtqOZybrzNf69B0gk3NB+kOIC1iimmT5YaD44WcXWxwdrHB0+dVDg5lKaZNhICP3TuCqWsIIbi41JT5BWFEue0yZqYII0Gt4zNVavOTD4xtyu1TFIXHY5XAtdUmF5ekqs8PQv7hH56mbvv8zSd288T+fhZrNlOlFpOlNkEY8d9fm+dTD09QTJv88L2j2H7I504tMlWq8eZsjZO7esglDI6NbWYxrzYcPvPGPAoK940XeHGyLM9XJLYkKJ1bqHNxqcGJieKWFqh3sT0+du8IKw2HgWwCU5f7scvLTTp+wKtTZRq2XHubqvJdaYCBzPMzVZWHd/eyqy9Dx5M5Sv3fhtIif5tsw7v4wUN008pld3+GhKHx/qODvHi9zG+/ME3d9vncqXmevrDM//axI3z21CJtT+4H79tR4MBgjmNjeZqOz1SpRbXt8cpkBTcI+eqFZWxfWgau5yiqqgKKzCcJAmn75MZzqqWrtL2QhA5fvbCKyo0cGUWApcFi3Wau2iFraawnJ1Ta3i1WwaGIC2mK/DqTMEkYKqWWJNJ8/dIaA1mLdqws2N2XxvFCcgmdjh9xbqHOtdUWuaTBUC7Jnt4UHS+kYUsLtguLDWkHW0zyjgMDuEFIqeXxgSPDjBST/K+fP4fjhV1SynJdqiTOLtS5vtZiV2+ajh/wxL4+dE1FUwXjPSnmKp0uQaLW8RBC1iFyCYNHb+OI0rmN1bA8hzLTJ4yjESI34jOvzxMJGCumpPLA8ZnoTfL6jEcQRfzaN67x3sOD/PB9o1i6VO6dmauzZyBNNmGwfzDDXMXmgZ09vO/IIHMVm6OjOZbqNn/w6hxCwLsPDWw5T/SkzduSUR/b20dfxqKQMujLWLTcgKSpYXshIz8guWF/1dB2Az798jTT5TZ+GG1LtlNVyJhq1z5vHbJsFuf6hXJdZGkKXiDu2EGo0vYxVVnrckOBqSkoClQ6Hs9dLbHacBDIps0//eAhfu7x3bw+W+FL55b5m7/9Gv3ZBP/wffv5g9fmWKza1GyPnb1pFEXhwmKd+apNJAT5lMHPPb7rFvX7AzuLLNVtDg3n6M9+D9SGQtCTNtFVldFCAgFkTY18yqTclg5JaVPD9SMShkbK1Jir2GiqwoXFBv/8zy7y8O5efuLkGOcXGzSdgHvGc/zuy3NcXm7KTEOkSl9Fqj6LKZP7duR5bbpKqeUxmEuQsjQ6bkDbk2tnSXYTLNVzzFY6vDJVoeOFBFFIb9pivJhkrCBrh/mEThhFlFoeC1UZORNGkpzphiF+JK3LE7qCGbtpRQIuLzVpeSG+H2JHsgZ/swrI9UNWWg4rTbi01CRt6TLSRleZLHW4b7zIUt3h1GSFK0pL1kmFwPZC3pytoCgqq023qwwmErw8VeHMfJ1H9mxuaidNjSf2yRzc03M1vn5J7t00VeHAkCSq+mHEb78wzWylw0fvGeGlyTJ+KFis2bRc2ZBVFIW5SocrK036MyYpS+9avb5jXx+P7Omlbvs8fWGZz56a55MPT7CnP8MXzi4RRdK6dyBjMle1OT1fY7nu4PgRlqaS0lWZuev6LNQc5iqdeN0vqLZdIiGot13qHWmXqcvplUrbJW0ZBEI+l1EUScJCUZJcOl7Abz03ybVV6TJXW19baiGxkI6OF9Hxmpvq0bLnqJCLLXGdOGZpue5i6locnaPgBgJdVZgutXltpspgLsFspUMhbfLGTJViyqTuBPhxbvnNzh0qN+rkoYBnr1b4RLnFzt7t9xTfjyZYRVGUfwz8fvzvnwSqiqJobB3V9bYhEJtyIW6HjdFRQSgDSZ+7uiZVWEKqTkxDpd728cJIFh3sWBKoKHExQKXa8Wg5AYt1h4QhJfleGKGFgueulOiNLUW0WMKZS5pdZsOO3jSTa20ypk4+oWPq8uHxowjHjyQLNu6ovzZT5beem+Sj94xg6irVdkQQhIQRrDUdOm7EI3uL/MqXLzFVaklrglDlhWtlVFUhaWo4fkTTCWjYHvlkCtsL8ULBQM6kL22iawotN+DiUoOZUptc0ugOipYRMJxP8PJklSgSLDUdXp2qUkha/OiJMa6uNPnT04s0bJ83Zmv8yx85zmghyVA+wWghyam5KjXbI5vQGcomcH1pz/N2Mry+21isO7w+IwtAuqbw4eObi3unZmsEofStDSOBE0hGwtmFGtWOTz5p8OL1Ej0ZQwYexjKtIJKhvc9dXeOZy6tYuoKzhTpxIxMmBAhkYUtTFAwNbq5HyRbrrd+7TQ0MXYGhfIqG43NpucFKU9pWLtZsFEVhsdrBMjUWazbTpTZTpTZOEJKxdHRNZSBrUbN9nhrIsLMvTRQJjq61+PzpRUAhuIldvtp0+MKZJcIowoltJAxNIQwj9Dtkj998jlRVMrqiSOCHEZcWGyiKZFF7YchnTy3yS0/tR1UVdE29ZbH/2nSVphNwbqHOQ7t7/lLmYVXaHl8+v8zR0RzHRgt/0YdzF98j3Gkm2fS//tD3+Eju4nuBydKNJsm6HcJW4tim7ZM0Vd51YJDlus3p+TpeEHHPeJ4TO4tMlzr4oaDccpmr2piayny1gxBsmR95NmaprTZdpkot9m6wqZstd1iq2xwfK5A0NfJJg6W6TdJQmSy1sf2QmXKHWsfjG5dX+anbKGUXavJY+rMWXz6/zLXV1qYg6b0D2U2fvS0UhZxl8M0ra6iqQqnl8f6jQ/z0QxMxw1OQSxq0Xcm49ELJqBvMJWjYPg/uulVd3pexbimc1Ds+CUOTgexeKEOLdZ2XJ8v8qqLw6J5eBJKdtl3zUFFvpBlo2vYECzdcV+PJTcZI8VYl3eTa9k20jRBCNsBQIBB3Rupwwq2X2Yu12wcGr8MyNGmLoSh3zHBdrNrsHS7c8v2XJivdDexMeXvS2mrrBmnm9Hz9jj4z2EZtfnq23s03nSpvPs9Pn1/G9yP8MPq2NyOOHxEKQd0OuhbWSUMlFIKXJisgZBD3eoE1oStYhk7a0hjKJ7th5f1pk6lyB0Uh3uT6CEXh2FihG1x9canJs1fWmCq1KKZkPszPPDLBG7NVvnFZmnO/Ml3lsXiTvhGXl5u8cL1E2tR4ZHcfq02HtbgR+cL1Ek/s7+e5q2ukTB1NUdg9mCWMBOW2tD9VFIWUqZOM7TpXmy4vXZf7jJSlYWoKX72wyr7BDIZ2o9i1WL9h/7LVFQrCiN9/dZZrqy2+fmmVf//x+2g6PrYf3pLNehe3wtDU7nnygoj/58Vprq62ZJ6zKjnbkRDd++/tezLcio4f8o6xPI/v7efYWL6rXnm7GbUgx+K7+MsD14/YSCX4+Mlxzs7XODNX58pKE8ePqLQ9VEWOOb/0e29iaIocPwxJwh3JJ/nsG/P85nOTccNHgFBYrjs0HJ+ErpEwNdKmRs32EJEstmcTsvlq6Rp+EKAqdHNqGo5/S1EsRGYQWbraLdAHkdiU3WSqdIms64LotKUTCujPWowUErAsi77tOD99IGuRMDRmKh0ats/RsTzXVlusNNw4+1EW8N+YrbDSkKqSyystEoZKGAp29aX52L2j/O7LM7TcgFdnKjxm9LJUc4gE3D8hVVKHh3N0/JADQ1lUBbJJg59/bFfXak9RFH70/lFZ8DU05iod/viNBQSCH7539NvKWt+IIALHlzaRQZwjU7d9XpmqMFXqsNJwqNs+hgK5pM5y3aU3zmxbqklL3c+fXqTW8TmzUOPvvGMPf+OJPaw1XfYNZghCwWvTVZbqNnv6M92aRsO+lZDiBRFXVpoM5uT7KwocG81vIidp6mZFRsbS+euP7sT2wlssvO/iu4NTs7XuOsILBZYu1TzrWV0bC+HVTrDlHLS+blqXcjTdgLdTIhSAG61/JY8joSvMlDvUbR8vkM+9qqh8+uUZjozkePF6mXPzdRbrDvM1m3/31avkEjpzkSzQrzRdBjKWVFUJ6RK2q/+GRfRGvDxZwQ+l+vo7Qanlkt0iV6wvmyBpyEylpiNFDKP5JG4Q4fhSXeoGEW4QYWoq2YTO43v7eG26wuWVFjOVDh0/ZLbSxvYj7h3P85nX5inHzf1IyFPXdHxMXea3jRRSrDZkXlgYCd55sI+//559/PYLM7ScAENT8QJByw3576/NkYzHauJr7wWCjhfw2TcXKLc9BrIWvWmLtYZN1fbJWjpHRvO8MVPtZlNBnPEmiEUBPoioe/0Ecv65+R4KBfj+jRQ52wsJIoHvR4DDH7+xwGsz0soyiKQ4oJAysHSNuWoHNxDS8nXD+9Y6PgPZb2/MWKzZfD225v99dxZDV8kljG5O4GLN4chIjjnkvPV7r8xSbnvkEwYz5Q6zlTY//9guXposc2qmShAJnj6/wj94b56BrMVqw+H4aJ7zi3UURdY6iykdQ5OWhYaq0LB9/u2XL+MEEW0vkOIdIdA1jYwl7RnXs56NeH4UAjpu0D0JEaCoYOo6qqLwxmwVVVE4v1hnpSGfeUWR+X1xG1s2wvwIVZXnORJyz5NNGvLeDaKY2CJdx4ppjayiU8wYDOctBrMWn3ljnqWaw3gxQT5l8uyVKmEo1xWOJ/dZN69nFW40wNaPY63p8PWLa/z843+xTbCfAv4Z8Ln438/H39OAn/hufICqKATbbPRvhiDOP1AUCkmDybU2LU9edF1TCUJBGLNtLV0laWi03EA2uFTp4dqbsbi83GStYeOF8oHTVBnPaioK/VkLU9fYUUyx0nQII0Hd9nGDsKuc2jOQYbHmMFdzWKw77OxLdYNd9/SlsDQpiVRjq4GLS00Wqh28ICKbMFAQqKrK7786Q0/GJGloDGRlISiMIuxALtbyKYPRgsVLkyVURSFpuOzoSdOIH8Z3Hxrk4w/u4J9/4SLfulai6fiSsWVpLDccdvSkGCkkGS0mKbcdFms25ZbHYk0O9m4QUbd9Wk7Aqdka/+qLF/jVnzrBxaU6TUdmmZRaHheXmnTcAF0BM2Hwqbfhm/ud4Npqi1LL5d7xQvfz8kmjyw4ajiX1l5eafPbNeY6O5Nk3mGGm3KEvb/HJRyZ48XqJ33h2kpSpy2JJJFhse/z6Nya7ntsg2dfVDWxiL5SD8s0D9s0LgBA56Fc6AduZEm180DVVyoG3WCd2X3NoJIcQstHr+BErdYemE9CTMmm6ASFKzHKXLA3pHZwjaeoM5xMs1mzG4ms/W27TckMODmX56L0jrDVvzcUyVBWB4OxCnYxlcHA4y2rDJaEr2Hfom3vz3xtEMtiw7YWs1G3+5PQiAxmLtiu943tiBnXa1EmaGoam8KenF5ktS2uYA0NZ1pouo8UkmW+jEfeDgP/z6ctcXW3xhTNL/Oon7qNwdyF/F3fxlw7ZDQqaZJy/tFULw4/gN5+d4tWpStcm4/pai5Yb8I3La/z1R3cyVkzSl7FQUJirtfnIPdLiJQijW2ztiimT+WoHS1P54tllUuYaf+2+UQxd5bOnFoiEDLJ9cn8/f/DqHGFMODDiwlTd9nllusKl5QYTPWke25A7sVS3ObfQACFtl1VF4SdOjuH4IUIIHE+SiN4K7z86xIWlBiP5BL/78gxXVlo0HZ97x4vdxp7th/zJ6QVcP+LkziLZhM6h4SyzlQ49aYOdvWke3dvLUl1msB4azm3arM6WOzx7dY3RYpJ3HRhAILhvPE9/LoGuwn/+5iTfulbGCyPabsBC1ebHT4zd1iZQ2XAFw2j7htTGUxCFW79u32COZydrb3muxopJTF1FVRTGCtsXnDfVArexQ3znwX6+eH4FAOM2/bSVukOt46MqCtU7CCQGsLbJGMtYN74f3GZdoGxISzdv02Bct0VRgL5t5saOH3TPR7V94/jXmi4XlpooqkJv2qLt2t9WIyxCbubWsb4J9JoujY7MsenPJWjYHmnT4PF9ffRmTN6cq3NluYmhqfiRzOnNJSQJz0BgaRoZU+PycpP//OwkkQAvzkKptn2UuLl9eq5KIWmQMFQcP2K0uPV98fJUmcvLTaZKbSptnw8eG2JXX5pqx+NdB6SqfzCXYLHmcO94gaF8gmLKZPdNhdQPHhtmcq3NatPhjZkaIM///++Z61xYalBMGvzyu/dLix1F4b2HJdt/3Q7xZmiqVHiIeFN7eaXJM5dWWWu67B/M8CP3jXJ1rU0uod9ViSGVHlNrbSJkEfi16QqRgId291DreLw6XWGt6ZKxdKodnzC25/RDccve49uFpatM9KRImhqWLq3Ovl2lRdq869DwlwmGpmwqNv2LL17gxesVbC+gmDYppk16UllWGi65lImpqQzkLEIhmdqzlTafeW2e12crLDccTE1mFqZMnUxCxw1CbD9EVSXpImPqNN2AIBQsVGz6syY7iilWmw4128cPIzKW3iXu3rK/jgRmbNVoqLIhnDRUbD+KVVkJUFQ0TaHUdImiiKW6Q6nl8cSeHo6O5FlrepTbHpqiMJBLcP9EkWcurUj7LEXWQRQUNFWqoEcLSXozJg3blwRXNVaEe9LCad115sxCnXLLo+HITKC0pRNGgrSl8WMnZEbW9bUWWUvn3h1F3nWgn6M3kSGVDeSUUsvtrrnWWu533ASTkAyrlKkwnE+iKHI9VkjpnF90abshqiLoTZv0ZUyiuHk4FNdW1i0KTU1lqtTGDwWHhrMoisKZ+SpTJTmXXFttcXQkR9LSeWBn8ZajePr8Ms9fK9H2AsaLKYzYQvjIhjxVkPW4xbrNWDGJpcvIia1qTWEkaNh+N5/9BwEz5TZfOLtELmHwYyfGvi81su8EU6U2k6WWVGiGEQqSNK4AGVPaaK7j5uXeOjFoHWLDa26umynI3K+30xjzQ1nHXWvKJngmoZM0VC4vN3hlqoLrRwSRtPlsOQFn52v84pO7AYW0qdHxAg4M5ciYGklLozdj8dSBW+2aF2s2b8xWWajZ5JMGn3xoAkPfft+wHZ67usZL18u4QcSPnxhjV38GU1f5+sUVfufFaTKWRtpKcHm5QdrSKaQNaZvXUel4IWPFBA0nYPdAmn/xsaPousYnfuOl+LxGNB2Pi8sRIoIwimh7IT1pM1a5CkJkDTOdMNg/IKNfvnphuXsN/6/npvmXP3KMY3HuXSW2/r641MDxI1Kmhh/K2BdDU8kldVaaLuWWixtI14KVlsHkWke6Y/kR11baZCyZV2vHjRNTU0mZGmttFyGg7oRYGl0SharKZ7ftyhp3hGy0qMisqDCSymFDEXiBHKueubSKrtJV/lq6wv4hmUm9/uSrqoKp3KhX5lM64z23Hz+Pj+VlfM4GFRjI5nvbDVhtupRbDsW0xURvir/5jt1cWpL70+NjeQ4MZfnj1+f47KlFdE32DuYqHVaasvbel7bwI0EQCnRNwTI0/sF79/Nrz1zH1FV29qY4M98gmzDIWDpN18f1I0puIDP1gnVlprRmDAUoSkTLledp/ZFcbwCCzGrMJ03mq7bcy7gBPUMGTSfA9UNOz9WoOwGWriKEQFMViimDUsvdXJMWkqCV0BWcIML15bPmBwJDk1FGu3szHN9RoGFLsv9cpUNPyqDc8vDCiErHxw5EnNft4QYR60YppgqWqeH6IYqq4gc3a9RjW8m3GNq/p5XhWO3174QQn9zmJde+G58jBFxeuT2TVlNin8jYe/mp/X28Plen5QbyAVLA0BVSpkbN9ulJG/SkLKq2R932sXQFVZHM5KYTcHg4y9koYq0pB4LelIGiQDZp/v/Z++8oy87zvBP97bxPPpVzV3XOjZxJECRIMIoUKYqiLcmWZMuWw9Ws0b3ja88dL6e15nrWlT1OY1key5Js2ZRFiWImxQQSOTSAbnSOldPJcedw//h2na4O1WgQYJL6WQtAo6vOqVNnn/197/e+T+DwZJ79owWKaY1/8Y1z1Lo+USxCXOuWh5wMyvrTGmtNG9sPhV2hJBNGEct1m6GcwUjeZHogTbXj8rlXF+l6YnMJophD43ncIMLQFC6XO/zCg9PJ7xKzULWIImGvZ6gSz16sEkVikRvIGjy4cwBTk0GS+N75MpYvmAW6Ignv5yBkIKPRnzFoOQFz1S7/83v3MJozOb/W4UKpjSTBrz66kyNTBXYOZTm+1CBKWKNNy+f//OaFxIs24pFdg8xVuxxfatDxQjQlQpF/8GnI1Y7Lf3r6MqdWmswMZPnHHz3AQNYga6j81Ydm6HpiofiTV5b4H0cX8fyQ5y9V+a1fuJsPHR6laXlkDZX5qkVGV8XCNJCh2naodhL28Bt0TW6VeZkQMa5qwugyBPGV0NCNvlAUQSiBIW+wX65M3HUVHtwxgCzJQq7shonXb4jc9cibYgDoBjGuH1JuCSm1UAaaqHLEWtMlpat84q4J/vS1Zf7k1WVG8wafvn8bD+4YYNfw9a+/L6Pz4cPjlFouQ1mDd+4e5J6ZPv7jdy/xxddXbuEduDEihLTYj2LSErw8XyMmxlBFmOe//OZZ6t2Aqf4Uf/uxXVwud2k5Pk9fKPN337ObO6eKveyyKIr5xul1Kh2X9+wb/pHbI7hBiOXenKG2YQcQx/F1NiS3cRu38ZOB1U1qiHJiDXujc7ciQcf1Ob3a4vhig0/dt42sofL85Qq2H/GN0+v87cd20rB9Xp6rMpAWrNj//OwsthfyU3eM9xoffhjx1ROrzFa6GEmw8EDW4FK5y/4xwSwOophLpQ7ljstCzRJh8b5g0fVndB7Y3p9kCEm8MFvlkd2DdN2Ai6U2f/DCAi3HR1NkdgxmiBAs4ffsG+bfPXmRKIo5t9bmrm2iodF1A751Zh1JknjiwEjvgJ8xVO6b6SeMYl5baGB5IaossWcky/n1Nos1i3fuGsT1I+I45o+OLhFGUa9JH0Yiiyatq/yX5+cpt1y+cWqd/+cTe1hu2CzULGYrXdGwIma23OH5S1XWWy4jBYNHdw/x2mKTStshTNiQ8xVhifx33r2rl8t2LTar2a2bhGukNBkrYS+ObDG4Wm/fmior1fPvl246oNuMrewVN7fE5S2GVgDPz1YThn3M0xdLfPqBbW/4M4Mtnu6VuXrvz95NtjNNgo3zVPomdmmbf4wTRtxoRLK5ERNveoQfRhRTGs2URqnlvGVbimubNlEETixsr2XEMExVpMQ6bIwL6x0R2B0IVqwdhMwMZlhu2GQzOstNGyeIGIxEY+FypUPXDSi3Xe6YKrKeWCj+3nPz/NpjO/kHH9qPH0Q9O+gNuH7IF44ts1QTZ42cqTJf7fC515b5+QemOTSR77Hp37VniAPjefKmdl0D7uRyk1cX6hwYy3PvTD+GKnNiqcne0RxT/WlKLYdqx6XrBqSvyVg9MH71NYzjuPczJUnib7xzB186vsLMYAZTlWk7PufX27Qcn2rH672vn75/6/yMP88Iwognz5U5sdSg1HZYbbocnihwodRmoWoxX7V44XKFb50ucX69g5zYoF/LjH07ICPIaS/M1ul4IcsN+5atcm+ESvd2XfuTBD+MryJrHp2v07KFVbFs+ewfz/OJuyaZ7DM5udTiMy8vsli3+KsPTvP5Yyss1SzWm06izBB5IzlDoy+jMzOQpm55PH+5RhjHtBN11waRJATW2x5tN+jljKqKyPfqS+uU2951n3NFhpGC2euNBGEkrGg1mSCKWG25DOZ0soaOIkMt8Qh0g4gL5Q5tL2QuedxoX4oojmnZXm+wH8SCZKOpEsM5k32jOR4/MMKlUhfHCxnKGWzrT3NiqUnTFq/v8X0jTPWnMZJBji5L3Dvdx8HxArYfcOdUkSfPlpAleDXJtFJkiW+eFlEEB8byvcHhZhwcL1Buu0SxGJC/VcRcsUWUYojCiAd2DJJPq9w51Ue143FhvYOmCBL4jqEM79w9xMfvnuw9x8funOByuYOExBeOiV6A5Q1x17Y+Joopum7A0bk6aU2oSf/xRw9et/dEUczZhMBheSJGZChnIt/A/uCzryxS7XhMFFN86r6t94vPv7bMQpI7tuEGtHlf+mGiaft895xYuxVJqF2WG/abzrv/YSIII758fIVyx2Wu0sH2E3u75Aa0PDHIjqPryReafPOsr2u/JMFVaqFbQbjRVEPcywOqRNZQOV/qYHshKV04V7hhTNPykCSJtZbLvTN9PHW+RDGtk9YVPv3ANoZyN67bL6y3+Q/fu8Qrc3ViYvaM5JitdNgzej3Z542w2nS4VO6yUBO90vtmRAbxH7+ylJDfJf7xTx0gCCNOrbSQiHn/gVF+8xvncPyQuuX2FGRn1tucX+uQ1mWGMirrbZ8oEvdRGMVcWO/Ql9HJGRofODSGrsh891wJPwiJwpi1pst8zcIPop6ir9L1+LdPXuypKh/dPcRXXl/pqV6tZMAvxcJGr+P6hJEg4kcReH7EQkXY3rfdADcIMVUZTZOZ7EuxVLfQFRkvEkIURZKIJbFHBFFMFMd4YcRUPsVYwaDa9VlvubRsnygWryGMxbB0MKNTtzwCKRLPQ8yukRxzVYuOG2L7Ma/M1Xvq1rSuMNWfYnGTkq/W8XCDsDfEvxEkSbrOChwEwW65YeP4IZYrMZA1CcKYO6f66EvrHJ2rI0lwZLLIKwsNGrb4/A1mRH92IxttaiDNu/YM4/ghOUPlMy/Ns9JweHmuioTE9qEMv/74Tv77S0uUWw6VjksYi97xSH+arhskA2px3ZVYOGb4QXjVeSeOInRVRleEpftI3mA5GYI5QczRuVovisnxQtxQnJ/Giyn8IEpczIS5X5A0rP0IVGJabgSx6HeCuCW9ULjjrDQc3rd/mIVql7mqjURMqeWyezjLhVKHfaM5Sm2XnKFSSGmU2644K8egJMM6Sw0YzOjUum4vo3sDuiJcKm6GH+gQLI7jUJKkIUmS9DiOb41C+n3AD9+4PZwxlGRIIOMFESdX28JiJBTNibQmk9YUDE3Gaoa4QURa1xL7DwVNkcmaGlEk6IpRFKPIIqg1imN2jeQJIyFHna/YqLJCDKQ0FVMTSjE3WcU3ZJ7DeXFjyJLwrw2iEDcAlxivIbLKdEXmzGobNxBWijJCybRvLM9ay6HjBqw2HfxQMKRfnq3hhyEg0XICpKaQLA5kTQwVpgcyvGv3EFEEf/LqEm3HZ7VpIyHhBcIWaLJo4kcRpbaDpspcKnX46olVpvpMql0RvL3csHnuUpndw3l2DmW4XOkgI5g1ay2brhdQ7XjsGc3y6O5Bzq21WW46OH6IhMJ8tfOD+jhchTOrLWpdjzBqc3ypwXv2jXC53KHW9Tg8WeDbZ0q8tljHcgPWmzaxJPHPv3aWKIopdVyOTBQYyad4aOdAUmxD0/aQ5RrLdRs/ipATe0DnmjRQWQJTlXESluubRRCJwawXxL0BmMTGYOjqQkFXZcIoZjhrIEkid2OlYRNEcY/9IEsxlh9g+QGqLFPtetRtn+2DGQxV3EerTZ/pgYwYvMUxp1daxIlawH8DteXlcocginFDkWv3z750mvlqV9wzbwFhBIt1m9FCSlgexWJDlIDji02iWEiKL5XbZA2Fl+dqTPenma102b6JCbfacjizKkLhj87X+eiPcAjm+CH/7UURJvzwzgEe2CJM9396fDdfObnKkYkC/ZkfgNf0bdzGbfzAUd2UidhyxJ9vtCfoqoQkyQznTDKGysxAmp+7f4q1pt0Lh5ckiecvVXvNjsGq0WsaXCp3ekOwjSwKTZHRFBkjafpMD6TJmRo/c88kX3htia+cXMPxQtK6ylDOYK7aYSAj8rDeuXuI1xYbtJ2A+7f3E0Ux//7Jizx/ucpS3WIsn2Iwb3BgPC/yHoZz1C2vZz17Yb3TG4KdXG72bP9O96W4e9vVbF9FlrhzqsjFJPvC8SNemq3hBRGKBHdMFah1PS6Vu1Q6Hl03ZM+oUOvLEpxeaeF4AWfWWhiqzGdfWcJyRRbHbKXTO0ydWxO5SG4Q0XJ8tvWnr2KlbmQ8kdQCf/DXH7ghI3ez03HH3npvtBJbuBhYqnYYKVy/73TsWyuP79nWzzdPlVBVwULcCpsDxdUtDnFnllu9P7s3sG3eQN5Qe6OjgVtUIhdSN96rSjfLAdsETZGxk3ojfRMq3+ZwbH8LZdnhsXxvQFXclFU2XkyhKjLFtE65c2uv62ZI6zLjhRRRLOyhJQm6rrCGDhGHwJYj2JnrLYcHtg/w0lwtaSjHTPVlCKNY5MYlOSyOH+J4YnBVTOnCZiyxOhktpIhj0QRu2T4PJjXEcsMmpSm9bL/ffW6WLx9fpS+j85fv34apyXz95Do5Q+XYUuOqQ7wkiUYuwFLdIq2rvecReb4Bvzc7x8VSh1LbJYxiTq20eGzvMO/eN4yuygxkdUYKW6sUj87VeOZihZmBDB+7cxxJktg9kuM3ntgr3ok45r6Zfkotl4liCkUW96342lu+TD+ROLfe5thinXNrbUDUj14YkTe1Xo7bbKXT+9xFXLGYervfMl0V9jjLDYuZgfSWWXy3ih9zscNtXINrZwRFU8VyQ7pugCJLKEicW2vj+CG7RkRenB/G/PvvXsbyArpeyEy/wc5hkTM+PZBO7JQFCfmduycotV2alrBElSVQpBjLv2KJtUHsiBGqgB2DWSIEa72TkIU3vi6yZSKGszoXS4niNIYojghjEWOxXHcot71eHusGKm2Hli2cgMIYOk6A7XfpuIF4H6QrmZsbBKJK1+e3nrzMYE5nIKNz70w/Y3mTh3f288XXVjiz3uH3n5/j8ESB+7f389T5MufW2vz9Pz3B//z4brYNZPhvL85TbrustRwmiymQJJptn6GcwTMXK7y20CClK/zCg9NX5T/qqswTB0dv+VrmdWi9Qemx8Y6EcYzlhxiqzJ6RPCeXG9S7on5abtikNYXlpsPzl2vYfsgn7hZKpqyhcmSyyIX1du85Nxx0RgsmP3ffFCeWmyzULMLlJrYX9uotP4z4k1eWKLVdhnIGYwWTfErlXXuGmexLX6W+ALF3bGQgNu2tiUlxHPdsyTf++5XXV7lQanP/TP9Nc9R+EDg6V+NyuSvckhSJ7YNZlmo2L16u8eCO/h9LBbQiS6QNlXal07MhVWSQEbnGhqYQRTFdLxADmE2PTdo4t4w3IigJC2qJML5alQ+iZ6rIErYn1DCqLPacMIoTS7kWxZSG40cs1ro8c8FKrMt9DowVWGu6DOVMXluo07R9Htg+0IvfaTk+HTcgY6iUOy4dN+DofP1NDcGCUNhpv2PXIC/P1tBVMRhfqFoMZA1h85aQEncN51hrzdFyfI7ONVio2VhegBfE2F5AjETLDnj6XBk3jNk+mEVCwgka6KrMUFbnzFqbOIpxgwiimMVqh2JG1GyqDNWOj67IaLKEs1mpF8csVi3yKQ1VFjmJGwObOI7RFAk7OUeE0YaTE6R0DTUQYW+GpqArcmIrG2P7EXvH82wrpvnOuRINy8dMlOWOHyInk8w4Fk5TqiwxX+1yvtRFAfqzOvfP9HNypYnti753TMxayyGOxRBEU2UkYFtfhii+MpB1Q/H68qZKLqURI5HRFLrJ3mJqCkt1m/1jbz5Gpev5uIFwQimkNPaO5PjQEeHY8men1ug4Ihds72iOPaM5LpW7hFHE9GCGbNfn7uk+3n9wFEmS+NVHtzNf7fK9c2UWahbn1zukdIX1lstyw+JrJ9Z4cHs/Xzi+giJL+EFEPqUzmDHY1pemaQfUui7EQrjhkdTTm66tH4EUCzWnpuoYmkLOVGk5wnrQDYEwxgvC3rkyisUaq8jiunthTFpXiZN9QopivORelKTr73fLi3C8iH//1GXcMBT23ZKwT//ld+zgqQtlsrrKh46Mc3a1xasLDaYH0vhh1FO4BVGEF0Q0LJ+0oaE7V9uo9mcM9o/dnAzyw/AImwOelSTpi0BPrhXH8b98u36Aqkho0tVNic1Ia+Jg99E7xjm13OSVxTrljkcQRklTSYyDVUVmx1AW2w9RZTnJR5JYb7n0pXX+5qM7ODpf5+snV1mpW+RNnaypMpo3uGtbkZPLLdzQo9R2aLs+/Sm917RqO0KWZ2oK/RmDB7b3Ue0KdmjLCSiYCg0bJMQHwQshDAMuJk0tQ5U4MJZnNGfSl9VJ6cL/09RUTq82+drJVSFNlETeQBTF6JpMSlfYM5LD1GTKbY+8qfKZlxf42XsmefLcOl4o8sWKaZVq10NXZbpexEBWPHat6XC66XB8sSG8Rd2AKIrpk3S+d67CbMVirmoRhjEBYiF85nyF/oyOl0ik/9c/PSEKnFBIJ0cLBnUreMOhylvFQNbgsb3DfPdcKSmeNF5fEkGGcQxzlS7fOVtipekIL1VNwfZENlrbCZAlCdsN+VefvouO6+P4EWfW2tS6Lq4vVHhpSemxoNabDl6y8GeS6XMQxsJ/1QnZisiiyMIbNLimUIgQ1hNCYi7+LiZREMTXH24lCapdD7Vi4QShYEeEwvJBTp5LVxTyKaEEc/yI4bRGxxHM3cvlDtv6M+LwMpxBUxXevW+YMI6ZGcjwwPYbD2rE7xlxdq3da1r80cuLXCp1aLt+r1H1/UJC5KVdLneRgIyhMTOYxg0iRvMmti+Ckj/36grb+tOM5EUDudRyWKpbDOdM9o7mGMjoFFIaLcdn+8DbYRPx/UNk9Ikifalu88AW3zdSMPmVR7b/wF/PrWZS3cZt3MabRxBeWf3DpFl/IyGPH8ZsHzT50OFRWk7AP/7SabYlFniqIvMzd0+gyMLKdjRvUrN8PnbHOKdWW1heeBX7t5DS+Jl7Jnj6QoXDE3kWaxarTZenzpf52XunGC+mUBQRpmz7ISldWE1sqLQHswaFlMb/9uEDdBwfXVXww4jZJN8srSt4UUTOUOm6ISN5k6W6zVR/iv1jOZbqNndP93Gx1Gal4TCcM3r5HWNbNMl/+R3buVzuMjOQ7lnnpHUFZIn37BtJfi+dr55YZThn8MHDo4DEasPiaydXieKYHYNp8imdtKbQtDzOrDZRZJmRvM70QEaEpWsKhqqQNVWatiB+DOZ0Fms2ni886DVFYq1p81vfvcS+0RwfPDy25fW9Ve5wvAWpcHIgBZcab/j4c+ttyh0XWZaYLVvMDN64ObLJTZDxLXJ6Jjdlk93s9T+8a5BjS00UWeL+HVs3h9KahJX48s8M3DjL6W+9eydPXzoKQH9q6+63oSls+F4Y+taH0M01ULSFLP+1pUbv+6qtqxV3hybyvDxXe1umK3EkcsF2Dmc4OJajYnmsNh3ajt8bRquKJFShMaQN0UCQZQlDk8mZCj9//zTn19t89pUlpMRmJYxjtg9kyE4IJVkUx+wazvKr79jBM5cqpDSFB3YMcGqlyWrT4URyrT59/xTDOZPXl5o0bJ+m7TNRNDk8WRQODxWLg+N5/DDCckMKmwaEryUZY4os8Zcf2MZg1mD7YIbnLlZw/JAXZ2tAzLb+DINZA1WW+Kk7xhnJm4wVUr3B2Y1wZrVFHAsrJWG9fvUxVJIknjg4yoHxPLWux66kWZ431R+5ev9HhZdnawlzOWbHUIbH94+wbzQnsnonCsxVu8J6RpNxfHF288OItvP2Zi/rsrAhz5kqxYzOPdN9vO/ArTfdb4RC6gfvCnIbbx9SmsLmVfTObX3cK8u8PFcT0QxJg3iu0sULQmwv7BECbF/0Gw6M5/n1x3dzdr3NK/PCznOlYZNvuxyZLPJz923jMy+KLJVSy6E/a/LAcJYXZ6v4QdSzdgKxB6y3XO7f3sda08YJPOF0kxgWB1FMo+tT7fjCGilp1EcxvaZoGIszrKTIqPIVWzbHF+TkKBaWTLYf4lgRsiRjqoJoEEZxwtwX/Z1LpQ5+GDFf69Kf0ZmrWrh+yGDW4Hyp3RsY/oenLrFnOCsiOjSFU8tN/vtLCzy+f4SnzpdZS8jNsgSP7Bwk7I8hlrATS1zbC2nZ/nXr55vBrSQVbEQwkLxPC/UuXhRRbrvkUyrTAykiEEQtN2A+FnZrRyaLHJooEEZC0bdzKMORyQILNYudQ1dqj51DWQ6O5VhvOUL5Nl9n53AWN4gopFRWm+LTltEVfumR7aQ05brhV++1ShIfPjLOubU2hya2HkRIksRje4c4vdrizqliL28M4PRq64c+BBPW3U0GcwZ/+f5taKrM//3UZQCevVT9sRyCSZLEp++b4txUgf/vV8+gyiJv6OCoqH3KHY+OEyDL1/eqEi3BjZ+XpB/2Zl5L8u+0LhGGIZvnYBuD8PG+FIM5ndOrLbzEBWCl6fDp+7fRdQNenK2xWLWwvACQ2D6YYTCrs30ow3y1y5NnS0iSUOg8vl+cRY5MFvnQ4TFOLjepdlwm+9LoqoIXRIIkWEj11sMboWn7/I+XF3D8iPcfHGVmUJxP8qbKQzsGqXRdfvaeKRRF2FCfXGmxULNp2j5xDONFUxBdYnFOCmMxlXf9iJOrLTEUPzBC0/Y4vdKi0vEgTkgyUcR8MgBeb3sUMxrDOYOsodBxfAxVTkgIEllT5JGldZW+tM5w3uD9h0ZFNIksshx1ReLserfXo9zWn2Ygo3Ox1KGZ2MIO5XTaTkDcEWuJIkv8rx/cTxDFbB/K8Gen1oSqOIxwfGHNr8giTmCyL0UQRcyWLSASxDI/JJbE8wiFsuh7+4l6OIhiCqpMzfI5sdIkZ6pYntcjCGUMib6MzkM7Bji/3qbcvPLB2TOcZffw93ffTfZlGMsbNOyA9+4f5p987BAA3zq9zvHFBmEEj+wawA8i3rlrkPG8SaXjUeo4mKrCcPZK/VxquTQsnxNLTV6eqyHLMjODKWER2PGptD00VWHPSJZS203OXxnmq1ayt0hUuy4dT+RGplVJDMP8EC/a6K9eycVsJTlshqogE1zVtw5jMTSKEHvWvtEs1bZH0wkYyIjhWb3rJZaoce+zEMfiTLohzuy5mgFeGDKaEzbsuiJxcKLAK/N1ji00qLRFlNGZtTb9aR1FkfifHt/N7z03z2rLFva/kSCu7swIomCl6/UGdRlTvc4Z41r8MIZgK8k/MnALyehvHhISh6cKnFxp4QdXS28LpsJIIcWh8QKmrmLoivA/jSLSukrbETL+vKkwmBVNmpSuEoQx40WTd+0Z4l9+8zxdL+BPXlvi/pl+Om5AEIEbuDSdAMsLyac0mo6HqSpIksSlUpeLdNBliaypATERwgbx8IQIiVcqHVq2T0xMrRshwuXE5pJSxAdEV2XumCzwrr3DWF7Il4+vULM9fuGBaSw/5ORyi8WaTaklVFsTxRTvPziKH4TULZ++jM7ekSzfPlum2vVE4L0X8k++dIq2EzCc2CN+4u4J/vEXTzNX6TJeTHFwIs/lchdNlei6PooiFkQSBkfXDei4AX4yGEsbYuFfrjv89tOXUBLLx5NLLbp+iBcIf95UspCmDeUHPgQD+Lvv2cWn7p3ECyK+eHyVruvTcgJG8iZH5+rULQ9NFlNpL4zoeCHDikzWEJ+Thu3xz792mj2jeVRZJmMozFUtlpuiWWbqMllDo2AqKIqMLsXoioSpyWJaHcdE/tZe/KYKfSkjYctEdK6Z5AabPFA3kDMUEYi5aaeXiBPGh5AhxzGYmkoghxTTOoW0Rt5QMTSVlYZF1hQKv/lqwKGJQjIok3hptoYswfHFBruGczy6Z4hH91wfsn4tVEXmyESBl+aqhFHMxZKw+vl+eksS9FiBn7xnghdn6zQsDzuIGC+a7B7JCwYqMRNFkY/z209d5vRKi++eLzGcM9g3mme9JeTlAINZnYGsCJH3w/imhckPA0M5g3tn+lhtOjy8a+vh4m3cxm385COla4AYeqeSpsWNtr84FjZqKw0XywtYbticW2sxmDHYMZwhkzx251CGfEpjKGcyX7N6+WHX4v7tA9y/fYAwivl/fOZVqh2PtZbDz947RRzHjORFjkN/Jssn75live1wcb1N1tT4pUemkWWRt/ql11cpt10MVaaY1qh2Xf7yfdOsd0T2zNG5mrBTlOCduwfZMZTlA4fGaDk+//mZWeIYtg9m+Gvv2J7YT9y49MybGndOFblcFgen33jvbtZaDnlTo9716MvovGvPEOMFk+cuVXnybJkjkwWeulBlttxhx1CWX3nHdiwvZMdQlifPrvPN0+s0bY+p/jR//R3b+UdfPEVGV5Fk+NChUb59towbhNw/00/TCvDViL60JgppCdZaDuoNvCs3qyyUW9xO/ODGG+JS/daUYOfXBQlHkiQuVdq8mxt4E8NVTYDZSoe7stcPwvoyV4YeN3OMWKoLFWIcwkp96+DvDXZ3jPBiz95ADda0w94ByLhJTme4qXCQb6Jl2XwNsuaNBy8bTG/gulrqw4fHWK7bZAwV13ozbZfrYQUxdsel2nUpmCqHJgu8d/8Irh/y/OUqcxWLmIhax6Xr+rw8V2c0b7LacjBVFQmJs+ttzqy02DGY4eRKCyShLvj6qXXGCyYHJ/IcnijQsn2+cWadDxwaZThn8tT5Mq/M11moWgzlBEmuZQcM5+DAeAE7yX/YOSyyWD525wRxLJjRf/D8HHXL56Gdgzy0U9QiDUusVRu5KYNZgycOjHDXVJH/35+dZaFms30ww7v3DXFgrIAkieziW1Eh3LWtr6cEy9ykDpvsSzPZJ4ap16pG/yLBCyLqls9Y0WS16TBWSHF4osC5tTYLNYuW44tcnDim4/hEsbB03coG9fuFhMjSkGVByMibKk8cHH3LuTVv9+u8jR8s3GsmJ0+fr/A33rkdL4wYK5hYbsjXTq4ynVgApnSZXcM5al2P1YZNSlc4NFHg737mGC3bww9jRgsmOVNjsi9NEEVUOi5T/SlmK10KKZ1tA2l+5ZHt7BnN8dXXV7H9kE7SewHo+j4XSh0USQyj2q5onuqKTEqTqVuizyMlyq18WoVY5Bd5QYQfidpL5Khc+d02GnWaKhNLErnEUWgjSypGYbIvzd96bAcvzzXww4gnz5apdJKsM0MVjixhRLXrISXreRTHnFhqcKnUoeuGNB2f/rTIdv/O2RK1jsd6y0VThCKkL92mkNJ4cMcAe0dzPH2hzFDWeMukgFvZ8lKahKYKZyPXDzi/3iGKhOJ4MGewX8/zyM4BnjxXwvFEj6g/Y7DeclioWZTaDvWuz86hLE+eK/Uckd69d5i0rvDtsyWqSfTEaCFFpePy6kKdrhfyocNj7BjKsNZ0uHNbH7tuoSm9fTBzlQPMVrhjqsgdm7LN75gqcG7tinPBDxOHJgqMFUyMRDkXRjFDOYNy22Wq78eX+JExVHYO59g3lufkcgsnCDixIhwGOp6wXAsTYrgui/rrZgplBfHFLcrkLSHLYl1y/OufV5ZEXMeOgRRzVZsNU+yW4zNfsXhoZz/llsuXX19lqWkjSxIP7xxg/1ie/ozBhfU23zi1xivzdfF5H7vSxtYUmY/dOcETB0b509eWaFg+j+8b5ovHV1isWRTTGr/08MyWFptrTYduYtd9fGmD6BJx73QfP333BBdLbb7y+hqaKjGYNflKaRVdEdmGg1mdQ5MF5moWw3mV4ZxJHAsV1BdeX8EPI2wvpN71sL2AEKHMyRoK+0ZytN2AC+VO7xzatAM6tiCt66pEWhfPaWqi77lQtVAkme1DGYayBq8vNnpkqq4rhp2DWY22E7JtIEVaUziz0qJh+2R0hTBRDqV1MVALwghDk5ClmP1jeSb6UvhhxB+8sECl4+ImLyxKLAsHsjofu2Oc33t+nnOrbWRJ9NGW6hZBJAQWuiqTNzU0NSAIIlRZJgQ8L2S95dJxrix4MeAF4HgRx5caLDcc2ptCrSrW9da6t4JKx2W+0kWRZXRFusr282K5w85EaPOz90zxnXMlzq21mat0yZgKKw2HhuUJoqMkbCNfnqszmNWJ4xhZllBlaNkin6vtBCDBct3mwFiWC4kV9vbBNONFk7NrbdaaDpaXKKfCiGJaJ6MbrLdcHD9EVWQ8PxTZsYAsSZxcaQsF9TW/m4S4Fpoi05/WyZk6lY7fywEf3XCOkKDW9UQ/I4Z8Sk2Ga1feexD3uyrLfOjIWG8tfnjnIN85W2K95RIkpFtDlVlt2owUTF64XKXSuZLlpsrgRzE1K0h6E1fO0tWux1Ld6p0jboQf+BAsjuN/AiBJUiaO45sHd32fiOKYhZpNuCn4VwLypsLukRxtJ6DadRnK6kiShCYLhU43yXGQJDEZrds+2bbHjsEMOVMT1imSyBBbbzlcXO/w+lKDIFnIw1hMoqudiJPLTVKaQlfy6TiBGH7E4hApeSHFjMFw1sDQJJYbLnPVZYZzJpIkEceQMRXCRD6YMVSyhoIsSzywvZ/37h+lP6PxRy8vJpJPeOpCmdOrwnIgDENaTkAYRRRSGhNFk++cLXG50kVXZI7O1xhI6eRNFV2ROFHu0HECTE3mwR0DXK50+d8+f4pS00aVRdjdasOhmNaYrXRRFSFFHc0bVDpeYgUp8dpCA9cPqXVdHC9EkSCIYxRJpuMHNB0fKVEs6YoIjfWDkOW6TTEp+H4QKLUcLE/kK2iKzERfmoulNlGyiByZKnBgrMCxxTqyDJYf8spcjbYdkNYURnMG24eyzFW6nFhucmK5xaWKxWjOYLXp0LA9nETe5HoRQehS7YjFQZEkVEWo/aJEcu/60ZZy7jCC9ba75dcVWdykmyWefhRhKDJOcOUvvTBGSgKwm3ZAX0oja2p0PImOF5I1NaqWhywFfPKebXz91CqyJBNEISsNm8f2DlPpugxkddZbTq/5cquIophXFuo8f6lGpeMQxTE5U6HjbMz+bx1CfhsTuQGfe20FTRFy5rbtEwQR929XSRsqXiAG2ZcrXSGJtX0MVSGtqwxmjV7DWJWlXlCpqsiob/Cxq3ZcPn9sBVWW+Om7JijcJJPkreCdu994uHgbt3EbP/m4c6rAbFUMEPaPbc1QjRHEl8f2DvLqgmiqLNQsqpbLoGNgqgqvLzWodISH+Nm1FpIEu0eyrDVdjkwVelaEm6HIEpN9KYjFYSKKYuaqXS6XLe6Z7mffWJZ37xMDFccPe6HjIFSr5cTG7lK5w2RfmqGcyacf3MZ6UwSajxVMVho2a02Xr59cI62r+Acjtid7sBdECZNQueGB8MXLVV5fanJ4ssAdk0W+dFyousaLJlEMl8pdzq23+aWHZ/jMSwustRxKLZep/jRn11qUWw4N20dTJDRF5vx6k5YdMJg1mB7IsNKwqHRcnjxTom55rHccMrpKPqVhaAotx+fYYoOsoXKu0SaOYaLPZM9wDk2RbkhU0JXEJgKhitsKm60JJ7ZoWu0ZzvDdC9Utn2MDG6QjSbr+gLIVBrbIMzi6KZ/rZoKRasdNmLsx5c7Ww7rNiu9Kx2O0eH0jarVh9153w7rJc21qtLZuZmu06c81y6VwA8vgh3YM8NlXlokRn/3NUBWZDx0e44+OLlK3grdsHbdxLmg6AadX2kwPZHj/wRG+dnKNKI6xPJirWvzb714iq6mUOi4HxvKEkWgEl1oudUtYWZuajKHIFFIaa4n1iRdGNC2fMI4Zzpl89uVFYdOeDA3HiiYzgxkm+1I9tv0vPjjNHZMFJoqpXk0E4twzV+3wrbMlZBJGbDIEe2BHP14YsdqwaVheLytlOG/ykTvG+eOjS9Qtr5ch8GZwaKLAoYkCF0sdfueZWcaLKT5wcBRZloiimO+eL9F2hFrzmQsVdE3m/QdHuW+LbL4/79BVmQe294sMjeTMZGpiNFy3PC6WOuwcTDNftxKLfBFA/ta1jVdgqqIRPlE08cNYZExKggE+cwsN55vhtg7sJwvXfq4sP+Srp9Y4PFHgoR0D/LOvnKbrBryy0GC6P8VAxuCOyQJdN+T4UoPRgsmZ1RbLdTHATesq1bbDZH+GIIr4d09e5NhCg4yuMDOYwQ8isimFr51co2Z5BImyyPaSvJoYHD9irelg+1eyTsIIvDjq2YnFiEGXppBkmF35fWRAT+4pSZaQoxhTFWubF0ZCZZHkERRTKkiCXa8ntc1C1WJ6IE2t67F7OEMhrVJKFEyqIicZ7SrFtMpkIUXD9im1XWRZ2H9N9adRJJEXWUjp6JpMPqUiSxIjObMX47FYt7h/ez8fu3PiDa/TiaUm59bb3LWt+H1nS5mqTNZUaTsBrh8hyTCQkfDCkPFiihhhK5xPadwz3Y8XhLxn/zBjhRSfPbpEFMVcLHfYM5Lj+GKdUktkwb08W2Ou0sVIFHvT/RkGMgYP7xxkKKfz1ZNrVNouc5Uuv/7e3bf0+75VvGffSM9t4IeFk8tNzq5df40UWaisutcotH8ckTdVokR1E0TQdsPrM8AU6M/oVLu+iLS4gT0a0LtH3ww29o/wmsdpsmjWF1IaEvDyfIO2GxDFInNKBpxAZKr2p3UUWWJbX5qOG7DeclmorTOUbYAUc2BMKBplJFYbNtfi+FKD9ZY4Iy3WrZ4VZ8cJiGKhtLkRZgbTpHWZtZbL4XSeYkaj7QRkDZWvnVhlqW7hhyGnVzs0uh6nV1u0XTGwEGqeiLyhocjCIeDIhLCMn2tbhGGErio0LA8/jAhCksGRyUSfyVzVZjBrEEUR9a4gCWwcA/xQOGH87L2TtOyAb59dJ4igYYt6I6UpPHOxQtsJaCfZX3IMU31pHrhrgNOrbV6YrQrxA0IZqmsKDSui6whVbKVtU+34/JXfPcoHDoxwYDxPSldEtEzSe0wcZ6lbPkfn6lwsddk9nOH/+OQR5msW3zmzzmrToeuFaLJERpMZzOmk1BReELHesmm7ATuHsiiyfF10khvGdDyfuBPj+sFV6sOOEySK0psriTaj1vX47y8usNa0WW3a+GHM4ibi4EM7Bnh1oc5dA2k0VcZIaueW47NQ79KyhSuXG4R84fgKbUdYCbt+yPRABssXGaxtJ0hy8iJUWbhLtF2fWtfB9mJ++6lLDOdSqLJE3lTJaBKtJMdrte4QS+J91RQxD4lUmSiICMNYnL0kQdnd/F7JiGGznthVdlyfV+aF9a3rx3RdMZTLGCqHJ/KcWm3TdnxMRWYgoxNGEa1rDpqxJLLX5isWP3PPJF87ucbLczWypsJwzsBQBYHFC0RO+Uje5EKpg6EpuJZPIaXTcXxSioTthViJ6pxEaTpZTLFQ+xEPwSRJegj4HSALbJMk6Q7gb8Zx/Lffrp+hyBLGNRPXsYLBP/zwfv7pV87iBqGw/PAC+tMahZSOqoiLEURiWtyXVtk/VmCxbmFqBhld2OW8Y/cgGV3ht548z+l1ERQoS8L/X5Fl2k6QeE5DresSJFP0nKHQdkQwpKZIjOUMDk8WObZYJ5JhvC8lLmpOR5Jl3r13mNlKh8W6TRTFDOYMhnIGHz4yznMXK7y+1KRp+2QMlX2jOSodj3JbTHIjYgqmRs3yWGs6fPXEKnEssqT8MMTyApqWx1ghxelVDyuxNHSDiKOzNTRVeLS6QYSuSLRdn7WWw2ghRc5QqckSXgjFtMFI3uRiqUsUCan6ettBQsKPYhRVpi+l4QUxbUdIElVZ5JF5YUTbDnDCGNcSodc/iADS9ZbDHzw/z4VyhwNjeX71nTtI6QoDGZ3Vps2lcgdNkXl09xCWKzxk753u4/xqG9sXv9PMYJacqfGO3QOcWG4IT/AgIqurBHFMvKnZEwI9p6sYkGMyhsJje4f53vmysIwKhc/hZjkoiA1JTLG3/n3s4HrZuOvH6KZMSo2xk0o+iATTRpFEc06SBYsgjoUybb3p0JfR6M+ojBUM/ulHD/LLv3cUP5QZzBq8e98w2/pTPHepyivzdfrSOsVNw5+m5fON02sYmsL7D470Ajg38Ppyk2culllLpvempggrUCQ63veXt+FHwpdZljak0+IvT660eHTvMBPFFNsHM/zus3M8tHOAWtdjpGBiqjIfv2uCE0tNimmN9x8YuWFjGDY8xANypoqcNH3Pr3d6jbfL5R8NM+w2buM2/vzgfQdG+e75CnEc9+yjbnTWS6kSay2blYbD3/vAPs6vt/njo4tcKndZbdj8/nNzNOwN8g5M9aeRJfjDlxbJGCprLYeP3zXBqZWmYGluOlh//K5J/u+nL+MFEceWGkz3p3sKp83WeNcy+4tpjTumCizVbd6xe5C1psNUf5q8qZE3NXaP5HD8gH/97Yt0PZE5uWMwS5B4hP/cfVNcWG/z2kKD337qMp+4a6JnRbgxaHt5roYfxjx5roTlBjh+2Cu2N9biIIrpuAF1y0dCShooIqfqXC9vIuZrJ1Z5+kKFIIr5G+/cwV9/53b+x8uLGJrC0cUG48UU6y2XQxMFvDDmPfuGOb7YIGsoxAjb3TgW9crB8QJ3T/dxcqVJHMO9mxrxhbRKqS2OTSOFrfMaJ4smy3WHtC6hqTcuuSu3mEm13LB6A6nFytaqrM1YqVlsG7i+CdbsXn+YvxHu397P0fk6qixxzy3uhSu1Nocmr//erntloLWVKg6uVoJF0dYTus2M4twWe/zH7prk2EKDU+st/tlHD93we+6d6aPcsuneJBvtjSABA2mNthskjVqPP311iW+dWacvrSWW2iKgumX5eFrERDHNjqEsu4YzDGVM/vDlRc6ttyhmdDq2T0pTeozNMIzImiELNYs4FqrJhhXihaLmfGBHP/0ZnX3X5FGkNKFWGL2BLWat6zGUNWg7wVUWpYJIpHN6pcX3zldIG2rvefeO5sTwWJU5u9bmwPiNmwQbA62G5fPY3uHrLBJfXajTThoN92/vZzBrMFftcnyxieuHLNYtKh2PjKFyfLHxF3YIBsKS9OFdg1wui2zDmcEMo4UULcdjuW5zYrlFqe3g+JGwkno7J2CI7I2pvjQTxRR3bytyerXDQFbvkTLfCnI3sUW9jR8/REkDeQN9aY1KxyOMYl6Zr9NxxP6dNzV0RSioVho2kiTx+L5hnjg0xn95dg5dFVmlkgR2ELFYs2jYXtK3iAgiGdsPOLbQBOCB7f0cX2pQ6wq7rA1FCYghV9sNrjsrb2R+bWR3pTUZU1fouAFyLCwVN/YQTZbRNZm0ISyiBzIGMSKHdb0l+hymplJI6cxWuvSldVRZPP/nj62wfyyfkCxlOk7AYE7UBEM5g1rX58Ed/aR1lXrX5TtnS2RklSMTBYIoptR28IOIIIp55/Z+VEXi9aUGIwWTn71nCi8I+eNXllmoWnzz9BofOLS1NTMIa8dvn10njgXZ5PsZgpmqxPsPDHP3TB+/+fXzQqETCVb/cM5kKGdSSKs96+6Vhk3eTHPHZB+nVpocX2qQ1hTu396HqalMb+9HU2UallAOnFkV2a0fuWOcS+UuKU1J+lt5xoumsLoi5tkLlT+XSuAwivnWma2vkarIFNI/vhSBMIp56kKZpiV6NIq8tb2mqsiYuopk+WJIvcX+9GY0wRv3ra7K+Dewws5oMh+5c4KBrMFXTqxS7XjosgSKQk6Wk/OJwoX1NsWUzv6xHGtN4cCxYWu6WLPEEDIWFu4pQ+b8uvj7qf4rjfXhnIEkCRXNUM7gg4dGeX2pwe6RXO+McyM4foTti2zPctvlwGiOC+UuXz6xynLdomH7jBVSTPWlaNmCHDWQ0elqCjMDGZ67VEWSJEpth760xsmVJildwVBlQgkKSb+7PytI8WldOJ5dqnQJo5h7pvtIJ+rTuuX3CAGGIpRgqiwx0ZeimNKpdjxSmkJaVzi51OByuY2pyhwYy9G0A1pOQMsNeHWhznrLFZaEyTXqeBFFWcKLYiRNYjhr4AcR5Y5Ly/L4zMuLKJJQuNmBWNtNVcJURf/UDUTkiRvYVDsuJ5ZbfPSOcfxAKGwNVebIZIGDY3m+e76CjETN8rD8GFmSkWWJYka8F03b74lUZKCYFpa24aYeLcDd24oM5bY+14FwvPj8a8scW2ywfyzHg4nriuuFdNxA2H6Xr2h/7pgqstKwObbYoNR2+fid41yudGhYHm4Q8dCOAYbzBiDRtH2OL9TImwqaItOX0flr79jB2bUWXz+5RjfJopMlsL0Q14+wPPGeu4EgHBqaguUFSIqCqsaEYYS3qQktBtchGV1lQ4oRAkokBqgb95gE9GVUdg/neGTnAC8v1Dmx2MRLFEGbI3o0RWZbf4bVlivsMlWZKBYDtw1CqKGI+KkwEqIfSRL26GtNh6bt9WKcImKi2GK1GUDyXkax+JzIshjgmbrIBI+imI4TCqKKKZMxNO7c1idcEm6CH4Yd4r8C3g98ESCO4+OSJD36dv+QjKmhtMUQSkKwl4/O1zFUmY4rgk1fmquzrT/NR++c4NlLFQYyOj9//xQLdYcXZ6ucWWuLYYfp0bJDPnlPP8cWGjx7qUrLCQmSFT5tqPwv79/LV15f5cyqkP5KkPhgShDL7BrJEQYRS00bU1N4cOcA5ZaHqYk8pg8fHuWFyzVW0rrwTp4UPphpXShZJESDa7luc3KlxaVyhyAUjzM1CS+I8IKQjKHgBQG6IjGUNVAUiYm+NJoiZJNrLRHWGEaCUa4l5s6aKuP4AYok4Yai+DKSQMa8qdGX0ah3XGKJXjjeWtNmx1CG4ZwI6J6vWhRSGkcmc6y2PHYPZTiz1gECRvIG1a4YwjQd4V+9mXkVhPGWGQ5vFkEYJWwtlYbl8eylCustB9cPObnS5O5tffyX5+e5XO4ShDEvXKqK3DdJoml7nF/vsGc0R19b59E9g1heRMv2mat2kRJn0yiGlC5T7cY4QdhbHJSE0bKxroSRkDh/5fUVTE0RzDNZRiYijEjUcpDSZHYNZTiz2r7p7xbdoFhQZAlDlfBDCV2ReqGkXgTFlIaaSMOzhsq2/jQXyx20xAdWV2V2j+TIGCqP7OznYqXLfdv7ec++YSRJfHZqXdGoeuZihe1JYXZ8qdGzFbo4lLluYdEVmaGsQbntsXc0z8HxAook8ZUTq2/l0vYONRKI4aMCbTvg1HKTJ5Jm8ifunuD8WofDk4Veo+XFy1XOrXcAKHc8xrdgAnzlxCoX1jvMDKb5+F2TzFe7RHFEShOHmVuxVbiN27iN27gZJvvSPHFwlDiO2T0s7DSuZQcaCthBjBcG/ItvnuNSucNvPLGHj94xzr/61gWm+lJUui5qktl1aKLAUs0mZ6q0XZ8oEgfCl2ZrvHBZqIo+ftcEqeTgkzNFXaHKMhdLHe7e1scvPjSN7YeMFba2XJEk6Q0ZsrIkoysyO4cytN2Qd+0dYro/zetLDbYPZlBkGccPkSSJzx5dxEvspj917xSSJLF3NM/J5Sa1rsfxpSa2HxDFgkH9/oOjXCx12D6UYSBrsGc4y2dfXaLe8VjLOjx90UdPlAmT/RksN2Cu2kVXZb56YpWHdg3yqfumeGm2RsMSTeOcqeIGId85W2IgKwLXlxo2OwYzHJ7Ic2ypgakpPHFwhD86usRizWK+0uWOqWKvhrI2WWu07a1VTaoiE0uApJDZQv0+dou2RmlD7eUp3Kx5vHk4NJK/sU3gVH8GeGP1mZ1YaYAkGoq3gK3U1tKmNuXNGL+bv+TFWzcRNEWo5CWE1faN4IUiPyCtKbTs6/2ffu+5WV5baGDqKpbvf98KGk0RVqe7R7K8slDHDcENI8LYY/tAhiMTBZ6+WMHyQsI4ouvBuCqx1rJ49mIFLwgTO7CY1YZNWlNQFZl37xggjGNOLrfoS2sEMdw1VeSdu/r5nWfnWahZfPDwKA/vvHGOyZeOr7BQs+hLa/zVa6x59ozkuGOqiCJLPHTN4zc+5yDquw0UUzozSbbe5nWj7fi8utBgrGCyZ0RkAh5fFA3sl2ar1zVu947kWGnYjOTNHuFqIGOgq+K+39Yvai9DVd7wIPvnBRuKu62wORsma6gcGi/w7dMl1loO9a6LHyY2+srV7hFvFS3bZ11xMVWFkXyKHUM5dFVm3xbZPG8GmvrjrXS4jasRX7Nwu36ErsBTFyoEYcyhyTxBCE/sG+Y758tEUcx3zpax/ZCdQ1l++R07eHTPIHXbY67SYb3lockSThiR0lQm+3Qul7vsGMqwULOwvRAvjHjmYgUvjHrkCUViU0NdnNNVWcZEDLf8SKhBwujKfjKYM9g1nOP0SpOa5UEYo8rinB3GEbuH88QxzFe71LouWVOjkFIxNRXLDah1fWwvoOsGBFHE7uEcmiqzVLe4WGozXkwx1Z9m+2AaJ4g4vdLCDSJGcgZn19r8yiMznFhqEkYxlheyezjDLzw0wzdPrYuhUaJ+O77UYOdQlpQuSM+2HzKQ1Yljeufzm0FVZIZzJusth9Et8lffCMWUxqsLDY4ttXrWZLoiMVlMU0hr1LoeK02b//zMLPfM9Pfsr9wg5GyS4WJ5ATsGM9wx1UcxLezbgjDmt793iTNrLdK6yvsPjvJHRxfpuiEvXK5y//Z+/spDM/zR0UWqHfcH5sTyo4YiS8k1sr/va/SjxKVyh2MLDZbrNov1LvmUhuUEeFHc60ltIIxEv89L7t2t7BDfDGLEULu4MYTf9IyyBJIsM5QzyJkaKU1BUyS29Qu1puWF3LOtyI6RLK/O13lprsbB8QJ7R7K0bJ/Xl5ukDaF2kWORw/lTd4zzb759kemBNN8+s84vbcpq3zGU5e5tIv9YQtTzt2JVqsoSqixRarvMVoTLxkBG49Ryk2rXF4QDSZwfX5yt0nFDVDnisT1DjBRNnCBKen1pLC9ktGCyI7HbCxP719Giyd3biiJ3ayDNd8+Vef6y6I/OV7tkDJEF1nYCZElkSatJBvXlssUvPrSNM6stUrqEH4gBz7GlJmEMXTfiI2MFJvrS/MHzc0RRTKnliut9zQXueCG6IiNLQlG2YZvXsn2iSAy+RP9eZOFu2PGFSYM1ZSgEoRgaOr7H548t90icQRSzcyjLSD5FMa0JVbAX4CZuWct1h6m+NGNFE0kS/VFNlrATH9yhnJHYvYboqsKOwTT/+ycOM7SFiwaIvvMfv7LIV15fxfJCZAkOjRd4cEc/L8QxpipUbfmUxstzNc6utXH9kG+dXiefUgGJpy9W+fxryyxUbXRV5K3+wgPTNJ2Az7+6xHxdkEeOTCgsN2zKHZdtfWk+cHCU2YpQCZ4vtdE1BS8I0VUJN7nHAtFoJ46Fqi+jKzTsq525RPSMIKOoSa7axlcGsjpO4OAlw8ymHbDedrlY7gprycSRZCinoyoy9a6wNk5pMgNZXZxlwlj04gPR/8/qCjEx900PoGsSyw0bWZJBkhgrpJDlhIQbSyzWLLYNpNk2kEaRhS24LEusNhzqiSK8bkWMFkx2DmeZLXfxQkeopwsphnImiiQUYjfbQ34YQzDiOF68prB/e9N6EbK32UoXWYrRZRE0OZQzeNeeISodh7Wmy/m1Nl0n4O7pPv7+B/dzcDxPvevxx6+t8Op8HT+Mk+C9iMf2DnN6pcVK02GpbpM2NTRVeDQ/tmeQv/LQDJfLHaIo6oUUtl3xQTo0nufxA6MUUxpPnisxmDUYzBk4fkhzJSBjCCaSpsjcnfgcz1e6Iphekrhnusir83W+8voq2/rTYnASiQ/vt8+u07ADgjAiY6hJeGFMx/UYL6QYyOrcOVng0w9M89T5Mi/P1vji8RUx9ZYkMrpKWt9g40hYfsj9M334YUyl45I3VbKmxnLdptQWqp6N+8L2QvYO5/jOubJYMJMFyI8k3ntghM+9ssRCzSaliUHL3hGd11calFrXe6vGXL9Rfj9w/JA/fGmBuuXz7n3DDGV14UvuCUun0bzJpXKHUtulYXt0nZC9ozlMRabpiM1wVJH5xYdmODJZQFNkXpyt8pkX5jk6X6frBUiSTFqT8PyInYNZOrYvbsowpJjShNc4MWEs0U7kzw3LR1dDLD8UN29SsG9sDBKIodymtyCtyYRhhHuTPpNYtDaGoBHXlhIt22c4bxCHYgg22Zcibwp7xkvlLntHcjx/ucpD2wcYzJlM9me4b6a/d/A2VIV8SuPkcoO24/P6UoMjk0Wm+tO8ttBAU6UbNkzHiyYTfWkGswa7R7JkDI3ji3XSmozCm7/hN1aLXErB84Vne95UMTSZMAoptVxWGjbjxRRnV9scW2zQcQM+fEQ0WgYTZo6ULOZbYaEm1J2vzNe5YzLPF46tAfCO3YN/oZnHt3Ebt/H24cB4ng8dHiOMIu6eEaxW5ZqevRteYaIFYcSZVcH46rgiCP3UqSYfPjzOJx+YwAthz0iWMLEmrnY9VhsOe0azvLLJ5u7Lr6/ihxG7hrNJ3kVEtWPxibuFvUwxrVN8G34/PbH0Wah2+bl7p9g7muN3npmlZfuYmkK143Bmtc2DOwd6e+BS3Wa95TCUM3nfgREe2zvEHx1dpNRyadoB2/rTzFUt7p2Jrgoqv1zpstawWG25dDxB0Nk7kmMwq/Mzd0/yylyNO6aKlNsuMQjWZl+KT90zyaVyl999bhZNkZMGvTisTfenyaU0nrtUJWcovGffMIWUhqbILNYtlhs2QRRfNRjobOpFbSjCboTVpkMUC9ZgpeuQz1y/H33q/mn+/ffmiBHWiFvBcsVBFQk69ta7asGUaTgRKpA2b8xmnNpE8FBvIspfqFvJoTZivnZrjuaD2RuTTs6ttXp/vllNkFIl7ESVNZrfmo250eiPgbodkLlBDtkzF0r8j6OLRFHMStPhW7/xWO9rHcfn9cUmleSzkjcVmjfzhrwBNoKfvRDqXZfDkwVkSUImTjIxRG19dq0tbHJiRAarJKzBF2pi8OH6EdVEUaEpMgNZg3tn+nniwAjrbZf37Bvp1fwRMX/66jIrDVvYnG4ZM09POdq6gTVPf0bnlzc1c1qOz5eOrwDwkcNjfPjIGNo1ZCBTU/jFh6ZpO8FVTNnvnC1xudxFkgQzui+jYWoKzhZD9jumihwcF+qJDRSSDA03iMib6k+EHdTbgY4b8Nmjwu7+Y3dObGmbuhndRBXbcoQFv7vpY/t2DsAAbDeiJonP5tMXKzyya5D373rj/LdbgRS/7e2A2/ghotQWGZVZQ0ZXFS6udblnpp/XlppcWBfE4o4bJNZGHl89scofvbxApeNR6ThkDA1dlXnPgWEe3N7Pu/YKwk214/JvvnWOM6stolhY5G70DCRg13CarisCY7wgRFNlbNen5YgBmIwYBg1kVRqWj6bIjBVMXlmoJRkmouEbRxFdX9gmBmHEA9sHWa5byLLMHVMFTE00Xy90XSQZvFBYj40WTD5waBRdkfmPT13i/HqHlK4ymA1ZaLncO9PH33psF7/37CzPXKgwVkzxp68uc6HUpu0GDGUN4ljCUBU+csc4j+waRFNFjpihKUiOeM8kSagy3ndghPmqxb3Tt6aK+tl7J6l3PQazW++fOrAVfafl+CiSjBNGxFGc5D5q3D3dR90WbkHnVjvUOh5n19qJRbewHNYVmeWGTdP2+fKJNY4tNnlwxwA7h7OJRXWanUNZ+tM6dctn13CW44tNdgxlUGSJ/WN5Ht83zHOXqtS6HqWWw/ANlMw/6bhzqsAXjnVp2j5eEL1pa+EfJYQSUiJrqniBiOLoy2qM5lKcWGnhJKx3CdF7bFgBSuLqkzFkNEWhuaEMewto2YHIeHdFfZO0Smk7Ab/33DyDWZ2MobJ9MMu79w7zmZfmcYMIL4qY7BP3pO2FXC53qLRdLpSEHXrWEO5AXiTWkS8fX+ViqcN8tctdj199Dy7WLP7L83OU20Kl9Bvv2yNs4Q2Fj981sWUGcsZQ+dS9U3zh2Ap5U8Pxhe3bHVMFBrI6Dctn32iejxwZ5dhCjfGCiaLI/Prju0GS+NgdE5xda7NzKMO3zpTwgojH9g4xVkjx+lKdlh1wsSRs6YZzJg3L44XLNcIwxgsj4licKUxVZrRgEEZw13Qf+0aylDouCvCV11c4ttjoKYs294RjYL3lMt6X5p7pPk4st9g2kGK96VBqOlx7KhrI6PhRzGrTIQhj+rIaRVOlG8QMZjR2D2e5VOni+RGWH9B1xWs0dJnBxM1rY4xTt3yKKZWsrrBrWJDMKl0XRZZwfNF7DcIIRZZxg5AXZ2s9K3E/jJET5yzbFxl8g1kdP4hYqttUOx6nVto8tnfrOuyV+TrPXayIrDRZQpYkhnMGf3Z6HTtxMgn9mO2DGZ65UKFhecJWMojouCFZQ2PHUKZHatUUmdWmw7/5zgW8QCh5m5ZPRleptD3SqsJy3Wa5bgHid1xp2NQtQT5QZAlVkvC4YoUdRuBEEa4PpiGGYRvWwDJC3RXHEpIUoyoSaUkMOkXvOM2OwQxPX6zghWJAuVyzkIgTy22IiKlbPocnBLnB9SP2jObYP57H1GWWahYZXbi5zAxmeNeeIbpuQKklLCybVsC2gTQ/fec4OVNjOBk6HhzL88pCXaiwmw4P7hjEDyNevFyl6wa4gcj8zBoaP3fvFAcnCvz2U5ep2z4DGZ1Hdg5Q6XroqszlSuemJIMfxhBsUZKkh4FYkiQd+HXgzNv9Q/qzOtsHUlS7PpnEiu2ZizUe2zvEzqEMv/3ULLIETduj7QR89cQKrh/QtAKOztUT31Th9ywC53XSmspyw2ataaMrMNmXwtRk3rl7kFrH5d7pPiSEP/tLs2Jgkjc1MqbKMxcrjBdNjkwWKbcdLpU7nFtrY3shKU3mD19apO2G7BzO8NE7Jzi+WGcoq9NxAxbrFqdXW0KtJEtM9Qtvz7YT4gRRslBCEIlwVkWSaHvicZcqHV5fbnGh3OXDh8dQFWGdIW72kG19otlzZqWFlVgW5EyNy+UOa02Hlq2A5BBFieJp04xlw6LG9YXNox/E2FLAicSqMQjFUMYNImYG0ry+1KSxRYZEGAqWwltFw/KpJyHec5UuhycKvPfAKMW5Gg9s7ydvalS7Lqos7GN2D2dJaSp+FBPFYvKtKzLDOQNNEUOoL7y2zDfPlJJBmsRgRiOf1ih1XGarHZBgMKPRtCUkpJ6s2nVFjoGX+CN6gVAPbh5+bcC6xgNRV4QneeMm3oiKJDxZ07pKrevd0PIkQkjrM4aKIguJadZQObPWQlMUDE3G9kJ+47PH6Hohn75vqpcDEcfCv7c/rdF1hb2BoYpmzPbBDL/66HbkxLf8WqjJe+iHMbMVi7bjs1izqXXc72vivfGrOcnhJKXJjOQM9o7mmK/ZNGyftabD2bUWxxcbWF7ImdUmHzg4gqLI7BzK8osPTqPIIrB9K7xz1yD/8PMn8aOY3/KjHnvHv0XG+23cxm3cxhtBVWTetefqDMAbqXwjYDSnM5Qz0VWFsbzJt8+WWG7YdN2Qz722hCxJ/MKD00iShJp0tAezBoWUxvn1NjODaQxNIaUpfPP0OgCrTZuBjFjHVXlrhetq0+al2RrFlMbe0TymJizPZgYyvUKy1HJ4+kKFkbzJO3aL4dTJ5SaLNesqFYMfRkRxzMnlJqW2YGgNZg3ume7j6FydtabNZ15aZHogzSfunkRTZH76zglmK10cP+TZi1UKKfWqRvulcoezay2CSCh7JoopDozn+cChMfaP5TBUhcn+NDuGMtw73c9ykmkUhhH//OtnCcKI5bpgkrlBiB+IQ5KpKdh+yEjepD+tkUtpWF7IyeUGe4azDGcNxopXF9IyV+xbjJs4egXJXhLDVTmem3F2rd1jx96M6R2EguVODLF0gw9Qgg02YCRtnUdwepMK/Wb2aXEUYSX7sC7fWpNmqz1331iOL50sATfPAmpvYgLN3aLtY7iFs8BCzSZI2Iy1a+rRr55Yo9JxsLyAxDXrTWMzsckNIo4vNsiZKtWuyMQNQkG2kRAHZVkR6koFibSukEtprDcdhrI6d08XeW2xQaPrYWpCaXNkqogXRHzx+ApeEPHg9n7adtA7zAI3Vay/Z98QxxebHJoo3NSaB+D8WpvLpS5z1S4tW4S817ouk32pqwbApqZcVwdu/L8qi1y+jKHySw/P4PghfdcMfutdj44bXGUptIGY5ED/Y24H9XZisWbRSM4x59fbNxyChVHM+fU2hZTGeDHFH768wKvzdSwvwL/RZvI2QE2cKyLEOjZRNOlLi9zg+WqXuUqXkYLJzEDmhueCW4Ef/MW4xn9eEIYxm690Ia1huQG2H6EoMqNFk4GMzqsLdWKg7QYoG2qrKOK3nrzIcsMm6qkeA3YNF/kHH9zP0fk6z16s8MCOfgxNYb5uIychH9JG2Efy7wvrFllT4eGdgzhJVuZqU6LjOpAQEAYzGndM9fPibBVJgjCM6NhBr4krS6BqMl4k6pUza21h5RWJKIlzay2e2D/KJaXDcM7E9oX7TloX+d9ZQ+XEcoOm4+MFMVEU8+JsDU2R+eIxmw8dGuMXH5phveWwVLeIo8QOSlWY6k9zaOKKde3mNfITd4k6aNvAlfXx4HjhOkXsSjJo2juS65GSN6Ap8hsOjram7oh+QCSFSIg6M62rDKR1FEXm4Z2DtJ2AWsenmNYYzaeodT0KKZH1Pj2aYa7a5cRSE00W7gTVjstEX5q/8egO3rV3mLOrbSw/xPVD3rNvhB2DWbpu0CN2+QkZJIYf2Pr2o8aFUgdTUyi1XMod95bIDz9qVDouxxcbzAxm+OS9k7y+1MRUZYJIZIjWLL9X84Koi1RFeCppikQQxHTcCPma8ddmdyUpvvlncwOWn8TTIKOpMlEc98hTUQxN28cPY96xO8sTB0bZPpDmc68ukdJiKm2PnCF6gq8tNlBkqHYciIU1nhdG5DSVkbyBjMSL8zVajtijl+pX16SqIlFuu1Q6LnEMx5fqdNyAhu0xW+neVMleTOvcO9PHK/N1iukM1Y7Di5drPLBjgE/dO0UUxfzrb19gOJ9ipemwdzTLb37zPMWUxqGJAh84NJpkCWqcXm0xVjD5+Qe2kTUU/v13L7HStJktdyikdfKmsMwHCAKRAabKMbYfClts10eRRBZgx/F5/lKVhh1AHBNEMVGcZCXKV6xRxwpCcRPFgpjZcQPyKY3oGrlfGIn8yG39KU6tiMFNqeWiKTLjBZNP3jvFZF+abX0mf/LqEq8tNJmtdDFUmemBNFF8NeVfQpDPVEXGDWL+4MUF6skQzAsjZECRZeEUJoHtiXV/w5EsigQRNa0L5VLe1PjO2RKWG3Kh1OHzry7x2N7hLa/bWsthpeGgKBIPbu/nlx8RLgu2F/asJbOGSrnt8a49aV6eq6FIEhU7QFMlXrhcZbRgcGg8R9P2MRSZlYZN1wt69n5hEgGw1rIpdVzypobrh3S9kLGCKYbnYUwcx6QV5aoDjMSVeyoCgiDCDze9hxKkVAU7Id+RfG9/RkdThIOerkookjjpyohzi+WGJMYgvRC/asfDCyJSuszJ5SanV5pYXshQ3qTtCEWjIOylObbYYLEhlIht16fSFj97rtpNzvM5Do4X2DOa42Kpw1NWSQzN/CS2RhIZ3Kosce9MHx+7a5ITy03unCri+SHbBtK03YC1lsN4IcX+a+zhr8UPYwj2a8C/BiaAJeAbwN95u39IRlfpuIIplNJiOk5Af8bA9kIWOi5hFBHEMettly8dX0aSpZ69SF9GxfEDdEX4zNS6HscXm0wPZBjNC0l5IaMxkNbZPZJntenyf3z9bDKAEV6eTdujL21waDJPte1R6YpQz9ZEQKXjkktpREn4tanJtJyAvrTGbLnLP/rCSXYPZzk0UeBbZ0ocX2om+VwypqrgJzaLqiJhqLIIf0McFLf1Z8gaCs9driYhjDGyFNKwBANotengesIO8o6pPk6uCB9mP4wYypnEcczrSw3KbTE/1iOZiT6T+arVa/Js3ExRFPPZVxbxwithskEY07R9mpYocLpeiB/FfPvMOlZigXij8iWIoqssVr5fDOcMDo7nWW8L5pUiS7RsnwulDrWOy7HFBjlTY/tghrNrHZp2wM/cPcH3zlc4udxElSVsP6CT5JD8/rOzfPP0Ol4YIUlic9s+nGW+2qXt+HTdjSy5mKyhsXMow3LDYaVhEUViIJo3xWAyiGK63o03+mvhhRBcY9WzsZ71pvqxKA5q1tUDsM3NOBCbwlDOwPEj8ikZP4w5OF4gZ2o8sH2APzu1ylylC5LE8cUGiixR73r80dFFwjgWQYqGRitR+5kJO2krNguIxf7T92+j3HY5v97mi8dWmK10xAb6FuAHgrEBEaoiEcaiQM4ZCn/y6pLIkah0WWk6hFFMPjXLp+/fRt7UGLgJA24Du4ZzmJqCgZBo/9WHZ7C8kLu2Fb+v11tqOyzWLPaM5LbMKNmMpbrFmdU2+0ZzN2wI3cZt3MZPPtqOz//15EX8MOLvvHs3/RmdG/XsdQUm+7P8q5+7AzeI+LPT6yIAORkoqZJMue1ybq3FtoF0QtJxODie56nzZU6ttFBliV96ZIacqRHFMefWBBNwttIljuGT901cNaQIo5hvnFqjYfs0bY+1psuZ1Rb3TPfRdnwuJgf1f/qxQ0z1p3n2UoWFmsXxxQYdV+T9hJuaFBsEgo/fNcHvPzeHLAm25njRZDhnsGckx56RHP/XkxfxgoiVTUHTGUPtBREfmSyiJt7fIOoPxxOWcWEUs38sz5HJAjuGskwPiCFA0/L5gxfmqXc9+reLhsyK5fFvv3uRU8stVFnGD0MUWUJXBbFClkTNcNd0H/dN97Gc5Ko2bZ9y2+WT90yQT+nsHLp60HBVy+kmjB5NlfE9cVgvmDceDq03ur09vNrd2lpx4wALonG+FZzgSiOg1nUZzF/fXDFvcaB1dL4BiDrkqQtl/uZju97wMeWOy7ah6/9+z6YDSSG9dT2x+d4Ib5GQYm7xdIcnCqSSbNadI1dfw3PrbQxN6R0U3wri5F+KLLJjhvMytY6HF4oGwnBOZ6KYYttAhpG8ydMXyqy3HJEhFsakDRgrpFis2WQNjbu39fGJuycBOLvaZq3p0LBEA2ooZ1Bqu2zrT/O+AyPcO93HfFXkqoAYisuyRNPy+frJdbwg4uC4eO8blidqqBvUJ9MDGUptF9sX2WN/+PIiOVOj44ZXDfFXmzbfOLVOMa0lZDuZx/cNs60/zVDOIGOIi5HSFcHS3oR61+MPXpgniGIe2TXI/duvKO7Xmg6fPbpIFMNH7xz/C2NHPT2QZjgvzqsHxvJUOy5dN7yqCf7VE6s8db7McM7kl98xw8tzNebLXdZaLjLC1i3c4rz1/SClShiaQtcVatuhnMnHE7LC4YkCXzi2wvn1No4f8tDOQf7qQ9NXqfpuFU701s4It/FDxjVbXaPrkTVVUrpCISXqmpfnqnhBTMPysf2QnKHSckQ2eYwgV6aSfK6JYorhrMlvf+8Sp1ZbpDWFo/M1bD/k5FKTIBJDN4n4qrNuiGhoTiT56s9dqiDLIpPdTaZcVcsnawr1bKXjciaxcJIRWdkbKq8oafLKUcx6y0VK3HcWaw5fO7VGIaWjyDKjBQ0Z6HgB+8byfPP0eq+uSmkK8zVLEGGDiO2DGbKGyD1dadg0rABZFmvizECKHUMZnr9cIwJ2DWX58uurmJrCT981flUdtBUqHZfPHl0iSpqQG4SkN4Ob7XlXju7ivbL9gFgyKbVc3rVniP/Ph/bz7bMlHD/k8X3D1G2fanL+r3Q83r13mHfsGmSt5TBb6XJuvYMsS0JRltLoy+j0Ac9frlJIa3zh2ApRHFPuuDy2d5iHdw6QSpr7PwnDoc2od72equ9mODxRYLXpMJQ1GH6D/KEfF/zZqTVKLZdTK2Lgcn69zcX1DqsNi4YdULP8qwh+hiYhA1lTJbZ97I3a9JrnVZOYD0UW/9SsW9sXopge+c67JpQsjiGjy0QRLDds5qsWQzkDTZWodD0+9+oSHzg0yrb+NCeWmwSBGLbrmsSBsRyqIrNzOMu79w3TdgOW6jZhFPPs5Sp/6YHpXvzGWCHF4/uGObbYYKo/zY7BLK8uNLhc7pLW1d755Fo0LI9f+6+v4AURn75/iicOjvArv/sSpbZL2w349H3beHm+xly1SxjGjOQMlms2l8oi6uMbp9f47e9d4hcenMYLIxqWz8llIUp4bb5BqS0UV14MXsslCuNEfSoT6eLYoqmiXxjF4nz1/KUKZ1ZbVDou9US9Z2oyxbSOqSkiZqdpI0cgxTGfP7ZEHIu8p6GcwXpbDGs0GZAgDAQZDwTpoJA2yJo2QRjh+CKKp+sGfPXEKroik9JUJvpS2H6IJInMyXrymdrg/W0MQtK6ykjBpNLxqHeT7NwIDE0mrSuYgOWJ3zOMrib76Qr83H1TjBfF0OT5S9Urn8sYTq22hGhFvzG5p5jSODxRoOMFvO/gKHtH84RRzMHxPMWUxvOXKrSdgO2DaT5+1wQNy+NPX1um1vWIYuGe8uzFKk1LnBH8MKRW8ug4AX0plYyh4ocxXTek3PYYyhlMFAxeXWjgBhFnLWE/2OvRxyTnZREdoykSmiLcX4RoBpEVFwlhRsFU8cJYiDU2vS/ljkdak2k7PjlDI4zEAEyWIWMKAUlKlenP6LQcH0mSqXZcLD+k60oJ2UU8oeVbYv+WpWQ/tZgeSHGp3GGtaRPHQpj0jVPrlDsuURyzrT+FJEmMFU2+eXqdrhfy2kIDxw9p2B4SEhlD4X0HRimmNf70tSUe3z/MH768wHrbZbbaRZVlJvpS3DXddx0B71r8wIdgcRxXgJ//Qf6MKBZSvkJKKFhMTeXBnQPcva2Pu7b18blXl9g9kqPUcsgYIhfADyOxKFa6DBdMHt83gh9FLFS7IhPKCUR+RMOm2nEot122D2b49ANFXrxUp275zJa7tBwfLwgZyBqMFkw+eGiMetfjlfk6yw2bfEpYggznDPaN5BjI6AzldV66XOfpC2WqHQ9Dk7lU7pIzhfLMD0L60jod16ft+th+wFjBIIx1DFXYi3TdEEWSODJZ4L37R1huOKw2bbwwopjSeP/BUab6TM6vtSl3hEerM1ulafsoCYNcWKNI+GFIjJBA7hjK8pHDY/zHpy/jJp4aqkxvgr4x/NqQpPoRSFLEatOjmNYZy5u0HJ+1ttvLfFBvEJjp3kTxdCtw/JCnzpfRVZnH94/0GK6LNYuvnRShkrWOQtpQUWWZpu1x97YiYQxH5xp88/R6z6LB8gJeuFzj8ESB9ZZD1hQy6JSm0JfWqHU8HC/C9a+4DntBRK6gEMYwmjNYb1mJr3hM2xbDSFNTkLna9udmB9Q4FszLnKkgJwyG1iZrHgnBILOu8Tq59p0Mo5ha16M/o7F/NMcn75ngW2fKZE2Ve2f6eOpcCVkShcauoSxNy2e+ZvWed3Iszd7RPG4QsWc4e0vDpI3Xd26tTV9ahIy+Mv/GeSNvBE0GYRkrEcZQtwIe2N5PjGDBBWGM3PPWdng1ydX7y/dPX8eMq3ZcXrhcY7Rgck9iKZHSFT513xQvztb40KGxNzx43AzCI3gJ14+4sN7h0/dve8PHfPn1VWwv5GKpw996bOf3/bNv4zZu48cXn39tpWczVjB1fv29u7fYCyTqlscv/95RMobC4fECYQT7RnOEYUzV8ii1HU6uNPHjmJNLTTRF5uxai3JbHAJSukKQNIEOTRQ4NFHgd56ZRZElYVV2DTt4sWZxdk2ogtwgxPIC1OQgWumIgj2IYpYbNlP9acYKKU6vtJitdskl3uZPHBhhrtpFkaRes30kb/YsUwxN4afuGOOhHVcaNe/eO8zJ5SYHN7GhQai9vCBi32juKmXZl15f4XK5y3DO4MNHxliu2zx7qcrxpSYfv2uC6YEMDdvjYkkcEI8vNJkZzOAFEdW2h6bI2AnLzgticqbGaCHF9ECKuYrFqZUWWUOl5YjhlxuEtB2fib70DYPlNxHTr8q6uhZ5U8X1RVNE2UKW9ezFSu/PN6sR2ptyyG6Ub3Wj59j4LFwLP761GszQrjS2U/qtNbm3srA7tdbp/dnytv75mgKJoJ7sLZBJADpezI2S6/aM5HhoxwCltsOn7pm66msPbO/H8UOiKObSLSrOboSN5mwMmIrMzpEsDcujndiv9KV1/uGHD/KBw6NIksR3z5b4UqLssv2IgYwOccydU0WevlChbnksNyz++4sLPHFwhKn+FIs1i6PzNQazBl0voNRy2TeWAyReuCxyAE+vNNkxlOXwZIGPHBlnve0kzhER//WFeUAcjospnU/dN8XIprVAWLA2eXzfEJcrXSRJIkimkco1Q95jCw1qXY9a12OpbjMzmEFVZPaP3Zx1CcL6L0gOyQ3r6oFvqe30vrbWdP7CDMHSusrPPzANiOb2f3txgTCKeXTPIPdM9+MFEU+eK7FcF/Y3ry3UuFTqsFAVn1lZlpJz1tunmAjjmImCiZ+QN3/54e08uncYRZZwgxBVkbA8Yevfsn3cIPq+hmA3s3W9jR8/XLuDBfEGqVXDC0IqHYcgomcZaHshth/2vnfDHm3XcI5Hdg9ybq3NqZUGn3u1QxBFFNMaB8YKnF5rscF/kJI9W5FFs29jS8unVGwv5MlzJapdD0NREkK0iGAIw5jTqw28QGTOqLLEtuE0YQTbBlLMVQWJKAbyhorlBZi6ghtEhGFMiDhL7xvLs280x67hDN84tU4QiQFfRhfNyoynMZo3iGIYyupM9KV4YMcAZ9ZaHBov0LQD6paHocq8Z98wfhj3GoWrDQcvELEaTdtnrmJxYPyN19ENpT3Qy775QUACFEXGVGUalse59Ta/9+ws920f4KfuGO99XyGtU+96rLVcAGYG0zy8c5AL623umCxQszwe2N7P0bkaTiAyzlYaNmdWbc6utVmp20wPpHGTZpGhKjy4Y+Bt+R0urLc5sdzkwHiefW+gDHirOLsmbMxVWeIjR8bJp7TesORa7BjK8mvvur62dPyQc2tt+jP6jx05NmuolHAxNRlFkji10qLWdekmpPfNUCTw/Bg/CHH8COMmvttBFEMIKVkSg4dbHIKBGIh03PC6ZthI3mBmIMO+0RznVls0bJ/7Zvq4XO7SdZpUOi62FzHZn+LF2Rp+FDFWNJkopnnvgRE+ec8kOVPD8gJsP8QNQtabDtMDGVab9lXX9ecfnGbXSI7xYooD4wUeqNvkDA0viFjfRF7bjN968iKnVpoAfO3kGruGspxfF+efjK5yeqXJ+VKboYxB1fIYzOmcXG6iq3Kvd+z6Ed88vcbBiQKqLK7Hct2m1LKvyubacHXKBBGmJkgBrh9iKBK1rpus08J+sG0HvXwoSYI7p/r4yJExPvPiAmstBzuIiaIrzhYSIs6lbvnIxFS7LoqskNJlRgZ11toi93GqP43thbxr9zBn1luUmjYdNwBJYqFmM9OfwooD4ihKBo5iHVYUMUTxItEj3XAK6MvofOLuSY4t1HnmYgVFhq4bIgOaLPdqFD8QM4I4jHvKxP6MTl/G4O7pfo7O19gxlBFq4NV24p4h1IubUem4PHOhwlDOELawlo+hyrx77zDfPVdirelgqhJpQ6gSVVliqW4jSeLz8cXjK2QNMbzbN5ZntelQ73q0E2GLqkhEEWRMjfcdGOHbZ0pcSs6zYRTznv0jvDRXxwmi65xkul6IoUlkNZmOJ2yCR/ImpZZNxxMOIk4Q0Z/R0FUFU5Pw/JhQU9DDq+OJLD9CUyRkKRD/lSUyhkrWVPED8TnJpTQOTxYotcR8JGLjfo9wey8uJmdo2EHIXVNFimmN+ZpFueXg+pEgo2oKshRzZrVFHMODO8T+YXshHTdgJG+gyvQsJ/vSOruGs9w708ep5RaXykJp+Z69Q6w2bHG9Q6EMT92CO8EPfAgmSdIQ8KvAzOafF8fxr7xdP0OWJPJJ8FkhpVFM63zkyHhvA33XniF0VabjBLy22GDHoMHUQJrvna+QzegU0hp/5eFpRgspXp2v8/JsFSeIhbexqjBftfDCiCCMKbWE73Ecx4SxkCEWUmIhNDSFgYxgez5zsdLzwBwvmuwazhHHMf/9pQVevFzj1QUxJLO8kFSksG8kR9ZUGc0bZA2Vw+M5nput07RF6Lvji+Jwqj9N20mz3nLQFIkLpQ4HxvP82mM7+N1n5khpMr/48AxpXeXPTq8zkNWp2z6KLGwKZYQfqisUrsSIhoOqyNy1rY//81N3cHKlRcfxSVTFoniUwN8oYGVQEAMwEComLwx4aa6BrojnVTa+X7p+AAbiax3njQNebwQ/jPhPT1/m7Fqb6f40wznzqqJxW3+ajhMw2WeydzTHV15fZSxvMjmQZvdwlhcuVXGDEMcPe6x1Q1V4falB0/JoOgG6KjOQ0WnaPo4vQg/HCilWWo4ojiPhhV7r+mKhjkRhHgVXLGq8MMLQwHqDX3MjMytGvF+FlIYTRNS6V4ZuigTFtELbia5Tk21YlmwgjsWQTlVkOl5IWtf4xN0T/I+XF/inXzqF7UUJ80Mw2v7rC3P89F0TDOcNOk7ArqEsk0nhVet6fP3kGpN9qTccED13qcpspcssXUYLopDoum3eyrzTjyEOQJMjZivCoieXUnjfvlEUCU6utpirdMmbKpIEddtnpSHsR3ePXB3a/dSFMnMVS1iGDaR7w71P3D3ZY1y/VcSb7plbQdYQh7jsVjT227iN2/iJh5wU7nEMGwKcGx0HJQmqHRs/FHXNUFbnA4dGOb+usdywyaU1dg5meG2hgRfEXCi1OTie58XLNSb7Ujh+xMfvmiCMhTXPBhHgsb1DfOPUGh0n4OW5Gg/vvDKMGsyJmqPrBbz/4CjfPV/qsbf/3gf28rlXlxnKGr31/8EdAwznDP70tWVkSaLcdvjKiRUulTpIksT59Q57R8Xa+74DIxxfavChI2PXNR8OjOfpuAGXy11G8yZZU+X3n5vnhctVdg5l+NDhMe7adsV7f7FmsVSzmKtZzFe7nF1rs9ZyeNeeYapdj+mBDNWux0jOoG4LBvidU0UyhoLtBnhBiOMHOH7Ua3SdWmmyXBfB5ClNIW0otN2AjKHSl9b4m4/uuOEADKCYVql0xUF99CZMZVUWhbgibVhLXI8bZSbdCDlTYzVpMmVvMTBe2yJnonuL9dejuwa5WOoiAe/df6Mx0/Uwt/iZg5krrznewr4QuObmuLXd1Pdv3DRxvJCzay1ajt8b9m7gvftHODRR4FcemeFn/8Pz1N6oWLsBVOmKJWIQw2LTAmLW255oKiDym37n2VnOl9rsHs7hJdbhURxjqDJuGJE2FD7z0iKmpjCQMbhc7uIF6/SlNd69bxg3EPblpbawfJnoSxFFMe/cPcjTFypEcUzLEQfAtaZoumwfzLBnJMfxpQZnVlq03YC0rvDO3UNcKnUoJCS9KIr5/efn+MapdVRF4h98cD97RnKsNGxajs+Ba4ZbA1mdKBnujbzJrJap/jSP7BqkYXlXZf0B7B3NsVy3e7kYURTzrTPrNDYyf39C2PJvBR0n6DXIm/aVz+O2/jTEkDEU/tPTc9S6guIcRRGuf6sV561DkSRUVeGvPTxzXX1sqAo/d+8UB8byVDouu4dzPfXfm0XWuG2H+JOF6ysX14/IpRQGMyYXS22hTpRl9g1neMeuAZ67VKNheciSqIWCSAz/v3J8lXJHqB6ihNVe6/q8OFsla4gz3WBWp2n5Qt0VX8lgjICOG3J6pUnD9omimG4UkjMVpooGKy0PWZK4VLIopoQyIWNqYoAmxRxfapEzVHKmgh/Kyb0m0XVDUrpKEAakdZl7p/voS2vMVy2euVghCCPGCilBxjk8xmdfXeIduwfwg5ij83X6szo5U+PkcouTyy0KKY2dQ1nKHYeG5XNiucnf+8A+Ok7AStPhkV2DBFHEqcSlZ6r/1mqBsUKK9x8cpWF53H2LOWFvFoYME8UUFdsTitBY5dRSg7OrMq8vN/nw4bGryKZT/Wmxn8QxM4n6ZddwlscPjGB7IcW0xrfPCDvkh3YMcGi8wPfOl3l1oY4iiybtIzuvV7SV2g7fPVummNZ47/6R6wiub4RvnlnH9SOW6/YPfAh2udzB9UM6YczvPjdLX1rnQ4fH2HNNP2IrNG2ff/GNc5xba7NzKMuvvWvnVYrgHzU+eGiMuWoXXZEppDReWahTTGmUWi62f3X9FMaCdBOGMU7yz2ZsXEU5+R8ZcU933mQua6XjcS3XS0IMEy0v4MXZKhfWxTAhimOKKY1cSsVyQ9ZbNufW2xTTGkEkMo66bpuJoskrgxnmqxbtpK6aKKa5d7qfjKGye/jq6zmQNfjQ4bHe/981VaTUdsmbqti7b4BiWkdVZLwgYs9whlNrLQazOl03oC+t8vWTa6JP7AZ4Ucxcuct6y6Vp+0z1pfHCCNcX2aC2G/DibI3ZqoWuSCJjLnnvkSCWhJrT9iPCSFgatsIYu+ujynKSESaGJXIyrFRl8RoPTRT4ry/Ms1CzcBNCw+a3OwZsP0LXIjRFQQ5DkGNkSWK56RKFEZKmcmSiwJm1NuWOQzGlUu/KqL5MGMVM9aU4mNg7/qMvnKKbkPIjKUSJZUjELnGyfgshi8XT58vkUir7R/OkdQnHj1lvO9S6HmsthzASe4YmS5iqwkDWoD+rM5ozWGu62H7Ap+6d4uXZGh85MsYzFyrMVS3ume5DU68eojx7sSJ6nJUuO4ey/PRdIlv71EqTpy+UeSUZUE0UTapdjyCMObXS5De/cY6/8tAM1a5LwxYksL/znl1863SJi+VObz9Tk555MaXRdQRxQpIkNFlEt0wW08K14prPeoy417pejEyMporzVaXj0fWu9KQlBNlNU2U0WSVUQgqqiq7IVDreVbazYRT3SCm6qjKcM6nbLutNn5iY/ozGesuhZfsEUUwxrVEwNC6VO72fF8XghhH9aY1yx6XW8ah3/STrUthVbh/IsH0wy3fOlYmimNPLTeJYkGQf3TPEUt1iqi/NqZUmGUPF1BTee2CUHYMZLq53GMubHFts8M7dg0z2C5eYlK6wezhH+hZImz+MzusXgKeBb3HzLOy3hL/92C760xovzdWZ6c9cxZ64d6afoZzB515d5sHt/RwcL/D+Q6Pcd3KVLxxbYftgmqm+DIW0xhMHR3nioAj8XWs6fOvMOhlD4fRKG8sPqHU9do/kiGLh1blrOEOt42FoCmMFgz95dZm8qTJWSKHIEkM5g13JYukGEfNViz9LFrYoKej60xpdP6TacTk8ked9B8comBod7wIXSx1SqsxCw8FqCOXSz9wzwXfPlWnaIoNsveWyayjDavKBbH3nIv1ZgwNjeQ6M5UlpCpcrXeI4xna5bighSzI5QyVjKLQdn6+fXO2FWgJJJpNE5McoklDPdN0bX0ovTKwT6dmFbonUTez1boYzqy1Wm2L6nNIU+jY1Vqb60/z1d+5gviKaZF8/uUbD8lAVifsTj92LpQ6KJKbbxZSGLElM9JmsNBzBSkhe92LdShZehcliiiCKMBWZThASIRgHUXz1hnAVAzsSYaFbWSCCuAE35KwbC9lay8MPo6sek9Vlul5MkDAZNv5RFJjqS1PviuFdShWT9UJKI0y8Yn/zm+eQYjix3BSbCGLDDsKIetcna2jYXsi903187eQanz+2zKfunWI4b/KdsyUWaxZnVltM9aVvGlI+WjC5WOrghRErTWHzo6oSvvf9H9AVCeJEsh2GMQ3b58xKm4lCmr6MTq3jEUVQ7YhrrMohTdu/4evszxjMVSxSiYz67YaqyHzynknmq1bC0H5jfPKeSZbqFhPFH58i9zZu4zbeXnzynslENR7xSw9vB25sRRMlZttRHBMTc2qlRantMZTTqXY9ZCSkoSwzgxmOztewvICHdw4wkNHwQsFo/IMX5nH8iHfvG+bDR8ShbOdQlpyp4fgRLyaq5w07tKyh8kuPzOAFkVADxxIzAxnOrrXpeiE//+A2Rq+x09sxlOXT92/j2EKDM6stTq0IFtdwzqDrXhlGzAxmmLlGzfHi5SprLYe9o7meAiqKY/aM5Fisdem6AetN56rnAUFm+sbpdWwv5IvHVgjiGFWWKbVsDo0XODpX41996wIdxydtqAxkdModl760TkpXhB1GUuT3ZwRr2fFFLtgjuwd6IfUdJyBvqgxkdXaP5FioWjdsQnibbPpsd2sLQ9sTZJYgjAi2UF+1t6inrsVH7xzjX37jAgB/6d6pN/jujee+8WsrpG9toPDaUqNXixydr/Pp+2fe8DGvztWZHLi+2VRqur0/xzfpY0mbqqb4Zt+4CUKVeD2+dmqNlYYYCn3htWX+4UcO9r4myxLjxRSrTZtH9wzx5ddXbkjauhmi+Jp7OSIZgIW9v7f8iNOrTWpdlx1DWYay4lxQabvULI9qx6Nt+9Q7LnuGs8TJQOvsWou1loOuyEwUU7x4uUbWVMXjuh7v3D1IxlB5x+5Bym2XPSNZRgsm794nsgw0RebDR8bYPZLlzGoLJBgvpkhpCk+eK/Hd8yUmCiZ1O2ApsdcMwhg/iNBV+bp7F+D5S1VeuCya1J++b+o6u5iNPOGb1VibLRA3w1AVZgYzzFa6tJ2Asi9slwCOztX44KYm059XTA+IIWHb8XtETl2V+fR921ioWTx3sdzLHulPa9S7Lt8fnfDmyJoad20r8tN3TvDU+TLHFxscmSr2bDEHssZNMzNuFXX7dv7uTxKiG+xhpipTbfuYqibs0CIx6LpU7uD4IaUk5zJnqGiqjOuHrDUtWm4ICWEnRmS0yLLIgArjmAPjeXIplecuVPDCOLE+S4hEEXSdgFOrbSRExrguxXTckJGcsEK2vAANGV2T2ZnLM5LXObvapeP6iXVWxL7RPBld4bvny/hJdqQSRGQMYbX1Nx7dwbfPlllIcvtSmky569L1Av7TM7MUUxq1rkdaU3lwR79Y33MGL16uIUsSZ1ZbKIqEKsvkUgp+GDOYNTgyWbzqPfxb79r5poc7t6IY+36hAD973xSvLzVZ73pEiHXdCUTNGIQxLccXf46E881g1uBX37k9IVeLBqQkSdw3I9b7+WoX2Mhfa3FwPM+OoQwrDbtH8s4mjkhnVlrsTWICXp4VpPHlhs3+sfybVkeN5kXEx5slbLxZLNWFo8B8zWLXUBZQiGNYbzm3PASrdNxe7dt2/C1zZH8QKLUdnr9UZbyY6l2za6GrMmtNh6fPl1lp2uwZyXFsoY4fXk/QBnp5rDeCkjgf9aWF0slygxtmJb8RbmR2EAMNO8BZb9OfNRJioFBeZjZZFJ5abVNqOewaybFjKMu3Tq/T9QK+fbbM2fUO9073cW69zXDOZCbJL9a3IHnZXoihysKdKG/yiw9O3/R1/+x9U7w8V0OWJXYO50jrKsN5k5ypEoRC/R1EMfdO91Hr+rQcn7YjVNdLdYsPHhrl+cu1xJKylVj+xfih1Lv/TF1EohiKTK0ryIHiHCQjSxIRcaLkBTfYGJTE6CqoqspUX4q5aodWQs7RVJliSqOa1CAbhg4RglhnqLIQBCRCEcdLwnalkD87vd5TpxVSGkQxuipUXRPFFIam8K3TpauUcyEwmNYpplVsPySOhC181xW29qdXWwznTJYbFrIksXc0S63r07SDnj10HAvhykjB5GfunmSsYPKnx1aoWhbfObvOct3mwnqH754vMZQ1+Ev3T/GBQ+PXZeiO5s3E4lIhv+m80ZfWCUIxE/AT2/44FmeDthPwwuWqUO6pV3qz//ZbF8iaGlF4ReyQM1XShkoUwR+/uoztiTNEEMGfnVrl2YsVHP/69WDzfRcjVHBecoa4bljpCVVmte2iSBLFtI6uCovBKBJimbSu4IYRKVXGC+Ejd4xQanust52ExCJcHCRZZIfJksSQpqCpMnlToZsMGVRF2FKKyIEgsUwMkBUpye8TOV/1rkcYxrhByFy1i6mrZIwa7zsw0nPtimORXbf5XPHIrkG+fmqN40sNah2X/aN5dg9nMTWZiWKa/WM3F27AD2cIlo7j+P/9g/4hTdunYQsbn0OT+es8hDe8mcNIsBgBPnBojPtn+vnqiTW+dnKVj9wxTtZQaVjiADtWSPELD07Tcnw++/IiSw2bthOwf0znHbuHeHDHACsNm++dL3N2rc16y+G+mX66sgjH2zWcJYwi/t13LjCQNfiZuyc5NJ7nK6+vCAZELDaUvaN5LibWFqMFk//lA/uRJYlH9wwnB2WHubpNHImiww1ifvNn7+RyucN62+He6X6evVghimI8P2SlYVPtuHhByH3T/aiKTLnjUWo5PTsCsQRCWpcY70vh+CFHZ2v82n97jfun+9AUuWeFEsXJRpYseO4t2Fe80XeI0EKxwDQsjy+/voqmCPn4GzEK+zM6wzmTtK7wgUNjjBVS2F7As5cqZHSNB7b3Y3kBXzu5iuUKWW+967Pecvjy66tkNIXH94/yzMUSTTtgMKPz6fum+Dffuigkt4HYMBRFIowkgjCi7Ypir+1eWbC2cBnqIYqvTOwVKdlcrnnMtdzlKJGsboYmi8e5CatYlyGtKcIeUZPJGgrzFfFMaUPj739gL68sNFhviZysetdjul/ktemKxI6hDAfGC+RNlaGcia7KfO3kGst1W2xMwHfPlXni4AjFlMYiYvC52RZpM44tNjg6V2PXcIZz6y0ul7o0HR/b8XDewgBsA0JZKGGaKm4gCq3XFur8k48eJAhDji82WUxeuywJ9UExpXMmCQndyL95dPcgO4cyFJOm6FtB2/G5XO4yM5C5auA2kjffVKFtakpvSH4bt3Ebfz4RRHEv2+uKxdiNvk/YxA1khIXKpXKHhu1zsSTsZiYKJo/uGcQNYk4uN0nrKt84VWIkLxiF4wWTC4l9wpnVFh8+Mkap7fCt08KqYcMO8doGtabIaEnBesdUgafOV7hU7rDcsAnjmP/XE3uve60TxRRdN+D8epvhnEF/Rme+ZvH0BWG9u/nQ7wVRon63OLfaIaUrPetG2wsZzBqMF1JM9qXxQ3Eoe3muTs7UuGOqCMDhySL7RnM8d7FC2lDwQsHoTBvCNqRhCfKIpsoJ00x4os9VuiLUGcFMjGUopFQMRWa2Kr727MUKuqJQ7bhkdJG76jUc/vMzc6iKdF12EUDbubJPVztbt6E38oplWdqSDXOr9tCvL/3/2fvvKMvO87wT/e18cqycO+cENDJJMABgzhQpiaKCbWksz4zDvddBnhl7xnnN2B5f27K8fL0ULFmixCRmMQIkEYjQaHSjc6pcp+rUyXHnff/4dp2u6q5qNBIljvrh4kIDfcI+O3zhfZ/QIKIJFt2Ppyu89/DIK75HmDLfDP82s3hWm6JxFQCL1e6tXxxizxbFuaH09cbbrWZgRb5uJH0rC0aF62vNuLG55VDKkK8zEze5AIV6l99+cppiw+TQaIqT841bHNkmx7BOCSYhNrJIEpbnI60rAHUdERxf7zhEdIW37epnpWGK5qgvfPsrHZdTi0IRYLk+IxnxTMiysA/bO5yk3LJZaZgkIyqXV1osVDtkozq1jk0uLhT+uiJjuR5GyGTdPZjk//jQAVYaJscmsnztVIEfXF7FcjxmEwZ7h1O9HDHfDzi1UCMT09i2iQpyLcOvY4uA7ti69Xq96/C5F+Zpmi73bc/1FKe+H/Cd8yuUWhbv2DPAyBbKSdPx+NbZZYJAuBB85NgocUNYgP9Fs4W6FSptm6+/XMBQZT54eORVrTclSeLebTlqHZvvnFshG9N5664+htKRcBytUe86uJ5POqJu8XS/fgShnV3Hdjk1X8P1A07P1zZkw70RkO/0wH6q4N1QpVZCZVcnVF0Yqkw3rIx2nICm5RAJ5+R0VGP3QIIfXilRajmhqw5oqkTCUElHVVYaVs9+tdpx8PyAfNwALOFmI8F6zojtBb21lAt0XRdNXnO4kXBcn2rbJhlRkSWZyXyMq6tNdFVGUyTGsiJTJqLJ2J6w0vIDn4gmipX/6fGr7B5KsqMvznm3ia7I9CUMrhRbtC2Pru0xnDHYN5ymbbskIxaGInFsIkNfwuA751boi+s8vLufcsti/0ia4fTNe8S1BpjIee2yfzj9uvepm2F9veVW8ICZUpvFeldYdUkSmZiGjLCrG8vGaFsu/+jLZ/AD+OsP7yBuqHzj5QLpqMYn7h4jcoMd1WQ+zifuHuOJS6uUmhZPXSnzM8fHeN+hYZbrZk/p+7VTS3Rsj0vFJn/j7TuZyMW4tNIkbig9C7ogCLhcbIXWmpur9dfwoSMjlNu2sB1+E7HSENaWI+loSGRwsVyfu9Y5GmyFStvG9Xym8nHu357jG2eWGcvGGExtJCut1Vv2D6duUlK/Xjx5ucRsucO11Tbb++JbRmEsVDs8dbVEuWXz7LUypuvTtV99s84NoNr1yMRE7aTSMnvuCrA5gVwJ/+KV6m8gRAZ+AI/sG+BKsY3nB0zmo+TiIpt4OBXhH/7pGSKqyAXORDXR4GkLGn+lZfHM1TLb+uJIiHXUVg2w56YrPHWlxEDK4FPHxze1BrZdn6+/vESj6/Keg0Okoxo7B5N0bBdZFs5eR8cyLNVNzpXqRDRh7/rQ9jyltk0QBPz/nrzeSP7RlVUqbadH3FLCEybJAa7nY/sBUgCSIhGE/6t3RaNKlSUC3yOqqUzkY6w2hCK363h4gRhjY4ZoUEU1lXunspyYrTKcMpittEPL2+sqPj+sD9u2L2JMEFbwTmjd5wcBhqZgOz6e71Pv2phOgKLI7B9OsmcowZWVNs9Ol4X1XXjOIpqwFtzen6TUspguCVcKTZFQJGEr27HdniLJmvcIJEGWiOsS3dDCTFVkorpopF1YbtLoOnRsh6cum0yvdlBlqVfnnq+am469923Ps60/TtLQcHyfL51cwFAVHtk3yIeOjlLtiHik7f1xpsttyi1hwz9b7lDvukxko9iez3S5zcWVJisNi25YI5WAwWSEnUNJFiptgpBssvYMdJwA17c3zRKXpeuua2u3nbNJ81kKz4Pj+Tg+uIiIhYShCmGIInHf9hy1kMhyebVFyhB79U8eH6PStkRmtRTg+OB7Ho4b4Ac+V4vt0M4xQJclIrpCX0LUWktNm73DcVZbFjFdIaoJ4U3T8liqd3lhHqodm1T0em32xjnyj1+Y5+RcjQe25xnPRfndp2ZwvIC4oTCVi7LWgs/HdZ64uMpLirB2f6V+wk+iCfY1SZLeFwTBN97ML/ne+RW+fWZZMKgDETSajRu9CTOfMPiF+ydphzlQ5wsNdg8muVRssdoSm/yLy00m8zH+6Nk5XD/gnXsHGEwZ/M0/OslSrYumyuwfSXPvtiz3h9kWi7UuXzixQNMUktJLKy3GclFyMZ2O7fLUlTIvztXQFYn7t+X5wOERnpuu8INLRfwAjoxl+OCREb52aom5aocgCPjhpVXu357n0/dNMF1q8yu/+zyuK/wzDUXi6SslHtqR58HQUuRLJxfp2B47BxO8GDJHsnGdXQNJcgmNpiUUbLbni2aMLJGP6yiK4NsaisJcuUuAkCufN5SeNHlN0WV6ovHSvI2J7nbaHlHt+gLsXKHRK7RcLrY4Gha9tsJYNsYvPjCJFwhGVcty+VffOM/F5SaDaQPTcfn9H8+yVOuiyDJHJzJcLbY4tVDlu+dFSLimioao6/kU6iZfeHGJpu1iuYJRFtHFQnexZpJLaBiKwrXV9msOnZYlCUMToYTdV2ldstawFJ8DsXBiAUhFdZbqZu862a7HszMVZkpddFWi3hUWFOWOw6fuGadtOuSTEX75wane4PDk5RLXVtvkEjpxXWG61EavyHzp5CK/9MAUOwcS5BL6TQvaNTw3XaZteSIoe7lJoS4WgrezSLkVNBkhRw4l2kNxnWxcSMUlCU4v1vn1t+/C9X0uLTf5zvkVdvQneOuufr7xcoErxRYRTeGvvGUKQ1WQJImx7BtTSPnTk4ucLzSpdW1+7W07XvGevYM7uIO/vPjs83P8lx9OE4Ss57//3n2bqqQDhMKo1LIptx38IEAhEKG4mRjv2NvP0fEsLy/U6ToesiTheQ6FegdJgulSm+WGyUg6yrv2iWLli7M1lkIW7X3bsnz8rrEeAaVre8gyvWK5JEm8c+8gg0lha+R4waaB3ecLDZ6brrBrIMGj+wdxPMGcrp4u4AfiONY3wb52aonPv7iAjCBU7B9JM56N8YHDGepdp1cU/6tv2cZCtcuXTi4C4nPWmmDCelplLBtFkyWOTGQ5PV9jttzhvz45za8/vIP3Hhyi1nX4+F2jRDQVVZb4/cosI5kopZYtskECWK5bGKpMKqIRBAGW41NqCjsIRYJiwyIZVTlXqLNnKMn5Qp1jE5keu3LtWq3hVkIuc21TGdqTbIZs7PaKMzv6YvzgUoCMxN6hrQs/unydodmf2rzhMFu1Nv3vN+KBbXkWquJ6PLr/9uwQZWnz31lsXv/OGwlB67G+oLLa3Po41+8Ht8pD2sApuuElvh/w+RMLfPmlRRRZIqYpaPLNbgmbYb2N9fqPDwIfxxPVXXldsSYIxOc6no/Z9bi40qQvYZDQZbGxZG2zK6zCkhEFXZXZP5TkuWlhNW17Ps0wh7jYFMHhn/zPz7BzIM6+4TSGKnNuqU7bdBnKRHo5UyDUm9vDptaB0RTfPqfSn9DpSxh0HZeOJdirjhfwZ2eXObvU4JcfmuLAyEY25UM7+/AvrzKSidKfNKh3HRzPR5UlfvupaZ69VmF7X5xrq+1eE2y5YXIuVHQ9P1Phw0dHNz2nMoKw2DRdsjGdhKHySw8KlWryNrPh/iLgzGKdUnjfXl1t3XbW7OMXipTbFh89OsqPr4ncL8fzubTSRJElvvrSEmcLdZGPJEHb7r7udfZmUCToOB6/8+QMi1VT2NrO13pj8RuJyJtbl76DNxjeDWOjHwjSQsJQGclEeXB7jm+dK7LSELbOHTtgqi9C3FDxPJ8rq20C3xdjdyAstyKhPZLnBUBA1/FDtxUX2/UxNJmBdJRS06Jh3lwk9wIxHq8dmiTLDCcMZiodIhGR752LGbh+wEQ+ys6BOFFd4SsvLfLVU4VevmdUE9YjEV0hCEQOarUjaifjOaFq11UF2/WZq7TJxSWW613GszEUSeLMUoNzhQbZmM7hsQyfuX+yR/R5dP8QD+wQyk7fD/jmmQJLtS7v2DvQs1xuWy5fPLGA6wcsVLtbjpOvB+vrLa+EZ65V8ANIGgq/8pZt6JrCcsMSpKVMhB9eXuVKsUXLdPnCiXnu3ZbHdn1WmxbLdXNTJfF4LsaOvjirDTMssCtoiryB5JCIqHRsj0RYozg0lmaqL4ahKr0mxNmlBt85twLAB48M35JMqirym64CAzF3LYYkkXRM477bzDRbqnX4D9+/guP6PHZwiG+8vMzJuSqn5qo0TJv/7QMHevWXtXrLs9MV7tuev0mt8nrQnzSYLXeIG8oti8e7B5NU2oJ0Zro+lu3hsbnF++1MT3OVDpoikY1paGGUylbv9W7xoaoscv+8QPyTwGc0G+N9B4f57vkiUU1modplutRmMh9jpiKiNBqmQ7VjoUoSh8bTnJipCotFPyAe0VhumCQMlR9cLHJsIsPQJvbl11YF+bDYsMT6ZZOG61ylw0yYPfvSfI18XGeu3KbasdneF8fQhC1rx3LJRDU6tse2/hj/+UfTlFsWCUMhqinifPuCWLV+2esFYCiEKlgPN2xSGZK4N0WzSFjC+0FAJCS2S8Bg2iDaVZgOc0b9UDCRjekgiT1freNQanbpOuvGWkLHpuD6ZfF8QWzoKXcD0dRIRlSSGVXEyTRMmmY3VCLJvDBb5eWFOi3LI66JRnsmquEFAR+7a4R37h3kH3zhZeohMSJAkONt1yWi6r04GaSAqKYSURXec2CQs4UGs+UOyYjG4bE0E/kY3z67Qr1rU+04oTgm4MEdebJxHdv1ee/Boc1vMGAgKcaR5y9VmCl1sF2fM4s1Ti/UqXeF3XixafO+g8OcnK+xrS/OS/M1cjGhkhZjoyXygzUZRQbfF39uWi4XCw0yURHF5PkeAQG2t1YbEHNU54YashdeZwlxHSx3M7qfuKbB2kULr1s6VAa2HEGam6+afOzYCE9cKpGNaT1VZNN0MR2PuK4S0YRriqbIuJ7HQqWD6QWh6lNiIKmTiuqMZSKcmKthOh7XVjv8w/ft5Rtnlim33NACM4LnBSxVTQxVIW4ovPvAMPdtzxPRZFYaJoOpCEEQ8I3TBax1hJYzi3VcPwjFFzYDyQj/+AP7+Z//6EXOFhooksQ/+dpZ/t3P3r3ltYSfTBPsbwG/IUmSDQjTZQiCIHhDddyL1S5O6IEpSRL/y5fOsnsowQcOj/QYvLm4jiJL/N7TM3h+wHLdZN9wihOzVWRJYjIfY7rU5tRCDUNV2DuU5Nvnlrm80sInQDIhoSt87XQBAonj27L0JXT6kwYz5Q6e74c3tWh4tCyRLWU5Hq4n8aWTCxwYTfM3H9mF4/nMlDuMZaN4QcBH7xrlm2eWWW1afOP0El86uciDO/q4tNKk3rFRFOGJutwQnqJfPV0gnzD4F984xwszVfoSBh87NsJcuUPbcmlZLuP5GO87NMILMxVmSm0uLNepdxwm8nEOjaYpt22enymH0usATRbhp8sNC98XTKq14o4XiE3RjflTrxWmE/RC76fyIuNEkSXGs7fnh71+ginUuqEFX5fZSpvZchvTDUhHNPYNJ0WhT5K4vNIipqvCRjEML1srarme3+ucBwFYTiACFiWhgpscjDNbad90HLfLSvH8AF2VqbY3VstuZZW4BtcX6jBNIbS08ujYPpIkmFrrv9v1fE7MVLFcn76kwWpThL4nox4/e3ycsVyMfFzfsMA5NJpmodrpWef8/jOzPVtIWZY2Xciux67BJC/N1bhrMsf5QgPfD3qbiteCtbfGDRVZknq5bX4QMJGL4obP7sm5GjFd5f2Hh9k+kODvrmNbrRXRbNffwFxcbVrYnn+TUvTVwvEC5iqiaf3EhSKHR9Ov2sriDu7gDv5y4ORMtWdxcnKuBmyultZlMZc4foChQn9CWHB85Ngo79w7SD5hYLs+v/3UtLAWUmQ8z6PYtMIgeBhIGIxmItiuYMhN9cX4zrllSk2LE7NrY+YIC9UOX35picVql1xCZ/dAgvt35BlOC2/2f/TBA9TaDsenbmaxPnO1TL3r8Ox0hV9/+w4imoLj+ewYSNDoOhybyGx4fcN0QhuFgPt35Hn/oRGGQqbX+rlIVWQmcjH2DadCVq3HF19c4B17BsjGdearJn4AEV3llx/axr/+lshOeG66TKPr8Pffu/emov0Hjgzz9VMF3rWvn2IzxedfWMQLfNpWQDKqo8iQjoo5sdyyUWThY56RJAZSBueWGtiuz7fOLvOB21Be3YhGmG/gB3BlpUk+efPc07K3tlPcAElCkqSQQb/1fKMqMrYvuHFbCamM2ySZJ2MaubiGJEm9fLNXQqllsWuT/y6tK5PcarZc/2y0zK0Va+uXGFsxkWvd6+e2e0N368pqSzgk+GDaDqWmddsZpmvfduN6uNYVNi0RTcH13Q0H6foBTcsjYSgUmxb3bctxpdgiGdGorssjk4HRTIyj4xn+8VfPiryaAGRE3oHrCSZso3s9A+xtuwdQZIkXZqt0bA9Dk6m2Lb50cgk/CPjosdEes3swFeEdewaI6grv3DfAYrXLn51ZpmW5FELmfyqqslAVdkeaIoozcV1hKB3hZ0IrzmLT5I+fm8f1Aw6OppCQGE5HkCSJ+7dfV07m4jrpqEa96/SyYtbDdDw+98J8mP3VTzKi9QhLhqr0mvQ/LdjWF+f0Qg1NkRl7hT2N7wc8frHI984t870Lghx5ablJMqLyrbMFVFlm/3CKQsPk5Px1a9I3Yh+2GdYKbbWOQwuXmXKbt+3u521vsAJsDa8hhu8O/hxxoxJM7JkDhpIGq02TM4t18nEd29Npmy6GJqNIcHm5IRSyjnBnkQFdAUWRCZDwfZitChssCdD8gFpHFLwimkIqooKn01pnmbb+SNaP/n4QEEhwbDzNpVAZv9zoct/2HE9eLmM6HtWWhe0FPXccCVGI1DVFZJfJwlLM9+HSSpPVls2+oSTvOzTM9y8W2TGQQFNk3n1gkNWGxVy1g6pIdGwf3wdDlUlEVD5z/yQzpTZNy6XatsnGdUpti4thPuXJudqWuaNvBtbXW14Ja7WFruMR0VV+7eEdVNs2Xz9dwPZ8NFliodrFD4TjzIGRNLOVDtmYxnBGrO9Mx+PrpwuYrsd7Dw4jS3BmqU7H9vjosSHyCYOZUpsfXC4S1zQ+cGSYjx0LYwLWjZ03kiCcdd1Y+00aDIMgoNF1SUTU2zpfbdvrZUXdaOd9K5xeqHNttUWxaXGh0GS20u5ZZH/2uXk+emyM46E94Vq9ZcdA4nU3wEzHo9y2GUpFUGSJt+zsY9dAspcVuhVenK2ST+hUWzYDKV3UodzXXPLBC8BzA1Ya9qY28bcDGUESt1xRx3O8AE0Wblv/+tsXkSWJUssmn9DRFZnlukVfUufYRJYLhQbnC3VmwwaV4wUosrjvW6ZDx3ZpmQ5dx+N3nprhN96376bvPzqeodhcZv9wiswWsSHD6QipqEbbchlKRfjCiwucKzSIagoXl5t88MgIX1ieD23nJEHEr3bDGrJPxxZERUOXcb2AiCoT0xRWmtfXuI4HAddJ6D7CRcT1RZNCxK8IsYjn+WRjGvmEQct0sVwbZV09s952ePZaCdfz6IglKKq8kXy2Vqvr2l7vvPm+aEJanh8eD1xb7RALVT6JiGgUEUC57TBb7nCl2OpZZzatgHRMDZtdAb/z1CxfPlnA8Xz8wO+R7LwA6qaHH9bi/AA8X1jP7h5McGwyRyKikYnpDKciHBrNhI31ILQmFMrY+WqHZ66WOTSW5tP3T26Z0Xyl2OS/PzvH+UJDPCcxlXLb4uWFOtdKLTRZJhVVWa6b5BO62LdGNWZLbSptm3zCYKl+3eoxoQU0fQlFFfduoS5ikqKajK4qoTODWPevCR3WGmBrddK1f67NiX5w63q06/kbiCx9CR3Hh6Vqh67jMVtu8R8evyIIKopEVJXpWA4/uLhKyxb15IlclIOjaVbqJm6gUm47yK6P6/lENZl8XOSuNS0X2xPq7dWmxQ8urYZNNJmGGVBq2cQNlUxMZyBlcGwiy+6hJBFN5vefmaVje9y3LccDO/KM52IsVDsMJiNEdZl4RMUM93wxTRBNnrpaEg3AQNyjuvLKLa6fRBMsDXwa2BYEwT+RJGkCeMON3fcMpXh2ukwQQCtsAskyLNY6QI7FWpezi3UMReaFmQqqLGTxQ+kI/8PbtiNJEoos8fx0mWREw3Z9hlIRwdZM6kIJpsicXqgTIDZmXhBwbCKD5QYkIqoormejTPXFObNYR1dkPn7XGKosc21VZCWdW2ogAUPpKOmYjuN6XF5pYWgy/5/H9vD3vnCal5eajGQi/PhaiZYpPDCdro2myrQs0QB5/EIRCTgxW6Vte3SrHf70pUXKLQtdlTkwkuL4ZJbnpst8/fQy06UWXgBjuRhv2dnHdLnDheUG9a7bG/RUBeEV2hYDYURXicsS1bbTY1u9UfAAzxM38EgmuuEarIflehQbFkPpyAYW9npM5GMcm8hyfqlOw3Rpmh6qLKEq8EsPTPHdC0Xmq8JzerkhrmPXFixaXZFIRFT8IMBeF6xe7Tq0bRFgqMkuMmEDqnVDsUqCTEyj2nY2TAwyYhKww5FJlumdx/VY+7m3Y60Iwl9WkbbOW/MDWG5Y5OI6SzUxkTZNG61l8QfPzvLz907cZB2Qjmn87L0TvX//2F2jXCu1Q0/rV8Y79gzw4I48hqpwbCzNP/7qWWZKbcrt17e7bXRddg3Gw0KvmAQuLLcYzUSQAM/3ma92+O8/nqXacTZYVj12YJCT8zUmcrGe9Veh3uVPnl/ADwIe3T942+zczfChoyPUujYdy2MsF7vTALuDO7iDLZGKq72xPx52HzYb8nVVQVMlgkBCloQH+VBaZPj88QvzgtWnKT0/9m6Ya6HIMv1hDkY6puEH8PTVMitNiw8dGeETd4/x2efnw4K7SjauU24K+5WFaodax+KHl1Y5X2jwiePj7B5MsnswSRBcJ6ushyIL5uPxqSxGyMzVFJkPHdm8SfSeg8MkQgXz+w8Pk4rezJKcLbf59tkVcnGdDx0dYbHa5YsvLoSB9fDuA0OUmxYL1TadZITff2aGeyazLFY72J7IT/vPP7jKv/joIVabFhFdhkDiiycWeX6mQn/SoGk5SDK4to+hKtiOS9sW2ZhDqQgty0GSJEbSUe7fkScRUbhYaHJyrnaTHduaUh4gpt3e+G9v0WEZ3kRttxleXqxjOaK5dXqhys8zuenrOuH3BMBKq0tf+mYF9IVC67a+czQTFWuzMDv1duBskWPhr/PyuFX21nqbw3T09hog5hbZZ511Hvo3FnAzMY3+ZIQHt+f50eVVvC0y214NHB90VRLqf1XBvaE5FyDyZGO6z7XVFuW2jS5vvJ+ihsLfffdu+pMR/uGXXqZjeaRjGl3XR5UkPEmweMeyUepdh4FUhMf2D/HNMwV2DSQotSweOzDExZUmpxZqaLLM5ZEm+YRBx3L5jS+eFpaF23KkIhrJIRXbFbaMuwaSPDdT4dJyk1PzNRarXbb3i8JpX0Ln5+6d6Fn9VNp2T4GnKsJ1YTgT4V17B3vWViBsn3/xgUmsMGvnRqw0TErh2nq23OX9hzOv+zr8eWI8F+OvP7xj0z3NjThXaPC7T81wvlCn3BYWcf/tmRkkScJyhL1r13Z7e4k3E2vNgL6Ega6KwPrHblP9+Zrx5v+sO3gDEWwyRvrAattmsdYlCITiNx3VUGRhR/jyUgPPF8rYiKoIS2hJjJVu4Ie1hxvZ7QGO49O0PDQZEQ3RtdEV+abIAEWitw4RbHGHeschbigMpqM9wsAT51cptkyCQMJ2g954K0sinkGShBpFloVNYkRTmSl1aFsOhXqXSttiLCsUsKosM5yOsH84zXdry9iuz4GRFFP5RE+ZK6z84YeXRZbLpZUmv/jAFNmYzmAqQrFpsnvw+j47bqh87O4xpldbJCIqLcvtqaHeKKyvt/yrb164rfe4PvzBj+eYq4pctELdZDwbgyAgGcYUqIrCRF6MeyAUsH92ZhnL8UK1oMTLi3UyUY225RE31N7a7umrZZ68VKZhOpRaFn/97TvY9QoZWkfGMr3P3XebGdyvFt87X+TlxTojmQifPD6+6Vp4PQ6OpKl1bIIADo1mbvt7dg8mSUd1LhSaFJwO5rolgxeIeXYN6+strwe+H/DZ5+aodhx2DyZ5/+FhJEnqkdNANAhMx9/w3wDOLtWZKXVEU8L3SUZUzNbtN/22PKZb/F1UFc/sVqYLsnwzqdzxYbbU6rkhpKMaU7kYqipz77Yce4eSoQgi4OxSHSdsEKzlMKUiCk3TJR1VqXdd2rZHIqJSblkbrCJ9P+C5mUpPnbXVfRI3VH7lwSm8IKDWccjGtF5UyY6BBJ87Mc9cuUOxIeq4UV1hMhejG1oIpqIa5ZZNEEikoyqZmMZqy97wu2WZXh7iWl0xF9Ood0VelSaDJMn4UoCmSFQ6Ds9cLYtcMFnaUFd0ECS+9efU9yGuyXRDm0NVltg9mKRrO1xcaROEEjLbDZDl65Z8PtAK18JmOCbIiHF+ttTCvqEI2rY8Mhmdhaqw5C80TAxFFiRITe6RqlwvuN4ED0QD0PV9Sm2bfcMpHtk3yMWVJv/tmWn+6Pk5NEUK6+8adkM0TJpdm/PLQtWYjun86lu3b3r9ziw2eHmhTqHexXQ8/l+P7qZpujxztSTWwYGH68mUmhbzlQ6Xlhui+ehDXFc2EN0AdFUlFc5Na04RAF3bv15zDx0lblz+6arUa/iuxystp3yuP2duANdKHRRZwvKETMz1AMcTCm1kMqkIS3WLtVtakkSdYiwT4cRMFdv3GclGGM/GeG66jCTJjGQi9KciPD9dgUC4n6myxEvzdd5zcJBqxyEIAjIxA0NVODKW4eN3jzKaiZGN6xQbIhPc9QOKTQtJkvib79oV5p17TIQxNCsNi0bXQVPEfLJnMMnBkTS267F3OMX//uEDW5yF6/hJNMF+E3HO3wn8E6AJfAG45438kvcdGuLkXIWTczWKzTZxXUGR4GgYPvr100u0LY/FWpfxXIym6aArMq7nb/BuncjHmczHiOkKu4aS9CUNEobKXKXDhbBjP1ft8vTVEleLTX797TvZPSSCrGO6wt6hFP1JvZfxcK3UJhvTeHe4IY3rgm18eaXJWDZGMsxgkiWJcstm92ACTZbIxQ0yMY2nr5awXI9tfQkcz6e+IgoXhXq3t9D0fNE5LrVsHC8gqksUGxb//ruXuVZqI0kwV+kiS4JVe77QwPQC0uGA6ocDoyILllbgB3iSGLCjmoxpe72iyhuJYN1ou5l/LsCfvLBAqWkxGQZSbgZDVfj4XWP8t2dmWG1a6KrCYwcGcX3hGf2Z+yZodG1Ozddpmh6aIgp2ja5L4AtmRa1j32TzYHti8JEViZmykE3XOvYGprAXiEaaoUp017GRAkKP73Dk8oLNB6fNml9r0uINbIsg7PAT3JJBrasKhqbQnzSQZSFlvrTcRFVkig3Rid85kGQiv7UtoOsHXFppUmxYvOfg0G2xjXRF5omLYsH4wLY8EVXhxGwF8zUwtBSEt7sPXFxpk4upxA2NcttGleHySgNJlkmutojpMlZMsJhmy+1eEywTEyyM9ah3hb3Y2p9BLC6fn6kwlo3epCC4FfoSBn/nkd3Uu85PlU3PHdzBHfzksZ61emMhfg0S0J/Qsf2AkUyUDx4e7hEJCnULy/G5UmxR69pYjkcyqpOOKpRaNkfGUrxtTz+fPD5B1/H4g2dmccOiE4hN0UK1w3y1gywLMkU+IdYpRycyPH2ljOP5XFhu9sbGH11e5cXZGgdGUjyyrhBaadtU2g7juRipiPaKhYFiwyQVVbm22ubEbJWzSw3+2UcP0bJclutdJnJxdFUQjNYITMt1k1xCZ7HW5cJyk5PzNa4Um7Qth7rpUeu2SEVUhlJR3n1wmPPLTWzX4/JKk1//gxNkYzqW62G7IqzY932urDSpdhwkP0CVZUYzBtPlLo4XYHsBs+UOmiJyNv/2Izt5y65+fvvJa1Q6DhDQsdwNTcH183PrNi2OtS2aZblN1GGbod6xBQEGNthC3QqV9uave+uePLPPLr3i+zu2i+v5+LIkQq5vA7XO5g2pcue6DdOtzlhMl2mG39WXuL1zY23RVVvvQOndsOAaSEb4xQcmaVoOS3/U4aX5+m191yvB9nziukYyoWBWvZvWeVFdZjAVOkh4PnVTWDxLwdpx+vyzr51jIi+yKBIRlbfu6uPdB4f4p189x0rD5H0Hh3nf4WH8APYPp5BliXfsHeCluRp7hhLsHkzyZ2daVNv29fUoIs+jZbk9NwwQa+D1VneP7Buk3nGwKh3qXYdLK0K1UGrZtC2PdEys13cNJCmMm3Rsj3unclxbbfPSXI0vvrjAp++f3FDAVRV5y3X+cDrKeC5GrWNzeOy1k5P+ImGr37oG2/X53vkVvnGmwIVloYxYI7eJoo4o0luuTyUsVFbbDu3XkL3yauAjMhMn++KMhsXfN/v77uCnBzeO2xJgqCqW7eL71/++3nFQQiWGs24ATEYUOs2wMYL4e9vz0RXRdA0CSMeEC0g9LBq6vlAX64qMgsjp9tftkeOGykQuiirLTBcb1G2hCujYHo0wgzEVUSnUu8gIhYIaHttoJkrc0JgutUlGFLwAjoymuXdbnoMjKZ6fKfPNM8t0QkeZtuVyfFsOSZJ4aEc+ZPZLTORieEHAassin9AxXZf/81sX8AKRXWqoSqiW8NEUmdFMBBCRDusxmonyxMUixYbFS3M1fvmhbW/4NVwbm1RuziVfD6HWEwXS1ZbJ108XiKgKkiRqC5O5KLoi8lffsmuj9d/TV0qCdGWoxA0VQ5WZysfIxXVeXjRwPZ89Q6J5NZmPYboeMV3BcoXa4JWIpbIscfdkFtPxuLraYjQTe8Mz1GYrQhm0VDOxPX/TxpPr+SzVRJ5ZVFd4516xVvb9IKzf+TywPd9TVhXqXZ65WmYsG+vVK7b3Jzg4kuTUQq3nwrMe2cjGUu0boYx2fJ9auNYvtW62xyy1rF40zCP7Bjk0lmap1uW//PAqj19cxXQ8JAht0N78Udz2AuQwgHWzupnr33wv66qEj0REldjen+TvvWc3/ckoMV3preMfOzDEYjUkx4eEKRkhChBZhBKHx9O0LRdFltjWn2Cx1t3QBHP9gNWmhSxtfi7XQ5YlZCT6kwbv2jfI+UKDUsvmyy8tUG45tCwXVYZkxODsYo3leoThdIQgiLBcN3EDn3RURZJkCjWTxjovdiW0PRzLRLm40gLWbJM9GqaN6fqoklDgqoSq1Q3nMNhgb7imPlqP0YzBzsEUJ+eqtEyXgIDhdISZsjiOtddrqkQmorLUuHkvsKZgkiWQgoAbtxWyLIhTyaiK3hD2f0qoQJMkibiu8PDufpq2y9mFBpYjRA1ySKwwVJnJbAxZEpa2T15ZZbbcYaVuMtkXJxNT2ZbP8dTVMk3LwXYJMyMlrq62+KPn5vjgkZGbCAgHRlLk4zrVjk0uprO9P4Eqyzy0s49vnC6gh1nUa7+nZV/P9TJdD/eGZ3tbf5KZSqdXlzQUoeQD0RyUAENXem4i6yG9RvaQdMPbbE9IxySEu4QqSz1191Q+wdHxDDu6DsuNLqWmTUyXmcjHuLrapty2AImxTATHCUTUkCLRdcQcV2xaKLJMRA2I6aqww4xovPvAIBcKdaK6xrHxDB+/e3xDTTod02h0HZYbFveETjSDqQgRTQld3ZpUOzb1rsNy3WTnYJJfuG+CJ6+UOF9o0J+M8isPbbsp+3wz/CSaYPcFQXCXJEknAYIgqEqS9Ia7gEuSxIM7+1huWLQsl4imsG8kzWRovZEwBPtkMh9jtWlxvtDg7FKdP3lhnr/61m0cn8wRN1QOhO/RFRldFT7Xv3D/JE9cXGVbaAt3ZrHOU1fKEAT8/o9neWz/AMs1k7lKh9hKk+mSRMty6UtEcD3heyzLEn/trdupdxx+75mZkIFq8Kl7xvjSyUV0VabUMpkrd6ibLscmMrxlVx8/vLxKwhBKpf3DSWZKLWxPPAArjS6HxjLsH05yfqnJSwtVdFUhYahUOg61roMsSSiSkDVKSGRiOlP9CUzbY6VphYOeCLNrWA4F0+0tTptdl7ZJj3n8RhP2VPXWt5/vC4k9QPkGBVbHdpElqbewKLcs2pZLKqoRCwP5Vps2L85V6U8aVNsOFwoN7HDxHAQ+biDsoxTXC9kGG79fD01WY5pCzFC4UjQJgo1sEwmQFZlkVEN1PJrrBqt0VMFp+iI3YouTt9l59YKbrYJuEWvRQyYi4wQBMUlkvvWnDPoTEXb2J5mvdtAVEWy70jRJRNReXt6NeHG2SrFhUWxYgtn2CnaIAPOVLifnarw4VyWuq1Q79mtqgG0GK8y4i+nCcisA9DAQ0wvg4GiKasfp+a0HQcCLczXycY2RTKznIb57IEl5m43peNw9KQbW718oMl/pcL7QYCwbIx29/YaWJInn6Q7u4A7u4Fa4vHJddTO9Kmx1b9zG6jKstoRdzmgmyoM7+9EUYQc7X+ny3HSFTEzj2mqThapJPu5ipnSyUQMv8OlYHh3bIxfX+cTxMb7y0hIXCg0ShooZ5ocpkkTb8lhtmgymDPqzUT5+9xi261NsCJvgIyFx6OXFOn4QcGapzrv2DfQ2jYYq98bU9Ba2H2t49lqZb59b5uJyk6Val2xc58pqC8v2+OxzczRNl219cT5ybJS9Q0lmSm0ycWGNYKgK927LUWyIInvX8fCRkBEWRoWaiem4HBnPcmAkhWkLGzrbDdVtXQfT9khFNIbSBgOpCPZKk7Yt1ofVrkcqqlEKrUR8hP2z0/X4/IuLnFlq0rEFC9R2fZ64uEp/KsIntiDj3A7GM5uTT6ZDG5ZXwnoyUv02fcT6EpvPUQPrmku3KtefWWzSsT0kSeJcoc77t1D7rcf2vs2Z2cOp67//VvWq9rpd8Xr7kFsht0X2WaF6/f2btQ8yMZ1MTOfhXf2cnq+/IUV5x4Nqx8INNBHKzXX7OlkSak7b83F8n8Vqt9cYX3NlCAiYqXRZblikYzofPTbK0Yks+4fT/O1Hd/Pk5RKT+Th7hlIbSEoTuRjPTlf44aUScUNjJBPl2EQWSaJnLziRj/PWXX3Ml7v8/P0TNx56D/fvyHNmqU65bXPvZJaEoTGRi5GOaSzWukyvtgkI2D+S6uWtLFTFfdyxPSotG1WW0MP9T9tyWax1mcjFbrJa0lWZT9z92p+rn0a8NFfl6SslTs5WhXWTKqGEllJSsPFerXVdzi1WMd8E68D1FveyBEMJg0f3D/L+IyPkYkZvrH+zcKcJ9tOFGzk8AaLYnIpqdByftnVdOSBLorawpjDMRVXSMZ1CY719l89AwkBTZZIRjYShMpqJcmG52WPOK6FSKxlRqbZtBlM6qy0HxwtIGCLGwXR8uraDrKzRKMW+u2m5SFJALqYRIGFoChFdwfMDorrKh4+NMVNuU2pbuK5PKqaQTxg8uDPHV14qcL7QoGWJPage7vWXal06tk9MV3jHHmFD63g+3ztfFJmjDZOnrpS5EloxvnPvAIoiUWpa/OGzczx2YJAXQ1vsZ66WeWTfIN8+t0xUV3hs/1DP2rfjeFuq8d8IjGQM5mqbF+0NBfYMp6h3HeYrXTxfELj8ICCqKewZTPC23f1cXGnStjyurbZ7Db4gEHEBxYaJlzD4B+/di6JIvebNL9y/UcH+0M4+8gmdy8tNQfx4FT/3Cy8uUGxY9CUNPnPD574eLNa6rDYtSi2Lj981tmXj6ZtnlrlSbJGOavzyg1O95t3lYotnr1UAMBSZB3eKfMwfXS6xWO0yW+6wvT/GbLlLrWNzptCkZTqbNniq3Td+4DdUhUf2DXJ1tcWh0fRNgoBax+mpvEttcY989vk5nr1WpmW6vXG7Y7u8ybwMQIwzA3ExxlS7G5sJm9XRoppMVJVx/IBK22H/qMLUJuvS52cqPB0qeSKaguf7IipFVZBkib/zyC7iEQ1Nkvnay0u96JD1OF9oUG7btCyXj4xmqLRtMlHtFRu5qYjG1WKLRtehZbuoshxmdWnMVTr4gSARLtW6odJINJeapsdoVqd2wx5AkkQ+Yyam9UQGAVBudum6YS5tAJ7tkzBktLDBvR6KLBrfsnRzkwzEHiQX0zk+mePJKyVkWajZt/fFqXYcKi2RFRcEkInrNEy31wxau1aytJbdFmCF1rhrc0RMl0lENFRFJqIqjOVirLYscjGdUsvCC+/Tw2Np6l2XF65VSEZUDo9n2DuUZKHa5bmZCi/MVvhbn32JuydzuL7PgeEUcV3l8FiatuXRtl06lstYNsbeoRS/9tZtvDBbYbrUYblucnmlybF1ESsgrEh/89N3cXZJ5D6OZWN4vlDD2p5P2/Yw1M2vecJQb3LHum8qy1ylKwhwkohR0nxwPK+njLY3cdUQ0QKbfk3vHPcc3m7IOJYlCV0SjceIKuGEajJFkZjKx/nw0WFWWzbLtS4t26fSsZkutTEdD8v1UCQhItFVmcF0hFrb4eJyE1Vp4wUSMUUOIxQktvfHWa6bRDWF0WyU3YNJVpsWS7UufiCJPEHX7zWf11DrOKRjOumYTqllU2pZ5OM6D+/u5/RCHdPxyMUNXpipkjBUSk2Li8UmJ2arVLsOTcvla6cLHBrNvCIx4ifRBHMkSVJYy2OTpH7epHXvgzv6aHRdUqHdzyePj/cGoY/dNSo8hjMxfuepa7ie6NgXGxb/x1c63Lstz7/6+GGKDZOG6WzwaI5oCu/cOyD8KFMGO/oSnJyrYbkBhipzeDzLbLlLtesQ11VKLYupvjjFpsn5QgNVlvm1t20nYaicL9Q5uyjYpg/vHqBhulTaDm3L5Q+fnaPSFuHtpxc1Ht4zwPsPDQvWSC7G3RMZXpipUmxa9CcjDCYjpKMa3z1fJGVojGdjvG1PP6sNm8Vah8vFFscmsiQNhUK9y7XVDpmoxnLdZP9wil+4f5I/eHaWStsmHRUb22LdFIORxAY5bYAIr73RhuD1YL1ljuV6SEgbNlyyLPGeg0NcXG5yeCzNi3NVig2TkUyUJy6uosgSn7pnnHRUY6Vp0R/XuVrqMBA2vS4XWyQNhZ+7Z4IX56qhP21AXFcACcdbizWXcP2NQYJJQw7tYcSGfma1vWHiX4MkiWJUNqohgwgXR2THlVrOho3s2uC/fs7Zqk30WtpHtgd+4GE6YoDqT0S4ZyrHW3b10bVdPndintlSlx9eWuW56Qq//ODUptY0U31xLq40SRjqBkubWyGiydiuR6EmBvSh1O29bzMoqoy77j6TCUhGNAZTEVRZZiilc3m1g6HKRDWVUsvmsf2DvQXc7z49w1dPLVFp2zx2YJBffnAbI5kosizxULgQXUMylLbHdLVnp3EHd3AHd/BGorNOtdN1NufeWj7gCzaVJAl2rKbIfPnkIn/43ByqIvPz94yLucz1aVgOx3NZ3rlX2D10HZ/LK03u255nKBWh3hVe6+W2zT/+wH5OztVwvYC9QwkGUhHmK11apsu/+uYFIppMPqHzN96xszcHHxvPcnK+yoGRNN8+t8Kl5Sb3bstx3/Y8n75vgnLbZtsm+T7rsdK0ODUv7CMShsj2ePeBISRZohPunJthZXfXYJId/YkNG8dH9g3yg4urLDcsrq22+SsPTfHZ5+aZr3ZIxzRihsoz18ocHc9guwFj2Sg/ulxCQijzL660KDRM8kmDkZhOxxG5rZnQjrFQ72IobLCf8YGX52uigGa6DKUjVNsOe4aSLFa7tO2br1/kNom5Ly81GN1kI56+zQ+IadfnqPwWzS3YaK2XjW2+zD82lQOuAiL/aSu0TDu0KgmwtrA5vBFXi3UOTtwcCr9n6Pq6OnkLm6f128hXENT0UG10GMncfD9OrCPxRLStP6xpeeLee4N8v2VJBG5HVAXL8YiEm2NdkTBtj8VKF0OTSUaE1Y6uCv99LwDTEaxj1w8YSUd4ZN8gR8fTXFpp8tx0BVkSyvdi09yQX1BsWJSaomB1cbnJ+w8PkzBUXN9nJMxBjWgKf/3hna94/KOZKKossdow+caZZf7FRw8x1Ren3nX4wokFTs5ViekqB0ZT/A9v24EiSxydyFDt2PQnI1TaFl88uUA2pvPhoyP886+fx3I97t+e5+fve+OKlX8RYToe89UO2/LxTRVhJ2YrfO7EPDPlDpIkEdUUhjNRFqod6h0ba5PHrPUG10F1RUJXCWkFhNnBGsmYTrFp0+i6DG3RWH4jcYtH8g7+AmKzEl+zY2OoMruHEsyXuzRMF88XBVQ7LLJJiGJctX3dvktWJGK6QrXrcHQ8w3sPDfP8TIVsTKNjC0WEHWbKdB2PZtfBCbNtCD/D86Ftu3RDNcBI2JBPGCptR+TU1E2P8ZzMg9vzZGIa5wpNYckITOVifPHFBaGO9QI01eWrp5Yo1LsMJA0uF5t0LJd0VOdjd43ysbtG+W/PzAEii16SJPYOiYh70/F5ab7G23b3hwQaDT8IODKe4epqC0NVqLRtNEXq2XmNZaOcnK+yUO0CsKO/xQcOj4jcmcHEm9IAW6u3jGcjWzbBXB+Wql0cX2S6KIrMRC6KF4AiSZxdajCRizGWjXG52OJcocH3zhd5z8EhQKisY1OihhC7DUvHvUMpTi/U+f6FIisNk8cODN3Wb2mGa+u17NB6xyFmKFvGZ9wuTs/XMEKl4HB6axvoaqh6b5ouju9jhLmpyYgaZrdCah25djAVYbHaJRlRObNY59lrVb53fply20HZovIzV91Ikmpb7gY102vFwdE0yYjKV15aQldlPnXPOJmYThAErNRNJAmm8jHuDfPIMlFdqDpD1XoAr7kB9mqJ9UEAyy1HZH9x6yKyAmiyRDZh4Lg+qZjGoXXxFx3bpVDrcq3U5osvLiLLQnHtBwGGIpGKGbi+T9f2ePziKv/iY4dYrHaJ6goDSYMLyw32Dad6n3el2KLUNLlQaLFU7TCcjvL2PQN8fBNij+v5vYZbNqZR6zhUOg6yLCI+ggAqLatnyRjgs+ZAGyDWlTFdEdasmQizlU6PcK5IgpDw9LWKsCqUQFNlOs7GZpYPIEkb7MllRCMk8AM0RZAKNjvHbcvlbKHBzoE4qYhKx/GodhxOLdRJRhSOT2VZaVistkyaXYe4oW7IPNZliBoaBH5PxRYg1gGuL56bmK4S0xWWG13KLWERvXsgwXg2xoXlBkEA/+mJq2EWdcByw6JycZUziw12DiRwHdFcWax2mciZ3L+9j0f2D9CXMFBlic+dWODpKyXR/JEl7p3KMZ6Po6kKS/UFFFkoezeDqsgbXBPOLtX54aXV3jWw3WBDrtra77uxYanK8IMrZaod4cYmyUAg43oe6wVjNzV3VfCDm5uXN0JTJBTWBBjitbIk9nqqKtPoCJGMZggHsXxc5wNHhnlgZz/PT1c4vVBnutTGdn1UeS02CFRVZqbcIRlRuX9bjicuFmmYPp7l9Wq/hioznI4R2T9MJqbx1l19DKYifPnUIjOlDl3Hp227VNo2/Qn9pr1sRJUZShm0LY+lepfff2aWI+Np3rlXxNj86PIqL8xUOT6ZYbbSJW4oDKeiHBhJUWyaaLKMJsO5Qp27J3M3nZsN1+GWf/vG4N8DXwIGJEn658AngP/1zfiiiKbwkWOjPHZgkCDYGLge0RR2DiQpNk2WGxZRXTCXWqaLoSq8OFvl//vdS9Q6Dqmoxn3bczy443rB/OsvLzFT6pCOarxtd56JXJRSy2ZbX4ztfXF++aEpHM/HdHwuLjf4yqkCM+U2esiKSRgqlbbN519Y7PlNz1c6nF9u0DCFr2k2plNu2b0MpO39CQ6NpvnQkREyMZ1Cvcv+4SSSLDaoOwYSeH7ASDoqNqSGwqn5Om/f3U80ZCgt1rqU2zaFutXrVO8dTvD2vf3sG05iOz6eH9CfNHhwRx9nFht0LEdYDYSTnGAGyERUifUOPK9XHbam8lqodvjTk+K8/Mzd4xsaL7sHk+waSLDasvjjJ+aZXm1TN20MRWYwFeH+7Tkapsv3zq2wUDfxg4CVhkVAnbblstrw+da5ZYbSEVYbXQIkuo6LKguv/nzcoGMLr1wZsVg3FDHQtG1xDkzHx9piQvADcD2PWldIjv1ATESyfF2sKgFxXTA8HO+6lPvG83fjwHkj1iTarrf5AkCRIanrJAytxyweTBl87fQSTdNlelWET45lowykImE+AyzVusR1tcfq3zecYiofF9LY21hInlms8+2zy3z33AqrTYuu4/UYwa8WEuB715WHEhA3DHJxnYSucO/2Pt61d4Bvn1vhfKFBx/b4ykuLvDBdYao/zsfvGmOx1sVyfEzHY6VuMlvu9ApAIGwanp+psm84SS6uC3m6LApIt7KJvIM7uIM7eC1Yb13XucWu0XZ9WrZLo+tSbtkMpSPMVoRyzPV8ql2HwaRBoSqCgLf1xzk6keFcoUEyorIjzHuUJBHqXuvaRDSZcsfhN963j3rH5vxyk7FchM89v4jlesxXu3RsF02WOTFT5t0HhdLngR15HtiRx3Z9fvPxK4BQh909mSUZhg2/Eu6eyPKHP54lGVEYTEX49z93V09t+75Dw1xbbXF03YbiRuakrsrsGkxSD1XthbrF//aBfXz3fBHPDzg+lePH18oUGz7DaZ2dAwnmKm0imhr6sndD9ZvLxeU6ra6NJEm0ZZH91d2E6bh2veYrHY5OZNk1kODBHX28OFdlW198U/vbTdwqNoWxRa/rRouKrbDeamWm3N7yddK6KkGt7TGUufk1z10r9f5c625tinRuudH789NXyrd1nPkt7B0X160LbvUcxAylFwzfn7y9HLKt1k7Hp3KC8egFHBvbXKEWBIJoM5GPcaW49Xm9HUgIy68gANcVOQOaItT5k31x6h3RnLY8H12T0WSZdFTlwR15ii0bVZKI6iqW51FpWfzMPWPs6I/z20/N8OTlVZFTqwhLqs8+N8djB4Z6Vs7DmQjjuRjVtt1jdz91pUSpZbMyZfHWXf2v6rekoxquFzCajbDcMJnqi7Ma+vV3bI9S0yIbOgqUWhZfOrmI7we8bXc/z89UREGnbfPExSILtS6+HzBzm6rHn1b4fsA//do5rhRb7BpM8E8/fJCu4/H5Ewu9HLbPPj/PfKXLcDrCQNJAAu6ayKIqEv/uu5exblPl+VohhcdpORDTIR/X2TWUpGP7NE2Hpun2istvNt4Ep/07eBOx2TDb9aBjudiOUL7KUgCKjAw9K0QfqJsuLWtdfg1izZON6VTaNqfnqwynI6Gqy+1ZQ+kKZKMqddPFNt2eJfDa8aQiGqbjkYnpHBrP8P58nKbp8Oy1CovVLrGYQlRXyCZ1dvYlyCUMzizUaVgOX3ppgUREpWO7BAo91Xyh1sVxfZqmsI41NJlffGAKQ1N4y64+plfb3Lf9eoHN9wPOLtZpmS7nlhp88MgIf/+9e/H8gIlcTOxpA2H3WOs4/ML9k3RtkfV4dbXFqfk6mioxmIqQi+s35TC9UVhfb9k9nOap6c0tgL0AWqaDG0giq1aRyMZFEXmh2qXRdTA0hfccGKLRXWA8F+2RZCRJ4pPHx5mttNm+RbZ4oS7stfYMJUPLTFG0Bpir3P4c8f5Dw5wviKbE01dLPHtNNFE/ff/k62qE7RpMcrkobLfXlM6b4ZF9g5ycq7FjIL5BLTaSifLz903w46tlTs5VURWJHf0J6h2bmK7w3kND/OGzczx+YYWZslAXKbKMKns3qTx+cHGVv/ZWkbX23XMrvLxY7zkovF5Ml9oit8j2WKqZZGI606U2z80IFVs6qvdqqR+7a5SZ1RaL9S6W7b+u+t+rfa8qCyXi2sy4Pidp7bOiqoSmyni+sHk7MpbmQ0dHiWgyR8eFqkdkoc0zX+mwVOsSIJpYMV2h0XXwwhzDruvhei4Xl5tcKbZ44uIqM6U22ZjOuw9ubNAeHE3xhRfnMTQRa5NPGMxXOzfZejZNh88+N0/H9njfoSHOLdVFPhKiWSGHCp31lz+mgCmJ5lRME4QV2xWEftMx8ddJcy1P1LHW/pNQX8p0w0lWRSjMJUmcy2BdETIAVEnClQJatndTPAyI5reqCIe0Ssvm4GiahWqHasfp2XgeGErheHWalkvbFGNETIOuEyrNsyLjulg3USShBlNlCdsT9deVps1EVkaRNWQktPC6rzRNMf4oMqWWRSokGCiyhOwLG7+VuslkLsr7Dw3z9bPLJA2Vnf0J3ntoaIPt7CfuGiOiyoxmo1iOz91TGQCG0hGR5crNe9EbUWyYfOWUqK2mIlqvZjmZj/HQjjzPz5Y5v3x9HLvRDSwZNuoVCeK6Sj6hsdK8nrG7FTyfV8yHDQDLC1AQ1pKqDIEvGmOB7+N5Iv9SUSTyMZ29w0kGU1E8XyiTp/Jx+hMGc5U2fhAQILFzII6qKL3z5rgB0+U29a4Y8xVZkPhcL+DrLy8zkorQsj1+4317cP0A2/N5y85+ZKmEF1rFVtsOLdOhZbq969MwhVveidkq2ZiOoSoMpSMs1szwPAY8uKOPgaTBtWKSZ2fK5GIG923L9ZxrrhTbnFpo8J5Dw7c8T/ATaIIFQfDfJUk6AbwLsfb+SBAE59/o7zlfaAjl03jmpgDz9Tg5VyMb03l49wCHRtMsNyyeu1bGCfOjZssd7tuW68nR17BmPdOyXKptB9sLqHcdXpyr8cPLJR7efX1zWQwzrLq2S6FhMpCMsGMgwemFGpoiWH8DyQgNUxRitvfFeWTfINPlNs9PVzBUmWPjWf7LD69SbFj84oOTbIvrXF1tUem6+IFEX9Jg73CK8WyMb59bZrVlYdoeq02LjuPxN9+1i/OFOucKDWEHlIowkY3y4+kKT10RwXLPXC1T69g0LFFw+4X7cgyldBarPp3Q71dTJMYyUSb6YnQtjxfmqngi0/YmmeWrRshimat0xELZE/6t65tgZxbrfPHFBTq2x9mlGsWGyEOxPZ+5SpfdF4v0xw3OLjWwXT9sJAXUOw7lkHH15OVVYoaKpip0u9fl5jFdFSGXbeHlm4iouK6H5QVUOv71iURaF0IYNgbXD0GmG6rawjHTC8D1XGKaguMHDCR07LCAuX5xszbGBghWZgB46ywE14fDg5gYI6qMIwmFmu9v9OxNRTQ+88AU379QpGG6tG2XP35hvrewXG1aEAQMpAweOzBILq5zYlZY52iKxKfvm+wVNF6Nt/a1UpuOLXIvXD/AuzHQ7FUgCH/nWrB8Lq6zdyhJpW1xYrbDi3N1vvlyAdcPSEU1HNen3nVYrHVRVYlyy+IX7p+g3LQ4VxDWHIkbKo9rNl9nlxrcty1HNizm2t5PQNN/B3dwB3/poK+zSFgjFsib7M8DwHU8rq22+CdfPctH7hrlE3ePUe+4mK5HRJPYM5TgXJhPWmxafPPMMoosMZ6LbVjor9nDrtk6B0HAt8+tsFDtMlqJct+2HEt1k8OjaX7zB1dodFz+3XevUGo5fPzusZ5lma7KHBhJcWmlyXg2ym8+fgVVkfiZ4+MMhA2KIAg4MVvFdHzu3Zbrqcl+eHmVvqRBpWOzezCJum5jsXMgwc6BzQska7BcUQyTZRjNRpnMxzg2mSMZ1VBkmW19cUYzUU7OVvkPj1/mvz0zSyamsXswCRLsG07SsoQqo9iwekr2luWJTfQW3+sGIjcyFVF5x95+9g2nOTqR2fI4b3chHY1s/sprpeZtvT8TvW4ldSt2sixdXzvkEptbVs7fZjMiHzd6uWLjuVe2RgbIJzY/tiur17/zVnbJEUWEBwMk9dsrZE3mt7iXgqBH6Gpbm3+nJEmMZiMcHc/Q6DhU2javxc1ZlYW94vHJDGeWGhTrJn4gCsGrLZtERGXfcIrVlkVgiSJOx/HQFIkLy00eOzDEtr4EOwfifPPMsrAnOTLCP/ryWZ6dLqPKgqp1YCTFatPGcnymS232DCZ5+moZPwj48NGRXvGvYTqUQivxV1NYrHcdLhebWK7PUDrCXZNZDo+luVJs8tXTBSzXYyBpoGVFvoYfBCxUu70s5LlKh+OTORpdl8GUIawbB5PUOjYfPPLKG9OfZrh+wHx4rucrInNwsdrtWbqLzAKDatsWZLVANBC/cHKRyXyM0bQR5hC+OVizHQpjx+g6PpN9ce6dyvPklRKqLHP3VIYjP6FsNuPNcXq7gzcJyhbXq951cbxOuL+WSBkqXhDQdTYWy9eTQHVVIhPV0UM54HMzVfqTolYhyxJqOI/JskI6qjOYinJlVdiHBeGxpCMqjuczlo0S11UUWWI0HeWlhslIJtKrJ5wvNDi3WOeHhspgMoKiSKiyTMP0eO+BYb5xpkCtY1PrOkQ1RRBc/YBsVMP2AkbXWevfM5XjnqmNDHPXD6iHZJJySFZZcxT6/WdmKLVsbNdDVxW+eqrAzxwf61nU7uhP8Nfeug1Flm6yin2jsb7eMpa+tdLT9EAlIB0RkRzTqy1imkIi3Hvbns+jB4bY1p+gUO9usA/rOC6jmehNuTog5pfPvbCA5wcU6l0eOzCEpsi8dVcfF1eavbiC28F4Ltar+T1zVZB0qh3RyF8f+VDr2Dw7XWEoFdmg5NgKOwcS/I/v2Clyi26huBrJRDeQbNcjHdW4GtqfP32ljCpLvX8/s9BAkSQkCVRZDmttMbqOy7VSp/fMqBLkk9d/x7WSsNicLrXx/OC2MttvhcNjGRZrXaKawvZ+sb5LRTUUWSjZM+ssz6+V2pwtNIjIEt3X9a0b0VOGIhRB1iYL81REFTaIa02bG9Znigz3bsv3cpNVRdiSJgyF41PXXQm8QOQER3WFYpgzuL0vztlCM4xZEZmurhf07D+bpoPt+hweyzCZj92UH79nKMUvPrCNp6+WUBWZkXSEYxPZmxopK2FcD4jr9+SV1d4eZK22uP6nCy6bRNIQpCrL9ZBlOSSIBVta4knh+RhLR6msy+dVwrAvRRKNvvXvV2SIGjItM8DfhFGWNBT2DadQZZGpaHsBbdslpstU2iJWR5Ul7t6ewzBUlhsmXUmmablkYgapAPYMJdnWlyCqKXz/wgoRy2W1YeKHAoS18zCQiqDICuO5FGeXWpRaFq4PM6U2vu8TBAFt0yEX1zkyliYb17hQaGG6HpIkY/m+UKBqKu87PHxT7qIsS7xr3yDJiEYurjOyzqb+lZ6nru3x7HSZyytNXpqvoyrCAeF8oYkXiHzpK6U2+bgOdHrXQ1dlLNcP1XwioqnctrE8H8sR51IKbrYbvhG3Gcvc2/PIPqQiCqOZKP3pCJcKTTqOj+eLRmpTEZahzfC+fGBHnnfuHWAyF+VPXpjj9EKdtu0RVVW2DyQIAkEIkQyJfksnE1OxXJHnGdNkFEVCkyW+f7GIJMFn/utzfOaBKbIxjV96cIoPHx2lbbks1TpUWhblts1Mud2L3WmaLvWui+mI+UWojaPcvz3Pbz1+hR9dKZGN6cQNhVPzNUYzUVIRjY7jUaiZlJqiR3BdRnFr/CSUYARBcAG48KZ9PvDtsyv4QUCpafGZByaZLbcZSEVI3cDancrHOV9okIsbvG3PQC/z63efnuF751cYTkdo2x7FhsUTF4s8vLsfSZJ498EhTs3X6dgu89UuB0ZSOJ7PVD5Opb1RTp6L6yiyxP6RFL/84BSHxtLIsswLM1Vmyh2m+mL8wv2TPH5xldlym9FMlKF0hOFMtKc+e/pKqecn/OWXltg/nMYPxIQ1lXe4ZyrHO/YMoKsyOwbiTK+2+Z2nZzBUmW35OCdmK/zpySWmSy3uncrzN96xkycurnKu0CQZUfn++SL7R9IUWxaW6zFTanFmqcFj+4f5+ssFyi2LALE4+8NfvZ9i0+S3fnCVC8tN6uuYWDFdxtyETf1KcmWASksMEAdG0sxXOqiyzJ7BjUzdU/M1vn+hSNfx0ENPcFkCbDE5V5s2x8ay7BoUqri2LY7N83wsx8Nx4UKhSSam4wfCo9bzAhpdB8f1mC218RGTQkSTabg+EtftGzRFIhlRSBgasgTlto3v+4Kp6wY0w3Nxo6zL8SQmcxF2DCaZLbe5ttoWfr7y9UEsAN66I0+xZeF4AS3bxbRdml2PeESEyZabZu/1EiIrY22y1JXrQZC+L9jcM+U2ubhOtSPUhcWmSaUtmEdHJzKoksRDO/t7k/jaxtzxxG/JbpETdiscn8xS7di8bVcf1Y7NheUmc+X2xhPyKqCrIjRek2VyCZ2Hdvbx9NUyizUT1/eptkUxSZUl7tvZx1dOLRHVFTRJ4sfTFfwg4L2HhpgIrbpuZFYcHc/wwmyVqXyMvcNJ4T2syewc2Jwlfgd3cAd38HpweDzDXHUFELYOcLM1m65IIesKal2HiytNvnaqwM7+OH/3PXv4zz+4yvfPr9KyXHb0JxjNRBlNR5kptWmaQsHuej7Fpkk2ZEY1uw4xXUUCfvupGZ64WGRnfwJNEUxdEMznb51d5vRinZbl8sNLq/QnjQ12NI8dGOKxA0P83tMzPH21TMJQuWcqx0AyQhAEfO/8Ck9eKZOOasgyvXVM1/YIAuhLGEQ1heWGucFqutK2UWSJhKHy+IUiTcvhnXsGe6rkF2YqRHWVuyay5BM6lbbVY/2uIaIpLNa6rNRNOo5Hf1KwBTNRDdsJODQWZfFEp2d/BKGN0itMT03TwVCVTZVfAAawtvJLx26vEOEHmzd05NtkLNfXhQKtbhI43fuedYuvluUxsMlrjkzk+NOXxT15q7Lbz987wb/+9kVUWeKTx28vtymyBYlmYJ1N8q1+cTYRYbUjikUDW+So3Yi66ZLepA92pdjpNRtW25tbP51favCDi6uUWxZ3T2U4u9hgrnp7WWQAURlQZCRJMI3PF5qhLbeNEoATWu1cKbbZlo/z6fsm+MGlEnPlNrbv4/nCH1+WBJP5YpghuFTrcmq+xlylQyS0Stw3lGYqH0NTFAbTEe6ezHJ2qcGJ2Sog7GTWLECCAPqTBq7n85YbrKC3QrFh8sfPzzNTbhPRFLb3Jzg2niWmq731YjqqM5KO0rY9htMRNEWs3a8WWyJ/YSRNOio2vWv4xQcneWmuhnVD5abStjlfaLC9P77B2vGnFboq88nj4zxxaZW37upDV2XGczEGUxFalsM79g5QqJnMl9ss1LpMl9okDI2O5eJ5PqutrZ/r1wsJSEQUHDfADEmDEVXBcgO6jsfhMA/yroncbblAvBEYzb85ipc7eHMgSZvfF24g3FAMTezb7p3KE1Hh5fkqLy9vbMAroU2XF4iMrkxMIxrO4wMJA9v1UGUxFuqS2Pf3p0T8w2AqwtXVJtW2ja4r4EtkNJmO7fPBI4N0bI/pcpurpTauJ1xu2pYorAVBgBe4GKrDRC5GPqET01U+cXwM0/X4xssFEn5AOqqxfySFrsjs6E+wrS/OvdtySJJErWPTtj1G1zU+Vhpirnh0/yBXVlvctY4w4/tBL9usYbr0JTafG6Oa8qqysF4r1tdbvn228MpvkGH/SIqrxRaFhkXTdOgLAsZycZTwgG8kNJ1ZrPOdcyvIkoisuFHV5ofNBdi4Pz8+leP4Dc3FV4MHduR56kqJ0Wz0pszzH1xa5dpqm3NLDcayUfKJV45seL0NJl0RqonFapdt/XEGUhFiuoLp+Gzvj5OJabw4V6VjixiNuyYyfPPcClFNZPWoqsxkLsbP3XM9u/PBHX2cmK2ydyj5uo8PRL3y0zfYE/clRL5axxH3ebVt8+3zy1xYatAw3dcci7JGwLjx3TFdousEyJJEJq7TNJ0N+bcyUO2IOJIenzDMRZIl8Zn9cU3YFaZ0al2bju1zYbnJv/nWJf7aw9t5195BQOQZve/QEFeKbRIRlVpH1AILjS7VtkU6ohE1ZOodlwBhdXrPVB5VlllumDyw/Wabb4D3HBzqWYFuhcl8jJ0DCRqmw9GJDH/y/Ox116NQ2bamcJOAiCYR0RUqVuV3AAEAAElEQVRsNwifGdAkkctshkKF9VAkcT0lCUbSES4V2xsEHUI5JaPKoEoyXkheVyTR+EwaKp1NvJhl4NBompihUqgJS/hq2+mNV47rEzNUPnbXGO/cO8jR8SyNrkPbdPjGmWVBMktH+Fvv2kW5bVPt2LxPH+aF2QrFuilUcOF3RXQZSRJ2eMWmxVt39eH5PpeLbdJRDdN1aYf5z03L5cRcjYmcqKHPVzss1jpUOxYgMToQIaZv3uaIGyrv2LvZzujWePJKiTOLdS4sNyi1LKHiiusoMrhOEJKbfBIRjb6ERtt0GQjVvTOltnCAUBT6kgb5uMFMqYXPxj2brly3Gb2dWvr667TmKLYmkFAkSEZ0klGdbfkE2ajO6YU6RT9AQjR6zyw22NkfZ/eu/t6+/9mZChdX2ngBvH3PgBA4+AGDqQifvGccXZb4D9+/TD5hYNnCSr7reD0CniyLDPK19X6964YuFhJxQ+WuiRwXl1vIYV1/DaOZKO/aK3I2++I67z0kmpjFpslTV4WK7Fyhwba+GHFDRVVk7prM0pcwGMtFiRsi2kZTJBq3kaX4E2mCvdmQgGxco9yy6UsafOvsMpdXhLz1Vx7atiFnas9QkolcDFWRehdLV2V+8YEJ/CCga3uYjsdyw2S5YbJrMBl6AkdxvYDPn1gA4NhElnftG6TStrn/hkFxW1+8N6mssZAK9S6KLHHXRIbdQ0n6kxHed2iY33t6mlMLdXRVSOzXMJqLkoiotEyXfaHf9MHRFIV6F1mSeHT/YO93GarC3uEU/+Kjh+g6HglD5YmLRa6utvD8gLrpsG84RSqqcWmlSall8eDOPizXJxvXmS93WW3ZvDhX5dfeup2orvDklRJN06FtOfyTr57l7zy6CwKh8lnLttIVmXzcoCGZuL5E172unrqdhzYV5nKkoxqfWjfJr8fe4SR+IBaIUU3hkX0DbO9PMFvp0OjafPjYKHsGU72u9mK1E6rCvB7Tsd51ej6ze4cSXFxustqyMT3BBicAlwCvbaPIMkhCOirG94Cm6YEk43keLdMLvXrFwBb4Hi1bWByuTUhyeH5qpsvllSYN08HzfXG9gqDX1PIDOLPUIB4e2+6BJAdH0zw/U+k1dAPpendNDZk5IFQEhqawfzglstyaNjIBV4tt3rqrD1WVef+hIb55ZoWVusn923P0JQ0s1+fYugX6Azvy+EFAOqoznnttBYiRTJRfemAKy/H43vkVmqbD1dXWa/osGWHNUms7grFjC0XbUDrCtVUNRRaDq6bK/LW3TPHU1QojGWEpc+/2PJdXWjiez5NXypiOx/3b8hxc5wUNcN/2PCOZKF98cZGrq20+emyU8VwMy/X4zrkVXC/g0f2Dm+al3cEd3MEdvFqkDKPHoE6H8558wxZGlSVkWRZkCUVitWnx3XPLVNoWv/sr95KOasJ6ISrYziPZKPdtzzHzwoLICOvY/L3Pn6bctrh3W54Hd+Q5sySs7Modi0bXYTIXQ5YlHt1/fbMW0RRhHfP8AnOVDkPpyIY103p4ftAbF9fYry/N13jqarnXnIqv23R84LDwBJ+rdJjMx5gtt/n66QKHxtKMZ6N87XQBWZK4Z0rkj6myzPNGhUf2iw3rWDbGheUmqqxQqFnoqsyz18rsG05xar7G+YLwhy+3TLqOsC6KGyqHRtNcXW3RlzB4+kq5t/mWEXNnENzcBLvRnjhAwgv8LW0f/XVvcL2tixHrP3c8s3nB9+Bwmq+fWd3yM9bQWN8Ea2/dpFn/OzYLVhavWfeqW9RS2pZHNmYgSdDaJA9t/UesfaKmbD53Dq6zNjS0rb90/TF7m/mybIKtepqDKb3HsDW2KOw/N1PhxbmqyOR1fF6NJlyRIBnX6doeqiLTsT1cPyCqKRwZz3AlDD63vQBdkZmrddk3miIb17Fcj7lyB1mW6Ngu5wtNHj0wyNdPF3huusJA0uAXH5hk33CKcsviA0eGedeeQQoNk1z8uk2R5fi9/JH0uvyRz59YoNF16EsKNdZmmK90eGG2wra+BEfHM5TbwpJlKBVBliUOjKTYOywIQkcnMjRNF0WReMuOPE3L631fVFc2zcBYw4VCk9lyh9lyh9FstNfw+trpJcotm5fma/z6wzte0YbmpwHvOzTMB46MiFxhzyeiKfz8fWKPI/ZVQhHieAGGqiBJAR3H5eqqy+szmd8ahioR04T7heV6SKaDKss8uCPPzsEk7zk4xErDIqYrbOu7PcXnGwFzi4zMO/iLCWkL715ZEv+PagqP7B2k1nX4s3NiTlPDwlyAIIKmYjqjaYO2LbJbCnUL23WxvYBqx8b1fWRZJqYLKyTTFopX1wtEVo/jYTkeXtfFUGVUS2bnQIKVhoUkralSPWK6iucLtxAQapI9Qwmm8glUReJDR0fZ3p8gYai899Awi7UuhZpJX1KQZZuuy9HRNJW2zXy1Qz5h8N9/PIvrB9w9kRWMeAmeulJGkuDDR0f50JGRjedFlnjvwSEurjT56LFRSi2LlxfrnJgVmYot08X1fb55ZhlDlfnkPeM3kbffSKyvt8yUmnzrXPGWr9cUmaFUBMfzWW5YBIj994eOjPBouE67EWv5N34gHJNubIJl4zofPDLCjy6VqHVs5iudWzo4Wa7Hj69ViKhyrxm5GcZzMX723s1rSWu5XIYmvyqnm9cDSZL4xF1jdMK6HMBfecs2XC/oHcOlYpNrxTam69GyPNIRFc/zURShwDs0ltmgwD84mr6ppvFmIBvXySJIMf/86+d4fraK5Xi4XkAiomG17Fdl+BPTZHJxnULd7OWJraFjB9fHhqjGP/vIQf6vb11grtIhCOhZ5UGoUlMkKi2RLZiLabQs0cw5tVBnOC1IcKoX0LVdLqw0+a8/vMa2fJx8wuD7F1aI6SoP7hD2aYtKh9WGRaFm4ngBK02LiKlgqBIP7cjz9j0D/KcnrpA0VO7fkd+0eVrvOJxaqDGRi/UULZtBU2Q+uG58EG0IAT+sV4YlSJIRBd8PaFvehhgV0/WIh8vrtVqspsr4vo+uKlieT9JQWap36dqiXrnm3JWMaJiuh6Ep7BpIUKybLIYxMn6YBWaoCqrsi0ZKEIhmrCxUdQGwXDdxXJ8gbMbJkkTMEDXMNRLNidkKsiwxkInwyH4xF2iyxN/+45foSxgMJA12DiS5Vmz3sm+TEbUXweK4Pi8v1snENNJRjXfuHUSWxD35W09coWP5lFsWDdPBD3wur7TYPZikaQnXs6Yp1qVv2zVwy3HltSAePrcDyQgTOdGImSm1sRwfLwjQEM3cdFTj0f2DZGM6Ly/UmC13iGgKUV2laTrMloWDVjKiUW5vbNb4PgwldTq2S2MzWeQmkCXRy5ABZ10DOaLLqIrEbLkj9sZjacazcX5wqUjDdHqxRA3TZXDdOH1uqYHleJRaNqsNkw8eHeHtuwdQwj3Uybkq379QZLlhkdBlJFnC88FQA/oSBh86PMxspcN92/JcXmlgaApfPbVEf8JgKB1h12CC+7fnURSJ/hucQx7c2ceDIWnP9wN+75kZah2h/Ku0HQ6MJKl3hQ3lx+8e4+Hd/TRM4f52YDRFf1Kn2nb40eUSU33xDcTbG/H/mCrvJ4+PU2pZDKejfO6FeUBkObm+j34D53SzCTCiqfzSA1NUOjaFWpcfXS4R0xUy6zaUCUOoT9wwQ+tGOfx6rLf0AxhOi4JVqWX3WNIdy8UOPVeqnY3sv8lcnH/5MdHUmgwnwJiu8uGjW3sArzGqAe7fnudHl0s0ug67B8UNMJqJ8nffvQfL9XubnHrH4d985yKKLBHXBSNrPBfDDKWFrh9wpdjkf/3TM1xcbuL7InA+YSg8uEMof07MOagKyJ7/ilLO9YhsUWhbj4OjaR7e08ellRafOj7Ow7v7e5PQbz85zWefm+fR/YO8bXc/v/PUNCfnarj+hvIOsgSmFzCU1Ck2Lapdp1cwkAKRnyEhYfsBhhwIBqQcYLlB2I0X0lvPD3qTvumKZuBAOka33Mbzr4svJVmwOjqWgyQFPSaG5fjkYiodx+0dX6XjoMiwLR/nvYeGuWsyy96hJJdWWqQiCv/x8asQuD3rp5G0wYvzwsN771CSTEwTOWSyYL4PpUUmRLFpMVvu8HP3jtOyPEbSkU0XjsmIxnsOvjH2NP/2u5f42qkl4av8Gu0QZRnaligYuX7AkKGxWBUFn8NjorAZ01WCAHJxA88P2DOU4sBIigd39lHvOsyHrOlsTCcb1zf1BS82xcRPIP48notxodDkcsjAPrVQ25AJeAd3cAd38FpxZCLN9y4Y+EHAXduE1cuNTPuRdIR8MoKuSqQMjaeulQk8OFdoUqib/Ny9E+waSHCl2OLiSgsJiSurbYZTEfoTBnaYX2E6PisNc4PyaTwbo2N5dGwXkDg5VyUdVfnq6QKlpsVHjo3wrz95hEK9S6Vt94Le18PzA962uw9JgolcrMeEtlyfVETjwEiKt+3u32A1M5CK8LG7rhfGf/PxK3h+wMsLdQxFDptRPj+8tMqphToDSWHVu4aDo2km8zGuFJv81x9NI0kSnzo+TrPr8PkTC5RaJsWGTS4h2J+eH3BuqcG//OhBrqy2aFk2l4stLEfkdcYNYd02ko5weXUjO11ThC/9GvYOJvgf375rUzufGxHconC9/m/OLzUY77tZcTyUu74JuNW39ccNWpYwopm8hTVhTJVoOYEglSQ2J7dcWpf1dStV3KGxDM9Nl9E06ZabiagmArgV6WaV4xrWN/Fu9Z3WOi/CUuf2lDFb5X9Yrt+7CGvs8xsxlI6Qi+k0TLeXn3C7UCVCxqGEFwj7ZVkS2bNdW+kxv1UlYDhlENdUKi0HXZF5YHsfXWuF5aYl8n0zhgifd4Xiv9pxqHUd/v579tKx3d7a98aN/VRfnJ+7VxD51ppLQRBghyxM+xbM7ScuFim1bGZKHfYMJtk9mGS5btJ1PB7e3b+BDGSoSq9BDZBTb7+YuGarpKvyhs9UQ19YTZF+IkqINxtnFut873xRMIO9gJih8Kl7JojrCl86uchXTy0xlomSjWn0xQX7utZ1WG1a+EHwigrV1wJVFs2JTFwjG9VIRjVqHYcj4xke3t3PsYksubj+5+SG8JNRnN3BG4NgE8bEVC5CteNiOi6u53NqscZqw6JlOj1FVxCOw4aq8ujeAUZzMaZLbQr1Lm3TY7bihBaEPgNJg1rHQZFFDIEkS3RtF0OTiekif8V2fFzPIwgCVNlnsdqhP2mQjmhcLbbo2B6DKSMkoQbk4hp7h5J84u5xLhdbdCyXPz25SH8igul67B1K8PP3TtB1PSQkHr8gckfPFpoMpSM8e63C6fk6pxfr7BlK8u1zy+QTBqWWFVpfCZUY3Dwv7xpMsit0uWlZLrWOQ63jcHqhTsIQRdFkRMN2fRYqXfaPvHlNsPX4n965i//w+LVbvubQaIr3HxkhHzP4n/7oRRrhsQ6nI1uqqY5PZTEdj0hYbN8Mg6lIr+71g0ur/ML9k5u+DuDETJUXQ6VzNq4Lu+tXiYd39bMtHycb17dUh7wZkNfV5UCsU9Y7Xr5r7yCpSIXJfBxdkfnKS4v86HIJVZaIR1Q+dc/4lnaLPwn8o6+c4aW5GvWu01tH9Gk6e4cSLFQ6NG7Tny0R1ZjKx1lpWnhegCJdt2xbs0JUZNg9mGDXYJIDo2lKLdEwq5uC1C4Bh8fTzJc7NDoOri/yq5BEPTUVlZnIxZjIx5kutim1rTA7y2e1aTFb6fQySWfCGA9ZknhwZ54vv7SIIgs3DqGY1sK8sCbPTVdEM971N90bfevsMou1Li/N1/jVUEjwSgiCoJeht4Y1RZAmi3iTtabTjcvWtivIV4rgTGKGJCjX9hhK6cQMhXrb29CkHEwJVVS1bZJP6oxmorRMl4im4Pni/cWmJVRk2SiOJ2qY1baNoSlosoyhyixDTygQVRWOT2XRVYX9IynevqefL724wGefn2cyHyOqRXnn3gFSEY3ffnJaZHs1TPoSYi8cBJBL6ERUmbfs6uPEbA3bE3Z7uiOcDzIxnV2DCeKGiu36jOVi9CcjKLJwSWtbLkOpCAdG0tw9Kaz4hcVh9BXt9l8LHtiRZyBl9JrqV1ZaXC22iBkqhiqIrJIE92/L0peM8PCePuYrHV6ar4V2iCIfy/MllutdxrJR4QRmur2GZcJQsFwf61UsBv0APC9AvsGvOAikXsbrdEnU0d+1b5CPHBvhSrHFmaU69Y7DcCbKI/sGmC61GU5H+MixUf6XL76M6/ks1k1SEY2W7ZGOivXadKlFpW3TtlwkSWEoaeD40HU84oZC2/Z4cEcfJ+dqTJfbSIHIhN4zlCIfKk1jukpUl5nIb92o9IKARmgzfNdEll9+aBu/9/QMlbB595adfUiSxInZKnPlDpmozngmyny1Szqqsdq0/nI0wSKa0vNXfnT/IC/O1ZjKx17VZBfVFUb1KKOZKDv6E0R1ZYM/czau85kHJmma7mvqLt9YVB9IRXjb7j5Wm9ZNajKgl7fxWhDRFP7Be/ey2rQ2NORunEzTMY1ffet2zoQLO88P+NwL8xTqpmALShK1rkOpZeF4PrmEztt39/P2vQNIAfy7713udcb9QLAWbreEcDu1hlrHIRczuH+bQdf2hIyzaaEpEt8+u0wAPH5hlWrHYakeBuchChNrHx/TZfYMJjAdn6VaF9fziekKEVUhosk0TRfH9/Ed4a8cV2VsHyTJZU1NaXsB+bhGuRV6kctCYeYF13PC1pjQng+mH6AqAU7bISDA8UXORanj3lQuc334zAOTHBhN80fPziFJEuO5KMcmshwYTvPZ5+cBn+0DKQxVZs9wmpWGyT1TGaZLXRRZ5i27+tk3nEJXJH50eZXvni+iKTKfPD7Gr75tx21ekdeOetfhQiEsqkkSfXGVStsVfu7cnKO2FVwfqt31LHDx5/NhBk5MV2iZDmO5KC3L46GdfdQ6Ng/u7CNhqHz6vkkaXYfPn5jHcgN2D22+WD4wkmalIayRJnNxik0ztPWRaJjCSjIIgpsah01T2Iu9ETYEd3AHd/CXA5+4ezy0BvD4ZMjCvVHxUKh3eHjPIBFdZu9QkovFJoVal7Sh0rbEmuMtu/o5PJ7hd5+aEaosXeFT945TbtnoqsQXTixQ77q879Aw90zlSUV0AgL2DCY5NpHl8ycWmK90KNRNXpit8vJCjZWGYNT9vx/bw3A6epMlmecHfOHEAkv1Lm/fM8CvPLRtw9+v5TcYqszR8QzXVltcWmlxaCy9wTII4MhYhpfmqxwey3B0IkOt60Agxvej4xkShnqT334yogm7hoEErh+wdzjFHz43x4nZCm6YiRCxZBGyHLajrhRbVFo2LUuowE3HQ1ckOraHrsrUTZeoJm9oeKw1wCQgHVW4ezLHUq1DuW2RTxg32evEIkovFHgrtdiNSMY2L249faXc+/OtdBGjuSjTlS4SMJHfujAylotzdbVNMqoS26KJN7xOlXarMrTpusxVu6iKhEjS3hyJiIblWhiaIhT1m2B941ffKlwGyMQU1pYTk7epUN+KVCUsBiXBvtY2PxeP7hvEcnyevFzkCy8u3nYjQgLiYSaNKsvEdZXRXIRzS01almhI+4HIU8jEdD5z/yS1rkvHdhlOR6h0bEzXx/cDooawqRtMRdg3kuJaqc1gKsJirctELv6K9k2DqY37BUmS+OixUS4Xm5sWbtYwkIpQatlkYxq6KvP4hSIXlhscn8oRN1Surbbwg+B1N0ge2J5nPBsjFdE2KB0+dHSEq8UWE7nYLbNX/qKi1LIoNkWRIAjgm2cKBAEsVLsMpAwChBNIOiqsr66utjlfaGAoMuWOsFfXZBnbvVUrXUB7DTnMEVViJBNl10CSWsdB12R+4737sFwfx/M5NpH9c13P1tpvnv3jHbzxMG4YZ2XggR19mI7P114u0LI9zi7UScU0QEKWZMayUZYbJg3TRVHg7Xv62TWYYjQb5Wqxxf/1rQsUGzKmKwg80+U2XcsjkK6Te7MxHdfzcQOfwVSEyb44p+drdB0PRRZqCEOVaVkOK40wi9H32dWfwPYCdvQbHBrNcGwiS9fx+PG1MmeXGuiyRCAJMsBIJso9U1ke2T9IVFewHNGQE3ZhKpbjkw3VCQMJg1rXYTgdZf9ICkWWbkuhM5Ay0BRBpg7C6nZMV8nGhJ3bT1KFOVe5dbLTvqEE//Qjh9kT7qP/zSeP8G+/c4mEoXJyrsZDO/s2tU2NaBvJEpshEharK22bkS0U8mtIhHZZksRrdmiRZemWKp0/L4xkohvI7bm4zrv2DbBYM9k/nNqyhvFmwnQ8Xl6sk41ptEyPoVQEz/OxVRnL8enaHm40QFUVZOf2yO+NTrge1yUq3es5rWvwgWhYW/ncC/M8N12h1vGEMkqSMBSJgyNJPnh4lG+fLbBUE/eu5wcYikxfwiAd07lW6vDz947zibvHePx8kdOLde6ayLJvJEWhZnJKqqEpMpmYTsfuIktwz1Sef/nxQ/zbb18GAtqWy3AmxnsODTNb7pCMaiQiKmPZzdeiRkj6UhVp06znzSBJErqyebPM8RGqy5DQ73O9jra2RAoCsRyXJYm11EUtJA30aSpVnJ61YoCopTYth67t07JNQKLcsvB8H0NTRB6bJrG9L8EHjo7wwnSFF2YqxA2VQBLjVaNtIUvi+ZaA8VyUiVyMTxyfYL7a5ksvLXJlpcVA0qDUsklGNC6ttNAUicF0hCurLQZTBn//PXu4utpmvtqh0rK5ezLLSCaKHwhHhHrHQUlI3L89zy89ONVbn+iqzM/cPc5CtcOekNBwcq7KQzv7bnsP9nohSdKGtXCj6zLVF6faEZmP5wpNAj/g62dW+NCREapthwd39vHNM8u9hmU+fp08YbmClFlWLGzPJ0AiHdPo2h52d+NuUOG6beZmy0DHD26Kf4koa3sz0Qj+R185wx8+O8ffeWw3D+7sIx82JPcNp/j66QKLtS59SYPBpEFEU6h1HebKHb780hJD6Qo/f98kubjOgZE0/SkDNwjYkY9TbFl0bI9MTOfqqlD4dR1f5PLpCisNi6yrcnmlSVxXkSQ4dBu5s5oi856DQ1wptnq53HdPZnn6aontfYnefDCcjnBKgo7t0XVcal2HPUNJjr5C/uNf2CaYJEn/N3AceDEIgr/1at6bTxhbyrRvF1tlI2Vi+hv6sK15978Z0BT5thgk64NFTUcEXq+2TNF1z0bZP5zi0kqLStvi4Fiaf/TBgzRMh999ehrH9dEVmWrHpmV5r8rII6a+8sarP2GwbzjJSsNipWHyX5+8xkrDoj9hsC0fw/LEovTPzixTadsEBBiqWDRLklC35eI6qYhGJiYspsZzcXYOJDgwkqJQN+naHp7n8/0LK9heQNRQGYzqrDQ62K4rrA4DwgKamGQ0RQQBdh3B2F2zVVz7/WtNsWRUC9kzovhGGCipSIAkEQQBuipzbqnBM9cq/OjyKn1xDS+Q+PbZFR7ZP8AvPDjJjy6Vetfq2EQmnEAl/u/vXEKVJRxPDHDvOTjI4xdXcbyAhCEzX30j40u3xtdPFxjPRWmbLh86nOPlpTo/vlYBX/xW5zWwWyUgpms0TId0VGO23KbUFAGZMUPlm2cKfOjICMcnrweQ1rsOf/L8PB3b5YNHRpivdPjG6QJHxjNs64vz1VNLGJrMR46O8r5Dw9Q7Dn/w7Cy26/OOvQN85Ogof/TcPCdmq6iKtKFx/aPLq7wwU2UwFeFn7xn/f4Rtzx3cwR28+VBkiU+EGVxr0BR5w3zZduDqaot37Rvg6mqbw6NpBpMGR8czG9YcaxYAxYbJ/pEUhqoQ11X+8Nk5FFnY1NwXkmr2DCX5waVVvnVmhcPjaY6Op6m0hWL+rvEs3z9fRFdl0lHtJrbhGhpdh8Vww3khbFbd+DvWSDy+H/D10wVcP2Cx1uWvvmUbbcvlwnKD8WwMPwiI6iq5kI37vkNChZyKalwuNrlv2+Z++/uGUzx5pcTOgTgSAR3bYyIXw3J9joxleHhPH3/y3Dw/ulImE1P53796jlrXIWWovH3PAC/MVnE9j2pHMBsbXVcwKeEm6zvBSpU4u1Tj8jeFzUZ/0uBXHpraQKoK1p2wYKuTx0ZP9/QWTbAjY2k+d0Lkc9yiNxS6EQjlekzfmi3eNF1kWXj1d21308LR7nWNkURk6537t8+uUGyaSEg8canIwS02Lo7rhmxEf8vfMLAu4P1Whfe4oSPTAQl0dettynoLxo7jsdlqeiwbQ5NlgsDfkEm2HrIs8aGjI+QTOl9/uUD7NtnNiizOtSTLJCIKqZjGWDbGYs2i3nGQJEmQa2SJiKawZzjF/pEUC5Uu//Y7l7i62sQPhF3eRD7O3350N7oq1id9CYMrxRbPT1e4vNLi0/dNvmobp6F05CYrqhvx6L5BjoxlyMbF/fTyonAaOL1Qoy9h8NVTS+J1+/3XZcMkyF03kwcThrpBPfrTANPx+OqpJeodm1MLdc4XGqiKhCLL7B9O0jJFbsWFQoOjExn6EwYxXQmVuCKEvLzOPt66DesEBVEsb5g3E+nWoCtCUWfaAVLIJr9/e56jExk+eXwc0/HRVIl8/JXzcH5SGEr/xTmWO3hl6Dc0PWRZYqHaQZbknmW/rioYqkImJjKNHjswyH/8/hVAFA3/zXcu88i+AYbS0dD+X+zpGpbJckMoRQizfqSoyLEZSkeYLrVYqpnoqsW79g4wmomyWO/ieh6Nrovt+rRtF02RUeQA34dC3WQobbBrIEG5bfG100v0hff/eDZKsWnh+wGqLLHSMPnu+SKqIvPeg0N8/sQCehg3cXgswxdeXGD3YJKfOT6OpkhcWmkxmY/Rdxv5UmsYSEb45Ye24XkB5bbF+UKTAyOpP5cGjXOLcUeT4VP3jLNnKEmlbRPRZA6PZfjZeyY4X2iQjmp86+wK/UmDe7e9ujqW6/l859wKmiLx/kPD7Bq8tWLj8FiGdFTDUJVXnM9+2rE2Z9/z53gM3ztf5NJKE8fzee/BQWbKHT5ybJTPvTDPdKmN5frMlEXWqhK6Kr1SicdyA2YrXWRZYa1ts34FqIU25SsNiwuFRs+mLQhAUyVycZ3dgykWqx0uF1tENBnH9/C8AF8OSBgqHctF1xT++PkF3rlvgHu35fm5+yZ6TYvUkLDL01QJRZY4X2gylIoQN1Tu397Hew42cbyAnQOJnm1h23KxHJGPst4ZbD3ec3CIyystRjJRjFehjh/Pbj1uuKEFZO+8SjCY0FAUpZczqCoSXdvD0CR0VWEsE2X7QAJVlii3bXRF7uW3ma6HHshoihinS00LJyQRauFafI2EdN9UlmLdZKVhUm7ZFJsm1Y7Ibx7JRElFNEzXp9x2+LOzK9S6Lst1k8m+KEtVi+39cT58dJQLyw0Wql1URWbPUJLBVARJgtFsjKm+BCsNk1LL5thEBk2RefpqmZbl8rP3jjOWFXXpG/cJ/UmjJ+yI6eqfq0oSRB7iW3b20TRdVupdXK+B7/t4nqgNXym2+Jnj43zpxQXOLjXCrDeFo+MZ0TSVJPYOJXl+pkLbEpnWn7hrjH/33YvX7eVlsV9KRjTiusxCTcxZsJmN/0bUTB9JdoTlZQBdy2Ox3uVrpwr0JXXalsfB0TRxQ6XWFc9cvWMTCbNsXT+gL6GjKjJdx6PeFbaEyYjG/uEU1bZD3XRRJFGHNh2PvqTBfKXNasPkkf1DdB2XZKlN0tBoWg7Fpsl/evwqnzw+fltN/j1DyR4RAzZawk6X2nzr7DL5uM6n75vgfKHJidkqU3mVPUOpDUKmzfAXsgkmSdJdQDwIgrdKkvRbkiTdEwTB83/ex/WXARFN4dce3sEPLq1yfqlBQEDbdtneH+fQWIp/8N596KrMf392luenq2RiOg1ThM6vPXyqdHvB80E44AZBwMWVJqos3cQ2lWWpZ9f37793iWrbxvV8WpbD7qEkDdPlqaslml1hu5CLi4dVU2TapksiojKUjrKtL46myPzs8XFeWqjxwI48J+druF7AsYkMsiRxarFOo+tgaCqLtQ6W4yNLENMVPF+ogoIgIKrLRDUVVRG/03J81DCd03T8XhhhNm6wcyBOMqKFA12Czz6/QMt02T2YQFNgpix8e798agnPF/Jo03aJGWKy/eqpAvdM5ZBleGTfALuHkr1J9vGLRfqTEa6ttqh1HGRJotyy+Xvv3sNgymClYd7SYuCNhOP5WE7AWC7GZF+cTFzjuWmRxeIEENdk2q+SwipJgmFzdDzDiZkqpuPTdnwkRPZbrWOz0jB5dP/1QNLFapelWpcLyw3mq136Ewa6KvP8TAUzHMDpioHz4Gg6ZG+I4yo2zHCwF/fljQGhM2Uho19pmBs8vu/gDu7gDl4tNEVmPQc+E1XwwoL4mrJ9/2iad+8fumnjP5qJblBZlVs2tY7Ny4t1rq62UGSpFzB+ZrGOHwgLwnfsGWDnQJKnrpT44eVV/sY7dvS8tm+0cO4dV0zYCM1XO9wVqr62giRBMqJS7TikQvbu118usFgVjEvHE5uu56YrGwrqb9nVtyET9UYcn8px18R1ssPbdvcxmY8xkDTYM5SiP/znbz1xla7l8vmTi0RUmablMtUX495tWb7yUoFkxCJlqCxUu2K9cuMOIoQsS3Qcj47jcXE5YKakMJaNcu+2XE8pJ9ROYu6Qpa2bSBFNoeOI/NH4Fs4E+4YzvT/3JbYmWd01meXH01VkpFsy3DRVpKApsrylTWAQSL2fr99i4+54Pq4XIEkB7i2KZu1w7WN7AS3LIbUJWazedXvfeatztnswwUvzNWRJ4sDw1pukqC7TsUXTLWlsft68IGB7fwLL9V6x0OiH2bK3wlqunCIJBUHSULHdgMlcnPcfGWHXQIJMTMdyPNJRneNTWRIRjZimcCC85y8Xm1TaFhISEU1l33Ccv/fuPQyEai5VkXn7ngEaoY1J03Qpty3G9Dc23wDEvb5+fDk4muZCocHhscwGG0XrFpaKfx64UmzRNB0OjaY3VSNsheemK1xcaXL3RBZdFTkGuwcTN6nQZsptfv+ZGYZTUX7xwSn8IOCHl1bRVJHm+KWTi7RMl3rXZrVlh9lfsrDnSRusNCxqHYenr5b5n//wJIYmsy0vrOZ9P9iSdADXsz4UCdzgeiFw52Cc1ZAQaHnXLaTWHD9lCf7mu3aLTOyIwmP7h7h/SuQu/EVV2WVjd5pgP02IGSrWun8fTEXYNZgkrmscHE2xUO1y//YcXdvnD56do9y2yMZ0RrNRLi03CSRodG0Wqx1K4XNT7wrLwoiqoEgeJqIuYKgKo9k4uweT5BMGpxdqPQLqnqGkeO4liWJo/3xirsqHDo8Q1xReDOePtu0yU/JYqpvISFjuCoYm0zJdFFmoDQ6Pp/nOmSKltiD/Xl5p8dadeVYaFnPlDifmqvzqW3fw1x/eIZ7NcB1y9yush7bC2t4xHdPYfgurpvVYbVos1brsGUq+YmHvVlhfb9lzC1vBqK6QiGicXqjxvfNFDE3m0/dN8u4Dg8jA9y8Wma10SEc1JvOxm5TIt8JMucOF5SYAs5XObRVCt8q0/MuGluVypdhiMhfbkqz/eiFJ0LU9zi7V8YM0HzwyQqVt8859g3zzdIHlponpeBCAokgoUoDlXV9Kr19Wr591giAgHdOpdZzrdbKYgaaIOpuuKhA68ASArskkDEXYpmkK5bbFjy6v0rJcGqZQgKqKRCqqMZCOENc1VhqmsAYMIzVurCmuJ6KtX0PHdJVdg0mevLyKoVwniMUNlVfijBiqctsEoR9eWmW1afKBwyMkNsn+W5v7g+D6eZQIVeAhOcAIVa9BmD8VN1SmcnF+6zN3M1vu8DtPzfDwbmFFV6h1MV0/jLFR6TrCvn57X5S5apdC3cTxg54F99XVFt+/uMrH7hrjwEial+arnJyrslQ3iWkq92zP8lcf2sZ/fPwqFwoN2rZLxxaq3atFkfeajescGkuzrS/OZ5+fI6LJHBvPcnGlyfb+RG/8+tl7J2iZ/3/2/jvOrvyu78efn1Nvv3d6H4162dVWbfM2l3UHY4wxBpJQbRMSQkj48SWkEggkkBDihBRKMGDAxgG87jb22t5epF2tdtXbaEbTy+3l1M/vj3PmaiTNSNr1Srvr/TwfDz0kzZx7zrmnfD7vz7u83j4daYsgjO0rXeP0YoN3XHeuTUvTDfjaoVkgUnq7lnKmV0I+rg4OwpBt/Rl0TXDdQJ5y0yNhapwtNvi5t27l4w8dp5A0SVg6/+yBbYQykqk+s9xgz1gnh+Ie3rtHCmztyzBZimZaQxf055L055OMdCZYfmGWSuyfNPRIpv7kfLVtB8K5907G6ig7+7N4QchyvN6/LlabgHPtmN59/QAvTpURIuoJNtad5t6t3WQTBg8dWaDlGXTGyXLlpstUqYWhCQYLCRw/pO4G1ByfA5MlvCBEAA8fX+D6oUiq8tmJIoauc3imiqnXODRT4e27+vjh20c4NFPFDyS3jBau2J6fXG7wv751gqbrk7ENRjtT3DbWSbHhRmvHwfUVMFZ4bT1J57gL+Hr8768DdwIqCHaN2NaXpS+b4FPhBC0vwPVDDF1j91A+1o+V+IGkM22hCdizoYNPPjVBEEalm50pC9PQmCo1CWXsNIgXc6tZWWC/EGvoA3zvjawru/Lh20bZe6bIqYUa23qz3DBS4KlTS3i+pNIKSNsGvVmbzT0Zjs1X6YwNzBuGC2390BtHC9y1pZsglHz76CI9WZuGG/COXX28OFXG8aPKsr95bgo3CDA1QX8+2a62mq+2sA2droxNd8ai0vQZyFsUGwGTxQa1VqRTPNqZYnNPmg1dGRKmxvfcOMhQIUnaNjmzFDkTDU3wlYOzHJmpYuqCYiPK3Njck8XQRdSTLp6wE6bOdYP586qPumIDqC+XwI6bjg51JElZBv/wzVtesefhSrAMjSAMmSw2GFxO0puzuXmkgxemypFkla7RlzSxdcFUKZKtXMmCXcsXkLGj775jIMdtY53UnYDOjMUTJ5foy1pomoYXSGbLLearrfbnNvWkMeLmnh0pk460Rd3x2d6XZUtvhhemythxhgPAhq4Ut27ooNLyuGNTF/mkyVt29FJquBdVJdy1qYsnTi2xsSutAmAKheI7ImHq+ERhFFsX/P07x7h5tJM3belqSxeMdaWuyCAc7kiyoSvN0bkqg4UkE7FRDdFCb/9kiRviCp5yw+Pp08sAPDNe5IfXaSS+ghCCd+++sr6RQgh+6LZRZspNhlakQ+IBXtcEA/kkU6XmZTN/12L13Hfrhs6LquhTlsEtox2cXKhx/7Ye9k+UGO5IslTzOLPUZEtvhr5WgqdOL5G0dMpND8vQ1uwBlU9a9GQTJAyd6XJUBff1Q3NMLjf46Xs3AfAjt2/gf3/7JEIIPnoJyeGhjgRni01SlkE6sfa8cWSm0l7w1t0La9POsa03x92bu9CEaMt/r8X1QwUMrUJHnBS0Fn05m4SpRb038+tnU+7oz/LkyWU0wSU19hO6hucHmLpYN/C2pS8bZfAGkrFL6MA33DCSLhRQbHrrbjfWmW474qx1HIPXDeZ5z+5+JpYb/Ogdl04Kemp8+ZJVfRBVs5mGTs3xGcwnSFgGGvD+m4d49/UD5FPmmvLmq9nYnWF7f4664/H9twyzpTezpvz5HRs7aTg+3RmbwUvco1eSt+/qaytpSClp+VHQ5nKyIteS6VKzXaFWc3zu3dpzRZ/zgpDHTkSqCg/un2o7Y7yg7yIn1p89cYYXpyq8OBVVc7lByMHYSTFUSCBlFITVReTUA40wdlyZuoYfhIRSUmt5LDccghC601YsqyqoOX6sCBH1ARks2EgZJdMtxVnauaSJpQtcP2SkM8Wvvf968gmLzx+YZu/4Mp0Zi1tGCvy3b5yg2vLY1JPhJ+/ehHkF/ZZfTVZXx24ZeOX7diiuHT+0ZxjD0NCE4IO3Dreroh49vsjG7jSSSOLtZ+7fzCefPMNcxaE3Z/OO6wYwDY0XzpYopCwsQ2N8sU53xqI7a3Nqvo6hC24YiZJUPT/k7Tv72TdR5OaRPB+7fwvVlsfhmQr/6rMvUml6JE2dXYORbyCXsji1UONssYkZZ7GHMkQXgvmKE7VN0CJFlVPz9XZv8IYbUGl56JpG2tJpej6ZhM5zE0Xu29r9qgSTHT/gr/ZO4vohpxZrfP/Nw5f/0Dqc728Z4K6xPE+Mly/abkNXmtHONDNxmwnHC9vVOQdnKrh+yHzVYc9Yx0uWKOzN2SQtnZYXMHKFcseKiAf3TzFfcUjbOh+5d9NVeR7fuqM38vOFIbahs1B1Yn+f4I7NXUwuNzg4XUYiablhLAfn4XgBCIFtalESsYhkLystHykl3RmbPRs7WKq5NLyAfNLghuE81w3lmKs47OjPcmKhxsRSvV3JZOiC6wajhOVtfTnGlxo03ABD0zA0ScI0Ge5IcttYJ2/b2cv4Yp2pUgvHD7l+6PJO8NWcWarTmbY5OFPhbbv6XnGZ4OcnS/zeN6OK2IWay1h3FssQuP45OcNswsAPJS3XR2gCUxfkkxa6JjC0KLEtYUQykJWWH/WnSpj8gzeN0Z2x6ckmaLgB+84U2TWY57rBPKYuyCRMkqbO9r4spabHfKXFUGeaR48vEoSSUtPFi6vParHE31h3mvu39/C/vnWS04s1NnSleed1/Yx1Z/iBW4b4zD5JPmly43CBbX0ZHjsRVXKt+CZnK804iQtmK63z+kNDZCetBHJ1TXDLhg6OzFTZfYEtdmimwqmFKGDz4lTlJVeeXm2292XjftwB92ztoe743LKhg799doqWF/LI8UV++PZR/v33Xc+h6Qpb+zLkVyUJbu+P/JMD+SQJU8f1Q5KWScqK7EhD08gkTB7Y2YsfSrb11zkyW8X1Q3qykfLdYCHBcxMlbF1jsJDADSLbveEEdKQttvRlGelM8fZdfeQTJr25BC+cLTNZbHBb7CtYUYX7syfGESJSVPvgnhEeP7HYXvst1lzySQspI6W2muPRkbbZ2Z/l8MwJWl5AEMaynUKgCchYBik7ChQHgeTZVqSS4Qchk8sNHjqywNE4KULXrlwh7+nTy9iGzgtny3RlLB49schYd/o8ednL8Vr15I4AvyCE+FPgfcBF6TZCiI8CHwUYHb20E0fx0smnTH763k2EUkbR47rbXoTrmuAtO3rpzycird2BHAMdCfaNl8jYBh+6bZhPPz3J0+PLFBse2/sy3LW5m5lykz97cuLcMdLRon+1humFeqar6c0l+MSP385yw6EzZVN1/EjaqOXTm7Wiiq+eDA/s7OVvnp0iDCW3b+rk1g0dHJyuMFhItjMIdE3wjuv6ODZX5aaRAqNdaf6/d+9ACMGjxxd4cbrMwekKHUmT77txkJrjc2a5we1jnVQcn3zSBAlnSw2uH+rgPbsHOLEQNUisuz5DhVSktyslb9/V327M95P3bMILwraT6L03DPLJJ8c5cLbM5p7I6HSDkHu2dGMZkbPoyEyFTT2Zi+T3bhgu0JeLHHW5pPGqZnom48qFcisKhA4XUvzKe3fy7z9/iErLY0NXlM334dtG+NXPH+LMUh0vCBksJMnaJg3XY/9kCYia6t443MlkscFAPsFQIcnbdvbywlSZ+7b10JtNMLnc4MlTS6Rsnbds722fR8LU+Udv2cyXX5zF1DXeu3sAY5VT7mffvPm86ySE4L5t5ztQ1nP2bOnNXJVGmwrFK8E/uX/s1T4FxUvAMjT+7ft28ejxBX72LVu5efScmZMw9WiOuUI0TfCDe4bpydrMVlptOUSAu7d0c/eWc1VWKVunK2OxVHMZfRm9TS9H0tLPy25+9+5+Ds9UGe1M0ZezcYPwJUmGvBTesqOXt+yI5oN9Z4o8fGyBpKXTnbFYrLnsGsxRanqkLJ2zxShQ15E0OblQixpQA/25RDshQhJVrgVSXnQ//vk7tnP7pk5MXbuo3+tqfudDN/HJpya4Z0sX3Zm1HT5v2tJN2o56kOwcWH/hfsemLhpegKlr7aqitfhHb9nC1w7NcsNQYV0H1XBHiusG8zRcn/suUYX3nt2DlJoelq5x5yW+54duG+Vrh2bZ2Z+je51+tpt7Mtw+1knd9dsV/mvxgVuGOL1YxzI03r5r/e3eurOPA2dLDBSSkdz0Gmia4GeuMCno7Tv7+dtnp9qJOhD182p5AQIYLKT4nhsHuWOsg7rrc9+2XlK2sWb/0EuxvT/LL75zO6YuLvku9OUSfPgyQeqriRCCW0YvWn69bjH1KAFqcrlBfz4RB6/WlgUb7khycKqMbWoM5hPU4uC0JiKZ7GzSoNL0uX4wz//45gmmS03Sth71jOjJ8MCOPp48tYwQst076L7tvbx5Rx/H5iqcXKgxVEgx3JmM+hL7IR+4eRihRXJhX31xltlKi5obcONwgXdc19cOlH7s/s187P5zgfd3XT/A/skyu4dyr/kAGMD2/gxHZqOK5e+7aeTyH1C8Kty3uZOHT0YJM9t6IlshaRpohobjhwwUEvzjt25tb796jXrLhgLz1QFCCbdv6iJl6tyyoYOmG5zXY/Mdu/pouAEPH1vgrTt6uW9rD5oW9U+tOwFpW8fSowCzrkXBsJVnPJswuX1jF7/7QzfyuednuGtTN/dvj9Zzu4fynFqsoyH53PMzpG2DnG0wU2kxXWwyV22ha4K7t3SzWHeRRBVaPVmbgXyCQsrihpECLT+IZU5zr9oaW0ra8lf+lTasXIcL/S2//w9u55Zf/7vzeg12pU2+94YBtvdnCUNJ0w3IJ01GOyNJ6664Wv3+7jRv3dn7kpNCcwmTn7h7LG7b8Fp1Q742CVaeg7ia+Go8kglT5727B8gnTWqOz+0bO8kmTLpjWd+EqfMnj5/mwf3TcYJGms19GmOdae7b1s3XD8/z1OklejIWfbkkx+erbOhK88O3j7KpO021GXB8rkJvLsFtGzv58bvH2nZQ1I+sxFdenOPgVJmWH7ChK8X2/iwbulL86tbrma+0ODpTwTJ1PnDLMD0Zi2Ts29vW99ICX6u5bjDPM+PL7OjPXZU+mX547iULwsjWf98Ng3GQ0WSsO8NtGwr8p68eY7rUJJsw2D2c5+ffto2EqfPZ56Zwg5CZYpNS06Ph+mzry3L31m7euuNcC6D7tvVw1+Yujs/V+PrhOfpzCd6+K1IWGOlItcfplhdw18Z5js3XqDQ9TszX6MrYfOi2c3NywtT5wC1DPLh/GkOP5L0h6gN51wXrgS29WeYqrXZVaHesxLTi67sc77yun3fs6rtonB0sJCK1rfjfrzWEEO1A0gpe3Kqn2PDa16wvl1i3YlbXRFsWfL7SYkNnirGuDPmkwUDeZqgjzYauNHdt7qIna3N4pgwI7tnSzZ2bu7ANnQNnS+yfKDFYSPKW7T2cLTb52+em0DT4oT0j9OYS513b3cP5Nfty7RrM8+jxRca6U6QtnVs3dFBqRP21N8Q+g4F8ki19GTZ0pXnvDQP0Zi0ePr7AqYU6HSmTXYN58kmTnqzFPVt72NGfo+VF1aV/764NvDhV5pkzUXuZ4UKyHQR7Kb6Bse40E8sNbhkt0BEH6YNLxBDWQlwu6/HVQAjx80AF+DHgfwCDUsqPr7d9d3e3rJprL9SiYGQUjWw3lFvR0oxLTlf+rWuCMIRQyvj/GlbcwDSSSJHxzzQabqTLrmuCjpSFoQlCGVVIaXHEfgU3iBtJhpKkqZOOy3tXNOKrLR8po7LbIG6WmkkYLNVdPD+kM23hh7KdmVFp+iTMqN+XtuqB9kPJcj2Sd8slon1VHZ+sbaxbNh01kQtImTpJS6fa8nGDkKxtYBla1Eyx5ZGMe2tVmj5h7BBab5JoeSELtcjA7MsmLjmZjI+PM7JhA5WGhxCQS0bVZesRykhKQRL1EdFfQQvAC0KqLT/OthC0/JC0paNpguWaGzlCRNS8UwBNLyBt6QQSqq1IjlATUYWbqWtkEgauH8bZFZIgloKyDA03LhVdGZASZmTk11o+jh8i5dpNsqPvGxk/64nTRMqMkeNuhXOlsef2syKfIoQgDKNn3tS19t+GJnCDEMcPo5JrS8eIf55NGJi6xvj4OH1DIzScqHeaoQlyCRNdgxfjrNmXiyYih4OuRUEs24jOzTZ0cknzvHfs9UzTjWS3kqZO6gp6fqx+TnMvwVG+FuPj44yNjV3Rtst1l2LDxdC0ttxAIKMy+jB+1ox4oF15nlYqR61YQsgPZVub2I57EeWS5nmSCS0vYKEW9QXIJAwK8fh6IVJGPeCklBh6lMHZcIN2hakXRrXhK/KWXhDp/ueTJn68sAvjnnwJU0dKSc0JCELZHoNWFoyCaKxfvYBceT6FEG2JFNH+XbSIZ9XnVrS3W7G++Op3cOU6Nd2AQMp4bABD09rNcFOmTjZhkE9aCPHS7p3itcf4+Dir7RZNEMvsRhlYnWmLhuuzVHMxdQ3L0Kg5UZJBLn4vVuN4ITXXxza0tmNhrbHC9UOqjo+la2QvqExyg5DaKzS2vByid9pFxu+tG0jS8aL7lSIIJeVmNF/nkyZCnLODrnQMHh8fJ0x3t6u2OuJeUGux0mMJuCjDsX1OQcCh2RoQjaHrBcLcIGS+4iBEFKxbz7Y6s9Sg2ooq3batI3kUhmHUxJlI0m89qcCzxQbFOFgw0pFctyfulXzPMAw5OBMtdhKmztZ1kkrOLNWpxAk1Q4UEnevo0RycKrftoPWO6foBR+eia2vH1+PCsbPh+sxXosbUK7b2lbJiQ4n4O0UVQNGYHYQykr5jZa6I54Pg3BpECEHC0GjEMnkQzSV6bIelY1t8pfduww0QQtCdiXT5K83Idl7Rzcknzfa6oOZEUjUtL0DXBF1pi6Yb2bEr80h0jaIxwQ9CGm6AH4RkElH/jAtN7JUKACGiRb2hifbnTT2y/64mr4d5LwhlfF/OjTEXcuFaxvECml4kW2RogomlBi0/kmS3DR1JZGv58fMkiGWR4rGx7vjtd3nF5uhKW6Rtg2LdZaHmoAlBd8am0vJwY7te1yKpSy8416PspaILQcLU6Iv7q1yKC+e9noygP//yHZeKq8fqMR2iMfbC+5dPmhRiO3496o5Pyw+xDa393GkiqnrWNcja5nn9DlfWRLYerZVbXjTPmrpGLmliXxDobXkBlVY0fkkpqcZ2vKGJ2JYX7XWApgl6Mha6psUyipG97V1g6zte5LPR4soWQbSvfMqM+4c5tLzz+6ALIj+ObWpICY4XrUkgSnpaWTNBlDgqZbROWemnAtEcYuqRTGtUBWISSliqO/iBxDa1uA9stA5erDk03IBC0iSTMCLJ//i+1J2AYsMlaer0ZO2L/C2ZhMmphdoVS90mTb09Tqz4DjUh2uuZbMKg7vj4K9KWuqDu+NGaShMk4yoHXRNISXwtZHs+1IRo98lJWTpJU6cZJ/1kEga1lk+t5WMaGn05Gz+Q562dvUCyWHMI4rFvpeI/CCXZhIl5qYarrxB+e+yP/t+K22VkE0a7ymPF/k5aOks1h2LDIwjDNXtrWXHiRsrSz/lb3ICEqa0rr/1KU2l60TpCFxhxlbMmBMn4HlWaHpWWR9MLsfVIpi+qvFx/n1r8zKzMZyusrH1XB/g0Idp+g9WfF4i27+HC9fnKe5wwdbpiH6qmCfIJk5lyk0rLx4plgr0gjGw1CRAlNOkiqsLqySbIJgya8buciJPTKy2PtG20q55qjk85bsvSEVe2rmZ8fJwNY2NU4ucxF/tQy02PMJRRT6aGixeEFFJWew238jxpsf+g5kT+4oxtEMhoLeMHkR8jF1eRuX4Ybxf5HVbGoI60hW1EEummrjFTbrbtweh6RxdcynP+QCkjn3j7b6L7lksabd9gytKjMd4L2/uK7kRkqWgCEoZOICOJyjD2A7WlHnWNUEZ294q/zwvCtt/HDaIx2tAFXhD5ZyJ1Ltn215t6VI1sGVr7c9VWNPasqGoVG5HdYxmRcpYfRBJ+K9et6QbkkuaaCaiXsjv9IGSy2CSUkv5cgonlRtT/2ox8ph0pi2zCYL7qUG56ZGyjHRhbqjnMVRx0TbClN5JSXK477US8zrRJ1jbjuShqM6SLyL/7Sq+N12P1mBaGkpYfkowTdWvxumGxFj27lhHFJjK2wVylRaXlo4nIP3GhT1rEPrSkqVOP/XFwzu8rY1+YbepxQU58DeL3PAjX9pOv0JOx2ion+/btk1LKizLEXqspGI8AH4v//Tbgjy+1caF3kMz7fvOSO7wwCLAWqyUaIBpkU6aO4wftLBk9XsS6q7JxNnan2NKbYanm4sQTfG/cX8MPJWeXG0wVG9HAqgnee0MkjfeP3rKFjz90nP2xfuaGzjSFlBkbegZfOzgHRLI1G7szlJsej51YpOH6JC2Df/72befJFD10ZI5PPT1JuemxpTfD8bla7EgV/PlH7rzo+0op+fg3ThDKyLD64dtG+cTj40AUbX/z9l5+40uHmS23yCdNvu+mQY7FzoSbRwu8eVUFzmp++6tH2DteBOAn79nIO6/rX/ea79mzh49/+is8dSrKNnvLjt5Lyq7snyzxzSNRKf+dm7q4a/OlZWdeCg/un+LUQp0glDRcn2zCJJsw6MpY/MVTE0wuNxAIrhvKcWapQWfaohb3HTu9WI+lY8J2c+A3b+/m+ckKph41qZQy0j2WyFguJaqy68vZhHEQ9MDZEs6FupFXiZV3oj0BEuk752wjWihkbWbLrWgCFTCYT9KTtbltrJOtfRm+76Yh9uzZw0d/59NMFZscma1yx8ZOdg7keO7MEkuPnvmOzzEKNEAhnkR6swm292d50+budh+w1zv/81sn4v5zgn/yti2XzTb83PPTnJyP3sMP3TZyXm+gl8qePXvYu3fvZbc7W2zwL/76BU4t1nC8kISl0XSDKGh7QWaiHk/UhkbsrLNpuj6FpEnDi4wzMw4Gf+jWET6wZ7hdKQnwW185wiPHF1muO9w82sH7bxrigV19F54SL06V+btDcwShZKrUoNz0eerUEqGU7d58cPG4vqU7xVLDo+b4hKEkYWqMdqVZqjks1dzL9jJcjQYgIhmDMP7OphEt3KSUBCHtgFpkWEeL7ZVtpYwWx7apoSNYapwv/SWIxm9Niyb0d14/yAduGeK6wfwV3zvFaxN7YCsDP/a75//MEGztzTLUkeTffu91/N43T3BivkbN8enP2ZxZamDoGtcP5viFd2w/793/0yfGWapFcjUfu38TKctoz2kQNTkfLCT51NMTbYmbH3/T2HkJMp99borTsU74D98+es2bkF/4To92pskmjLYE4SvBt48t8OyZyD5553X97BrM8XvfPBHJPmuCn3vb1svsIRo3Fx/4VVa7bvf+x/euue3YL3+x/e9bdnTx+z9+sS32PR//NsXp2mX39QcPn+TrsZTRh/YM8wO3rl1Fse1ffolsvFD4vz97FzeMXCwv8Uuf2c/yvikgGrP3/ubax9z0y19k5SmwLJ29//5da263+nv+w3dt4afevP2ibX7ofz/G8nip/f9LXbOVkJypC/b+h/dc9pi/9uHdvPumi6um3vVfv01l7vxre+HY+a8/+wJfPzzPcs25aD67EgTROG8aAuSKwyYa/1fvzdCIpEKI5qSVhb2hiYtkOXUih+tgR5K37ehjvtLisZOLzFccTENjz4YO3nfjIONLDWbKTRKGTkfa4k2bu7hjUxc1x+cPHj7F/skiZ5Ya9OUS7OjPtoOYb9vZyw3DBQA+s3eSs8UGX3lxlqWaixuEbOhK8e/ed/1FfW/+97dPtm3wlWfwb549y5m4Z+qP3DH6kvrDvFReD/PeI8cX2mugt++6WGoRzl/L3LGxk6fHl2OJRZ2WG/AHj5yKA56RpJSuCepOcJ4tk4gTiRw/oBoHjTtSJvmUSXcmweaeNL/xgRt4/+89yunFOmEo2dqXodSIesxB5FCpu/53vO7IJQzee8MAv/mBGy653crYuZr1xgHFq8vq8RWi+5S8wG4ZKiR4/41D/MhdG9Zci/hByH9/KJIAmy41GSwkqTs+jh9wfK5GLmly02iBn11VrbsyH0cywhqHZio4XsjG7jR3bu66SNb2jx49zb7xZcaX6lSbHtPlVjsRwYyTWpOmjhTQm01w64YOujMW3zg8z1ylRRDKSMZJSnShtXsirbxrhh45zxOmxl2butB1jb959uya/SMThsbGnjQtN2C+0qTurf1emRrxOZ7vvLf0KLhg6hoJQ+fN27tpuAF/d2gOP4x8BzsHctw+1sl7dvfz7z5/CIje+4/ct5mHjy0A8KbNXXzyqTPMV6L3/Hd/6Ca+94F7z/O3pC2d3/zykUv6xVazMs+tNUVaenSNC2EYy3np6EKLEhVXvrMeBfRXAqF+GHJh/M3QiHviJhkuJKk6Qbs67/hcjePzVTpSFj+4Z5iaE7SDav/kbVv54oFp/vSJyO9w00iBH71jA3/97FkgavPx3huuTNb7O+GbR+bZP1lioeoQSsnpxToD+QQ3DBf4yXs28ulnJpiOHdybetL88WOnefFs+aJ2IStoAt510xC/80M3tf0tdSeaF37urVuvSsXSauarLf7nN09weKaKEFEbjprj05Gy2NCV5obhPHvHl/nkkxNRII9ozVp11pf1fims5Pe83M92Zy129OfaFe1v39XLj//xM3R5Qdz+xGKp7kQFEqsOZGhRotDdW7r4rz90M//30dPtJMTnJ4s0vRBNE/zfH7sNIeA/f/Vou93G+24a4oO3ni/9t2fPHj795W/xuf2RjPN1gznGutN88cBMfDzBk6eW4j5mGX79/dcjhODrh+Z4YaqMlJJiw2Wy2MQPQrb2ZZFS8vXD8zTdgELKZOdAjrGuFF95cZb5+PlregG5+B3LJwzeeX0/A/kkpYbLp56ZuOS8b4goaWBFJnE1HUkDTdPa1+lsMUraWZGEPt/ujX5SSFosN9yLgr0X+mgsHUIpEELGhSvRz1eShkMJlgbuqg/pIupHnTR1urI2lYbHdCnq/Zy2Dbb2ZphYblCNfbb3bOmOelXH70/aigIxvVmbX3v/9Rcl+13K7vzv3zjOp56JVM4yloGzUIN4/tkzFvWR/t0P38Rb//O3cPwoie2hX7gfy9K59z89hFmJxoMfvW8Tv/jOHez6119hIE780IB/+LatOF7A+FKDrb0ZDs1UuH4oT8Y2+Mh9r9zaeD2+dnCWg9MVJpcbNFyfYsNjY3dUlXZqoc7+ySKPHF8klNG89p4bo/Hqzf/5m3h+GPkb1inc0ABDh8wFw4UW+6V1jXYluGQlEHb+nLkeq9e1Qohn19rmNambIKV8FmgBNwGhlPLpC7cRQnxUCLFXCLHXqZUuuT+N2DmpRS+jWPXz9v4AyxSsxFS1eOGRS5okTB1drGyjtcv4IbrIGzpT9GYS9GUT5JMmvRmbnmz0pz+XoCdrk1oVWMglo6xbTROMdaWj3kUpi809Ua8hXRPcMrJS3ge3j3WSsQ3Sts6W3nQ7u3DXBU3fRjvTdKattuTHyu+3r9N0VAjBWHeUvbypO00mYdAdB+82dmcopExGO5JR1nE+wfVD+ciw0cQlm5TeNFxA16Js9h1X0PB0tDMVaXMb2mUd+kOx7I2hiVdcS3os/k5dGYutcfb0pp40Y11pujM2Gdsgn4oy8Fe+146BLIOFBLYRZez2Z21MXVBImfRmEgzkE6TsqIouYelkbYPhjhRpO8ri6s7Y2IbOhq40vdkEuYR5yZdS48pe2sslPK30aYs00bUoK0cX5OyoaWNnxqIrbdGZNrEMjZSlM5hL0J+Pss/HVt3/jd0ZUpZBXy4RPdPdaX7gO9AsXyHKEIkM61zCZCCfIGMbZGyj/dx+N7AxvpZj3akrktvY2JWOM7nNdhbS1aY7Y7OxJ40mBJ0Zi85UlGGcThisJDwJooWQZWhRw1pN0JWKSpT7cgk601F2UzbOlOzO2BTSVjthYIXdQ3mSphbLmNnr3uvBQhLb1DB1wfb+LJ2p6JltVw3G20VZ9NH/DE0w1Bk1cbbjbKhcwqQzZTGQT2IbAo1o4WxccCvMC168FQemrWuYhhZV+NoGaUunEGfjG7ogZRsYukYinjv0eN8JQ4/OzdDozyXIpczz3tuosiD6vW3odKVtCinzmvWGUVxdLnzTNQEdqShTb7gjRWfa4oahfLviYrQzRcY2SVk6Qx2pi979lTF5sBBJ5K7+WT5ptu2WjXHFT3fWvqgSbKUaqJAy2/0oryUD+ai/pWVo7OiP7JeN61QovVxGO1PtDNGVbLyx9hh85cdKrrp0fZkru1Y/+7axNX/+sbvPOfUuNb/fMFzA0KLM9N1xAGMtVoIQSVNnxzr9137w1pH2M9iVWb/z92jXufHmnk0d6263mvfvXls28SOrgplpa/1v2rvqet4xdmXHXCsABvCTq67tekV+Nw4XyNgGtqlfNO5fjmh9ETlauzNRnzXbjNQeLD2ah0R7u8iW0rXIwWDFc1BP1j5v7DcE2KYgZRmMdkQ27/VD+WjeMjQShsbWvgw7BnJoQtCfS1BIR5nuK/1OU6ZOfz5BbzZBNmFimxp3bOpsPz+r5Wk29aSByK7LJaPz7snYbFrjfbgxtu8Thsb1g1FwZ+W96XiVxo3XGqvHmPVkgAYLifZaZrQr1R6DNnanuXNTtObT4mz0Qmw7XZj0m7Yiadv+fCKqoNAEA4VUO/t1RV5n93AeQ4uep1s3dJBLRlUJ2USUyZ40v7N8WF1EQbD1qjEvxeVXiIrXEr3Z8+2OjpRFV9Zedy1i6Fpbdnn3UD5aQ6RNhjpSbTvjwnFmZc6/fihHLmmSsQ06UhaFlNleL61mU3eUQNydseMe2Xr8/mmkbIOEaZBJ6ORtg4SpceNIgRtHOkjEyjz5pBnb7gYpS6MjZWLqcWKogELCiBV8dAZyCbb0pMnY+kU2nAA6MxZ9uQS9OZt8wmiP/ylTY/Xrm0lG+9Q1sPVz65VcyqQn9jd0ZkyGO9OMdiXbFcHdGZt8Mup3vaEr1b62uwbzjMRzxco8sDI+DxaS9MRz/Gp/yx2bOklcuLC5BNmEsaq6Lr6/K34EQ2OsO0XC0DE0jY6kSW/Obq8PDT2qRNaEIJuI+t2YukZCP2cL67HfLWnq9GYTbOzJkLSi+3PTSIG+fDRmZpMm1w/l28/N2Kq/O2KfxXWDObqzUfKsEFwzn8FoVzT2d2ct+nLRvconTTb2rIzvkT3WnbXZ3p9lsJDEMs6/pquxDcEdm84lMa18fmWOudoUklZ8jlH1XW82qszPJ02GOpJs7klH1VYZC00T7YTly53Zir9grZ+v/rPip1prO33VdhfuamX/OdvkltGOdsXScEeKDXE/2nzSIhMHTlaea03E9pcRqWPtHsqja6I9Jo12ptgVv1ebutORvWdobOpNkzSjRKSN6zxrvVmbtK2jichP1pdLkLKi/980UqArE/kHdq6SXh3rTkVKTLbBzoEchaRJIWWxsTvNQD5JPmmStnV6Mjbb+7Kx/zdJytKxjagKaeUajXWlyCWj5P7dQ5Fc3XnXmlXJ8UTrh6hqTLTfY4iuz1Bnqj2+buxJk499PZYWFYpo4pyf0VxVHWcb2kXPesLU2vtfURMwdUHaMkibeuSf1KI1gyaiPo4py0Bf5XtKmDp2/Bx2xsljCTNS8urKWNw0EgWNLEMjZxuMdaXZHCtR7B7KM5BPIohs4Zcq0XrXpk7MOFHpe27oj+IMmqAjbcb7j9ayK6ocGzpTWPFi5KbRPEJE1W8rvXjv2XxuzTPSkYx6w8bJFZom2j79V3ptvB5j3ZHvrz9v059PtivprhvMkbZ1NnVnSMQ+t5SltyUWV5Q+InWwi9/hKAAWVVuu/nWkfqC1+0t3Zey2+ljCjPoEmqtiOeuxre/y1+c1KYe4ghDiW8ADUkr/Utvt2bNHfu6r3+Cjf7qP3UNptvUVmCw1Ge7McN/WHgQamgFJw8APQ5ZqLrmUQdOJmniXmh6D+QQhkQO00vKQMnIMWIaOH4aUGm5bpjBnW0yX6syUmmzrz5OPJ3YkOHEJ50rp/UqZt+eHLDUcBnNJAqLFixBRuV/dDUBKUpbRlgtLmFE2YN316crYeEGIH0hMXTBfdeKB7+IXteUFOH5AxjYRSBZqLj0ZC01b29BZOf7K+axkRK3sO5IOcsnY0UvoxtJnlyvBLNZdbCMaIC9z79i7d29bavBK9EAdP0BKrkoZaMP146CQoOEF7cGw7ng4vkQXkVGfNLX2tXUDSbXlRZJVusZC1aEnYyFFFGAqNV2Slo7jhoRxNkQllk9MGBo1N8qqcYMQxwuYLUeZHq24nLzuRNUhHekEPbEEgO+HLNcdJpfqNF0fdI20pUXZn705gjDg1HydlK2TsAyQkQF7fK5CLhlNoMtNj7RpxDJbHhqCzoxNwwvIxgtwP4zktMy4dN/WNfz4WV19/2qOj60L/JC2rMXEQoXf/soRxjoSbO7PEciQ5aqHDEMOzFTI2xqBhEzSJGdZmAbctb2PSt3FNHR6M0ksSyNlaYQyalKMiErgk+t5s16HXPgOXgkrz6mhX/kCZi1eSlZ1VPLskLaNSMoiDJEhlJouTddD0zQKKSsqUY5Lpsd6MsyWW/RmLFqxlM+KzGohYZKw9Xa/ttUU6240EZqXLvdeGY8sPZKTkqFkse7QmTI5W2zgeAFDHRmSps7+yWV2DxUwjUhisNJ08UNJ1o7kVXRNsFhzKTcdOtMJQimZKTYoNl229mWjMcHxOThVZktfmqxto2mRbFyp6dGZtnC9KHu0kDQZX6xHgS1No9by6EibCKGxVI2y9hEaZpzxlG2X4/scm63RlzORQmMgZ1NxIsmYQtJuy+JdeO8uzNhdj3GVcf2aYc+ePRQe+FVOAJ/6yG0UEhaj3Rkank8habXf7cWaQ8aKkmhaXiQ1k0uYa777dccnGRv+K6w1VtQdP0ruWcMwfaXGlpfLhe/01egZ0fKCtnQGvPQxeOXd+83PHyBlG/z8O3Zdcvsf+8PH+YV3buKmkfWrl/ePl/jqoSn+v/dcd8l9lRsuuhbJA12KR48vcNNgnswlEiWmlps8O7HI916mL8/f7pugkDR4y67BS273c3/+ND/3ts1s61+/Qv/EbI1HTszxE/dsXncbgD96+DiDOXvd4NYKv/rgAX7i7g2Mdq/vgN93ZpHHjy/xcw9E1WlrzXuLtVYkSRUKZit1JhcbzNWbNFsBS3UXx/W4f3s/CzUXKSQP7BxgfLHBhq4UPiFhCD2ZBC0/oOkEZBMGDd+nXI8khHMpk1LDY6SQZKrUwjIjGd7AD8ikbKoNh6lyk5wdOTUsQ0fTNPJxUMnSIznUStNF1wQ92SS6Jmi6AYYu2pI1q+fLMIwygYM4lTaXtC569ldYee9LTQ/PD+hM222pvQspNzw0LerJs/rztrH2mPJK8nqoBIOLx5i1WL2WuXAMWq47zJdbpBMG2YQZPZsS5spNyk2fwUKShKWTT5lIKZmrtCCU9OVTGLqg6nh0Z6JguJSSyeUGaUunIx01M295IWYsPdbyA1puwJnlKq4jqfs+nhd1N58tN5ivtICAUj3g9s0ddGaTdCVslpsefXmbfMIin44CIZcbP1fu39gvf5E7RwWf+tm1qzwVrw1WbMsV23HPnj384h98gt968Axf/mdvIxmv8y9lL4ShbM/lK+OVJiJ7RiIumndXvwuOH0mVrVQXrCe3WXN8hASEpOa4LFU9urKJyFEmwTQFQoIvZfu9KDWiynlNCJquB0KDMCRpm9Qdj+WaixAw2p2h6XpYmkbSNuPK3YCD06UogEGUmW7pOmM9mfYxnSBgqdZiueZy3XAHC5UmZxZrdKZMhruyGJpkothipJCIe2Dq9OWTWLqg4YWkLY2kZRJKSaPlU2y6Ub/N2Adj6FrkC2i49MaJLxf6R+YrLTpTFoahrelvqbc8vnlsjrylc3i2Sl/WouFIBjuTpC2dhUqThh8y2pnhxpEOJosNpIzaPKxeiwsBQ4UUi7UWTTekkDaxDZ2Faov5SpPeXJKeTILZapOeTJKa4+HFsloLtRaOF5BPRb2dNAEZ28Q0tEglRYOUZdDyAuqOF6slWWvabQ0naukRydAK/CA612vpM1iRH5YyWjeHcJ4du9r+bnkBxZpDseliikgidLbUoOYHbOjIMNyZZiBOpFjtb3kp/oLvlCCU8XWPzjmMZe1S8VqjFa+9zxabDBQSBKFkud7i9EKDtCXwQ0EuqTNVbDJfa2JqBm/a2k3WtphYakRFB7bOXLnBSEcmlkD16c7YLNRcRgpJFmIpOSnAMqI1s6UZNH2Pphsy2pHi1GKV+YrLUGcSW4+SPGwzSu5fuSemruH7AccXaox1pmh4IWEYRi1NADeUJAwjCmrogp6M3b7ONccnZeoIAQtVh660hR6Pe2HcfsaMAzQXsnLvVny5K8/jihRjwtRpuj5NL+oltfrerpy7oYnz/MWhjFSrWl5UeZm2jFiNDIoNDz8I6M4kODi9jGUYbO3LEcYyq7omqLZ8Ts5VKGQtGs0ATRN0ZkyOz9QY605jxfKnuljxi4fMFl22DWUpJG0qrdjPa5lUmx6LtRb5lEXd8dE1aDgBnXE/5m09GZaaLroQFJseaUPj+HyNjpTBUEcULDk2X2FbbxZd16g0ot7NpqExU2qQtk3yCZOz5Sa9GZtARv71xVqTlG3QnU4QrIyLsQ1aaXmU6y79hST5lMViPM4kLZ1cIloXLddderJ2W/KvkLLWtGEvZ3cWay5eGNCbSzJbrnFmqcXNo52UVo3NQRBwZrnJhs4kun5uPDo4VaYvZ9KdPRc8/eahaUpNn++/dRQ/CNu9tFux/OvVWhuvx8q8HYQSP4j6ctqG3n6eXT/k+HyF0c70mt/36FwNXZMcn6nSmUow0GXjuCFp26SQtlistpgpNbENQUcmQco08cMQNwjoySQIZSS5uNLfO2FqNL2A6WKLhUqTuhswU6qxsTtFuRnSmbH5gT3nEiCFEPuklHsu/F7fNUGw18OiSHExr5cFrWJt1P17faPu3+sXFQR7faPevdcv6t69vlH37/WLunevb9T9e32j7t/rF3XvXt+o+/f6Rd271zfq/r2+WS8I9pqUQxRCmEKIrwM3Al8VQtzxap+TQqFQKBQKhUKhUCgUCoVCoVAoFAqF4vXDtaulewlIKT3ggVf7PBQKhUKhUCgUCoVCoVAoFAqFQqFQKBSvT16TlWAKhUKhUCgUCoVCoVAoFAqFQqFQKBQKxXeCCoIpFAqFQqFQKBQKhUKhUCgUCoVCoVAovutQQTCFQqFQKBQKhUKhUCgUCoVCoVAoFArFdx0qCKZQKBQKhUKhUCgUCoVCoVAoFAqFQqH4rkMFwRQKhUKhUCgUCoVCoVAoFAqFQqFQKBTfdVz1IJgQ4htX8jOFQqFQKBQKhUKhUCgUCoVCoVAoFAqF4pXCuFo7FkIkgBTQLYToAET8qxwweLWOq1AoFAqFQqFQKBQKhUKhUCgUCoVCoVBctSAY8DHgnxIFvJ5d9fMK8HtX8bgKhUKhUCgUCoVCoVAoFAqFQqFQKBSKNzhXLQgmpfxvwH8TQvyclPK/X63jKBQKhUKhUCgUCoVCoVAoFAqFQqFQKBQXcjXlEN8qpXwImBJCfODC30sp/+ZqHVuhUCgUCoVCoVAoFAqFQqFQKBQKhULxxuZqyiHeDzwEfO8av5OACoIpFAqFQqFQKBQKhUKhUCgUCoVCoVAorgpXUw7x38Z//8TVOoZCoVAoFAqFQqFQKBQKhUKhUCgUCoVCsRba1T6AEOI3hBCFVf/vEEL8+tU+rkKhUCgUCoVCoVAoFAqFQqFQKBQKheKNy1UPggHvllKWVv4jpSwC77kGx1UoFAqFQqFQKBQKhUKhUCgUCoVCoVC8QbkWQTBdCGGv/EcIkQTsS2yvUCgUCoVCoVAoFAqFQqFQKBQKhUKhUHxHXLWeYKv4JPANIcQfAxL4SeBPrsFxFQqFQqFQKBQKhUKhUCgUCoVCoVAoFG9QrnoQTEr5W0KIF4C3AQL4NSnlV6/2cRUKhUKhUCgUCoVCoVAoFAqFQqFQKBRvXK5FJRhSyi8DX74Wx1IoFAqFQqFQKBQKhUKhUCgUCoVCoVAorloQTAjxqJTyHiFElUgGsf0rQEopc1fr2AqFQqFQKBQKhUKhUCgUCoVCoVAoFIo3NlctCCalvCf+O3u1jqFQKBQKhUKhUCgUCoVCoVAoFAqFQqFQrMXVrATrvNTvpZTLV+vYCoVCoVAoFAqFQqFQKBQKhUKhUCgUijc2V7Mn2D4iGUSxxu8ksOkqHluhUCgUCoVCoVAoFAqFQqFQKBQKhULxBuZqyiFuvFr7VigUCoVCoVAoFAqFQqFQKBQKhUKhUCguxdWsBGsjhPgAcA9RBdgjUsrPXovjKhQKhUKhUCgUCoVCoVAoFAqFQqFQKN6YaFf7AEKI/wn8DPAC8CLwM0KI37vax1UoFAqFQqFQKBQKhUKhUCgUCoVCoVC8cbkWlWD3A9dLKSWAEOJPiAJiCoVCoVAoFAqFQqFQKBQKhUKhUCgUCsVV4apXggFHgdFV/x8BDlyD4yoUCoVCoVAoFAqFQqFQKBQKhUKhUCjeoFyLSrAu4LAQ4un4/7cBTwohPgcgpXzfNTgHhUKhUCgUCoVCoVAoFAqFQqFQKBQKxRuIaxEE+zfX4BgKhUKhUCgUCoVCoVAoFAqFQqFQKBQKRZtrEQRbkFIeWv0DIcSbpZTfugbHVigUCoVCoVAoFAqFQqFQKBQKhUKhULwBuRY9wf5KCPFLIiIphPjvwG9eg+MqFAqFQqFQKBQKhUKhUCgUCoVCoVAo3qBciyDYHcAo8DjwDDAN3H0NjqtQKBQKhUKhUCgUCoVCoVAoFAqFQqF4g3ItgmAe0ASSQAI4LaUMr8FxFQqFQqFQKBQKhUKhUCgUCoVCoVAoFG9QrkUQ7BmiINge4B7gh4UQ/+8aHFehUCgUCoVCoVAoFAqFQqFQKBQKhULxBuVaBME+AkwA/1JKOQv8DtASQpjX4NgKhUKhUCgUCoVCoVAoFAqFQqFQKBSKNyDGNTjGTwA/ACwLIf4Q+HMgDXwC+NFrcHyFQqFQKBQKhUKhUCgUCoVCoVAoFArFG4xrUQl2B3CWSBLxA8DHgTPArmtwbIVCoVAoFAqFQqFQKBQKhUKhUCgUCsUbkGsRBPMAAaSIKr8eByTXpgpNoVAoFAqFQqFQKBQKhUKhUCgUCoVC8QbkWgTBPg40gNH47z8C/hD45jU4tkKhUCgUCoVCoVAoFAqFQqFQKBQKheINyFWvxpJS/rkQYh/wNqKKsIeAs1LKytU+tkKhUCgUCoVCoVAoFAqFQqFQKBQKheKNybWSJPw3wM8AAbAPyAshfkdK+dvX6PgKhUKhUCgUCoVCoVAoFAqFQqFQKBSKNxDXQg4RYFdc+fV+4EtE0oh//xodW6FQKBQKhUKhUCgUCoVCoVAoFAqFQvEG41oFwUwhhEkUBHtQSukB8hodW6FQKBQKhUKhUCgUCoVCoVAoFAqFQvEG41oFwf4PMA6kgYeFEBuAS/YEE0L8VyHEI0KI/3YNzk+hUCgUCoVCoVAoFAqFQqFQKBQKhULxXcQ16Qkmpfw48PFVPzojhHjLetsLIW4B0lLKe4UQ/0sIcZuU8plLHeM//Icv8gfV6N85YGs32KaGaWnoAka6CizWGnQmk9Q9H0nItv4cvjQYzGhMVUI29aaYr7cIA0gYBt05Cz8UuE7AVLXJ1u4kCzUPPRQUfY+xjiTT5Rb9WRPXF1SaPilTY6w3y2zFJWFIPE9ScQOGCzaaMKg5AZoh0DVJ0/FxPB+kxobOJCfmGyw2G2zoTCMD8GSIKTX6utMs1V2aLZeFmktP0qTseAx2punMWAQ+1FwPQsmp+Sod2SSFtInv++hoNL2AWtNhueUxUkizVHMYLCR4bqLIYMHG1AwyKYPpssOGQprFShMHyXy1TtMVJPHxhEFCD5FS48xihUTCpFJzGexIcGapAgEkEzappE3GFLhScnyiRKkJFnCmBc6q+7X/l++mUCi0/19uuuhAJmlddG+Xqy0CKelI2cxWGshQgAgRCCxDwzYNlmoOtZbD+FKDnrTJkbkKXZkEhibJ2glanku57pG1TWxbZ7rcoFRpIcyQ0BUkDINqq8XhmQrDeZt6APVGAw9AmGwdyNFsOpyYL1OuemgaeD6kk7BcgdAHX0C5GZU49megKw8Ty+A74Idg6TAdQBh/LwPoBcwkVJowUoClKjgBpIwoQt3yoSMNvg5LlWgfXR2Q1WGxDgRgGpC0oeHB5l6bgUKBstNipJCjuzNNGAQYwOnFMp3ZFLtHO5kuNjF1jZ5MkoSl0502WG4EJC0Ny9Ao1T3GujMkLZNiw6UjbaIJga5p6Jq46B41HJ+laoOHj8xSabl4hDx9bI5y2eVQOWoG+FJJADf1QF2Hjfks6BrDeZuSJxnMJdnWnyVl2QgENc+hN5ciY5vIEHRdQ4aSpK1jGzrZpIVt6hQbDkIKhICUpSOEYLnWIpTQk0vSdH0AhBDYhoYfShKmDkAYShquT9o2EEJQabpYukbCOjeMSilx/LD9mRUcP0BKiW1Ex1zZnxeGSMlF26+m2vJIWzqa9p3nLLh+iKEJtFX30PMCHj42i+P5OL7HxFydTNpGhiETC2V0y6Avm+T4TBEvgC39eWZKdQLfwfcltp1ivliiGkLBMulI6cxXHcIQ7KRF0GoyWwtJmZAydap+SHfaJGsb1FohpmGSTuhMl1okRIBumgznLDATHJ6YJ5u26MmlKFYbFNJJvFDgS0lfzsJthZR9h/lig95cmqxlsNzwCIVgqJAkl7BZqlU5s9yg2vQYztpoiQRbezPsO7PMcqPOWD6NaScZ6UihC8FizWVrX4qFmsuh6RLNep3+7g5ySZ1y3cU0TPwwIJmwGckbHJttUG216M5a5Ow0g10J9o0v03R9BnI2qVQC12nihjpSCvTA4cSiz1CXTVfGZL7q05k2yKRtlpaaLFYaGLZJ4Hts7y/gBCEp22LbQIG+QpKt/YXv+DlQvHKM/fIXr3jb8f/43nU/2w+MDsBIb4GCZTHSlSFhG/ihJGsZzFRa3LGxi5oHKUNybLHGSD7FQGeaZiuk6QfYpoahCTIJHU3oOH5A3fGxDY2ELjgxXyWfsrh5Qxc1x6fhhoShpNZwcIIwHic1pJTkkybFlocmo/d2uelRSNqUGw7lpkNPNkEoIZMwCSSUqg66KehOJSg2HTrSNoYQnC3VqbVcMgmTasunJ5tAoNGdtZguNejNJJECmq6PH0gml+r0FWxMTUfXNFqBD1JiC41GELJUc3FaHqm0yXK5Cbogn7BxvJD5ap2urI3nBwhM0AM816Nc81mu1mn6Ict1D9vQ6EqZHJmrY2g+fiiQIUxVamzryVJIp9nYnWHnSAeaoSGkRk8uQU/GRtf1i+7fhfd1rWfkRuDBS2x3pfu6+Ze/SM6Eb//a5Y95F/CXr8Axd/zyF9mcgC/+u8sf83L72/LLX8S/gmO+lGs7BnzrEtvd+8tfZHKNfc1XmrwwvsjzE/M8fGiWg8tENt8VkiOy0zIWWAZ0d2hoXkhHLokrQ1K6hgQqjo/0Qjw3oDNnsWukByeEhhPgy5DnT88zlE9gWAb9+Qy2qWOaBp05iy3dORpOwHKtha5rDOZTCE2wVG8ykEuh6Rqd6QTVposbShKGjhTR353pBA3XY7rcojujo2NgGhqlugtIMraJpkMQRDZIwwsoVps0/YBcysLUdGqux0hHGt+XOIFPOmEyV2lCbGd1pS1MwyBj65xcqJHUBamEhalruIGPrRvouqDh+DQ9n/5cikrTwQ1CLMPENgRusDJO6dRbPm4YUkgazJSb9GSTGJpOd9Y+z24JQ4kfSizjpdlFq200PwiRgKmvvY+a45EwdIz4914QxnawwPGCyD40NMotjyAISdsmThBgatH3DaSkkLQJpMTQBK4vkYSUGi4yDKm0fLwgRPohbhhSbHgEYUij5XJgssRNYwVOzFXpzydxvYBswmRyscbkcpm5cotGC9I2VFrgeNCRg1PzkDGgMw3HytE6o/6SrtDlKQDbB2FLd5Z0Js2eDT30dWQY7UyRTVo03IBswkBK8ENJ0/XJp85f213p+614dVnrPq38rKDBoICbdydIWDaNuqSzs8Byw6PP8pCWge8HlIp16noGU9foNVo0NJvAd+kqFKg0PQbzCUK3hdAtLFyq0mKm3CJtG8zNz4JtoLsBuY4ejs9UySZNphcXsQQ0HcgVcoRSkvCrBCbUi3C2CnYebhzq4YWjC2wchGzKpiPfzeRSAy8IcMoV8gUIXch29BJKiSYElruMn7BJS42enm5myy1ySZNmrUw+k0QLA6xUlobjk5At0p1pbN3Ab7gYiRQpyyCJB7ZB3fVIGUmqLY+EqdNlB+QyHaRMn1ZgUGw4dKRsOpIghYUQAdmkzfMTRXYO5nE8HyHA0nUsU6fp+mRtA9uM1p1ePIatrCH9IPIw6JpYcy0K5/tbLmW/DgnozEM+KxBSo5CwuHVLD8u1gHzK4t4dA4wvVhifq2IZOoM9Wbb25ag7HjnbYqnusbE7yWLdwxASXTewTY1i3aXWdCikLHJpG0NolJoOQkJXLkkYhizXHTKWSdo2SSUM6o6PlJK0bRCEkZBUyw+wNI1w1fd3/ABL19rr7BVaXoAQYGpaex5peUH7c2ut3V0/JAhCEpZ+0f4u3LdtRMesNV2Ir20QSkIpz5tfglASxPNWGIYs1R0sXUcXgqYXYGiRnT6zWOHJU8v8o7dvY6grd97x5itNenPJdc/nSln5zromzs1r8fVregFBIONzDklYBtWmy2ypRdNxmVyuMbVcpyNjcXK+zMkzi1QAz4NSEYpAKj6OBRRyUHag6kAVsIl8gkmgYEXvoBCQNqHkRn6yYvx5A/DX+Q6F+O8VebGCBuk0DOahJXWG80mGOrIIXUcToAlJ1ZV0ZWx6cjbNVkAuYdD0A47O1AhlQL3pMNSVpj+fpiudIJW0IPApOSE7Bwv05ZNIGdkgmhZdxyNTZRwvYNtAFtsy8YNoLMklzfPsllbLp+L49OYTNByfzzx+mG8fW+SurX1IGTBdcehKmSQNnVLDpydlUnQDNF3SciV+4CKkhic09NBnueYwU2ky2JHGFNCfz5CwNEoNn9linYrj05018APBhu4sR2ZKWLrg5tECDx1ZYLiQYrZSI59O4DZ9bF0ikjZGoFH3HaTnUchmWKi2GMxbpJMpdKExvrBMy41sHmEa5C2YKbtkkhZJI6TaDMmnLaothxMzVTrSJvl0hl2DGeZrDprQ8PwA13EQhs5CycXxXTZ0Z6i6Go1GnVC6mGYSgaQvn6IVSlzXY6HhIP2AzqxNrRmQtQ0CP6Dc9OjMp+nNGByZLtOVSzLUkyWtG0hNML3YoNKo4EiNtJEklRB0ZhL05RKcmK/TkdD4/N5pMin4p++9kRtGuilkEuc9b9WWR7Xh0ZmyKDkuri8JCZiYb9FwHQY6LY5O19hRkPzRE3Pcv6uPlKHRlAb5pMVTJ+dZrLk8sDFBX08PS3WHbx+b47oNGeaXJYH02dLXgd8KeHJyBi0IQBPIAFK6BqHPqYUKWrKDIJS4fsB1w3lePH0WQnBd6OsyqPshlgDbTtKUIYYIsDAZyNucWawQyoDQE5i6ji4k2Y5uFioOSUunM2MxMz9Ppe7TiH3QfV0Z/NDAMgQ5O0nL9zm7NI/rgmVomFrIfAlSFiAgX+ii3HDpzNgA5LUGAoNWEKAbGqWGQ9IO2dw7yK7RLg6dKVH3PO7a3I0vfE4tVJGOJGvDTKmFNBPMVhx0TbBQcZieLXLraALNSnB0tsRgXiOX6cCRkjPzy2iGxk/du5sHrh++5BgopLz6qoRCiD7gN4BBKeW7hRC7gLuklH+0zva/Avw0MEjUO6xfSvnf19t//4atMvHDv/vKn7jiqvKtf343H3z3A/zmn3yBX//SYTQh+O0f2M2ejV3tbf7LV4/wx4+PE4YSQ4OaGxKuemQ1ookzUOKaV4VcQscLQjrTNjv6c+wZ6+BHbt9APmUCsGfPHn73L7/ML35mP7MV91U+27WxdMH2vixv39XLHz9+hqYX0Je16UhbCODFqQoS2NKTpumHOF5Id8akN5dgc0+GPWOd3L+th9/80mGOzFa5a3MXliH47HPTWLrGR+7dxPfdPISUkr99boozSw32jHVw79YeAPadKfIXT52h2PB4+85efui2UQIp+dQzkzx1aom0bfCW7T286/qBi879Tx4f50svzDDckeQ3P3DDS3b4rObEfI0vvTBDytL54dtHSdsGN91yK813/xqOeoFeN7xpcyd/8ZG72LNnD3v37gWuPBCjHE6vPC83CGYPbGXgx373KpzR5TE0SJo6VWft9IQLl/ty1c8vHCkMDYLw/G2EiAzjIAjxQtbE1KLkEF2LHfBOwDqbviYQwO6hPP/vY3fxpjfdweIDv3re79d7t1Y/H+sFwi58hq5kX1e63XqBsKt5zPW2u5rHfCn72rNnDx/69T/jf37r1Jqf+W7BNgSOf/m5XRDZ0uslK62892u9/0DkxA5DZquRDWjqYBs6QSjJJUxMQ2Ou0iIMJdmEQcsPcHyJpQsShk7T8/FDkHLt/Zua4C07evmvP3QT9999J99+7En+8ukJGm7Ae3YPsKU3cyWXA4AH909xaqHOpp4006UWoZR84JYhBvLnOxU///wUf/HUBIWUxa+//3qaXsBnn5vC0DXu3tzF7/zdMZqeTxBIDs1UCcIQU9cwdYEvo8QwiSBn6wx1JKk5AY4fsFR1cF/LA913gCZgZ38W29TZ0Z9jU0+azz8/TSglb9vZxz99YBt79uy54rFT8eqy1tj5atotb0RWxlzbEBiaAASdGYt/cOcYUkr2TRTpzti8+/oBtvdn+cy+SaSEjK2zXPe4abTAW7b3AtF6fbW/5fTiKx0ef+mI+M/KkJg0BAHgxfNWb87mJ+/ewOefn6Xh+rxn9wC2oTO+VOfMUgMvCLllQ4E7NnbRk03w8LEF+nIJPrRnuJ288LWDs3zjyDy1ls+dm7v4oT0jfO3QLMfnauweyvPArj4++9wUpxfr3Dxa4M3bezk2V+V/f+skizWH99wwwIdvG13z/B85vsDe8SIbulL0ZC3+9YMHQcL/753bOVts4voh7795iJHOFNWWx6efmaThBrz3hgH+698d49HjC+3kCj+UNNcwmH/xga3843jsvPsX/4C948ts6snwZz91x8u+7lJK/ubZKV6YKlNteWzvz7JrIM/eM8tUmh4vTpU5uVBHyjhgJyULVVf1sQGylkYhbeP4UdBytuKc55dMWxqBhKSl8/4bh/jFd27n/rvv5E8/9w1+7P8+jeOH3Le1my+8MPvqfQnFFfEv37ODj9y3mT179vCv/uBB/tNXDrNQdTF1EQXJ1QvxmmYkb/PIv3gAIcQ+KeWeC39/reQQPwF8lSioBXAM+KeX2N4Efgl4EigDHRduIIT4qBBirxBi72Kp/IqerOLa8M/+8DEAvnVsHj8Icf2Abx1fbP8+DCVPjy/j+iFuEFJ1zg+AQWQ4qUHo6lF3AoJQslx3KTZcig2Ps6XGedvsPVOkWHttBsAAvEAyX3P4+uHoOfPiaoCFqsOZ5Tp+nK11ZrlOy40ykktNn7PLTSpNnxPztXjb6Hsfna3y7HiJphtQbLgcmqkQhlFG1ZmlaJvjc7X28U/MV1muu9Qdn9OLdequT7Hhslh1WKo5LNfd87ZfzbMTUS7U2WKTuWrrO7oOJxdqBKGk2vKZKUf7armBCoC9zjgwWXq1T0HxOscPoemtX58rL/iz+udr7evCbUIJjrd+AAzAiz/nh9B0X9sBMIjOdarUZKLYuOy26/H8K3c6V8wTr8IxXw1eSjAa4NvHFi+/0eucKwmAQfRsX6paX17w94VUWx7zq2xAL4CGG+AFIZWWR7Hu4AeSUEKp6UcVURLcQFJ3fbwgGjPW238QSo7PVdt2y0y5RbXlE4SSkwtr205r4QUhpxYix+9zEyVaXoDrh4wvXvxO7ztTIpSwXHc5MV9jfLGBF0iabsDDxxdpuAF1J+DUYj1eo0gabkDTC6m3oqBeEEqqTsBizaVYd6k03e/aABhE93ByuUHLCzgyW2Gu3GSx5tB0Aw6cLb3ap6dQvO5YGRNdX9J0Q1w/pFR3ObVY5WypSanhUay7HJ+vMrHcwPFCWl7AC2ejjiMnLlhbrva3vBaQcJ7t1/RlXDEb/a7u+PzdoXnqjo/jhzw7UaLq+EwsNWi4Pks1h8VqtIY+MR/JQc1VWlRa52qHjs/XKNbdeFuHYt3hxHyt/TvXD9sBwZWfn5yvsVhzcPyQw9MVnHWu18ra/cxSg4cOzeP5IV4Q8rWDszTcqFr4VLzv2VXz1pGZKodnKjh+SMsLacZz0Vr8zXNT7X8fnIr8nacWajTdl38PHT9kYrlBseGyUHWoOwF7zywjJRyercbfPaDmeNQcn+WaCoCtUHNDyk2PuhNVH13ol2y4kZ+p5QYcnz9nt3zt4BwtL1IFemp8+VU4c8VL5bETS+1/7x1fptz0CaWk5akA2OuBybJzyd9fEzlEoFtK+VdCiH8BIKX0hRCXGr0XORegywGlCzeQUv4+8PsAe/bskd/9y9nvPv7mX7yXPX/9b/nR2zfw4lQFU9f44C1D7d9rmuCDtw4zvtQgCCVZS2e63MILJIgoe8g2ojLuuhuqCfoVxtQFg4UE1abPhq4UO/qzbO3NsLnn/Kzbd13fz9cPzvLiTPVVOtP10TVB1ta5cSjP9980xG9+9QiWETDamaQvn8DWNR46Mo+UcPeWLuarkdHbm00w0plksJDi9o0dDOQT3LWpi+cmirx1Ry+2ofPnT50hZem8eXsPmiZIaDq3bujg+HyN2zd2ts9hz1gnpxfqFBsud2zqIpswSVsGOweyVFoeKcvgzs1da57/99wwwP/be5bt/VmGC9+Z/MFNIwXmKi1yCZPRzkioIG0b5DMmc7WXIgKleDX54C2XLu9WvD7YPZTnatkt61VsrNCVNkgYBvPV1kWBKo1o3DQ1iScjx6Ymo2QTQxe4qyx/U4OkZeD5AU1fRnOyDiGCXMIkCANKzeCiczE1yNgG1VgCrSNlxotu2d5Wj8vRVpzjl/tOVxtLhzs2dbKlL/uy9/FqVDy8lo55KVmbq3XM9fjJN43xS39zgOC7NCihCehKmSw3vPZi3YxXVSvvfCQPFP0xdUHTkxc5dCB69jUBoRRIKc8bMywNRrpSJA2N/ZNlQgm5hEY6YdHyAvqzCZKWzon5Gm4QMtKRZLnuUmn5ZGyDXNKg3PCouwEgudCvJ4BMQuetO3rbdstoZ4qN3WkqLY+bRgpXfE1MXeP2jZ0cma3yps1djC/VCULYNZC7aNv37h5gvtqiL5fghuECLS9gfKmOZWjcs7mbyeUGNcdnW2+WR08s4AaSjG1g6IIwkCw2XIJQMlhIsKEjRcP1qTk+U6XYEfpduGBJmRp3benGCyS3jXUw1JHiTLFJ0w14zxpKB4rXH1fTblFElfVSnkvutXQQCFK2QcLUCEMY7kxy56buyDaS0Jm2uH1jJxu60hyfqxJKuGEoz0SxyW1j5+eQr/a3TJW+s8TKl4oWG3Grp1zbAIGGG0/E3RkLz5fUHA9NEwx3JPnYfZv45FOT1Fo+33fTIEEosQ2t/V13DuS4bWMnnWmLbx9dYLgjSUesVgNw56auOGnBZ+dAlp5sgjs3dXFwusItowUsQ+O2sU6OzlW5fSxau980WmD/ZIn5aos3x2v+tbhjUydPnlpma2+GwXyC/WfLSOCn7t3I0dkajh+yeygPwIauNGPdKaotn9vGOnjndf18bv8UfhiiaRpeHOD0Lpgb/tV7t7f//Z7dA3z14Cx7xjpIWuu3UbgcCTPyV+iaoFUIGOlMcf1gjidOLfH2Xb08O76MECJaD+gahgbH5mrn2f9vVEY7E3SkEzRdH0vXOLNUpxKragigP2fhBpJswuT+7T1tu+VHbh/liy/MUHU8PnzbML//0Eka36X253cDCV3w4dvO+Vu+98ZBnpsocnqxTi5hUmm6NK4w0Uzx6vCOnT2X/P21kkP8FvADwN9JKW8RQtwJ/Ccp5f3rbH8L8DFgO3AY+GMp5dPr7b+7u1t29Q/T9ALySRN7HckwNwgp1qNsxbRtkLHPxQAbbkC1FU26XWkL7RL6v68Xqi2fhuvHgQAT23x5hX8ScLwAQ9Mw9PWvS5T5HZKydCpNH8cPooxwP0DGaT2mIfACScrS6cslGB8fZ2xs7GWd14WEMsrEhCh7CKL7nDB15iotWrGmfnfm3P11/ZDluntOozl+HwxNI2XrJFfpQ9edaBGra4JCyqLS9JBAPmkShFGGaNLS133+VtP0ArS47xRE2aYrJfE9WfsVuR7XgpX7V2p4OH6AEAJTFyzVzn0f29AY6kjS8qKMWEMX9GYjnd1QyvOu8Xo4ftRHASAT9xpwvJC0rV+yn9bLoeVF1W8py+C7YBi4JKfHx0l19uP4kZRPfy5BywsIpSRlGxfJol2OlXHUDyWmJkAILF1gmzpBEFXLWYZGNhGNva4fYujiisfbmuO3ddyjUnRJIWmep7kuiSrcdE18R/KRLS/K8gLIJc3zntOV5902NAqpi/sYXgmhjI5hGVoscxIRhLI9zqyeoy5kfHycpt2JH3stx7pSZBPmutsrXlu8knOf4toyPj7OyOgGSk0PARRS5jWxGYNQUm56CAH5pMUa7TkBKNZd3CBExPbEemdWarh48WI9sY59GEqotTyEEGQS688JLS9oJ3WsN25JCWeLkYRRV8Ymn1x7vGq4fjz2CjrT1ro21WLNoeWFmLqgL5dYcxuI7CvXD+mI93Wpd6/a8pgtO0gkhqbRk7VoemFbFqhj1Xjv+CGCqMKo2IjuS1faWtMmcf2QYiOyiyAa2/Mp87zrKSUs1R2CMAqopOPr2PLC+Nrql5wT3giMj48zNDLK8jprucvRdANafkDKMq7IVr8c59Y9xrrv43eKH0pcPyRhamhCtJ8loG2nrtitXvze55MmDden5YVRD8SMjeMFcQAu6lF2oV1zIV4QUnfjHjvwHdtUEN2/IN1Nww0QwJbezCtuwyteGSpNj7PFJhIYyCfoTFucHh+nYXUSSomla3RnbQwt6icUrZt0vEBeZNeuhx9Xg5q6RsrS8UOJH4TYpr7uXOP6IaXYNs/YRnsduVa/6pfD6vfrpY4vr2UunPdCKTm5UKcVqwJYhgYSbENjQ3e6ff0dP6Ta8jB1bd05W3H1eS2tGVbswlBG74ipC1peiKaBtWo9vuKHBOhM25ixD9EPJZWmhxbPVReaz3XHp+kF0T5F9E4mY/tHiEjhRxNQafqESLK2SdKK2nesHgv8WMlISkkhtb4tuXKuTS+4KnbWhXZLyjKQUrbHsd6s3Z4HV/tRVubd9eZqSXQfpIRs4uLreKW4fkjV8TH1KIHRC0KCkCjwLiMFIQFkk+Yl/UJeIBGCKxr7L8eKz9APQ3IJk870y/O1vFRqjk899sF0pW2EuPjd80NJse62n5eOlHVF88+Kr/dya7PVx1mqRdVMSUsnlzCRMrLN/NjvnLA0UpYR+en1K5t316Lc9Gh5AV4gMXURnWPGXveZarov31f4clmpwrMMDT8IWag5SBn54fPJ6NqsvGOdaat97vv27ZNSyote/ms1s/8z4HPAZiHEY0AP8MH1NpZSPiuEaAE3AQfXCoAJIT4KfBRgeGSE0Z/8b0yVGnRkbL7y8/eRigewUsPl1GKdzd0Zaq7PXz0zCcAdGzt505bu9v6+cGC6Xdb8wVuHGelMcTlqjs83Ds9hGzpv29nbdsQ2XB/XD1+Sc9QLQp49U8Q29ZeU2bgeh6YrfP75aZ6dKDJUSNKVsdg9XOCuTV0XBVkeP7nIs2eKXDeY5y07ei/a10NH5nh+sgxS8v5bhtnYnWZiqcHx+SpDhSi4kU4YfPHADFKCLgS6Jqm7IY+dWKTYcCk1XEIZNQK3dMFwZ5q/+dm7eOu9b2r3tVmPIJTommByucGLU2W292fZ1HNxD4C/efYsx2arOH7ksAgkvPP6PuYrDv/n2yepOT5j3Wn+5Xt2srE7Q9LSGV+s8a8/e5DZcpNyK5oAEqbOroEcuaTJ9+weiJptpkx+9fOH8PyAvnyS4Y4k5UYUBHvv7gEOzlQ4vVDjqdPL3DRS4KP3bqTpn1tA3r6xk9lyi68enKXYcBlfbOCHIf/4LVvYPVzgDx85xXLdJZsw+cm7xzgyWyWfNBnrThOGkqW6S0fKbGtcA0wWG3z90Bz3bOlm63eQnf6dsNKX6MH9UxyeqTCx3ODYTAWWGsQFe6QsjR+9a4wDUxVOzlfRNcFdm7tYrLZouJIbRwq8Z/cA+84s8/ipJXTgQ3tGeOC6fk4v1Hjy9DIbulI8dWqZyWKdhapLPmmyuSdDIWXyE3dvbJ9PO4BjvbyhbbrU5NPxGHHjSJ637uh7Ba7Sa5ebb7mV6/7R73FmscFoV4oP3zbK4ycWma86fM+N/Xz/zSPnbR+GkmrL4+hcjbrjc9fmLhKmTrXl8eD+acYXayzUXE7N1+jN2XiBZKiQBBFJQYx2psgkDN51XR8HpyucWW5SSJr82JvG2gbgyvvu+AGPn1hiqtTgxuEOrhvM8fGHjiMlFBtunOkn2NaX4d5tPWRtg4ePL/LY8cX4GdC5fWMnk6UmedvkXdf3oWlrG8An5qvMlh1uHi2Qtg2+dnCWR08s0nQDBgtJ3r6rj+vjbD6A3/vmCVw/cr7+47duPW/Mb3kB3zq6gKkL7tvWg6EJjs5FVZI7+s9lnP/1vrNMLDewDI2fvncjUsI3Ds+zf7KIpWsYusbuoTwpO8rYuzAT8cLeGpv7UnzpF97yHT0PimvH6p5uitcXe/bs4bf+7Iv8zt8dw9QFv/Kendy2ce1q3hPzVR7cP8WeDR3cv33t+SQIJf/gj57k9GKDf/rAFj5024Y1t/vyCzN86pkJdCH46P2buXPT2sf89DMTnF6ok04Y/Mz9m89LElhhptTk5z/1HAtVh/fdPMAvPLBjzX09fmKRp05H0i3vuK6P6wbza27383/5HLOVFqau8fv/4NY15+AnTi7yi595Hikj5/efrtPT4pNPjPNHj55G1wS/+n3XcfeWtbP5PvInz3BoukJvzubTH3vTmg76IzMVfuVvX8D1Q27f2MW/+d5d6757J+ar/OrnDrL3TLHtfEklDTpMnT2jHbx5Rx8fvDXKDH1+ssRDR+YBOLNYZ99EkYSpcfNoB7eNdXL7xk5GO1OcnK/x5OmltvzR6cU6tqHz7t39/NS9m6L5MWah2uITj41j6BrDHUl+cE80//7Cp/czXWpiaIL/+fduXdcR2XQDno17xGzv/85twtOLdfaOL7OlN8PNoxep0r8sWl7Aifkag4Xky3Jq7Nmzh899/ZG2nXbbWCf3bO2+zKci/CDkf3zzROwwMvjpeze95OOvZqnm8GdPnkHKKAnl5EKdharDT90zxrb+i6vL1mKu3MLxQ0a7zq056y2fZ8aXyadMbhgu8AePnKLpBgzkE3z49lHGF+v84SOnaLg+hq5RaXmML9RpeAHpOLhXafntxLEdA1l+8NYRvvjCDPNVh5YXsKk7zb1betjUmyabMLh+qIAfB3PTlk7S0vkf3zzBI8cW8IOQWzZ0kkkY/L07N9CdsXnhbJmHjy8w0pnie3YPoF2h42XPnj0sP/CrrIwi77l5kN/6oZtf0nVXXBu+5+Pfxp2O/CL9OYvHf+XtbLvuBrLf+5vtbX763o20YudbLmFSbLjkEiZLNYetfRnKTY+BfJK7t3QzV2lRdwJGu1JMFZvMVVrsnyiy90yRjrTJf/zAbv52/zRhCDv6s9y9tZukqWNoAilpP2NPnlriiZNLNF2fharDaFea/nyCD+0Z4anTkXzV7WOd562X12NiqYHjB2zpzfDCVIlPPX2Wrth5Nldp0ZO1+ft3jV0yyeI7wfVDjs1V6cslrnoC7IXz3tnlBvf81jcv2s7Q4Dd+5BbeGVdv/tXeSaaKTQD+/l3R+7+aQ9MVSg2XWzZ0vG4D2uWGx2SxweaezHdUYXU1eS2sGeqOz6PHF/naoVmOzVYYKKTYPZRnptxkqeawYyDPh28faffYfPjYAvvOFCnWXd60uYubRjs4PFPhmdPL7ebDG7pSbOvLcuNwAU0T/MVTE3z6mQmKDZdayydr6xiGzs2jHbxjVy+f3T/F5HKTct2li0i9oitt0/QCNnSluGdrNz/2psgvdGi6wlcPRr23bt3QwX3bztmSizWHbMJor63/29ePR8F9Q+MfvWXLK3rdLrRbNvWkefzkIl9+YRaBZLgjzW998AYOnC3zxMkl8imDIIyqJ9Nx4O+t23u4fVM3L06VePzEEkMdKYY7kjx0ZB7HC6g4Ps3YL/OBW4apND0+8cQ4nSmLf3DXGJomqLY8vvzCLKOdSR46usBSzeGn79nIC9OV9jv+7uv7+crBWaSEuzZ3Uay7PHx8gc60xXt2D6y5Bqg5PvsnSjwzvowQ8IN7Rtq2bRBGAUvHD88bH04vRvbSDcP5i8aNpZrDf/naUZ48tYyhC3YN5PiV9+5sJ9ADVFpREuKlkn8Xaw4ZW8fxJVnbuKSdUm54fPPoPM9NFOPArODH3zRGR9pqv3sr/qlvH1vgc/unOFtssqknzYf2jFzSRv72sQVeOFtioeqQT5okLJ2P3rvpsnPUUs3hE4+P4wUhO/tzbOlN8/XD87xwtsTh2Sr3DeXZ1JPB1gWllk93xuYn795IIKNA1opfSSJ5YGcfbhDJdXfEyXrHZqtMFhvcOFLgM3vP0vICDs9W2NEX9Xb96Xs3rlkFe2qhxoP7pwHY2pdhU3eG7f3Z8wKB89UWR2aqbOvL0p9ff/4sNlx+52tH8QLJz711C4dmKjxxcpnNvWnedV0/Xavmmz9+7DSHZyr05xIs1hyeOr1Mywu4f1sPd27q4vGTizxxcgnL1PnZN2/m+2+O1mtCiGfXOvY1CYLFQa37iSq7BHBUSnlJ/S0p5c8LIW4Efn6d37flEG+8+RZ5Yr6GBCaWm/zcXz7LH/7YbTw/Weaz+6fIJQwOpEv8+N0b+d4bB6k5PtcPnr9AuWNjF003oCtjMdxxZbJjz00U2/ryI51JrhvMU2q4/PlTE7h+eEmHgZSSbx1d4NETiwwVEgx3pDg4HWk4Z2ydLb0vbQE7udzg6GyVHQNZhjtSFFIm1ZaHrgmEgKWay8n5Gn4Q8oEL5LSenyzjBZLnz5bIJw0eO7HExp407909gBBRdocXhLxwtkzDC3jbjj72nlmm5YX8n4dPRgawpkX6/02PSsunM23xA7cOM1hIcGyuel6zz1YgGV+skVynvHw1B86W+MKBGRKGRrXlMb7UoCdr859+4AZEHOJdqjkcnCrzN/vOUmp6jHSm6MpY+EGkLb2jP0vS1JmttJivODy4f5pjc1V2DuT4x2/ZwmhXCi8IKDZdWl4UbS83XSaXG+wdX+buLd1MLjdpeQFnl+ucXqxj6IKmGzJYSJJLGpiaFuvFRpPFYycXCQKJbURVMLahc+emTvJJk0dPLLJcd+lKW3zj8ByffW6Kh47Mk7J1fvndO/nEY+P89bNnsQyNf/menRyZq/KNw3MYmuD+bb1s6s1w56ZO/vlfPc9UscGnnp7kj37sVo7N1ejO2izXXaZKTfpzCQxdsK03S2fGQspoQhjIJ1+xjLkV3r6zj2fPFFmutjixqr+CJNIy/9KLM9Qcn6VaFDj8zL5zGtdPjy/zqafP4IchTV+SNDVqbsBbd/by6188TLHh0pu1+Sdv3cpH/mxv3HAcejM2t2w4N+nMV1t8Zu9ZglDy/puGznMqrOD4UQXeWk7Blf4QQkQZ2Zb+2jSEX0k0IUhbRpTJXnc5Nlvh4WMLhDJ6l4UQTC41edvOXr54YJq/ipv6IgSFpElvzo7ebSm5eaTATKXJQtWl5vj05uyoag+wtGj7g9Nllmoue8eXWa57ZGyDjd1p/ve3T1JImmzry/L0+DKD+SSTyw2+cGAa29SZ3dliS2+GLT0Z/u7QLH5cEdGZMvnkE2f4xGPj7BrMsVx3abg+1XgMemGqzOGZCpqAL74wzS+9awcbutJMlZpYukZP1qZYd/lCHMAvNV3esaufg9MVCkkTXRPcu7Wb6+L5wg9CDF3jzdt7eHGqzPVDeZbrLn/x1BmeP1smYxvcPFJgKc5E6c0m0LRICxyi52pnLL0USImUkmrTw/VDjs5WOTZXpdTwaLg+i1WXF86W2NaXZanm8p7dA9RaPrmk0R77VnN07uX3KlK8eryUXkavhrSdYm0++eQ4L8Y2298+d3bdINjPfnIfJxbqUZD+l95Cfo3kqAf3n+XJU1E/hv/4laPrBsGmSg1eOFtG0wTLtfWljOYrLR46Os+ugdy6WYGn48BNEMKDz06vGwSzDI1Hjy9g6hrvv3lwzW0ADs2UOLnQIJ801z1mX86m1opUAixj/SDBgckSk8UGmoiCWOsFwR47sUDDk8xWWvhBuGYQTIiV7MtorF0hDCWLdYfOlMWBqTKPHltgutzixEK9ba8GEooNH/D5wguzfPvILA8fneffvm8XX31xhi+/OIulC2YqLaqtqLJlueGStgyqLZ8bhvP89bNnefr0Mq4fUGr42IZGzfF4/myJhuPHVQ0uE0sNPv7QcapNl5tGO7l7y7kElJWs5ISlcyn1jm8fm+dwLEvdlbFIWTp/ve8sNSfgfTcNnhdwuxyOH/AHj5yk4QRMLjfYOZA7z1Gxcv06Utaa9tR6fOXF2SgQaGr89D2bsAwNKSWnF+uYmsZwZ3LN+W01g4Uk77tpkGrr4rXcpdC1SIVgrtJqO+nWY7rU5JnxZTZ0pddNTDS0qDKr1HQ5Nlfl2YkSAH/wyOnIbhjKsbnn/LXcxFKDY3NVhjuTtFyf//iVoyDhR+4YZUtvhpPzNf7o0dOcWW5QSJm8eXsvlWa0lsslDD6zd5JvHJ7jwNkSCzUXU4OOlBXJXgYhYQi6Idr94HQR9bH9z187gh+AH4b0ZGyCUPJHj51irtIiZen8xvffwGSpyfMTJZwg5KaRPH/+5BmW6w66ptGdSbBzMEcYV54fmCrh+iEn52tUWz751JVXiKxWgJopK7vltcqL0+f6SU1XIpv2wlfzM/vO0pe1MTVBV9ZmpCPF6cUaE0sNDs1E82N31uYLB6ajPiqh5IbhHJPFJo4XcHKhThCEnC02+Wd/tR9N6OQSOo8dX+DzB6bZPZRH16Lqx++9cZCerM3uoRzji3UeOb7ITLnJsfkqhqZxeqHOSp7b+GKdUMKesQ7SVlRVuxJ0ny23eOr0Epau8dTpJepOwD1bunji1DKnFmqcFIIfe9MG5qoOQgi+eWSeD98+ipSSR44vUml53Lu15xWpivrG4TmOzFaxDI2fuHvsZSdwvhz++tnJNX/uh/AnT4zz/GSJrqyNjqDSdJmvOjx6fIHBQpLnJ8vcuamLrozFFw9M03ADGq7PA7v6z9tXw/VJmvplx/RXkzCUfHrvBHUn4FChwoduG7n8h96g/N2hOfaOL/O1g7O0vJATC3WeOrkQVwAJFmsO3ZkoWHK22GSm3KTpRjbfZ/dP8X8ePollaGzvyzK+1GCp5kSBrqTJL75zO2/e3svXD81xfK5Cw5MkDUHD9dCERk/G5sHnzvLlF+fb0ugi/jNbaiF0KDddUrbBj94RxgnsBtv7M7EsZY6/2jvJQjU6x5PzNZYbHj98+wh1J2Cp5qDrgrdsv7gYAKJx48H9UyRMnR+4dfiiarHLPeur7ZatvWm+cXiWmuNHsqbFBr//8MmoV6kf0JdLsKkrzeGZKvPVFiGSL784y4/ftYHHTi5RakQBoB/cM4wmBMfnq5xerCMBL5TsGevkv3ztKM9OlJBSMl1q8vfvGuPPnhzn+ckylaaHZWgkTJ3PH5jhbTv7mCo26c5Y1FoeDSdgqeHw2eeaLNQczi43Ge1MceemLo7MVtoJvQenyzx8dIGHjy/gh5KRjiQjnWlKDZehQpJHjy/yzSOzlFs+lqHRnbJ5844eLEPjC8/PEEjJbLlJywtx/JAgjHxPO+JChELSpOkFbOrOnKfCcGapzmefm0YT8ME9wwzkk/hByN4zRZ45vcz2/ixJS2fveJGD0xVqjsdoZ4p/8e4dGLrGX+89y2Ld5YO3DjPWnQbgr/ZN8vVDc9ixPOqtGzroWJWodXimwtcOztGVsbh7Sxd9uQSlhsdQIZLnBvjM3glmKw4/esco5abHyYU6O/oyfOnADJWWx3y1xebuDN938yChhEPTZf7o0dP05RJ89L5NLFRbCBFV4zl+wB88fKodxP1myiRtm0wuN9oqRd84Ms/pxTrDnUkaTsitG3QOz0SB31LDZedAjmLDI5QSIeGvnzvL6YU6uwZybOxJs/dMkQ2dKeYqDm/Z0cPzkyXu3tKFJsQF6kcuXzs4R9LSeed1/Zi6Fkl8t3xmK02Oz9X41NNnaHghP3X3GLOVKHiXsXXSlsF7bhhg91C+HdAqNVy+8uIsaVun7gYci4uQ/vSJM+w7U2Sq1GBjV5qMbbC5J8OJ+Rq3jHbw3ESJ2XKTU/M1MrZO3fGj+MRkiRPzNc4sNViuO5i6xtHZy7fouZY13rcDY/ExbxFCIKX807U2FEKYwJeBG4GvCiF+RUr51Ho7DqU8r1fEkekyn3pmgs8+N81y3eWmkULb8bClN0PN8Sk2PPZPlqg0Pd66o5eerN3Ourwc5Wb02SAM22WfK9HpxZrbbm45U2qtGwRbrLk8dmKRF6fKTCw32D10Tgh/Pe3hLzw/zRcOzHDn5k5++PbR87b7/IFpHC/k5EKNj92/mcnlBmnbYNdAlg/cMsyjJxapO8FFGTwANw7n2XemyHVDOV6cruCHkuNzNerbAwxNcM+WLvwgWqgfn6txfK4aBfxiqYRi3Y2dwwLXj6LkdcfnwWfPslRzzguAreBLWG5cXo/6hakyL06VCULZlkFbqDpxCarBQtXh4984zrePzuMEkRRj1fGwDY3ZcotPPH6af/PeXfzEPRv5syfGcbyQz+ydRAg4Mluh2GhxdLbOTKmJJjQCGbKpO0UYSo7PV5ESvvTiNLoQNJyAYvNcRwtdrFRjzeMFIbPlFpHQDaTMaBFadQA8utIme8ejF7vmRJPzVLHF+FIT24gaaYZVyT/5y2dpupGsScIy+N8Pn6DainoRuH7IdKnFfdt68PyQ+UqUQeoHDv/+C4eYKbfQhYhlLwVzlVa7LNzWYaLYoj+f4CP3buJ9Nw2teb1fLglTjxc6Fzcp90LJ+FJz3c9KaOspQ3Qtnj2zzP2/9RALNRdNCE4u6Ix0nKXU8Gi6UY+ZL7wwTbERNS2/fjBH0ook8uqOz//69gm29mb5/luGIC6VPVts8uD+KbxQct1glptGOtrZfaWGy18+PYnjB+wZ66QzZb2sTOrpUpPxpTrXDeRfklPg1WJFRme55jBbcTg8U22PpQs1jxenSnSkLT69d4L5cqvd1F0QZZ3PVlpt7fojqxowa4DrB3z/LcN868g8pabPjoEc5aZHuemyVHfJJQySZmQ0B6FktDPFk/UlhBA8f7bE4ZkyQkQSBWkrkjxZrDnMVVvYhs7mngxjXWkOzVSZrbSotKK+IpqAjV1pNE3gB2EshQCPnVjkn/zls3z0vs0cm6uhCcF927o5MV+l0vDIJk0sXcMyNHYO5HjhbImWF/DoiUXySZPJYoP9EyV2Dea5ZUOBUEbNkDUhmK20ODxdJm0bNB2fHYM5BIK66/PcRCmuXLNYrDp8ZmqSnqzNO6/r4xOPncEJfB7cP83uwVw7keDwbAVdA62uUWx4LNQcjs5V0YVg50CWd63RX+O10eZasRZSSl6YKuOHkhuHC694EoLi2vP4qobJXz04y2984MY1tzs2HyVKlVs+R6fL3L5GQKcjYbbHUc9b/01+bqIYye4BL0yXec8Na8/jf/HUBPNVh7PFBsW6Q2fm4iy8588U2/2wJovrz8+ffnqC58+WEAi+dnCWj92/dobs8fnImV1seEws1djSd7Htu1BzaLo+XgizpfWP+cTJBVZ6xD9+YoGfunfzmts14uYZgYS5coONvRcHRLoyNndt7qLS8Lhn27mKoS+9OMPxuRr9+QTVlsfeM0WOzlZZrK7fSLnqwecOzPDI8XlcX9Lwzu9FG0nTBHzhwDQ3DOcZ6UxSrLuUGx4tP5aVE5KtvVnu2tTFZLHJ4yeXWK67fPHANBPLDQxdsKkny6mFOst1l+uH8vzSu7bzrSPzjHalL+l4XQkCRj39NCaXmyzWIuf1kZnKukGwhuuTMPR2lmwYSvaNFyk3fBZrDoOF5HkSRw8fW+Brh2axDZ1NPWl+5PbRSzo5Ky2PfeNR4tyKzJgfyLb8+CPHF/jTJ85QdwN++LZR3nfT+sHWFS7sTXslCCH4wT3DFBsu3elLV1188+g88xWHUwt1tvZm2tKUEI3nT5xaotL02TWY47PPTdFyA7wgwDJ0pstN/vixcQxd8IO3DvOtowsMdST5Z2/fxt8+d5YvHJhmruIgZYgfQtrS+Z2vHUXTBMW6215nVFoez00UkTKSLD2zXOfobJVay2+/H14AjQuaf/sX9KmotjzKTUBC0or67+w7s0yxESWUNdyQ3/jSIdK2yUy5iSYE+8aXWK55SAFBGDJdbnDLhkK7d8/uoTx/V55jIJ9oy1u/HJ45XXrZn1Vce4p1l9XphaWGR63pYZkahVhudrbcwjQ0XD9kseowvliPpGNFlLW/vS9NteVzdLZKywvaslNIAULywlQFLwg5PFvl1HyN2zd1krIMPrP3LIs1h5MLNTZ2penNWhyfqzK+WMPQNeYqLUY6UxQbLgld547NnTx5aomerEXONtjSl6PpBZTiCpMDZ0vMVxwqjs/EcoOa47FYc+lK29wyUmD/RInxxTqbeyIH5/hSg31nikDkp3n7rksrhUwuR/3MV5ysa+HEL7IfyLa0+bWi6a7fofPAZJnpYpOK4xPGMpdDHSn2jheZr85QbvrsPbPMv3rvTr5xZJ5ay6PpBecFwb5+aI4Xpsps7E7z/ptfWZ/DK0koZdtv5/hqJTW53ODbxxYYLCR487aetoLK06eX+NILM5ycr9FwAwIZ+XfOWXKSQzNVEuY0f/rEOPOVVrv9iRtKDCFw4/7Bx+eqZBImc+UmoQSr7vLnT53h4ePzPDux3Lbtmu25LOSZ8eWLemnGnVaixIog8ks0HJ//t+8sXig5s1jnhuEC33/zMLPlVrvaaf9kiYVKi8Way+89dBIvCNnQnWJHb/a8ajGgnSR8eKYSB3sDzizVz/PvPnJ8gb3jRYY6kvzgrcPr2kMrdouUkulis92DteX6PHJ8karj4weSxZrL4elKJP0Yxj2RpcM3j84zW3E4vVDH0uH/PuZzz5Yu9k+WIql0ouqf3/7KEZ6dLLJYjVS4/vix0/zdoVlGu9JUW5FPQYuvWxCE7BzIce/W7uidPVvm5EKNSstnQ1eKx04socko8fjR4wucWWqwZ6yT771xkK8djIKic5XIL3NyvkbNCcinDF44W+Yvnppgttyk6kQ9YCXw9SNzjHSkODxboTdr03QDTF3jiy/M0PICbhntIGUbDBdSHDBLpG2dmuPxhw+fIpCyrUZ2aqHGaFeK2XKLfeNF9o4vs1R32did4rETiwghsHSN8aU6KVPjiZNL/PZXj7JQdTg0U6EzZVFquvzq+65H1wQzpSZTxQYI+Lm3brkosfHobJVQShaqDrah88/fsZ1qy8MLQr52aJa/3TfF81MlDE3j6HSJfZPl2H+lU0hZlJseHWmL5yaLTBYbPLCzyvhSnYnlBgcmS3zphWn8UJKzTSotl/mq2+7Bp4lorrUMrf3urXB8roauRXPSaEeK58+WePjYApVWFKtImhop2+T4XJWZUgs3CJkqNZmrtijFkqRv2tLNjv4cO/pzVFoef/HUBNOlKCg6XEgxU2nh+gEg2NJboyNlEYSS5YaL4/mcmq/x4lQZ09B55NgcvbkUNSfy16ZMg4MzFe7e0s0vvmM7lqHx+een+fMnz2CZOn//zpF2O6LhjiRfeXGWuhNQdXwKSZOvH55jqeby4P4pHD9kue5wthgFhglllChfbdER2OhaZOd7oeSpU0tMLjcuqex3TYJgQog/AzYD+znnq5PAmkGwuErsgSvdv3/BqGiZGlPFZrxwMNjWl+H98aLqzGKdX/viIaZKTXrSFjeOdvDM+DLvuK5/rV2vydcPzTGxHDk/P3TrCLmU2c4I2NidZvdQnqrjcVvcYHMt8kmT3qyNoUd6uLeNddCVsUkY+po3bL7S4n9++yTlhsuZ5To3DhfOK73M2gZTxSjquVhzcIOo7LTWChlfanDvlh4KaZP+NUr637Sluy0N+dxEkcdOLLKxO8PZ5QZfPThHytL58O0j1ByfJ08tk48lD+7b1sN0scFjJ5fww0i71BDR4B6EcDR2/qzH4akyEG1/bK6Grgm29J6/sL1hOM+XDsxgGxrb+zIgBKYm+OKBaUY70xRSFks1B8uIFnaOHzK51GBiqcFS3aE7ZfPHj4/zM/dv5k+fOEO55RGEEjcIqTR9/t++KZACQ4/0zDMJg2fGSzieR8uLJohm2cXQIimGuK8rEDeulZKZcvO8ZqGSKJNKCLB1geNJig0Px5dRb4l4uxBoej6eL2j5IVJCPY4y6CJqYm4IjWK9iR9I0rZByw85cLbE0+NL+EGUVZdNmhw4W6bpBVGGp9RxYkO/RJQleqrSxAuJS6FnuG4o/7KcCOtxcqHGbLlF03llDMiWL5ksrSzsJZof8vkDM3SkLRyvSSBhoery+QMzPDdZYmN3ml97/3Vs6klzcLpC0tBZrjv82RPjBCFs7s1QSJr4oeTAZImFaouTC3V+5r7NaJpoS8RAFLzZ9RKyi1fwgpC/fW4K1w8ZX2zwI3eMviLX4mqja6Ld6H71SOqHEj8Et+JgG1o7ALaynbzwA6sIie7PHz5yGjeQGBrkEgYdKZti3UMSRI6cIGSgkGKyGOnS/1ic5TRTbtJwIm3i91zfzwduHeKPHzsdGXoND8d36M7YvGt3P8+MLzNdatJwAxKGFr1LQNLU6U1bnFqss1xzqDR9TszX+eSTZ7h9YxehDPnEY+OcXKjR9AJ+4u6NvDWWg33rjl42dqf50gszhKFkYqnB/3v2LNOlJg8dnacrbbGhK0VHymZbX4ad/TkePrbAQs1ha1+Wv3fnBgxN8BdPT+B4UU/Et+3s5dRCjSOzFR494VJImmQTUXDv4FSZ2XILxw+YrzkU6x5B+P9n7z8DJMvu8z74d2Pdyrk6x+nJeWZ3Z3Ne5AyQBJgEkAqUREqmLMlBVrJlvbZsy7L12pIVSIkUBQYQRCBAZOxic5qdnDvn6q4cb/aHU10zPdM9uwsslqA5zxfsYGqqq6vq3nPO/0kecUMlHdboiQW6w7j54vbD4zv4ycTl1RrfvZjv/vnYOxQtdgd/emjfsOYXG9sPk25EpUMA3Iy1xnVBkO1t35R9Yanavfeenq9s+7h83cT1xXC71LS3JMHsG/wYt6sGPjlf7gzcfZ6/WtiWBLsRq6XWliTYy9eK3XXk2tr2+8OFyvX3acNd82bYbn4Y7AinVqvtrosFhEgNIF81CQdkyk0L1/Xekpig1HI37QU3oEgiSioTFUkEI8kQ0+sNDE3G0BXG0mGGUkEODyVwPJ/dPRGev7aO63miC8z38V0Ry/LqjIigTIV1+hNBFEXme5fyLJRafPDQrSIIgId3ZumNiZjBeEhDUyUy0QANU4hQbsRiuUWxblFomLwxV6Y/YfChg/189ewSL00WUDtKz1xM596xFP/sG5do2S6P7cnxxlyZuUITQ1OIGqroAN2mL3ip3OI/vCBcBYPJIAcH49w1mmQ4Feo6ywoNm1pbXENT67cKqd5JaIq8KVJnO+SiBvmquWXP9EyhyctT4vMJqBKFhoXn+ezvj/OL943yr5+Z5KWpAgFV5g9eX0CWJOaKTf5h8zwL5SYLxRam6+H54jtj2h7Vthg238hfuZ6I6BSEoTgrOd62265bICOSRZqW2yXN6qZHw2yiSNefxwdWqiYyFpbrElAVXN9HUcR1JUsS1/INvnp6GcfzOT6S5PlOVLUiS1zJ1zZFPb8dtN/duf8d/Iiomy43TygcH/TO9/PcUoV8R0iwpzeK5ThUOj10dIa5fYkQng9nO+kJqiIxlglRbtnEdNGVuNAhkCotm6l8A0mWSAU1Ti+UWa2ZXFkRaS75monjg+N46LZHOqwyW2hQ8mz+6I1FQprCesNCAgYTBnePplmpmuTrbVarbSRf9ExXW0Jw2RMNcM9YGtP1Wa2ZFBsWU2sNXM8nGdLErMHxyHVSV57txIQ9OJHZNPi+MS7qfQd6uwkQN+OJvTlOzZdFqsy70Om7ad6S3V7oWbdc3KqJ4/u4rugE2iCKam0H3/fJRHQaltuNrGzeRKpt3Mun1xvdGLE3w8XlKs9fW2c8G37X6ghUReZjRweYWmt0Uz9AuE1eny2xMxfl4ODWgva5QpPXZkVk8KHBxI/9tdZNh8l8neFUaJNL5Z3Ey9PiTP2dC6u8NlPi03cPEwuq/PNvX6FQtzqJOtxCSAG0bI+Xp0tI0F2rmvb1uVbnNkC56VBuOl3huIbPa9MFXrgGDWvzLmxjr7XVz7sZmirE0FNrdZYrLU7NV/jGuRViIYUHd2QZTAY5v1TFcT0ur9aFE79pMZQOcWa+wrnFKl8+tch4JsJdo0k+dLifL55cZKXSJh3Wuz30I+nNxPZkXnzXF0vC1bRdpOaGi0dXZSbXru91LA+KHYEbiHW3s+1m439Mx+XcYlXMIiUfD5n5YpMvvtHGsj0USUJVZHxEwlLTdK6L6zyx56NDDIV0BV2RKTSEKPm3X5xhoifC7HqTuul09gyCeLQdD1mWuuL9pXKbr59dpm25eJ5HqWVRbNp4nsVwMigMBg0LTZVxPJ9mp6ak3UliWiy3KDXFjEOItHwm12pUWza+7/PydAFZFu/lRidYsSkSc/oTQWbWmyTDGpbrEdBkptbq/F/fnwR8UuEAK9U2CyXhXOuNGzyyM8N3L+bxOkReoxMjvVJt48+V+b+/f41ffXyCgUQQz4eQrrBcudWkcXgowXrdJBsN0BMzmCs2+fKpRdZqJqWGxUKp2YlR93j6yjoNy+sKzUczERzXx3Y8TEcYHb57cZWW7TG5VqNte90OuJJmYVoeN95NPV+kB7mud8t14AHTaw3SUYN/9/w0x4cT+Ii+MMvxiAU1stEgO7IRPF+kVRzojzFbaKLKMjsyYd5/g7D6G+dW+O6FVZYrbcIB8V2XZRhIBMlEjG4UoSQJ4nCl2qbetmk7Pqbj4LgyttukZbtoijDFGKbCs1fWeP/+XmIhjS+eFFGSiiJxdrHG//Kpg8iSSMn44skFFBkemshy3440F5ernF4ok6+2ycUMSk1BPG68D0FJEt2i5oa7Uca0PQp1k+9cXN1UmXMz3i0n2F3APv92OR4/AjRF5saxYDKoc2W1Rt0UOc+fu38UteOaen5ynflik2rLxrRdBlMhptbEYPSpfT1vKfd54+CmKhKpyOYSbEWWePJN1EEgFJu/9OAYHz0yABJv+nODukI0oFKsmzQtl7lCcxMJ9v4DfVxZrREzND7/8iwDyRC26zFbbHJ6vsLu3gi/8uiEYEhdjy+fWmK12ubRXVn239B1c3Q42X3eb5xboWE5WK7LWs3kvft7+db5VVq2y2AyxLHhJJP5Oq/MlLBdsWhpqujUKjbffCi0r09swM4uVvjOBREX9pEjA5uIsAP9cY4OJ1kst9jVG6NhOvzeK3N84/wK/Ykg7z/QywcP9RG/phE1FE7OlFiqmDiuh+PCSq3NldUauViAfX1Rzns+nifKKB3PR/AewkmoyRKNto3jbV5sN0it4E1r2sYiv1UjoOf7xIMaddMhoIlSaV2WqN403xIkltrJ9Xe6z9sbN/iLD47z3LV17p/IkK+2OTgQ4+pqnan1OpdX67ieOIAnOod0MYPwed/+Pq7la5hzJRF3F1DwfXBdn2BAQZIlvnJqiQ8c7BWKjaB2C/n4dnBxWfTP/eBKHkmWkW4YI71TF7zXiXIcTAZJhjWKDWEF9jxh83Y8n5eminzq+BARQ+U/PD+D78Ng0qAnJqL1HrpnmMVyi4WSjqGJ+Mp/K8Gnjg8xlgmzuzdKw3R+6AG1hBgWwNsrBbUc4SLsiQe2dYH+OPHe/b1879Latn/v+dDews15O0gIEtjtDB0dD2qWyKqumzYN0xGbjE5U1dRak/lSi5VKi0wkwFKljarIHB+JcfdYiv/1m5d5ZbqIaXuYrih6LzVt0uEAf/XRHfzWizMUGxb5qslIWme9LhT0tuszmg4Lx2TLBglGMyEOD8UxVIWVSovlShvf93llusDPnRjma2eWubJaQ1fh5ekCmiJzdDhBJKDS6MQUrlbazK43+Zm7h+iNB/nk8UG+fGqRuuVQaVpEAiqGppAK6SxX2uzrj3FoMEGhbvHqjPg9fuflOX7qrkEuLFUJqEKtpMoyruthaDK2Cz1xg/W6zfR6g48cHqDUtDk2kvgRPu07+NPAxoDA99+ZwuA7+MnCW13ngoGth1wLNxDb7dtsnRz3+n24bW//wBsehsTW9+7+2PVRZjiw/bqTjehMdgirsez2ivYbMbFNR2k0dP3n3O4yUCWwNw44b7FjZLuhw+n5cvee+8WTC3y8Ewf+2B4xfPR9j6+cWmKh3KLevm1K+yZsfOYBBWRZRu6QComgho/EY3t6+E8vzzJfbAp1Z1BFV2X29cX4mbuHqZsOL0yuU25aTK7VGU6FmV5v0J8wODgY65IPGwTMhaUqlusxfRuSSFXkTQKekK7yC/feGq1Zalh84bWFrrs6GdK5lq/zxnyRM/Pl7gDA0GSWSm3+3bPTVNo2hqbg+R6qLJOLGeSiAR7fk7ttHOJazUSRJeqmw4WlKoos8Yljg5sGvo/vybFcblFrO3zw4NYE348DG0fSrVTbT+7NcWAgRjKkd3sbqm0bVRafybV8Dcfz+dkTwyyW2zQtl5F0mJemi/TEAvTHDSptR5BcjnCkX83Xun0QdtvrrAfic2vZ4s8b6uwN1E3xp41X+Hb31E1LKPIUSfQkd5XzNz2R63lYnvj/JddD6fQwqR2RlITHQrnJatXk9HyFctNiqdxmMCGidPa8dR3pHfwZxs1XigzIMvTFDf7eB/fxT79+EVmScD2PtZrJWs1CkQFfwvE9MVidLuJ4Pnt6IxSbNocH41RaDr0xg525CKWWjYw4G5iOR9sRKTAXVqqsddJ2NobXuioTUCRkWebe8RR3jSaZXBP3cg+JtZqJ7Yoz/nypRaWVJ6QLZ4Hnd1yziowiS/TFg+iqzLGRJEFVYWqtwUJRxJeajsd/84G9/OJ9I7Rsl1zU4GtnlplaazC11mA8G9nktG1aN6abXF+rKy0bXZG761XU0Hho59ZxvzfD9/0fOVbwxnnLdsKFDTgdQY4HSJ1EFd8XvdCuK0iwnbkoT+zNcWmlxiePb67auG88w+uzRfb2xd5y+sFrM0VqbYfT8xXuGUvfEjl3M0zHZbVi/sjn58FkiMHkZnr3e5fylJs2c8Umu3ujW8Ytf+/SqnC/F5vs6on+2DvRvnxqkdVKm4ih8pceGv+xxEyOZUKcni8DYg9yar5EqyPm9HyfnphBte3gtJ0t1yOn02V1898FVHGtVdrupjXOB3zPp2Z7W4qZ3uqaZ6hivZovtUhHdVRFoWW7KJLEl08ucWw4xaeOD7JcudaZG4lXYbliLujhsVa1qTSFA/zUfJm27XXd9G3H5S8/vHUqwb070rw8VWQ8G952L7pSafOHJxdElHRHvH9zhstWv6vc+f8VSaJmCgJalSR0VcwWN4gbTVGJBXXh7pGlG1x0ApIkYdoujiPmKJVOFcNa58CgKRJXVutIQCKkkwrpFOsWQU2kBHz0cD/HRpL85vMzwpnUsrFdl4bpokiQCGnULQdNkZEkcb8QUXtCgGY74vONBFQ8z0NTZNqWQ91ycVwPHw/LhURA5cx8mUwkQMtyxPvp+4xnwpRbNqOZUMcYoHBttc4bsyW8zn0pEwmgSKK77lq+RsN0CA8meHhXhnLLIR3WeGhXlqm1Ot88t8JCp1JmNB1moifCgYF4R/BwK8E8lglv6pHNV9v4Ppi2y6szBeptB1kSa4rk+yjy9QqMXT0RDE3uxF+qhHWFyfUGhbrZNT9swPE2E2Bwfd01na2vBtvzWa20SYY1nr2yTqMj6m9aQoCSjmj0xg3+8sM7iIc0bNfjd16apdS0uWs02b23+b54nrW6EOXJkpi9BjWFjz46wO7eKAFVIawLs8ViqSXccB3jh4Q4N3i+WNscVxDCjutjaDLfu5xnR1a8F5brofgSddNmrWZzcDBOa90lGzUwNIW+hMHvvTrfjThUJBFzvLFuSUA4IBMPauJ6UiSQJNzODL/t+GS3SL+7Ee8WCXYO6AWWfxxPfvPaank+puMxkg4xmg7x3LUCiiJxz1iKY8NJvnVhFc+HByYyPLW3hxenCkyu1TEdl19+cHNRsuf5txTpPbWvh7GMKGL9URY8VZHpuU1Z3I2IGhr//GcO86++P4mhyUx1CgUDmsxcoclAIshgMkTTcrmar+N4IqoLYLnawsPn7EKZ9bqJLElMrdU5u1Dh7GKFX3t8omvr9X2fb5xbYWq9QctyeGNO2Ht7ogGemyyIA5wmc3w4yZdPLWK5PjFDwXI9HNcnHdIxXf+Wg9xWCOjiELxaNXl9VhA2ouD6OiHjeqKkcjglSL2Xpgqs1k1apttVe/z8vaPctyPDM1fyzBdF1v9cqYlTbKIrMvW2w+m5svisOjeo3liQ5WoL191YjMXR0HHFknTz61ckiBgaPjatznRG2E/FRed4bldNLQNBTcb2fFIhjZrl0bZd2o44EG8QbIoE/QmDTMQgHtS4tFyl3raxXJ+gKpMIafz1xyc4OVvi/Qf6WCg1+eaFPJNrje5hWeqMuFRZQpIUYkEdx/MYSAWZWq/jI1FpWfiIg0oyEqCnU7776kyJyXy9k0U+dtviwtthI8YhpKvdxVBVJWpNkXX8ToULOJ4oDL93R4qW7aEAr8+VadkeEhA3VJYrLdaqJpbjMV9qslJtM5Ky+LUnJkiGdT5zzzAfOtTHV08voSkKTctjer3BXaMpPvAmw5flSotXZ0qMpkNbKr5URean7xpkvtRi59sgFb90apHFUotsNMDPbzGw+nHC8+Grp5YwVIn2DYur2rnlOT7bKr5uhgTEdAldU8S/A2qmg+uKa8WyXL56ZhkJcH1B9CBJyL6PKvs0TNEPMF9qEQ9p1B2PtWqb33l5lpm1BoWmhe/7BHWlE1/h8Op0gReniuSrJqoio8gyF5erJEMBZElivd7qxlskghr9iSB/+z17urnEyZDGG/MVPM8noAqy+OxiGdfzee5aGVWWUCSJs4sV+pMGxUaIWkts8jJRnZ89MdzZ0Pmiz2OtQTZq8NzVdcayYT5+bIDVikk2qrNUbvKfX55lZl2op88slIUqPRYgFdK6Gd1P7e3h9GKFZEhjcq2B5dpczdf50qlFPnJ4gNH0WxtE38FPDgKq0sk79zG2OEjfwZ89qNA9qERuI+C+0TGUjW2t3F26TTTgjRhKhboO6d1bRP9thaa59U5sJHN9vb8dCbZB2oo4lrc2jlirW/Qkb71PTdxAosWM7X9mLhZgsXLdTfBWsN08b7nSoNKJl7u4fN09N5GLMJGL8C++fYXJtQYN02Gb8+W2CGky49kwA/EgKzWTq/kaxYaFIssossjrvx53JQih71zMc+94mqevrHFhSez5+uJBwrpMOhLgyFCCnzo+SLXtEA9qpCMBFopNUTzfsPjkse1jpdbrJjFD23JYtwHf97Fdj40Q+YlsmJNzZVRFZrFskg4HWK9bhHRF9Eu4IlGj7bhYrojkrrWdbsTVrhsIT9/3ee7aOms1k4d2ZslGA+zti7FcadPouAeSYV10W95AgsWDGn/tHS6ifzOUGhZfeH0B1/f5xNEBcjcJESVJ2tQbNrVW56unl1Fk2NcfY7AjNAyoCn/vg3tZKrdYLLU5OVdCUxTuHkuRr1r0xg1G0iFemS4yV2zSGzfYPxDnD16bx3Y9cpEAibBIc8AHWZGwHR/X828R471deIgzbECRbtmH3+xk3JjZd69Kf0MA2PkPSQzh6m0b1wsQ1GWODSfZ2Rvl2HDih3h1AsE7mpA/U7h53uIBvifEfG/Mlzk4mCCgKuRiAdZrbRZKosd7o7OuZXvUTZuQrjKejfIr+3v4Nz+YElFKisz79vdy30SG///3rvLVM8sEFIloUKXSEJGtuViAcsNCkYUIORnWUYhgeR7JsE5AU/knHz/AV08vMblaI6+rLJabuJ5Iowh0hm+CHIaQLlOsWxi6wt5ejfsmMmSjOi/PiB5Hy3XRVJXTCxU8zyNqaEQ7966eWIArqzUMTbklpnZfX4zZYhPH8Tg8mKBuOnz97DKXVqpkIgF+9p5hElsMWreC5/l8+fQis4UmD+3McHxk+5ShN8ON85b7xm//PCKqVcbv5LFlwjqRoMZiqY0PTK01ubhc5Vcf37nlvz84GN/WQbUddvZEWa8XGEwGCb2F+dofnVxkuSKqHj5zzzubvrLR+ZOOBLYlDHs6zoR0WN8UGfzjwuWVGpdXavTFDXz/1o6+dwLHR1KMpMN849wKlabNxeUa1bZNIqgxmAryuftH+T+/c4Vnrqxju/6mWdnGunIzmSUB+/rjpMI6L0wWqN+UGtRy/A6BIGY5nutRNb23tO5p8oYAKYDpuEQMlXzV5OBAnFxER5JkJnLRbl9XLhogFw0QCQhhkuf5HBhIcHKuBL7VfV+DukLbdnlib47LKzUOb9MNCnSj5G6Humlzaq6M6XiMZkL0J0Ks1jYnOmwQXlLnTRP7bx9NlpBlsG3hFpJliUhH4K7KEoPJEEFd5exCGUVG9Ih2Zje6KjEUN8hEDdYbIgo2rKtkIzL5WhvHk1BkqRNRWMN1feaKDYK6KjqbTOHoKTRMLq/UGEmFMHTRqf6fXpoRriAkxjJh7hlPkzBU6pbLJ48NYGgKK9U2ZxYqmLaDL0loqkyu08fetD0uLFYxHQ9dUXBcl4YpZiypkIauiS74w0NJIgGV4VSQu8fSTK7V+K++cJb1uknUUNFkiWRIx/F8qqYjhEaOR7VtU6i3GctGUBURuWc7Ho/vyXFxqcLpBZum7fAHJ+f57z6wryvqOj765mL4Q4MJ1usWy+UmqiITCqhYjkdQk5FlGd31yIQD/P0P7eOesTT/5GsXuLJSIxfVCeoq5Zaz5dnPdSEakLvVORsIqDISUsdZt/nfSAhzTTosYhcNVe6sbwpBXaHUtCk1bSotm3BA4aunl1iutNmRjXBiLE25KfbD63WTYt1kb1+UYsPm+EgSyxHC86VyC8vxOD6SZKrQwPXFfF6SQO+kqWmqTF8ixI5MGEWRaZg2/fEgk+sNQHT/Tq/VmczXCekKAVXBcTyu5mvMl5osV5rMrDcwNIV8rY3r+kwXGgQ1ldVaG8/zaHZqlwKKxI5slOVKi7bj0bQ9DMVBU0V/7s6eCKnI7dfYd4sEywAXJEl6BeiGl/u+/5F34sktd/Mh37Q92rbHzpwgF96YLwESsiTxwESG//mTh/jmuRVCAYV9/VH++KzI4tdVmcVSk2trDYp1i9VaG9vx+OChPsazERzX4wdX1zBtj0d35wh2SqqXK22SIX1b9v+HRdt2+ca5FVzP570HehlIhPjAoT5enioSCahEDZXfeXmOassmGw3wmRPDrNVMXrhWYL1ucnwkQaVl07ZdWpbLf3p5jolchHRYp2U7zBab9MYCXF2ts79fsN+m43JppYbtejx9OU/U0ETPkuVycbnKet3EdDz+j+9dJRJQGM9EODqS4uUpUS7bcj10WX5LC9dGhGBQUxhIBpEl6RZFqarIfOhQH1fzdQ4PJphcbeB7oouj2rKZWmuyWG5xabnKzHqT4U6UpKYqrFVNSi2bWFDn7GKFK6vi9zI0hZihEjWiLFWaVFvicN52rnfLyRKEVDA9Cc/zGezYak928sA3ENAUBpNBVsstmp1IQ9vzSYV1mrZHLh4k2Xn/VFlivtgQpEBnsW+YLjuyGvv6YkytN7AaFo7ns960+N1X5zkylGAkHWK93uY7F1dpWQ66IqPIQrmSCGv0xw2CmsKFzudzblHEURTqNvGgiuWIw7QEtEybdDTAzlyEKys1ziyUqbYdRjMhPn33rb0O1bZN23JvGRDciP39MRzPQ5Mlvn95jbbj0mg7ILlveWi2FW5WvioStB2PZy6vo6sKD0ykOTQYp9J2ODgQR5ZlfveVeS6uVJkrNqi2HAKK3LUugxjShHWVDxzs40tvLCJJt0ZwbofvXdroiKiTjQS4sFxlIBnctPFJRwJdguWtotQQKqNyh+R5NwuEhaXYR1VkYqpEPCiITFUW5CmeIE8TAY1CU6jkY4ZMw9xsyTZUCU1R6E8ZaIpEteWSr5okgnqnv09BlqRuZ1c4oIImYjUWym3sjnLM6ljFPR/SEZ3zyzXA7+Rc+wwmw4AgXHtjQV6cKnJxucpypc3BwTjlpk02apCLGbxnfw+vTBV5faZE23KJGir9iSClptX9jHb1xvjc/WPMFBq8Z38vpxfKzBSatC2H8WyI2fUm4FOoW5RbNvGgzlA6SL3lMJGLMl1ociSk843zK6TCOgcG4t0IgS+eXOSxPVl29UT46pklTs+XuZoX2c1eZ5ft+R5eZ9i1uzfGmYUy372cFxZ2Q2UiGxExXZ7PZCdzORcL3DZq9w5+8lBu2l1lWan51t0md/CTi3hYpdCJQezbpmsJRBxZrSMOCW/TnbMnF2VDI3a7u/9K5fqBaaawfZzgjQNuSdp6Db60dN1RVG9vL1UJamqXCLsdgRvWZRqWJw7kqa2J+temr++fCo3tr4Mb3wP1Nmp1XaYbr6hvowJfvqEvqb0Fy3XXaJKvnV2i2Lj9e7/Va1RliZVKGwkJyxX7PyQRb/0n55bRVZmooRIOqCRDOtW2Tct2+LfPThEJqPTEAyxX2mSjYiD860cHGEiIHrGlSpvemCEUmy/PslBqMZQMiu6cLfCDK2u8PlsiEdL4+XtHtnRnlZsWv//aPI7nc6LTd7C3L9qJnPE5vyTiyd6zr4dPHBvk8mqNs4tldEXmyFCSuWKDPzm3Qt1s0LY9/uSsELXs7BBhq1WT12bEZ6zI63z0yAC6KvO+A73cN57mhcl10pEA/be5Xt4tzBQa1E1x/U6uNW67xwVYrrTxfB/PFep4EWUsImJCuspELkokoHFuqYIiS3x0Xz/PXFlDkSWe2tfDSDpMsW7ywEQGCZ9nOuv8RE+M/+FjB/jdV+Z4cXIdRZJ4o9PB57iuEE/414eKInEAQho0rDcXG0Knf43r31lVForire4MPmLY4noi1r57H/FENOfVfJ14SCMTCfDLD44LUZLnM1tokAzrbzvS7cdsnLiDdxg3D/o31pqVapt/+d2rHBpMcGI8xV+4f5QvnlygbrokO90rc4UWrmlRMx164gZ7+6I8d3WdyXytI3iFb1/K87Vzy7w+U6JlOTR9qDbE4wud4dzx0SSzhSYvT5cwVJlKW8SplpoW1bYY/n7q2CDfuZTH7gyc16om86UWlusyW2iSDOt4ns9qtU3NtIkhOshiIZ3ffG4GRRHnlJF0GF2ReWRXptuNtIG7RgVZEA4ohPTNa/tsscmVFVFRcW2tzvnFKs9dXWOtZnF0WGG9br5lEqxhOcysC1HzheXaj0SC3ThvWa40b/tYGVAUQYKpEswUW/zNJweIBzUWyy3GsmGKjevRxW818hBEh9Jq1eShnZlNSUj3jqc5NpxEU6S3dBbe2E/f+DreKbxvfy/HR5IkQ/q2r+W9+3s51nnMzYL5HwdSYZ2BRJBkWH/Hkna2QiYiRLmFuslvvThLJiIELZ86PshCSVRSZCJ6p9tS3ANkScwCNvq8boSmiMyla/k6tr11nLTnCzdSb0yc06vm9v2sG9h4HgnROasqEl7dZCAR5ORcmXvG0zy8K8v9OzLkayb5apsPHurjsT05PlEa5PXZIisVE0NTeGx3jhenCkj4pMMBntrXw9GRJH3xIAduSMy6Ga7nM19skukQa7d7tQPJIKbtcv+ODMOpEKfmK5tmXCDcQ5oiEdBEvGFI12hbLqoCtiti52zPg6aDjI+qKMwUmmQiOk270z2LREiXkWSJkCrREw/yyJ4cz11ZpxKwqTQtfCRCAa3r/Dq/VOnEyjmd+GUHQxNpZ4os8cZchcsrdcIBlb29UaIBMV/0fSFI+JtP7uq6Ws8vVvjSG8tkowF+4d5hvnNxlam1Rod8z5CLBfjtl2YpdXrio4ZGSFc6CUJi3296HgcHEmQiAfb0RjkxnubCcoW//jsnsV2XWvt6jPZAIki906d2YjzFucUKy5U2iiSx3rD4xx8b5bdfnOXkXJmLyzV64gaJkMF4VkQTDidDvDxdYKbQZG9fDOMtuEqDusIHDvZSa9ucnC9jqGIuqyhyt2vY0BTOLAhXq6EpFOomlbbNAzvSHByMU2laTBeam2bPkYCCrimYto3lbaQVQDyo0rI9NE8kT3i+SBlQJLEnTYUFD1FrO/j4pMIahYaI2MxGRYfXfKnJqYUi/+d3rlJp24ymQ5iux+m5Mi9NF0iGdHb3RtnVEyUbNeiJ6Xi+mL+dXagwUxDCh909ES4t17Bcj1hQJ9vpdtNVmaAu87MnhlipWdw3nuLcYpX5UhPT8bm8Uu06s2NBnd29ET58ZIBzi1WKDRHPLkk+a/U237+0RjyoocoS946n+MqpJVHR4vgkQhoBTeEDB3r4f34w3TWhbNQxgUfTdLrpXNvh3SLB/tGP88lvHrQXmzZ7+mJ87NggKhK/9dIs8ZC4wADmik0KDYuVqofv5XlgR5pUWEdTZOZLLU7Olig1LMoti7FMmC++sUhvzKA3bnB2QbD2saDGAxMiZ/TsYgVNlhjOhDjQH2f8Heha+tb5Fb7fOSQNJkOcW6xw73ia+3dk2JmLEjVUAqrcdTmYjkfM0IgZGkNJYT/tjRvIksQfn1ni2SvrlJomU/k6wYE4x4dT5KsmLdujJxbgxckCL00VGMuEmMhFOL9UIagrNEyHAwMxcjGDY8NJptcbXFqu4ng+iZ4o6w2TnbkoZ+bLNDpfuImeKMWGyW3mKoAgkEAcwq/lYyiKvCUhMZ6NdN/TX31iB+dXKlxbrRHQFFJhDdfz6Y0bXFoRUSPFhskL19Yot5wuQz25JgqlZUkotIZTIS7n65wYTfPyTJFa2+7GhXSz3GSJoCKTjQTY2RPhrz66g3/w5XNcXKnhOD66IqMrMqsVk7rtYTkiGzuiq0SDOrmYUNKWm7bYTKfE4rdWtzoWUZWYIXJtfYRDQJLoRhfKwmTG+aUqmiyYbVkSi2ixYdGXCCIBEz0RrnZ+96CuCAWE6xEOKOzIhTliaLw2U2J2vUHNdPnyG4u8b38v86UWuiqygV+ZLtIfD/LI7lz3fS82LP7zy7PYrs8Te3Pb5l3LssTR4SSeD9W2xeWVGiFNpm071Ez3bUtYZSAUkDd1pIFYFGVJwvGEjfvCcpVPHR8ipCs8sivHS1MF8rU2i6UmsaBGWFfJxQzuGUuRixpUWjZ/8No8puPx0SP9fPY2ObFbIRMJkK8KpfUPrq6zVG4Jh9CPmOX+vgO9nFussqcv+q4SYCAOtIOpEMvlFqPpMA/uzPDydJHlShtVkVirW2iyRMt20Drv/3gqwkKlxfoNQ8xEUEeRJRqmy4H+GOuqJbKPXY9UWKdtuxi6iiRLDCaCHBtJUmvb/PGZZapth3BAIRsNcTVfR5MlemMGlud1Y0RSIZ27RhKko+LgPFds8vCuLFdX65SbFplogGRQZ15uslRukY7ovDYj7uNBXSGr6CiyzFAyxPcu5ZnIiaGdIkt85sQwtius+f/gy+coNSyiARXfg1zMoD9hENRUam2HfK2NZfsEdZVQxw7uej6XV2oosrC698QMvn9pjXy1zR+81iYR0snFAqzVTDRFxlAVYkGNluVwaaXK1HqTEyMpJnojFBsmc8UmxU7HyCO7czyyK8vzk4WOSECi5y30mdzBTxb29kVF54/nc+RHUM3fwU8OAjcMA7XbHZhuvKV7W9/fq7eJNrwR6WiQqYKIquuNb08khDsqQkWC/uTWpcCZ6HUyRbkN0bSzJ8IPrq4hy4Ko3w5DySAzhSZRQxOxFFvgxiHR7bYFpdb1tWV6fXuXnFgv/Y47YetnPDKY7Cpie2ObCaT1TnfaseGkUDm+FctzB4okXDK+47FSFfG98aCG4/okgiqpkBhc7O2L8djuDIam8idnVzi/VGUyX2ckE8au+wwlDcIBjblik1NzJb56WkSVxwyNk7NFdvVGWSq3iBkahqZse//YUJSWmzZN0yUeupUEmyk0aXQU2L7vc/9EhkrLptyyuz9zqdzi9dkSw+kw94ylNnXZDCaDKLLEheUa11brWK7Hn5xbYSwT7v7+G8rhvpu+n/GQxvvfxajDN8OOXIRzS1Vc12P3Nm7DxXILTZHIRY1uH4SmyNy/I8OJsTSeL7p6N9AbN/iVR3Z0ldo3ngXvGbs+uF6utNjXF+8occOcXazwc/eO8MljA/ydL5whGhA9a9mUwVyxJSLh7OuxiHt7Y6zX21iuLZTNNzFhSmdAsvFt3jiKiavFB0lGlkTPmAzoCty4VW/bHl4nCmfjknB9WCg12dMX4/JKDb93Iy5N4Zkra5yaF2kbn71/9G0JQkO3caHewU8ebh70y50zq67IOK7P1FqdWFBjudziuavrtCyP3b0B/soj4/zL717j8mqNStNmeq1JJmIwW2iQCAewvTaj6RADiSBXVmud4ZWEpor+m7MLZVLhAG3H4337+7m8WuX12TKO51NsWDiuT9EWsVqrlTYvxIMMJoO0LJeHdmbRFZnfeXkOx/XIRYU78+pqnVemi7QKDZHAoitcWq6Qr4t402xE58m9PfzaExNEja0Jq2x0a1FCw3Q2/bcsQ388iO367O2LMZZ563OiSEBlb1+MmUKDo7dxo7wV3Dhv+fxLM7d9rAsEVRk1qIqeJkmsuf/rTx3hhckCTcvpCvLOLlT47qVVemIGnzo+eNuI3NdnivyrpycxVBGv+9N3DXd73Pf3x2/rZL4Z7z/Qy/ml6g/V4/1mkGXpTatK3spj3kk8OJHhNa3Ent7oWyYcfxSkIwEe3Z3l62eXmSu4vDhV4NhwknRECL1DuiLiBH1fJKfIEhKuIMUQFSmeJ/ZES+U2+arZ3RJvuJ5u3HXZjk+pKWpfdFW4ojdGcls59QMKKIqC5bpIPp0KELEmB1SZSEAlHtRZLLX4t89OkQrrrFTavGd/LxIwkhlkodjC0BT+4LV58lWxv/aRODoi5lrnlyrs6d0+0vNb51e4tFIjElD57AOj2373h1JBDg8mqLZtMQNpWaiyhOOJtdbQxL9TZImQrrK7N4qmyN19SLlhbRJytSyXoCbeRU2VMTSF4VSQQt0mEhDEliKLCMSW7ZGNBPh7H9zDH7y2wHKl3Y1klDui51pbiJQDnW51SZIYT4foTYS4tCJqZZqmg6pIhAIKo5mwcCTic3gwsckNe3m1huf7PHd1jZihcs94mv/2g/u7JOGGqaTUsLA9T0TahnSSkpg9BlSFoVSYp/b1MJ6JMJQS+8nnr62zXjcBEVmoyhK5mE5AVbuRpd+9mCdfbeMBE7ko9+1I0xsLcmgwwXNX16m2bWptm/vG03ziaD8Ny+XcUoV/88wkbcfjxcl1Ht6ZeVNhFMCF5SpL5RaHBxP0xAIdE4nPRDbM63MlZImu2CpuiGQH2/VRZZlPHuvl2mpNpBx5Po7vI0sSe/piNC2X8g2C2ZAm8+HDA3zl9BKyJBELqKzWzS5x2hMzQKIj1tYwXQ/Hk8hEDGQZlsptVEnh8kqVyytVSi0RNTxfavKDy6JrOBpQqbVtduYifOBgL2/MVzi3KIQcR4cTrFTFd+b8UpXvXFyl1rZRZZl4SOOTxwbpSxhcWq7xsaMD/N0vnGG50mI0E+a9+3uJGhoLHe6gaTpIksTxkQR/93178Hx4Y06I7ZJBIThQZYmW7TKUCnH/jjQPTGR49uoa63ULWRbxxdmITs10MTTxZ3zRTSzJMgFNYU9f7E0jf98VEsz3/Wd+nM+v3KTOsWxhMfzj00u8NlNCkSWODCW6XVe9MQNFlri4XKdlu2QjAZ7c20MipBMParw2UyQaVIXNXoZq02atZlJr2d1h6cbGR1yM8I3zKxiaTDZq8L/81OE3zTHeDo4rnAHnl6qEdZXlSp3RdHhT1vSNm66PHRngWr7Onr7rhzhdlRnqOKIqLZuwrjKWCdFecdEUYa/c2x9jodwiHFDZ1RPlP78yB8D0epO/+ugOfB9enCzgeD4DCfFcD+/Kcnwkwf/0J5e4tFzl1HyJvkQQ3xO5o4oiEw6ofOaeYeptm2trdXxPbJpq5q3ZwRuRAulIYFtC4oXJdS4sVTk+kuTIUIK5YpPP3DNEpSlyTu8bT3eJs5F0mNn1Bv/rty7jeHQK8hTu25FmvlOCbrk+6WiAaFDnQH+ccssiGdS68Qq9kQC253dyhEFTZVRFotyyaZguf/grD/A7r8zy/Ut5ZguCbGnbDpW23clCVRjJhPjwoQGurNZ4baZEzNAYTgbpSxisVE2CugySzEgqyGyhBR2V51gmTL5mkg4rZGMGj+zOsFgSKpt83aRQt4gFNTRFot52WCy1OTgYYzAR5NRcpUP6BJjIRFgstYgaKgcGEqxU2hwcirNYErGYlZZDzXToSwQZToe4tFxjudLmhckCqXCgG19QalrYnRPwxvf8dlAk+N6lNVzPJ6TLJMMBPL9Fy7reRfBmUCUIda4d271+iFAkOD6cYK1uMVNo4CNcRKuVNulogIih8sjuLM9eW2NvXwzX8/nI4X4e2pnt9jnMF5td1cjkWuOW/O83w1N7ezgwECcd1nn6cp6lsviO/agRCCPp8C0lq+8WJAkODySYKzRFjKksrtfBZJCgpqCrilBm+IJ8TIU1elNBEpEAJ+eKwvqtK+SiAQpNi7CucG2tQTig4vo+IV1hf3+MYtPG93zu3ZHhbzyxE88XxNFUJ/6wN2awpzeKKkvEgxqP7+3htekS5YYYUk70RLlnPM3BgQTPXlujbXu4HuzMRTi7GKQnqjOei3AlX2M8G8G0PdZqbeqmgyxLJHSdnlhQEGJbHFo3Nq1RQ+0S6ReWq/i+T7Unyn/7gb3Ynsf5xSqXlqtYjsvhgQRHhhIossSxkSSvzhRJBHV0RSJfMyk2bYK6Sm/MIKCK2MMDkRim6/HaTIm1qsl6zURXFXZ3lPR/5ZEdzBdbBDSZUt3iWr7G0eEkj+3O4ePz6XuGfyJU9Hfw9qAqMo/eIDC4gz/7EOuUUB8nQtuLILyOks/3b42I2cDunusDnLC+/XryC/cOM1tooMgSP3PP0LaPOzqU4uxCmUynF2EraKqMKovXFL3NftV2fXRVQZag5WyvbApoMgFVIajJ20Yg3zOWQZYm8XxBmm0HQ1O6AphEaPvXlokIJ1VUV9DVrR+nqhKGLuM43i358F87s0yxIfYUmUiAxXJr28/oRoQ1CUNTO1FEEnJHbJWNGPTEg6TCGomgjutLXF6pcXK2zJN7czy6Owv4tCyPy6tiaNIfMzi9UGZHNsKXTi2xry/GfLHJ/v44F5ZrnF2scDVfpydm8LMnhm9xHGzgwZ0ZXpwsMJQKEd/m+ziRi3BusYLr+ezpkFulhkUmEiATCeD7PifnTHrjBtfy9U3EDYj72AMTWR6YyPKlNxaZXm8QNdTucCioK/zifaM0TOdtO+LfbcQMbcu+tA1cWKryzfMrSBJ86vggg8mQ6HC+CeeXKsysNzk+kqQ3brylwWRQUxhKhUiEdE7OlVgotVittvnE0QH29cVoWW5nCCjTFzdIhXVemynjeR69sUC3d0SiSbFlo/hetxckEdQYSBpcWanRsl1cXwzXbMcj0hEiWY6PpokBbswQgpx2p8dZ9P/4SJ34Q8X3sTqOMBmxV+qJGYylw90zXLnV6UyxXVq2+7ZIsO1IhDv4yURA27w+3Tuepm07eL7f6WGPMpAw+Cdfu8il5SquDyfnfOpth4FEkIvLFUzHw+6I3MYyETwf+uMGT+zJUWza7OuL8vDONLPFFus10c/jeD7lpkWlqfEbz0/z6XuG2N0bpd6JjV2rmXideKaNYdi1fB3fh3/ytYu8Z28OVZY4NV8hHQ5wYCDOz907wkq1jem4KLJwd2qKuObE3lxmtWby/cvrfOBAL6/OlNAUiWPDyU1k4NXVGpJEV1wHogem1nZwPZ9Dgwn29cUZTolZztutHpAkifcdeGdK926ct5xbLHFhZfuOSYBoUEWRZKS6RSIkhNayLPHARJrJtQbllkVQD3JppYrvi96jUtMid5NYz+30IKXDOgvllhBNdpJtCnWTL76xgO+LAfgTe3ve8u8zmgkzmvnzExF/12iKu96FJBDTcfnj08s0LIf37u8hHFDxfbi0XOOx3Tl+7bFdzHcEGtGAynguwtRanTMLFSIBsU5kIhp10+0kSrkUGrY4a0s+QUnCcjw8RJ9gsSlSqwKqSI1JhnQalsvuXISpdeHart0QoSgh5kI+EnFDodx08VXRtfcLJ4Z5/8E+8jUTkNjTG+VfPzPJzHqDYsNiX3+Mr5xeZGa9yeRanR3ZCAulJrOFBus14Sbriwc5NVfm8moN34dC3eLhXVt395U7oq2G5XRnxFshoCr89N3X9+0TuQiaKuNYLsmQRiqsY3s+A/Eg47kIyaAOEgwkDVYrFmcXylRaTtf9rXfmNYmQzs5chImeKIoEL0wWONgfp2WLfcRKtUV/PMQHD/URUBU+96DG77w0y2yxieV4JIIaE7kol1ZqhAMK4YAqIhMDCh86MsCn7x5modQSvU66zAvXClxZrfG1s8vs6hGuoQ8f6Wf4hpna4aEEV1drXFqp0bYcXpwq8PTlPH/nvXsYSoVQFZlfeWQH/+I7Vyk2LHLRAMmw3nFdii73kXSYw0OJTbVDx4dTvDhZxLRdHt+dY67Y4MJSlXgqwFgmzP07MnztzDJNWyRRxQyVT3R6gN+7XxDmZxfKnFko871Lefb1xzk0GOffPDtFqWV3Zksef/j6PH/1sa1jXkEQkM9eXWOtbuIjOgUf2ZVlMBlmtdruiKk14kGtGxl+dDjBlXyNkKbwwESGqfUGqiITDYgIc0OXiegqP3XXEL/36jwhXUG1RISkoauslNvcO5ZhqdIiEdSoz5WQJdGX2Z8MUm3ZImayaeP64p4LHmFNxVAVXp4ucHZJIRYQcynPg4ihsiMXIdXpUpMkiabl8pXTy+zuidIwHSKG2r3nPHd1nYVSi2InPSISUNjbG6U3bvDUvl4+cLAfz/NY7ayrV5arfPzIIBO5CAFVIRPROLtYFSkZAU30ckoS+KAocKgnTtN2UGVJJPr1RPF8+Ob5VXRFIayrtG2HcEBlpdrm1eki6XCAsK5gaCqlpkXbdkiFxHfpyNDtYy1/rCSYJEkiy2qLvwJ83/ffEenGzTecZESnJ2bw6nSRhXKLvrhB64aS0qFUiM8+MMrvvzpPrW13iAed4c4g+hfvH6XdKT61XY/PvzLHSqVNoWES0VWOjiW6X+pHd+d4aWpdKEA9n7rpdFUODdMhoMrdIfybYWa9wVdPLxHUFXZkI8wVG/zyg2PcNZLa9lDRnwjedij6nQurTK3XWa+b7M5FcPyNTiyhWKybDv/ppVkWS0Jp8NieXOeGIyLHDO260rFpObw2W2YsE2Gh3CJmuuQrbSpNG7VThLi7J8r7D/bRHw/wd75wFlWRsF0PuSZIiw1VYURX8LzbB3l4ns/LU0WAjlOtyNOX84xnw9w7nt50IJ0vNnllpsDzV9ZZqrQIGypxCQ4MJvi1x3fxz755iWRYIx7U+dtP7eLiSp1wQGEyL7rR0pEAY5kQ9+7I8OBEht98YZqVchvHE31XG0oUSZbYkYswX2wwkAhx744U372YZ71mUTd9LMejNxbkU8eHmC00aFkeU+t1woZGqWV3SiwlIrrC3r44+/rj+D7sH4jz03cN8UdvLHB+sUq+bnJ6vkq97XB4KEHbdjA0mSurgpUPqAqDSYOAJvPM5TVatoMtS9wz1s+5xQpHh5PMFxp8+8IqQU3kBseDGnXTYVdPhHvG0gwkghweSvD8tXWevbpGQFVYLItIyXhIYywd5vhIkrrpvKX4tav5eqf7xiUbEcrZb55bYcFqbUuApYIKpis6/FRZYmcuQr5msd4w2Ug5lYBduQj1TtRSJKDhuqIHzHJFQXKhbnYInTgXlkXm+n07MpuuvfGsUK20bZd9fW//1iPLUpeMfnJvDzuyEbLRwI+9CPfHjf6Ewe7eKKbj8oXXF1mptIkFNd5/oI9r+RrqukR/PIDlicHRQCJIQFUYTofQVYlay2au0KLcFmWsAVkmEdSYWhMH0Jrp8sBEhlhQ44MH+1BkCQWJfX0xPnNihAtLZS6t1KmbDvv64zw4kcFH5FirikIupPEzdw3y4SMDTK7VuZavU27a5KsmuZjOUrmFLMEvPSBU7W/Mldg/ECUa0Dm3WCGgymiqzM5chOFUkA8c2F6N/vGjg3ztzCIvTtmAiCzMxQKMZyPoqszBgQTzxSbfvbjK184t8/zUOn/3fXs4PpLk9ZkiF5ZFFKfr+cQNlRPjKR6cyHLveIqvn13hpal1IgGVVFijWDexPQ9ZggtLFT55rJ/BZIj/3ycP8nd+/zSe52M6PqPpEIvlFsOp8G3v9e+uh/AO7uDPNwaTIRFRJEF/fHtBhXdDUoHtbr3n2dMb67qVNgRMW6E/EeIz94jBfTJ0m+Gx5KOqIk5I2cZdvLMnSi5m0DJdjt9mfW9aTvd3aFvbk2CqLKJMJElC24YI2Fi3JeB2odm7chFe7EQnHrmN8j2giZ8jK9u78XxfdKduFCbfiA3l7Z6eGCPJEC9NF1ipmts6whQJRlIGqzWbhu0yngnx4ESGZy6vCwFFSOeesSSfPDbIWt3kX3z7ilC6uh6nF8oYmkzL9pBlibblsl4zMR23S6j1xw0kCT55fJBkSCcV1nhlukg8KCKzb6c4H0gE+am7tidGQTgKbu4dHU6FODwUp9KyeXRXln39JeaLTY6NJLi4XKXSsjk6LHp+bsQHD/WxWGrREzM2OdgNTfkzvycCISAE8f2pthzY4izdsly+fWFVDG+b1m1JtRuRCOl85sQw37u4yrmlMovlFoW66DWNBFVGMiGKDYs9vTFxfpIkCjWTfN3C9nyu5mv4vsTegRjnl6pUOx0Qf+OJnewfiPPiVIFS02G+2CSgiHvAzv5oR4XrUm3b4EuiDwVYb14XnKmScIaqikQuIvbLtiv64IKaSr7aZigZ5KGdmW5n9qO7crysFbuE3dtBT/TtPf4O/nQRUJVNIod8zcRy3M5ATKUnZjCSDlNq2FxdrYPn4Xketut3ld0LpRYjqRAPTWSgo5SfWqvzjfOr7OuL8b4Dvdw/kQHg9HyZf/7tywQaYpYSNlRenSkS1BT++mM7WCq3ObtYodyw2dMXZaHU5PXZEn3xINmIx2K5xUqlzdnFaqcrxyEXNViptPnokQE+dLCX36yZzKyLru1Dg3H+ysM7eHWmwNRag/64ge14nJov863zK8iScGns64/huB5fP7vMqzNFYobGh4/0d+PxFVnivh0icrZpOSyV2xwYiN1yH/3TxCeODvJ7ry5u+/eGKrG7J0a5ZRMKqPTGDe4dF7/T67Mlnr26jiTBp+8e5thIknLTpi9hbCmq2SAdBhJBToynmCs0MTSF9x/s64pTAfzttwV38C5ittBkrijiMs8tVrl7NMX5pQrHOmaCoXSIf/rxg8yVmpwYS1Np2fzXf3gGSRKRjTt7IvQngsysN6g0RZJM1FCFU93yGM+GqLZEtN++vijJkM73LuWpmw62K9IM7hpN0RcLsFxt4/o+luthdpxQstRxpUpQaTtYLmiqj6EpnFuqUTddjo0kuXc8jSwJFzNANhJgf1+c33hhmqiuUG5eF7ItlmQCukI2EiAXE6TKpRUR1Zqvtm+J+7Qcj8m1uuhIWqsznApvK1LaCq90SHVTEnPsz94/xkK51XXU7esX63tI04gFPQaTYv9X7jjIZFkI2UzbZTwb4b37enhlpsjHjw6QiYjaky+cXCAe0vjI4f7uvWcwGeLn7x0F3+eFqSKyLIj9X7h3mGRI50/OLXM132BPT5SemMG3zq/wykyJSEDl4V1Z0hEdo6hwNV9DlWXSEZ1nr6xxcrbEBw/1EQlojGfCfPL4IBeWhXC43XaYWmvwynSxe8Y5OJjgn378IN88t0LYUHhwZ4a5gkjy6Ysb/P5rC7w0VeS9B3q699Ud2Qh7+6K8PltmqtBgOB3kfEfIP19q8RvPTxMNqJQUmYAm1gyr0w12eaXG0aEEp+dLorrG9XhpqkCpU0WiKTKOJ+pBLizXbltP8vpsifNLVUCki41mwuzpjXJsJEmlZfMfnp8hpCtkogHes0+Q+qfmy/THg2iKxF0jSV6dFZ+Fror4RF0Ws6q1mkUsqKKrClpntt40XV6cLvLTdw3xv3/6CF88uYAPVFsWe/pixIMatuuzKxfhq2eWObNQJmpofPBwL47jk69bGJqCKsscH0nxDw/3YWgql5arnJwv8csPjrGrJ8rvvjInYiRlCUOVKTUtApqMIonEr5NzJYoNk5bj0p8I4vs+xabNazNFnru2TlhXeWxPjpF0qLsOn1uq8LffswvH83lpqkjdFLVLV8waxYYwemiqTK3h8MLUOrmoQSYa4OGdIjL03/xgWly7sQDjuTCvz5ZYLDfxfVErdLA/wfsP9jFTaHJytsRcsUEsqPHo7uybitJ+rCSY7/tvrdH6R4R7k3Tz44f7mS+bFBsWQU1BkSR+9sTmwsyYIex7X3xjgWrL4YtvLPLpu4fpjRvdWEEQN6afvWeYqbU6Xzu7ArBpwe6NG3zs6CCj6Qjfu5zn3vEU4YDKG3Mlnr4s8iw/fLiPTCTwplFnk2t1Cg0Lt+bz0M4MHznS3/07x/W4uFwjEdIYTAYxHe8tHTSDusLMepNS0yJuaOwfEN1fy5UWE7kolZZNy3LpiRns7Ilw71iaz78yx2q1zSO7Moykw+zIRvjq6SVenFyn7XgMJUN8+FA/v/fqPHFDpWm5NCyX/rjB/TvSfO/SKj+4vIaqSLQsl7W6iWl7mxS2Pj7+m4xtZVn0NV3L1+mNGVxbq6PKEsWGtemgdW6xwrcvrPLGXAlNkTFtD1WRGM9FmciKPp5LK1UUSeavPrKDbCxINhbk8kqNwWSIv/jQOFNrdQxNYV9fnP39cf7nTxzmhcl1AAp1k0xEbP5enCzw7fOrXFiusqc3ysnZMgulFqoibrZtR7g8/qc/uYgsSXi+z92jKXqiAb50ShS4Op5Pvib6yv7Rh/dxZbXOWs3k8GCCe8fSIhu1brFcbhEJaEQMlQcmMnzpjUW8zo06pAs1ZqVhs1hu0bY9DFXmT84tc3QoQcTQkDMhmssisuaRXVl64wa5WICHd2Y50dnIAty/I01IVzi/WOHCUpVr+To/f+8IiZC+rfJlK/TFDQaSQSR84TBbEZGVkYBC03ZxtkhGLLVcIgHB7luux2yxhSQLxanUiXTRVRlVlRlNh2jbwmbvuD67eqIMp0PsyAol4dfPLHfIMImgpvDaTIkHd2a6Pyukq3z6LRTnWo7HC5PrKLLE/TsyW95EVUXu9mD8Wce9O9LdTO3XZ0risGo5nBhPcmG5QrlpsVptM5IOs7cvxlP7evhn37jM1FqD0UyYBycyeL7Enr5opzhZ5425EkFNwXQ81mui26TYMDmzUObxPWJDIMsSHzncz/nFCgvFJtdsj/fs7+GxPTk+/8ocuirTEwuwqydKuHM/3pGNMJGLsFJp43k+02sNqi2boq7w2myJnbkId4+KIs9LKzXGs2Eihsp8sUm1bTNXbDG51tgUnSHUZzKSJGFoMpYrLOkDiSC5WJCfPzGyKZ4jHFD56pklViptcjGDU3Nljg4Lm33LdrudX4Yq84v3jtDTiYVqWA6pcADbcRlOhdFVmVJDZEbnoga/+cIsH+10R6mdzVhIV7h/R4avn1vh8mqNgWRw21jSO7iDO3j38N99cB+//nun0FSZv/Pe3ds+TpEVwAFJFH5vhRcn17sCodnC9j0dR4eT+Ih96a6e7eOUXE/Ewvg+uNuIjTKRAOmQzorT5sBtRCH9cQNNEXETt1OwZ6OB7t5suzlWsWkLogxobpVt00EqrNOZb5DYpgMLYKEkIk8qTZdCo03fFmSkJos4Hs/nlhb5jxwe4Bvnl7nsuCxVWyiKzO3OTL4PTdvrKibbtsdCqc2OXIS+hMHllRqFusXzkwXatoskSfid9+ZAX5xwQOPQYIKwLtN2XKKmS71tkw4HODGW5oOH+tAVuesy2NcfYygZpty0ODgY3+SuOrNQpmWJQc9rMyVeni6wMxflg4feXuSgLEvdNRnoOg4Wyy1+/9V5QKyRNztZNUX+sSvwr+XrXMvXODSYeNcd0MdGErQd0a+xZ5u4RDHY06i2bNJvkfx5dabIXKHJvTvSHBpKcC1fp266PLW3hwtLFXRZptiwaVquOAMYGr7vY3VIBsvxWK2aWK4nXGrHBji3WOHaWoMvvbHEdy+tEdBkDg/G8X2Phil6xabWGmiK3I0yKjYsKm1bRCJ29tqqDMlwoPPdhbbj0pcwaNkeAUWmbrqYjsvphQr//Vcv8NCuLD9z9xDJsP5DO1UKrTfJzb+DnyjcPMcIagq6IlFoiCFbIqRxz1iKctPmwECc4yMJfuvFWRbLLWLBINGghrXeYK1uISsyWifOaqYgUWpaIIFxg+h3Ihfhsd056qbDgzszfP3MMr7vs1huYjoe3zy/QqFuMpwO88juLPmqyaWVGnPFJveNp2k7Hq/PllirmfTFAzieR910eGJvjqm1Oq/OlFmttpEkCc+HvniQI8MJLq/WGElDNir6hZ++vMaFZTH0fHyvuBc+e3Wd71xc5Y25Mr0xg7vHUps6ojfwe6/OU27aDCSD/PSbCBXeTazVtu/RUiRIhwO8OltCBnJRg7/44Fh3DWpaG7G60LJddmQj7MhGePbqGv/6mSnGMmE+dvS6UHml0825Wm0znArxa09cd1nUcEiFdUKawkO7rp/Z7+BPD31xg6ih0rIEwTKWCfNAh5hu2y5/8PoC5YbF+w/2YWgKp+bKVDtC76ihMZoK8+psiZ25MHeNJvnuxTVqbUGA6aroj40ENMqtFjPrTaZokosZaE2Lhimi4M4tVYkEhAkgoCqkgjqLlRZNq9Mp1unO8m9Yw6IBlZbtcGq+TL4mEpSe3NdDMiQqEXoTAf7o1AJN0+H8YoWduQi7eqLs6Y3w3/7ROQKKzF2jSf7r9+9FU4RU6w9PLjBdECaFG7/T3zy/wrV8nYAm88sPjr1tgntPb7RLrDUtl5PzJXKRAL3xIJeXa3z/0ho/d+8w1ZbDS1MFUqEAR4aFo3Kl0sZyPabW6rQdj29fWKU3bnDPaKpT4xDkWr7eEY6rm4wUpYbFH55cwPEhFdHpjwfZPyCIlKtrdWwPdvVEWaq0eWm6wFyxSTqss7s3RrVtc3AgzmyhKUgj16dYF73lpxcqnJwtsatHOIN+/t4RfuWRCb5/cZVXZ4voqiJmeDeQSy/PFCk0LVZrHgslIZjPRQNcy9dZrrTZ1RPl6mq9e19dq7cxHQ/f9zcRmJoi8eyVPKoiY+gKd48mUWSJoWSQz788xwvdup8oHzrUT6Xl0LQcDg3GSYZ1dveIeFHLEaKj4VSItu1ta0DZmEHLHXLoxrNRPKjx8aMDrNbaHById8X4MUMTKUENhy+fXmK20GQ8G+YvPTxKOhwgXzO5vFzjwnKVSsvBcsX+s227oo/W87mWrzFXaHI1X6NpCeH4sRHxu947lubcUoV626bedqi2bb56apnP3j/Cf/HkLr5yeplyy+LYcIKlSpsD/XHOLYlkiO9eWGVqrc7RoQQjKYuVWptvXljppBSYrNXbnF2o8P1LeSpNm/FsmEODCRzP5+RciR9cWaNuCrHUqzMFGqZHfyJIuWmzVG7xe68t8Ln7R3nfgV50RbzPuiqTDOnkogZXV+tcWqlSagreptISse6HBuPiO5Cv8fP3jnBmXsypa5JwlIYDGj977wiP7s51Y0N35CK8Z1/PWzJvvFudYABIkpQDut8U3/fn3onnvXlInYoFkBRRPCocDb3d6I8bkQzr7MxFqbYcfF/c2LfCxsD7cLnFet3ixPitb+zhoTiVts1yWWRmzhQa2K7Hl08t8tJUgY8d6ecDh/q3ePbrCGmyiGLsqCVuxPOTBU7OlgCfWFCn2rI5MZ7i/h3bbxjatiCm9vRGqbWFfbBtuyyV28wVm3ziqMx3LubJ19roiky5afOvn5nk5ekivXHRAXZ0OMFvPDfNdKFJoZOHn4sGeHxPjqNDSf7TSzOcnCuRCGqcGE8SDWqcmitzYbmKoSld8m+t1t5kZbZdn6a5fTH6Bj58uB/TcdFkma+fWyYSUDk6nOiqkQChakQw6rbrEtBkqi2HSys1dvZEubZWR5FlwgFZFPL5PlPrDb52ZglJktjfH+OBiQxfObXEybky55bK5KIGsizxyM4sF5arZKPi91ivm5xeKDO93qDatokbGuv1NpIEvfEALVtYi6/l6+zsiVBomNiuxyvTRRY7jhXhgBP2z9lCU5CIpsN3L67y0tQ6l1aEAiFqiMLK9ZrJ0eE4r0wX8HxBHf7DD+9nodTi1EKZsWyEc4tlvM5mtNCweM/+Xl6fLTKW9nhoV5Z0WOPsYoWGqXD0pk4JqXMTz9dM1uoiArHact5yae8GTs1XxLBMgmLdYq0qVM47clFm1+qUW84tMUk+0LTdjlvNp2E5yIiFJRhQOuSiRK1tczVf577xNP/lU7uZL4nukXvGUkiSxMXO4SSgCfJAkiRiwbd/eys3LV6bLXW7/xJBvRsP+f9VhHS1Gz9xJV/n1HyJ8UyEPb0xQTb5Pm1bKCr7ik3KTZtoQMXQZEzbJWIoDKWSFOqmWAQ9i2MjSWRJKJ1A4v/47lUiAZVESESPvjBVoDcuCCZNkYkZGkHd44nO4TJqaCRCOvftyDCYDHKo8xlYjscHD/bzu6/OcXVVdPyZncX0G+dXGEgExRBTktAVGc8X+fs90QCn58vUTWdTvNa3L67w+kyJvX0xPnpkoJNFLHNoMM5ELsLHjw7esr4slVuMpcNUmg7JkMZoJtR9n/zOa48FRVehcoMT8eGdWb7w+jw9sVBngOpSb4mesdlCk7tGk5xfrHJ8NMnOnggRQ2UsE+Z3XhaihHQkwJXV+rYk2B0B5R3cwbuHwVSI9x/sI6DKpG4T/RZQoCmJw3rNdNlqx5a8YYCu3oaFUWTpLW3s++MG+WqbnpixbRLBS9fWuLhSxfXgt1+c4S89smPLx63WTExHJBysN7aPRW6YIlVBkdm2jHgiFyGoq5i2u2X/6wYKDasrkVrtdDRsBU2RsVxXxLrpW0cAth2PoC6jucJdfCOCukIiKHoFrqzWsR23E6++9VnAB/I1q1MAL3eKvMX+5Mpqrev0a9su9bbDSqXNaCbMseEkv/rYDv7zK/NcXqnywYP9/KM9Of7w5CLFzvD4+EiyK2z75vkVLi1XOT6S6g5cb8TllSpfP7tMQFW6nRW+D1dWazzp5N4Rt4EmS92O2tv1u/y4sOGyEKK9Np97mx2uPyoCqsJjbxJhq3ZEkut18y2RdNW2zXNXhbjOcj0+c88wv3j/KIos8fTlPF96Y4mQLhMJaOztjRIPaezri/PydIHRdBgfcX64sFTF83yqLZtQQKHadqibDms1k0xYJxMJ4Ho+ffEQc8UGICKbLNclEQxwaCDOxeUaa3UTTZZpdWIMVUm4VhzXw/V8JHwapkMqbGBoMo5nds8g5ZYopV+utLuxiCASTV6YLDCSDnWHprfD4NuMhruDnywslJscH0rQHw/iSyI2fjAZ4pceFNer43okwzoRQ0Rs6Yos1gff5ytvLNKXMDBtlwP9cdqOy4MTmU29V+GAymcfGOsOTi+v1JgtNmlYLhLi7DdfbPLqTAnX88lGAlxbreN0UhZsR7iP66ZNuSUzkBRdhxO5KKfny2iKhK6Ks+ZIOsSJ8TTfOr/C9FqDkXSInT0RooZGT0wkZiiS1O2+cTzRDR41VPoSBmFdpWE6XF6tMZgMkosaeJ7f7Qe7UUD9k4DJ9e2jEBMhlWRYY6HUxlBldFVmOHVd9HBiPNXpX1IYu0EMcWVVPOeF5SonxlPdbsin9uU4PV9hX3/sFiL1exfzFOoWRUmc8X6S3HJ/XhE1NH7pgTHcjvD6RuQ7Uf4Al1dqTOQixEMqTcshqCmoisS55SqzhQarVZP3BNSOSETUcdRNG8txaTsurif2GIPJIBPZCBdXajiuSKOJGypBTSEdDtCfCBBQVPK1Ft+/so5pe0QDCvv6YtRNm8Vym4AqkQxrjKbDXeLG9jyihspAIkh7rcG11QbrDYt0SKM3Jog+WYJvX1jt7uG+cW6F3pjBz9wzzJ7eKDFDnOdv3ou2OjNj2/FvMWO8FTy6O8dDExlemS5iOh7fv7TGkaE4/ckQcyUxG/ytF2f4r9+3h3CnO7MnZnTi/CpIkkRAlUWfk6Hy9bPLovM8G+FXn5ig0rJQZBlFplttAkKQ67ge02sNbMfj/h1pBhNB/sevX8T3EfMNy6LctKi1xd4/FtSFE3QsTVBX+Mjhfi4uV9EUid54kPlik0RIY71mcnqxzLU1lVREZ39/nJ+/f5RkJMCV1SpX83W+dGqRjx8VEYXpsM4kYp9+aqFMtWkTMVQODcZp2y5hXcTttSwRszyaDpMK6YxmQvTHQxQabcpNi2pLdJUJYbHM3aNJfF/ixHia//vpSSpNi4vLDjt7ogwkgoykgxwbTvKRw/18/pU5AprCrlyUpuXQsER60e1inff1x0iFdXRV3mTKyNfa1NoOvbEAmio+nw185Eg//+rpSSR8vvDaAvv6YuRrbdZrJplogId2Znh1psiVfJ2BRBDTcbEdr9sHXGhY9MWDPD+5zum5Cqbr8vSVNUDEGh4dSlBsWELULoPriBjPV2fL7B9I8N4DPbw0VeA3np9hIBGkWLeE6aIhOviCuiAp+2IGlbZDsWkxnAwSD+kYmoLj+gQ1FVPz2NsX45cfHOf3X58n0InIrqzWCahCSB4LKkQDWrfqpGGKRBEZiQd3ZgkHRPpFMiTew339MeaKTVYqLSIBlVDnvW/ZLqmQTsxQGU6FWC632d8fQ5FrhDUFWZb4rRdn8H2fR3fn+Om7hvjK6SUurdTY1x970zn2u0KCSZL0EeB/A/qBPDACXAT2vxPP73g+MnRzUr92eoX/8eMHeWhnhlRIxBy6no/t3uqeOjGeQpFFkeLtVI2SJOyiqiJv2fe1VGl3SCoR3Xf3aIrT8xValtsZrJdvS4LZrse/emaK5Uoby9G5tCKKPjcOF64nYt/WamZHbSuY8g0STLDwZQKqzP5+MTD+2pll5opNNEXiyX05+uJBLi5XWSq3USSJ+VKLSssmoCpUWzbzxSYLpSapsE7LchlOhfj8K3OcXaqKTptogJF0mPvH0yyUWuzrixE1VOaKLUG+1C3iQY31uiWIw2yI/YNxTi+Uef7qOqbjspGmk40EMLYZWtyMjQ3Rh7Z5/46PJLsbpxNjKX79908xvdbAcl1cz+fn7xvm8y/NEwmoPLgzwzfPr3JytsRMscHe3hiTa8KJ9fJMkVRI59kr6/QnRUzQN86tMJoOETU0euMGR4YTBF9VxU3PFzEOQU1ldy7ERE+Y711aQ1dl3negh1dnSlSaNssV4YSRJNGrZGji0FpomLRtl6ih8sp0kblSk0srdXpiARxXZNnOl1rMFxv87T84Q0/MoC9u8IljgxwaSrCvP0ZAk2nbHh853Mcfn1kmbmg8uifHmYUK372YR5IkHtvTwx+cXKRQtyjULa7m693vyI24b0ca3/eJB/VuCeXbgekIMk+VoW66rNTayJK4PhVl654QCQirMo4ruupUScL1fHxJEFBP7MuxUmnTtoV6z/PB9sTN7sbhXjKkkYsGODqcYE9fFNvxbxsrtRWWyi3+4LWFbv9ZOqL/UETan2V89v5RFss9ZCMB/vm3L3cXIkMTCvmemMF9O9JcXq3RsF2GkyE+cXSQXMzg3GKZ33pxttMZIZQ1IV3hjbkKnu/juOJQ+t1LedbrFsWGzaWVKoOpIC3bQZYkPv/KPF85tUQipBPUFf7ifaPCWeD7VFsW/+rpKdbror9OkSUSQZ2xTJiBeJB8zeTUfBlNkXliT45ySyiWxrMRvnNxhaihEQmqbNTatG2X339lgWrbptiw+ODBPgYSQT58uJ+1WpugptCwnK4reAMTuQgP7syKAeWeHD1xUe69rz9OqWmxty/K05fFxuQ3npvi775vLyAiDPJVU0So4TNbaFBq2VRbNmFdYaHU4i/cP9odcnuezyvTRWzXw/F84kGNu0a2zzf+8/VNvYM7+NPF//PMJL/bccoENFnEi2yBbMygZjYJ6QqpyNYb8qF0mIAqY7sefe+A4yUcUDEdD0XensBYrZo4nU3zemN7RXi1bSNJMhJQaWwvXDo5V6FhuUwXmlRaFjnt1t8jFFDoiejULJex2/RgPrBDiI9EpNT2g/T9fTEm1+ukQjrbWbjGs2E0RcF0nE3Dug3cM5bi6mqNluV0B6ZBFVpbzCs3zrOaItMTD6J2RGHFhiAHbNcnEdJ5fE+OluVyeqFMUFM40B+jbXtddevvvjrHrzyygw8d6uc7F0Vkdbrz3bi4XOU/PD+NIou90I1udhARfF89vcwbc2VGM2F0VXRSvjxVZFdP5B0bIOZiBp88Nki1bW/pbvhxQ+komCudou+fVAR15S3vNYMdp0y5aXeVwxvdtLPrwgHatDye2icGTYcHE4xlwgwmg/zSA2Mkwzqn58v8oy+f49pajbrpMJkXPSdtW0TOlVoWFdOhajr0xAx64waFht3p7ZIAj6Cu0rY99A6J99JUgTfmS8id6CAQbtKW7VFoWKiyTFAPsr9f9BwZmsJA0mA4FWIkvfl3f35ynXzVZLXa5sBAfMvPTuK6aCebuEOC/VnCzQIHRZJYqZngi4jduWKT/QPifOl5PtOFBg3TRVck7h5LIfl0vlMS0+sNLq/WyEQCPLG3h4Aqc2IsvWVqTqFhsVJpEw9qIj5YlghoMvv7Y0ytiZ7M71xYZTwT7nQN+aiyTNsXZ27T8fA8UCWfI0NxTs2X+PfPzWA7Ln/ryQkGk2EODsb59oVVnrm8Tt10OD6a7PYiHhlK0LZdVFlib18Mz/PZ0xcBehnLhOmNB9nXH+PrZ5dZKIle37/44Di6KvOhQ/1cWa1xYOAnS1CZr7S2/TtDFb01otPHZSwbYaXaJtPp8Auoyi1rE8CJsRTfOL/Cet3k916d56NHBhjLhJnIRTd1pt2IWFBjsdzq9FC/+4KLO9gasiwhb5HY1BsXTqPT82VG0yEc12MkHeau0TRXVmukwxoXV2qYjoeEWKNWq+LaHUmHMDSFxVKz46oXDucPHx6gP2kQDak8d7WAKkvs6IlQadkoMnz/0jrJkA6SD56YFzUth0xE5zP3DPPPv30Z1/MpNmwKnUQC2/N5//5eZgsNlqttam2b/kSQeFBjPBdmudzmhcl1zixUGEoGCesKlZZHUFMoNmwuLlU5MZ5mRzbCty+sdONNN/CefT2cmi8znAq9rRjEDaiKzD/5xEH+i989xVS+Bp348pAmU2vbNEyXyXyD33x+lpYtRC6P7M7y8aODjGUjuJ7Phw718fTlPJWWw2uzRRZLLZYrLVQZSk2LTNRgMBki0iHRig2L1arJnt4o3764SlhX+d6lPPGQcLR7vuj+TYZ0am0HTZbYPxDnPft6ec/+ni4x9O2Lq0QNlWLD5oMH+6ibDs9eXcdyPC4sV+hPBHllusjMepNIQOWz94/yH1+YpmUL8q3StImHNO7fkWY0E+bV6QLfubiKZQvS8sxClUxEZ09vjG9eWMX1fD5+dIAXJtd55soaEUNFRuLsYoVS0xIiId/nxFiKbNQQXXWGyv7+ONlIgFrbZigZ4mOH+/nvv3aRUsPiuxfz3DeepmV7ZCIBGqaN6XpM5IKMZ7cX6d14HdyIQt3k8y/PYzkiAS0SUHl0d5aHdwkx1eSacDtVmjau77NcbXXEgBK1tsPF5RrxkM6uniiZsEbTcjizUMHz4fHRJJlIgGrLYTgVIhPVOb9YxfU9Xpws0Bs3eD69zlyhRVBX6I8HKTYtBhNBEkGNr59d5o/PLNMwHVYrbXwfRtMhAprMQEJEFi6UmkiSxErVZDQVJBZQeXxPD/0J0Y9naDJP7s0iKzKfODJAPKTxuftH6YkZXFquMpYJU2na+BtpH7bHZ04MIksi1W1jZitLQtx4cq7MqzMlPn33EOPZMOmIzvmlComQzkAyRF/Hofibz83Qtl1enCzw3v295GIBfuWREJ9/eZbXZktcXqnx7Qur7OqNsVhqdcUmIqr09qLRd2tu9j8A9wLf8X3/qCRJjwGfeaeeXJHEQaRhuSiSsHdmo4FuXJnpuPzuK/OUmhaP7c5xeCjBet1EQpSE3juepta2b5v/eWW1xtfPLqPKEp++Z5jMTcrfRFAjpCs0LZf+hLjpfOaeYZqWQ6Fu8die28fKXVqpMVto4LheJx+7wW+9OMsv3DdCzNB4YCLDS5NFgnqHZTXUTaXVr8+WeP6aUBgGVIWJXASzc5jxfXB9nxcnCxwdFrEi2WgAQ1W4vFITN11dZI/eP5EhElC5dzxNwxSW4v19MfriBu870EelZfGHry9yabXKnt4YO7LXhzenFyp89oFRik0LRYIra3Xmik3eWCjTMEWMnSJBOCByoH8Y5cRWCKhCRfvdi3m+eX6Fv/XkTr54cpFraw0Cqsy11Qb/3Yf2dR8/s15nrW4iS3BkOM5iUcQJ7sxFwIeaaXNqtkzTdhlOh1ipCKY/oMpkImF++YExvnVhBdcT5bvnFqus1VucX67i4xOTNPI1i4WSiF7b6HqIGipNU6gM5M5id3qhwv/+00eEe3BduAcDqs5AQsf1fJz1Booio8oSAwmDPb1xxjJham2bqKHxxN4eXM/ntZkiD+3Ksrc3xlAqxAuT6x1C1eOPTi0IEg46cZpbH9hjhsb7btOX9Gb41LFBLNej3nY6ygyb1ZpJy3LZqmIjG9EJBxQWSy0cTwyYstFA1422VGmR4AgAoQABAABJREFUr5p87oExXp4ucnmlSsN0+PfPTaHKMg/uzPCRw/34PnzxjUVM28PtqAF+GBTqFp7vkwrr7OqJcHfHVv7nCYYm+ghfnhJ5+LqqcNdoWijkFaGuqbUdfu2xnfzNJ3Zt+relhigVrbUdvnsxz9W8UASqkkQmrHN4ME46YnBxpUqtbeO4gtj5Ty/NslazqJk2DctlNB2i2LTY3RPrzjW/dGqRpy/lubRax3JEvI9QCMV4z4EcP7iyjqbKDKWCIlpqPMVoJkyhbvGF1xd4ZbpAuWnTEzfYGL+UmhbpiI7puGQiAYpNiwtLVeEezddZr1u8Plfmlx/crEA3NGVTJALASDrMX354HNPxcFyPl6eLOK4ImTQdtzMUanVKdn1CAZWdPVHOLJRxdJVMROeDh/q6yun7d4i+jcVyi6Vym48c6b+t6xfgjnbyDu7g3cPV1aqIUQKm1xrbPu7EWIawXibRUQ1uCV84i2QJou/AwP/UfBnP95kpNKm1nU1Osw30xoPdHrLEbaLcHtyZ5fRCBVWWuXts+wPFhirW9aBlba14txyPquli2i75+vaust5EgKihocoymdvEIT66J4dyVWJXR3CxFeaLTWRJECpL5VtdZeGASjwkItDLLZuACiu1rZ1grge6JlTx/XGDbDTAZ04M8fTlNZ6/ts5ELtQVr0UNjb/+2AS//dIsk+t1ptcbrFZaLFfaHB9OslY3OTGeZjgV5ItvLPJffeEMD+3KkgqLeJDVWpuB5K1EYrFpocgSe/ui9MWFmnVDpPdO4+0Kid5JSJLEp+8ZYqXS3nbP+mcNmiLzsyeGqbRssjedIT92dAAX6I8Z/PRdQ5tEXjcKNJu2g64p9MSDGKpCLKgzmAxRN12qnkXb9pEkl2KH2B5KBZE7hEDdcsnXLH5wZQ0JIb78ypmlTt8JBHWJkXS4c3YQThtFkgl3ekyXOvFEu3uj28a6jaTC5KtC2Rze5pq8kQRrmnfiEP8s4eZze0/MIB7UmC+2uLpa6xIj63WT//iCSIrJhEUMoarIHBtO8P4DfZSbJtW2je8L18lffngcRZY2iTZWq22+9MYisgQ100FCYjQd4ql9PWQiAXJRg0d25zi3KM7emiyzUm2jaxJRQ+/2GWYjAZ6fXKdhuyxVTP79czPIiD4zgFBA42hHYFZsWiKRRIbRdLgrKtBVeVM9wFdPL3FytsRIJsRfe2yiOzva6M+8sdtqNBP+sUfH/jDIxbYX3Fiux998chfLlTZfPb2EIklkowFalstSpcVgMril4OLAQBzb9Xj68hq+LwbDW4lPbsRT+3rY3RslE9HvuMD+DEBXZXb3Rlkqt5gpNDnb6aH/+x/ax1K5xYWlKm1nnnrbQZJgrtigZbmdtC2J+3akxFnZ99nbE+UDh/v42OFBXN+nbXmsVExy0QBnFspUWjYN06FlOTQs4STdENN7PqzV2vzmC9NCvCFJJIIicm5Pb5RIQMXQFb756mon3Uf0EkYCKg9OZJgvtTi3VKFpukyuN7hvR5qxbJi27XV7z0G4e0bSYZbKbdq22zVTJEL6Dz1v2kA6HODvfXAvX3htgen1Booi8UenltBVBcvdiEp0OL1QRgI+//I8yaBO2/FoWg53jaboiQfZkRNCr6fra7gefOX0snCqqjJP7u1hrWaSCGp8+fQSDdMlaiiMZyIUGya5mMHOXJS+uMFrsyVUWWJXLsJyuc2hoQRDqRCfPD646XWHdZWQrpIKi/60/KLJ8ZEkmYiOj+gKNRSZhuV2aiKEA+ilyQKLZdHd9dDODHeNphhIBPlGwyKkKbiuz2g6TKaTvnUlX6NQNzE0hflSs7uHX6+Z1Fp2574v+k2f2JvjYx2H2fRag+F0iHhQ49ef3Mn/9f1rpMI6k+sNwgGFUkOkIA0mQ+zujVJt2UQCke7cakMM9HbQtERsYctyOTUvBHCqLHVJsH/53asU6hb5Wpv37u8hauh89Eg/L0wWSIZ07h1P4Xg+wZrJXLHBXLGJs7He+vAX7hulYbrEQxpffH0BVZZYLplkouJnp4I6c7Q4OBhnNB1mIBnksV1ZvnF+lan1Bqmw6A3b0xel3LL58qmlrpPtPft7+eY5MdceyYTZ3x/n8GCch3Zm+bfPTrJSaZONGjy0M8PL00U+/+o8nzo+iKEp7MpFuLRcZXK9QSKoUWnarFTFNTy13uCvPTqx6X16aarIdy/lWSg2CQUUZOBzD47x2O4chbrYt/bEDB7elcXzPFYqLeY7wpKhVKh7Lrm8WuPMYgVZkuiLC7IPH6bW60jAp+958+jhd4sEs33fL0iSJEuSJPu+/31Jkv7nd+rJFVnm43cPcmW5Ri4W4G88sWuTBa7UsLsHgqn1OrGgxpdPiTLQjx3p58WpIisVkd355L6eLX/Gcoc5tV2Rx3ozCRYOqPyF+0dpmE43M3l3b5Rff2oXr0wVqbRs6qZzi4tso1hxpdwiFFCxPZ8dmTCJkC4GBi2bmKERUBX6Ewalpo2uynzugbFub4B4D67/90aczuN7snznYp59fVGeuSIIspbt8hfuH+0+diOyQGT1upuKt33f5/iIGHo/tCtDzBDMdKFh4rg+tbbor4kYImaxaTn8q6cnCSgyFwpNAppCsd7uEmASYvHc1RPlvTcoCt4JvDEnIgoBhtMhPvvAGL/14iyeL6IIfuvFGYKawocP95OLGbw8XRQE0ckl+uJCLfnZ+8eIGgpfP7NC2/ZIeD5hXeVjRwc4PpLsuvKe3NfDQ7sy/ODyGp9/dR5DkxnLRFiqrGE5Ho7rU6hbBFQR5RdQZQ4Mxlkotai2HQKqjO8L++rOXBhDF4qrC0tVDg3GOTKUoGGKouGdvRGyoQCKIpOLBSg3xY0rpCt87oGxTgzcMq9Ol4gHNfrjQYYQQ/RzixVmCk0kRCH6//Yzh0mFAu/o+34jRjJh/sundmPaLt+6sErU0Dg5W6Rte1TaNpoCdfP6wuJ6Pq67QTyLb8iJ8RRLJZMr+SqKJNGyXRZKLbLRAKlwhpm1Oq/NlVEk6E+IbryAKkob4dZo1LeDPX1R8rU2tuvz6O7s/yfK3X9YiKjYCGcWq+SigW7x5lyhydT6AgcH4jyxN9c9+L1wbZ0/ObeMqkiMZSI8f3WdluXStETflul6JMMBfGAwEcR2PQ70x7m6WqcvFuSkX0KTZbEx9jwiioaqSCRCOo7rCfeUJBHWFKIBhcFEiGhQ5a88Ms5sqUlQEwKE4XSIXT1RdvVEURWZdV/c9wOqwlBKpdZ2+b1X53nvgV4ODsR5al8P+ZrJo7uz/IfnZ7iWr9MXN7qL7Ea81VZo2y7T6w0GkkFihrbpkPu3ntzNbLHBgxMZ/uC1BdZqbdJhvdNf53N0OEFfPMivP7mLqKFQbt3qUpBliZ++a+gt9z/+EEK0O7iDO/ghIcQsYlhfaW3vkPrLj4zzwrV1dvdGCW5zkcaDGpmoUCuOvQPEw2hGHOTjIY2gtjXx1pcIoMoSnuvfMpC/Ee/Z38taTRxCj98minGjk0GCLdXDANW2gyJDQFNoW9vfW0/Olik1bWRJRP1tR771JYLs7YttSRZtoD8RIhMN0LYcdm7To7Zx4LIcjz09Uf7xV89jbyHc8RGH/3REp9CwmC+1+MdfvcBoKsTBgXjHIbyZjAp3PvOFUovBVIhURDjFHtgQNUgSz14RzoNvnV/h739oH/dPpIkHNQ4PJbpxQxt7m76YwYGBOOt1k8d257YV7v1p4HZCwh8GIV19S4rcP0sIqAq56K3r+Z6+GH/vNt18IPbMf/jaAq7nY3ScGHeNpPjEsX7+xbev8dpsgXrbxevE+6uyiJ47NpLim+dXkHHxfZDwsT1BPpQaFqYtXPpDyTD/9BMH+bc/mGSx3MbQZEKaApJEbyxITzSIqkj4/vYCxgd3Zjg4GCesK9tGsWoKbHBft4tFvYOfPOiqzI3+od/+5Xv43751BdP2ODIc7zoiZgvNrijs6moNRZGotoWbwXJdJvN1DFXB0BV+7p7hLfe4V1ZrNC0X2/WotGwykQCO53cdVabj8vJUkf39cXzf5+FdWZ6+nGeu1KTatBntESLdX35oDB+6tQG+7xMyVOQ6VFo2F5crHBlKkI6Izuz5ojhTbMSwu57PtXydVFgIrAG+dynPUrnFdKHBz94zjN4hb95/sI8LS1WGU6GfeFfTvWNbCycCisSDE1kkJHZkI3zu/jEURQhJ/uMLMxQb1m37zfb3x1nviErfSp2AIkuMZcK0bZf5YpO++PYxznfwpwPf9/nOxTyzhQYP78pummVGO123uiqTjQZ4abrAet1kJB0mGVKZXm+iyjL5mkkipHFpucb+gRjFuoXl+oylI13X2UeO9LOnL8rXzix1ohNd2pZLJmqIipeE0akREdGLIPZWADuyIR7bk2My32Cl0ubx3TlCukokoBI1VBzXZzQVImxoXFyu8dieHFdWapycKxEzVPoTIU6MZTg0GMfv9NGDWKNemykxlAptird7p7CnN8bje3P8L9+4TKEhHESpTk+V5XjcPSYSy04vlPE84cJyPZ+emMFkvo7a6Y3amYvSsjwm1xrMFurUTJGGVW1ZpMIaz08WeHW6yEAyRDKk8Xfft5vZQpNDg3ESIZ2RdJi5YgvH8xnNhulNBGlawhV2M96zv4edPRF6On1OGyaMjY4z1/V5bL9IpUqENBRZ4sBAnP5EkP/4wgwgnDp3dc4Ue3tFLY0iS/ylh8Y4v1yj3naotC2m1hqEDZXPZaNkIwFk6XoX4cvTRYZSOnv7YjyyK9f9Xh4YuB67+vp8mblSi5liExc40B9nf1+cJ/fmCAVUPnBQiP9NxyUV0YkZWpcAfTsYSoV4dHeWa/kaL80UaJgO9Q5j+8ZciaVKG9fz2ZGN8OBEBl1VSAQ1Dg7ESYREBcinjg8yuVbnP788R8zQkCWJwWSIn7pbCKPiIRnf99E1mWLTQpIkWpbLnt4oD+/Osac/xuuzJa6u1mmYLlfWGrRtl5blEkoG+bl7RriWr/Gdi6s4nk9YkXlgIsOHDvXzoUN9LJXbHBlKYLs+L06t8xvPT7NQajFbEBU0lZbdJQgvLFU4vyTMCYW6JURTsoShqRiqzUpHJHozXM/DUOVunHDTcrmyKrp/n9rXQ7Vtd89RjifSEnpiBumbBJE/fdcQ793XQ9t2u5GNT1/Jd6NazyxUunG82+HdGpuVJUmKAD8AfkeSpDzwjoUjSxJ86vgg3z6/iu35PH1ljWRY56WpArW2w+N7cuztZG/eNZIiXxOElum4PHNljflii3BAZb60fSH5seEE5U5h28Q2hzJDU27ZyJWbNlMdciZmaJuURHA9h7Zu2uzMRYnoCk/u66Fpu6TC+iYF5Ic6Gaw7spFNBNjG6zM0mYCqdIexL04VWKuZvNIWpc2FhsXANlE7G8rVze+rdMvr3dkT5RPHBvjepTVG0yGm1uscGohzeqFCJqJjuz7piMb9O9NcWqrhhQKUWyLGLqzLDKZCBDWVk3Nl7h7bbC3+UdCfCHJyrtSJYjNIhnU+eXxAsO71drdsfnq9wcGBOE9fzotC6rZDX9zg8FCiq6QN6iq9CYNC3WRXT5T37L+18DmgKlTaNvW2jSxLDCSCPLIrS6llY6iCsPrQ4T5euFYgaqhM5CJ858Iq+CIe0NAUYobGgf6EWDQkCVmC9bqFriq8Z38vf3RygdWqRdvyOD6S4ql9vfzeq6JGr2WLg8HkWp3nrxaYXKuzqyeKBFzL19iRjfDe/X28Plsiaoioz4HEj19Nq6sya3WTJ/bm+OChPn7/1XmmC3XyFZPnJgtIeF0FaLlpo3c21qbjMpAIsac3zkTWI2KoFBtWt1dPVWR2ZMKs1S1M20WWRWb5+aUKBwcS/NRdQ8wWGj/SgVpT5G431p937OqJ8jN3DyNJ893s3kd2Z/n3z07jej5fP7fMxeUq79nfy0g6xLcvrDK5VsdxfT5yuJ+QrvLvnp3GxycUUEiFdDRVoml6wgWViyJJEgPJII/vyVG3HBaKTQ4OxkiGxEFXlSU8z0dVZO7bkSZqqDw4kebwUBLP84kFNfoTQVIRnS+9sYjn+eSiBu+94XpdrrQwHZfxbJh4UGOl2kZVZOaLLQ4NJjZ93tPrDSotm7bj8lcf28HV1To7t4jvmCs0CWgyz1xeY7Essrh/+cGxTcO/46NJjo8mcV2P56+ts1Rusbcvxq8+PkGhbrGvP7ZJ8Zq64Wu7Xje7G1xJkt4yGTuW/clTmt7BdSxXWjju249pvYOfTDy0K8tLU0UkCR7bs70a1LSFoKVtb0/6BHUFpdNHGNiGtNrAxgD6dmTDP/jQPp6+ssaRwTjGNsTbbFGUUCuyRPE2XV8z6w3atkfb9litmNseDu8aSXJ2sUI2EqB3m33mnr4Ye/virFbbvP/g9mtt0xL58fi371E5u1Dm0kqNQt3C6Tjzb0ZPzODhnVmm1xt8YBun+4MTGVJhnWRI9B588+IKz10tAKDJG64VCVUW3WdBTUKSJBRZ5spKjZblko0E+C/fs3vT5zKQCLKzJ0KpaWM6Lus1i+GUiN1KhMR+O6Qq5GIBKqs2o+kQluvx/oN9+B781oszOJ4QTWwojmVZ4qltxHp/WnBcjy++schKpc0Te3Nbxm3fwY+OpXKLlu1RbFiEdAVdkTkwEGex3GI8FyZfazO5VsfzfQYSBnePJkRkZ8zg6FCM564VcT2fpuWzMxei1HSIdAaYqixEaJdWBPHQtFx25iIdwlWIiR7fm6Ntuezrvz1Z92bxlYaqYLodFky6M+z+SUUqKFNsiXVrYxXRFIk24p4YDShcWRXk0FAqRCyodyPDwgGFXDTA/v44K5U2siyJs68uc3G2Qr5mcmAgzvsP9PHebe7Lu3uiXF6poasyj+7KMlNobupIlCXhAHA9n9FMiPsnMri+z5+cXcbu1EfctyPNeDbCX3lknHMLFb5+bplKyyYR1GnZwp1SaFicX6ry8K4sQ6kQf+up3cgSXSLmmSt5Ts9XUGWJv/DAKDFDoz9hUDcdshF90z0/ZmibOst/klHfQohiKPC5h0b57P3jXcFsvLNWeZ4QP6/XhVPh3rH0lvsBXZXf9hrl+z6/9+o8xYbFeDbMR48MvPk/uoN3DdWWw7lF0ZX+2kyJnz0xzE/dJVw3N84pX54ucHmlJqpZ+mKcGE/z/ct5VioipqxhuuzpCVBpOSTDombkZlNBsmMCqLctbE8IxkfTISKGygMTab56eplraw10RWJXb4y1hk21KYT8b8yV6Y0Z2K7Het2iaTm8d38vkYBKNhpgrtik1LC6TrG/8sgOKk2br5xZQpZgV0/klgjxh3ZmuXs0RUCVf2yio404ZF0RRoG//tgEddNhNB0mGdZ5eKcg+E/NlwFBNkmSmMlOr9e5vFIDYKInwkM7M3znUp7LyzViQZWn9vUymAzyldNLlFs2TavGLz0wynA6zMgNseQP78pybqmKrsjcO5ZmJBNmtdqmb4veTq3zOgGM6vUZxWgmxHyxRSaikwzrLJVbzHXSGB7bkyMZ0jjUMQXcc8MM+L4daZxObVE0qHFiLMW5xQpfPrVIy3YJBxT+9TPXGEwG2ZGNUDdtslGj41wXPVLJsEjQ+tIbiyyUWjy6O8vhoQSqLDGaDvP6bIFXpov0J4LcNZJkuPO7r9VMXp4u0J8Ivmnizpvh6HCSkXSYV6ZL1E2Hvb3iPXr26jr3jKZYrrT5bz6wh6urdV6aKvKlU0tkwjqaKvNTdw1yfrGKqkj81PFBHt2dpTcW4NR8hW+dX+U9++DcUpWptTrDqVDXCNAfN/jVxydQZIl0OEDLdCk1TXpiQfriBldWauzujfLhw32kIjoXTtcot0Sn/aO7czy1rwddldnbF2dvn9i7//6r8yyWW8wWGh0jjohNvGs0tcmt9cJkAcvxuGc8xYeiBkFN5uJyla+dXWGk02Nrux6zhSY9MZHwIcsSng/jmTC5uIGhK91O3QMDcSotm7WayWBSCEke25Pjar5+i8AQhJv7G+dWSEUEgYi/Yam4vVhrA+8WCfZRoAX8OvBzQBz4x+/Uk3u+zz/7xmWurtZIhwM8vreHV2aKnF2ooCoyp+bLvO/A9cFoLhag1LD5QYcAO7tYYSwb7rLBWyFqaD/UopyOiNJt1/c3uaw20LJdPM/n7EIV8IkYKmOZMGNbEG2ZSICHdm4dqyhJ0i0Hz2aHgbZcn184PoDp+CRDWx9OLq1UObtQ4eBg/E3z/x/elSNqaDxzZY2r+To7MmFCAZVYUCUS0HhgR4aRTIj/+MIM5xYrWK6HoUmkIwGapkfLdnhxssBffnj8tj/n7WAiF+GXHhxDlaWuEm0wGWIwGWKu0OTSUg1DU/B9n29dyON6PkcGk9Qtm929UQ7c8N7tyEbIhAP89kszXFmtk5kqcKKzqS03LQKqwuXVGq9MCTdZxNA4MZ7ivh2ZTneRg9uJ1Ts2nOzmHw8lw1i2ULS1O0XUtbbNP//WZV6aLuB5cHAw3nXcPHNljZWqyUgnb/ipfT08sbeH12dLDKdChAMqLdslGw2gKhIP7cxwZrHCSqVNOqLzi/eN8oljA10Hou/7FBqit+12Reee599Csr5VvD5b4gdX1lBliZ+7d4Rf7LgOf+O5KZYqLeYKTQrN66r5qukwEDfYkU0wmo2QiejMFprs6YsyW2gSD2qcX6pQbYkizyf39jCQMGg7LisVk3JznVLD5sl9PZvKKe/gR8eOXIRdPVEWyy129Yhy2Mf25DgzX6bdGexeXK6yqyfSUd9IDKaChAMq+/pjTOTCXTInFwvguGIz+7kHRlFlme9eWmWl0ub/Ze+/oyQ7z/Ne9LdT5dhVXZ3TTPfkHDHIiQgMYBIzFUjpWJLldK59ln2uz/W1l889PuHaso7l6yBZTlSgGMQgkiISASIPJoee0Dl35Rx2vn/s6prume6ZATAEIWmetbCAhampuPf3fe/7PmEkEeC3P7ePfFV17A0qTm7W1s5g6zq8Z1OMezbFaOgm3zg5T6Gq8fRuZ00PuGVHdp2ucmGhwGcP9SIIjoXA6xNZLi+VQXC86h/dmiBf09neFeS7Zxbwu2Qe2ZZAEgUe2dbOmdkCmxMBOkNeOtexCjk3X2hm7V3LRshVHXuhzYkA8YAbt+zk9KmGYwFQVQ2KdZ2xZvZBb9SHZlhkKiox/9oCej5f41snF7Bsmw/v7mJr5/oe+uvBf1cK9oHFTLbKn7w9h23bfHxfD9tvwfi/iw8+RARCHhlRELiJYJRXxzNkK1rLbWA9JXZFdRTiAvKaAOvrsVxs8GenF1Akgc8c7Gs1p65HLODm0wd61/2zFQzGnAJDNSy6b0KQqWvX7MpWLA/Xw//7mZ386Yl5HhqJo2xgaWSYFls6AvRGvQTdG+/X8aAbwQaaBKON4FVEPLKIzyWxUb2TqahIouNJP5mpsqcvcsNjZElkT6/z/y3L5h98aAtXk6co13X62xwWogC8NZ0D26ZQ0/C5FbrCbrrDHnwemXjQhWU7lt8rKNZ1ntjRiUsW+Q8vT4ANo4slvistcmgwygMj7fzh8VkuLZXwuySG2v386PwyfrfER/d0taxQVv8GH0TkahoLTTb26GLp7hDsZ4RYwMW+vjBuWcCtSLSHPLT5XfygadUviQKDcT8Rn8LDWxLcPxxnpCPIP/veBV6fyDdZ2qCZJleSFQba/HSF3Zg29Mf8fHJ/L6dm861mVLGu4VYcUt9IIsje3gjFus5ysYFHkW5aR9wMQ4kA5+eLSKLA/v7Inf2S7uKOwVi1F63MKk0LXJKAbjpkzr6m4mlzIsBnDvYS9iocn8rx2ngG3bRwySKb2gP0x3w8saODmWyNmUwNG9iScBq2GyER8vBrD2xCNUz+82vT1DVH+fXh3V2UGjqiIPD5w30sFhpsapLAtncG+ZfPXqVYU/nEvp4WKa7N72IyWyVTcWzQz87nsZuk1LFkle5wmS0dQTrDnhsUXCu9FMOy0Q2LUkPnyGAbnSEPB/qj7/o++HnjwDr3XnvIQzzgXbdfJYoCT+3q4neeH6M96OLZ0WV+7YFN76lnsALTsik0ewMrTda7+OAg4JHpjnhYLDTY0lTUr2dT7HPJJEJuxpJl9CZZdWd3mMe2dfD6eJpiXeehrU4P8a2pLJ1hb2sIphkWUxlHVXRmrkjA46KmGQy0+UmWVGqayYuX05QbBpZpYQmOumxLIki5oVPXDTqCbsdxSZGYzlY5OZPngZH2NXZ+1yvWwz6Fzx/u4+RMnulMbV314sXFEleWyxwciL6juvx2cf9InHPzBRqGxcf3dbfifFbgdTkxMnv6Igg0B4WmRdirkCw2QJgF22n+P7mri/tG2nl1LI3fLXPf5jiGZfPtUwtNy3WZ2VytNQRawf7+KL/3S4fWfD+2Df/xp5ME3DKfPdzX6q+OLZc5M19ge1eIXT3h1po5FPdTUY3WMOriYomYX+HUbJ6Dg1FCzRiX65GrapyaddZky4apTKWV1etzSUykq1xaKtMT8dIV8RDxKiiSxDP7uslXNSfiR5HIVzVmc85AcXSpxN6+CA9vSXByOodblqipTvbv6jwvRwxTYyxZYag5dHwvaPM7/delYr0VWzQU9zOeqvCRPV30Rn28OZkDHOt4w6sg2/DWZJbxVBVFElv9/vl8raV0PDmbZz7n/LfPJfOvP7eP84sltncGaQ86n+fV8TQXl4qMLpYJexWGYj5Gg00XpqiPUl3HBrZ3hdjeFeKpXZ2cmy+0ru0V54WoX2GhUGNndxhBcIgN2apGpqLy2cOOAjhdbpCtaMzknEzOBx9qJ+p30desLRcLDbYkgvzowjITqQp+t8TH9/VQ10y6I15yVZWukIcd3SFize+8WNf52pszaIbFsc1O329vX4S969RtlmVzabmMYdmkSiqpksoj2xJUVIc4+dCWW1uVvl9ds39i2/Y/BCzgvwI07RD/4Z14ctOyeW0sg2HDclHlE/t7ePWqE57X1+a9Ybjllh21Vbqi8sZEBkkUaPe7N8rV3hClhmNNZ9uO+iGyjmQ0EfTwK/cNopv2DU36qUyVdFnFtJ3CJFnSSJVV/vTEPH/7seF3FbS4Gk/t7OTcQpGhmB+/W+Em0Qq8cCmFZlhNL931G3Slhs7ZuQI9ES+jSyVnkKMaiILA3350mIDbsTBbORA+vasTRXKmxz6XzEgiwNfenCFbVdk/EL3jjIqQZ/2GUH/Mx28+vBlREHj5qmNZOBj309/m5+BAZN2w1rKqt5pRi8U6umlxNVnm2YtJJBHqmkXIq9AWcHF0KMZIIsizF5e5vFzm8FAUlyjy2885zJJjm+MMxf1s6wowl6ugGhaaaVFVDRaLdX5yJdUK/97U7md7V5B/8+IYk5lqS0q6rz+CJArEA+41Spe9vRE0w0IUBA4NRPn9Vyed999kTwuC0FL4PT+a5PxCkXjQzZeO9K97aD0/X+TFyyk6w04T7Z1aEuSbtqNa0wLDLYt8/cQcxZrOfK5Goa4jApLoFFOmaTNfaJCrakxm6kiCSL7mBHh/5mAvDd1kOltFEUW6wh4e257g/35xHNOy8LlkVMNqMTg2YqcW6/pNrVnuYn1IosBnDvWim/aaA04i5OLNiRzpssru3jCCIPC3Hh3mhcspXJLInt4wAgKji6WWL/OKCiIRdONzyaTKDWc4hROk/qEdnfzowjInpp0B78f396zrI58qqWTKKsvFBr/74jgf39/DI1sTJIIeUk3LrnTZ8bj2NBn2AIoocGI6T63pp/zsxWXqzfc0GPcxnAjy6QN9dAQ9nJwp8CfHZ/mFgzde/yv3VaGmMZIIUtUMTkyXqDQM/vzcEh0hDx0hN6WGjmbYPL49QXvAzVSmimpYnJrNs6MrxLdPzVOsG+zri7RUJJZl890zC7w1lWUg5mtZ+N7+7/WOHn4X7yOmMzXONA/4O5qHz7v4y403JtKky849+vZ0lmf2da/7ONWwOD6VZTDux7WOUgnA75JYKNSpaAaD8Y0HUhPpCg3dpKHDTK7KHl9k3cflq5pD7or7N1QeSqJI0C0ji+aG5ChwiqU3JrP4XBKbbvLe3pzMEfIonJkvcmw4vm62h4CAV5FxyxLSBt8FQMDtnK0kQUC8ybrmVmRqmokoCuuqwMDJHm00bZXvv0nDta6ZfPfMAsenclxcLIJloYjOuVeSBBYLdRRJQNUdKzmXLOFzSXz+SD/PXUpimHB8KsuxJpP05atpTs3kifoUvnTPAJ/c38PbUznM5rSu0jDQTYsfnF8iXVapKBJzuTqLhTr5ms6u7hBP7uwkXVE5tA4D8oOEmN/NpnYnS2q9YvUu7gxEQeDJnZ18vmkfJ4sCpbpBqa451tJhDz63jN8l8cBInB3dYZaLdX48uoxhOecdn+vaoF23LKqaiSJLHBlsY1tHkLPzBacuNU1eupLh1fEsw4kAT+zs5MJCgRPTeSTJUSM+s/fdqTW+fM8APzq/RNTnoi96V8H+QUV9lSfsipDZJYvottPMccsi3REvv/bAJgSB1prv1HAO6UG3bNwexw0i4nMxm6vRHnQTC7g4sinWio+4GQzTbuYJOdENM9kq3zq5wES6zPauEJ851NdyTJjMVB0XCQR+cjVNT9RHuqIhio5FqN8lcWGhSE/ES6Gus68vTEfIS0U1eGUszWfWsfjb2R3m9EyeXE3jpSspMhWVs/NFLNshUOzoDv3MFCI/S/ynV6Zu+H/ZisalxeK6j89XNaI+hSND0dYwcTpT5c/PLeJ3y3xuVZP8nUKWRJ7a1clYqszeJiHlLj44kJr2/Kv7Aevh4ECUy0tlPLJEzO9qRc88fylJb9TLQDxAW8DFRKpKqa7TEXRzebnEnt4IPzy/xOnZPBPpCpLo2Cy2+RVqholhWWTKKucXigjY2DhOMt0RL0/v7OTFKyl+cinJG5NZPrGvB625x02kK4wulji6Kca+5tlkvXv1+FSO41POYGJFjLACw7T46dU0AK+MpX8mQ7C+Nh//5GM7Ob9QWKPOuh6rSWHZvMrZuQI7ukN84XA/k+kK25q1ZcAt81RTYZurati2zd98ZJjffu4qqXKD50eTnJkr0hFy8/F9PWt+05XvJ112ch3zNY3+Nh+LhQbDiQALhTr/y3cvUKhr7OuL8L99cg8Rr8L3zy3y2niGR7YlmExXyFU1Ql6ZhWKDsM/F86NJPrUBOW/1b7JUqPHipRTJcgPTtOlu2p3rpkWuptIedHF2vkixbnBpsciVVIUD/VH+hwc3EfYqjHQEmMvVW+tI2Kc4Q0VBoFjT+fWHNq3pc8cCLuZyNXwu6Y7FxezuDa8Zpn50TxdVzWzlpD68tZ23JnPcuzmGjVMP/HQszXiqwu6ecGtekAg6cT3Zisq+3jAhj8LVZJmeqJf+2I2CGQGBTMXJDS7UdP6Pv7hCpulqdmGh6GTIhdzM5+vs6Q2hmxYvXk5h206vdFN7gNcnMpyfLxLyKHzpaD/TuRo/vriMR5HWqDbrmjOElUWRTEXjzckcxbpGpqKxty9MV9jLW1M5xpJlett8LBbq/LfXpwl4ZPxuiQsLDa4mK8zlHbvUPzs9T7qikgh4kESBUzN59vdHcMtSU4VsEPLKCILA6dk8L19N45ZFPIpIe9CDIgv86dtzuGSJj+/rvq3f8v0agn2IGwdeT6/z/94VLNsJ9wbnYHZhschCvkEi6KZY1/nJlRT5mnaDRP2je7rwKCKjiyV8bplE8Ebmy80wlqy0vCcvL5c3lMBfbzO4grenczR0E0USeXx7Jz8454TUeV1iS2XwXhALuHnkdkMbbVjI1zmygUc0wHMXk8zmapwSCtw3HOPUTB6vS8LGpqqarUn0CoYTwdaAybZt/q8fXyFZauBxSRy4zULZsmx+fHGZZKnBI9sSN90cboaVZvaO7hCTmSo+l8Qzeze+SXqjPu7dHOPETJ4ry2Vy1ZmWJNhoHgJcsshnD/VzaDDKsxeXeWMiS6qsMpEuE3ArTKQdz3NRzHJpqcQrYxkMy0Y1LSRRwO+W2dkd5q2pHIIg8MBIO79y7xA/uZJCFkVifjcdQTd/+7Fhjm5av3kjiULrustXNbZ3haiqJju6QuSqGt87s4AkiXxiXzeLRYdBkCmrqIa17me/tFzCsm0WCw0KTQ/2d4J7mpLmn15N8Y2Tc5TrBvmahmnZlJshALbgsFhifhcLRSdotG5YGJbJ8akcHkVif38E1bB4clcXdd3i8nKJkYQT5riSX9IV9nAlWcYtSzw3mmRLR+CGocVKIyoRcvP5w/3vKTPsryPGUhVeHcswGPexuyfCnxyfxbBsntjZseYw41akG8gGv/7QZv7iwhKXlspYts3j2xLsbHr5hzwKAbdMRTXoCns5MZ3j3HyRhUIdn0tiqVhfdwjWFXHyui4uFumN+jg9k6eqGszmnHu6K+wl1LTiEUWBzx3q44GRON87s0ixrnNyNs9IIoBh2cT8LpSmNaJm2OzoDpEqqwiCkwGZr+kt//8VHBqMkqmovDLmNCsXig0s22Y6W8Uti3SGPYylKgTcMookslRs8IWj/ZQaOm5FYiZb5dWxDGfnCuxu2hitoFDXaegWiaAbRRLfMUN6JTD2Lj54CHpkusJeLNt+zyyzu/hgoG5YrQHNCvNsPaTLKjXN2QdV08K3zrT61GyeqmaA7TBON8LWziBXk2UUSbxpVtIPLyyRKjkF8q8/tHndpoWNjSJLWLDhAAngwkIR28bxl09VNlT55KsaL15OsaUjiGuDiXzYp/CpAz2kKyo7b2Kptq0rSG/UhyIJa7IWr4ffLXN0UxuCIGxoh5it6ngUieFEgMVCfZ1ncTCVqbJUbDCWLDGXr7earqqpUW44QeKKLBFwSZQbjtpfkUR8bomeiJc3J7P82584DNRjm+Ot18rXdOq6SSLk4SN7u+lt85GpqBwZasMwbbZ2BCjXdRIhN5873MfvPD/Gprify8sVvnr/+s4PHzRIonDXvuo6ZCoqP7qwjE+R+MiervecMWtZNn9yfJZ8TWdLR5CP7HHOW29MZgCBrZ0B/C6FmZyTx/zji0liAYeQ0xf1oeoVoj7HJv6VsSweWaBhWM6AQNAZXSqysydEqqTSGfJwaUlFMy0ME+ZzdcZTTlNrIV+nze9q2Te9Gzy+vQN/UzGQWEdxchcfDKyXi9jQTfSmQjVTcfof11/b92xqY7FQY3tXkB1dYa6myrgkkXxVoyPkoSfixbTtm6p8V8Pvlnl6VxezuRoH+iOMpSoUms22uXyd07P5VsN3a2eQjqCbZKnRXJdzrczInd0hFvKOs0VDN/nQ9g6+fM8A3zu7SLlhtCyZrsfZuQIzuRqXlkpMpqv0t/kpNwwUSSRZamy493zQcXbhxmGXZlhMZqpkKuqa+n8uV+PbpxawsXlqVyd+l0xX2MOLl1PopqPiWizU1yUV3y62dgZ/JgOGu7gzWC41ePZikohP4cO7u9ZVQCqSyFO7O5nJVbFtm53dYZ4bXcbvlon53fzyvYOcmM7x9nSO5WKdy8tlFgoNappJWTWafSmBnd1BJlIVqppJIuBi2YLZXBXLtvHIIp0RD0/t6mpmuau8NZlDs2xU3SJZbvChHZ0Mxfx84+Q8ACemc60h2HpYfUa+/rwsSyI9US8L+fq66rd3C82w+MH5RSoNx7Lx9YksU5kqx6dy/NoDm256ZjBMi//zL66Qq2rs7gnzD5/etkbdtILV9+3H9/XwyLZ2Li2VGU9VkCQR3XTUdyDQGfassTJ+YzKLIEC2qrGjK0Rvcx0dS5Yp1nUqDcPJa4eWLfl8vsa5+UIri6k74iXmd3oaNxuetvldfGp/L5mqSrGm0R/zkalquCXwuSQEBLZ2BDk0GEUQIBGsU6jrLBQbaIbFfL7GTLbK5vYA7QE32zpDa+JRntzZSWe4yKZ2P5uvq50e3tLOlo4gEa/yns9pG0EQhDU5evGAu3WGA/jp1TRRn4sdXSGObY7x+kQW3Uzz4V1dfOFIf0ud53XJvDWZ5cR0jqpq3HDuvn8kjmFZnJ4tYJgWYFJRjdbeu1iokyypKJLI6dkiH97tJRH0kCw1WvvfRKqCIAiUVQMTWrnLLklc8/30x3w8viNBTTOJBVx0hNxMpCsALBQalOo6l5ZKlOo6PpfESGcQ3XCiAYYTftqDbiqqgWbYnJkrcDXp/F2PImGaNm5F5KUraZ7c2cl3ziwwk3Ucoj68u4uXrqQ5OeNk+f2vn9hJrmbw9mSefE0HdCbSlZa7x83wMx2CCYLwm8DfBDYJgnBu1R8Fgdfu1Ou4JIFEyEWypKFIAtOZKm1+N7ppIYoCY8kyDd28YUgV9Ch8cn8vH9phIIu3n72ygsGYjxMuqeVt+U4xnAiwkK/THnSK36d2dZIs1+lv8//MbsQVNHSz5ae9kpsT8SvEAg4rQzdsdnaH1qiFVrIqZMkJOPzFY4P85HIKlyy28g02wpuTWV68nHIueNO6bbZQuqJyuel1e3Im/46HYDXNcFjHzc/REfLw2UO9HJ/KcSVZXndTTJYanJjOMxDz0RPxMpWxKNV17h+OUW7olOsGD2yJ8+p4hqpq8I0Tc6TLKvP5Gi5ZIuBWiAfcLYXW7p4wM9kavVEf46kyMb+LoEfmnk1xHtmWwOuSyNc0Ht3mSISH2wP0tfmwcXxy9/atHUxeWCjS0E329UVaQ5+6ZvJHx2fRDIvtXSH6Yz5en8g0FwQYT1V4cKSd49M5huI+xlMVFFm4QfW3v8/JvuuOeGlbR9l4KwTcMrt7w/zRWzPNYG6BkNcJd+xr8zKVqeKVRIY7As7C6XehGhY9UW/rHprJ1mjoFu7mPfDxfd0cLbbx2nimxay2bCeHxeeWmUhVaPMr6w64ZrNOHl+qpFLXzTWb0DvF6dk8uarG0U2x9/Q8f5lwfCpHsa5zaqbAeKrCWKpMf5ufdHnjDJli3WFqDsX9rd/QJYsMxv2tQ7NHkfjFYwNUVIN4wM33ziywVKwjiQLbuoJrmIB1zWR0qUhn2EtPxMsvHOylO+zhraa381iyQpvfTcAj84vHBtYczGVJpL/Nz9O7u/jhuSX6ol4Cbpnt3SHu2xzn9Fy+5bHtcznD13xNoyvspVjX+IsLy8QCLh4YiRP0KLhliaNDMSbTzgE/7JXpCXsIehT290cYXSpxaCCKbtqUGjqHB9uwbZuo341mmCwVGyiSSFfEi98j8+BIO3XNRJEEIl6Fze0B3LLIw1sT73gP2NV314Lqg4qdPSEe39GBYdnr+lrfxV8+fO5wP5PpGpIg8NmD6wfEA1xdLpOt6I6CyDBhnbPPzu4QQbdCRTVumrcTD7j5yn1Dt3xvK4x8RRY3dDiI+twMxnxkq9pN7eviQXfL/vX6YOLVeHs6z2Kxjmo4KvfABuSvvjbfLXPxBuN+oj4XHkXcsDEJDpvy5EyeLR3BDS2pwl4FryJSukmTE6C3zUtDN7FwSFseRcQwnUGhV5HoCHlwN8OcBcEhMe3pDXNsKMZYskK5YSCJAq+OZTi2Oc79w3HenMzS3+Zb41JwvVLql+8d5KEtCfb3R4g1C+OxZIW966znp2bzXFwosrcvclsF3gr+Op5dft44P19skSSns9Vb2szfCrplUag75/mV4QPQbFSXsRHY0unYzq0MrH54fonusIcv3zPAZLpCTbM4v1CiI+Rmd2+Yq8kKumk3LVE9DES9dIY95KteFgt1yg0Ty7Y5MtRG0K0wkaqgSAJexbHrfLeI+Fw8fZP4gbv4YCDigRVu1coKJgi0cp2tDSxoLy6UKNQMyo0KB/ujXE2WUXWLmWyVXzw2yK/cN4hlsaGd7wp0w+LPzszjU2Q+ure7NSDxuiTmcjVmczVqmkHXqnU97HXx25/fz0tXU8znnP7KXK5G2Kfw6LYOCjWDhUINtyzyxaMDxANuvnzPtVpkPXSFPQiCM+xXJJGjm6LYNuimzYGBv7x2iI9ta+f18QyrHZhtnOb82bnCGtuybFVzcjpxHDFW1rNdPWHm8k428p0cENzFBw9nZgvkqlqLDLERQenFS0mSxQaqz8Uv3ztI1KcwlqqwvStEm99Fd8RL1OciXVbxNe2sNdOiJ+JFxMloPT6VY75Qx2reZxGvgqs9QLLcwLac8+uDI3E6wl7+6+vTtAddFOs6Ub8LryIzGPPT2+ZjcyLARKrCjlu4bxwaiBL0yPhd8rrD+U8f6KXSVKLcDgzTQjftm6pRZrLV1hDJUZY695dtc4O990LBGfYPJwJs6wxRquvkqxq6aZEsbUyAzVTU1vNmyg0SIQ/5mhMDM5GqUNMN/vj4LC5JJBZw85Wmc5kiiUymK8xkaxwciPLlYwOtnsSO7hDbOoNkKioPb3HiJDa3+zkzV6Cuma114LOH+ogFXJQbBslSg5GOjYl74AxV+mM+yg2dYl0nHnCRKql4XTL3bGrj8FAbbT4Xy6UGb0xk6Qx7mM3VOD6VY3N7gGRR5dRMnkxFQxDgS0cHMCyrlcm+UU6hINzcdv2dYrFQJ9fMnVvPgWp1j3lXkxi+0ntyyxJhr8Lp2QLgkCLvH4kjCAKqYfLtk/OMLpbwe2QMy6ZU19nRHeLggGO7qEgiH9rRyYd2dLJQqPNnp+aJBdzs6Q1TqOn0t3lxKyKqbtEedLNQqNPb5uHopjaGmv31I0Mxnr+URDUsZrM1dnSHNnRau2+4ncODMRqGScjj9GEnM1WODrUxn69zbq5Ab9THzp4QH9vTzWsTWSI+mXuGYgQ9CrmqoyYUBPjpmOPU9sT2Dq6mKo41pmVj2zZzTRvImewK+coGnFy8kzMFLiyWqGoGLkkk6nPRf5vZ6z/rauiPgB8B/wL4R6v+f9m27dydehFBEPjYnm7OLxRIlTVGOoJs7wrxzN5u/un3LzKfr9/gb2yYFucWHLnf6mnxO0Es4OZvPLgJ2+Zd+SEf6I+yoyuESxIRRUfau8JYuhnmcjXmcjV29oRvGUB8PWzb5uWraX56NY0oCHz1fiefRxQF/C6ZTEXl3LzDDtItiwP91xp2T+zoZChepiPkwaNI7OuL0B324HVJG6rdwBm4vTqeQTWcENqIz8VS8fZUC1Gfi3jARbaq3fJ3augmxbpOIuhGEATenMzyxkSW9qCbzx/uay1Gr45lWoO1rrDnhmvjhUspkqUGY6kyH9vbRV036Qi5W3LSsmrwB69N0x5wU6obFOsammFz/0g7R4bayFRUdnaFaAu4Wz6nFxdLPGol2NYR5M2pLPmazmPbEwiC0LLPWUEi5ObDu7vwuyQWiw3KDeOa1UO6wnOjScA5GKyEEGumhd4MJqlpDit9c3uAs3NFJJFWuOZg3M/p2TzPX3KeQxaFNcytkY7gDV7E7xSyKLAp7uf4dI7OkJdfvW+I/QNRZrJV/uG3zpEuNxhdLCMK0Bn2cGiwjQdG4kxnaywV6jy2PcGxzXG2d4Va7IelUoPZXI2lYoOtnQF+9f5NCILAR3Z3kSw5GWjrSdzvG47z5mSOwbjvPTV/losNXrriyOF102qxDv+qYyQRIF1WsWyLUk1rMlEkDg+2bfh3vnFijnLDIB5w8cWjA3QEndyK6+1iPYqEZduMLpaYzdXY0hFEEgU+f7h/zcHhuUtJJlIVZFHgq/cPIQiAAB/Z08Vwe4DvnFloMkQ3LkY3twf4rUeGEUWBhm62Am4D7mvrlpOn4ahXCzWN3/3JOOfni617eEXp1hn28LG9XRRqOtu7Qq1hrigKHN0UYz5fY7nY4L7hOF6XxHLxWrBsm99Foaaxvz/C5w71cTVZ4dun5wm4Zb54tJ9P7H9nbHoRR/0MEPXfZVR/UOGWb1RK3sVfbjy9s4uQW0GRRY4Obbwebk4EqOsmYa+yrkUgQNjn4vBglHRZ5d7h9xbMDI7LwXiqQm/Uu6ENsCg4mSs+l0zAs/HeONwe4EB/FK8ircs0XcFYqkylYdDQHbvnjZCvauRrGoMx/4bn5uVCnYDbsTBOldQNXRo2twduYHVej5XmpWHaGyrUwFEnP7WrE7csEvTkMC0nQ7dhWPSGPVR1pzFY0xy28lDcjygInFso8ekDvVxNVijUNOIBF69cTbNYrHP/cJyeWzQGVzsmADy1q4undq3/2FfHMpiWzStjmdsegv11Pbv8vDEU93NhoYhbEVus6PcClyTy+PYOJtJrA8IPDbbR1+bj37w4xo8vJtnc7udDOzr4zpkFXriUpKaZPLGjk03tQcbTFSbTVaJ+F+p0ns6Qh3jQzY7OELmKzn98dYqP7emmN+LFpTiKx96ol7/1yDCXl8uEPDKaaXFkqG3d3OrbhWqYXFgoEg+437W7x1387BH0eSg0nFrd53H2LkkUkUUwLDasqarNDC3TsmkYFlKzNpOa0umb9QtW4+sn5vj+2UXn9V0Sj2xzamafS+aeTTFmczUs2yZdWkvKMyyLfX0RvIrEiek8XWEPnz3UhygK/MLBXjIVlUTQ3dobPYp0U9LZ0U0xNsX9vDqeIeCWeXxHx23bH6bKDfJVneFE4APnRPLL9w6xXGrw+z+dwlhxU7KhqhpMZ6trsoF2dIXINOM7dvdcI2h0R7z86v23JubcxV9+bE4EuJqsEPDIraiBFUxlqogCDMT8jC6WyDbPeZpp88y+nmYepXMt7eoJ8z89uRWAZLnBXK7G+fki5YaOW3aswU/N5Kk0DMAhiIZ9Cju6gxwabOPsnDMw+uGFZb56/xA9US8C8JE93YwkAnSFvS3HjY/t6XKyWm9x7wnCWlK4apgUatf6iZIo3HJov4Kq6gyWKqqj8NrI/r4z7CHocSy9N7X76Qx5HKvWqBevSyJTcSIeAm6Z5y4uk6/pTKSqRLwK2arGY9sTXE1WeGbfxme6nd1hshVngG0DLzfPgsc2xbh/OM4fvDbF1eUKggABj8K3Ty2wVGwQ87uwbeeMva0zuEa40NBMDg5EifgUntjhxLMkQh5+/cFNzOdrvDqepXdVP9ujSDe46twMQY/CJ/Zfcxpq6Oaa9bk36uMzh66dq790dIAfnFvi7HyB6WyVzmZdoxsW3zo1j2E5Q5SN+ium5bj5xP3u2/6NN8Kp2Tx/+vYc7UE3qXKDR7d1UFUNlooN+tq8uGVpTY95KO7H75YJepSWqitf1fC6chimtcYeX0BAbuZvAkiCY334yliGA/03Rgz1RLz8jQc3M5Wp8MPzy0CRh7a280vHBqmqBhGfwn98eRLDslmKNFq11NbOIOcXiszlajw7ukxP1LvhrMG2rzmjNXSTvjYfB5txR+1BNz7XZnTTYmtHiLBPYVtnkOcvJZnJ1vnikf41Q+Lf/cJ+dNNxy9mRqZIqq068iiDw4JY4o0sl9vVFKNZ0Yn6nJ7+jmVkG4HfJfPpAD31tvtven3+mQzDbtotAEfiCIAgS0NF8zYAgCAHbtmfv1GvN5OoUagZhr0Jf1MeRwTZOzuSoNAyCbukG65g3JrOcmM4D8LnDfTdliN4MgiBwm9/1uninbP+GbvKd0wsYls18vt4KqLtdvDWV4zunFzg3XyTsdaa2//OHt/Op/b0U6zouWWCxsIxmWPzowhLPjybZ1xfhwS3teBTpBsbwRlYWz48uM5Wp8ukDfa38H8uGvpiPvqjvtm32XLLIl44OoFvWhg0kcIaa/+KHlxlPlXloazvD7QG+fmKOumayrTNERTVaTfiVA7jdbMAb1lpbhja/QrLUIOCW6W/zs7ndaVCcmM7xowvLSKJAb8SLJDpKus6Qh6kmm+ObJ+dIlTR29YT5W48Ot27EXasOjQ/dwqLye2cWmc/XGUuWGekIcGI6z68/uAlRFJBXBWSs2C9UVINiTefRbQnSZZVDzQFFR8jDbzy0Cbjmt2tatrNRZKr0tnk3DJN/L+gIefj0wV5UwyIedDOerrBcanB5uYwkOJ9BN51Q486wh88f7uP/99IEV5JlOkNuPnO4j83tAf7PH18mW1H59IFeh+VRavDylRQvXUkxna3yz57ZjSQKN713N7UHbmobdbvwNvMXDMu+7QLuLxsausm3Ty1Qbuit8M6jzVDKb5+a53tnF+kIefjI7i78NxkoGpaNbVu8PZ3HsuFzh3rxXKd+ODdfwLRsLi6WSJdVlpqDov4234ZNW7v5z0uX01xNOhaLT+zo4MO7u1pEgvXw9nSO2WyNezbH6Il416y5hwai+FwSfre8Rp0gioLznILQzNWTqWkGr49nCXkVDg9eO3Cs/i6qqsG3Ty1gWjYLhTof39dDZ9jD49s7eP5SkpeupKiqJnt6HfakU2g6zMpMWaM/duP3mio1mG7KwK8/iKxuNeuGue7nv4u7uIs7j6lslZOzeURBoL/Nt+E+dP9wnMl0hUOD0RvWwRXUNJNk2VErz2bfvc3YCjyKtObMsdFjhuJ+NMOiJ7LxoOb0XJ6TM85ZOep3bUhG6gx5qGvOGdy9wRpeqGn84++cp1DT+eieLr54dGDdx01na7w1lUMSBT68u3Pdx9wu8jWNNyayZCoq3RHPTTOr9vRGaOgW9w7Hmc6U+e3nx8G2yZVVgl4FtyzilhVcssRUpkrAIxMLuEiEPOzoCnJypsDzl5L81zdm8CkSP764zP/x6T24FYnLS2X623wbDhLrmsnp2TztQfeGRKTBuJ+JVGVdq+CNoEgC01knk3JXz90swvcLlu2wVMNeBd97zJn4yeUUZ+cL7OkNr2s72WiuGxXVoNzQ+dyhPvqiPn50fglVt/jj4zNsTgQYjPnZ1hnEsi0qqkUs4KI96MGwLN6YyJIsNXjtapqtXWE8isTH9nZzqNnQ2NYZpKYZ1DWLw03b/NbZpCP4jppHz40meflKGr9b4u8+tuWuRfAHFOaqM6XetIfFtlt1Y103WSzUb9j77h+OI4twZq7AG5MZPrW/h/lC3XE4WTVY2QivjWc4M1cgU240X9Lmzaks5xdKPLAlzoH+KP6m5bhp2QRXkTgqqsF/f8NxIqmoBpIg8P2zi9jAF47045LXqouzFcf281aD6vaQh09ukGezEYp1na8fn8Ow7DX5vx8UzOZqzGWra+oIG8fC+bWxDJWGwb3DcQ72R3l1PE1VM96VS8Vd/NXAlo4ggzE/siisqbcvL5f40fllAD62t4t7NsXQLZt8TeMH55b4wpH+NUQrzbAIumUWiw26wx6eH03y06tObfzgFscCeqBphxf2SFQ1g+Vig22djsDhzckc05kqLkngH33zHJvaA2zrCvLgSPuavSRZavDtUwsoksBnDvbdWnlqWpybLxJwS7w+kaVQ09nVE95QQbQR0mW1lR8+k61uOAQLehS+ct8QpmUjCvDdM4skyw6p+/x8kd/9yRiaYfHPP7GLqN9FvqbjUUS+cWIOw3JIyrGAm/PzRSRR5GB/9IY+iEsWebz5/o9P5dBNi1RZZaFQoyviwbIc27m4381TOzv4QfN3LDZ0vC4JUVhLlG/oJv/+5UnemMg4/W8EPrrXyUMWRYH+mJ8vriK25KsaNd18T0qr9dYb23YU7B5FYiJd4dxCAc2wGIz5uWdTG71R35prwWbjZueLl1MtwtJX7h1617lgy8UGPzy3xFSmSkM32dUTxrZtvv72HMW6Tm/Uy2cO9RH0yCwXnV7iehaRUb+LX7t/CBtH2fXsxWVevpJie3eIR7a0o5o2WzoC/PRqhktLJQZj/hv2VLMZS/PGZA6X5PQuV3roAbdMwC2jGRZS88/k68KXV/ZUtyzhvu49mpbNC5eS/ORKis6wh08f6CUR9PC1N2coNwz290d4eGuCb59aIF1WifgUdvWEeXs6x+hiCdumaZVYZDAeaOWfrXYPMSwLw7RaKsb9/VH2N0U5X397lmxVI+JVWo4ELlki5FXof4ekqvfFF0MQhL8F/FMgybW+nQ3suVOvsViokSqr+BTH4/QbJ+e5ulxmJlelO+LdMJDceX936l3cGVxNlnl7Otf0P13LMBYF4dpF+y48qFeyCSSxRMAj43WJaLpJZ9hDf8xphFi2s6ldWipxaibfknaWGwYuWeTJnZ0tlsJSocHevjClhsHlpRJbO4PUNJPff3UK23akuB1hL/maikcWcUkC6VKDqqrf9nsWRQG3ePNFKVlq8OzoMqpuMJGusK0zyFy+TmfYg88lcWo2T2/Ux5aOIPcNx+iJenludJkfXVji+FSOv/PYSGvh+9COTnZ2h4kFXGuUJaNLJYYTAVIllc8e7mMg5kcQ4Jsn5+kIuXlzMst0toYogFt2mCNV1eCFyykWm1lHB/qj7OoJU6zrfPf0AqNLJdyyyNO7O7lnUxzdtCg0LQxVw8K2116f/TEfn9jf0xzuOb7mf/jmDNOZKlXN5NBglPuVGwMuV3B5uUSuouF1SfS3+d6z6msj7O6N8ETTH3guW+UHF5KYloVqWGiGhWlayIpE2CsTD7pbwZ2lhsFivk6mrHKmKQd+ZSzD0aEYiiSSq2nYNrx4Oc1DW5J4FAndsFkqOXLn1crFO4lwM9y+WNcZjP3VtHx4+WqaNyczdEe8XFoqtyTtHkUiV3UGu5LgZLTkqxqvjqcJeRUe2uIUdufni8zna9iWxVS6ynyh0ZLp//K9g63X+d6ZBf7wrVkCbpnuiIc2v5v+Ni+/dGxgjTILnAPXsaEY48kypbrON07MtULdx5JldNOiZ67ALx5znl8zLEaXSsQDLnqjPop1nVfHMs6fmRZfONK/5vlFUVjTLL68XOKFSym6wh6+eLSfezfHaA962NIR4MXLKc43PfQ7QhszmFfuuNX3Xl+bl9lclWTJ8a+uaSaVhsH+vghvTTmHlOsP6LppsVxs8J0zC9Q1k8tLJX5p1fd4PUY3CLO+i7u4izuPpWKd2WwNQXCawRsNwb59ap6aZvLipRSfPdhHZJ2Gr9487As4a9hGmE5X+KffH8UlC/zvn9pNW+Ddqz/9bplHt7Uzma5yz6aNlWyZispfXFhCkQQe275xEy/ilRAE8LqEDYkMi4U62YoGwOWl8obPlSo1qDQcosz1LP93ivlcjbPzRQzL4oVLSX7lJnaSkihwaNA5Q/zLZ69QVQ0M85ptSLlucHQoQrKsIwjOUO/0bJ7pTJV8TSdTUcnXHNZtuqKSq2n84z+7gIAzNI0H3PzLz+5dt+H63OgyZ+YKBD0yv3hskHjAjWqYGKaN3y0zniqzKe7j4S3xd0TESVdUOoIeGoZjT30X7w8uLJbQTSdfd7nYWNcCtFDT1tQmtm2TqWjUNYOZXI1tnSHag24uLjq5fGfnii0btoe3treaQ7IksqMrxBuTWTyyxHfOLPLxfd186+QcmYrKcsnJXJnKVB32cFWlO+xBEARiARdnZvOUGjq2Dctllb6YQXvQsdABZ0BbaujopkVHyM3LV9KYts1YsoJp2VxNlvnyPesPtNfDn59Z5CdXUngUiS8f7bs7BPuAIle7Vqc3VmZgXMtgr+sW//uPLvEbDw0znAigmRYBt4y3mZv45qRj+CMKAr1RH//9jZmWpblmOra5sXUIsWfmnIZm2Ovii0f7AZvJdK3lHHGgP0qb3/mzSsNgIOajWNN5ZTyNZdk0dEdB0hX28Pp4hmxV4zunFxhuD3B4qI18VeP0XB637CjFVMPknqEYD2yJoxrWTUl17wS6aWE0PSPr+gePpLZcbPD85fQ6tpY2s7kaqmFh2Y4q5ofnlqhqJpZlv+Nh4F381cF6Tfu6du3avrpc4dRMjrpmkC6pTVs1k7/16AjgxHn8wauTpMsafrdIuqxh2jaWZaMajpvTJ/b1cHGpyGyuhiQKRP0SiaCHwZifb56YxzBNarqB3+UmVa5zcibHYrFOuWGs2YfGUxUauklDh5lclV7bhwAb7jevjWc4PVtANy0WCjVU3UKRhHc8BOuNetnSEaRQ127ZkxIF0G2bXNXJ5cxWNFKlBlXN4Px8EUGA//zaFP/z09tZLDRwyQJ/8vac810ny+SqGmOpCuPpKrIotAYF6+FAf4TXxtPIosCpmQL7+hwScMzvpj3oZjgR5N7NOqfnnDypTXEfe3ojvDae5eJikSd3diIKApppopmOMGEmdyNpby5Xaw4pZL57ZrEVX7Je/MxUpsq5+QLbu0JsWacfOZ4q8+OLSQJumU8e6CHkUbi6XOb3XplAFASe3NXJxYUSiiii2RbP7OtqCRcAPn2w17H8i3r55sl53LLIEzs71ogqyo1mz1V3+pPvdggmCE5dNZII0Nvm46Et7S1lbUU1ODNXwKOIjCUrCCKEvDIvX02RrWhEfS4eHGlHlgTqTUK6Zli0BRy1Vrqs8tpEFv1eu2WJ/+TODu4bXt/i/MR0jm+dWmC52GBnd4j9/VE2tfvZtUrI4pJFPnOwj8VC/Ybvfk9PmNmcQ3C6fgh5aanEy1fTTKar6IbNWKpC0K20Br+jiyVMy6mBwNn7nhtNMpmuUtMMx3K7ovPji8v4XApfONK3RlCTq2r8+bklLMsmVVbXKPiuLDvzEbHZi1yJdXpwSztV1UA1zJsKZq7H+2UO//eArbZtZ38WT25aNqmS6nwBusjrExmUZuCfW5FwSSK91xUgx5re+CGvckesKu4kfno1TblhkCqp7O2LrBnEuGSRzx5a/6K9HRzbFEMRRXb3hBhPVdneGeS/vDFNQ7d4Zm83g3E/25sBiEuFBrIk0uZ3sVhsIADVksHvvjhG0KtQV03CPoVMRSXZLLKuJit8dHcXoiBg2jai4GSypcsaYDOX15AEgX/z4jjP3MEgbWdqbWPZYFpQat6M7QE3Ya/C2bki5+aLdDXze4bifq4my8zl6s1GvXMKtCyb759dZD5f4+GtiTUN8n19Eaqqyb6+KFs6gq0m92PbOviXz11p5iTZiIJzQwbcMq+NZ5hIVXhrKstQ3AnT3dUT5i8uLPFnp+eZzjqZIm9MZvn/fGIX3z69QFUzObapjce3j6AalnOjrzqQr2YBqw2noZ6raViWTbbi+DVvdE2HPAqiKNAR8ryjTIl3g0e2JZjL1fjyf3qLdEVFABQRDNPGsADd4sXLaSRB5JGt7ZydLwI2l5fLxIMuEkE3+ZrOwcEok5kKxbqOJAiY2PgUieNTOXwumdOzefb0RkiXVfb1Rt5T8eLYHTlS7+sPe21+V4ux8JcRc7kaf35uiZBX5tMHetdsbIWaxrn5AqWGgZWv86Wja9eWA/1Rzs4XW02RV8czfP/sEsW6Tq6qc6A/wvOXklxYKDpB0aaFaUFbwHXDgWLF07eiGhzoj7bUBSHv2u/2wkKR5y8lKTd0PLLExcUys7k6AbfMF470YzXXl0JNx7JsRFHg5atpLiwUEQWBX753AL9bJuxVKNb1liXhzXB+vohmWMxkazww0s79I+2tP1tRYVVVg2+enCcR8vALB3rXfD6/W+ZTB3tZLtbZ0XVt7XDUoz7qzUP1Ezs7aA+6yVdVIs3nPTWb55FVKtE/O73AfK7Gqdm8IxH3ufhE8xC4HjIl7Zaf7y7u4i7uEGxoGE626s0E1Z1hD6myStinbFhcRXwu9vRGKNV19vdHNnyuP3htirGUMzz647fn+a1Hhtd/a80hTMTr2jCMOldR+V9/cIl8VWM2W+c3H9m87uNeupxmPl9HEOD1ieyG54ZLy1U0w2axoFJR9VYe5GqMdAQ5OtTGbK7GM/u7N/yc5YaB3mTHllVjw8fdDryKjM8lYdkioVvYhy8XG3zrlBOk3hPxMp+ro5kWFdV0vgPgtYkce3vD1HULTbdYLDRYLDSwLGeNDnpkdnYHOTVToK5b1DWDhWIDVTcRcBoz15/PNMPitYkM05kaXWEPiihSrOmtnNc9vSHOzDkkh4e2tr8jsk884CbklfFZEt03Ufy9n2joJt86NU+pbvCR3V0tAt5fJezoCjGbrRILuG+wXF/Bc6NJJzdhvkh3xMtr4xlGF4uMLpXZ3hlkPFXhK/cNtc5fQbfcsquP+JRWznVPxMsXjvZT1QxKdYN8VSXsVXh8RydvT2Wp6yUauolqmOimjWHZLBfVa0SiqI/pbJWaZhL3u9nX5zB5Vd1qqWqqqsHl5TKaYdEV9jAU95OparQH3O+YSPrqeAbVtFFNgxcupRnuuJtn+kGEvYqPsbLH6ddZ3Z6bL/K9M/O4FRlBgMe3d7CrJ7xm31EkkbGUE3q/UKjx0tUUP7mcJuJTuG84zj2bYlRUg2+dnKehm3RHPMzl6uzuCfPItgS2bfMXF5aZztbWNFJ9TaWCIAi8PpFhLFnBtm2G2p3m2AMj7QjAs6NJx+7L7exJz11KspCvk62qeBWJS0tllosNrqbKlBtGK6f9vWZ9xQNuntrVSbqsfiCzYAs1FdVYe3pxPrFAtqoxFHdUPx7FiWYwLZvFYv19eW8N3eTUTJ6QV7mlqv0ufr7Y0xtBMyxEUeBH55e4uFSmphroloVlS5ycyfOHb83w6QO9vHApxYXFEvNNK1OP4hCysxUN3bIdVXOuhk+RWoSPp3a2s707zHC7n2+dmmciXcGrSIQ9Cnt6I4ynKsT8rhvsrrd2BrmyXEaRRSRB4L+9MY2AwKealmnXY6WnJwoCti1g205/+Z1ClkQ+cpuZmX9+bonxVIWtnUEWCg0W8nVckkB/m7cZUyPRHXFszVfOSR/e3cVSsUHc7+Lrb885wxeXdEuFrSyJTWckofl5IeR1UdcdRZUgONavhbrO6GKJi4tlyqrze4AzgNjbF+E3HtqMIIBhOkqvr705wy8c7G0Rpr99aoGxVJmq6kS5bOkIkq+u3594bnSZqmoyk60xkgis+QyjiyV+75VJkqUGu3vCTGeqFGs6/+q5KyRLKvGgm+6IY9VXKzVIlVW+f3aJJ3faLfVdd8RLd8TLK2Np5pqfYyjuX7OmPLotwdvTebojnvdkh9gR8vDxfd0U646CcGX/+MieLv7tT8aJ+BS+d2aJHd0hRheKGIbNS1fS9EZ9aEaZt6ZyJIJudveEyVU1KqrB29M5inWdhm7idUmkyteihByXohvfr2qYvHQlzViyTF232CMKPLI1se5naw+611hVvj2d482JLOmKStTn4uRMnr29kTV/N+xViPgU/G6ZNr/Cji7H6tCJtalydbnMufkisiSwuyfMlo4gb087hJiQR2Fnd4g/OT5HsqyyuykKWT0Ek0QnePTCQompTJXeqLclCHplLE0i6CFX1fj0gZ7WOWM8VeEH55awbJvPHOy9YeazEd6vIdgcji3izwRi0/NflkQkwVHQSKLIgyPtxANutneH6Ah5ODmTZ0dXCK/LyRq42cT854n+Nh+nZwtUVYPjU1nu3RxfszDEA+7bthO8Hh5F4v6RON844TAJXh3PEPQoKJLIVLbKYNxPuaFzNVnmFw718rG93aQrKvGAix+dX6aumwQ8MgJO9lTYp6CIAmXVIFVq4FEkgl6Zf/T0NqYyVR4YjvG1t+bY2xehWNOoaU4R9m7l9MW6zpm5Aj0R7xpbnpDXxcf39TCVrjKSCJCv6wTdMg9tTVCoaRTqjtfw6kPtts4QoiAQD7hb76dQ15nKVAGnCb96odzTey2M3CkIS/RGfYgiJAJuvC6JqmYSD7qpqibJUoOOkIdCXcOrSPhdMgOrin1FErFsG8u2kUWBH11YYjLtvLZtO2qq1Tg/X2QuX+PwYFtr0Qr7FB7bniDmd1FSdTbFA3RskJ8BTij9F4/0o19nAfmzwly+RkfQTbmuo8giAjYN3cayrKYEV2AiXSVf19nZHcK0bLJVFbcs8umDvQzE/E6xXVHpiXoZjPuRBdg/ECPkUTAsm5jfhQD0RX3vaQA2ma7w4uUU4DQR70Q2ywcJo0ulJivKaeitvn8UScTnktnbG2Fzu5/JTBXVMFsy+HuH42u+j4jPGSxJosBSsY5LbkMQwK049iTtIQ/bOoIcHmrj8evUA0/v7qSuOzlaz+ztRtqg0JzMVFu2K5pp4XOJpMoNRMFDuqLy2UN9nJsvsrUzSEUzWCzUaTTZlnZzIK5IIg9tjfPtUwvMZp0QbZ9LJlVq8PZ1waTg2JYmSw26wt4bBp6HBtvwuyV+dH6ZmmaSKavM5WstMsJK+PfO7tAN91bQo/DlYwOkyypbO4M8ezHJHx+fxe++ZrPZft2anqmoziHHrbRst1IldcMhWG/sbibYXdzF+4U2v5uR5voY9W1Mjvi7jw3z49EUhwei6w6GAHyKRF/Uy6RprbEeuR7bukK8dDWNgMD2zo0f9+xoktHFEvGgmy8d6V93X5zKrIRy27w+mdlwCGbbDsFAaP73Roj5XdR1g4Bb2bB56KzHCVKlBpvjG9sU97V5CTZDlntvkqmVqahcWCiyuT2wblMDYFdvmP/Xx3ZwabHEV26ipAXHumZFiXd4sI25fA1Ntwh4Jaab5A0bGOkMkiyqtPnd2LZja7K/P4K7md/wi8cGyJRVvn16AVGAZKnO+YUS27vCbF3nd6vrJomgp8VuDPsUribLrf1svnCt8WhZjhrCxmZHV+iWjY94wM2v3DeEblgfGMXNQqFOqqnwu7Rc+is5BBtOBFrs942wwuB1yxIN3eSVsTS27TSAzVX2NSvnr4VCnW+emMfGvqEGHIj52dQe4NJSiYZhcWGxyJfu6efzR/q4tFjiGyfmmc1VWSo2UA2L7oiHdFnF65Loi/oIehTihoVbcbLHuiJezs8Xmc5UmMnWEBGYKzjMfEVycik+fcAhMr5TRwndujZIWckwvosPHrZ3BTmz4JAuuiPO2uGRJWxJQDNtXJJAIuhxXEtwclvmcjV29YR5alcXoihgWTZP7uzkarLCa+MZZEng9fEsV5NlusKeVpNtNlsj12yU1lQTn0tsEdcEQeDp6zJVi3WdP3xrBlW3eGx7gvagm8vLZdyKxGPbO1guNnhjIstjOxL0tfloD7rZ3h1uWq+lUSSRkUSA7ojHye2NeJrvyUu6rFKs6++6z7IaAbdMXTfflXPPzxpbO0P4XSJV7dr9KIng98h0hjz0Rn08tj3BYNzvDCobBvv73p++2RsTWc7MFQCn3rzZOeAu3j+kyyoXF9eeuaRmHjbApUXHRao95OHje7u5sFjAI0ukSiqLhTp7esN87+wCoigg2o6NmUsW6Y95mc83mM/XiQVcdIQ8TGaquGSRTx7oxe+W+enVNKW6TqVhYFk2XpfM339i67o9DXDOPl9t5tWdmM45TjGLJdIVlU/u76HN71pDKr9vc4ywVyHkcV4rX9N/Zm5J0LR5ncxSVQ1EwYlnaA+4WMg36I8FuH9LO15Z5onrlGhbOoKtvsPfj/oYT5dxyxI7u29td/3kzk4uLpbojji5WR/f181kukr/qhwlAWcY4nfLPLQlzkK+jiQ6ytrlYoMfnV+mN+Knza+QqWiky2rr+7dtGxubXFWjza/gkSV2dAU5skFucjzgpqrWCLhlTs3m6W/zt/qbS8U6Mb+LVKlBse44Q/zg/FIrc9ItiTww0s72rhDHp7JIYh7bdojWqy0obdt2xAJVjc6w5wZC9GSmin4blri3g/XiVza1B9jVE6ZQ0xlOiIS9Cnv7IuimTWfIg0sSKNVN2vwuapqzV0R8CoZp0d/mI+SVmcvV2NEd4sGR9d04GrrJufkiqmGSKjc4O++Qpw8ORPjMoRutQE/N5hldLNEb9XJ0KNYiaJ6dK2BYNsWaTsijEPYqeFxr67m+Nh+/fGwQw7LXOKAcGmzjQH+UP3htinLDoCvs5eEmsbs36uXNiSxbOgOU6gY9ES+mZbMlEbwh1znsdfKZk+UG8YCbiXSlNQTrb/NRbhgcGIjSEbr22o76UOXKcpl8VeO3Hh3ekHy2Gu/XEGwSeEkQhB8ALW8T27b/1Z14ckFwpo2XlsoEPBJhr4Isinxifw/9MT81zeA/vTKF0cxpeWbvxgzU1bAsm/F0hbBXua0v83aRLDX4/tlFvC6J+4cda5PVDdcP7ehAMyyuJsscn8rTFfbekVyj1VhpxiSCHhIhN7pps6fZDP7BuSWWig0USeCeTTGifhf9bX5+/aHNaIbFi5eTqIbF5w73UW44gX+abnI1WebgQJQfX1zmc4f72dEVYiJdZTjhxy2LfGxvNydncrxwKcWT7yBYdjVeuJRkJlvjzGyBr94/uGYK/psPDzOXqzEY9yMApYZOV9iLYVoMJwK0B91rhm+fPtDLlWSZTfFrfqoRr8Kmdj/z+Tq7e29kH9m2k2P00pUUuukEAv7a/UPs6YtwfqFIe8BNtqo5tiSKRCzgoqYabO0M8pHdXdR1kzcnszy+vQPdsHjhcopMRSUWcPP0ri5mc3Vsm5Y1ytVkhVS5QdTn4g/fmiHsVag0jDVZcCvDuVxVQzetWw6CNspx+1lgd0+Yj+/v4cR0DlEAWRRZKNQJeJxFvVDVWSrWSZUbLOZr7O4NU6wZLBUcVkdfm5ev3jdEPODmNx8e5pl93bw2nqXS0FENi/uGY/zysQEkUWx52M7laqTKDXZ2h9/RsHV1g9KtvDcG4AcRO7pCTKarhLwyvdG1m73fLfPFI/1kKirnF4qcmslzeha+er/nhqGL2WS8P7WrE9UweWCkna6wl08f6KWqGUykKpQaBo9uS6y7bg4ngvz9J7by/bOL/N6rUzy+PdFq/M7lauimxab2AAf6IxRqGls6guzsCjmBqxMZXJKIR3EUqgGPjKqbfP34HBXVYXCOJAKMdFzzGZ5K15BFkWxVYyFfZ6QjyAuXUywX1waTAmzvCq05PE1nqmSrGrubzNYzc0XKqsFkusqj2xP0NQuzybTDQjEtm+VSnUe3ddwQxNsR8rS+j6Umm7KmmfzisQFMyyZx3fD6iR2dXFwscmgwypnZAoNx/02tOHd1fzBJHXdxF38VsaM7RMAtI0nCTQklz19KM5utkSmr/Or9Q+taBeZqGhXVGYRcTZY3zK364tEBhhMBPLLEnptkWy01hyaZspN34lnHTnow5sclQq5usGWDnC+A33p0mIpm4FFkvrRBhhfAAyNxXhvPMBj3rwnRXo1UucEfvTVDvuoQk663p13Blo4g/W1eFEm6Ya9ajW+fmmcsWSEWcPEPnti6oQ3jUMyPhIDnFjYn27tDzYB3gTNzeaqqSa6qUmqIeBWHHRz1KeSrOlG/QtSn8OV7Boj4HMXdpvYAJ2dynF8ocniwjb/zmDMEWVHgrGdbAk7Rt6KcX63uCXkVXJLAR3d3s1Coo5sWsijy44tOboNtc1ss+YBbhvfez70lVis2HhiJb/jeeiJeEiE3pbrBjg3yMv464EM7Olq1yavjGURBYKlU5/HtCaI+1xplODjf2y/fO4BhOW4IP7mcYkdXiI5mUycWcBPxufjp1TSXl8rcsznG33hwE4os8ovHBhAEODmTJ+iROT6Vw7Rsupv15cXFEl6XzENbEnRFvGQrKkvFOpeXy1RVE5cs0BXyEPa5eHpXJ49sS7Ss7FLlBrIobHjfX482v8JS0Rl4jHTe2dr2Lu4chjuuDcE2xZ0zuiKL3Le9nRPTBXZ0h/jkgR4ODcQ4v1CkUNM4OHjtHPrEjmt5jls7g2zpCPDy1TTTGSemIldVSZca/PbzV/nMwV5iARd1zeTHF5dRDYvXJ3L8wa8cXve95asaqu4Mb+ZyTnP9k/t7iAfduGWRH51fxrJtUuUGX7lvqOlaoXJhschQ3E9NM/nS0QHCzQHLQqHOo9sSnG+qMmN3gDCQb6oiLNsmU1Z5Yud7y7e802gLOLbuV5bLmDYttxYB8DdVcy9cSvHV+4f46n2DnJ4r0LXqrKMZFt85s0C2orKrJ8z+/mhrjzMtm0xTTbCRGv1mWKnBBWF9C767+Pngh+eXyFU1Li6W+I2HNt9Q537xaD87ukNMZ2rM5+vIooRm2gxEPHRHnL3m1EyO18azVDWDR7Ym+Pi+bv7dy5PIoshIR5DOsIctHUH+zmMjuJtDsivLZb5zeoFsVUMUBRIhNxGvgiIJeF2uFsFHNy1en8jgUSSODsVa72t3b5iz847dtAj819enGYr7eWx7okVulyWxpTT1KhJl1WD4DvdeVyNT0VB1k3xNY4sc5DOH+pjL1VAkZy/ta/ORKjdYKq1vpwwOEf7gwMZ25tfDo0hrVKl+t3xDr9OynX5RRTUQBIFfe2AIUXAUoefmCy2L17BXoaKaa3pKsYCbZ/Z20x5wU9MMeqM+uiO+NffwQqHOD88tEfDI7OoOMxDzM7pU5KdXM7iVHL/+oHNdHRpoo9wwUCRH5PLcaJJ4wM3WjiARn8Lf/9BWREngwmKRLZ1B6rpjp7mvP8ybk1kkUeBgf5RzC0VGF0sEPTIPbWnH73aI0ImQh2xF5eUraaqqQa6q3dLW2bRsLi2VbjmYz1RUMhWV4fYAsuSQ+mezNQZiDuHItm2Wig3cssiJmTxu2emNemSJPb0RjjSv3bFkmWJdZ0tHEM201hAz3prMcnI2z87uMJmyyp+dnqemmnhcInXNRBBoijzEG97b86NJTs86SttiXW9lze7ti/DWZJand3XQHfXRF/W1yFjJUgOXJBL1uzbsI4uiwOcO97FUbKwRfYwlKyRCHgo1g8e2OZ/lns0x7h+OrzsL2NoZ5LFtHcw3hR8r+NCODo4OxVoZg7ZtM52tMRT388akRJvfRcirkC6rH6gh2GzzH1fznzsK24bpbJWKatDb5uWT+3vpjnhbAWmryas3Y7Jej9cnsi3vyV88NnDHrNBGl0qUGwZTmSqjiyUSQQ+fPdzbmkILgkBvm4+xVAVZFFoWLhcWipycybO9K7ThVP128eTODsbb/XSGPDd4cq98Q9NZxxNaFAS+cKSfzrAHlyzy1K61jKyZbA2X7CidVhZKgJeupDk5k+fMXJ6AR+bKcpmhdh+iAJeTZR413rlH9jUPfOGGIL+wVyG8quheaWzLkrgumyPqdxHxKbxwOcX2Lqeh9fpEhoGYf93waYA/eXuW75xepFDT2N8foa/NGaA9ubMTn8vxFz85kyPsdXF52fFFXSo28CgyM7kaY0nHo3g6W+Vj+7qpaiY1zSTqUzg8FCMe9GDbdrOZkue/vTHNcrEBgk2mrCHAukzi5WKDr789h2XbPLWrc00jXzVMLIvb8rm9ndDid4KgR2EkEWQxX+fiUglRcFR0V5YdG5b2oBvLsslUNTIVFc206Qi5yVQ0dNNhRqQrKj+57IRoP72ri/lcnYuLJTyKwO7eyJrGUrmh82enF5xhRFG9bUk60PKqb+jmDYyivwroa/Pxmw+vz/YH536I+l1MpB3bEkUS12SIvHw1zUy2iksSWSo2EAT40tGBFmtn5ZC2rfPWTa1MRW0pLs/NOzkXc7kaZ+YKCILjwb2rJ8wvHRukUNP4b2/MYFp2yzd6JBHg2dEkV5bLWLaNYVq4ZIlTM3n62pxA3d6oD79bZnt3iIl0hYBHZqFQ5/WJbMvSJeCWNyywshWV75xZwLadYvbxHR3YtiPnPrqpjS8d6W81XVfWzEtLpZY17PVryOp764GROF97c5ZYwIUsisT8N6q7hhMBNsX9/OfXpzEs22mA3sSeZbFQueX3fhd3cRd3BoWaxrdPz+OSRL5y38ZhyrUma1E1murndR4W87sZjPtYLDRuaVO8pzdyS/uxR5r2Hpvb/RsSQZZLdYoNA9Oyubxc2vC5+tr8/O4XD978BXEapoENgp5XkK2oHJ/KYdk2Pre04RBssdAgXdaQRceWaSNcWS4zn6+TrqhsdLRfyNf4Z98fRTedvMi//djG6pyQR+HzR/oxTIsfX1xiuskQDXpkQh4Fn0vGJQlcTZabmWq+NcXg988s8v1zi6iGxf/4+AjP7OtBMyyuLJeJB9wbDsHAsRxebXP444vLlOo6Ia/Dxlxp8ly8RfZjTTOQRfHn0jgsNy3zAE7PFTYcgnkU6aYD1b8uWF2beBWJqM9xNfjJlTSK6Nh3PnzdICzSVJ3+k+9e4MpymaBH5t9+8QBuReLJnR3UVINzcwU002KxUOfEVI63phwrmo/s6eI3Hx6mUNO4ulxhMlNFkQReG0uTq2ps7Qxyz2an+fKtU/MUazqCIBD2KiwX60iiyKGOAB/d291aV45P5XhtPIPXJfGL9wy06q6bIepzkyppSKJA3P8+TGfv4l3h7eZ1A3B+IQ84rgxvTuYp1nXenMyiyBJP7+zEtBybzZu1WI5P5Tg9W8C24fOHejk5V+DcXIGqZvIXF5b56v1D+N0yZ+YKqIZ20wzD/jYf+/oiFOoa5YbON0/OE/Up/NKxQQQBwl6ZfE0n6nOxWKjzzZPzWLbdstk/tjnWYscfGmzjUPN530lDOVVu8NLlNLGAM7Bej4BqN6uDd26q9rNH0C3jkiRn6mU771GUHEKp3yXjUaTW+76SrHBiOs+J6TyfOtDDQMzPUrHOQr7OlWSZ8/NFLi2W+GqT6PPD847NW3vQfVt5gdf3Ke4ZihHzuwl65BsIgnfx88NKQ90ti1x/uVdUg/FUhTNzhVY9H/Io7OuPNLP9HAx3BDEsODdfQBQFZnJ1tnYGmctJzOZqPHsxyUS6ukawYOMMtA3Tor9Z29u202d8bHuiVVv/8PwSf3x8FtuG33pkmAe3tDffr3PedMkSM9kqcclFuuwIEgSENYOgK8tlfnRhCUkQiBzp+5ldfy5JZCDmpyfqY3tniMVCnVOzeUYSQbZ2htb09R7dlmiR4zIVlRcvp4h4FR7f3nFH8gtXY2d3iB9fXKJUN/jp1TTbOkOt/X5b833qps1j2xN4ZIlnR5N84+Q8j2xtpzfqY1N7gE3tAYo1nf/6xjSXl8skSw0ebyraLiwUqagGY6kyo4slYoH1B+Vhn8In9vfw7VM2M8385U8d6KGhW4wk/CiyxB+9NUuy1MCtiK3h2cmZPG9MOOlLXkVq9f0FnHXma2/OtHJaP7qni1LDsX/MVjQe395B502iM14bz3ByJn9D/2s1qqrBH705Q1232N8f4YmdnYQ8a21dBUGgO+LluaZrB8Dnj/StUaNNZapopsWB/ugNv/HJmTy/98oUMb8LzbDIVTWWiw0ahsWenhDdYS+6ZWHb8J3Ti3xif09L9ehzSa372HtdfXh4sI3Dg228fDXNC5dSzYziAcaSFZ4bTWLZNu1BJ2boiR2d69a9QY9yg03j7t4w2apGb9RLb9TXms+Akyn4w/NLGJbFU7u6CHsVBEFoXS+rIQjCGlXb6xNZ3prM4pJFvnLfIG9P53FJ4m3HRb0vQzDbtv8ZgCAIftu2q3f6+Q3LIl/VaRgmY6kKO3tCpMtqU47pwt8M1FtqBsTdLlaCTC3bCWx8t0iXVdyK2FJUbOkIcmmphCgIBDwylm2Tr+prLv59fRESQbdTGDWL39cnMlRVk9fGMxwciN7AwHgncKSzYcoNnVfHMnRHPC212Uf2dHF5qcxSsX7Nnu8mR7iHtrbjd0vcNxwj7HWxOeFc3HXdRGzaU5YKdTyyxomZHIbpBCr/jQc3bshvhA/t6GAw5qcj5H7X4YWr8fKVNDXN5Mpyiapq4lZEshWNA/2Rdb1Wz88XKdZ1fC6ZTfEAz+y75kn6wEg7D4y0c3wqx+sTDqtT1Z3MkIMDUbZ1BhlLVri4WCRfVbmyVKK3zUcs4OIjTauH1dLshu6EogNUGiZ+l4wsCYQ8N962K2HsQMtSApym039+bRrLtvnc4T4GVi081+PNySxvTmbZ3B7gY7epltwI1WYIZEfIw3LJyZbb3hlCMxyf74pq4JIlfC7H5q3UMJCb1hmC4FgbLhTqFGsa5+adnCnLsvhaxZEzP7otQXfEe9Om0rvBRmybv054bHsH/W1+EiF3i9lbauicmnGK4Fx1xQbKWXtvBtOyMS27dY/Ytk2ypOJzSXRHPK3//vNzS6TLKrZtkwh5GE87GXB7+xyv8RVfbrcstga8K5u3SxJ5aldny17JMC1evpIiV1F5dHsHXkVie1eQQs0plAdiPsJehU8f6CUedN2W7//K6vfRvc7aOBjzrRlIbW4P8MTODtJlxzp2udhY8/dfupLizFyBnd1hPrSjA8t2MuZsG07P5luNroVCncl0hZ3dYdr8LizbptrMxCnVdW6Gknbz3+Iu7uIu7hz+/Nxiq9Dqa/NtuGc+ubODc/NFBmK+DQdSkijQF/U5A/HAxmSr6UyVf/fSBLIk8PceH6F9g+J8IOa/6V4PzpquN9fnlQzV9WCYFqdmC7hkkb294Q1JMh/Z08W5uQLDicCGw3qvItMZ9qAb1k3Vc3P5KqWGkwE6X7gxeHsFe3ojuGWJeNC1YSOg3DBapIdC/fZyE6+mKszl61i2jSQKiILAlo4gD4y0O1myeSdo27Bs3pjIsqMrxMVFx6663HAGB6dm8zyzr4efXEkxulhCEgV+5b7BDe1sV1BqnslPz+aJ+lxUVcPJv2zmOOzoCrUazdfXM+OpMj84t4xbEfnC4X7CPsXJ6hC4KYHiTiHgkhmK+5nJ1t5RrXUX8NCWdrojXk7N5Lm8XKaOyWS6ysNb1398vuacB2qak/XlViTcsmMFN1+oky6pfOFIP6ZlU27oLBTq3DfsDLiev5TkSrJMXTN46WqahXwdRRI5OhRFNy1OzuSwbeeaeaI5WHt1LIPXJeOSRObzTpbyvr4IyyXnrFPXTEoN/baGYBGvgiwKuBQRiw+eTdxdOKjr1/YFrZkdZVvOsNu0wTJsZrNVfnhhmdcnsnSGPJyayd9gXXjt+Zw+Ssir0BXx8Uybj0JNxzTX9hf+l49s57XxLIcGIxyfyq2794iiwCPbnHPzf3ltCoBi3cBo1hufP9LPRKpCpqJxYaHYqiGG4gG+2Bz0Xt+bAec6fvlqGrfiRGrcrM9yfCrHQqHOQsFp4l+vDIj6XXxiXw+Zirqus8wHAQMxL+fmC0ArKYjOkNMP2t8fYSju58xcoZmd7kBv/l4dIQ9tfoVCVUMzLV4ey/Dkrk4GYv7W4zMVFeMWBL5CTeOPj8+hGRYf29vFpvYAoiisS/i9i58vntnbw2SmQm/Ud8NZ8PtnF1kuNphMV+hr86EZFprpqHMqqtHq1zyxoxOXLDCZrjCeqiDgKLja/C5SZaeOX6l3bdtGNSxmM1UKNR2fW6I76qEj6MXrkpjMVLn04jgRv4vPHOylohqt81G+tva853PJ/OI9A9i2zcmZPH96Yo5qw+DfvTTO//TUtlb/LVVuOP0N2yZb0X5mQ7CwT+Fzh/vI1TRGEkH+y+vTlOo62UqWgwNRKqrOYqFOsa4znPC3hmAnpnMs5J0B9NbO4C3P+rdCQzdxyyKCIJCvagTcMg+MtDOTrWHj2Bd7afZbZJEndnRyeq7A6GKJroiHS0ul5vvKr1kDDctq9SVXZ0lua+adehWpNcy8b3Mc1bAYjPnWrLm27URFZCoqD4y00xHy8Kcn5vjJlRQf23Ot5rJsmxPTzl6xWvnkdUnsiIUo1nV+cjnF86NJqprJeKrCTK5G0CNz7+ZYk+Ask69pNx2CrXyOm+XF1TSDk7N5as2e8moFcL6qtdTIvVFfq48lCkJLcQUOKfw7pxcAqKrmDcKX18YzBNwSc/kaj21PUGoYlOo6dd3ky8cGWMg3yNc0qqrZek8r8LlkvnLfEMean3s9slqy2cMqNwzqTStJcAQX+apGLODm4mIRr0uiVDc4MBBZ8/5XMJ2p8tLVFPv7oxtmWF9Nllu5cxcXi9y7+fajaK4slzg+ncOrSDyzt+e2nf5W8L4MwQRBOAb8JyAA9AuCsBf4ddu2/+adeP4VxYJhWgi2zb99cZz+mKOk2t8XoaPpbbyedNG2HebSegX0/cNx3LJju/VOvEIn0xWuLJfZ1ROm1NB59mISRRL4/JF+4gE3PREvv/nQZlTD4qdX07gVac1mb9s2P764zGyuxoNb2ltDsIGYn9fHM2zrCq17MLuwUGR0qcSB/siGuRKZispMtsbWziABt8zzl5JMZ2qIgsCvPjBEwO0wXo8MtaGbFhcWis6B9SafP+CWb2ArVlWDckPHsCz+xoOb+P1XppxsrpqOW3YYjiuL4zuBIonsuIPFdV+bjyvLZdJlDbcsMp6qsGNvaF1bj3S5Qa6qIwgwGPfxhaP9XE2WGUuVubBQ5MJCkfuG23lgJM7ffWwE24YLi0VcsthSx3xsbzN4cCpHTTVp8yvEA24E4PNH+hldLBH1ueiP+Tg82EZDdwIjeyIenh9NUqgbFBvGDYqtLR1BUmUVVTfXsImPT+d4ezqHAGy5xWY5uljCtp2AwYZuvuvcNoD/8vo0p2fzdIe9/Mp9g9Q0g6l0Fc0wsXF+R9u28CkyPREvum6Rb+js6Arx8X3dfO3NWeIBFw3D4uxcntHFMqlSHY8i0dvm5/NH+tb4Bi8VG+zoCuGWJbrCHop1nYe2fHAzvSzL5gfnl1guNnhkW+IDpTxb7x7zu5zm5VLT0zvkVWjoVmtIux7KDZ0/OT5HXTf56B6nsHllzGHR+N0Sv3RsELcscmmpzKWlMvGAi86wh3jQzYX5IlPpKtPZKnIzHHakI9DyHQd4sNk0avO7aA+62dnt2Oy8fDVDb9SLbtn89rNXyFQ0etu8SIKAbjlDuEMDbbfMIYkF3HxiX0/LDhForY0reGMiy3y+xn3DcXZ2h/nyPQNcXi7doOYYXXLurdHFEiMJP6mSYx9k2bT2JcO0+M7pBTTD4sR0nkODUaI+hYZuopsWnzqwvjp1Bd3vo83pXdzFX3dYls2lxSKCINzAiF2NQk3j8nIJtyxuaGudrag8O5qkrhmohsUvHOxd93EvXEpyctZxJ3h9IsPH963/uNvB5vYgfVEfhZrKsU0b75WnZgu8Np4BHAbhRgy7NyayvHApyc7uML90bGDdYdlg3M//+PgWprJVPrpn42LFNJ1cGFEE6SZN8id2OrazhwY3JoVt6wrx+SP9zGSqa2ykVyNbUfnh+SU2tQe4bziObliYrcadY/+7qT2AYdv0x3wcGmxDAF6byPDd0wsEPU4odMSnsKcnjCAKrTPxyh5p2TbWbYSsv3gpxetN29/2oJt7h+NrGoiCILSK1nxTQT8U9yNLIrPNsPmaavDdswtoukWuphHyyPRFfaimxUNb2m9wf7hTEEWBT+zvueOOAn8dIEsOwSfiU7iSLKMZFk/svJEJu4LffGgT3z+3yMH+NkJep0a0LJtkqcEjW+IkQl7SFZVUSeVyskStYfKvnx/jI3sqWLaNACwVG9Q0g4ZuEfUpTKSrNPQlfG6ZQwNRfG6ZkUSAXFXj9GwRy7Y5MhTlz88tYtsO4e7ezTEsy2EHX18nji6WKNQ0DgxE19QT2UoDzbQxLBPhA6mRuQuAjqCHVMVxGIg0yZeiCIokoJs2sgCJoLtJmm0giyKD8Y1rzHs2xZCb1vX9MR/5qsbDW9rRTYvhjmBrgNoT9fHZw76WyhCcvafc0Dkx7bjh3D8c56WrKYp1nSObYkymKwwnAi3CnW5aPHtpGcO0UUSRkY4AoiAQ9sp87c1pJtJVynWDoEfisR0dbG4PMJZ0yHfjKeczd4Y8a1xVrkdv1MdYskLALW/oFDQY99/0O/l5QhAECjUdSQTLcsh+tm0zliojivDV+4f4/rlFchUNSYDuiI+e6LU8do8iEXArJIJupnM1NsV9zOfrDMT8PLa9g9OzebZ0BG9JwFguNVr5lzO52h2P/7iLOwevyyHQr4cVm7zhjgCPb+sg6JF5dSyDJAr4Vq3/XpeEptukKirpcoN8tUF3xMdQe4Dfengz2arGvv4IS8U6v/PCGJW6Tq6q41FElks6tg2aYZKraRRqGpva/UxlKhSrGnv7wjy+PYFLltbYsa6GIAgcGmxjoVDnT47P4VFE/uNPJ/h7j22hI+zhQH+UYl3HI0uM/Ix7M4mQp+UmsKndz5nZAn1tPhRJoD3gxrScnM5i/doQozfq49JSGZ9L2vAsZ1o2p2bziILA/r7Imh73XK7GfL7GWKrCdKZKTTOJBVx8Ym8Pf3pyHoBP7Oumze9ybLmvI26NLpX46dU0AAcHIq3zxGoS/1KxjqpbfHRPN+my2rKZtG2bv7i4TLqs8kvHBlguqRiWxUS6QsSn3JDDeHm5zImZPHXd5PtnF2nzu1r5YFeTZT66t4sry2WKdY3Xm6TEp3Z18on9Pcii0CK2+91yS0Xf5nORLqv0RLwYps0DI+3YthOJcisF0f0jcfxumajPteGwzDBthxSkGjT0tQTDH5x3CN9n5wr8+kObuXdzjETIUVat3kNWBmwruXEXF4vs6Q2zv89RhQ3F/ZiWzRM7O3hiZyd1zaQn4qHU0FkqONl6lm0z3B6gO+pl+3UOTUGPwuHBGM+NJvnamzPcuzlOIuTmJ5dTFOoaw+1BFNnJZI74XBwajFLXTQbjPuaytdb5/tmLSRYLdV6fyPA/PLhpzbWSLDb4B984i2E6s45//+WDuNYZlPVEvbgVEdO06X+HQoSAW6Y94MbnkhAEZ6D7rZPzTdVg7y372O+XHeK/Bp4Evgdg2/ZZQRAevFNPbtk2suywNSuqwXLRsaPqCusUazqSKPCV+wZvUPZUVIOvvz1HXTN4cEs7w4lAa/hRqGnM5eocGozets9587Pxw/NL1HWTiXSVnT3OhaebNvmq1rrBhaZt4Hoe0cW6zqWlpqXIbKE1QLFtZ4JbqmtohrVGPmpZNi9cSmHZNoWatu4QzLRsvnFinoZuMpYs8/kj/Y4UHsdeULquaFUkkf2rBirvBBcXSyRLKh5Fps3v5tFtCV4bz9DQTRq6SV+bb12l1fuNp3d1cnSojf/w00mWCnUe2Zrg84fXD5I/NVugWNcJumW2JII8N5rkO6cXUA2LpUKdeNDN770yQbLUYFdPiK6wl+1doTVKE79bZjgRYCJdoWEYzOUdRdSlpRJ/cWHZYcUI8MzebvrbfDy23SmCTcvmzakc07maI/2UBGIBN4cH21AkEUkUeKgp+14Nv0sm4lOamUPXNpdyQ8eyWCMrPTAQ5Y2JLCOJwHsagFmWzeWm5ee0WSUR8jAY83N1uczoUhmhWfO6ZJGSqjGTFdjTH2FbZ5CP7XUaKLmKxitjGS4vlahqBrrpKGIc5ohCe8DNleUys7kq5+aKLBUbRHwKD2yJM5938lAm0tUNs1V+3shU1VahdabJnv8gwbJsSg0nGFMUBSRR4HOH+njxcpLzCyXmJnJ0hDxMZ2otq9h0WSXokVvXznKxQaWpYppMV9nUHmixvKqqYwPqaaq0dNPCtG329Uao6SZXl8vops1crtZil/TH1mbNSNcxBVOlBj++mASc4Xa6pJKr6RTqGlbWZmtnkJGYjw/t6LxljkpFdYa2/THfugXsUrHOq2MZzswViPld/PD8Er987yA7ukPrDukP9Ec5PVugL+rlXz131RnEDUb5jYc2t9ZBURCQRYGqaTGWrFBVDc4uFBAR6G/zcXauwHS2xr6+CGHvjWvnzSzN7uIu7uLO4kwzQBgBzs7l+cgGQ51//9NJZrM1Xp/IsrsnTHCdexccC5aGbt5QBK5GpqySKasIgkCpcXNl6K3gdUk8vDVOoaZxaHDjc54kCszna0iigHKTad93Ty8wl68xm6vyCwd68G9wvvO4JGJ+102tyV2yo4gTBeGmPlLPXkxyaalEqqQykghuOAj75P6bEwj+w08nOTtXQBIFDNOkqpr0RL1EfC5niOSVeK7JIG0PuHhyVycPjrTztbdmqesmDd0iXVbpinj53z61B7citvaqR7cliAVcJILuVhF+M5ybLzCTreFzSfyDJ7du+HdqmsEfHZ9FMyx2dod4Ymcn+/qipEoqVc0gXVaZzdUwLZt4wM1srkZ70MPxqdyGSo07hbsDsHePrrCXf/yR7QgIN7W03NIR5DceHMbnlkiVG8T9bk7P5fnxxSTn54v0Rb1YQEfITb6iE/TILBXqpEoqHsVx7pjNValrFjZQUU3SpUbTalxiU9zPQ81B7qvjGRIhN7Io0OZ3IwkChu0obuIBN59Y5/5aLjZa2XVVzeRDq6xtcs2Gno1zTj+2+cba5S5+/lhsZksC5FrKDJBwVEOSJLQscPf1RnhyVwfbOoOkyg0i3hstrjyKxP0j1wgX3zo1T7lh0OZ3ta611dBMR0kgCgIuSeTEdJ6aZnJyJk9v1MvZOcca1qvIa0gVlmXzj751njNzedqDbp7Y2ckTOzpRJIHffXGcM3MFlkuN1p5mNB1Ioj43VVXH71aQRGHDwdboYonpbJWDA1G+ev8QHkVclwX/QYdt247iZtUeW9MsDFPn6nKFf/7no1iW3VQB2HSEavTH/OzuCbfI2amySk/UR00z2dQeaNVkQ3H/mqb4zbApHmBzIkBdM9h3Czvou/jg4qO7u7i0XGIo7ifmd/PC5RR7+yJYls25+QJD7YFW7TqdraIbFpYNVc0i6FGI+V0cbOb/NHSTf/LdC82+oUVn2E3Io3CgN8JQPMByqc58rkZNM5jO1tANk6vJCq9NZNjdG+ZvPjx8U7eoqmrgkZ3M2ctLJWayNf6Ffpm//6EtTZu89+aG9E5wZbnM1WSJwbifX71/iKBHRhAEvC6ZbV0hyg2DrlUDl109YfpjPtzy+uuOapi8Op7hrYksbtmxvlsZXGYrKt86Nc9SoUFZ1cnXNApVx3a7phmMLjq95z294Q3dLVY7+7wylsGrSAzErinVFgp1vnFiDtt2zr/HNl8jL5+YzvP8aJJyw6BY1/ntz+3jxxeXmcnWmMk6a8HqnsvKay0XG/jdDiWurptIosD27iAhj8LhwTbOzxc5T6n1d1avPd87u8iVpRJWM2rmqV2dPL2ni9lcjV094Q178evBLUut3N6NIIkCnWEPfrdB1Le2nlv5PLIkIgoCoiisO3gbjPt5YmcHM9kqJ2fyvDKW5q2pHJ877OTofXRPFzXNxNe8xr0uiVLD+f0W8nXiARcel8Q9m2NrsrFUw0QznPutqhpcWHD20FOzeXTT5jun5ynUdHZ1h/mdL+xvvV+fS+bJ5ne0oiorNwwqqu7UGbbNa2MZnt7d1Zqf/H+fvczl5TIitPaL9RAPuPm1+zdhY99wPU9nqszkauztDa9bCx0ZilFoDqxDXpkfX1zme2cXMS0btyzy6YPrEx9X8H4NwbBte+66wujd+wuuA1U3kUXngtrdG8aybIJehVJdJ+JzrVtHL+TrlOo6yVKD339lim1dQb50dICAW+brb89R00wuLXlb7NFkqcGJ6TwDMV+riWo18xQKdZ29vRH8bhlFEnl9IkvALfPgljhbOoL43BKbb5PdEvQo9Ea9LBTqbFvV5C3WNVyySF230My1QzBRFOgMu1ksNDZUbdm23VJfmc1/P74jwUDMR0fI867tBVeH5a2gJ+pFFgUEwfHuHkkEsCyb0cUikiRiWNY7ymf7WUEQBDIVRwUWD7odtpgoUNMM3LK0pqkS9irs7HZsb1JllfF0Bc20WMjXMCybmmYQ87vRDJM/eXuOeMDNw1va1zQcOoIeDg1EeWsyh0cW8btktnQ4Cq1cVUUzTJJllT8+Pktfm48vNnOHyg2dmuZYK87l6pydK7ZYczG/m7FUmX19kRvUjkeG2loZESvhgslSgz99ew7TtvnY3u7WdbmvL9Jia7wXiKLAsc1OUPLO7jCaYeGWRQzTxq1I9Mf8ZCoqdd2k3DDob/PT0Ezu3Rxjudjgn//5RV6byKKIAsOJAIZlU26oxPwugl6Fr9w/SCzg5r+9MY1qWFxeKlHTTCqq0rLvdDzhldbg7E57Jr9XrLBIUiV1zT3+QcH3zy02B1fX8vFEUaDeDKLWTAvddBhKlm3z2niG41M5gh6ZL98zgKd5KBqM+6ioJnv6nPXywS1x3pjIthRc4NyDq4eVAbfMZw/1MZGqcHGpxHiqwlDcv6738mqcmMlxcsbxA/7ysQE+daCHyUwVtyxwdFOMB0faubBYZCZbbb3+evc5wJ+dmidT0Qh5FX71/qEbXuv50STJksp8vk624jSVvv72HF862r9uA/CeTTHu2RQjWWrwh2/NYts2s9naGiLASqDoeKqCIokUaho+RUI1LBq6ydm5IgGPE+j6mUM3buwB98+fVHAXd/HXBYmQB7FpldcZ2lgp75JETMtGFoQNhzTOc7jJ1TQ6wxuvc71tPvra/IgCdARv351gPZiWzYWFErmqxub2jfcgw7TwuiQkQUC7ifJ3udRgNlsj5HPCytdDqtzgj9+abYVQf3GDXKin93Rydr6IVxF5YOvGKrUzc3kWCw2Wig0sy35PFuEA6VKDf/79UdoCbnZ0h0mWakykK5TqejN70mYuX+MvLixTrOvcuznG6xMZeiJePnWgh742PxGfwusTWcoNgwearNFbFc2r0R3xOooFn3LToZlu2C1rlmqzKG3zu/j8kX6KdZ0/fGuGjqAbWRLpjngp1DR006brJjaUd/HBwK0a6oZp8UfHZ8lWNMoNg6BHZqQjQEfIg2Y0BweiwHK+zuWlIm1+ha6IlwN9Yd6eyjEQ97G7J8zO7jD5mqO0CboV4kEPU9kaNc3kv785w9O7u/AoEpmKynKxgSRAQ7f43OE+UmX1pnZliuSsjZbtNCNWoz/qJVfVkAWBHTdR2tzFzxerl/vVItaG6QQkCAJs7wrx5M4OZElkKObnu2cWmcpUiQfdfOnI+oTS1vNb11Syq1GoaXzv7CJz2RqyLPDJ/T0kQm7iATcz2SrbukLEg248ikRDN+mOrGXk11SD8wtO9lipbvDxvd0IwrU8kaBHxrLduGQnOzHqc7UIe31tfp7e3YlLEtddf8/M5fnDN2fpCHnIVbXbyrv6oGK56ORp6qu+fkFwhpW6aTGbq9Hf5msqfGxOzBRIlVWe2dvd6vd8aEcHFxaKfPJAz23nsFwPlyy+Yxuru/jgIeJT6G/zoUgi//3NGaaamZPg5FyenC3wkd1dTKYrLSvd+VyNwZifPX2RNcMSAGynH2paOoZpk644cQMisLMrxEymhtct41ZskiWTuXyNRNDD5aUyP764zOcOr585C/DWVJbRpRIBt0TIq+BxSWiGY91487b5nYVqOHmI5xcKGKbNJw/0tHouLlnkS0cHyNU0uq9THW1kq22YFn/81iwvX02zUKjTE/Hy0b2rbQOdfwuCzXTGIbf5XBIdIQ+JoId00LG9S4Q2rkO2dASR9jlxLz88v+QoOQ2LbDPrXYCWJeVKnMMKuiIe6ppJuaE3hyU1usNeRpvkm+uHJZvbA3xifw8TqTIXF8s0DLN1PprN1OiJOD3PHd0hCjWNeNDN5vYAhmnx6niGuu7E3ciS40C20jtx+uw/m/iT9qCbD+/uZrlYv8El7WN7uhlPVeiNepFEh8z4+niGqM+1xukIYGd3mI6ghz96a47FQp2QR6HYtMEWBOd3WxmECYLQ6qn3RD3cuzlOd8S7ZgBWauj88VuzLBXr7OmJ8JE9XQzGfZyfLxL2KpiW1SKEqKa5bo++oZvIokhFNRAE+IWDvRjmHGGvQtinYFn2qvlJGZ/L6f3+7UeH11WBrWA9wldDN1sDreVifd37eTDu555NMV64lOIP35qlI+hBNx1S4stX0xwejN3U9en9GoLNCYJwL2ALguAC/g5w6U49uSgIxIMeLLtB0CMDAv0xL5mKRkU1+PTBnnUXjIGYj56Il+Vig/agG1W3yFc1/C6pJetVV/mYvnApRbLUYCxVZijuBI7/19en+fapedoCjvfzpw70cnRTG4uFOkGPQq6q8ZE974x1KYkCnznUh3ldUf/otg5OzuToa/Otm4X06QO95Gs6sQ0mrrIk8gsHe5nKVFvSSLcs3VIVcT00w0KRBARB4OJikWcvJh2lyOE+bBt+ejVNe8jNr94/hCgKLWVId9RLIuRY1bmaf//niapq8MpYBtUwkQSBkEchEfRwdq7ghE76FL5wpL/1/o8MthHxKcinHe9Wj0tCFkVKdZ0dXUEe3pIgFvRwebnE29N5Kg2DiwH3miGYM6z08vDWdqYzVR7f2cEDw3G+eWKOV8fSmDYMNhUv2Yrj5xr2iYS9Co9sbedCwM2WzgDn5opcXCziUyQahollQ6qk8tVmw/7cfAHNsNjXF+GpXWuvv1RJbV3fyVLjtoez7wSfPdTHh3Z0ouom//2NGSzb5lP7e/jBhSWOT2XpaBY0S8UGlxaLjCcrpMoqUb+L18YzVDXHo7g74mFXdwSfWyJdVtnVE+bhrYlWXohLEnlgpJ0ry2ViARc7u8P0t/kQBRhPV/iz0wt0hDx87nDfe26Q3UkoktjKa/ggva8VzDX9eVdUdSt4cKQdRRK5d3MMURSI+V3EA25eKjrS+HLDoKo6HsIvXE4RcMt8bE93yw4jEfS0DngAP7mc4uRMno/u6WLbqmZIIuThz84s8JPLKSzL5iO7u26ZpWLZzvBdNyw2xf3EAx5+5/P7SJVV+qJe/v3Lk5yYyWFZsFhocGAgwk+vZogFXHz+cP+aTVg1nHV/tY/1akR8LjIVxwqooTv3X6aiUmvmCdQ1k8d3dNyg2OoIefj4vi6+eXIBWRQ4M1dYM3h2ZOdtDMX9LBUbVFSdfE1nT0+Y75xZRDOsDVWaoQ0UJndxF3dx53H/cJzvn11EEgWOXufXvhpHBqMkS45d70b3rmnbTKarFBs6M9n6uo8BeHp3F2fm8rivY9S/GywW6jR0E69LYiJd2fBxHkUi5nc3/3tjZUrU56I74sWjSKimjWud5aimmiwU6piWfcPeshrZioZbdkhthZpBxwZ98h1dYURBIBH08F6Ok7/x0Ca+f3aJf//SOLmaxkKhweZ2P+PJKlXNRAQ2JwJNso2TX1puGHzxyAB/85FhvIrU2j8m0hWOT+UAJ8NyJbfmdvHJ/T2MpRxbrj85Pss9m2LrqpHDPoUnd3ayVKxzsH/t9Rf2Knzl3iEautlqKjR0k7pm3pSR+X7BsmxM276tPM67uBFV1SRbcXKAZ3JVOoIe8jWN/+eHtyOLzmDpwmKBiXSlSSIzqGkWSy4J1TSZTFc4tinGpw/2sr8vypVkiUTQw5aOAOPpCrrpqLzKDcNR63eGmMvWeGMyx28/f5VfPja4bmj5asQCbj57uJdCTb+hOd4b9TOWquJzSe/IaeUu3l94FBEaDl/Z1WxmW7aNLDoNN7cs8eHdXQwnAti2zf/14ys8P5qkr83H7t4w9WbWzEZ2eJ860MtEunLD9fHtUwu8MZml0bT3D7oV/uitWcoNgx3dYZ7a5TDSj21uI73OMNbjktjeFWIuV2NT3M83Ty7gc0l84Wg/nz3Ux4Mj7bgVkZjfzXiqgmqYDMX9TSu/jV1qFgp1XhhNsVxqoJvWuq4Pk831f3Mi0CKeflDxf78wvibrSxLh3s0xDve38eLVFAIQcEs8uauTE9M5GrpFX9vabNPhROCOO5mkyyqXlkosFxsIgpNTvZEq7y7eP9i2zUtX06RLKkeG2riaLDtn0eE4kii04g5MyyHc97f56G/zkq/plBsGmmHyrVPzaIZFPODi6V2dvDKWweeS6Qp71wwlPIrEZw/3oZsWPW1echWNsVSFpUKD0cUyvW0+Htnajtctc3mphCKJDLeLCIITHXMrN6OIz8ncns87Lk6SKPDUrs6b2p/+LKCIIkGPREU1iHhdLF2XJ+51SfS4NiYunZrNs1ioc8+mGPGAm4ZhtfJCoz4X/W0+uiMepjJV3prMMhT387G93bx8JU2b34UsimzrCpEIutneFeLtaefseuAWLmCb2wP8l9emeflqmoZucd9wnH/7k3GCHgWfy1Gaq4bFwetcJnqjPn7z4WFeGUvTGfbglkV294bpjTq1w3pijBVV6bHNcZaKdf7dSxPM5+vUdZPDQ23IksizF5e5vFwm5FUYSQS4tFTm9GwBcAZeogAHB9a+l7FkmUxFY39/5D25X4Fzpn1tIkNVNXlgJN7ao96ezvHmZJYjQ21sag/gdUlr8iFfH8+0nN96ot4bBnOq6fRxO4Iuon73GsevZ0eTjC6WWmT1ezfHifpcdIQ869YMmbJKpqJyacn53GGfwjN7e1jIO7lzIY/Mr94/xHjKyaU/OZOnO+JtPddKTllFM8B27tGP7uni//GhrZQaOr1RL6Zlt/rLO7tDqIbFnt4wBwbe+V741mSWS0ulZkblxqri5eY9o+rOayVLCS4ulhmI+Vko1D8QQ7DfAH4H6AHmgWeB37pTT27bzg17qbkQBj0ymYqGIolEfArlhsG3T82Tr+k8saOj5REqiwLbu0Ls7A4xlqoQ9joshhVf+6l0dc0hp83vIllqEHDLuGSRqmYwlixTqDnDttms0zje2R1mId+grpvs73t3doLADc3x9qD7hoHGasjNDIGboSPkWTMZtm2b8VQFjyK1vpcVnJkrcHauwK6eMHt6w7wylubiQomGbjIY9/PpA72tsDzTssnXNC4vlVtBsTu6Qmte62B/BK8i4VYkOm7CnL7T0AyLckO/wTv37elcK9DxgZEYPVEfXWFvK4ywUHOkwivKOlEU2NYZ4lMHBM7NFxlO+Pn2qXkUSSRb1XloW4KgR2Eg5mMyXaWqGuxtKmAKNY3ff2WS2VyNHd0h3LKIadtcmC/S7neTr+topk2gaZfodUn0t/nwuiRGF0t0hj08tauLp3Z1UazrXFgoEg+4qag6iiyCDbGAc0gcT5V54VIKcH6XUDOEeqRZaGztDHJiJodmWOz9GYX1rlyLFxeLLZbfQrHOpaUS+apOwzAZiPsoL2vkagaCoGFh42mGFFc1k7BX4Tce2szIOh2wkEfhc0f6yFY0RhIBqqpJWdXXbCDPjjrWeMlSg6pm3HKI8vPAB3EABvDQlgTnFxwP4tUI+xSe2tVJrqrhd0stRs79w3FeG8/QHfESC7h5fjTZGqQNJ/zr2rOW6jr/8aeTWLbDrv+Nhza3chz72nxkSipzOSeYdSJV4YF17D5X48hQGzXVafJtbg+QrahMpCtMZaq8OQmKLFJpGJRVg6vJMpGmFWi2olGs62vWzmObYpxdKPDwyPoNzKd3dbJQqJMIelguNfj/s/ffUZKl53kn+LsmvI9I7yuzsrx33dW+G2h470GAIAmKFEc7RtJod6k5R6MdjTSjMTuzkoYaiZ4UQQIg4QjbBu272lR1eV/pbXjvrt8/vsjozKrM7GoHNql6zuFhAZmIjLhx7/e93/s+5rXZAuNdQebyda4lV6xsC2tYQJopmDG7+iLcWxK2kDPZ2rrqy0TQc8t69aWjgyTLTcY3yHt0yXcaiu9l3EhVMG2HHT2hv3ECyB28fTx9NY3tgG05PH09y+4NbHyKDbNtRdI0rXWbvuW6znK5SUO3mMpuPJC6ulymr8V8nEhXb8kefDMY7QigmTapssajOzduaO8fFA4HbkXe9DDxod3d/OGJGe7eEt+widgZEhbO5YbB3aMbH4om0lWqmgVYzOZqGypOPnt4gMtLZbZ0BjbNHUmXm+RqumCwrtpzddNmIl2lJ+LlM4f6+eMT06hNGcOyuZqsYNh22yZ8OOFn30CU8/NFlstNZBzm8zV29q59nsNelXxNF/Zab6Fxlwh68LgUfu+5KQCen8humCmzsze8YdPG517bUPC6lLd90H8n0NAt/uJV0dD+yN6edl16B7ePmVyNqmYQD3h4345unr6Wpjfi5dRMgfvGOxhOBHjqagpHEkOLpiHy9bJVDY8qYyDR0C0KdYMjW2I4ksN0psrjl2scGhbntHu2drRropWG5wsTWTRDEH3eaAgGwtpxPWeS5VKDum5iWjZV7e3Zut7Buwe/xw0V8f14VbFvuRSZSMBNoaazpz/SHoCUGgavzRbwuYU954HBYf74xAw3UhWifjdbOgI8vL1rzR7SGfJs2LMYjPlIlZscHIoS9KpUmkJRUKiLnsNSscHTVwX5TpXXkg1URea/++hOLi2UqRsm8/kGVc0kXW4y2rnWbmt1jyfgUbmRqtIVtte1JVZlCUWR2Nv63Lt6w/zBC9N0BN18dG8vqiLz/I0s2arG2fkiEa+Lbe9Bp48VODiYq3h+HlXhN+8fw8HhqetpdMvm2JY4n9jfz7GRONeSFbrCHgZiG7sNXVmu4FbltzUY+8HZRebydaYywnLy5Ey+bcV1B39zSJU1zrYGC98+Nd8msawMUHI1ca5VZBjvDNHQLe5pDciuJ6uMdgT44fkldECRZbZ1h9tZk7GAqBkzFY3HLydRZQnTchhq5djfPZpANx3OzhcoNw2WCnWuJF0MJwJE/G4eSPiRJZkjw1Fens4TcKv87nOT1HWLr9w1fMs6c2goRtCjtomlHSHPhhli7yZkWeLLx4YZivvJVHW2dgYw23m0m6NQ03n2mlgDNcPms4cH2g5kXpfCXL6GaTtcWiq3Bz7LpSa/+cAonz8ywE8uLJOuaOzpDzMUF9f5ZuXSZn/7xKRQkZu2jdJy/louNVguNYXq6vDAup/jw3t6GO8OohkWuZpOIuhZUytnKhovTwnHoNWDKxEnE2rXFF6XzKnZPDt6wuRavehKw+DJKymutXrzUb+b9+3ouqXOzFQ0fnxhWaiFm8Yt60uhpjOTq7G1K3hb0T1T2SqnZgrt9/XQ9i4ausULN8Q1ev5Gdt2sw3jAA4g1M7SOm09fxMuxLXFytQD3j3euuU5TmZrIF1soMpercXm5wkhHgP/20W3rvsfhRIDx7hAzuTrdIQ/lhoGE2C9rmk6x4fClY0MEPCrfP7PIK9Mif/rr94k4qfm8cD0TzhjQ41LIVnXGu0PtaB1VeX1+8on9fVxPVTg4FH3D63czCjWd0618PH9r0H5pqUSlaXBhocz2nhAPtPJEAx5hhTjaEWSsM8jgfaM8fjmFadlrBo7r4RcyBHMcJwt85d16fUkSxX2laRL0KGSqGveOJQh4VJ67nuGxSykKdZ2RRICz88X2sOeFiSxn5opIEnz17mE6gh6KdWE52B/10X+Tbciju7rZ3RcmEXTjUmRciszh4RizuTpRv4u7x8Sh3qXIb1r99TeF03PFdsDh548MrBkivDiRRTdtXpzIospCCXcjVWEw7kdVZOqGxZHhOHXdIl/TubJcbkeYh7xqWwVR0wz+l59d4/JSibpmEfKpmzKK3ypqmtlim9icmReBrONdQf7i1TnyNTHtX73AdwQ92I6DbtoMxgJ0t+TGh4ainJjM0tAtSg39lkPctu4Q27pD2LbDHzw/TcOwKDYMappJyOvCpcgMxf34PQoPt/7ehcUS5xdKaKaN313jUwf6KbasOueLDT6xvx8J4UH+wT097XvvR+eXuJGqorZsPpuG8EMv1nXydYOtXUE+faCfuUKdna1iW13VDJ/L19uM64/vh4jPzctTOTIVDZcicyO9fhP+ncKOnjCZisZkusqFhRLpska+pmE68MSlFDgOdcNBkaDiMvC7vW0m3l2jMQp1cfARzPE6HUFP2wayKyTk24BQy/nXbiDHxxK8OJFlOBF4Tw7AbgfJUpNXpnMMJwLv6vd0M/YORDbcPE5MZnnmWob5fJ0P7+3m0Z29ODh85lB/uxnYH/NxcbFEtZVNMpurs70ntGZ9UWUJv0eh2jQJelQev5TCdhxyVY1fu3cL23pCvDgp5OxXkxUqTWPTYqQr5G1b11q2w1++tsClxRLXUhW2d4daarMQ11JVDMtmb794nnojPjqCrxcWFxdLfOPlWRJBDxOZKn3rHPhURWa4VZyv9r5fLAiVg0uRbzkoPnk5zfVUBUWCsc4ApaZ5SxZPqW7w9LU0Ia/Kw9u71ljJrDcYWw3XHUL1exYT6Qo/Or8MCHXh2xle3MF7Az1RL5ppIwEDsfUDkgESATc/Or/E3VsSG6oedMtGlaW2hfRG6Iv6hB2FIm0YygzifnvicooDg1GOj62vGJvK1lq2tX6ms7WN/yjcVkPrW6cWKDcMHruc4r98ZOu6mWABj8rfu38LxbqxYSMNxP7z3dcW8LiUddn2r7+e0g6V3gilhsH//tg1KprJh/Z088kDA+2fPXZJ5LB6XDIf2dPDcNxPvqqDJJMqa4S9KgG3QsO0uLxUptww8LgUoj43iaCXy8sVDg7H2nUIwFy+gd8t7KSib6DONS2bhUKDrrBnzb3hazVlshVt0+v0ZtFoKZXdqsQD453rNihenc4zl69zfCxxyxnonUCy3KTUyheaSFfvDMHeJCoNg3/90ytopqhhDg5GUGWJbEVDt4Rqx+9WGO8OUWjohD0uDg3FOL9Y4vhogBvpKpWmwbdOzdMX8fHs9TQN3WY2W8ORhBPF0ZEY2YpOutJs3zM/v5ykaVq4DZn736YK9UaqjGmL5tlkpsqRkdu3C72DXxw6Ai6mRA+PoLeVAwMUazpN0ya1SrUQ9rrY0x9hMl3l4e2CEJqtaizk60LVU25i2s669uIryFU1NNPm0wf7mchU6Y14ubhY4tRMgYe2d7JQaHCspbpWFbFXOg4oksRSsUEi6MatyDx7PcOPzy8T87sY6wq294ih+PokDs20qDZNTs4UWmRqiV+7d0v7rLmC7rCXzxwcoNw02Nkb5icXlik3DMoNg+VSk8G4n4GYjzNzolH/4wvLRP0uusIb79V/kwi3FBIrtpeGZfGvf3qFr9w9THfIi+k4xAPCUnf/YHTdjO35fB1ZluiP+jgzX2w35T91sP+2M8FAnHUvLZUY7wrhUmT8bgWPSyh7BmI+0uUmL0/nGYj53lClcgfvDqItK9FK02S0M8B8voEsScRatqF9ER+vzRYY6whw/3gHhuW0ifBdIS8XFkr0RX10BD3s7A2RqWh88kAfXpfSrmfPzheZSFW5kizjdysMxvz0RrwcHRGKn2JD45WpPFnbZjJdJeBRiQfc1JomsizzzZML9Ea8/PW5pXaMSF2z+O0P77jFmnVbd4h7t3Ywk6txfBNSVqVp8NTVND6XwiM7utatm569nmE6U+X4WMemNsHrwedWeP+uHn58fpnnb2Q5O1/iQ3u6SQQ9myqlfW6lbYkXC7g4MZElX9e5f2snh4fj/F9P3cCwHE5O59nTHyFb1ds2srIksrVqmslfn126Zb2rtsjCQ3H/uoSAgEdt57kfGo7x+cMDdIY8/N7zU0T9bpKlJuVW3qNp2W3XrQe3deFr2S/+/nNTGLbN/sEIY50hBmOC+P/c9Qxz+ToTaTE4vZlM9plD/bw4kWUuX+elyTxn50vs6glxdq7A1pYKDGAw5ucTB/roCntZKNTbucsNQ6h4JSQcnFvs2x3H4dunhKXf5eUyX9nAtn01Ij43iixh2Q7xgJvHLyVZLDbEMNd2GIj50E2bpWKDnoj3dYexLXH6Yz6CHhWPKvPYJTEAfmCbcF2SJKll9WiQrWicXyhyaChG1O/mvq0d/M4zE3QGPfzkQhK3KpOpaMwXGuuuvbIEvREvx0ZiTGdrTGZqnJzJ84Ujg/z7pycAh++eXuBDe3qRJNFTXyw2eGUqz/t3dbO7P8JCocFAzEfIpyIjrTvgWpmf/OlLM+SqOovFBn/v/tE3vIarEfSqxPwuqMOh4Sh/9soclmVzIy2U46/NFjg+luDpayl+fiVDwK3y6YMDwn1OVm7bXvcX0jaTJGkL8F8BI6v/puM4n3gnXt9xYDZXp6qZ7QywK8tlHmopc0zLpmkoyNLaALoVP2rHEf++vFTmsUvJlg/r0C1+0Ios3aKW+tyRQQ6PxGka1ruS7XM1WeZassLe/si6U+SNYNkOl5ZEbtRmdnea8Xo0W9NYa/3lUiRmcw3u29rJS5N5nr2WwcahL+oj7FP59sn5lh94D7/z9ETbK/Tr927B12oCfO/0At8/u8j5hVLbAqVH8jLTUs29VTiOyLMwbZv9A1EahsUfvjDNuYUi5abIZ5vJ1ukOe9pqtaXiWpnxnv4IL0xk0U2d1+YKfKRtWyihmzbpisbvPDXJP/7ANgZj/ls2Pt0SDBLLdgi4Fc7MFfnwXh/PXc9Q1UyqmkmxrhPwuBiOB+gKeYUX60CUu8c6qBsW09k6R0di7OgJrykwFwp1TkzmmM7WcCsy8/kGJ2fyzORqqLLEYDzAsZE4v3x8mMcupZhMV7mRrvKFI4OMdAT41MF+JtIVnr+RIV3WGe8O0jQsHr88z1KhQbLcZHdfBMte3+7t7cJxHK62FDHHRxP87GKSkzN5lFbBbZg2mvN6Hq/tgITE/oEoNc2kplvM5hs8dz1NvqZjOzbXklVCXpVfuWfktmx0xjqD74rV4y8ST19Lkyw1mcrUGOsM3BYj5Z3CYrHBTFYwYVYrOhcLDa4ul5nMVEmWmpyaLhILuIn4VIJeFwcHo+zsDbNUbHB6tsD//cwkwwk/33x1jvft7OZTB/vxuhT8HpX/z8d3c3W5zN1b4nz37BL5FitoIl3leqqCLIk1tyPkxtwkjwbEAEmWhfR9JXPr8lKZTFWocj91QPxdRZKo6xZDcf8aC0YQis0fnF1kKlujopm3KOE2Q7Gu8/2zizg43LtVsNb+47OTDCcCfHB3N2brWXOQeLi1N92MV2fy7Yb0lo7Am1rzZ7Jvb029g3cPK/YAN//7Dv72YndvmAODEVyyzJaOjZ/TP31phqVigx9dWObr944QW+dAGfO7KdZ16rqFYW68J5u2jWk5ODjt+nU9rNiFvDSZY18rq/ZmjMQDKLJEqtzkI3vfPgNWhCSbwg5jk7zXkNf1hvvYSxM5yk0TWbM4M1vY0Lv/h+eWmc/XCXlVvn7vlnXzZ5aKDWZbquRz86U1Q7BGq/6dyVb5yu+/QrlhoCoStuFg2jZ+t4KDqFeSpSYuRSYecNMf8zGVqTIY9xP1iXPCiq22ZTtt1VVVE+qIgdhab/4V/NnLs/z8apqY383/8tl9WI6DadlE/W6+fHSQStN8R+0Lz8wX2u4HXSHvLVbopYbBixOi621YNl8+tnGmxlvFQMzHaGeAQk3nwFtgiP5thmWLHLeVLKNz80W6wt431Sy+nqqwXGq2XydTafLSZJ6usIe6Ju5nqdXsCHlcjHQESAQ9/M+f2cvpuQI/v5Km1DAwLIeaZqJbNhGvC0URuaKWbVNrqWb++MUZbqSrFOsaV5eF1dC9WxO3HSK/EfRVieArGRd38N7D9CpVcroiztFaq4kItNdVEIqGf/rhHVSaJlG/i1xVpzfs5YRmUjcsLMteQza7GclSk2+dnMd2HB7d1c3Rkfgaq6gP7O7m46saW10hL589NECpIYhjv/v8JF0hD6Zlc2lZnB1GOwN0R3y3DN4uLhb57ulFdvWG+fiBPv7s5TnKDaOtwDBXWTrdjNVKtm3dIaYyNWIBV1tp8siOLuq6xfWUeN/WJnvh3zQCLmVN7pthifXld5+b4pfvHmEmV+P8QpFEwLMuKfJqssxPLyQB+OSBvjU1yZvtLfy4NVC8mqzwlbuGmM3V+XrEi9etEPa6+PbJeRaLDSbTVcY6g5sSX+7g3YHXpfC14yM0dIuI30W63ERt1US27fDyVI65nBhePHs9i2Xb9MX8fOHIIP1RH09eEYKEhUKdRMBDT8SL363y9ftGAGHZfGW5xJn5IjXNxPCp9IRtbAe+eXKe7T0hdFPUVyu1mwR8dE8PP7ucwnEg4BG9oaG4n+dupKk0TQp1Dcu2uZKsosrymiHVA9s6eYBbXWY006LcMOkMeTgzV2znzQ/G/beo76uayelZoQJ6dTp320Mw3bQ5t1Ak6nMx1hnkarLMU1fT5Ks6L05kuGdrB187PrKhgt/rUvjq3cMU6jqOA3/12gIgSAEf3tvLjp4wFxZLbOsJ8fCOLjqDHq6nK1xZLpOparzcyq49OBS7JZfxR+eWWC418boUfvOBUWxHDNMuLJbY1Rfm/vFO/stHxqlpZrtXrpkWu3ojTGSq7OoLiyEGcD1V5amraaazVS4ulvnHj25joVDn1GwBx3GYzzfY2lWlI+jml4+PkAi6mcvXCXhutUe8vFTm4lKJIyNxFFkmVW5imDYTmSr9MT+11kCwVDfZOxBpExB+eG6ZUl3n4lKZw8MxLNvm80eEm9nq3n2pYYDjtNftzc5Zq9EZ8vC148M0DRtZFgQ73bTZ2hXiA7u6ifpd/M7TE5ydL7K1K8hvf3gnIO75nrAXRZZ4ZSrH5aVy+/X2DUQp1Q2+8fIcVc0gW9UZivvJVXU+f2SQvQMRvnh0kLNzRZaKDeYLdSI+N3H/+qOd565n+dnFZQIeMcjuDHlZLDa4azRBIuhp16TZqk4i4MawbPJVnb96bZ7dfWF6o7420XwzJEtNfufpG5yYzDEc96/JOivUdF6YyJIIuLln68ZkKpci85W7h6k2DX5yIckrUzlifnfbFnesK4hLkTk/X2YmWxNiqIr2pm1zf1Hc8e8DfwD8EHjHu+4ODomAm0rTQFFFg7PcFP6qH9rTQ7aqcWgoikdV1gwy7hvvIOR1EfO76A4LxhGIhSlb1TcNpV6NN3OAeVOfy3F4/FIKy3ZIlZv85ptoiL4yneOVKeHterPCazWOjMRBAr9bXcP2ncxUqTZNOoIeusMeJtKVdlDiR/f1Mp2tkS43mc/XObYlTraitT1eP3dkgIjfxQsTGX7/hSnmciJ8UZYlsKFcN1jcJA/idnA1WeHJK6n2f44H3Dx7PcNySbBwk6Umx7b4ifnd3DOWYDZXvyV0UwxHLbwuhaXi6++nM+RpK1pyNZ1vvDxHyKfSG/axqy/cbhycnS8SC7iI+Fz0RLztayxJcGmpRGfIy/M3cszkhGXOv/rMHizbaTM7Htkh7ER002YqU20XBCCks8lSk1JDZ39/lP6ol794tYJu2piyREM36Y/78Kivv/dkqYnjOEiSxJaOAGfmCkR9bpqGzeGhGNu6Qzx7PUs84Cbqd/Pg9k72v0uKhMvLZR6/lGp9zi6SpSam5ZCsapimvabwlgCPS/gCf/7IIE9dTdMZ8rJQrKPIMleWBSPIsh3m83XKjVutLf+uQkLcS70R37tqZbRQqONW5TajXTMtvvvaPGcXSkjA1+/bwj0tRcG9Wzt4YSJLqOLCrYqAzLBP5Qdnl+gOe0kWm4x3h6jrFhXNRG6xNGdzdb53Rnjzf6KVCzYY97eJBV88Oki2qtEb8fHSZA6/W+X+8U76ol7uGk1s2gycylT563NLKJLIU/S6ZNyq1CqUJfwuBdtx2NUbYTZXJxZwr2tFKYpolbHOAJ0hL/ePb27BuBrZqo5u2qiyTKl1mBPhoGXu2Zrg/Tu7OR8q0Rf1btgEXmG+ruQVvBmU69qb+v07+MVhe3cIw3QwbJsDd1RgfycgSzJuRTAq1U1sbTVLNJUdhw1tMM8tiEO/7cDlxfKGr3V+ocTFpRKyJJpV61mNgbB+BaFY3eitVXWT3X1hRhL+dySXZzjhI1/T6A4Ln/+3A82wcRwHm9fzGdfDSuh2Q7ewHQeZWz/sYMxHxCcs0vfeNPT54K4ezi4UefqaIRqfDjiWw2Dch1dV6Iv5mMzW2tfRrQq79fPzJRxE3VxqGIL1f34Zr0vm80dE/qhHlbmeqjCbE3vrr9+35ZY9/MqyqOnS5SbnFoqcmsljtjIwx7tD73h+V2fQgyQJwlFinYa0360Q9bso1g16N1EarofXZvNMpmscGYltSt5wKfKaXND/XKCZFt98dZ5CXeeRHV0sFRtcWa4gSfArx0du+a4t22EuXycRdK9xMpAk2NsfoVA32NUX5oUbGWxHWNRUmmKgNJ2tMZutMZutU2oYxPwuCnWDbFVjJOHnhckcHlVGt2xxprAcfv0+wdSdSFeZztXY2hmkYdh4VJl8Tajwgx6VnT1v30I94FGp6RYS0PMeVcncgWjurkAzxKFNXrWHOY5DXTd58koaWYL37+wmFnBzNVnmZxeT2I44/zkIa8yP7t3YIafUMNqN2GJrMNrRGixppoVm3LoPDMb9DAL/rqV4OD1XJOhRyVQ0/G5BfH5wHRv1P31pjtlcjSvLFXb3hSm3lKk9ES/DiQB9Ue9tDVm294QY6wy0rMDEdZEkiQ/u7qE77CXqd224R78X8MCOTv7d0xOYqwdhNqQrTYIehXjAjWWL3KHVQ7BK0yBT0drXDURO4aGhGLIk9r71LPA3Q9CjUG4Y+FwKUb/7lv5bR8jNYrGBV5V58koKtyLz6K7u94TF739OcKtyO/90tcKx0jRxcES95jhMZ6vIskyyrNEZ9PCFo4OossS5+SKaaTObq3PXaBxFljAsB48qbH4tG45tiXFxsUzEJ5yVapqJqgib6i8dHeIPX5ziwmKZVEUj6nfx2OU0puVweDjG4eEY5aZBzO+maVhkqhodQS9Xkq/HhEgSt+QQroZu2u3B+JGRGL0RkTmrytK69q1+l0J/1MdisfGmiNcvTmY5O1dsEadkriyVKTV0ZEn0E2qaSV23Nr3HAx61nQ/qVmV002Kh2OAvT83z4LZOHtze2SaNvzZXIF/TmcvXGYj6GO0Mkio3eXTXraTclSGQ7TikK02+e3qRl6dyjHcFaRgW923taEUOvf6cPnUlzWRGOFcdH0tQ1Ux+fiVNQzdJlhoYlojNydY0DMthtDNAXTdxt95ftUXieXBbJ+PdIaI+V/uzJ0tNYdN6NYVhOWQqGl8+NsSFxRIjCT8LhQavTucZjPn5zMF+DNtZM0ALeBRqmkzYJ846vREffVHxfyuYydb4wdklJEm8h5pusrPn9jPiVq5FuWEwma5SqBsMxvzt2u70XIGaZnF+voRp2lxOlvnR+SUyZZ0P7e2mJ+zjWqqCIkl88kCfcNHKVDg9l6euWQQ8KkNxP8FVpMaHt3dx15Y4/VFxj/tcCs4656D5fJ0XJ7PM5Ot0BNyMdAToj3rbfb1PHezjeqraVlfn67q49pJY23Xr9kY3lu3wl6fmePpqRgymahqfPvR6vX9iMsdEusoEMNwR2NRtwqXIBDwuMlWNHT0hNNPmv3nfOLGAu31P7+oNkyw18HvUt3Re+kUNwZqO4/zbd+vFZUmiO+xhLl9nOO5je2+Yj+7tY6wzQLaqocgStsMtSh6PqrSl9QD7+qMkyw26Q753bLC1MpR4K5AkiY6gh1S52V54c1WtdRDfvEBbPdTfjIjkVuX2Q7CCdKXJubkiDUPkV6iKxGcODWA5DrGAm/vHOyk1DH5+JU3M7+LsfEFYmnlVJAnmcnX6oz6qTZNi3cTvVokFXHzu8CCPXVxmsdhAM0WT461CkSVqmkm+JvLYeiJe+qNeKk2TvqiXX7priEPDMSRJ4q7RxJpJtG0LlZLfLaTNV5MVDg3FMCzB9u0Ke/hnH9vFCzcyvDpTIOBROTld4PCwQ7LcbA/BOlpS5XvGEuzpD1PVDEp1A8sWgaBel8K1VBmPqjCZqfGhPQr5mo5pG2sOtT86v8T1VIV4wM2v3TOCIsv0RX2cnS+SLDXoCHo4PBxj70CEzpCnnSsTbA/Tujg7X2RXb3jNvba9J8R8vsGBwRiDCT9/fGKWatNg30CUe7Z2vKtMqtVfrSzBA9s76Q57eOLSMqYlodoOSitcWWqpff7x+7exqz+CbtlcXCwRD7ioaCY9ER/jnQH+9c+uoSoSf/XaAp8/PEDU724zvx3HoVg3CPtcbypny7CEHUtXyPueDN61bIfBuB9fi/n0bgTJX1ws8cTlFJIEXzgySF/Uh4SEYTsUajoScHau2F4n+qI+/rfP7eePXphGkUVmzJn5ImGvi1LDoKabzOXrnJ0vUqrr7B0I0xH08IMzS7haNqrrwaPK7UHygaEouZrIr3jfzu41n1s3bdyqjGnZzObrdIU8JMtNHAdMRxRH23qCrcG0j6pmMthSfV1aKrU9hheLjVuadbGAm08e6CdT0dg3ELml+Lx5Pa80DaYyNUYSATpDHrZ1BdFtmyPDcSYyVbLVDIMxP35VoaKZHNsS3/D+rDQNon4Xv3J8mDPzRf74xAw7e0O3zbre2ffu5PvdwdtHuWHyynQOq2WLsNo+7Q7+dqKqGSwVG8iyGMJshLu3xGnqFsMJP54NDrPxgBtJEvuhd51g6BXEAq5WmLVEeB3/+BX8N4+M89yNDHv6I/g2GHC5FJmJdJViXX/TDav1EPG5Ge0MEngHBmpfumuIK8kyQY/Ko5usfx/e08P5hRJjXcENMxQqmknE60Iz7VvYrhG/i7u2xFEkmEhVyNd0Dg/HsB2QgRcnc8IzX5YYTvh5YLyLy0slSg0dVRHWIyGvyvkF0cioaRaZitbOMbi0VCZVbrYP3jfvH58+1M83Xp5lMO4XWU0tdtByqcnWruA7lh1o2w6LxQb9MR9fvXsYVZbWJfm5FJlfumuozYC+XTQNi+euCwVZ/br5phTMG8FqZQ9E/a6/VRmKdd3k7HyxFeb9+nUo1Iy2K8VUpoa/9ZxLSGsGCyt46mqai4slfG6FX73ndTb4nv4onzjQj+04HBuJY1kOL01lifpd7O6L4DgOvREfxYaB3yNjWg6LhTrfOjmHAwzE/XSnq6gy0LKycisy23pCLWt/NzG/m4PDEa4lq8QDLrZ2Bnh5Kk9PxMtHWnmoIa/6lm3GB6NechUNl0I7m/UO3nvojfiYygmSZch3674kS/DSZI7JtFCMxfxueiJeriXL4gzoOIx2BrEdh7390U2f4/GuIMe2xGnoVtsmvCvk4f07u/nJhWWevZ4BiXWt8D60u5ufXUox3h3kRqpK2Ofi0FCUTx8caJN7V/JMtnQE6Ap5mM3VCHpVEkEPe/vDFBsm925NbDq0SleaKJK0hoS53r7jVuU1vaX3Knb3RRmMB5jOrbVDNiybn11KcmxLHM201yhf0uUmv/P0BLplc3w0wbEtceSWZZciS2syfN4MPnmgn7l8fcOm6EPbOtnRE2YqU+VkK3vn5sygO/ibQU0z+bNXZjEt2N0fZqnQQLNsDNMhHnQT9bvoCXv50rEhinWdV2fyqLLCocEY+waj7ab+QMyPS5GxHYX/+pGtzBcajCT8NE2b66kKk6kqkizOU25F1DXZikZ3xIckiSwmj0tmwCf6CIeHY1xNVto1HYj/zbVkhYBH3fBeq7VcxSzb4fxCiUP3xPjVlgPReq4Ksizx2UP91HSL8Jvoq63kzWqmJfKCPQpxv4dEwM2ufqG2igfc5KoamarG1s5b69yTM3meuSaGe58/PEC5KQZP1abJS1O5NYSjzpCHdKVJ2Ovi4R1dBGfy9ER62D8YxbBs5vJ1esJeAh6Vj+3t40qyzEgiwFKpgW7axANuSg2DY1sSa9Zyx3GoaibT2RrNVt/YcQS5b8XZ5qHtXczm6ox2Boj73XhVhd19YQIelT39EaYzNXb0inOIJAl71UxFo2FYVJom3z+zCIBblchWNYYTfuIBd5vkMJwIEA+4+fmVFN88Nc/nDr/u+ADwucMDwno85MGwHDpDHhzHwbCc9lA3WW6KM0LLperm3vh6MC0bSZLWZg1bNtu6Q5iWveZ+eWC8k1dn8uzqDaOqMlOZGgv5BrmazqvTBfb22wzGfJTqBicmcuRqOsWGjluRiUTdHBqOcs9YB6MdAdLlZttOvDPk4aHtXXhcCgMxH1G/m2xVw+tS2s+W7Tj4XAo7ukNkqzqyJDEQ87dtSFfyWwdiwtJ0W3eobRPZF/XRG/Eyka7idclrRDVNw2plAUrt50lVhE19oabz4Laudr+jWNeJt7L/PC6ZsPeNz4puVeSrXU9VODIcI+BRubxUZiguhovv29VFR8hDIuhmoVDnT16aIeZ387nDA7fV4/5FDcH+jSRJ/xx4HGjT1R3HOf1OvLhlO7wynafSNJjJOfz3n9jDtu4QT19N85en5mkYFneNxvn1+0Y3bCLXdZPvn12kqpns7ou+qUb6RnhlKsfLU3nGugJ8bN/t+VOCCBZcKDTY2Rvmc4cHyFY1ukIeLi2VePxSCpci8eVjQ5uqYe7aEm8/ADdbOL4Rvnd6kbpuocgSj+7qJlfVODNX5NFdPewfiPDklTQz2RrbuoPEA27qmsWu/jCZqkZVMzkzX2Bnb4hHdnTxg3NLzGZrdIW8pMpNLiyVMSwb1plUvxmssDi8LoVryQr3jnXw4b29HBxq8sC2zk0P4admC23Ll88fGeALR4S8869eW2A+X6cz5OHBbZ3M5etMpqtM4DCSCHB+ocRIItBuZGztCvKVY0P84YkZ/s8nbuBRZca6gmztClJumEzn6uzpFWyGA0NRbqQq/Pj8MrP5Gr0RHx/b18uuvgiXl8pcWCzhOA7lumBcDncE6Ai4SQTc5Ko6T15OEw+4+dLRQTwuhUJNbzOzVjLKbsbuvgg7e8Kcmi3wu89Ocn6hRKhV9L+bAzDTsplIV6hpJnePJtjTH6FYNzgzW0CSZQzLEqwaRTCALMdB0y2evp5hR2+YA4NR/tNLM0xla+zuC7O3P8ILEzlCHhXdsnlhIktVM9neE2o/V49fTnF5qUxvxMsXjw7edtPkycspriZFKOWKjed7CQNxP+mWxNf/LjHeVvI5HId2+LRblfnlu0e4lixT02xyNR3Hcdr+wF630h5mybLMF44Mops25abB8bEEf/ziNI9fTuF3K4R9LmRJpifiJewVPsIrDH6PKqMqMjdSFX52MUki6OFzrXDXR3d1c2mpTLqitTfXH59f5nqqwv7BCE3D5lprmP3Fo4PM5eqcmSvw0lSWS0slQOLr944Q8bnY1RfBQdjmVhoGXSHvhuvn6oyv1UiXm3z3zCKqLPH5w4NE/C6+d2aRXFXHskUhJQGfPyJ+dng4xsHBKLIs8cNzS0ykqwzF/Xz2puIMRNH9n16eRTNsjo7EuZGuYjsOz13P0DQs9g1E14R5rwfXu5CzeAfvDKZztfazNZGu3hmC/R3AlWSZdKWJJEmiQN+g6WVYDlG/GwdpQ1VWd8iDIoHhQMcmZIzBmB9VlnApMv2bZEUFvSpbOoLrevmvoFjXODmTb+WUKnx9k6yW28GH9/bw3dOL3D2awPs2AwpPzeSpNAyqTYPrqQpHR9a/tl1hL+/ftfmzlKvqPHk1LayuZJnPHn7dzqNUN/jGq7Pops1H9/WSLGnIksTx0Ti//Z1zLJU0HMdBlsWA6EqyzGyhTk23cCkO8aCLxy4luXs0QbLcJOhRGUm8vk4HPAqmJex8ri1XeH4iQ7R1QPO6FO4eTXBsJI4sSxiWzXy+jmULy/H/8OwUblXm80cG8LsUnp/IYpg2D2zrfNPs9yeuiProduykPaqC7Rj88YvTBL0uPr6/F4+6+d9zKzKdIQ+Zikb/Bq4TbxbfeW2BxWKDHT0hPryJguS9hp9fSTORriJLEr96z0g7q7Yr5GFnb5h0pcnh4RjdYS9dYS+dIc8tebbwel3WNCw0025/54osIQHVpsnPLi0z3h3ko/t6+NnFJL/7/BT3jCX4/JFBAh61lZVtMZGuEg+4GYz7+K2HRnltJs98ocHWriCKJLOjN8hLkznm83UWiw0iXhfZmkZXyMsHd/fwjVfmkCTxLP3BizM0DAu3KvPVu4ff0lliNl/HAixLNCXv4L0Ja5Vlxwp/YPXRSrPg95+fojfiYzjh5+WpHMvFJrmaRmfYy/1bE3x4Ty/fOjXPY5eSTGaqaywNQagWX7iRYSDm5+Edr2d2vzKV47kbGWazNVRFYigeaD8Tr78nhx+eX2Yu3+SLRwdpGjb3b+2gN+JlOidUkCvDr5Um6gd2d/NfPDTG3XNxwl4Xf/naAqbl8LH9vZsOwG6kRK6rLEl89nD/hu466yFT0ZjO1tjeHVr3Wf+bgm7ZHByKMJurrbFosm14aSqHZdv840e3c6A1eMxUNP7js1P8/EqaiF+oNP75x3e/I+/F61I2VOdMZqr89MIyUb+bu1vqIQk2zUW9g18cSnWdi4tF0bSvGZSaBhGviw/t7ub9u7rZ1hPGrYoa4St3D1NqCPeYiM/FufkiT11N88EW2cls5eN2hDw8cSXNK9N57h1L8MTlFAuFBrt7w1Q0A90CRbb5+P5epnINriXLnJjIMZGp8dW7hnislcn00X29xANuTkxm6Yt6qWsWE+kKU5kaXzs+vK56JBZwc3wswV+fXcKry/zFq3Mb2m2DOL//xatz1HWLj+3rvW0S0D1jCaJ+FxGvi+duZJhIVdk/GOWDu3u4r5W7WddNvnlyHt0UOVYfvIkUtlRscHauSLqiMZ9v8KkD/YS8KtdTFbwueU2W+vHRBOcXilQ0g0xV40N7ennmWpo/fWmGpmFR0yxCXpVfu3cLEb+Lu1vigZBXZTJdpS/q5Z6xBNPZOv/ppVk6Q26Wik3OzhexbJv+mI+mYfNLdw0R8bnoi/pIl5dpGBafPNDHl48NIbdys75/VvROfG4TRZY4tiWOKsv84QvTyBIcGo7x1FUx3Nu+al2I+NwU6waVpslMtramLzKdrbVVYslSc83P/G71ljiklRrz/vEOjozE2dXKeWzo1hvm+YJQp33n9AKyJPGFIwPtnlLIo3JhscRiocHgKvvcrx0f4diWBNPZGhPpCjtbxGxJEi4N23uCvDZbYL5Qx3IcPKpCR9DN9t4wXUEPLlXmuesZbqQq/PRiknjAzeXlMn/v/lG6wt72wPPCQoknr6SwHeGSF/K6+MjeXj68t4e5fJ0LC8L1bvV+mqtqTGZqjHcFeWh7J2fmiowkAvy/PySy9E7PFfjrs4u8MpVnvCvIP/vYLk7NFvjx+WWyNY3RjiCfONDH3aMJvnBkgLtG4/RHX7eBf3Eiy6vTeWJ+F58/IkQMwXUGyuvhwGCUA624oL94dY5kqYnfrfAb94+2xUxn54v86UuzLBcb7O4Xe9rtZK//ooZge4FfBh7hdTtEp/Wf3xFUGgZVzaKuW/wPP7zEP3l0OwuFOpppU9ctkqUm/+onV0gE3PzWA6O4bjrUrSiKDMvm8UtJJFg3BPTN4NJSGdtxuJGqtm33boZu2txIV4h4XcLmRpa4ulzGsoU08/MtZQZAuizk5w3DIl1pbjoEUxX5LTNkBNPAojfiY0dPiH/3lLC1Ozmdpy8q7LpkSSLgcXFgMMbRLXGOjyUYjPm5sFhEM0R4XcTnwmmFBDYNi9OzubalQW2VzcJbRU9EKL/cqowsS3xoz9qDsuM4PHU1Tbaq8dD2rvbDaK6SdRqrivx8TcxnCzWdq0nhMzqXrxEPeEiW6ox3h/G6FNIVrf1aV5Jlnr0mPPYVWaIyV+TiorDv6496eeJKmvu3dvAr9wzzu89N88p0jrl8nZjfTaGu89sf3kFNN7EdR9g4VDVOzhboXHIzHA/gVmQylSZVzcStRrBskXW1joXxupBliYVCnbBXpW5YhH1q20v53UBVM8mUm0xn6wQ84m+VGgbPXMtwNVmmYYgBmO0IyyOrxbhYLjf53ukFSnWDsc4AFxfLaKbFq9N5/C5hbxHwyOg1i7lsnXJdDB5WhmDzLW/65ZIIX7456HIjrFwLw7IxbBsf760h2IPbOtnTFybkdW3IdH+7ODwca6mrJG6khM3ofVs72D8Y5b7xLrIttrvtwPfPLApmTsMk4FVxtywKvC6FXzo2jCJLZGsamYqGYdnUNDE4iwc8dIe9NAyLxWKD//TSLA3DIuZ38eW7hriSrGC2bF/TlSYDMT+PX0oxnRUZeL9+/xZUSeLFiSxuVeZ6qtouUlYaMuPdQZZLTVLlJteTVVGQmQ4f2trJ6bk8f3JiFp9LIRH08KE93aTKTV6azHJgMNY+TOmmzavTeTwumSMtJekKJtLVtuJjJldjvz+KYQm2+qWlMn1RYaWyXGq0X0+WJTTT4ulr6XbWz3rq4Jpm0tQtlksNfv+FIvsHorgUiXRF4wdnl3hpKsf//Jl9m36Pz1zJvDM3xB284xhJ+Ck3RQ7L6Ltkn3wHv1iIrAEdCYmGsXE90xnyiAZAwL0h9+fVmQKG7aDIMHkTK3s1UmWtfcBOlptr7GhW48fnl1kuNTk5I/ObD6xP/np5Kk9dt3AcuNzKXVkPNc3kqatpXIrM+3Z2bThAmczUCHtVFguNtlr3reL8fJEryQqyBBOp8oZDsOVSg3Mtj/2N1GyFmo7PpWCr8i3+/jfSFS4tlgn7VGzHQUJCNy1+ciFJptJEN4Ulo8sRtc1yuUmxpiNJEqoiUdMsJtNVjo7E1g3PVmWJ/pgfSYJrqUr7gJ4qNxluEapenMyKHB2fyvM3snhUGb9bpWlYNA2LuVwdSRJqbBADztthqK7GigKpqpnopv2GivLzCyUKdYNCXTSR30gpKMsSXzw6SLlh3Jai3rYdnrmeptwweWh7Z1uVJnJrU+iGxUyuhkuRmS/87cq6XKk9ZQnkVZdZnFFeb2A9cy3NpaUyB4ei6zLSH9nRxcmZPImgG2+L4GJaNi9N5Tg7XyRf06jpFiOJAB5VZqbV9H9xIsfu3ghXlss4iOGqR1UwbZuQVyVbNRjvFqTFC4slfC6ZuUKd3qiXpm61GyPlpkGqrBH0Ki3rRqHMXHHe2NYdpKqZb2kIVliVA/bD88s8tPPtZxLewTuPZPn1HO1SU9S+ti3MllZW0vlCgz39YR7d1cUTlzNkqhqyBL1hL4/uEt9rpiLO1qny2lxuEMOuTEXjWrJCV8jD7pbTykKhQbLUJFXRsG0H25H40qqMQtt2ePxSkm+fnCPocTGZqTCcCDCfr3N8a4InL6VYKjY50R9ivCvMs9fTBD0u9g1E2N0X4b7xTi4tldBbdfnSBlZmM9ka5xaKLfKuYNQXagYDq9or11r51+tlATmOw3dOL9DQLa4ly/zy8ZHbuPK/GPzsYpInLiVvySixHJBbypDfe36Kzx4e4OHtXZQaOpIk1Jt+t8Ku3tu3Cns7uLr8+t7pVhR+7d4RJEm67SbqHbx56KaNcZOSZT3YtsM3Ty4wlamRq+nYtoNu2WimzeVkhaDPxb7BGOcXRG9sMO5jIO7DceBKssK1ZKXdV+wKeXAQ5KT/44nrTKaroj9UbGDbDm5Fptgw6Iv4cKsyHQEP8YAbzXLIVZvM5xtcWCry3LU0i8UGR4ZjnJ1z4VKldmb2YFyopB3W5v6VGoawT6xoBD0qd48muJ6qkKuKrF7TdnCvMwQzLVvEl5SbBNwqE+nqbQ/BVEVuN+ofkiWyVVGneV0yr80WmM7W2NUbaq896zlOmJZNtqrR0C0sW/STP7y3h0xFo2nYvHAj2yYRXVoqcSNVJeRVWcg36I34ODNXRDMsLi6V2N0XQZYkTNtGkV/vhcmSxMf39+F1KXz75DwnJrOkKxqDMR/nFkpCOdc0iPrdPLy9k6GW8CLkVQl6Rc3ww3NL/NfvGwdEvy1X1dFMkUG1fzBKXRNuGSv1hxAGiL+fqWqYts2OnjAhr8J0topl2bw8lSVf19vqYFWWmC/U2dsfoTe6+YA8U9E4M18g4nVxLVXhyEicXE0n5ncT88OV5fIbEo+ns7X2/iGsq0VPfjJbpa5bxAJuzswV+fIxcTaQZYlTs3lyVZ1nr6fpCnkZjPv5zQdGCXldVDWTR3Z0EvKqqLJEd9hLb8uysGlY/NGLM9i2w0uTOQzLptQwGOsMUm4aBN1qe0i7ss8uFhuU6gaxgJtrqQoHBqOEvS7qmoXfrbQjgmZzNX77Oxco1DUODcXZ0x8hVW5yZbnM0ANj+NwKTd1iMlOj3DSYztb4Fz+6TL6msVBotCzrBWl7d1+YRNCzZj4hBlQzKLLE1s4gTovgHfaKjNnNRAvpSpPFQgNVlpjK1kiWxGczbYfVp7lyw6AjKBRwfrdy225+v6gd5NPAqOM4+rvx4rIkYThiuubYsFio89yNLB/f38uV5TJKRSxwS0Vx8Xb0hHh0Vw96S2LbHfbSH/WxfzDCc9ezqIrEU1fTdIQ8m/pVvhEODkV5aSrHeFdoQ+bm45eT3EhVWSoJmaaEsG+J+ty33BgjHQG+fWoelyKzXGyys/fdsb/63OEBZrI1tnQGUBWhbppMV9nWEyLqc5MIuslWNI5tiXHv1o52s+PgULQtfR3tCPDMtUz7sG1YwgPYQRwOt/eG3rbFyecPDzKTE+9zPSyXmpxvTbxfXiULProlTqrS5MxckZPTeQZiPlyKzNGROC9N5nh4RycRn5tz8yX8bhWvKrOzN4JbVYj5XW37jlemcvx/H78u2LsO3Lc1wY10jbpuYtsO01nBQDu/WOK5G5n2oExVZPxuhYBH5TuvLaAZNhGfi739EZ66miJXM9ob8XSmymRGNEH6oj52991adF5eEgOjA4Pr200cH0tgWg5+rwuPIt+SjfZOYYXR43crhLwqNc1ivDuI362Sr2nCM9oBRRYM0NW5YCsDkOcnMsgy7OwNMZmpsbUzwIXFErmqRnfES0/Ey1S2hlW3KdZfX04e2t7JqZkC23pCb8oy8H07uzkzV6A/6nvL1i5vhNXrzJuxGFrBu51/5nUpPLyji6pm8nvPTQFCxr5/MMqnDvQxlakxnPDz04tChVVumjw43sHBoRiG7TAU9/EHL0xj2cKe58x8EZ9bacnqFY6OxHGr4p5v6BYOUNEMVFmmUBcWonv7IywXG60MwluLFwmJl6fzNA2LhUKd42NxRhIBYtkawx0B/G6hfDg9W8TjkukIetBMm/HuINmqxr/7+STJkrB1+dCeHsJeF3/28hx2yz5x5WB6eq7AyRmRpRjyquxY5Qe9rSfEczcymK3MGBBh0P/x2Ul29oZIlZv0RLxrrUMqTZ69lsElS0zmRTbMUql5y77icyvtBlbU7+KV6Rz/15cPciNdJVlqIlXgL0/N4zjw6K7uddlrYc8dJdh7FYvFRnt9WSg06HkP50Tcwe1hIV/HdkDCYTa/caN+Il1lPl8XpA/LWbfqvmskQdCj0jTsTT3od/WGmcrWcCvSmgzXm3E7pdVw3N9uZm5mS3F2vshEy+5qIOZr20HfjOevZzi/UKQr7OEfP7ptw9cTjFNz031tKlsTB35JEA42wmMXkxTqBtdTVf6LhwLr7v33jXfwsf29TGdq/JePjK/9OxlRr6XKTb50dJBi3eDFyRwXl4po1uuMPdsR6ugBnx9VktDMVm6YS2EuX+ebJ+f5wK4ehhN+ZnN1hhN+Ql4XD27rIuJzi0GoIvOzS4LNvqI4eGkyxx+8MI1jQ9CrtJsgO3vDhH0ic3NLh1BAyJLUYnZufN000+J7pxfJ13U+vKe3fRBcGagMxwMsFhucnMkz3hXa0LJra1eQq8tl/B71tjNtXIp827XKTK7GuXlRm/vdStvy91qy0rZW64l4cSsyh/6W2V09sqObvqiwvN3Itt5xHM7OF3Ec8Xzt7Y+suW9AWKSOdwX54bllTk4X+NLRQZ6+lubqcpmZXI3RjiBel4IiSxwajpGuajxzNUOhrjOVrRL1u7Fth7BXJepz0xPxYNnC9rM/5iXsFS4T+ZqBq2mhKhIJv7BbNSybTEXDtGpMZSrUNOEMUtEs4gHxswfGO97y+dirytRahMi7Rv92fb//OWG9GBC3S8ZSJDTLQUY0HuMBD8OJIB/dp+BRhfpgT38EtyLz86tpLNsh3sqhBmHBblg2+weijHYK9nu2qvGz1kBGAo4Mx5jP1ynWdaqaRSLg5spyuU0KnsvXubBYIl3RyFR0dvSGSJcFCe6xi8ucminidyu8Mm2iGTZLxQYRn9XOzQMY7xIWoE3D2pD0/PjlJDXNwnEc9vRHsHHoiby+zq049IAYkO3cbDD0HrN11U2L+jpZayD2vGRJozuscXauyK7eCKMdQR7a3kVfVESGvFu9hJuxtz/CQkFkOfdEvG+LYHMHb4xSw+Cbr87RMCw+srd30/ysumHRMEwiPjcNw8alSFQaJkGvQkfQQ6VhcmW5zNNX09gOFOo6+wYiPHE5RbYisqFupCp88cgg/TE/uZrOCzeyBN0qhbqBS5HZ1uWiM+TFtG2+dGyQP39ljpcmdPI1nf/xR1c5uiXGteUKF5ZKOAgFDQ4sFpt85nCIUsNgJlvH51Z4345uriYrdATd7X5MutzkWyfnmc7W8LnF+/7SsUE+uLuHs/NFxjqDG95zz1zLcHGxxGK+wYGh6FsWT0xlayiyxJ6+CDt6Qvze89OAIPmOdAR4/nqGobj/FhJtqWEy3h0SqqO4n4NDMSI+NyGvimE5a+wZFwoNvC6Fmm6xpTNA0KPSHfby+KUkYa+LXE3n80cG1ij/5/N1vn9mEVmW+PyRAZAg6FFJVzR0yyZf06k0RX3aaEXUrLw/n0uh2DBIV0Qs0WSmRtTvIllqct94gqlMDaVlA1/XTQIelYBHZDm+b0c3l5ZKIl8rU0OVRQTGZLpJpqLhUmRcqsy5hRKpUpMjIzEuLZVFBpff/YbuBc9eE5aRmYrGpw6K3nBPK8ex0jQZ717/fGXZDtdTFeEw1BtuZ6CNr3pGxjqCjHYGWCg0eGSVuhkQ17k1WJVb6npZkpjJ1fjphSSKJPa+aMDNgYFoe7DlUmT6ol6WisIqfT5fp9w0yFSa/MHz0/RHfXz+yACSJHF0S5y6YTEQ85EsNVAUmf6oj3SlybdbfaS7RuOEvC5My+b7Zxa5vFwGHF6dznHP1gSpMgRacUggyPK7+kJkqxqyLDGVqZGtNlsZwzIL+QbjXULwcLPa+/xCkb6Ij/lCnQODUa4mq23iSH9s/fippmFRqOt89/QiumlxPSlmEADHtsQZbWVxAmSrGnP5Gi5F4gO7ujk4FH3DyKgV/KKGYOeAKJB+N17ccpw1+VJD8QCDcR/xgJvOkJfOlhUfiIJtMObHsh1+cHaRhUIdlyLz9fu28MgOEbL5zNU0L09l0UyLr9+7ZUO27Rvh4FCMg+v4V69Gs1WAeBQFxwGPS+Fzu3vRLWtNAzbfyuZpb0ZvopYyLXtNcOsbIeJzsX8wymyuxgs3suztj/DhPT24FJmlYoPusBfNsHj8UoobqSpfv29L+wD8Gw+MUtdNzi+UiAVc7GoNbZ69lqFhCJlzT9jDf//Rty+hD/tUvC6FfFVfd4AR84uNoNI028wEEIuJ3PLCn8/Xef5Ghi0dAU5M5qjrJienC/RGfXzhyCBfPT5EuqyxbyBKQxeKE0WWaBoWJyZz1DQTSZLoCXn45IF+riWF5c1YZ4gjw1F+ejFJ0KPSF/HhdQlmw2DMx3h3iD29IV6dKTKbq7GrL0zIq6KZDhGfOIh2BD1MpKsYlk3Qq9IX9d0ix35lKsf/+cR1kOD9O7s4OBRnX3+Exy4nWSw0eHhHF9u6Q3zh6ODNl+cdx0qzqq5bfPpQH5bl0NNi7IR8LqI+F9WmhdcjoxomIPIKBCNHFFOLhQaJgJuAR2G0M8jX7h7mn/zVOUxLbBzDcT8Bj0oi6F7DDt/aFXpLuSYRn4uHtne98S++DTx5JcW1ZAWXIvH1+7bgfwcyU95pNA2LqXSVnoiXTEVrNzpDXrEWmJbNM9fSSMBYR4DPHx0k2Mqkubj4Opvy5ekcjiP8hb98bBC/Wzx/z98Q9qP3bu1gLifyMAoNA9t2+JOXZtANm/u2da4Jsf7g7h7OzOfpCnnxuRUsR+Sj9cd83EjVuLxUYW9/pL1OxgNufuMBEe7uOA6W7aC21iyfSybsc9ET8fKr94wQ9LoIelXKDWNNkbg6z2b1v5++mubsfJGqZpIIeLiwWOa+rR1EfS6Ulh3aoeE4nz000C6Wa5rJt0/Ok6lozObqSIjB2suTuVssEVPlJtFWnkK1KdjVLlXhUwf6ePZaBlWRmM3VUWSJM/MFHtnRfct36PW8t1SMd/A6/G6hNHEc5z35/N/Bm8dATGQ1Sq1/b4SFljIqU2kK68F15gQDCT+//7UjnJ4r8rXjtyqKVqDKEoWahkdVcMkbN4ISATc/ubjMPaOJDUkh23rCHB2JUWoYaxQqN6M7LELBFUmiaxMSx410Bc2wSRY1Sk2djuCtdfMKm7HU0EWg8+j6TbRcVRMDKAcylY25cxG/i0LdIOgRzMn1IEkS/91Hdq37M79bZG16VJkXbmSF/XC5yXKp0c4FkySxbv/a8RHSVZ10ReORHR0iiNnn4tunFpnP1fn3z0wQbQ28Yn4Xv9qyV+4Oe/jxhWVGOwL8vftG19Rw19NVlgoNarrJthZZLuRV2dUXXnN2CHhUvnZ8GMO2N7VSTZU0lltMyUtLpfbhsjvsbavm//CFaUoNg3RZY/9gpN0ssGyHq8kyUb+bLR0B/ouHxt7UueHNIBHw4HHJaIa9ZsjW22pwWrbDA+OCUbyRBdF7FW5V3tSGpaELe8ItHQFmc4K1/J3XFijUhYruV+4Zaf/uXL6O7Tg0DYulUoPzCyWqTYP+qJ/feGCUsM+FZTt4XQq/cd+oaKggavGP7O1hviDY8KWGSdOwuLhYoq5bbOnw80t3DfH7z0+RLDVRFYmgW+H/+cEd/M4zE1xYKNHQTXRLhMuvWOr4XDJIwo51xd73rcDveX0I5nmb1ql38O7BrYLZ+ppXqkvbBpcqo1siw+aRHV189a5hLi4K9ehX7h5qN6AWi422c0wi5GG0M8iNVIUnLq8MjURDq9I0ODdfxLQdvnd6gZDXxfaeEF89PszvPWdxbbmMz63gURWeuJxiW3eQoFdlJicyaHpCXgaifg4MhnnmWpbrqTLxgBvHcdjdF0aWZXwuVeTfrWpmV5oGD4x3EGw1A9Nl4bCzOg4jEfBQ0+p0R7zcNZrgG6/McmWpwqO7usVQbNUM6WalMYj9Z4VYPL7JMKFYFzmTt6NuWunprChu3iqB8/07u/kff3iRxk2PsoxQo8iSOHf4XCqfPGByuSrylu8ejb9rziTrYSjh5+8/OPYL+3v/uSNTaVJvqY7mcvVNh2DJUoPxrhDdYS/j3SF6wh4CbpWLSyVKdZ2pbJ2fXUy23QGG4n7SZY1EwMNcrg4SRLwqM7k6W7tDfGRvL16XzLn5EvsHIkiSUIzZDvyjR7fxJyemefJymmLDIOZTSbfea7oicoksy8blFnbh/+j94+wZiOI4Dlu7gkR9LgIelaMjsTX3b66m0zAsbEeQscsNg1SpyYGh2C32gzejaQqCyPbeEJ8/Mvims+WLdZ0zcwWevZ4h4nOzVGzgdXUQD7jJ13R6w14WCnUGYn7m8nUarcytFewfjFCo69y3tWNNFMgHdvZwcjaPW5GwbWHJ3RX2EPaqDHcEGIz5UWSJLx0dpNI0qOtCHXRzH22+IMj82A7LxSYf2dvLWGeAkMdFrtZkodCgoZukKxohrwu5NdSSJImQ18XH9/UK+1SfC0Vy+FbL2nGsK8gXjw6RrTZ56opQ7j15JcUv3TWEhMREWlhD+t0Kf/rSrLAo9Lt5ZTpPqqxhOTaW7XBuocj1ZIUnrwTEcC8R4Ox8kZcmsxzbkuBTB/vXjTfSLZvRziCuVYTClfzVld7RejgxmeXUTAFZkvjK3UN89e5bz2sel8L//Jl967r+fHRfL49fSlKo66TKGh/c0922NQQhDuiN+m4hUyiyxBePDnFhUeSsVZomW7uCXFgssW8gymKxgd5S/bsVmYBLodI0uG+8k919EdyqzHy+3lbXNXWLn1xYZi5Xo6qbIsOrqhPwqMT9bj55oI+usBcJsCybH11YQjcc7t3aQX/Ex+OXk7gUH363gm4J9We2qhNYpw+1EolzaDjG8bEEL03mMC0bn1tZ13ayaVj8+2cmSJaa2A70R334W687FPdzz1iCTFVrrymvzRbIVHSWixqlhslSsYFlOex/g/kL/OKGYN3AVUmSTrI2E+wT78SLq7KE1GKWqZII0BzvClKqr8jjdD5xoI+Iz0XI62Iw5uPbp+Z56moatyKztSvUlsV2Bt28NlsgVdaAIueGRRbWejcz0PbwfyPZ5EZ4dFc35+aLDMR8BFv2YjcHVl9cLPHE5RRuVebBbR2Ytlj4bgfXkiJrJxZw8YUjg28qS+CnF5M0dIvpbI3/x8NbAWGzU2ka/ODsIn63wkKxzvGxhAj6ay0aT15Jc3mxxJXlMnsGIvzWg2OcWxC+pw4OnWEvwx1vPzfg7HyRZ64JC7DPHOpnOLH2O/C5Fb52fISmad1SJO7ui7BQaJCpNDk9WxTfeanJfKFBTTN5cHsn11MVdvQEOb9QZqnYWGO36FYkeiNe7h6Nc2GxTLRl/ZgIevjk/gE+fqCXqE/45V5cLPGNV+cIulUyFWHvMJ+vc2IiK6wBbQfTcshUNfb1Ryg3TX7rwTGRcZetYTvwwd3dfPXukVuuwVKxgQM0NIsXJnJUmhapcpPnrmfwu1XOzhU3LWDeKTiOGN6JAOQIf312mb8+u4hbVfhXn96DYdpUNAufW8atyti28Dq2bKEMlACPInjpT11NYtkSAY/K//rYNaJ+wVjtiYig8X/w0FYahsWOX5AVw2af+XYaRCsDIstmjfz+vYQfnV9mPl+nqpl0h73kq/qaz/eHL05zI1VFN23u29rZHoCtFJeTGfGzHT0hfnBuie6Ql529EbwuhVMtZRXATy8scWIqR9Ct8F89so2Xp3Ocni3gdSlE/C66wx7KDZMDg1EahsWZuRKmVeRj+yXuHesg6FHxqDI/vyL4FDO5Gqdm8gzF/WvICit2VSAaax/d10umqvHpA/1EWuvrl48NkioLSf8K9g5ECHlVXKrcZjlXmoYYgDXN1pDWw6XFIt8/s0jIo3AtVcWybQJuZc0B27SF3UJdt8SBstVQHE6sXfsm0uLabekI4FYlGrrFtp4Qf3piBo8q0xnyUmroFOo6XSHvmoH+arjvNJPeswi28gwty35PZULcwVvHR/f28uSVFC5F5v07NyZSDMZ8LBbqJAIefO71D1ZVzeRbry2QKTeJB9187vD6pJW/em2BFydyAPRFfHz8wPpZs/+/J28wk61xbbnCl48OEfavoxz1udjeHWYyU+HI0PqKIBCqoF+7ZwuyzKbsOscGrRUS7duANbtiQdtsDZ42GoJF/a72ACrq27ip8NG9vVxerjDWGdh0Ly7WdQp1g5GEf83vPbCtk9NzBSzb5pnrwrkgU26SqxltYp1XlfjqXUN87ugQT15OcXmpxL/9+SS7+sIokrCoXCg0ODAY5UZaMIyLdYMTE1m2dAb4/RemmEzXOD9f5MhIHJcic3W5zFhXkF29YQbiPhq6xd6BCB/f34fjiM9v2067MdAR9PCRvb1vmFXcHfHQE/GSr+kbWlUNJ/ycXyjRFxVKqxW8OJHltdnXD/cdQQ/Nln1xf9T3pnPINkPE7+JX7xmhaYiwddt2uJqsEPSo/Pp9W0iVm/zkQhKAzx7u/zuVofjjC6LW8roU/sFDY6iKzOUl0QBZqRVXsG8gwksTOZbKTZ65lqZpmFxYLDGc8PODs4scHUmwszdEsS7Y10eGY1xLVkgE3Uyka5i2zTdenmOkI8C5+SK5moZh2FxYKKFbNvePdzKfryHLEmOdQUpNg5BHRZJAtxxsB3Ac/C6FrV0BPnGgn5Mzea4uV5jN17Bt5y0NKa1Vrk7lm3Ke7uC9A5cqQ+ueXL286qusvT+4u4diw+DEZK79eyuN4/g6RNQ1Koa6zomJLLt6w/jdKo7j8PJUvm0F+/TVNMWGzlCHn4e2d3FhUSgDriXLfHhPL/0xHxcWS0xkqxi2Tdin8vX7tvCDc0vkqiKj8VfvGSFX09ndJ/7GvWOCaPf01RT/8dlJvG6Vf/HJ3ZycLjCXrzMY8/G5I6/vv5840Eeq3KQz5GGp2GQqLayutnUH2dMfYU9/GLu1V6zn1ALQEfRsms95PVXhJxeWUVuNzs0cQ64sl3n8UoqAW0a3HTTDbg/k3ix0y0aSZFhliCgjSB8uRcJ2BGlYkuCbJ+fIVXXKDYOBuI+hRIBfOjb0ju4Ld/DewEgiwLbuEFXN4OBQdMPfu7xU5rFLYp/+6L7XFWMrtUSxIbLBTMsmW2liOQ4hj0J3xIfXJbfdsmI+F3P5OnM50YN4cLyToEfFsGx+fiVFpWlwfrHEs9fTPH8jR7lpoJk2hYbBwaEY94wmuLhUAhx29YX5px/ZyZaOYJsAJkkS/VEfjiOyAaezNe7aEueercJWeiZbY6HQIOJXUWQJn0vhzHyxnYW3GR7e3kXE56I77H3TAzDbdvjzV+Y4MZkjU2kS8bkYjPsJ+118+dgQxYZOZ9DD6bkiJyayjHYG8d30vG3tDPHyVJ7lUpNLS2X29Ec4MZHlW6fmKTUMFop1XpzIIklyS7Hnwq3ILBYbaKbFtq4gd22Jkyo3kWSJl6dyHB2Jt2vNvf0RlopNVFlie48gah0ejnNiIsvFJWFVHvCIfLf5fJ3tPcLFKVvVODAYJeJz09siV//sUpq6bqLKMrop1LnfeW2BqUyVWItoU9cs/vK1OdJljbDPxT/72G5++e5hSg2D3oiXa6kKxbroByqyTNTnptgwqDQNusNeXApMZuqUGiYOcM/WxC1uBjXN5OHtXUxma4x2BNq965pmcjVZpj/q3zBvcCXSx3actk3lepjP10lXNHb3hdeskS5FJl83iLXOZEdH4kiSxKGhGJWmidclt5+jS0uCtHRgMIpLkWkaFj+/ksZxhPppqdhge0+IzpCHbd0hPKqCZlr8yYlpXpsrUG6YXE9WMEybwbifwbifR3d1U24YRAMu/vzlOeIBN30RH//b5/bxl6fmifpcvDqT57953zgXFkt85/QCpmVT0yyWS0329Ec4NhpHUSQM0+H9O7v40fklig2D/YNRhuIBnrmWZv9AlKjfhSRJHByMcmgoxpm5Av/8ry+RLmvs6A3x2cMDt7ganV8ocmW5wsuTOSRJYiTh5+7RBNu7h6kbFt1hL09eSXNxsUQi6OaLRwbRTZuFQp2pbBXTdijWDV6dyfMvPrmH3X2b74u/qK7ZP383X9xxhNemBEiyxI1MhVLTRJYkvnR0AJ9HXTMEEQ9fky0dASpNk4/t723/fCJdI+JzkanqGJbNSEJ8oWdmi2zvDfKRva83HSbSVX54bgkQoeA7NrGx2QgRn4sHtm0e8LTC7NRNm4jfva5v9dVkmVen82ztDLYXdhDFle045Ko6mYrGYNxPoaYjy9IbernH/C4autV+WEHkESwU6tR1i1xVI1vTefJyirl8nY/t66OqmciSYDCeWyhybqHEqZk8nz4wwKmZPLJLolQ3Wg/v22sGrj4wrv73RLpCpWmyt19Mv9eTMYsMia387GKSK8tlTFvYouVrGi5Z5nqywrEtCa6lhDXLtWSVD+4WQ4FnrqU5N19id1+Yf/jodv7whSlOzxb5v5+bYmdPmP6Yj1LdwO9SmcvVuZaqMpWtMdoZQDdtNMMma+nE/S4qmknY52ImVyPacFNs6Hz64AAHhqL89OISF5fKWLY4hDZbTJXVjagP7ellsdgUElXEoWQqUyVf05nPN/jALqEYcRyHiXSVoPf27W3eDC4tlTkzV0SWJAZiPv7qtQVqukXTtHnySopCXcd2bHTTptI0UWUJ037dVz7gljAdCd10ODtfIux1EQ946Iv6iPpdbQulYt1g6KZG1t8Enrue4cxckd19Yd6/61ZVzmq8b2cXZ+eL9L2LlotvFyub+Wyujtclc2HR5OhIvN2wrzZFbl1VM0lVmjQ0k++cWaRY1/nw3t621ejT19IE3K2Gv+2wWKhzealMpWkw0unnsYvLLBQaKJLEH7wwhYPInoj4XPTH/Py01fiazlZxyTINXbCsFgrCr39F/WdYNlOZGpmK1rZZ+EePjuNeRwJ/arbA9VQVcGiaNitborBQVKnrgga5UgjdTGgIuFX6oz4Wiw0+eaCfzpCbP395lmzNwLAsPKqCJMu3MFoiPhcf29fHz1tNTEWW+OCeHvauOqxeS4rDL4jA7tlcjWxVZ+5ymsGYj3JrEB7xudg3GOWzhwY29GhPFja2DbuDv1ksFht4VQVUhdlc7W3ZLN/BewOvzuaFNZ0Ep2aLjHauTzYZ6wpi2o6wJ9uAAzGfr/HSZA7bdvjRueUNh2CdIQ9VzUSRpHVtY1ewYifYMC2qurnuEGwqU+WJKykahsV/enmWezepQ29ncGtL4JIlJBmapsP6tDCHG+kK1abFUGJjItRH9vYxkRY2I+/ftfGA8elrGS4vlbm67F3Dgl2NStPgG6/MoZs2h4dja+rtsM/FbzwwyvdPL3I9JaxnddNsM2ddCnSHfbhUhX/90yt8/8wiNd3EMB3yVY26YbFvIMp4d5DZfI2Q10U86KamWbwynefMfBFFEvuK7Qh3gr94dY58TefsQpHfemCMf/mpvVxPVRiM+9mSCPCNV2bJVnV29obQLXGgK9YNlksNYn532wJvPXhUhS+vys1ZD4/s6OLISJygR11zvVZqaNsRpCwQQ9dMKwP3l+7a/HXfLPxulZXb8tWZPC+1muhfPDrYyrNo5W9m63QGPX/jNd87hZXrbFp2ez341EHhIrFjVabQVKbKf3h2kivLZWET1BqgR3wuFosN/uyVOa4sV+iNimzkQk2QZGQZrLLNjVSVmm6SCLjJVJpcXCqhSOLvez0K5YaBbtkkgm5iAQ8jHQEausgNkyQJjyqDBD63SqlpUtMtEWTvUkmVm1SbJq9M5zj+JvPpgDUTFb/7ThP9vYpy8/Vztdm6Vx1HZIKtWOmeWygykvBzNVluO9bcM5ZAkYVi8FfuGaFpWO1z69auIB/b14tu2Tx3PUPTsLmarPDJA31IwInJHOlKE49LZiZb4+x8SZCEPQpBt7hv/W6V3qhX5I47wtK9rlsYlk1/zMdYR4DzCwVGO4I8cSXN146PsKc/uuaz/fxKmqvJKooMr07lSVU00pUmp2bzOMBnDg20P8OK0ruumVxcKmOYNrv7Rb9HkqS2BZptO9R0801nVS2XmjiOyCjPVrVNh2ArPZ35QgNZlgh7RfP5rQzBJtIVZNYWJTZiCLZvMIpmWGimQ9OwubRURjMskuUmpabBjXSVjqCHT+xfn4jzbiNdafK904soslDa3Uwev4O3hppm4nUpfHRf7xv+rm7Zoi/TMCjUXlfsZ1t5k44Do50Bzs1XuZqqYNsOr80W+OSBfh7e3sX/8KPLTKQrLOQb7O6L8J3TCwBUmgkMS5BIwz4XhbqOW5EYivvZ2x/micsi2sCxHTwumdl8AxyJkUSAzqCXV6cL9EV9mC0l8wo0025HtlxNVtq90ulcjS0dASRgJK5Sbt7+MxzwqNw/vnkPdyNka00eu5QkWWoy2hHA37InnMpUcSlSm/wT8qpEWlEsN9dBuZrWrilWhhRz+To1zWS52KAn7CHocaHItsj96g2TqWh8/8wilabBbK6GYTntXptHVXApMjt6VpwJXHzuJucay3Z4ZVqQmyM+F3//wTEcx6HcNNEMiz9/ZQ4H0SPPVDSmMlUUWSLodXFkOI6qSOwbiHIjJbLge8JeSk2Dhm7xb35+g4l0hYZu0R/zMZGusLUr1O57fOHIIN1hD1Gfm7GuAKZlkS5rxINCdNASrSFJEgMx/y324fP5Ot87s4gswecOD64Zdv3sYpK5VmzFr9+3Zd0B/33jHfjdyhpb85sxmanyJydmiPhcpMpCPbca+wciPH8jy3DC377PAh51ze/NZGttm13DtDk+luCxS0nOL5ToCXuQW/uOW5XXqNGev55lIlNjsdBAkSVS5Sb/+mdX8aoK//D92zg2GqeqmfzhC1OkyhqTmRp7ByLc51Z5aHs3FxdLbO0KUtMt/vrcEleWylQ0kyPDMRTZx11b4uzui7SHSxPpKke3xNnS4UeWZL7xyhyW7fDU1TSJgAevS6Zp2AzEfFxNllkuNdBNccZYrZy+slxmId/gwmKRpmm3VdH7B2Nt290VquZKtEmuqvP0tQwT6SqaaXN4KMa5xRJ+t4Uqy5ydL743hmCO4zz7br6+7TjUNTH1NSzBKFzINxjpCOAghi41zWzfsG5V5v7xDq6nRKD16qHSvsEoM7ka491BPntogPHuED+5uMwr0zmevp6mJ+xre9SvDims67cGFr5TODYSp66bhLwqWxLrtxZevJHlhYksf/TiNB/Z08s/eHgrAY/KgcEo6YpGIiCm8adm8/z43DLzhTr3bk3w5WPDGzJ5PnWwn2Sp2V4k5vN13K3F8fkbGZqGhWk51HSLpUKD3/7OeTTT4q4tCfb0R3htNk9FE0qyp66liPtdpKsapYbOjy8ss/0tDA1X4/BwrH1YW5GzPnc9w4/OL9Ed9tIwrHaAeLlpoJv2LWysnT0hLi2WWj7mJjXNwnJMFFniwmKRRECwYT9+oI8b6Qov3Mgxk60S9rn5q9cWeOpqqtWgaGLZDqlKk519YXoiwsJtz0CEC0slbMdhudigN+rDoyoYtoNLclAVN0Gv8MEtNwwUSWpvaAv5JoZlY1gOf/bKHM/dyLKnP8JX7h5mNlfnZxeW8bgUvnh0kNlcnZ9cWKZQaLCjO8juvggStO0o/+JVwTbpj/r49fu3vOPMWmdNHS2xoyfE+YUiQY/Kzp6weFYchxencmimzep4ZNuBhukQaQVogpATD8X9rWJAplDX29dZluDwSIxHdnSTr4mAyXjAwwPjHb+wRsnF1nd6canE+3Z2bfp3Q17XWy6SflH48J4eLi6W2dYd5HqqSl/US7CVE5Ov6WztDnIlWWE47sewHK6nK1xZLtM0LE5O50mVm8LisCYUSwuFOv0xL1eWKpydLzIY91OumzRNWxxaPQpet0KlIZ45lyqxqzfM+YUiy6Umk5kqI4kAtuMwEg9w4Caf7cPDcQ4Px/nzV2Z5ZTqPYdk8dTXN1q4QT1xO0RXy8MkDfZi2w7PXM5yZK2CYNl5V4TceGEVVZC4ulvju6QVyNZ19A1F+6djQmoJ5BSte2JppM5mp8tjFJKmKTrrcwOtWed/ObrrD3jb7tVDTuZGuMtoZYGtXkOGEn9OzBfFakjhkuBSZZ6+nOTdfpK6LBsF8rs7l5TLFumA8xQJuinUdtyqTrQpG2GYhxS7lvTlgvQPY1h1kIi0Ug29UlN3B3w50Bd1cT1XEYWsD1iDA/eOdqLLMWFdgQyvMgEclX9VomuKwsBH6Yj6hupcl4sGNn/eVBiUOtzS5VpCraeRrOpbtMJGtbvhat4v+iJe6ZhLzu9ddR4G2jceKr/5G6A55CHhcuBSJxDq2iitYKIjD0HKpiWk7uJRb9+Fq0+RH55YoNnQc276FdBZrDSfjATFgms7WcBxx/XRLELoev5xskaSEQizgUSk1jTaB6R89uo0rS2VqukXU58a0NFLlJr0RL1+5a4iTM3lKDYM/enEas0U4EUQgm1OzBSpNg919EXTLJtdqJiVLTY5tSQiWbMu6+y9PLRAPuPnysaE3nYuyWGwwnamxuy+8bqbkfeMd+D0K8VbuCoi6efX/fydQ00xmcjWG4q/nX5mrAmJNy2FbT4hrqQqOI3Il/v0zk4S8Kp/fYDj8twkf2StqreGEv/0ddoe9twy1LyyWqDSFjaFm2twzluCRHV28eCPLt19bQAaS5SY+l8y1ZJVCQwwgVEUm6nfhUiVGI0Fqrca9adlUDYuQV2WpUEczHV6azJIIevCVNBYLddIVXahegm6SpokjyZi2g88lCFLpSpOnrqba+cbKW6y3tVUMas3cmE19B+89yLIEkoSNgyJJGK0ewGDMT6aicT1d4fefn0ZqZcd8+djQqufc5vxiiaBbYbHQ4PxCkZ6wD8Oy+dOXZlvnXZuheIBUuYlLkekJe9jVE+KZaxnqukki6GZnd4gTE1nuHu2gUDM4PZdn/0CUiM/F45eSTGaqWBZMZ2okS01qmsm+gSj3jCVIlTUm0lUWCw2ahnAj+eMTM+zqD5Mpa9i2w8tTOR7e0UVH0MNCoc7FxTLbe0I0TYuIz4Vp2ywWGpyYzLK1M0hX2IvjOPzV6QUWW6rgh3fcvs3+oaEopYaBV5UZ3yTrE+DgYIxMRWOkw49XVag0TY6MbKzk3gy9ER9V49b6QFHEmb7cNOmPCpeihXyDumaypz9MXbfpjXgx3uSz6zgO5xZEHtzBwejbslScTNfafbfpbI2DQ3eGYG8Xr83mee569rZrjLGOALmayGeaSFc5MhLn8UtJJtLVdhxJVTMxbBvDtLEch5pmUqgbXFwqMZcTZC3LdmjqJssVDbciMZOtEfKpnJsvUtNNhuN+ZFlmKObnc0cGOTmTJ1XRMR0o1AyWinUs26Zq2HSaFs9eyzCZrtIwLB7Y1tkeLnhdCgeGokykquzpi7Rztg8ORrm0VKYj6Oa+rZ0U6votJK2ZbI3FYoO9A5F3jMz88yvCycrBaWdtnZrJ84Fd3fz4wjLdYS9HR+K8NJljOlvlwkKJXb1r67eRRIC9/RF+eH6RyVQFcBjvCvLE5RRDiQB7+qKkK01emc4znPBT1Sw+sb+Ll6by5Gs6Nd3CcYQbRcCj4lHh9GyBP3t5lu3dQb5+3+gt94EiS4x1BZlMV9uqJUmSkCX46YUkP724TMjr4rOH+5EkUd+U6gbZqkbU72pbfe/qC7NQaHBhsUS2pTJdGYplqho7e8Ooq2zf05UmPzq3hGVDsWaQqWgcH+vg5akcV5MVnNZ3/JG9Ir4nXzOYylbXCFSev5Hh5SmRvb5caqwZgpm2zUxOZEutZ21L6/VXC01uxsnpPN94ZZalVr93PXHMvoEo+waiTKSr/Idnp9r9qtXr4Wqi23KpyZOXU1xvEaWmsjUkSQgeDgzG+JMTMwwlfKiyzKmZPF5VKPst26ZQN3EcERt1LVXm2Ggc3bSxbGF5ezVZw3Zs3IrMP/ngdu4f7+DkTJ7fe26Ka8kKyVIDVRHZxJbj4HEpbQeApWKDPzkxQ103SVeaGKYYpnpUmcvLZQ4NxZjJ1dg3EOWxS0ncqsREqkp/zMc9WxNtMvD1lHCsq2kmFc2kJ+zls4f66Y34OLBKido0LBYKde7akuD8YonRzgCZijAX7I14sWyHe8cSLBbFAPD9OzcXKMAvaAgmSZJ4MgXcgAuoOY7zjviZOcDK2dcB5nMNvC6ZjpCHi0tFzs6VUBWJTx/sp9I0KTUMJjOCxTJ6k6rKpUg8sK2Tbd2htpS2I+Bhodgg6FH4wxenuJbq5P7xDnb3hWkYYgHf12Lh5KoaPzq/jFuV+cT+vk2blreLiN/VVlqAGEZdT1XY1RemNyIkvjXdFCGDsiSYFQUhkxyM+/n1+7YAQlr5xy9Oc3K6gMclE/G5mMxUN2zKeVRljcXg45dTlFsB3QMxHzXNQpIkUuUGN1IVZnLCui/sdfH/+tAO0pUm3z+ziEuWuZas4NgOuungVhyev57lH75vfN2/e7tQFXlNsPd8vs7TV9PM5uprDtULhTr/9skbuFSZX7praM3nPTGVQ5YhW9FotJinLlnG71FZaNnAhH0uRjuC/MsfXSZT1WjqghWZrWp4XQpuRaiaFEnYJD6wraPd7PrVe0YYSfj5H354mYVKXfgedwaJe1WCHpWQz8WWjgBbEgEeu5RsB0gCfOHIAK9O57maLBPyqpQaBvmaCAN9/nqG525kyNWEncT92zqo6ybLpSYdQTcHBqP0RUSGWKGm88p0nkxFw2gp0d5p7OkPt8mdO3tDPHM9zReODOI4otlWqOvMFOoYpr1uS860oaIZqLJENOAh6FFbG1IdjyqRq+pi0CbBfLGOZ1HhkR3dvDyVYyZbZyZbZ7QjwOAGVnGrUajpXFwqMZK4vd9fDwcHY5yeK7CnP/J3gqEc9bu5b1xs7O83LdyK3P5c3zuzSLlhMBT3EfS4qGoi6Ha52EC3HE7O5HnySopkqUki6CZT0WjoFv/2yRt0hjwU6gZuVWasJTsPeVX6Yz6OjiR45moav1shV9WZy9WQJaHonc/XifldvH9XDzt7Q0xlqmzvCd3SRO6L+CjUNHoiXnI1neZiiaZhMZevk6lqLBWbOI4j/KR9LpqmTaFu0Bny8PJUjtdmC5QaBnG/m1xNY8D9+v3gOA7P3ciSq2o8sK2TuN/NixM5KppJPOAmW9XQTKFI+60Ht7af23//zATpisau3hB//8GtuBRh+/VHL05TrBt0hDzs6g3z+KUUs7kaYZ+Lzx4SgbODMT+JgMWD2zoZjPt4bbaAbtrk64K1vZkFZ7Z6x1bovQpFlqhpJrplr9uov4O/fTg1V2zXdy/P5LlnA6LDCkFnM/XfSxM5Gq19+WqyvOHv5aoaV5MVFFmiukkmj+OsqHpgowDZoFvF41IwLXtdX/Y3ixVbZ8u2N2yOdwQ9+FwKmmlvqmT77tlFlooNJAl+cmGJ7T3b1/29PX1hfnxhmWNb4htmn52dL7TY8/CDc8v84w/uWPPz12YLaKZFuWlQa1o4jrMm58V04PJSBVkSLHnZgZ6wB8txUGSZvf0RPrirhwsLJaazNeZzNTTTxudS2dkbYkdvmHxd5/efn6ammYx2BvjcoQFGO4PM5etMpCpkqhqW7fC14yM8vL2r1VCKMZwQRApVlvjumUVAkFJKDbGHWbbDE626/JGdXdQ0k4l0lT39kTXX17Rsvnd6AcNymM7V+OV1cgy8LqVNGlvBx/b2cXm5vKHNF4j7NV/VOTQcuy1rrO+dWSRT0Yj4XHy9dTa5azSOSxEW2CvNp6/cJd7jY5dEnkiuqrNYbLzh67/XsbrW2gw7e8O8NptnsaAy3hXkwGCMPf1R5vMNxruCXEtV2NkboqFZXE9XRCwAMN4dZC5Xp9wUDf4XJ7LUNDF4dqsyTdPGth0sW2Sh1DThMBHwqFi20xpwedBt8LokbNuh2DAJ2g5PX0tj2dAR8tAZ9OB/i+fbuvY6afT8fIFfumvkLb3OHby7WO+sZjsO2DYyIifsM4f6ifndDMT9XEtW6Ah6yFU1EkEPlaZJtqq9vk9O5Tk5kxf3o+MwFA/gdSn0xbw8djGJS5G5b2sHLkXmg7u7mc3VydV0BmM+Ts8VmEhXeeJSlUJdR7McBmN+dvSEuGu0g+upCqoi45Jl5vJ1ZFmi2DCYL9bbNop9ES8/vZREM2wcSaiza5pQUV5eLBPxiUybZKnJd15boCfiZS4v+gkT6Qq/fu8WPn2gjx+eX+biYol0VePQUIy//8AYpm3z4oQ4L2SqTTIVYef16K7uN7SxDXldt62oGkr4+Xv3j765L3IDnJrO3/LfuSQIedycnS/SNEwyFY3DwzGx1hg2//X7xplMVzg9W+TwcPRN/b3rqSpPX03jOA6XlkqMd4U23bs3w7buIFeWyyiydEsf7w7eGqazdWBtjbERDMvmm6fmSZU1OoJuJEk0xS8ulpgr1PG5FN63vYtLy2UW8jV8bgXbEc3zStMg6nMzGPejpavE/CpnF0oggYSELJU5M18Q5PIVtbLfwz/9/kVyFXHuVmRwtwjSr07nKDZMeiNeUhWNXE1nMl1BVWWWS02294TaYoeHt3fx8PYuXpvNt0lUIx2BFgGqznJpgXjAxVS2xvt3drfPbj84u4TtOCRLzVsyvRu6xSvTOSI+15os1zdCT8jDTK5GTbMIe5oU64JY9fxElv0DUa4sC7JMV8jDT84v0TBt/sWPLvGbD4yxs6XouposY9o2k+mayJmqavyTD2xn/2AUy3aoaQbT2Rr5qsZoR4AtHQHuHhOZtslSk2evZbiWKnNwKMr7d3ajGRb/xxPXKdQNkqUGO3rC3DveccszuqXDz3y+tmaI9NMLSX5ycZlSU5BkesJeHtzWxWyuxp+cmMFsOPz8SpqdvcIi0O9W+dRBMSgrN3QmM1WG4wEe3NbBQrFJ0KuucSz76YVlHrsknKW2dgUZ7wqxXIKqJgZ5fVEv/VEvj+zo5o9enAHghRtZxjpft8asGxZBj0K2ojObq2FaNkOJgMjRcotIorBPZaqlkHozWCo2eOxykuVSk7DPxXhXkPdtYpV/YbG4pl+1Wlk2GPfz6YP9/MlL03zzZJb9AxEsB8Kta9IT9uJtqfXzNb3lpGlpQ4sAAQAASURBVOBQqIte3dEtcXJVnaZhkW5lzn9oTw8/u7hMuWHSGXLxvTMFSg0T3aq3RSlel8JMtkaupjGbq1E3bLyOw88uJhmM+clVdU7O5OkOe9nS4ed6qkK5rrNYahLyqpiWTVfYy0DUy2y+zoPbOqnpFmOdAV6czCHLYsB4dbnMbK7O/Vs72ifUgEfl7rEEw3E/W7uCt/S6vnt6kVS5SdinctcWMUTzKDJ/9vIMmYrOQEwMHb92fJiheGBdst/N+EUpwdb4xEiS9Cng2Dv1+qosUTVfL9dKDR2XIhrpf312mWxVY1dvmFen81xaKnE9VWW8K8jFxRK5ms5H9/YSD7ipaiZ//OIMs7kaewei/FYriPP+cTFpztd1NNMmWWry0mSOzx8ZXDOEAbiyXCHfYnJOZWr0Rr18+9Q8yWKD+8Y7eHRXzy1fbNOweK6VR3D/eMem7BjHcfjrc0vorebrbzwwyvmFEppp0xVyYzkOW7tD6+bGpCsasiThbYUb+9zKbdkynZjMkqvqKJLw8DYdh62dQna8WGwwFA/w8lQOr6qQLDcp1HW8rSybgZiffE1DN50W40BYqoV8KvImwe5vBZIk7G0CbpWG8bqN4xOXU8y2AqZ/cHaRmmZxZDjK5eUK9VZDv6Zb9ES97OwL4VYUusIePKrCcqnBWNiL360gyxK5qtYKsHa1PPMtKpZNwKOi2Q7Fus7/9OPLDCcC3D/eya7eMOWmiQRUNRsJyNd1gl6VpWKDEVUmX9W5b6yDaECEYv7o3BIeVeaTB/q5dzyBYZlcSVapNHWmMjWGE34KdY1MRaOmW2QqGlVN2NVF/SL40+dWeOZ6hhcns3zm0ABjnUFkSWJPf/gtD342v/bSGjuGrZ1BfnB2kW3dIfI18dwUqwaauT67AgTr2rIdNN2gtzfEXK5Osa5jmDZ+t4yDRKTFSHt0p1DddIe9XEtW8LoUoreZtfPjC8tkKhrn5ov8/QfHOD1b4GqywuHh2G1bShwfS7Qlun/X4LnJUnBlteqN+Ng3EOGJyym+c3oR3bQ5MhJDkSWWS01yNY2maaHKEobt4HMpFGoGfreMS5HY0Ruif9pHM+Dm4/v7+OrdwwzGvfzbJ29Q0yxenc61LU2CHpVcVcctS/zOUxNMZqrIksThkSgPb+9i30CMpmHxeMtqEKS2b/J8vo7PLeN1KXS3nuNt3SFyVQ3TtjFMi4YuGJ2SJOF3K3hdMn0RH7O5GqdmCox1BekKeXjhRoZkSdiN7u2Pki43mc3VW8oeIeUv1Y1WULXC01dTfP/sIhJiXV8q1Dm/WOKpq2khGx+JMZMxWC42yFY1EShq2pycyeNWZQzb5uhIlDNzBf781TnGuwK8Mp1HM0Xm2Lbu0C2BqSt4j8bN3QHwo3NL/NGL02KQ78BvPPDONDHu4G8O/REvqUoTCRjbxNrvT1+a4edX02xJBPgfP7Vn3YbPaKcfWRYN5+AmLNOZTA3HETYSM7nahpkFtiO0YJIEhr0+6WVLV5CHt3eSqWh8+lD/ur8D0NBNfv+FKfxulV85PrJhfXpxsYwFLJU08nWN3sit12SsM8i9WztYKDT47MGBW1+khWpTDIwBNGNjl4WryQoxv5vpjDjMrvfeJjIVVjhR6Urzlp+HvSr5mqitmoYliFoqNM3Xm8AOYn11AAthNxn2ugh5VQ4MRvjZpSTz+TouWeJ6uoJLFodT+QYcH+2gI+jBcRxMy8brUtjTH6HQ0Pn51TSXk2UKNYNkqclgzE/Y58KtSmSqGn632m5E3bUlTsOw6It46QiK2nY2V+NKK1D75HSeyUwVw3KYy9f5tXu3tD+jJAlbL8Oy8LyJhuNQwr+pbWW63GxbGFc1kw9sECJ/cbHEq9N5oaZofZ9N02qTOlaIIqvxylSObFVntDPAXK5O2KduqpL8u4Zt3SHet6Ob+bywPVtppHeEPLhVmd6ID1mSKDcNXIpQ5Ax1BPiN+0f5Nz+/QTwg7NWbunDssIGmYeNBwrbEEAwHioaFbdPO6fO6JDIVDc2wV1lkCreTQk3H61LZ0RuiK+TlicspusPeTZul62F1qaJuMKS/g/cqJLTWllLVxXoiIYYSbkWiL+pjKO7nySsp4gE333h5lmS5ydfvG20TJb0uGbeqMJ+vE/W7WCo2cCvivzs0HGN3X4RCTWcuX2d3XxjTsjFth4V8g8WS1rYwn8vXUWSJbItEcH6hhCILm7SRjgC6adHQZYqGQbLcbOfhaIbNQ9u6+OSBfs7OFXllKodLkegIefCqMhOZKk9eSQlHFUkQey0H/uDF6bZardwUzcOxjiDF1pm+0tDbjftizcDrUtjeHWTLe3RI46xzZjAcSJbq1A27RSY2cMkSY10h7tva0cqMEeS8Z65l+NWOIKW6wY8vLKMqEh/b17uh4t2typQahiD2elQKNQOPKr8lJVsi6GmTKO7gncF6NcZGaBgW1abJrt4wsgSdITcT6SrFhkG6rDGS8HNxucxUpspwIkiyrLV7oxcXS2zrDnJkONbK0XJwKQqlhoHPrXA1VWGxIIbPummTqehkqwZuBYxWjEbArRBoDXJWXrdQ11BlGa+qYFgWdlP8Xr6qMZmuip6CKlFpmuxpxaUADMbFkB1EREFf1MuJyRyO4/ChPSKLVVVEXIdrHXXcicks5xdKgLAutB1BensjEYTXJeOSJdyKRFW3GAx4CLhVEiE3FxZL7diHe7Z28NpMgfOLRXTT5vRcgUTQzf/602sUGzqVpolmiroq5FEJ+1x86dggc7k6T1xOCYtXB4o1jc7RBD84u8hD27vY2hXkZxeT9Mf8nJkVQ8d7xzoY6QiQny2Qqer86UszPHklxX/7gW3EWtaCTcPi/3j8OnXd4vJihS8cG6CuWTRNi0TQzXKxgUeV+dbJeUY7g617RAw/hXObxXdPL6LKEh/f38fx0QRPXE4x1hlgZ2+EoUSAmVyDfFU4PW3tCpEqNynUdFLlBmGfC5csCNUPbu/k5ckciiSxfzDCpw7243MpDMR8XEtVWCw2+N3npjg6Eidb1eiL+IgHRM/opxeShHwuHMehopnkqzrVpsFIR3DD/ObNoCoSQY/KWGeAdEUT7gvZKjt71+8r7u6LsJBv0BVemxl5ZbHEH780TbFukiyL/hPAP3hoK4oMT19NY9kOx8c6ODOfxzBtOkLiuqcrYij9/h1dnJ4v4nMp3LUlzmOXUnzz1XkmM1WaunBoKzVEfFFn0MMHdvUwl6tzcalEf8zHqZkCIa8qvldD2IgmS02GEn56wj5kIFsVWXGdIQ+51nxEs2wKdR3Lhs8eHuCLRwdxHJFvPJevk6lopCoaFxfL5Go6U5kqv3RsiIe2d+JSZHGvrEMa+c5r8/z5q7MMxfwgwY1Ulesp0fvNVDQKNR0Jh3JD9PR39IT40rGhN+x3/6IywdbAcZzvS5L02+/U65mWw+reuu1Aw7DJVjT8HpWukIfhhB+vS+HKcoWaZjKbr+M4Dp2lBs9dz/Cpg/1YlsONdJXZlux1MOZDVWTu3drBF44M8vJ0jmZLfj28gS3haGeAUzN5lkoNqk2TlyZzvDqdZyEvmqF13eZTB9c2HJ6/keHHF5aJ+lx0hjybNuIlSSLgVtBNu73AWo6DKsscH+vgfTu72/7UN+PoSJzFQgNXS9r4haODbR/lpmGty+JcKjZ4ZUrYjS0UGiwW6mQqTeq6RSLo5ct3DVComXzhyCBPXE7iUiRSZY2fXFjmwkKRdLmB6cCRoRhXlkuUW52FuWy1HTz+TmEg5ufhHV2kyk26Qh5OzRbY2RtmOBEgHnAxk61TrBmCrVXTuLpcwbJFU2Jrl1CblOoGXSGFD+3uZTJTpaaZJItCrjvaESBZbOBSJZIlDY8q4VMVTEfBMC2humpZ9l1YLHNuvsg9Yx1MZ2voLeaKKks4CN9vtyJzaalMJiQWy61dAYoNg0apwb/+6RX+5MQMIa+QhBuWg245mJbBf3xukq6Qj1jAhW5ZNAyTs3MFLBu6wl4ODUYxWh1xw3JoGha/cs8I+ZrO8DoLwnS2xlNXUsiyxCf295HYJMD3dlHTTQZifm6kq3hUmWJdp1jXNjBmeh2WA7m6xWK+Qb1pohk2NsIyJep30xv1cWQkTrOlwDw4GGU44SfgVje0YLoZnlYRoyoytu20A51PTGbfkq/631U0DbFRfmBXN2fnCwQ9Kp7WIUaWJMa7BRPno/t6+YtX55jOVCk3DHb1hhnrCtHQTfI1g0Jdp65ZVDWLf/j+rdR1i3jAw1y+zrdenSdd0fC6ZNIVja6wl/6Ij8VSndlcgz9/dY5rqQqWLZ6ZqWyNF27k+Jef2styqYFmWFQ1k+6wl8cvJVvBnH7OLhT581fm+Ordw/zKPSM8dTXFTLbOfL7O7z4/TV/Uy92jCY6NxAl6hRezLEs8cy1DvnX4/pXjw8zn68zl6+iWzVDcT8Cjsrc/wmcO9dMR9PDM1TSFhs7vPD3Bbzwwyp+/Mku1NfSezlT5yh+8iiKLHI54wE3DsLm6XKbUEMGoIwk/labBE5eTmJZDV8iDZtg0dBPDsjk7X2Q+38DB4dRsnq/dM7Lh93VHB/beRaokmMEOsPx3QM1wB/CDM8KWA+Bbry3wyUPrW7X9yYkZkqUmF+aL/JMPbqNjHXu//pifkbiXfN3kfds3Vons6Avz9PUMiiwx3rV+BhlArKVU9ajKLUHaK/CqCrN5sSbqmwya/vfHrvGtUwtIgM8lb6jaWP0KyWJ93SFYqWES9btQJajqGyvZXPLrDTrvOjmPK1BkiYV8ncGEH3kD9dlQPNi2hwx71x55dNPm7EKJkzMFCnWdpvH/Z++9w+TK7zLfz0mVc+fcylmjNDOanOzxeGzjgLHBNjldYNnlsuxewt2FZeGu2YUF7iWtMbBgwAmncbZnPDlrlLO6W51DdeV48rl//E6VWlJLozH2MDJ6n2fsVvXpqlPnl77xfV3CmowqCT0wy1m9G8J2odSw0C2HP3t8nA09gnXhxYk8IU3BsBw6YkEGU2FyNYPtA0m29CU4MFkgVzX4yNMTvDCRJ1vR0S2XnkSQhunwyOE5an6yIRZU2DOS4UP7R8hERdX0pR1cXfEgkYBC03IYzkSYL+tYTeuy4IsiS7xv35DQ1uxe3Xf5dqAqMrIk4XreVamTXpjIU9VtXjpf4H37BhlbrrNhlUpPED7H42eynJyviOQh3r/aooGzSzUG02F0y2WfT8O/byTNkeki5/MNwprKW7f3cXqxQlBVCasyyzVBf5+rmWiySGo1/aXmAcYK+jPTn98eoPsJL0nyC2okYY+3qEHxOyQNx2IsW2WkI4qmiCScIkt+MPO1Y7Z84zy8nlBbQY1qe/CLnzhEOhLAtB0G0hHKTZtHTy1RblgoiqA/igZVPndojl9+0wZOzJXpjEd4x84+/vixMRbKTQ5M1UlHNG4aSlGqWzxyWNDX5muiwr3UMJEkkaRarhvYjoPrgSx59KeCGBas6YlwYq5MNKBxerFKtmby/n2DTBebVHXhIzx1bploQKWqWzx1Lsfm3jj/4S2b+I3PH2eh1OT2dR0kwxrRkMrphSpLFZ2t/XH2r+mkZlocni4LOz0RIhMN+MURHv/wwhTv3TvA8fkqNcOiqlusQUJTpDbDzBsRlrv6veXqNjIQCwmmm8l8nd5kmNlSg4nlGkdmSiiy1O5oPT5fYqkiCkzOLdWuGINa0xklERK6R4vlJnXD4rFTWY7NlXnXroFrqty/ge8eVrMxLoXhM8UkQhp3b+wSMimqxIsTBSIBheFMWHQe1U0iAZWOWJBjsyXKDQvH8Wi6NkVZ5pEj83THgkiyRMOwiIWEjEY8pPL4mWUUWaZh2uiOh+7YRAMKrieSnzIeQ+kom3rjfPqVWXFOAVXdQZUdGrJNUFNR/QKbr51YZDxbZ7HSJFs16YoH2DSd4GfvXsvjZ7O8dL7AW7f3cnapxmhHhM8dmsNxPY7MlNk1JAp913VFiYU0bh69vPCsZW/JksSTZ5ap6PZFne5XwvqeOBt7E8wVm9yzqYv37xtkvmwwmA7xqQOzhFSF2WKT/Ws7+OHbR/joMy6qLJ7TZw7McmAyz2JFdJzevaGTW9Z2sK0v0S6U/dKRBSpNy9fIgsWqyaHpIqlIgJCap2baNA2LiXwD2/VYrpmMZ2v82lu3kKsalJoWZ5eqTBca/Npnj/Hz961n52AK1/NwPI98TcRBD06VANjcG+cn7hjl4FSJrxwX3bLH5socmSmxtT/Buu4YP3b7KM+OL/PZg7MsV3UOThe4a0MX0YDQy+6KBclVDQ5OF8nVTHI1g5fOi4TM5w/N0bSEZt3vvGs7x+dLwg/zPHqTIQ7PlCg1Le5Y10lXPMiRmRIBRUjMfO7QHN2+prKMKIhLhDSSEY1DviyFYTmkogFcz6NuvPZ9uzse4r17Bzk+V+avnzlPVbf52PPT/Pgdo5xZqnLTYIqhTISlis6BySL9qRB3bOikIxJgYrlOLKQyXajza585xryfSAxpCn3JEMOZCOGAzDPn8iTCATLRAJ85OMPZpRq9iSC/++4d/Opnj6IpEjXdwXBcHt4u4lqHpotM5uvka4IKWJYkdNulNxHCsF32DKdYrul84fAcibBKSFXYOZjAdFy64iEKfpGJ7XqEVJlz2Sr5ukF/KkTdtAlrCl3xoGh4sBxs18N1PZb9osNPvDTNE2cFnfHt6zIiruuB47ocnS1zeuEEN6/J8MH9I8iyRLaqU2larO2McWqxwvnlGh97Qeg6n8/VuGN9F4+fXkK3XBRFasd/HU8kws8uVTizWGHHYPKNkQSTJOk9K/4pA/tY3bf8tmA6F09WxxPcnvNlnURY4f5NvdyyJkO+atKXDFHRbUYyYaJBDUUWnVF/+9wktuvRnwwxU2jgefDNU0uCCrHQIBJQUGWZSFDirTt6mco3eGWqwN6RiytY+lNhNvbGcD2PF87n2dafIBXWOG3YpCIBZoui3dh2XM4sCeqAE3NlpvJ1FhRlVZFg1/U4NldGkUW3zQ/4zmyr22vXYApZklBlaVXakhZ92WA6zAdvHeYDtwwjSbQd0MdOLfHceJ54UOUn7lpDIqRRblg8P5FjuWpwfL5MQJExbYfxXJ26buG44jCcLjT49bduRVVkVFnm06/MIEtwcLpEsW5SM4VAXa6mt/WeAHI18zXRyDmuaMcs1A0e2NJD/xU62HYOJDk7nGau1Gxza9+2toOvH19gOB1h1udpbQWGFFlm/7oODMtFliQOzxQ5MFXEsF1uGkqyXDU4n6vz6OksfcmgqLpUZTpjARRJomm5hGSouC6245Lz209t16PpC4yeXapi2i6aLKEoMk3DodywyEQDdMZCSJJEuSkqqXJVU9AJyTJzpSbpiKBnUGQPyREJX8N2MUwLz/WIBlQ8JE7MV4hqMlP5OrGgynv3DrKxJ04spDLaEUWWJZJhjVLDpGaIBJXjepQbJl88Msez53JUDZtsRecXH9hwxUqua0U8oPH4mSxLZZ2hTIShTJjXcqZM5GokIwGCCuhCToygKvucxTIBVeYvnhxHkSU2dsf4yrEFRjuj7BvJMJAOX3Xje/vOfsaXa6KVVlMY7Yz4dIqvrVqv6VdTDGXCbc777wXkawYHp0ucXCjjutC0bA5NlRhbrpGJBvjQ/mFMW1RDDqYFD/Gtazp4/MwyjuOypjPGf3r7VmxHVI989OnzzBYbHJ0pEQ928I8vT9MwHHqTIU7MCw2sVpVQZzxI3bQJqYrQEKwaJEMapiMofEzbpW44PHJkjvs2dTGYjtCXCKM7DiCSWItlnbFsjZGOCA9u7WGD3xl7ZlEUQHTFgyyUdB45PE9YU7hjXWebsqwnEaJQN+mMBUhFAqztirFUMajqNucWqyxXm9R0h//6pZM8tK2XaEilUXF4dizHHes6mViu47oeHjBXrCNLiihSUGR6EyHu2tDJc+M5Kk0Lx4ORjgjnyjr5ugV4NCyHrkQI2/W4eSTN8fkyTctGQghgr+38zgUwb+D1QySkEgkoeB5trb0buL7RsuUApvONK163VNZxPGhYLoW6sWoSrGk46Lbo3Fq+Cq3pXRu6WNsVRZUlehJX7op5375BvnBonm0DiStqan3h8CyHpksAfPirp/nA/tFVrzuxUMH0q0yPzpT5wK1X/Ng2rkSLZ7sOXzm2IOjQZIn3XkHjqdCw2g7CYvXKQfIzi1XOZqvULfuKDkVHNEBIE50yg+mL7YJ83SBXNZAlcBwPWRIi1K1q45W49N8uYkxt18ReKDO+XCWsqcQCKh0RjWQkiO16bB9IkK8Z5GsmluNR1S2+cWJJ0FeXRFFaRFOIhlTOLtUwbKedyFjbFaOmWzw3nqPYsHjzlp42/YztiE6dH719BNsVehIjnVHmik1GVuneSkcDVw0yVnWL58fzpKMBbr6kMn8sW2WmILRuWu8xlq1RM2zes6efqu6wqffKSdkNPXEOThUZ7YwwkBb/XQnfPLnEYrnJZL5OOhK4TNj8XxOGM2FemMizUG7yP75+hl+8fz1//ewkz5xbxvE8dt2S4qEdfSxVRZW9qsr8xRPjhAMKN49k+PhL01SNiztBrzSvW0GJFlaT+3H9PyjULeaLTfavzfDxF6eJBBV+6JbhKwrFXw05X9PhBq4PSNLFc+jgZJHBdIi66bbjEoosMVNsoiD0BCUJ1nZG+Ogz5yk1hA7NbElnY2+cUwsVeuIh1nZFuH9zN7/zpVMUGwb96TCbuuPMFOocnCriIXQwR9Ih5mSJrqjGdFHn2bECNw2Kivr+VJix5RqOrw95bL7CO3f1c2xW6BcfnikhIXF0roQqy7wyVeTQdInOWIDehGC2efNWoSOycyDJyfkKtiP0+VIRjVzNYKQjwi/t2UCuZjJfavLKVIFjs2VRRGE7yJKE58GekTRBVb5irOKNgIGraJm6QF13iAREx95CeZZjcyUCqkIipKIpMruHUvzTK7OcXqhg2i59qfCrdutu8yUE1nXFWNMVZWypRqkhgu2XdgPfwBsLR2dLfOt0llhQJRJUUCWZ9d1R/v7FaaZydTKxAEFVJK8s2yUZseiJh1jv60eZQCSgEgsKGu7z+Tr5mommyGzqkfi+m/o4l60heZ4onl5xHjVMh7Ams1Rq4CEzlW9yaKZAw7ggsSEh6BSDqoznetRsh2LDpKY7zBTqLFYEG0xIlXE9j5MLFSzbY2K5zq1rOtjaF+czr8ySCGu4rtdmifnkyzM0TIdUROPOVfSgbl2ToSseJB5U+eLRBf9+7bZ20pXQFQ/xvz60l488PcErUwX+6plJfulNGxjKRNi/toOFUhNFgt/76mkG02EyEY1C3cQDnjy7zGJFx7A9GoZNw3LoT4ZZKOtYrsuxuQrThYZfGJ+mYTlkK02+cXKJPcMpPDxmi00OTJewXI9YQCFX1VnXFUOSRWeULEm+3JBobvjMK7P0JkLIEhRrBrbjoSmyr2/rMZAOs3MwxVLFZCgt4mqGr6MY0RR+6c0bkSQJ14XFcpN8w+LAZBFZFswHqiyRrek8cmQB23EJqiIupMgStuNQ04VmWKFmMpat8ttfPEVFt/A8eHBbDzOFBtGgyjNjy5xdrLFcNdAUiR0DoqO3qltM5OqUGxZ40BkPoMgiSaYpMrbjkQpppMIamehri+k5rofrCR8jElD41IFZ6obNYDrMV48v4rgeSxWDn7xzDd86nWWxrPPZQ7NYjotuOuwYSBIPa4J1zD9DDMslERLMZoemBNPDms4YmiIxX2wyXaiDJLFcM3niTJb5YpOGIajdP/b8FP2pMBu6Y3z9xCLPTeRJBDV2DCRIRgKYtvAfXM9joazz2NfO0JUIokrQMF12DiXZ1BPng/uHKdRN/vHFaZZ9X8mwHKoNg5MNk4bp0BkLcmaphmU7KICLRE8iyMEp0bn43ES+XTS4f00n67qj9CXDPH4my4k50RxTqJsslptENIVPvDSD43rsGEhyfL6M5wnWiaZlo8kypxcrVA0HVRaJx6Aqk4qomLbQmq4bDg3L4eXJAg9t77vquL1e0Zh3rPjZBiaBd36n3ly9hFZPk0TF6nS+jqbKNMx5Ti2WmS2K7GKpaVI3bO7a0Mm7dg+wXDU4tVClaTkMpsPIkjiITdvlhYk8y1WDcEDh9nUdjHREOb1Q5XyuDoikV2csyJnFqi/aGiQe0nxNAMXnO5YwHZdK02LUd04/fWCWwzMlepMharrYbFRFomOVFuQjsyUePbXEQlnnzVt6eOuOPjb1xqkbogXWdUUL7HBHZNXE0teOLzKxXOP0YpWbBpO8Z8/gRUmC43Nljs+JVt6eRJAfvGWYv3x6gmOzRbI1k239CSIBlWLDRPU1eyRJOEmn5iv87fOTPLi1l/fsGWBLfxzH8fjqiUUCPudrWJM5vXRBxBSgabqvqRNsvtRsC6kfnC5eZFjWDNFxl4lq7B3J8AP7BjFstx2I+dbpLFmfR3hDV5TdQ0nmiw3O5+uYlkM0kOKh7f0cnS3yxJklmpbDVL7Ohu4Is8UGC+UmNd0iVxUaYPds6mK5onN6sYKqKEQ1hULDQ7c9FFlUg8h4WK5H07D8ALfI/oYlj5K/eCtNG9AJqgqKDHVfMD4SUJEk6I4HCaoyZtglGJBJhFTGl+uYtsf5XAPXE4ZqJCDjelDSnfZ86YgF+I23bb3oGU7manz0mfMkwxqKJPHihNAhSYZVpgoNQppoR39xosByzeDWNZl2x2PDtHnyzDIhTeHujV2vynGOLJJWtutyaqHC+HK1XY19LXAcqPuJAg8wXUAS9Dzru2LMlZu8NFEgEVZ55PAc5abFC+cLnJyvsL47xvqeGLGgyu3rOi8LyIUDSrvjy3E9htJhBlMRbl7z2igZPn94jkWf+/cnv4doGb5xcpGJ5TpnFqts60+SrxrkajpN06Gm2Hzh0Dzlpoksy+jmFI+eyhLVFG4aTGA5HqMdUZ4fX2ZiWVCQPrCli394cZojsyWeG88xkathux4RTcFyPCQgEpCIBETX49mlGpoic/OaNMOZsL+PdjCYDvNXz5zn4HSRLx+d59lzOdKxAL/8po2MZWvk6yapsMa5pRq65VA37DZtioTEK1NFlqs6pYbJA1t6KDUtZFnszYW6yWdemcX1XN66vZe1XTEM221rvyxXdf7hpWlhsFgOibCG5XiEVDg+V0KV4X8/P8FAOkKpaeO4wjBvGDYBVSGoitb9R09mfSoiD9OyeWEih+UIqkPDFjoLY9kqm3uT7BhI8qlXZrFtj2hI6B9+L+jP/WvEtr4EAVXs09v6rxwsvoHvDEZ/9cvflfed/PDb2j9XzQsOeq5yOc1eCytZCkxr9e4n3XZYKOm4wJmFK2uC1X1bJ6gqvGVb8IrdN8mQxub+OP3J8EW20EosVy4kl+rmlStUHtrWK2imJIm37byyQ7HyfO+Irh5cOzpToVAXVBkvraJH0kJjRZfYys6VS3F8XhSQVXUb03ZX7QbvjgWIBlQM22HgkgBddzyEabssVpq4iE59x/NeU4We64rCJKHpJpHwPMpNh1xd6Dh+9OnzzPic/6oi+fTYHqmwylJFwnQcFsoNRtQoHoLfP6jIdMWDVJo2n3h5hrphYzkeAUXi/TcP43ken35llsWyzpa+OA9t7+PYXInFss6uoatrczl+UV1QlS+i1n12LN+mVuxLhtoJw4Zp8+Wji7iex3LV4F27B3j01CLPjeXpiAW5dU3mqkLhAPds7OLWNZl2F/7VkPIDPXeu7+QdN/Vflrj814R7NnXxpaOiWOfMUpXPHZrj4HSRpYooKvzo0xPMl5qAx7HZMnXTZq7YJBRQqDRt5kpNJOnKs9lv+GrP91ah2quNkuT/z6Mnljg4U0JTZPYMp1dNgn3u4BzPTeR4aFsvD6wiVH6VRs8beAPCvYR3W7ddslWDsO/v52smsizREQ0QD6nctr6D5arOXz19HtdziQQ1HtrWSyKk8o6dfRiWXxhhukJjN1ejpttUdZtIQGF8uU5Zd0ShguuxXDGxXI9S3SQUUFBkiaWqQX9K4qXzJUzboScRZrlmcGKuzFA6wgduHUY3HX7988eo6jYDyTAV3cLxPD57aAbL9shWDDKxAL/5heN0xkI0LIeZfB1NkdFUmfHlGpWGxVBHBNf1eP/Nw5i2w/lcg7ppo9sug6kwpu1y5/pOfuS2ESIBod+yXDU4Nlti32iaRPiN0+2UrZhX/b2DOI9kSfKp2x1uXdtBzRAd3cWGxRcOz1GoGdw6muG2tRk+f3geRQLb9YgFVd65a+Cic/nBrT3sHkqRiggJksWSjut5N3S9rgOMZWvYjtCG1Hzqt88eNMhWDRqGTbZqEA+qlJsmpaZFoW6QiQUJyBKST+nreh6O45IIBbFdG02VMW2XqXydX/mno9R1G9NxKDUvtkk9RNGRgPj/si58ZglQJNHpr/kJrlLDQpIkCnWTmm4z0hFFkiTqhsWm3hi/cN96HFckAHoSQR4/vcRkvsGphQrRoMqazgjv3TdIKhJo+/2ytPrabSV1Ad62o6+td3e1BFgL3zqd9fc/h8Wywd8+P8Uto2kG0hF2DSb5j585Sk23eWECRjtEt/8XDs0RCyrEQxqebqGpMLZU45c+eYigKrO+O0Z/MsSphSp7hlP86G0jfPrgLFN5Ucg8W2xQbtrYrovjegQVmabl0rAcjs2VWSoL2kBZAk2RqRsOqiIK6Q3b5ZHDcxSbFpoi47ge7907iCxLyJLEpw/M0JsIcv+WbhbKTU4vVpnM1zk6V+IjT02wXDWoNk0cz0PyPJZrhvAFPCg1BS14KhogpMiUGhZ1w+b7dw8QDqjIioxp2eTrJj/1d69g2A5BVSIRCtAdC2B2RTk5X2EgGeL4fBnDchntjPDi+QKaDGeW6kLXraILuY4pi75kiIF0hFRYY6QzzDPn8pzLVnl2LM8P3vLqRceeJ9ikvnFikc5YgHfvGWQwHeF3372dR08uIUvw5JllpotNbl8nYozpSIDFsshH1A2b+VKTpmmzbSDF/Zu6uGdjF4+fyWI7DslwkJppUW5YyLJMWJN4frxARbeJBhXWdMVIhlR++0unqDYtNFVi52ACw3L4+EtTIhEryTQMm5AiZIru3tjFrqEUf/TNszxxNtuWSloo6zQMG8eDhYrOD+8f4pHD82zqjdEZC/LKVJFKUxS15OqiOywZDhAOKKTDKoWGS0dUIxkNUm7aOJ7Lr/7TEY7NlnE9T0iqDCWJBFS+enyBQ9MlogGZeEjBsB2yFYOuWAjHFfwEL03mGc8K3blIQKGmCw3bFyYE/eWarii9ySAn5kWBe0ck0LZnXfdiP/JK+K4nwSRJUoCjnuf94Wv8uz9EdIwd9Dzv313tWvsSzQPLQ2R6Ac+QqBtVinXTd749PM8jHQ5QrBs8N56j3LA4t1Tl3FINWfbYN5zh3755A1Xd4dc+cwTbdWmaQnBuW7/CV48vcGq+QmcsQCKk0p0I8sSZZV46XyAT0djcl6Bu2mzoThANqngI6hTLdnnsVJavHltkoaLjITg19w6nSYY1ehIhzBURE8cVlamSJDFTaLBUMXjyTJbnxnMsVkSl6HAmwrG5EoW6xW3rOvj+PYOEA8pF/KISCMHEcpPHqjqHZ4t84OYRJgt1enxhxqWKzsaeOIosc3KhwuNnsoxnq3iIDOyG7jjRgILmd+G0qgRPzlc5Nlvmj755lnhI4+fvW8d7dg0QVmXqhoUqS9RN56IEGAjj6rUkwTpjQZJhjYpuseaSbohnx3KcnBfOe28yzEAqfFEQoG5YbO6Ns+hXZP/mF0/SNG1sX7coFtJwj81zaKbEQlnHdkQFyLPjBY7NlWkYDq0ZptsOT57Jko4GqJsuQ6kApuOhSBfoRFoIyxLH5qvtf7tA3T/ELRfKuk35EnF7RYJwQEOVZRzHZabSpG4I6j9ZlnA9YVyu9ENM28XzaOteLFd18DyOzYrvoyoSNw+n+dgLU5zzqSnOLVUpNy0sx2VNZ5RkWCOkKewcSnJ4poRhOxycKvL2m/rojoWYLTU4vVj1n3HoirpEjuth2Q7d8SBDmTATyzUcD5pXCWSt+j5A4xL9sHrT5sRshULV5NBsSRhS4QC261DVbUKaaB3O+m3c6UjA19nruuLnHJgstOkQM7FA25C5FjT9Oa1bF7QtrncslJt87fgis8UGAUUmGergvXvW8Z8fOUFVt/1AmE62JpwnxxUdr6bloMgS63vinF6sUnjJoK6LoONgKsR8SUdC8AKbtic6IzxBIaqpMpYDh2ZKFGoGtgsNbE7NV9pG38tThXa7et1wMGyX6UKTSEDhD75xhkhA4bzfBTmZa1D2Cx1+7TNHuWdTNy9NFphcrlMxbHJVg9lSk4Zhg+fh2A6fenmak77I8thynZtH0zw3lmcqX2Ou2KDh62pYbitoZFHXTSZqJpYrCgKeGyswlAnTEw8wW9RxPZfeZIim6dIwbaZ8TmXLFV2nxYaF7NN+JcMBuuNBlio68yUd24WZQp18VQTGddPh6EyJv39+kg/uH/memGv/mnB8rsxyVcfz4MhMibdsvzYR9Bu4PmC6r34NQLGxulH++UOzbRvjfOHKnU9fODzPnz5+DkWSCGsKb9p6eVAZ4CNPjbNYNQko8O/ftEFw+12CldoGzlWO54blkIkI1oR8/cpBs5VvMVeu0b1KQLxY19u249U6QBbLF5KKE9krJwWPz5awXKjoDUzbWTUJVjdtcn4h0vHZ0kW/qxk2T53LUmkKx+/boZS1Paj4BUgNy6HctMhENDwkKk2TRw4LGpbZok7dFIHdrngQWYL+ZIhz2TpNPI7NVwmpEqosM9gVpSseJBoUGpcHp0s4rsuJuTKqLPO2Hb3MFQVjxXS+wdePL/DXz07iAfdtqvGePYNUmpbQgvUDMbrlMJatsVTROTpbFhplrsu2viSyLJGOaMwWGxyeKZGv6+wZTrO5V1DYBFQZ3XKIBBWeG8/x8mSRc9kaAVVeNWHoeR6Pnc6im7ZPFSRx+/qOK55bZV9PoDsR4oHN3cwVJwFevdjqOoftawulIyK45LoeEZ9aqdy0ODJTZLaos1AWHTZHZkqcnC9TbIjq54ZZ4x9emqLk+7uO7xtIElQbBlXD4dXY2FYbv6ttZzKAJDGWrRINKDRMG0WWODFf5t5NF4vAm7bLJw9M43nwjy9Or5oEO7NYv/oN3sAbCqbjcmkouKo7NC0HSZKENpZutzWWZwsNvnZssR3A7oqLAs9kWMN2RUHYzsEUDdPmj755lkLDwrYdwOP5sUKbQcbzdelac9NAyF7IkvCbp/MNLEf4wlVd6EA2TJtPvjRFrtJEUWSWyrqf0BEdIstVg/liHVVWWK4ZBFQFGXE21g0byd+jS02r3aHteHW+eHSBZ8dyZKIa88UahYZDoW6yuSfOjsEkH9w/SkCV+ONHz7Jc1ZkpNLFdQQH1yw9u5M71XbieR1BVyFZ1Sg2L3kTook5d1xXajulogGRYdCVUdBGrGumIXhTj+Xbx0WfGXvUa4eaKXWKxYvKt01n6EiEGMxE+8dIU5/zi5CfHcizWDNJ+ciuoCm2mHYNJtvVfkBmQJKEhcz5XJx7S+Om7137P+M/fCeiWmJs98dA1JVFeT+wdSXNsrkyxbpKvGT6VodAG8xDNB9mqjiqDbopi7fFcA0Xy6a0lMAyHiuEwWxb2n+T/t2S5cBUWhCuhtR9oMhiOSOSYtocsi+5+2/U4Oltk2C/oNh3IVgyiAYVnx3OU6iaO4/LKdJGeeIjjcyUs2+HYbMDvMOqlbgi77kpFYLmawXPjefqTIfaNZtrd+q+GhXKTzx2apWk6VHWLkUyY43Mllqs6luMSUhXOLdYEQ0wsgKrIdMQCpMIaD2zuZnQsz1ePzzNXMig2aoDYCytNk0OShGF7LJSbPHU2h+W6BFWZqm7Rnwz7dKQ2AUXCcMQYCttB4lc/c5RURGO5aqLIkAiruJ7EW7Z0oymCuUryYK7YRDcd/vixc7xlaze/97XTzBSb9CXD/MbbtuD4WqMSQrP22FyFYt1sU51HA6AgU6g2MR1hSyuSRE030G3a8ZaPvzxLRyyAbYviYscTXV1BVUaVZCQJPvL0eSKazLquGKZto8gg4XJ6sYppl5EQZ5fnd7w3FJmgJlOom6zvitEbD/DZg/MU6iZhVebgVJEfvGX4Vcfw1EKVLx2ZZyJXY7Qjyvlcne54iP/97CSfOThLRJMxbI+eZIgzizXOL9e5d1MX2/oT7B1J81tfPI7luIwt15kuNvn84Tm64gH2r8lQ92VE3KqHExLaXZmwxnxZB8+lpkus747z/Hjej+d6NG14/EyWVDhArm4i45GOBAkoIjn8d89P8nfPTxENSCxWTGREvFXxO7xlSUKSwLDh84fmqZtiPUWCMo4D6aiGbjlYPnNJqWHy5JmsuE8Pys0aAaWGLMn0pkIcmCwS1mTKTRvdtPn3nzpCVyxAoS6YMWJBhe54kInlBtP5Bj9+xyjZii40y3QLy3KYKzVpmA5NS7B0ANh45Gomw5kIpYaJIgmmNU2VwBDnZ2fk1QtOpO+0LtOqHyJJj3ued99ruH4P8H94nvczkiT9OfDXnue9fKXr123Z4Tnv/PB34lZv4HXEuf/6Fm67bT+PPvUcf/7EOJoi8/P3rbsiFZ/jeliOqBb7xolFAqpMbzLE3z47ycGpIpbj0hELsFRpUjfFAWLYTnvRvJZOpH/NaD0nVYaQKmP4rcKjnVEGUmHu3tTN23b0kYkG2LdvH3/1uUf562cmePTEInX79XvCkn+PIA7LgAKxoEYsqDCUjjCRr9OfDPMjtw3jIbOhO8Y/vTKDosj83D3r6IgF+dzBWf7k8TFsx+PfPrCB79872H7/s0tVTs5X2D6QYP0q+ivZis6JhQobumOvWq08X2ry0vkCo51Rdq3gSx/L1jgxX2Zb/+qfsRqKdZNnxnJ0xoLctu6fRx+xb98+Dhw4wFS+zp89fo6vHluk8m1wId/A6wNNhv/xAzt51+4h9u3bR+5N/+Wi36/sVLmBNw4u7Uya/PDb2mvvtXQt3Rjfa8N3uxPstay9lffyJ+/fwdt3X+5YPfT7X+d07kKC7Freqy8Mz//mq1/3tx/axT3bBy675t3/37c4NHch4XYtn5kBDl7Ddf/9+zbwvts3XnbNz/zVU3zj3IXCoGv5zGu97qv/5la2DF7ekfS2P3yUE0sXEm6ttfelx57iXX/6LIuvUg1/PWClbRtRJd+plRhMh1ms6jR0kSAc7YgyX2626Xg1WUJVZAZSovPrmXM5zBUVVgEZelNh1nVHaeo2xaZNRbdY8gNYibBKVzzIbWs7CAcUPn1gFtv12NoXZ96vdM1Egty7uYuaLlgR3rq9F8v1ODBZIKTJTCzXOZ+rEVAUwgGZ6UITz/UIBxSalks0qLCuO8pvvX07WweS7X3zjYQzixU+e2iOrmiQ990yxGK5ycdfnGGkI8KH9o+gKsJQrRs2T51dJhRQuHU0w3/76mmeOpdlsaRjXC0TfZ2gLxnkg7eO0JcMsWs4zbquGL/8ycPMlZps60/wn9+x7Ybdch1htX04M7KRxA+9pprmG3gNkEB0vXni56AqWIJkScJ2XDRFoT8d5v9+eCt3bOjk/3vsHC+eL/CDtwxy78Ye/vzJcVzX4/7N3Tw3nmMyX+eOdZ28d5/wGVbGW/7k8VdPgn0nEZDF91q51WnShW55TRHd2YZPt98VCzDSGePuDV0geUzmGmSrOiMdUd6ze5BvnclSblq886Z+NvTEOTlf5k++dQ5Fkfk/37SRNZ1Rnh/Pc2qx4ncXwO7hNDePZjizWOX0YoUdA8lVu9DKTYunzy2TCge44yoFHCtRqBn8X585SrZq8KFbh5kpNZkpNNg7kuaejd0MpMJ88eg8h6dL3L+lm/PLdf7yqQmylSbWSv3FS/B3P7aXuzf3sm/fPv7o41/l6yeWuG1dBw/vuDrV16vh+FyZk/NldMtlMBPmno3dlxWefPnoAo8cmcVyPDwPZvJ1xnJXpv/+XkdAhn2jaeZKOpmoxsM7+3nyzDLPj+dxPIhoEvds7KZuOiQjGm/Z2stD23vZf+stvPjiS/yvpybI1QUtXlhTeMsfPkWpYRFQJRqmeyNG+QbC1t4oH/up2+iIBdm3bx+f/fpT/MOLUxyaLrG2S2h7GbbDRLbOYlX4EUEZjGssitzaH+fkikaJG/jO4zfeupGfvmcDkiS94nnevkt//3rRIT4nSdKfAJ8E2mVfnucdvML1twGP+j8/CuwHrpgEW6zoXLnX4wbeqKg0hSP92YNzHJ4pAfDVYxG+/wo6EYosocgKL08WmC02sRyXx09nObNYoaxb2I5H0ReBBKiZl7dT38Cro/WcbBdqZqtzzRUCqIpEtqLzzFiO77tJdDP87fOTPH02+7omwFr3aa/Q7jAdKDYsXM/j9FIN1eel/6dX5tgzkuHZ8Vxbu+VrJxb54K0jHJsrU2kKTaoXJnIXJcG+cWIRy/GYLzdXTVB1J0J0J66t4ufxM1myFaEvt6E71hZS/fqJRUxbcOlfaxLs2fEcY9kaY9kao52Rb0uH4VJ88cg8XzuxdCMB9gaH5cLXji/xrt2r75E38L2Nf+0Js+9Wcuv1wr/55LFVk2ArE2DXioUrN4xdhB/9+8NMfvjyJNjKBNi14soEhhfjPz5ybtUk2MoE2Hcab/2TF1ed8ysTYCvx+984+z2RAIOLbdsLHfQeZ7MXumyqhsPpxQqOR9tGNhwPw3EYX65zPt/AuoTqzHRFAU+hbmL5+gHWCge/1LSpGzblpkXDFFWrAIemS8iyhO14eJ7OwekihbqF4wrqyYCiUGqYFJsWpu1g2qI7eiXLgd4Ua0K3XZpzFf7osXN85Ecu82HfEPjUgVmO+7rNo51Rnjy7LIqoFirsHk5zk1/49MpUsc2oUKgZHJ4pMlNo4n6POCcLZYNPvDTNHeu7yFZNfu7eGP/Pu7czmW+w/gbd2fcE6qbH6jwgN/CdQKvTofWzbnsXcypbNvpynafPZkmGVT55YAbP8/izx8epGw4HJgt4nsfpxaqg2bJs5ks6d28UUbKV8ZbXG6t1zK8kiTEdmC1d6AIvNW0WKya5qoGiSORrpmDVyDfIVgzmS01s18N2XH71rVv4xxenOTpbwcPj71+Y4sfvWMOL5wscmBQdhZGAQt1wGO2I8PUTQqdnsazzs/dcvje9MJHn3JLorhnORBheRWfzUvylT9dv2i5//sQ4kaCQEclWhH7SXRu7+OKReaq6zXK1yYGpMotXodJu4Rf+8RDHfvutAPzv5yap6jZj2Rpv2tJzRUrsV4NhOzx6aonJXJ1Sw+KmoRR9yfBFLD+W7fB3z08yma9TbpgosnwZq9O/NpguPDdRRJFgvqRTN2eYzNXba7ZheXzz1BLxkIYqCy3vLf3imT43kefJs8sAfPzFGbb2CVkb2/WwzO8RI+B7CCcX6+1YIQgpnpcnCyxVdMayVSRJwrAv2L1w7Qkw4EYC7HXAH3zzHD99z4Yr/v71SoLd7v//b694zQPuv8L1KWDc/7kMbLv0AkmSfgb4GYCu3hvUQtcjMnFhVIx2RpEkodsz2vnqjtJQOsKh6RKaojDSEWGqUKfQsNBxkD0P47XHk27gCtAUsISGPYmwRkdM0Ph0rtCuG0iFiQY1Cs3X1zgKazISghLDQ9C0KLJELKSxvjvC+HIDTZbbOiA7B5LMF5toqsyo3xq/ritGKhJoU3KsRHdcCCV3x68t0XU1dMdDZCsGybB2kS5GVzzIXLFJ12ugtuiMBTm3VCOkCU7o7wR6kyEimkqlad9IFr+BEVQl7t10o+TjBl4d13vC6HsR6/8FPvPhf4F8+asz6X/n8cHXqC20fSDF5w7OXZUK8npEqytMAp/qxmu/Hg9r6KazQluDNv1XQJFxXfui5yEjNCFCmoIiSRi2i+O57aSN6FoQ2iBBRaZhOHiS0PVKRwNkqyajHWEe3NbLN44vsVTV6YoFUWSJhmkTD6o0JKHrrCoSlu1SNQR9joygOvIAVRLJpTcqhtJhTi5UiPpUl4PpMGeXqkSDKj2JC7ZdV1z8rMgS67pjrOuKCQ1T+zVETt7AkICOaKBN+QkQCqhsvgJ9+g3cwA28NsiS0IBPRoP0p8LEQyqVpkVfMsxoRxRZkvCA4Y4wVd3Cdl2SYY1ESIT7VsZb3shodcRpqkQ6GkBCom7YmLZMUFVY0xml1LRomHZbI35dd4xnx3KAxEhHlGREI6DKRIIqiiyhKTKRgEIsqNEZE/TzrX3qUrToJgOq3KajfDVs6Y2jyjKm5NGbDGE6Hqosk4xodMVDpCMBEiGNqm7TlQjTFW+SrehXpZ8FGE5fiEH0JcNU9Sqd8cC3nQAD0GSZdCTActDAtF1UWaIjdjF9mKrIdMeDLJSaBFUZRZExLIfXud75DYeADJ4koUgS6UiAUthqS0QABFUFVZEJqTIdUSF1ADCYCqMpMpbjMtIRYUtfgnBQxXJE8fb3mi16vUOVYDRzIfm9vjtGdzxIoWES1hRquoWnyqiWw/eICfc9h5HM1YsXXi86xLWe50282msrfvcLwLLneZ+SJOk9wKDnef/vld6/o7PTq2npK39++33F/8uShOeBLEttIWwJsPwdKKwpjHZGkCWJUsOi2BDCoN2JIJ7nUahbVHQL1/XQFJnuRJD0Cu7Jui8QCUJgOqgqFOoGhu2i2y4SkAxrxIIqpaaFBKSjATzPI18zaVoOYU0hqAnByIAik44GcD2PsWwNy/FQZH+j9Q/2ctPCdsX3UBTxvVwPXL+/2vXHuWUIgGi9dj3BmRtSZYYyERRZoqrbLJSbeB6EAwq2T0EoNMoEn3M6GiBXMyg3LCxX8KxKCIOhMxZgvqT7lHqSz8F98Q4hAdv6k0xNTTI6OnrFsbsUhu2yUBKVk93xIDHfsPM8mC02/JZtwVXqeILn1PEElaKmSPQmQ9T9rH0sqFKom5i2S8h/1k3LaRuRTut7+fob4YAQanQ8D8W/phUE8BDP0nO9tkEjgd9C77UNTg/vsqrP1vz0Vnnt0tdfDbIEg+kI4YBCsW62dZxcT+g0aIpMOiKSWbrlkKuZmLbgcpV9PvemaVMzhMbTUDpMw3SEKKgsEQkoF831yUkxfp4H57JVTMdF8YMi5ab1z06oSIh1qvhVwiDmsASENIVkWMV0PJqmg6ZI7TkXDarIkkRVt1BkiY5okJVsBpbjUvR1FNIRrb0mroaaIaqeNUUmE/3OiRuXmxa65RBUFVKRi43tXM2g0rTRFInBdIRrYGR4TWiNXwvFhkmxLp5ZOKBQ1QXPsOoL2nqeeL4eQu9BksQ6UhWZpinEq3WfygIu8H17kj+n/UXTopZo8Q/jCW1HyZ87g+kwsiRRN22WqwaeJ/QzxD4i7i0V1i4ah6blMFNoYKywRlp7Ums+uu3zzt/7XQ9FlhhICaHsqmGjSEIAttgQe0NrnSuyODdURQj8qrKE5XgY/vppfd6lcz6o+AE+X/8AT+zRkv8MW9fLEiiyjOt64lkjKK1A7C2SJJGJavQmw0j+2FUvOfd2DCS5gTcexpdr7QrKgCKxqTfBiTPncGPdl10bDahEg4rgbzdsf28Tc6iq27iu5+8DEkFVOKmtIOrV9jLDcpkuNnBcj1RYXGe7LrGQSkRTydcNoeuB2Odfyx5XM8Q6lRAJ9dAqGlSTuTq6LXjpexKhy/Zm14OCL7abCGmEAwq6r7GkyBKZaABZktAtl4WyqAAOaTKRgIoiQaEuAj4hTWnzvksr1o+miLXVMB1/PYkAvyJJ4owPKPQmQkgSPl+5WJu6bxNkogFifgfvpfvmDVxfaI1fpWmR98fa+A55sa0z79IYY+uMkCWJkCZjWK7PbiAKeVq/0xQJ1xV2uSxJRINKe+8IaQqaT40V1MQafTWToGk65OpGW+sW8M+SAOoK6iPPg6WqTrUptHASYQ3DcrAcj3hYbRfq2K5HwdeGiwQUGoaDJAm2AN10CWoy/cnwFW2VS+2oStOiaTkEVPki21I8M6+t5ZwIa4Q15bpeex6CztpyXKJBlWhAJVvVqRsOQU3sixLC7mv5GhLg+H5cUFMIa0KoXpLEfLEc4Zu17AhNkZAQtg2S0Eb4bnr5EuK+BlPhVTX5LsUNu+X6wbG58kX/3jGQ5PS5cazIBdrZkKa095HW/tLS75Il8VqhYeF5HtGgSn8qTKFu0DAcLMdta9h5QECRGUiFmS83abT89JAqXis1qZuO7/vJQv/EF7xr+YTOq8x1RZLatnULsv+ahLAHZOlCLMj1AxuaLON4Hq4rfCHZt/1lCaJBlYAqU2lebM/kahdsGVWRaFoOnif8pZZtVWpa1HS77S+1EFRlgpqIvbRsn1LDoubrlMWC6mV75bXg0r1zYrlG/TV09rTiHbIs4XkX+ykhTcF1vbYtGlAkEmGNoKpguy665aD7Z15QldFtVxQ6eLSfY8tOy0QDbdtPliU6ogGhm2TY6Kbwt4KaTHc8hKZc+QRc7fy4Elr+XjigkPg2i0stx6PYEGdjwtfG84BUWLtiwurS89ByXMaytXa8I6jKrOmMoinyv8jZ5/l2ue0K+0G3REe4bjltuwVPnFEX1obbjju2/Gf/slXx3ZAqkf1Er4eIW8iS8GtcT5yRsiySqq14Ub5u+r6V5L+mkAxrNEznIv9jNVyIm8BAOoLluG1d2+54kGhQvWzsPA+yVZ1iw8Jesf5VWcQXLEesL1mSSEY0+lPh9nO0HFfocdlCE1Hz9Z5cV8Q7FBlsxyPkz+Vy0xJ+pCr8J9f1hJ6r57U/RwKiIZWm6Yh9zn9P2//9SkiSRDKs0psMUzNsEQf2bejWe7XmwqV2tewHfFZSf8aCqq9D5aLJEqYjpG+k9vUXYtiSRDsuK/uxpFbMRJYEdWwrDqzIInYbCSgU/XtsDeFqMZuVBWSJsMbQiphba/yaltPe61tzwnY9inWzHWvVLaet+ajKIsYVCYh4c0vjMhnWhKZkSRe6aRLEQxqm7fq2vxjD1ue37D0PsPy4USt2lQxr1A2b5ZqBYbloqiyK0kwb0/Ha30qRIBJUsR0P3XbaWoyedyEurUit+CntLsWVox9UxFl46Vkr++PSmh/4se5W7AwunM+tuFxLw1bx53A4oKD4uQvdcmiajrjeH5jWHGjFDT1o7z2t8YsERQzb9WOV/f7zeeWVVzzP8y7bhF+vTrB/AvZc8tqngb1XuP554GeBTwFvAv731d4809NP/B3/7Yq/l2kJvl2YSKosRNRiQRXP8zAsh5rpoEgSPYkgf/VjN7O+O87vffU0B6eLAPzw/hGalsOXjs7z0vkCtuMSC2m8c9cAv/V9F5rVPvLUOI+dygLwvpsHuWt9F//w4jQTuRqn5qt0xAJs6YvzwJYeDkyK937z1h7qhs1nD80xmasz0hEhpF1IOPzcvevIVgze8SfP4LguluOxayiF6qvZnVmsUtFFUD8Z1ghpSlt0tm7YbWcpGVbbRpmmyMwWm4QDoqPkD9+/iy19Cf7gG2f47MFZHNcjGdZEgqnUwLCEg3vHuk5+6c0b+eunz/PY6Sw1w8J2xUSOBhV2DqR4biKP54Eii/vJ1y8XvHzkP97DOx+89zXx+3/p6Dwfe34KgDs3dPKL94s2x4VSk1/65GE8z2V8ucFQJsx0ocFwJsJUvkHIrwZ6565+WudNZyzA46eXqZtiUyo3TeaKTVRZEt1FnovpiI6jjliArniIieV6W5DR9g8SCbEgTdvFct32+7cWv7/lo8kSun1tDum3mwRTJHjP3iHetXuArx1f4ImzyxiWQ1UX4tWpiMa9G7v5tYe38OTZZT7zyizz5SbFuklPIkRvMsSZxQrLVQNVkfnQ/hFkSeLgdJFUWGNtV4xfuG9926Br6TMslps89EdPCcdHlhhMhr4jvNESYk61DgPTdokFFRRZZk1XlF1DaaIBhRfPF+hNBMnXLfaOpOmMB4kHVc7nBB3QD90yfJFY6YHJAk+fywFw14ZO9o1mXvVePvbCFDk/uf3Td69tB0T/ufizJ8YwLEEH9G8fWH8R9/i/+8ShtjH1+++7iaFX0R57rbhUX+O3HjnOqQXRoh0OKORrhhBnDmuUdYuwprb30mLdRFWE1lprvynUTWaKDfQVleaKnwBzPbEeHNcjEhBac13xYDvxVDMcgqoQNv3DH9zFuq4YH39xis8fnsewHCZydd+4gJGOCA9v7+PnVmgIfvnoAr/+uaMXdbMpkth/BtMRpgt1qrrdNpyCqozteKSjAd65q5/DsyWm8w0UWWZjT4yT8xUWy3r70A5pMq4H8ZBKKiL22MWyLoznqyTB4kGZvlSEYt1sB/RVWSKgyIK+kwt/mwirNEwHxxHJ9KByIfkrSxJ3bejk99+3q63Hd6m2xoHvQQq87wVs/I0v04o1yIhxCvZtoO9H/+iya7vjQX7olmEqTYuJnKA9TYY1HNdlpqhj2iKYElCF0/z2nf3tpNMd6zu5Zc3qe9kXDs/xP75+Bs/zGEiFuW2dCGQNpsPctaGLj780zdHZEgFVZnNv4jXtcX/6+BhP+TQf7795iPfsGbzo947r8cAfPIHlB3V+6YGNTBXE+fCDtwzRlwwzW2zw6QOzgKi4e8dN/Xzt+EJ7P3r37gFGO6N89uAsn3x5hmxFpz8VZt9ohqpucmCqRL5m0JsM4bieSDCvWIyJsEq2YrBQ1tvOUCYaBDzWdMZIRwL85vdtJR7S+MunRH3WkZkiTUs4mg/v7OeH948Al++bN3B9oTV+f/jNMzw3nmdsqUqx+Z2hEGglwRRFOJetQEwrFiBLolumlVx1PI+6IZw9TZaIh1Tqpo3jB2QGU2EKDRGg6U6EGEyH6YgFGUpH+PE7Rkm9SjD0kSPzfO7gLA3TIRXRWNsZJaAqvGlLDzsGLyQfFspNPvyV0xyZLaHIElv7EixWdGRJFI/98Q/uBuDITIlvnRb+TUCVfafd5eBUEdcT5+Tv/8CuK1bYf+z5SXJ+1fRP372Wf3xxqp3U+cX7N1ykSTKVr/PZg3MAbO6N89Ydfdf12is3Lf76mfMA9CRCvGlLN//tq6eZLzVJhjV+8f4NhDSZjzw1wZNns9QNp72XqYoIFG/siTNbbGLYLiFVJlczMFb4FaoMHZEApaYFEhivQ9l+fzLEv31gwzUJyd+wW64fXNpNfuDDbyPSv4G+H/mj9mvJkMqG7iiSJBMPq+wYSPHS+TyuJyjXhtJhnjizjKrIdESD/M/338Qjh+c5OltkwvcRTdslHlLpTYT4qbvX8uGvnma5YmC7LruH0/zC/ev402+Nc3qxgiqLQjnddlmqCH9MlUU3qWm7V+2qUSVRFLtyRaiyoNWXJRE0646HyNWE3W/Ynp9UFsVvuiX8T9cTCQ9FgpHOKJt6Yrw8WSQZ1rhtXSeqDM+cy1Nqmtw8kkb1C6FN22PvSJqfvGsNiZDG//vYOY7OlpgrNf1gqQjoruuKEdTkNtX9O3f184XD8xycKqIqEjsHU/zi/evbWoPXikv3znW/+uXXRG0pI/b3VpBT9/3WVoGxDEwVGqLYWlX40dtGsF0RDD44VWSh3BQ0cX4hR8kvME+ENdIRjU294m5+8q41PDeW59RCpf39Xzpf4MxSlRfG80QCCt2JED911xr2jlzZd5/ON/jMQWFTbuyJ87adq2toWY7Ln3xL6KPFQyo/ddfa1/BULuCVqQJPnRVxhYF0iLmi8N33jqTbdJSX4u9fmGLZjyv81F1reGWqyM/87ctt6shEUOUjP7qPW9d2/Iucfdmqzj+8MA2I9WG7HpWmxVPnltEth1JDJCoNyyESUMTPpoPligTKhRD86ytJokgXAvOOb5ekIgGGMyJJFQ0oTOTqpCMBQgGZ43MVLN9I64wF2dATY99Ipn3P379n8IqUmL/5yAlO+3P1Pz60mXNLVT53SNgtD27t4SfvWnvZ2C2Um/zeV0/z5Nllyn4zhAckwyqOK5JTuiUK9Lf3J/nLH93XtvWeHVvmw189zWJZR/b3Q8/zMB2PzliAWFDDclw298bZ0BPnpfN5liqGX/gu5prniSaN00tVAoqM7bhs7oszsdzA80QSzHIuJK/bCSJJJBG3DyT5rXds5/EzWZ4dyzGZq7cTiSCKFxzXpX4JB6oi4xcsXJgP6YjGYDpMoW6iyJCvWe3Cr1YSyXI8v7GAdrF7q6mj4Sc9NEUiqCri335CcEN3jNvWdfCxF6aELeWIWOyl1N8r56cMrOmK8omfua1tx7bG7yvHFjjjU1q/Z88AIx1Rjs+V+ebJJYoNk6WKTrZiUDPsNnvB1r4EmWiAv31ukvlyE9f1uGkwxffvGeAPHj1LsWYKWz8dRpagots4nijub8XMEn6CMhJQWKyabR/jl960kV+4bz2fenmGj70wSaFuElIVBtJhTi1UqPpFFq150hUTibvz+Qae5/oFo7TPTVWW2DeSptQ0mS2KYpSVMapIQPaLQy8wQrSe2cqEd7sRRZaQEcUwFb8oQAKiARlZljFsEffriocYzkTausUzhQbjWUFH67ie6EK1XfyUB4mQiu4X6bU6KCV/LpV9zeOQJvP9ewb43XfvRJKkVeW3vqtJMEmSNiOoDJN+R1cLCeCKHGOe5x2UJEmXJOlp4IjneS9d7XOS4QC5K/wuEZQJaKqoUPPbTXtiAaqGS0dMozcRotSwCGmK6GSxXd68tZd1Pn/5wzv6KDVNkmGNW9ZkMGyXQt2kUDPIVk029MR49+6L9RbetqOPsWyNgCpz/6YeUhGNnYNJokGFTCSAbju8fWc/G7rjLJR1gqrMhp4YluMxkaujyhLb+hNs7UtwbL7C+i4RZB5Ih7lzQweHpkvs6E8QDwcYTIfZ0B3jH1+cZq7UJBJQ6IgGGO2MUm5YFJommiyzWNbbFS7ru2NYjkvdcNjan+T0YpXb13W0v/P79g5xeLqE4Ti8ZWsPZ7N1EiGVqUKDVETjJ+4cZX13jP3rOliq6oxn6zQtG0mSuHVNhn93/zp++G8OUDcsdg6mkJCQlyvkaheC00OpEAOZ184Rf+/GLl6eLFA3bN6xwqDpS4W5b1M3JxbKbOlLkqubbOiOo9sOG7pjTCzXWdMV4wdvHr4o+VE3HMayVW5Zk+FctsazYznSUQ1Nljnr80GrisSbtvSwZyTFnz8xQbmukIoEUBUwHY/+VJhKU1Rp1XSbUtPEtD1BCRPRKDUs0n6Fj6j+MGhaNp4rNohMLIBpi0SV40FIkQkFVDRFbE41w6K5gjh75Wat+BX0rY1lMB3mZ+5aQ3cyxHShQblpUW6a6JZLw7QZSEd487YewgGFvSNpJpZrpPIqriuy7G/f2ceZhQQff3mGoUyYH94/zEuTRZBEh+Se4fSqFU09iRD3bermmfEcazqiPLS9lz9/Yozl2uXJz2tFQIZERCMTDbKxO8bhmRKqItOfCCErMjsGErx1Rx/jyzVczyMVCRDWFFzg9nUdhDWFumnTHQ9dREkDsKUvwZSvD7blGqlabl/XwXPjedZ2Rr9jCTCAu9Z3cXi2xLb+xGXiu9+/Z4B/emWOzX3x73gCbDW8a/cA5eYU/ckQt6zN8JlXZklFNGIBFUWSWKoZrO+KYbkuR2bKhDWZ+zZ3MZSJ8sSZZfaOpDkxV+blqQK245EJq4SCmuh002R0yyWsyQRVlXhQxkFiVyJEqWkyUxAJ+Qe39bRbmO/a2MW55RqG6bCxJ8aT53JEAgq3r+3ktnUd7QQYCLHauzZ08cTpZVzXRlVkZFnh9nUdPLS9l//11ASVpqhIDWoKfckQixWDzliQD9w6zJquGJ87OEtfKsx7dg/wN8+eB8+jYtgkQxqd8QCG5dKfDtMZC9KdCDFXbPDKVJH5ktDX6U+FaRo2y37SPxpQuGdTF7GgymJZZ7lmUDcctvUncByPl6cKbU26wUyITCTkd9U0sV1hjCfDKuPLdVKRAG/d0XfFDp3v+y7PjRv49vF/P7yZ//zF0wD86H4RKNwxkLzMbolqMj+wZ5CueJAHNnfz5LllJAmGM1Fxzr80TaFuEvUrGncNp3j/zUMcninherC1/8p72T0bu/jGiUUWyjo/fucoIVVlrtRk/9oOehJBdgwkkSRxJu0ZTr+mPe7tO/uYztcJaQr3bbq8u02RJd61u5/HTmW5Z1MX+9d10LQduuMhen1dxf5kmK39CfI1k5v9ooQ9I2mKDYtUWGPI3xPu29TFoekSmajG1r4kNw2lSEcC1E2XQs1ga38CxxOFMYmQhodHVbcZ6Yhg2S5fPrZI3bRJhBT6kmFGOqJUdJs71nf6nWASt6zJMJGr8wP7hnh5skhIk7l9Xcc1P48buD7wth19LFYM0pEAr0zmyTdeWyIspIruXbhQpRlURDBYFJ6JalRJgnLDompYjGai3Lupm6+fWGRdd4yhdJjPHpoTSa54iI29cUzb5vBsmf5kmLfv7OPLRxdQZZm9o2m64kE0RWZDT/xVE2AAt4xmmFyus1jVuXtDJxXdJqAIn2MleuIh7tvcTcO0Caoy79zVz9mlGmeWqrxn94Wk9qbeOOdzdSzH5da1GZ4fzxMJqKzrjPHE2WVuGU1fRJd9KW5b18nzExfsqDvXd/HKdJEtvfGLEmAgWA229MUpNkRx0/WOZFhj70ia6UKD29Z10BUPct/mbp44k2XHQJINPTEUWeLO9R0sVXRyNRNVgWLVxHBcHtjazYbuON84sUQqohHWZCbzDWaKDYp1EYy8f1MXddNlqaKjSKJKPVczr0i1JKqtLxQqtYKW14JWkdHu4RT3b758378W/Lebvq0/u4HXASpw6Y64tf9iu+VtO/varCv3bOwiWzP5kdtG+MbJLF0xjV3DGQp1i3zd4F27BtjYE2dbfwLb9ehKhCjWTBJhjZrhsK47xl3ruzizq8IjR+ZRFZn9azPcua5TBKkdF02VuGdDF2PZOt84uYjrumzpT2LaYs6bfoeK63l+Z6JE03SIh0Snd7ZioNuiayGsyfQlQ8z7hYZv3tpDuWkTK4lu8nzNQJYkbl/XycnFCstVnU3dMXpTEQ5OF0mGA3zfTf0kwirlpk00qPL9ewZAgvmyTlUPsH99JwPJMAemitiOy77RdLvT6O6NXXjAUCaM416ooB9IhblpMMXYco3eRIg1nVFuHs2IzjBF5q4Nna85AbYafuPhDfz2V85d8feCKlfyE10QD2rEQyrdiZDQ57IcGqbNYCrC7uE0pYYI5tZNhzs3dNCTDLNrMMlcScS5zixWiAU1bhpK8vJkkT3DKcq66MZ5YHM3M8UmIx0REiGxTxYbIvY27LMUWY5gEsjVTLb1JV7Vdx9IC42rQt3k5tErnx+aInPH+k7OLFWvet2roRVX8Dy4b3MXT5/LYVguN10itbASt63r4PnxPKMdUeIhjf1rMuwZzfDSRAFZhvu3dLPtX7BTtisW5KahJAtlnf1rOjg+X6ZpOmRiAb51OsuG7hg1w6ZYt+hPhemIa5yar+J5ULdsqk1bMPbYLuWmje26flezjGmL06YrJophdcshHdFoWoIWuQUViIUVyk3nsrPp0i4zCYgHFRLhAPGQgmm7FBoWmahYq5P5Oht7EgRVCfnsMh3RAO+4qZ8/+MYZ5opNOuNBOqJB7lzfyYPbennxfIF0RGvLaqyG9+we4G8aJv2pEDcNJhnpiHB8rozjeTy0o3fVv+lNhHhway8L5SbnczUkZAKq6C7a2Bvn8HSJQt0kHQnwnj0DF9l6e4Yz7F/bwcHpIp3RAIOZCMW66PZa1x0lElTIVU029MR5YHM3iixxYLLA5t4ER2aLLJYN7ljfwXShSSqisVQ1iGgK927qoitWYa7UZH13jGrT5ny+TrlpguehKSKmlo4EeOu2Xjb0xHA84V8NpcO8PFmg1LTae0R/IshTY7l2V29IU+iKBXA8sCyX5ZqBosj87F2j5Bs2J+YrbO2LcXqxxtFZobE6kAxhOi65mijMjwYUmpaLpkj0pyJ4eNR0m4WyTlcswMaeBEdmSzRNm4FMhNvXdrC+O85btvXy+Jkso4kQumlTbIiCZNnvhPIQhd+Vpo0qy3zo1uFV7dh9I2nKTctP3AmfdH13jPHlGk0rxI7BJEemSxi2y5quqM8yZHPb2gw1w+KTL8+gKTJv3dHH3Zu6OTRd5JunsoQDCh/cP8KJuTLz5SY98RAnFyuEfCYj3fJY2xVhsWKAVKPctNjUE+PuDSK5vn9tB2PLNY76scS+RJB4SOXEfAXXc1Ek2Y8h9TKZqyHJEnXdIhMNkqsZFOomkgRrOmLsHErRmwjyleOLnF+u4bnQtG0CqsId6zMslAxmig1c16Vuekh4DGUiNEyHhunQmwhSN0WCPKTKbPYL6lIRh5JfCH7X+g7O5xvUdId0VGU0E2P3cApVkdnWn+DIbBlJgkrDJhMTRYP5uontuIx2RGlYDiG/CeXEfBnHg+6Yxg/dMsw/HZwlV7dY3xXjx29fc8V1C99lOkRJkt4JvAsRn3tkxa+qwCc8z3tOkqR+4EvAViDmeZ4tSdJ/AN4JTAE/5nneVSPp+/bt867XysB/7bieqzpv4Mb4Xe+4MX7XL26M3fWNG+N3/WLl2L0W7bXJGx0PbwjcWHvXL26M3fWNG+N3fePG+F2/uDF21zdujN/1ixtjd33jxvhd35Ak6RXP8/Zd+vp3tRPM87wvAF+QJOk2z/Oev8JlBeAB4HMAkiR1Afd5nnenJEn/FyKJ9ulX+6yf+/uX+erxLBqweyTp85HK3DSUQlUUdgwkyESDdMWDnFmq8rVj8wykw3zglhEWyjpPnF2mI6qxoTvOSEeUc8tVZotN0qEAO4dTpCMaY9kag6kwc+Umz43ncByPeFClajjctbHrIl7zs0sVJpbrbc2ZLb1xjs6V0WTRC9riQE1FAgQUmRPzFYbSYRYrOmFNIaDKyJLEUkVnx2CK9d0xxrI1PM+jadr8xVMTDKcj7BxMslBpkooEeNuOPuZLOqcXK0Q0labtcNNgklzN4G+enSQR1vix/SMcmi2zvT/BCxN5bNcjGQpwy9oMqiKxVNZxXI/zuQaaIjGZrxFQZKGbYNssVkxKDZOt/UlkSWI632CmUMf2PDqiATLRIDuHkmQiGl8/scT5XJ1oUGW+2ATJpdQQbbV/+sGbeGiHqC51XZdHT2UJqDL3XlJFnqsaPHVumd3DadZ0RjFsh7OLNXqSQbrjodY848xSVbQD2y6G5TJf0tFUiZGOCPGQhmW7fP3EIntGRLXSl44tsKM/wR3ru5jI1YkFVE4ulFmqGIx2RpkvNjEsh6GOCHtH0oQ0FU2RGMvWODhVoNy0yFZNaoZJtWEy0hlFQsIFdgwmiQY0Ds8UmMg3UDyPVDTIbWszvHC+yFyhTjKsMZSJkowE/A6uEK7n8eSZZWqGqLSomjb5qoFhO6QiATb1JOhKBDk5X0WVBdWELEnUDQfb89jYHWMgE2HvUJrnz+eYyjXYv7aDUtMiE9U4NV+hUDe5fV0nu4ZTfPrALKMdUX70jjXMl5volqBe6U2E6Par82cKDaq6zebeOPIlVbot1A2bb55cRPdpFxdLOpGgimE7PHZqkelck1frB4toEAtoyLLEaEcEzZ9zd63vYjxfYybf4M713fz8/Wv5wuF5pvN1HtzWy+3ru8hWdZbKBht7YwRVhRfHc3z6lVn2jKT4oVtGLuuu+m6iUDeZLTZY3x27qEtJtxzOLdXoS4XagrtvFCyUm0znG4IPX4azi1Vqhs2phQphTWFjb5xESOW5cUE5OZ6tk4oKvvPuRIh7N3Xz+Oklnh3LEw8KXvh0NMht6zp4YSJP03Ko6haJsMZgKkypYbN3JE0yrDG2LJ5JOhLEcl0OjOc4Ml9hY3eM7niI87kanbEQN4+m+PKxRfoTYe7c1Mm3Ti2TiKh88NYRTsxXyFV1Ti1WWCjqvO/mQQKqwqmFCjXDolS3iYdV1nSKjo+1nVF6EmFOzJc4OltCcj2W6iYfuGUETZH4iyfHSYQD/MCeAc74e25AVdg1lOSxU0uMZ2t0xcN8aP8I3ckgJ+crmLagDWiYjq8/ZvL46SxhTeG2DZ0EFZkzi1WKdZOAKrFQ1tk5kCQTD3L/lm5xjyGV5apBqWmxVGmyuTeJZTu8PFXk+/cM0J+6vBNwZQD+RoD9jY2b/svXsW2X537ldpJJYSusHL/tfVF2DqbpSoT4gX1DyJLE8blyuxtCkiTKDYupQp21XbF2p5Zpu5xZrNKTCLb37RZcV5yN0YB6RSoPgIpuMZmrM9oZXVUPwXU9Ti9WiYfEvg4S67sv7iSZKzUpNUx6EyHmSs2L7vG14Hyujmm7bPS7488uVdvdL7PFBhu6423tmWLd5PBMkXhIY0tfgo+/NMWphSp7h5NsG0gTDwl9wS8cnkM3XaIh0ZGZCGmMdkZ45twycyWdjd0xDMfhxHyV3kSQUtNktCPOg9t6UGRB9bNUNt6Q+/cNfPswbZcXxvO8PJVnvtjgubE8laaJbovK4tWotVQgoMItoylKhocsedR1m85EiIbhIHsem/sTrOuOo1s2j53KYjseOwZSFJoGYVVhfXecHUNJYgGV5arO8xMFVAnmKk1uX9vJzaMdQv8F0G1xfuaqJrrtcO/Gbo7MltnUF2NrX/KitVusGXz+8Dz3bOpk15Dopjy9UOHMUpW71neSucrcbdnRIVVp07iA0DNsmoKCtTcZwrAdzufqJEIaW/sT16Sneul7Zys62arBxp74FbVSXg3XYpv+S8HzPB49lUVTJG4ezTC+XGM4E7lq597phTLncw12D6eZytd47FSWzliA87kG2weTJEIq49kaiiQxX24yX2pyLltta72lIgFCikRJt7FsV9hzikRvIsiZpRqFmkFIkdE0CdOBvmSQuaKBhMfe4QyyLHHWZ0MJKxKSolBumHgSuK5D3fAIqjL96RCaLHH/1l6G0hFmS00e2taH7brYjkcyorVZRa6EB37ny4wLoo0bdssbHC0b5UMq/M7vvO2i1wA+ePMgD9/Uz3LV5PRiheWKzt3rOhgrNBnPVokEFEY7ooJKXpLY0p9AkWEq16BuWnREQ5xdrNIZD9CdCFMzbZYrTRqGy/61aU4tCh30tZ0RwgGVoXSY+bLO+eU6dcMCBKVsTbcY7Yhhu6IjrNAwsSyHoUyYuumytjvGpt4EiyUdSfJQZJn9a0Vny+mFCr2JIJqq0J8McnyhRkRT2DGQZLHS5MkzywQUEU9a0xljodzgxLygP9s+kOS2dZ30p8KcX65xcLrInRs6ydVMTi1USIU1NvTEeX48T3c8SNCnUY8FVd68tZu66fDoySybemNEg4IOPRlWeeZcjo5YkG39SSzHZabQwLQdFis6t63rZKQjetlYXQtWxlvu2tDFjt/4Co1LauFlIBFSWN8dRZEldg1l2NafoG65dMeChAMKhYbBQCrCwakCj55coiMe5P+4Zx3bB1IslJscnxPPdFt/ctX9uWHaHJgsCM0fSVAC37G+q63VPltsEFIVlio6ibCKIouOiJVn07Wiqlucz9UZ6YiSDF+73lfDtBnL1hhKR0hfo0buWLYGeKzvjr/m+wR4cSLP82PLnM/V6UqE+JW3bL5IYzdb0Xn63DL7RjPf9hy4VkznG9RNm009cWzX48xiFU0RnRdD6QinFitkIgHGl2s8fnoJ14ObRzI0HZeTs0UsX5dn32iGk/NlmqaLZVnkGzY9yRA13SZfN7l9bYauZIT5UgPPdZkvGzQMm7Cmsr4jwtlCDdcFPI+G5RALaARlOLVcJyBBTypERFNZrpnIsksyHGTfSJoHt/ZyerHKTLHJ/Zu7iAQ1liqCZeX4bJn9azt4y3bRqTWWrQKCYu8bJxZoWg6pcIDb1mY4vVSjLxkiqMqYjktXLHTRPGyaNt84ucSazig7r9L1B/Clo3PMFpr8xO1rCAQU/ssjx3h2LMdP3DFKrmHT0B0298XoiIUYSkdQFYlnzuXwcCk1TOaLTWqGy4PbetgxmOLpszlensxTbVqs7Y7x5q09nFqokggL6mvdcjg0XaIjpnF8ocKp+TJBVeEtW3t5774hHjuVZbpQZ0t/gqWSwUKpzqHZMu+8qZ/5ss50vsHOoSTlhsVssclwZ4R7N3azWNGJBhTO+WwBHi75ikVnXBOaVrLEfZt62D6Y5OBUgY+9MMV8scmm3gRrOyNMFRrUdAvD9uhJBMlEg9y1ocufYzBdbDBXNNg9nKA7FiagyeAJqsCDU0VcXN6yrY+6YWHaYNkO55brhBSJ5bpBOqwxkRdSHvvXdZAOB4Q8jGkzV2nSFQ2yd02GgVSYZ87lGF+uU6obNGyH9+4Z5Ofv23DV2OGlNu2nD8xQ1W229cU4vVRnMC300go1E02Bs9kanbEgW/sT3DzSQTigcGKu3N7rwgGZqUKDsKayrT/JUkVnqdyk1DQ5NF2iplts7YnTcOAn7hzlxHyF2UKDM0tVBtIhqk0H2/WYLVRxXEhGg3RENAYyEaYLTfqSYd62o4/HTi0xWxTMRRu7Y6iaRHcsxB3rOzk2W+K5iTzlpoVuuuweThHSFGq6jYcY030jGboTQWaLDU7NVziTrdIbD7F3NIMmyyQjGlFN5clzWZqWTd1wmC81ePvOfqq6i+06HJgssG8kw66RNGFNwXJcvnJ0gURY496NnbwyLSjZH97RzxNns3zx8DzbBuK8d+8QU7kG/+upcR7e3ovtQk03+MRLs5iOTd1w6Y6HMBwXkPiVt2ziTVu6keUr+xjf1U6w9odI0n8HfgdoAl8DbgJ+yfO8v19xzRMI/a+3ANs8z/vvkiTtBT7ged6/v9r7b92xy2u87Xev+PtoQCERUtncl6AnGeTRE1lKTRNVltk+kMR2XSayNTyEQZOOBpjON1iuGkSCgjtfCLnbFBsmU/k6B6dL2L5wX0BVWNsV5c8+uIfepODh/OjTE5xaqFCsW3QnhO6E44r2+kRYBPtD/t9N5ettYb1oULQNR4MqdcMmoMoMpCP81J1reG48D8DfPz8p+N4ROheOCx2xAPdt6qbUsDiXrVJuWnREg3THg4xlq5zPC57mzliQ4UyExbKO6biUmibdsSAbeuJs6UtwPldnttggW9GpmyIpotsueBc0DVqQJXBXmT4BFfAkX5Dvypj88NvYt28fv/GRL/CJlwXn8M/es65Nq+F5Hr/yqSPMlprEwyp//P7dPH4my7mlGpoi8ZN3riUcUDg4XeTJM8ucmC8T8HXOcjWDSEBhIBVmW3+CJ3zeXdf1qFsOdV3QpY12RLBdj2rToqzbOK57ES1IUJUZSIfZN5Jhttjg9EKVUsPkajT7ss9FfK0667Lk0xq6cO0StasjIENA84XU/e8Q1mRfsNL/tyrarpuWiypLvGv3AF3xEOeyVZIhIcD5E3euoaKL1l3PEy37+9deTge1b98+fuj/+Qe+emyBXNXAcFxMW+i+vNr4v1ZIwKaeOPPlJobtMJCK8Lvv3s4rU0Usx2NjT5x13VF+8m9eZrlmENQUfv2tm/mhW0e+o/dxJTiux18+PUHTdBhIh3nfvqH27z5/aI7zuToBVean7lpDUH11AfHXA7v37OXH/8cneGWqSESTGVuuoVuCa992xQSOaBKOJ7jAbX9MW/SbiiyRiahkXwPtpQRo/jy1HcG5H9IULMdr72uXXt/eayQIy2D4VKLDmQiqIjNTaLQ5pIOqEJhfquhCFwjBQ60pMqqvAzmSCnHET145nviMWFDBcVwa/uIOa6IQwbJF8BzPo2rY2K64fl1XlPs2d3PIpy2o6FabM72q2xi22+ZQlpAwHLctuA2CM7k/GWI4HWHvaIbzuXrb6fI8sacXfLHV4UyEf/ip/Rc5k6tpa9wIKL0xsfM3v0bFp4QIKBJnf/fhK2qCRQMKOweTrOuOcW6pRk8ixE/euYadg0k++vR5aoZNdyLIB/19rcVRrikSP3HnmouS7y9O5Nt2w/tvHqI/tTqlx/9+9jzFhqB4+LE7LqcPeG48x4sTBXI1g5CqEAupPLyjj029wtHP1Qz+4YVpHNclWzXoSYToSYT4wK2vrhGzEpO5eptL/95NXSxVdE4tVNtc8K4HQ5kI7907iON6/Om3zvH8RIFoUNh43zi51OZN39AT564NXTRNh6+dWKTcFDzqluMR0oRRXGn6eqayL6684l5UWdCxvXV7L4sVg+FMpL1/37H/1hudYNcxWlWdXzwyzx8/dpbZQgP9O6ydFPYDJquZQSFVoicZZm1nlCOzJeq6ELCWgFBAZvdQWpyJrqBf102bbNUkElAIaQo9iRABVeaP37+bLxyZo9SwSIVVvnh0gaWKTiSg8qmf3U/DcvlPnz9O3bDZ0BPnv75z2xUd+5YdDRf0L8ayVb54ZIGzS1VSEY1UJIDtuByfK9ObDPPQ9l7esm11up+VeGWq2NYMfGh7L4+eXMJ2Pbb0xXlo++o6LVfCvn37+PK3nuHjL03jeXDr2gy3+/qGbxR87tAsn3hpBhBaZqlIgEhA4afvWrtqQPjUQoU/e3yMbNWgKx7k5FyFbE2n4WtCyJIQVtdNG8u9IDD+LwkJCKkyoYBCLKhy27oOFko6e0ZSgu6/Z/Ug8A275frBpWfb5IffRmp4I6kP/OFFr2/ujlBsOizXjAv0mtIFH1AGkFpzRiEUkIU+iCdo+FthqJAqCy0h10NGnPmS7xuritA0URVZaLgbdjv+0PJHWitrNde7pbdoOi6u6xEKKHRGgxQbOmVd2OphTQYE7R4IevNZX+PYQ/gIQ+kIM8UmTdNGkiAe0vjhW4f5wP5RfvWzR2maQuMkFdF4ZapEV0wT+j6229Y+KzUsehJBfujWEc4sVgV1muuxezhFJKDy8mSB5aqB43q8aWsP4HF8rsJMoUFAlRnpiPDRH9l31eDearg03lIzDE7M11/17ySgI6qhKjKaIgs9Ft/Pn1iutX2i4UyEj/7oPj51YIajs2W640E+tH+EW1eJHfzjC1N86dgC1aaJ4XikIwHu2tDJz927nr98eoJc1fApxsTzjIdEcv1q2kxXwt89P0nep938yTuvTo+1Ep96eYa5kqDp/+m71l5G13spzixW+cqxBUCcc9cqtdDC2cUK//YTh/xCMOEbv31nH//z/UKPc9++fdz5Kx9lodwkFlT5yx/Z+5rnwLVivtTkky+LM+z2dR0U6ianF6s8dmqJoCoz7c/Fmm63tX7eaOiKaVR8rdeQn4yv6BaLZV3QJoY1/ucP3EQmFuRrxxdxXJcXJvKcW6rStFziIY1EWKUzFqRYN9nYE6ei2+wZTvHevUPtefj7Xz/Dy5MFFEni9967g6HM5cnJffv28Qf/8BV+4/PH8TyPezd1sb0/wa997gRAe/9xPKF31JcKs3ckTalu8vJUkZpu0zRtTH9vTIY17t3UyaOnslR1x9fJEhIKQt9QZl13lKl8g7ohxqgV7wCxl719Zz8vTwpJBlWWkSWPhYoBHkiy2I+FDpOwQUwXYgGFwUyERFijadhM5Oo0TaetXd6CKkNvMswd6zv5+olFio0LsZ3VYscBBTRFIajJNAy7rWWqyJCOCB2rll5WwxQasmFNJhbSsGyHuin2dct/PpdqrRu2i+24F8VlQ6rQhq/qzkVnhizBX3xoDw9uu2CbXtoJttKmjQRk/u75KUxHPCtJAlkSeleO69IwXRxX6CcOd0T4wZuH6UuG+NrxRQ7PlGiYDk3LwXVdJEkiFdb8omobP5R74d4QFLXhgDhHrhWyJGILDcNpx5lbOpjpSICBdJjZQpN83WjPEUW6cCYDQo4mGWJdZ4yx5RqzxQam46HIkIpodMZCfoKzyVypScOwsRwPWRLxtwH/PHURn/vg1h6iQY3JXI1jc2UCqsJgOkS+ZhELqdy1oYNPvzJHtWmhqRLv2DnAo6eWqBtCM3m0I8r5XP2KOqARTeF3372Dd+8ZuGIn2Hdn97wcD3qeVwHeDswCG4H/cIVrU0DF/7kMrErQK0nSz0iSdECSpAP5/JUUwQQ8wHY9XNfDtl0c3+jy8DAdsTA8xKK0XQ/DEte0jDPb8TD8lWM5rjCQPCEs6PoM6kLI8MI1juv5goye36Hk+dcLo084McLYs1vXuuIzXe/CNa7/etO6kB5pBadb9+whjMSG5bS/m/h8D9N1LwgAely4R1cktvA/q3XP7opAt7OCIH61XOmV8qctfalXg+t/j5XfTTcvTgMZ/v3ajnhOrft3XPFsgbaYZWsMWs/H9fxnC+3gs+N5uL5Yp+t5YuxXPK/Wc/X8H1wPHMfDchxsxxPP91W+l3eF53XlP2gPxT8bnn/PXBg68d+KN3fx2kk8D9p8va7/TFvrwHYuOCet574aWgm2lc7Mdyu5bjhO+71b66J1a5YjugDt1jj6VUOvF1rzqXUvK2E6F+bo61B3cM1orQPXFXPb9vcgjwsTUsxn77IxFfPKuyixc61ozxf8/c7/3GvByo8zbWH4tDidW9/HcV3//S/cbOs7uK6H2T4DVt6Td5FhdtH7+nqSK2/R9s+C1vNz/TPD9ffR1jNy/OD6ZWvCfwaG4/pngdiDW+eA47ptw9Jy/uWDXjfw7WPlfuCsVjmyAh5iv7BWnMMXndtcOPNWvrfjXv7eK9emfZV12rruSmt55b201uml36n1ummvvgdeC1b+jeV47SBaS4h+5TWeJxyelq3UMN32+mzZTYDQ3/Q8YZe4wu5r21v+Z3ne5evL889B1wPTbp2Rb6z9+wb+eTBtB+e7tLf6hcurwvPPPMsPyMIFW811hY3veB6Oc8EPaM1Ra4VNbLnuCr9jpX3s28v2hfc3beeqc3flntKyV0z7wrp3XGHfrPRLrnWNr7yuZS+Kz/n2nnxLX1f8/MZbkLp14fu2/JuWL7IaWv4XiOdjeytU4/2xd92WjfPGsQVcLp4fLf/T/Db2/hu4PnBpsBMutt9X8zlbr4OYM57n4fkxkJXXeZf8b9ufhLavsNLWuPT92777KhA2/IU4jOcJe2qlzyrev20VYLnuRT6B59vlF/yCVvzEE2fJijUs9iWvbbu0Pr+1D7ieYAgxVuwPTnuvdtvXm5Z/RnkX/EfLEfbMt4OV8ZbaKkWHV4Lj0vZxLP9+bNu9aIxs1/WDzf6+cBX/0GjHXi7Yarqv5WY74vxrxSBa8Tv49vaWb9cmvdhvf/Vd92L79bXfp2GLYvmVvmnzkpiY6Tjte/t258C14HJb/ILd0fJr8S7E4d6IsNtnph/f8udRe866IkZ0wafw11brb1bMwZXxEbh4Hhq+f+B4XnuurYaGeSF+pVsulRXrr713rYgjOK6IPbf2mZVxGdfzMOyLYxZwYS217r0VX3YviV+4nkfDtNtzbeX53bohr/3fhTiI6wm7UsR+3Mvjpiu+j+16fiLo4ptcbcq0nnFrf26/p7cyVnTBDhLf4cK+vdKHu/Q+WmO+mo93pYKihnH12OHK9VHT7Yu+A96KM9FbcTb6n2f6sSPHu5AL8FbEpGzXbZ9Rl93ziu/9muDfk3fJa61nbLZyI5d91oWxp3UmXRpfw4/7u6JZxrSc9vdp/741hq339sRzcL0Le0s7V+I/j4bhXLB7PXGurpxL7qvYwq53ce5kNXxX6RBXoNV//DDwcc/zCldpMywBA/7PCf/fl8HzvI8AHwGhCZbujnAu2wCgPxFAU2VUSWZjX5xoQOWmwRR9qRB9qTA7h1J89egivckQP3P3WubKOt88sUAqEmDnYJp1XVFOzpeZyNVJRwLcsaFTiNQtVBjKhDm/XOfRU0vYjksirFHRbR7a1tvO/m/vT/JDtw5zer6CbjtEAirb+hMcmhZfJaDIRIIKkiTRlwiBDMdnK/SlQmTLOuGgSlCVkYClqs7e4TT7RjMkwxquB5t6Y/zlU+fpTQbZO5xmttigKx7mA/uHOb9c58hMiYCfvb1lJM18qcFfPH2eZFDlp+9ey5HZMlv7Ejw7nqNpOXTFAtyzqYewJqo7bNvj1GIFSYK5YhMkj3LDomm5LFcNarrF+u4YEhJzpSZLVR3X9UiENBJhjR2DSTqiAb55cpHFskFAkSg3bZwVm9vP3zParmB5795BPDw0Reah7T3tMZYkiV9+80YePbXEPp8+7c1bezk6U6I/FW5TLe0dSSPLEjePpnE9Qc83vlwjrCls6I2RDge5Z2MXXzq6wO7hJOWmzRePzLO5N8EDW3oYWxZ0UUdnSizXDAbSYbJVA920GM7EuHVdB5lIAEmCk/MVXposUKqb5GsGDdNBtyw64mEEq4vMll5BhXdkrsR8SVScpCMBtvUnOD5fJlc1CQcVemNBEpEAiizRnwpjOx7Pj+do2jbxgEbTsqnqFrYD4aCgs8pEApxfroEEjp+8NSwHT1LoTwQZ6YqweyjD8xN55ooNdg2m0G2HWEjlzGKVim5zy5oM+4bSfOrgLCOZCL/ylk1MFZrs8wVhB1JhkmGNZFjjwW091HSb3cNXFov96TvXkIlqVHWbatNivtwUNKG6xQvnC9SMa7PUFEBToSseQvI8mrbLjv4ks6UGuZrF7uEUv/bwJv7xxRmmCw0e3tHPfZu6WdsZY77UZOdQilhQ5dfeuoVPvjTFTUNpfnj/yDV99ncCmiLz7j2DTObqbOu/uALsoe29HJsVFAIrqQ3+paHKotJsY0+MkKpiuy6nFirk6wbnlgQV6rb+BNGQyovjeZIRldlCk2hIQbc8OqJBHtrRy5eOzHN0tkxQlfA8SIQ0do8kOTpboa5b6JZLJKjREw/SsG1uGkyRjgYZzwo6xEwkgOk4vDCeZyxbYyAdoScRYrpQJxMJsncoyTfP5OiIaty3qYtHT2dJhjR+5u51HJ0rM1Ooc3y+QrFm8I5d/STDAY7Mlqk3LQoNk1REY7QrRrVpsak3znAmynNjOU4uVHAch2LT5n37BgmoEn/5zCSxgMp79wxwNlvDtB1ioQC7hlJ88+QiE9kaXYkQP37HGtZ2xXhlqkDDsKmZotIqrKks13SeObtMUFO4a0M3qgxnF2vkGwayB2VD0DIOZaK8fWcfZd3iwa09LFUMshWdxYrOjoEUTcvm5ckiP3TL0KtWId6opn7j4oX/cAd7f+8ZPA8+/3N3ArBj4GKB+a5ogPXdMfrTEX78jhECisyL5wus7YqyeziNJEm8Z/cg48s1NvdeqLJ/YEsPXbESfakw8UuoDG9dm0FTJKLBq9MhvnN3P2cXa2zsXZ3G6ra1HaIaNygqgCUJtq6ocu1JhHh4Rx+FuklfUtAhrrzHa8X67hgPbOnGsF12D6UwbJfOaIDeZAhNEfbJ9v4kIKrSfvCWYYYzQkh9z0iSP/3WOKcWq+wZTrF7OEVPIsyazghdsSB1UwjXz5eaJCMBNnRG+dbZLHNFnfXdMQzL5ly2Rjqi0TAcBjNR3rm7n2hAoy8VZLFsvOH27xv45+Gh7X14nsez43kml2ucXqzSvIaOMAkYTAWxPXA8F8dyiYU0TEd0LqzpjLCxN05Dt3lqLIfrwZqOMA1TUMpt7ImxZzhNJhpgqlDnuYk8ruORr5ncsjbDfZt6qBgWsgRNw6HYsFgoN7Fdj/s3d3F0tsK2/gQ9iRDv2jXA2SWxdm8ezfCpV2a4Z2MXXfEQXXH46bvXcmqhwoPbeq5KG9iyo4Oq3KY63dIXx3Rc9o2m8DzRed20HLbNV+iMBbh5TeaanvO+kTSKz36xw6f2Wyzr3DSUuqa/vxSD6Qhv2dZLRbfYcxXb9F8K3797ANfzBG3glh7OLFZZ0xm94hm+vT/JB/ePMJatcfvaDk4tlvn6iUXiwQDz5Qab+xKkIwHGsjVkPOZLBovlOvMVA9cVHQOxgEZAhZrpYLsg46EqCqmIxlyhQdMRNnbrFmIhmYoukm2jXRFUSWKu3MRyXDRJQpKldjLP9nNyMhALSYRUlf1rOxjuiLJYMXjr9h4CiiL8yXjworPh1XDDbnnj4kMq/L2I79E6zTf3Xmy37B9N8YO3jjJfanBstkyxbnLzaJrpYoOJXMNnZAlRbtggifhFSNUYy1bRbZtYUGUy3xDMNYkQNcMmW2li2R67hlKcW65h2C7rOyPEwwEG02Fmi00mcnVqutgjHU8ELfsSQVxJIlvWKesWjuPREdOwXBjpiLJjIMFi2WjTId63qZuXzuc5tVihJxYiFFDoS4Q4sVhBUwRd4vhyjefGc6jAzqEMW/oSTCxXOLlQRZEkdgwmecv2PoY7ovzSmzZyYLLAvRu7KNQNXpqM0xkPsrEnxnPjeTpjQaKazFShSToa4H17BynrNo8cnmuv8Ybp8ODWHr51JksmEuDWtR2YtsvObJWGYZOtGty7qQv126SRXRlveXhrD9t/+5urXicDvYkAqiKzpS/B7uEUDdOhKx4iGdHIVgwGkyGeGc/z9Lll0hGNf3P/erYPJAlpMi+dLzCYDnPr2tXPiHftGiAV0drFxk3T4a07ei/yox/a1itkSSIamiqTCgcuo+G+Frxz1wBnl6qv+W/ftqOPkwsVRjujqNdA+7u1L4HpJ/daduprwfaBBL/4wHqePJXlfL5OZyzIb79rx0XX/PKbNvLY6Sz712a+7TlwLRjpiPLmrT3UDZs9I2lM2+VIrMS+kTQnFyr0JIKcXqySCmucXqzw/HgePNg6kKBhWEzlGtgeKIrElt4E5/N10clsOTQsl2hIw7BdmqbD+q4I3YkwuZqJ7TgUGha6ZRNSFXoTIeYrukiaeyIxHVQVPM+lpAtbLR6QUFWVhmHhuRANa2zpi/P2nf2cnC8zX9K5d3MX6UiAhbJOzbA4s1DlltEO3rSlp538kiS4d3MXXzqyQF23SccC3Lm+g7HlOt3xIMmwRsMULEQr59LP3buOz7wyy9ruGOuuQoP51h19TOXrzJd1/s8HNpKKajw3nuf4XIV37uqjYbrUDJvtgyl6EkE2dAu66K8cm8d1PfJ1k5lcA9N1efOWXu7a1MWazigHJvNUdYfRjijvuKmPY3MVUhGNzT0JyrrFK9NF0mGN43Mlzi7VCGgyb97aw8/dvY5/OjjHVL7B5r44y1WDsWyVc9k692/qpFC3mC402DEgaLdnCg3WdsV587Yelso60aDCkZkSZ5fq2I5DuWmRjGpYtkdQU3jLth5uXdPBTYMpPvb8eXI1k6FMlDUdUWZLdWq6je26pCJB+pIhblvXwVi2jgxM5RssVXV2DiYYSEVQZCHXUaybvDJVRJbgvs3d7SaVmuEwmRd00RXdJqzKzJcN4iGZO9Z3EwspPD+Wo9i0KNZN0hGN3cNpRjqiPHVumYlcjVrTxvY87t/Uw9tv6r/q+mjZtEFVZltfHEWWqBo22/qSnFuuMpAKU2naFOoGsgTj2TrpaIA9I2nu39xDLKSSDGvcsa6DqXyDgCIzU2oSVGV2DyWZLTZZLBuUmxbH5koYlkNfKoQsK7xv3yBTuQbjuSpT+SYdEZWmX3ywXNNxHI9IUCMV0eiOBVismvTEgzx8Uy/fOrnMbLGBLMus7RTsJr3JEA9s7uHAZJFnxnKUmwam7bFjIEnEj+V6HiiSzP51HYx2RoQ00HSRsWyN7niQ/esyBBWVrniQkCbz6MksVd2iolvkayYPbu3BdDxqps2xmRI7BlM8sKWHkCZjmDafemWORFjj4e19PDeeI6jKvP/mIdZ3x/ji0QW29sX5yTvX8uYt3Xz0mfPcub6DUEBlqdTgayeWMC3RNRcJiG5KSYJfuGc97907eNVxfL3oED+M0PZqArcgur2+5HnerSuueQJBh5gB/sbzvLdJkvQfgUnP8z51tffft2+fd0Ow7vrEDbHB6xs3xu/6xo3xu35xY+yub9wYv+sXK8fuBh3i9Ycba+/6xY2xu75xY/yub9wYv+sXN8bu+saN8bt+cWPsrm/cGL/rG1eiQ3xdOsE8z/tVSZJ+D6h4nudIklQH3unfmAZ8FaET9nXg14GnJEl6BpgG/uhaPuPSQIQEZCIqhuPRNC7wfWYiGiOdUfpSIc4sVMnVdAYzUe5c30nRF6irGTbzJZ2QJvMD+4boS4YZy9bI10ziYSFOPNoZ5efvXccjRxaYKzaQZZG53jWU5qXzeSbzdXb0J7lzQxd/8+wESxWDnYNJ/sv3bePEQpWG6XBstiRa9TzRRaLbgud630iG77upnyfPLrNUEVXKHnBuqcqR2TJhTaEjqqHIMomwxrquKLIk8fxEnm+eXCQVCfAXH9xLtmbwjROLxEMqh6aKnFysEtEUuuIhBtNBxrKiIiEdVokENUzHZWN3nOGOCK7ncXKhgiZLmLaovBhIhzg2V6HStAhqMt3xEOu7ojx5Lkddt0lFAzQMGxAtnsWGhSJ5mA5YlzQD9SU0nv/1B1/zXBrL1jg6W/IrkoJ0REV1pOW4DGciQuesYfL140vMlpoMp8PsGk4hAUfnKmSiAbb3J8jXTY7PlZkpNJgtNuhOCBHKqUKD/WvSJEIax+crgg9XltAUidmizlyxTqtLtqVtNJAOU2iYlJviFzIiG61b7kXaYYp0MZUbQCKo0JcKMbZUB19LTFUEu7njukieeHaShJ+Jh3BARvcpZaIBGUmSCShQaAi9olhAaCzVDIdwQGHvcAbXE4LVgttcdPC8eWsPd2/o5Funl/n4S9PMFBoMZsJs6ImBJ/HAlm5uWXM5l/dq8DyP58bzPHZqiXPZGqMdYZ4+l2My33zNYxz3v1+rFVuWBXevLMtEgxohTSYdEVXIvYkQx+bKbU28bNVgKBNha1+CJ88uo0gS92zqQlNkcjVD6OP4bbybeuNkIgGen8gzmI6wd0RUFOuWc9nffi8jXzf4y6fO0zAtJA+GO6Lcv7mb3/j8MZYqBu/ZPUDDdPjUgRmCqsyP3T7KS5NFcjWDwVSI6UKDxYpBVyxIzbQo1ix0ywEZQppKKqzRmwyxUBJafU3TRVFAQSIcUFjfE2OhpON4HqokUTcdNEWiIxak3DDFv2WJuuUgIbGpJ8bm3jjfOrOM668Jy3HZ2pdgLFfHsBxuGkjhSh7nl+uoskx3IsD4cgNNkVBlCRnI1Q2alkciKPOmrb3k6xZLlSYeQn/DtB2Oz1VwPAgrMNwRYbrYwLAF//FvvX0rT57N8dS5ZTxPcHS36Nm74kHqhkOuZqAAFUNoEN69roPT2TpTOSH2nY5q7BvJMLZcI1cz2mMi4SFLCrLk0ZMMsX9dB6os+Ll/+q619CRCwMXn3o0A+xsXT5yc48f+7jAA/+nhjfzk3RuAi8dPkxDnaiJEUFXY1h9HkWXOZWuMdEQZSocpNy0kSaLUEB1X2arBLWsyvP9mob11bqnK/3pqHNsRZ/ZMoUE0pKLKMu/aNUBZtzgxV+bdewbYNST2u4Vyk0dPLTGVaxANKjy0vc+vdq7xylSRqm6zpjPKXRs6URWZfM3gkSPzFGoGfakwqixT1k1KDYs3benBsEXH+J3rOyk3LZ6fyDNbaOAiKrvnijqW43LXhi6qusVS1eCOdR10xIKcz9U5OltiS1+C43NlDk2XePfuARbKTb5ybIHRzii9iRBT+Qa3rsnwpq09HJgq8vxYnsVKk2Vfs+zm0TT7RjL81y+fpKJbJIIqU4UGluMRCyrcuqaDgCpzcLpIRbexHJdc1UCWJAbSYUY6IgylIyQjGqMdUXYMpji1UGG0I/ptd6/cwBsLk7kanzowy6n5EqcXqizXrq71uhKpsEIsqFGoGYLSz9etcRH2n9DFBUUWtowsQWcsgISEA9y2NoNpexybK5GrmTQtl6Ai0RUPEFRVOuIB9gyn2TOcpqJbHJkuEQ6o7BxK8NL5IiMdYdKRILmawXLVIB3R+NapLLGQyn96+9ZVq5FPzJcZy9boTYRYrOg0TJvlqkndsBlKh3lwe+//z95/x1uWnvWd6HfltXM+OVeu6qrq6q7OrVZWSwIkEPnawAUH7LE948sde2w+4zHGHtvXwxgYj7G5XGyiwUggQCig2EqdY+UcTtzn7LNzWHmt+8e7965Tp0J3S92iG+r5fLrr7L1XfMPzPu8Tfj9GUuZ15yzVery4WGdHKYkiS8Ns+ssVMU9dP+S7D09wdO7GbP+BTVjvubxjV4nTay0qbYdHdhbJJ/SbtmvP9fmVJy5wqdJlOhcjrquUkgaP7iq9bh6YN1O8IOSrZysEUcQ7d5dYrPU4vdbi0FSW+eKNfCAD6bk+Xz1bwdQE0scnX14lbar89QdnefZyjZWGxa7RJKdX21S7DuWmTS6us3csxe8/v0ij6xBGMooM4xmTXSMpyi2btaZFteMShH17WZNJ6Br1rosbCq65NzrdVZPhHbuKxA2VK5s9UjGV/+m9uykkdE6ttbhrMsOO0s0rL+7YLW8PuRkn2PbvDRXGM3EOT2VJGArllo3tBdR7LndP5ZCJeGm5SRgElNsuaVPl6HyeuXwCRRH8LxcrbTp2QClt8t69I5xdb/HpY2VyMZXjqy3CKGLfaIJSOsbFSpe0qXBytTP066gILkVFknDDCKvvcFAkSBkqlnc9t4omgaHLRGGIEwhO0L2jSeK6xnKzy1pD2AIzOZNSWqDOjKYMGpZLreex0XbYaIsqzFLK4Efvm0aSJD53oowXhuwfTzGRiXOx0mWjYzNfSPDozgJfv1BFkSXev3+MK5sdLm32+NH7BLfQV89WMHWFx3aV+Mb5Cl88vcE7dxd5z95RvnFhk7bt89ju4g3V/t+O/KPff46Pv7zxqsfJEhgKpAyBqHFkJsdcIcaTl2qsN20eXCgwkjKI9znty02LsbSJrilM5mL8p69coNp1+eD+MU6vt2jbAd979wQfPjjOE+cqnFxpsmMkyfv2jXJuvc0nX1rh0FSG0bRJy/J5x+4i6TfwvQHOrbdfk85+o2WjZd/gc/CDkK+f36Tec9lo2VS7Dit1i7WWw/v3jfAj98/ecs38i5ITK02+eHqdhK7wtfMVqh2X9+wZ4bkrNY6tNIcwfqoMmiLh+tFrtq9ejyiApoC9BfVMlaCQNCgkNZbqNnFVJhvXCaKIlKlQ6bjISLx//wjfuFBDliMMWaLjBoymTfaMpnji3CZJXSGmKyBL/NTDc5wpt7H9kJ96ZI6uE/DKcoO9Y2lmC3H+3efO8PXzm+weTfI337FwW/SkgSxWe/zMH7zEasOmlNSJEDzFuqZw/1xOIMO0HWpdh7lCgnfsLnF8uclk1uTkapNnLteRpQhZkokbKg/N57H8kNG0SaPn0rQ8ql2XQlxj91iKzxxbo+347B1L8eMPzXF8pcXZ9TYLxTjPX6lxbr2DpsgYqowfRmiq4FDfM5Lk5aUGHdcnbWpMZExOl9sEIXhhhC7DQinBRtvB8UOShko2rlHveSR0BV2RccOQ6XyCd+4q8pkTZRo9FwmJMIqYysRYavaodlzycZ0gEn64mCZjewGWF5IYViRFKJJE2xU6XpchYSi4gYD0i+sy84UESw0L1w/RVYlsXMf1BVqZ4wc0bZc9o2l0VWIml+Ajd0+yVBf3/6UvnKXlBCR0mZ/5wB7+xqMLt+1D1w/58xNr/NbTV0gZKh+5e4pLlS4vLdZYadjsLCX4++/dRVxX+MMXV3j2cpVmz2O+GGfnaIpWz+PUWov5QgJdlXj2Sp2UqSAjESExkja5utnF8QMmcnF2jSQ5t95mqWZRSulIksSR6SzNfrVWJqZxudKhYfkEQUij5+AEEcWkzmbHpu1ExDUJSZLxAsFTZqgyTcsTtE8RqAoEAUSS4GRTZRlVAT8ARYoACccP6XcBpgIjKRNJlmlaLh1HlI8HoVg74ppCEMHu0SQjKYNnLldpO8HQp71/PMlYNo4kSbx7T5HPHV9no+Pw4EKBcsumlDRYb9ks1y1SpkK56QiUPU2l53l07AAvCBgwgwZhiCLD0bkCv/CDhxnL3JwLHb5DlWAAkiQ9DMyxJfAWRdFvvRHXntp1IFK//9+95uN1RRKkrX44hHiYzsdo2T6OFwwDDLIkBtQ9M1kuVrq4fjjEUM0mdB7bWeTcRoem5VJu2iQMlY7t4/oBThAR0wRZe7nlECEWgvfsGWG+lOBr5zaxXJ+G5aFIkuAx6jvn5wsJjs7lWaz1aFoeYRSxeyTJn59c7/MchWTj6nDAT+UERMkrS3W6bogiwX3zAj5xtSE2R+WmPTQYdUVCliTsLdi1EmKwK7LMZNakYXm4fSLXASFhTFNo2oKQTup/jqJo2F6D67zWEXXu59/Pww8//Lqi6//xKxdYqvVYrPW4ezrLRtvBcgVR4kjKJK4rHFtpcq7cwvZCNFWQ8flhOMTj3TWSZK3pUO041xF6KhL9gJdMJqbStHz8QBAV3g7b+q0uqizGieWFYnELQvIJg4d2FPjuQ+N8/Pllvnh6HccPBOltTGMmH2fXSIp/9PgecrcxvgbZEYvVHr/51GU+d6KM5Qa4fkDHfW0wiK9XJASM32QuhtIP0pqawkTW5O7pLCBxeCrDK8tNAN6zd4TD01n+6MVlrlaFU2fvWIqkoTGaMVhr2AD81CPzZOIaz1yqimDZlnP/ssrRo0f5O7/4B3zh1DpXq10SukoxZZAyVJ68tIkfROQTOl1HBOglSZC2qoosjDVFouuG1837m82SmwWABzIACHqts0vpk3m627hctj6D0ifidPrQbVtx628mcVUwcA9w+RVZelW+kmJSx/UDWlus72uk4NecoltFk0U7bIXI1hVpyD10M1FlKCR0EoZKKWXy8M4C/9N7d98hmH8bya6f/fQwEUQGLv3b78IY38X4T/zSTY9XZRGIBYEPbqgKcU0hbig0LQ9NUXD9gLihMp42+YUfOsxULs6/+JMTfP70Oo4f4ngBsiR4BnJxjYViko7rY2oK49kYv/TDdwPwu89c5atnK5wptxhJmdw7m+MfPb6HX//GZc6U25SbFvfP53n8wDj7J9L88UsrfPKlZZo9D1mWGE0bLNct4rrKbCFOPqFjqAo7R5KUmzbHlhscW2kymjLww4iEruKHAmrB0GRkSWKhlOCjd0/y//3aRbqO4Ml4aakBQDau07ZcrtYsJAmyMZWEoTGeMfmxh2b54ukNvnG+wkbLwfZEsHnXqAgCnOxvxv0guo4oORNTh/yv3k0mnqlKpGOaSPQZSZIwBDk2wN9+bIF3PvLgnUqwt7EcPXqUH/5Xv8MT5ypc2OgMOX+/EyIh9gK6It3URpKgb7eaTOXixHWFEytNxjImjZ5Hsb8hvHc2x4mVJpmYxsWNNrYvCKi/5/Ak//pj10MouX7IrzxxgSiCs+UWE9kYx5abBGFE2/aYKyb44F3jN0CH/OaTV6h13SHfgixJrDYsYrrCE2c3yMV15osJ/o8fPHxDstBSrccnXlgGRMBmrSnsrB0jST5yC6iZT764wn/95mXW2za6IhHXVRZKSY7O5fkbj84Db42M3FeWGnz5jHAeP7yjwLOXa/hhRFxX+Ol37rjleV87V+GFq3VatsfVapez5TZxXWH3aIqOI/Yx9Z6Locgs1S2CMMLUlD5JenCDvaPJgPTqtsqbJbIEcV08n6kq3LeQ59BkBhCJeH/3XTe2xR275e0jNwuCxSd2MfLjv3TDsWlTQZbE/tL2A2RJIq4L6OCeG1w3RvMxsc9QFZmG5Q1hsVKGyn3zBZ44u4EfRNf5KECMN7lvp78Zoso3XluVwdQUFFlCkSQs18f2r+09JAl2FmIgS1yt2RAJKLBSUqdl+VieTzFposgSqiLRdXwemMtzodIlpivsKAnd+8LVOgAfOjjGv/3sGSw3QJUl/sVHD/CpV9YAODSV4b37RvlWZbvufD22y0B0RaKQ0JnJxzm11gJJIqErzBcTFJIGjZ435EreNZLiwkabM+U2fiD26YN1ZL6Y4KcenePJC1XOb3SYycf5rkPj/NGLK6y3bBw/5L65HHFd5a7JDO/f/62/93aJooj/8OULBK9BZ7/R8gfPLwmaEeAnH5kjG9c5tdriz0+WuVTpcLHSxfYCyi0LRZIopU3+4ft285HDE2+JtQ9EgOKXv3ieFxfrVLsOS7Ueiiwh0ee0fAtSQkqIuUqflkWVxd+aKhLWZUn4B0xVHnJk+X1fgKnKgoKln1D4nr0jyJJEx/FRZImDk2n+8SeO0bI9NEXmB+6Z4mce33Nd4PZmfffPPnmc//780hCKEfqJ3/2ESBGc8Pv+WYnRtEnYDwIt1a0b/BmqBMWUQdv2MVSZdp+rSlMkIiIsT5yhyjBXTBBFERsth6ShstZyuJnI0s25qV5rm0dc8/EkdBlNVfpciH3/uySob94snb71WdjyPANfVtLQODSVYddoit966gr13jWetlJS57P/8DGKSeOWc++lxTr/x5+f4fhyE1WRGUkZyJLEpc0ufhAS1xXev3+MHSNJPv78Esv1HhFirRlPG9R7Pn7fpy4DvX5hDP21Dq7xeauKRMpQaNrBkAstZar4QcRISqdp+/2EcR/X6/Nlfwu++TdLJMQY9W7yIHFdIa4rZGMqKw0bWZIIo5Bc3MDxA7pOQMQ1P3wYvfo7GYrED98/w89/9K5bVoJ9R0ocJEn6beAXgEeB+/r/3fAw36q83gwRta/UBns2WZFIGioxTUFVRaXAwJmZiWnk4joxTUFXZdKmiqKIyOme8RSGJqOrCok+P1U2rqH2g2xmP6t7gMGuKTK7RpKoskw+ITCOzb6ii6myuL8sE9MVFkoJ4rqCqkgCR9pUSfWdz7oqEdMUTE0RgbaYSi6ukdDV4eTeN5piNGWiyjIJQ0FTBjFSoUwNTR52voTIHhw8c1xXSOrqEO9UVURgKG6qyJJwMMuS+C6hK0KJMfj+mrJ5NdH115/ZUkoaxDTR3qosMZIySBgqCUMlHVMxdYVCQkdXlSG/QbbPb6XKMqamkE8YpE0VXZVR+g8rI7jaJEkolYShoSlCYauKjK5Iw2PfbqKrSv/dZXRVxuiPZRFAjZGNa/22EO2VNFQUSaKQ1EQWzGuQTEwjaWjEddHuCVN7zePg9chgnCn9OZuL62iKmDtTuTggkTJVxrMxsahIEoWkGGellHBi5uI6uiJTSOrDipqkoWLqYkYUU8YN5/5lltlCAgmI6QpGP/Np/3gaVZaRJIlcXCMT15D6czuf0FFlCUUWumIASy7L1/gmtoosCSPsVnQkav+3rT8P+vlm1JGKDElTve43GZENNriOroixrsigSKKSc+t1t0vcUNFUGUWWkPuB8O0jf/tpU9kYsT4/kNR/BkXm2vny9fpQ4lq26laJaTd+t/WeqiyTMjVi/aDIXOE7l7V4R94YGc9cq7BIGrfXqWKNFQ4kU1dQJKHfkqY6XPNVWSIT09AVmVRMIxsXemoqHxvqQ+G4EfaFoohqyEE26WT2WmZUKWn0DVDBRTqaNlBkYXfEdYWYrqLI8vDcUsogoasYmkzaFHo/bWoossRY2iRpaMPjSilxjYQu1tGxjEnCEMG8kbQxdJINAkyDf8cyBrm4uM50zqSQNFBlibSpko2LY9IxjYlMTKzXutDfan/eZ2IaO0sJ5OF8vqZ/ZFlwpCUNYePIXD+3FQl0TRjkhiYT19X+2iLuabyJPAx35DsnU7k4MU0erg3fCRnY53FNwdCUG9bEwb5DlSUSmkIpZZCL62IOSxLj/YzGXFwnZaqkYppYoxNG38kqs2PkxoopVZaG83c8G8NQxb4hrsvEdDF/ijexdQbzMZ/QKfbtp6l8DHO4X5EYy5ioN1nc0zFhVwJM5WJDLr1S/5o3k5mC4ChQZZmELvY8cV0Z2m5vFckndGRJQpKEniv03+nVnnPwe1wX+m+QdLdQEjzCiiQxmjLRVQVTk1FlSWQyx7QbbCHhKFNelSv0zRS9v9YMHPyTmdjQpn6r9dkdeWMkE7sRQEiRRdAzrou9pa6K5JaYLsaHLF9bfyUJdFUiaQq7Id23a1RZ7iegCm5xSbp+XVYlMd7erOGuyCLAs1UGfgFDlUkYKoYqbKqtzyABKVMkPA8S9BK6QtrU0FSxTzI1mfGM2b+WQjGlk+6341Q+PpwriiyRj+uCKx4YSZvkE8ZwjSreRnd+p0SVZZKmRiGpo2sKiiSRiWvCD6ML5A9ZFjorrivMFhLDfVU2rvf3ZWI9ms0nSBjqMGBaTBpD2zSf0En29zw3W5u+HZEkadiW32k9Nbhf0lCH/pV8QnDDx3UxjhKGgqEqSJJoxzf6/b9dGfhPdEWmENfRFAVZksiYGpr81rGPt87TQQBdG+7LJeKGeG5FllDla37NpKEi9b/X+r6OiaxA6JAlwY1aTIk+KSR1JrIx4fuSpOH8NtVX950tjIhq2IHNN/Q9yxIJXe1X4Ag/jK4If5QsSSIYdxPbMdb3L8R1sf/TVRm5bxcmDWWoT1VFZixtEtPEHihpqrcMBsgSGFtu9lp7d5AMLEsMfSGqLFHsj/XBb3LfP7PVTyJv+Xfr+71W2X6ezOBe1/xKWt+vHdMVpnJC5xQT18cSCkn9VffrxaTBSMpAkqShPSx87lLfBy2uX0wKm11T5OE4SegKCUPsA0xNIdnXhQNbXu2vPYNAoa4Kn7vab7+BLz5pqBj9PX/SVNFkeXiNwbu/Fbat4j1v7ElNRsQaZJmxTKzve4SkrorAn6lhaDKKLGzigV/tFm6zoeiKzJ7R23OTf6c4wU4D+6M36WZHjx6NPvS//Cq//UKZvAYP7C6RMlXunyvSsFwub3QI+wPggbkCmbjOdD7OhfU2lzY73DOTp5gyiCKotG2iCJYbFoos8a7dI7hBiOcHtGxBrF5uWuQTBnvH06w1LWpdl2xM5WKly4GJDBc22ixWe+wZTzObj/PMlSqnVlq8a+8IhyazlFs2cU1hudFDlgTpsKHKWG6AH4aMZWJM5eKsNnpYbkgppdN2AnRF4vhKk4mMiR8Kg03rG2e6IrPRdvjm+Q2KSZPvPjyB7QWcKbcZTZlstC2+eq7CzpEkMU3tw5P1OL3eZjoTI5PUqHd99owkURQRLFqs9jAUCS8Miesqpq7S7ENG5hM6pqYwV0rwwpU61a7LzlKS9ZaFpkqossyx5QbTuTgrTYdL6026XkjGlDi+0uVX/toRDkzlX3dmixeEbLQdNEVkZSUMlVrXFRPGEBHxMIoERFvDYiIXGzrQluqWMLD7QdOVhkXb9jiz0mBhJM1k3uTUapsj01lMXWG51sMNIhHo68NdLlY7vLLSJGOIIFo+YXB0rkC1a/O542tAxEw+zmQuQbXncnqliSyBrsrsGEmyVrModxy0viPuwfkSh6Yz/M4zV8j1N9YJTTja6j2HhKnQ6PlASMMOmC/EiWkqXdtjo+Vyz1yWSttlthDjmUs1WrbD7rEs42mDU2stxlIxHt5VZKPlMJ41qXY9DEUSBMDZGGlTo2V7XCi3KLccRpIG41mTthswk48PqxFuM/eG/de2PSpth5WGxXwxwamVJn/6yjJn11pUWjYN98bzda5F8gtxeGzfOIemsizXLSQkHM9HVRXGUiaKKpyusgKluM5oJk4+oXFls0sypjGTi1PtuiJorStUOwLSYlDJFkUR5ZZNQldoOwHFvhG31oec2Rrw237uX1YZ9N/59TaKLGF5AfmEzlja5MmLm2x2HB6cLyJJEZ8+tko2bvCevaOcW2/hByGaphAGEafLTfaPZyi3elTaDm0rQFOFg3EmHyMTM6h0bMoNi+V6D0NTSBoKpq7yjp0jnFxpEUQRWVNhuWWR0g1G0jqNnstG26GUMlmsdTBVmbsms0wXEjx5bpMIyMRVFmsW795T4tx6h5WGzbv3Fuk5IUu1DmEEu0fTPHtlk9GUQcsJKCYNLm12WKr12DOa4sGFIm3Hp9y0h455U5P5/Ik1Fms9Dk/lODKb46UrNa7We9w9k+Nj90xzpdrlhStVwgBKaQNdAduPKKVMLDeg0nbQVIlqx0FVFB5cyLPS6HFmrU2t67JnNMW+iQxrDYuleq+/yZcEYbiuEQIjKYO5YhJFkWjbHvvHM9f13SCb80429VtbfvLXn8bxA/7bTz8C3JgR/zcenmEym2AyH0OWYDIXJ6YpXKp0GM2YlFIGlbZLylBpWh7ZuMZm12W2EKeQEBtr1w85u97C9cIhBGgpadBzA/aMpwiCkCtVQXQ8IPoOw4i1ptWHyhVV8Yaq4Ach620HCUjoKpn4tQ3Ccr2H5QXkYgJiJIoi2rbPVC5OEEV0bJ+xjDm8RhCEWF7AZC5GvSuq28XvES3bGzr3B8eXkgaWG3Cx0uHQVAbLDTi51mIsbZCJ6ZSbFpP5OGlTo+f6ogrMDbD8AEWGQsJgIhvj6YtVmpbLeCbGmfUWQSgSleaLSZK6wsm1Jq4foUkRzy7WKcR15otJRjMm+YTe3ygLSLZyyx7aPXc4wd7ecvToUZ5+5lkuVTr03IArmx1Ol5tcqnRZrHRp2g49J8T2YGC2qAgb5a7pAu/cPcJ4JsaptSaW66MoCi3LpW37FBI6pZRBxwmYzMQ4sdYgZegcms7i+gFN2+Ox3SO0eh5Xql1W6j1W6z3SCZ2DUxmCICIb15nIxhlNGzQtv19dHzJfjHO63GYmH8P2IwxFptK2Gc/GePZylWxcwCgO5vZWcfyAzY5LKWlQ6TgYqkynj+wQ02XGMzGkbbvKIBQ2UyGhI0mw2REE27Wui+0HNLqeSAa8hcOnbXv0+hBDXcen3dcLt5Or1S7VjkMurqPIMooiguuDYM9bJRu+3nUJo4hC0sD1Qyodh9F+dcvtpNJ20BXxXhfXO6iKxP6JNOsth4blMp42WWna6LLEWtMiaWrMFxN85tgaPdel3vNImSpzhSQzxQRrdQsnCHjmYhUJiZgmk0kajKUMLlXaXKpYHJxM8aXT68RNjXbPpef6NHseSVMlm9DZaFmosoC6Hc/FGc0YVNo+SV0WVfSyRKvr0HMEZN141mQyn+D7jkzSc0NqXRtdUbhvvoAsSVQ6DiMp46ZQ4nfslreXbO+no0ePEvuBn2epEXF3Ed599w52jaSZKcQxNJlaR2TS17oOu0ZSyLLEmXKLVEzllat1Fkop5kuJYeKwBJRbNoEfkU5olJImkhTx5yfWOTKT4ZMvLROG8MiuEhNpg+cXmxyeyvDbT15ho22RT5jkkxoTOZMokrDdgLNrTVYaNnfP5jkwluL8Zodmx6XeFdBQ98zkMDUVWYpY7zhEIbx3/yhEIdWux/NXaqRMjX1jabIJDUWRycd1OraPE4S0LI/lzS5Nx2fveJq7Z3KEYcT59Q5d12f3aApVkWhbHl1X0BLsH0tzfLVJ0lAZSZt4QcBK3eLgZAZZlod6IRMXNs3ptTZ7RlMkTZWW7WG7ASPp2+vOV5PtujMII3b87GeuO0YCSjGJmK7x4I4CHTegkNQZT8dImRq7x9NibqsKXdvjarXHvom02LvIEkEY0XMD0qaK7YcUkzrHloSP6J6ZPJW2TbXrcng6SyamU++6NC2XuKEykjLx/ZDjq03miyKJ6Y1475vJ69HZb6REUXRTn0Oz5w19jW3HJwwjlmsWByYzTPSd9G+VtQ9ENdhqw0JXZWodm8ubFu/cXeTUWpOXlhqU610UWUVTRWJHteuwWrexgwDH9ZkvJum6Pk4g4HrLTZv9Y0nKHQ9dhnLHYSxposqw2rRpWD57RgUs8+mVJstNm+mcweN3TaDIEqfWWmy0PKZzBpm4wYGJNBO5GC8vNcgndEZSJm3bJxvX6Dg+zZ7L9xye4LMn15nKmvSckCAS6Bq7R1J87VyF8WwMIvDCkAfmi6y3bNwgYPdo+rq9iq7KLFU7PHelzu6xFDtKqRsSyG/Wd0EY8cylTS5vdpnNx5EliY2OgypLHJ7OstqwicKQKzWLPWNJxjMxyk2HbFzDdn1+55mrzOYNeg4U0wYP7iiw2rCZzcVZb9tEhNQ6Prmkxkw2wdfOldnouNw7m+fQdI6lWo+u64vqtzDit55a5J6ZNJYfEYSh8LfJEvfPF/ji6TK2FxDXNN6xM8cfvLCKLkss1jtM5+I8tKvEpc0urbZLKWMyV0xyerXJeC6GhITn+xSSJnvG0ry8VMf2fDRZpu34LJSSVFo2r6w0eWAuT7lfCZo2VSwvYLPtMJaJUe3Y9LyQyYzBV85WQIK9I2nyKYOu67PespjIxLh/ocBTF6roMgRI7BxJUmnbjKVjWF7IYrXLQzsK1HsepZTJQinBetsha6r89+cWee5ylUNTOX70wdlhgunt5l6963JytYGmigTyStuh0fNYrPaYyhncM5sniGCp1mW5ZlHtOOwYSZIyNUF1tNFmRzGJH0Zc3GiTMgW1hutHjKQMVhsWlucznolTSGo0ez7HV5ocmsyw2rK5fy7PUr0nElk1mc22sM+jMKJpedheyGjaoG65XKp0mcrGiADHC3E8j8msyYXNLo2uT8fx2DGSZGmzg6TIFBImsgzZmEbN8sSeP4joeT6rDYvVhsX9c3kWRlJYXoDrhRxfqpFKqKy3BKrBodk0F8o9PnJ4ggiJF682uFzp0HI95vJxjs7lSZk6fhgyk0+w3rK4sNHhsV0jnNtoMZIy6HkBVypdZvMJLm628fyQbEyj64VU2jbuFgQ/2w3QNZmHFooc7VP63KoS7DsVBPs48D9GUbT2Zlz/6NGj0fPPP0+j0cA0TTRNG9wXSZKIomi4uQvDPla0IqD8BjL4e3C83M9mGJwb9R09g2tu/W3wdxiGw+sOzhn8Jm/Jjth+r+3nbX3O7ecNrhWG4fC3rX9vfaet7771WbZvdLfec+u1B882+HvreZIkEQTBDffd+r3vC+fA4HvHcVBVFcuySKfTg777lhb1rffb/v3W9936+/b+2v7b1u8H77D1/W/WxoPjZVkmCAQsWhAEIitAVYf9ODg/iiKCIBj+trVtB/fdei9JkobHybI8bEMQY3hw/cE9tp47uPbWNtn6DlvbYPs8uVmb3ey7Qf9tb9ut9xj85/s+sizTbreJxWL4vo/jOKRSKYIgwDCM4bGDz3K/Gulm/be1Xbf3/a36/bV8vtV3fxll0H/b9cmgXQfjD67N7a1jdzBeB2Nx67gdzP+temRwva3jfXC9wT23fjeQrbrcdV1UVR2O7+2ydQxs1bG+7w/Pg+t19ladsfUaW/Xt9jEThuFwLgZBcF0bbNflNxtfg/tsb7ft771Vd2y9zqDvfvCffJqP33Ekve1k0H+//Muf5qd/+r3oun7deNw6T+DWOmnrOL2VDvx25bVe97Ucd6u1+3bXu93529f87bJ1Lm89fuvaN1izb6bLbvYMd4Jgb2/Z2n9bx4/jXIOEGaxFnucN17HBPIvH40MbcTBmgiAYrgNb18bBWrZ1z7Hd5t46Prfq/JutHVs/D57h9c751zMHX+06r+cab4Re+k46Al+LrfitfD/4DW69h7mZzbF1rAzsZF3Xh7b1QAbnb9+/Dq6z/XvDMHBdF1mWURQFz/OGew7P84Z2juM4w/21LMvD719Pvw767/jx4xw8ePDVT7gjbykZ9N+ZM2fYsWPHUN8B140huDa2fd8f7pO3+zgG+nMgA9t6cPz2vcZWnTu4ThAEaJp2wzgMgmCoe7fOj8G9Bzb81nsMbIPttjhwnU0wuJfv+8M5sdUnsvU5BvPz1fxLN7Pzvx2bbruOuZnutG2bpaUlwjAkk8lgGAamaaKq6tAW3bpPuZlderNnH9x70P6Dv7f2w6s9+1/WPfjtfA7b7YCb7fn+Itpm+/Nt9x9tnWuDf7faJ1vn1sA3cLN9zmDdGsxLz/OG69PAhvJ9f/jd4LjB3n6wdg3uPxh7222lwTts97EO7r9Vh233jW5vj+1j/mZ9czObcyBb1/qb7eUGMvi8dU3efp2t7wvcUtds9c1sbaswDG+wV7e249Y+23q/7b6i7c+/tf22v+/NdODWd97aP4N/t9vT26+z/d5bz9/e5lv7eKvfauu6tHXu3aqPt/uBto757W10s7Vka3sOrjdok62239Z5tvW8wdiXJOmGmMLgnbe2w81sxoHcbC3a2l9b23DrOj9ot+3jYaADtuuDre+79b23+9+39vvWvdegzbevU9tFukUQ7PZlHm+cFIFTkiQ9Cwx3mVEUfeSNuHgURTc4Isw+jJ+qCFiN0ZTO1VqPVh8r9b65PKMZkyiMOLbcYK3lEIUCy3ksbfD9907xgQNj/PFLq1TaNq8sN1hvOUzlYnzPoQk2OzYvLjY4NJXl0Z0F/s1nz3C23CGfUHn8wDjZmE65ZfHclTpBEPHYnhJ/+7EF/v0XznJsqclCKcnOkQRPnN1gs+MxlTOJ6yqFpMHu0SR//NIKDcujlDR4YD7H+Y3uMOvC9kLG0iZ/7z07uVjp8LkTZXaOJJnOxXjyYlVwgdV7NGyfR3YWycY02rbPmXKLl5cagMSOkqgomsjG+H+9fxf/5ZuX+dLpDVRZlDmnTJWLG12alidgOSRQ1QEEo8CpHfCZxXWJthMiIfh0mpb/mrBHL/3rDwGCKPSPXlpBlSV+4N6pYeT9VlJu2vzWU1c4U25z72yOH3tolrSpcXy5yedPlVmuW5iqzKXNLrmEzj/54B6eulRjs+3wwbvGcLyAX/jCOXRF5h8/voevnq/w+ZPrnF9vI8vg+SKrPWTA3yC40goJg9GMwWK1R8v2iEIxIU1VJq7LlJsOW7g5USSBW3q7thjg7QooBhmrn40/+G2AXxxXJZzgGr6rKktDcu2201/sEMcqksh2n8rFCcKQq9UesiQxkjH53sOT7BpJ8F+evEK145IwFFKGSiFhMFdM8PhdY+wbT+MFIX/04jIbLYf3Hxhl75j47g9fWKbSdvjAgTH2jIky0wsbbT57vEw+oRM3VF68Wme53uPZy1W63yYv2Gze5McenOf5xTq2G/AP3ruTYtLgP3/1Il8+s0FCV/gH793FesvhyQubaIrErpE0j981ypGZHF85s8Gx5SaHpzPcO5vj488v4/gh33tkgvFMjK+eq/DyYoO7JtO8d98othfw8ReWaVkeHz44/h0lzP2Lki+eWuc3nrxCylTpOj4vXK2jqyITablmsdG2+7yAEm4gSE+LKZ3LG12coG9Q9Ssb8wkBUbZctyi3bBRZxvUDvCBCUyTycY22GxAGEUEU9SFNTew+5q8ThKiSgKoqtyx6bkgurrF/Io2uynzz/Ca9PrlSUpcFj1cQocoQSaI6NB9X0RQV01C4bzbHkxc2ObPeGb7vSFJlIpfgXLmNF0RMZk0e2zNCte3Q7GeqT+cEZ8rFShsJUTafjWsUUwaXK4LQ2g8jRlMG84UEJ9eaQ5z7D941ThAJfpYL6x2+eq4iMlwKcTq2z1KtBwgIAFWW8aOIlKny+IExYprMZ46XaVqeILhXFSzXJ5cwePeeESayMX7w6NSQHHuw7t3Jqn5ry89+4mX+2/MrADy2M89v/c2HqNWaw377xZ/7EiAgGmKazEw+QdPyUGSJxw+M8rEj03z57Aa6KvMD904RhhF/+OIyZ8otTqy0APiug+NEiHXE6/Nr/ODR6WHG9bciYRjxqWOrXNns9jcV8MjOAkfn8tcdt9lx+N8/fYpqx+XRnUUsL2S2EOcjhyeQt2CSfPLFFf702AqjKZO/+64dzN4G2vNsuc3nT5YppYQ95gUhH39+mW9e3KTecdk1mmS+lKDnBEiSyKStWx7nym3W2zYpQ+WemRwhsN6yOb3Wpuv4/U2FgFI+MpOl0nI5tdqk4wboqsTukSSmpnJkJstju4v8X1+6SL3n8r59o/zkI3ND6LM78vaXy5tdPnN8jTNrTT51rPy6z1f6Vf4SEb0tQPe6IhAeBrZd0hB8eXvH05xf75A0VVwvZLHeE3yZoeD+E+cqGKqM7QseTiLIJXR2jyYpJgUn5D0zWf72b79AretyeCrLgYk0YSTus3V9qHVd/vCFZSIiPnbPFMWkwWqjx7/57Blals/ffMc879hVuuX7NXoun3hhmSCM+L57JhlJXcvIf+pilWcv19g9muRDB8dfta0ubLT53Iky+YTB9987ecvqsYFsdhz+6MVlJCS+/96pIZzjd0rKTZs/fnlFcHzcO4XtBXzypWufMzHtljYxXLOLC0mDH7h3aggN2XF8Pv78Eq8sNSgkDN63f5R94yk+8cIyZ9baxHSZ5VqPcxsdATEV16h3RQXwe/eN8uJinYuVDhttUaM4hKOXpf5YFHsOxw/w+xuSNyPVVQIOTKT5++/eydn1Dgen0rxn72vj7bm2X1/ko/vz/PKPP/QmPOEd+XblZpxgtm1v+f4iuiKRMBTqPcE/oyAgUw9OZTkwnuZ3n7lKuSWqnHaOJvjeI1N87ew6Z8odLC9AkQXHzj//nv383rOL/NZTV2n0XLJxnUd3Frm82eH4Uh03AGRpyOmeMlTSpsrlzS4gDfdwuYTOD9w7xd/73Rf52rlNvCBEVSSypsqusTTTuRjPX61T7bh0HQ+QODSVIWmqHF9uEgFjaZMgCGn2OcMlKWLgP82YKrqq4PiCZ7zcsod8vjFN5sBEmvliksd2l3hwIcfHfuUp1tsOKUNhIhfD9ULminEemC/QcQLmCnGeulTluSt1VAnetXeEv/7gLFO5OOstmz94bomTa012jaT4wXunmSncCHd7M/ncibLgVgtD3rGrNORh3Opv+fWvnmOtE9zyGpos4BofPzDK8eUWG20HRQIvjNg9muLDB8f4lScu4gchDy4UKKVM3rtvhDCE33zqCs9ertF1PO6azDBfTHK23Ob9+0f4qUcXbnnPlu3x8eeXcf2Q7zsy+aqVw28n6bk+H39+mY7j85HDE0zn4wRhxCdfWmG1YbF3LMWfnyxT77nsG0ujq0rfDr22Rj95YZPnrtTZO57i8QNj35Hn/szxNc6vdwgJObHSotyw8YKQIBKIDpcqXSpt+zousAFcmaFIRAjfwcCftVUkGFYQbv1OU14f16UqCVvLC8X5hbiOpEjEVRlVlenYAaWUzt0zOaodh7PlDpIMYymTB3fkKSUNfu1rl7hc7RIhYChLSZ1UTCMKI6o9j9GUwffeM8m9Mzk+d6LMZsfhwkaHYsrgI4fH+ZOX1/DDkB+5b5rHdo/c8IyWG/CJF5Zo2T7ffWiciWyMf/OZ03zj/CYpU6XX5/5MGSq5hMYD8wVWGhZrDYukqeJ4Pl86s0kYiffNxHUOTKaxnICNjkPX8dk/kcL3Q15YbCIB0/k4LUtUkCuyCAyZffqQCxttvDAipiokTY1cXGWtadN1AySifhWceHZDldAVmSCMcEOBuEUkeLUOjKc5udam7fjENAEn2bI9gjBC68Pgj6ZMkMT+9tRqCzsISekKlY6DJEkkDYXNjidoiEyVrheS0FVm8jFatocXRPhBSLePigDCpxTXVWbzCfaNp4gkibN9HutK28H2QgxN4SOHx5krJriw0WGlYbFU7VHtugShQPpSZImeF+L6AX4odH3KVPnuQ+P8y+89OEQhOFtu8/vPLrLSsHhkZ5Efvm+alYbFP/3DY5xcbZEyVWbycRQZNtsuq00bU5OZzsXZPZZGluDpS1U8P+KDB8f4oaPT/OpXL/LC1Tp+ENJzfUppk//3+3bxrz93hqWahQTMFuK8e+8Iz1yqcmGj2+eKlYe8daIrIvpTDIBdIwkm0ibfuFQjDCNUCUxdwfMDvFDAL84U4kN+RzeIeOZSlXYf8e6+uRwLpSST2Rjfe2QSRZbYaNn8ztNXef5qjdWmjRTBY7tL/MgD0/yt//ocy00R3knqCjFDoWWJitaYLuAhW7aPLAkKq0bPI4gixjMmubjO5c0uqT5NUcv2IRLvFddVvDDEcn00RaGQ1MTvSNiuT8cR3OcLxRiP7h7hC6c2WO5zLuZiGv/h/3GER2+zx/lOBcF+7s28eNPybvjO8UNcHzQ1xPUCHM+naXkEIYRhwOm1FkEYYXkBq00byw0II/E5psk8dbHKXDE5hBTcaNm0bZ/1lsQzl2tEUYTthSzWejxxNmSx2iMIQ2odlwsbHdIxjVrHYbPjoCkyJ1ebvHC1xuVKl67rc6HSJoxCluqC/PLMWpt942lWGz2W6z3qPbe/AY44vtKiYXnUei4ywgBJGApfP7fB1ZogTz612qLRc+m5okTZ9kL8MOT0aouxjIkXhJxbb+P0NdrlSpexjCiJfPFqg5cWG7h+SNV20RSJ5ZpF2/Fw/ZCuIxSgJPmCG0xXqPdcMeGiiI4DYSS2Xu4WwthXk6VqG4ALlQ6WKwyxK9Ued79KEOz8RpvVhkXX8Vmu91is9rhrMsOptSb1rstqw8IPItqOGBdfO7dJtSs2jKfWWpT7/W0R8OWzG1zZ7LHWtOi5wuB1g2vvID6DHIZsdh16riCvHrynFIpIfcvybljcX8v6PVj3/S1OkO2/AfT86y/mhxFd53rjdXB2EEHbFm0ThFEf5iqi2nE4tdZivW2z0XJo2R6NHoymTWo9j2LK4NRqi33jaaodl9WGIDI/vdZi75go8R2Qm59eaw03/KfW2vhhxErDwvICNto259c7WN9mAAyEI+KJ8xUcN0CWJb55YZM9Y2kubnTo9R2anz2+RtrU6fYhXvIJg5OrLY7M5Di+0iSMIk6utigmjaGuOLfeYTwT40T/9xMrLd6zd4S1ps1mWyjyM2utvxJBsK+fr+AFIZcqHZqWIDX2Qji92sbygiFMWhBGaLLEpieMh96WgG0QREiOj+OHfahXC6JoeC6IebXZ9aC/WMMAbskiisS49cOISJG4vNlBksS8aNke59c7JAxlGAAD6LjhMNDsDYPJEmU/IGEEmJ7CydUWV6vd6963afnYfnf4bBtth2PLDYigZfuEkYA7ubzZoWMH9DyflKnRtAW0yVLDwvXFuZsdB9sP8IIQx49oWB5fPrvB/XN5eq7PC4t1uq6PH0Rcrfbw/BCvD9nqhxBGAZoiUeuGrDYsVmoCorVt+6iKRMfykWWJsONwttwmYags1nocmMi8qWPijryx8ifHrhXBP3WpBsCKBdtdx34Q0Q0Dluo9iARf3vmNDk9e3MT2AmwvYLHaww1C2rbPxY0um20HQ5N54uwGj+4qcXKjyWhKQA2uNCx2vwom9u2k4/pcqgiC31NrLQ5NZTmx0rwhCHZmrTVcL75ytsL983kub3ZpOz6ZmHDI217Ai4t1ek7AamBxtty+bRDs1FoTPxTQMZsdh47tU2k7LFZ7Anpoo0MQQsJQWGvaKLLEcq1HuWnT83wcL+TcRpuYpnK11qVje8NNtRRE1Lsu59Y7whnm+WID70ecW++wbzzNy0tNogialkvbFvrg0mb3ThDsL5GcWWvh+iHPXK59S+cHkdhrbOf0dreYZn4IlhdwpdpDkeW+89Wn1nXxwwjHEweHkbApFVnAxDh+IJKoIkAS+4owgvPrHRpdl3rXFdBf5RaGKpOOaQRhdN36cHmzI/YRwMWNDsWkwfHlJht9EvQnL1ZvGwS7vNkdkqtf3OheFwQ7uSpspzPlNu/bP3pT6LutcnpNJJ2st4T9OZ2/vTP3UqU7tHEvb3bIJ/K3Pf6NlgsbneE+YbHao2l5130+OJVhs3Nzmxiu2cXrLZv1lj1836Vaj2rHZa0pnOcnV5uYmkzb9liq9zA0Wdi3boAfhHQcH9cPCcKIL53ZIIwiGlvI2wdjLwgiglC0VwQ3jMk3WqL+u3z57Ebflm695iDYVvmTUzV++Y1/vDvyJsmlmsNW964bRASWP/wcAGsth7G2w9N2lWrHwQ8jwjBguWbx9MVN1ltiTbW9EEOVef5qjaWaxfn1Ns2ei+2FNLouT17cFLD4vrguQUQQRCgyBH2noReCTMTpcpvHdo+w0XI4V25zeq2FFwg73Qsi2o7PZttmuW71oVm9/hyJWG1Y9DzhXPWCCAkbEPuXIIygv79QZQkviIgiF1WR+5Co19rC8kIuVbrEdZULGx0aXYd6z8UPQppWiB9EJE2VtYbNS4sNFkpJvnFhk8Vaj2bPRZElrlZ7nF/v9J3UHTbaNvWuoBo4U269piCYH4ScXmux3rLxg4hLle5wHdjqb7ldAAyEA7xleXzh1AbZuEa5aWFoCn4QUUu6/MnLq7Qs4ex+4Wqd9+8f49Sq8K0JR7SNLPXXrJ6HqSk8dbHGTz4yf8tKpsVqj1Z/n35+o/2XKgi2Uhf0KQBnym2m83GaltdPjISvn99ktWETRiHfvFjlnbtLnFhtXhcEO9Ffd0+ttnjfvtE3nRPS8QPOltuEYcSzV2q4fki5JeZHEILjBdS6znUBMBDrQxSB5UdI3NovOPAtbP/u9QTAAPyIYdIHQK3nEtMVOnaEKsviPq2IM2st2rZPrSeg3okiyk2HY8tNKp3Be0Q0ei6qDNWuS8rU2Gw7xHWZpy5sEtMU/DDi2HJTVKaFEV8+s8F6S9gCLy81bxoEW2lYbHau9b+uioBQ1/Wpdh2iSHA8NXoehirz1XMVkoZKueUQt32uVLvXfIaRgJu+sN4GSaLZ85AkuLTRpev4QvdFsFLv9QOWok0lhN/hwkYH148Iga4bIMvQsly8IBQJXNue3fYj/CAY+jUHvzdtn7MbbdqO8K/33KAPxdf36QQBlbZLy/KZLcQ5U24JOD3Xp9sPbgF9Hzz4QK3rgQRBGHKxEhDTlH7gI8LuD7QoBFeW8AOfq7UeyZhKy/Jo9ISu7Ln9Z/UCnr5UJWloXK50qfcpNjw/JIQ+nL9IJto65hwv4LkrNZqWN0zAGujUpuVxtdplvWXzzKUaKw0LLwhpWX5/j6iz3LDwwwg3EH7+TFxnqdYbBn+OLdVZKCb6NraADZckMe5+65lFNtvX1pbBfTbaDrYfIoEI/sgigU7ixv5abdhstOzh3PIiCPptDGI/vlK3cLwQTZa4XOsJH5fjE0QRLy3WGc/ExNrUb4MLGx3WmjblpkOzH1S9UOnwyRdX2OxcQ9HouAF232aNgNDx+4G6/tzsusNxVOnYtPt+x4blQiT0mReEqLJEzwuQokjM7xAWqz5xQxHP2R+nQQTrbZfnLtdYa1jD52jaHp89sfYXHwSLouirb+b1MzGN6rbvYpogZ9UUmaSpMpoyuFrtUe15xDSZI9NZRjOmcKD6AcsNexixLKVM3r13hH1jKc6vt7l7OouEwKWdycd4x64i1a6Dc7XBrpEkD+8s8OJive9o1zk4mSYV09lo2jRt4QC9dzbH/fMFnrlUw/YDdpZS7BxJstlx2Wg57J+IY2qCGHTPWIo/fHEZvesykjG5dzbLxUoPRZIwNBnbFZw2790/yuVKj88cX2PPWJKpXJxvXNhkvhBnudGj0fO5eyZLNq7RtnxcP+C5K3UiYM9IElNXmMjFuX8+z5n1Np8/uUY2rlNI6uwYSXJuvU2j62HqClqfwDmmCSLBpCm4uFRFJqEptBxfVIIFYtHYuh7ebIJKwHRBbBh3j6Y4s9ZGVSQWSq8edNgzlmK+mMTxQ3aUksz1AxWHprKst4TBHdNkLmx0ySd03rtvRFSCdRwOTmbYO5YS1S6KzIfuGuNr5zdZrvdw3BBFAdsPaXY9+olnGIqAZRhNG4ylY1ypdmlYLlEYCeJCTSFtKCzXLbbGfVRZbET7NjTcpB2UvnGt9fndum4wzDhTZfGbyPAVVWJ+eC1LJq6rSEQ0+pV3yjAQIDKHZwsJ/CDgUqWLLAtS9XtmsuwYSXK1KribUqbIACklDfJJncPTwnlSTOrMFeOstxwOTmYBwU00W4iz0XY4OHXNCX9wUnAaFZJx4rrCC1fryBK0bJeWfXsj+9VkrhDnQwdGefZKnZ4b8K49I+QTOgcmMqw1beKGwvcfmepjRruMpkzGMiZ3T4tnvmcmx7GVBndPZZkvJiilDGwvYF/fWXFkJsvLSw3umsggSRITWZPJbIyG5XLX5F+NQMN7942wWOsxmc3QdTyeulTDVGXumclxtdZlrSk2Mpos0/MCMjGNkZSO4wueHyIxD1KmqCgczcbww4jFmkVClbEcHy+M0FWZUlKnaQkekjAKUWWZiWwMyw1pOwL3XlUk5ksJlmsWHcenkDA4OJVGVWTKTXtY+ZiJKUj0K8EUCBGVYCNJDUVRiOsq987mcNyAl1eagJg7o5kYk9kYx1eaeEHIVC7G/fMFNtsiMDyaNpnJx9EUiXMbHQroaIrghyslTTRZ4uz6oIosxo5SgpeXmyQNKCUNvuvgGK4fkUtoPLKzwJdOi0qwhWKClu1zdbND1K8EMxQFt4+9PV9McHAiw5++soosCaJ5Q5XpOgKT/9B0hlLKYO42gYM78taUH39ghv/09SsAvGev2BxNxWG7dtRVQWq8UExS73mossRdkxke213iiXMVdFVmvpQgCCJOrDTZP5ESzvMIPnjXGEEkdJ7rh6RMjenca8savpWkDJU9YymuVLs8vKOIF4bcPZO74bgDExnmiwk2Ow6P7SrRcX1m8wnS5jUT09QUHlooDLHZ90+kb3vvg5NiPR9JGZSSBrm4zmQuxu5RYTftGRXcIl3HZzRt0rA8UoaKLEusNW0yMZVDkxlCRJbhiZWWqOCOIhRFYiRtcmgyQ6Xt8Mpyg5bt9zkHM2iKzD2zOd65u8SZchtVkdk7lmbXSPLbas878taSuyYzLNV7vGt3iT94YeV1n6/JQkdL0rWKfICYKrKYw75tlzJUFopJ9k6kOFfukDJVxtImV2o91LiGHwoOhggJXRXoArbn07IDIiKKCYM94ymKSYP9E2mOTGf5o5fExvPQVJb942lCRCXY1vVhZynFiZUWYRQNg+FHZnJMn1qnaXu8+yaOmq2yYyTJ8ZUmfhCxe/T6sX9kJsszl2vsGU29agAMhJ242rAoJI3X5NjcNZLk5KqosN5Z+tYD+d+q7BlLcXa9jd63Ryw3uO4ziPX+ZjYxbLWLr3/f2UKc8awpuByTOkdmsiyURDsLzmaFuKZwptxGliSyCY1axyVpqjy+f4wXrtbpOr7gC0HsE0QlmNxHhxAuR8vzcX2Rjf9mBMRkxPj40IExTq+3Ofgt2ss/cd93pprhjrwxspA36Gz5bGoyGVOh0haJoKoEs7k4Uzmxxl+t9lipW5iawkIpwbt2j/D18xu0HV/wKcoS79hZZK4Y566JDC8sNqi2XQpJnXfuLnKx0qXWtXH6iaCmpiARkY7pZOMa59fbhBEcmc4S1xVyCZ09Y2numclR667j+CGaIpOLq0zm4swUYjxzqb9HtYTjeK6UIGNqvLhYB2AiE8MLAhqWyDjf6sRPmwqGpuH4omJjsdYbOvSShsK+iTTT+Tj7J9I8MJflN568ymrTIh0T9pjtBcwXEzywUKBp+bxn3whPX6zS6lf+7xlNsW9c2Ea7R1OcWGnSsnymsjEOvMY5pioyh6czIgAXRuwdS5HsIwJc52/JG1yqObe8jqlKFJMG33VwnJeWGswU4iiShBeKCqDvPjjG//3ERTw/4tGdeUxN4fB0liCMOL7SpNyyaVked02m2VFKcmqtxbv2lG4L5TdXTFBMGThecF1SwV8Gmc7HGcuYdGx/aP9mYxo7RpKs1C3es3cEPwyp91wOjGdQFIkj09fb23dP53j+ao19Y+k3PQAGYKgKBycznNto8+69JY4tNfuBZeFQn8iYqBWJ1aaNuyVZW0L4z+KaTAjY/QTWwVwZPLkkMRxTA5ERFfb29sjabURXhD1mBxEyAulBkiQSuqgEa1lin3BkJkul7SBJAqZtLG0yk49x31yO5XqPniuSjYpJnZGUQaZvn+mqQIN6z95RDk1lWWva3D+f59x6m1LK4EN3jfPHL68ShBH3z988YWcqF2M8Y9KyPQ5MpCklDe6ZzdF2PDKxOF1HVIKlYyrZmMZDC0WWG5bwYxsqUxmTT58oE0TiffMJnYOTGTpuQKVl07J99k2kCYKQpy/VgYiFUpJG16Ha9VAUUQkW0xRmignOrLbwgoi4IZMydYoJjZWGRcsW/lwpAqffBaYmY6oyQSiC/RAOK+YOT2Z4ZaVJ0/KI6wppU6Vhefih8J9OZM1+0UXEQzsKHFtqYGgyaVMdJjCmTBHsU2SJnKnScQOSpspCIUndcknFNLxAIAbZXogkRWiyTLxvW+8spZD6yRCSJAJHPVcE0N61Z4TJnInlpVmu90QCc9vBCwWykSZLdNwAxQtxAhFkShgq79xdIhu7xoV9cCrDmXILWZbYNSI42t6xs8jnTq4JvrmYxmwhLvxlEizWBcf8TD7OTD7GQinBN85v4gYh9y8UeWChwPGVpuj/IKLjeIykTP7OOxb4+U+f4nJFILBM5+O8c3eRpy9V6ThBn8dXIQhDvH4gU4qi6wo45opxJrMmXzm7iR9E6ArEdQ3H9/GCCFMX63EhYTCdjzOZi/PkxSq6LGImDy4USMc0pnKxYRvsHksxW4iz2bZRFTGD75pI84P3zvCFk2tcrtpIQDqmkjQU6l2RIJEwVXRFpt5zkSWJXEyj2k8CnMjGKCQMzq13yMVElXWjnwQRhiEpU8fxA3qOj6bKjKZM6pZLQlfpuUF/3YTpbIx37R7BckMuborE92JS5yN3T95Wb7ypnGCSJH0jiqJHJUlqc73/XwKiKIpu7wV5jTLgBLsjbz95KxF93pHXL3f67+0td/rv7St3+u7tLXf67+0rdzjB3t5yZ+69feVO37295U7/vb3lTv+9feVO37295U7/vX3lTt+9veVO/7295S+EEyyKokf7/77p6Rw/98kX+Y1n1kiq8H33TOIFcLnWpW15jGdijKZNJEni0FSWju2RimmcXK6z3nE5PJVhqdZlvphiuhDnymaPju0yU0hguSGGJtOyPOZLCVqWx+Jml4XRJMeWmlQ7Lj903zSpmM6zlzdJmxofOTzB7z27SBjBfDHBzlKSq7UeaVOj1hOwVl4QMZuPY+gy1bbLhw9N9EvmPSRJYjxjcnKlRaVj88iOIi8s1jEUGScIaVmiPPfARBrbC3GDkK4TMJo2eGWxyXQxhoyE44XIcsTZcodD01lalstmxyVtqlhuiBMEZGM6m22bq7Uuqix4b65sCsxRXVN4YC6PoSs0eh6aIlNK6Hz6+Coz+TgfPjTBy4sNluodTq60UBWZsXSMw9NpLm/2iOsqZ8ptIiJWaj3KzR6XNrtYLvzSDx7ku++d+Zb72wtClusWo2kDLxAlpDP5OKtNm3rX4WKly91TIgt8Mhuj1nVYbdhcrXbIxES121LVYvd4kpShcbHSwXZ8FusWrh+w2XG5eybDn58sc9d4lkPTWXqez9fPVgDYP5mhZbmcKbc4s9YmQmTi13seza5H3FBo2R6VjsNm2yFpKARIaEDb8Vmt95gtJMiYKhdrFntHk8Q0lWrHoet5xDQVXZaZLSboWS6LLQcVCdOQ2T+WZraY5JnLVc6vt5nOmciSxErd4eFdBQ5OZknFdSazJi8vNqh3HHaPpVhvu6QMha7nc2a1RTqm8Q/euwcQkKKDNnT8kBMrTVG9UkoOx1a956ErMqXUzeGgWrZHvetiqgpLtS5PXqqyUutyfLVFtWmz3vNvet5ABpxmSU1UtD2wkKeQNNhou4xnTR5ZKFLpuuiawkcOT3Cp0sFQZfaN3zw7bqNlE0QRhipKZ6fzcZo9j6blMZ2PDbPRrD6u+2Q2NuRt+KsmZ1abXKp2yZgayw2L/eNpYpoC/WxJpV8JenGjw2whwVOXqoymTFIxhXLD5sJGB4mQi5UuYRQhyTKHptKMp2J882KFlabNSMrgwbki5zdagnsxY7JQSqGpMq8s1ji12qLScfnwXWO8c+8o602L02ttLDdgs+OwfyKFoaokDJXjyw3qXYeG5ZEwFFaaDrtLCVJxnX3jaVRZYjQdIx3TkIj47PEyi9UOTcvnrskMc4U4v/6NS2TjOu/cPcJYxuT4cp31ls1YNsE901mevlzjSqVNwwl4YC7LztE0SUPMUQnY7LrENIV942mu1nq8vFRjMh1jMh9HQqLadRjLxMjFdV68WsPUZYgk1poWqw2Ln35sB6t9qKSxlMlS3eLUapPxjEkxabDSsLh3Lse79oxytdrFcgPumsygbsm63+qAv+Ngf2vLO/4/X8R2Q577Zx8Yfre1//aOxrlnJkvbCXn/vlE0VWYqG8PQFP745SWOL7f4qYdnsQOJRB9z+96ZPLIscbnSYb1tE0UR49k4SUPl2FKDTFwjZarsKKWGcAWj6WtVCasNC6cPrzCdjxOGIZ86tsZdE2l2j13LUaq0HM6ut7hvLk/D8uj04Tqnc/HrOL+A63QswHOX60SEGKqKG4Qcmspgagoty+XLZzaGfEZ+GLGjlMTUlOvWo61Zw5c22hzrV3XaXkA6pqGrCiMpnbSpDzkWLvS5/HaUEizXRUXpWNocQgL1HJ/lhsXLi3XSpsYP3T/Np4+t8c0LFcZSMXaNJvmBe6eJJDhXbpONa8wV71SB/WWTKIp4abHBs1eqXNpoc3G9gxMEVJoWlZ6YF1urNSWu2SdeCBlTZve4qIJUFRlNllltWCRjCtO5BHtG0pTbFutNm1PlFilD8Dw4QUDW1LCDAD8UFZcvXqlxtdZlx0iKHaUkDctlKpvgI0euZTIu1XoEQcjJcoudpSR7xtJcrnTYaDtM5ePoioymCEitYlLH1BS+fr7CvbM5pvOiemmjbbNc7XJuo8POkSTjmThdxyemKyzXelyqdGjZHh+7dxpNkYe206u142KtRzauD+FPbyWOH7DasBnvV0etNW3ycZ1Tay3mS3F0RRnC+SzXe0zm4swXEjfomW9VBvbeVC72mirYbiW1rnvTtllrCoj7kfT11W7VjoDoKaUM1po2XhDQsnxG0sKe7jkBQRiiKQpT+RhxXWWl0ePTr6xx32yezZ5DKWngByEXKl2iMOB8pYdMwIuLLT50cIyu7fP8ouCLWax2OV9uk00YlOsWoQTtroffh9hUJMgkZTq2gJWWJZGlL8sSuiSh6Qq6IjjGGpaDF4CpSGTjBgcmM9w3n2fHSIbNjs07dpVw+7Cgr6XK7+tf/zo/9mnBZXnHbnlry834Zvf8k0/jADkVvu++GaYLScYyBnFd5RvnNzi+0uR7Dk+wUErRtjwMTSET0/izY6vMFQTqjR9FJHWVds8jndBQZJlcQudqpcszlzZ514ESpqzy2eNrqLLMjpEk1bbDetPC0BWSMY2YJuMHErIMbcth/0SWCxsdWpZHPq7jBD7fc3CCPz62RhCI6qWYrmJ7Po/sKPHyUp1jy3XWGzaRJLNzNMYH9k/y2ZOrNLue2D9IEoQBa23Bv3jXdAbbCWnaAg0mlzAZz4k53LUDxjMGkiT3Of90ZFni/Eabds8jk9ApJnX2j2eIGQqvLDZp2i4f2D/GlWoPPwzJxjT8IGKz63D3VJbMbegh6l2XSsdGUxSmc7Hr9gavRbq2x4Gf+/wN3+tAOq6weyRJMRMjpoqKi73jGRKaQqVjs2cszQMLReo9hxeuNtDkfpWeJDGWjqGpEpW2gybLjKZNOq7PeMbE1K7nggzCiIuVDufKLRRZIIrsn0jTtPxvW0d/u7JU65E0VHKvg49yAIk3mjaptB3cIGQyG3tN5641Ldq2L+D2+v7APWNpYvrt+TO/0yLgL6u0LZ+ZfJxnL9eo9hwqLQH/udboCq68QGbveJLVpsPdMxl8P+LMeouO5eKEEa4H+yfS7BpN8spSnbGUSSRJrNR7uEFAreOiKyr5pEbP9Wk7AaYqsX8kzssrHbwIpjI6mYSJ5QV0LBcvEj6/R3cUKaRNbNdnOpfADQKeulRlJGWgyTKFpMHDOwpUOi6LtR5RFDFbiPGNC1XumcmRMjQW613Byzad5ey68DclDJWxtEG55TCaNohpynW2j+uHfdjCiNl84lX77mq1y2rdotpzaFg+98/myMQFtLUfiOr+py9tsljrDnlUC30u8icvVujYAaMZg2cv1ui5Pg/uKHHffI7z5RbHVpqsNi0yhkYhpXP3dB4/DGlYPivVHsdX64yl48Q1wcNUSChomsZ8IcFG22Y0Y7DWdImpMi8uNkiaCm3L466pLPvG03hhRM8OGNS4rDQtFooJnr1URVEkFoopFqsdTq22KKYMHtxRZLPvE1VlGUOViRsKSzULNwhQZZlHdhYZyRh86uVVcnGdmUKcWsflHbtKvLzUYL1l0bI8Dk5n6dg+n3xphf1jKR5YKPDx5xfxgoipXJxiyuR/fN9unrtcpdFzmSslOL7URFOFnV7vumSTgk9sPBNnrphgo2Xz8eeX0FWJ7zk8xcVKh6OzOYxtOmu7Xtho2VT6NCqZuEYUwlfOlmn0PB7fP8bOsTReEPLS1TqfO7XGI/NFFFXiwEQGy/W5tNkjYSgs12ymCzHmCgn+5KUV1tsW45kYiiTx8M4iL1ytc2A8TcLUCMKA//qNK+iqRCqmcnG9gypJ/OgDM6iqypMXNwhDmUd3F0noKr/61Qt0LJ/xnImhyewfT/OnL68yltbxgoiErhNGAe/dP0az5/GF02U2WzZjaQMvkvjggXFihsY3L6wzmY3TdnzOlNuYqoypKEzkYyiEnF7rUIgrtNwISRJcnLIiKoon0jFminHihsa//vRJvCDkoYUijx8c51Klw8nVFjuKKabyJh0nYCylU246vLJcZyxpcrnaQ1Vl3ruvyK997Qp7xpOkVJkvndvknpkc5ZZFtSOgRHeMpPiJR+YYz9xe976plWDfKTl095Go9cF/9ZqPV6Sb8zVJCA4Ob8uPqiwJpy4CZi4IBbTE1tM1WaKQ0NnsCj6tiYzOcsPF80MKSZ24oZLQFGp9nq+eExAhYFIkQFcVDkykuW8+P1QWMU3hy2fWCcKIfFyn7fi0LAHlY3khubjGTCHBZFZgdsqS4IFq2R5qv5xRRkA4+kFIOqbiD/ih+hi2iiTew/IEVvVArns3Rbyb5QryedcPsLwIRRYOps2OKLNlW3sgCX6T242uUz//OI89/OC3FF3/k5dXuFTpDskBvSASOKw1i08dWyWMBNnje/aNUEoZXNjo8MzlKrWOwN1OGCquH1JKGaRNjUrHody0h9i52yVlCCLc14tT/BchugyltCl4YywfPwwFvJosMFXDUOCryhJ8+OAY/+4HDvMbT17B8UKOzGQ5vtzkMyfWsL2Q6VyMfeNp0Z6agiLL/NB9U0PFMsiOsNyA33jyCustm3LL4skL1T6G7xsnA6JVXZHZM5ZEUxRUReJ//sCeGzhqFqs9/uilZbp9PoVsXOfeWcER5voh98/neWRnkSiK+M0nr1Dveczk43z/vVNv6DO/1eXo0aP82h99gX/6R8fZ7AjOO1nqQ7KVkkQRlFs2KUOl0rYBSWDARwLqSZUj3OBbh9sxVAkJ6QbYg8msScvy6DrBddCqpir08+2moaZAUlcxdZV7ZrK8tNhgrWnfUhcNxtXWdxgEZLeKrgjIoSgS+ibqn2uqErYXDZ2lugJRJNYNXZWRJQEFMbj+4DaKJEruh7r1Ji9lqhIfvGucaldgdX/07kl+9H6RPHD06FE23/cvrjv+jkPprSkH/7fP0u5j5aoSXPg334Uxvovxn/ilmx4vAdm4RkxTkCVY7vNtAeTjKm4AC8UEP3TfFA/vLPLPPnmCpXoPSRIbQE2RubIpMN8PTKZ5bHeJWtcliuAjd0+wo5Tk9FqLPzu2yitLTXaPJnlwocCnj63x/NUauqrw23/jfqZycWzX5+//3ku0bZ/pXIyRtMkryw12lpK8a+8I795zDVKtbXv81lNXhzr2wkaHT7ywxGZ/3S0mdB7dVeJn3r+bv/Vbz3Om3CIC5goJFEniAwdG+b57pvjNJ6/g+iH3zuaGfAhXq13+zm+/wEqjJ/gmJWGfGapMJqZx/3yB9+4boWP7Q0jR/RNpLm92qfVczP5xgu+vR7lp4QQRsiRgEyptdzg3NRneu2+U/RMZnry4STau87cfW+CePhTknUqwt4681vbf2vaD/vvKmQ3+1z8+PoSWeyNlsJ8IguiGtWQAdT2I724ltB6cCxDTFf7+u3fyP7x7J89dqfHlMxt86fQ6LcsjF9f5B+/Zye8+s0jT8iilDPaOpWlaLhcrXSayJhcrXaodh0LS4Fd/7F78IOK3n7rKH7+8TM8NiOvqMJkuCCOuVjtsdlwkCeaLSR4/MCbgynYVb7CxtspXz1V48WodQ5P5iYfmSBi3zq/8g+eWWGlYFPvJVJttmxev1nGDiISusms0SdfxeXm5QbPnsaOU5K89OMv79wu+qW8nIzeKIn7jySs0eh6zhTgfu+dbs/eqHYfffWaRIIx4bHeJe2eFXji33ubTx9aQJPjYkakhf0+l7fB7z4rje66P5QY8e6WGqSpk4yqaotBxfDqOcBQ/tKPIX39ghsd/8Wtsdmz8EApJnbDPs+p4wXX8qH8RIgOmJpGOaSyUkhydzSNJEt99aJxdt+GhvGO3vH1ku2698m+/i+LcHpI/8u9vONZUJcLoeju2EFdw/IiYrtKyvSGXtjaMawhfgSwJ+DNDlal2PCLE+JJu4at5PXIzOga5D8EWhDfq5lcTvY/zNuBaURWZXExBkmQkSSIT0+h5PtWOSxRFSEiC5qD/LIYqs2dMQMieXmshS1BI6OQSBhtth2JSp2WJpOM94yn+w4/ec9PnaPRcfuupqzx/pcZIyuSxPSU+cnjits++XXe+HtsF8dqiX2SJtKnysx/ex2dPlDmx3KDjBsQ0FVMTsHGllM5y3SJuKGRjOrtGk0xmY/zYQ3PXXfPzJ8v86lcvcn6jgxeEjKQMJnNx7pvLs1BK8NFXgbN6s+TZyzW+eWETVZb46w/OvqZA2OXNLn/y8gpRBA8u5Hn2cp0winj//tFXpVc4W27zhy8uc3y5SbYPF6bI8OiuEn/3nTuQZektU43yieeX+JUnLtJxfMJ+UMV/s0kovwVRZcGxZfShFQe+XUUSAdtdo0mI4HK1iyxJ+IHYpyuyxHwhzlLdImWqTOXj+EFIpe1y/3weQ5XJxvV+gmGSl5ca6KrM//PhOT5zfI0vnFrH9UPetafETzw8hyTdvO+W6l1+9o9OcKnS6ScpSszmY+yfzCAhkh3Prbc5XW7T6fvTJAkMRUZRoOfeyEcLIqnKcn38bb8pQt0ScnufzfZ0o5sdGtNkwigiDIVmG3AnfrvDQJbEHnkrtYwiSxiyhBuEw3e6mV7fLqWkhh8K3l6IcNyQqN8GQST2j9mYxgMLeT52zxT/95fP88pys6+TDeaKCY7MZPknH9o37L9nLlV58mIVTRF6odHz+O2nr/LSYp0giJgrJThTbnFhvUMEjGdM/rfvOcBmx+Ff/dmpPpSjgMbMJ3TRxxtdHE/AHMZ1lVxS40K5M1ybdBlURUGRIaap3L+Q58un129qA8oIOMJGn6czbaqEYUjHfW0r3YBWZ/vRUv+37WPq9YiuSGRiKrWOd11yYS6m0vNCHD9ElSGmKRiaQkyBclvwh4Wvo98Hsm8sxS//6BF2j6a+M5VgkiQpURR9eyRA34LY3uu75a0maYQgF77+WOHslSWxUb2ZQSY2NgFRFBFFEptdX/yNmHxR5KErErYX4AXhcHAFkcBcjRBZP14QYvsBthfQ6LqCVC4SBI+SJIlzI/FMjh8KYllfp+v6mKqoPBq0h6pIyBJ9csRIEEz3A1Nh1L/OYLCHtw5WhX3ibi8IkWVpiPkbRhG1nntTx20QRci8+kDt2N6rHHFrGRBD17seuiqjyBLrLQfHF+S2sgQ9z8fxQ9ZbDpYb4PgRYRRBJNFzg75zWowdxw/ww5svKABuEN5A3vlWlSACxwtx/GAYrBgY44KLSRwXRbBUs0Tb9JVp0/LYaDv4QYQfhLQsD9cPadk+E1mFMIpo9qsrt4rliXHreAEdW5AcvtES9f8XRhHVrstIyiSKJFa3ECEOpGl5RBG4fkjXDcjGodK2cfvBlsH4CSOGwboBDu1fNdloC90jgskhuiICvoJ4UowD1w+x/RBNlvFC0YaieuPbM3qCPgntduk4Ard4+yjauhje7pqDd2la3nADeiuJhv+7JjcbvYNnjbY8Q4TY9IfbjosQmRJiYyD06/ZnCCP6Oj0iusV0CUIobwngbbTsmx94R97SstUAfS1GZIRYq20CsWZtES8ICEJhD5SbDht9Hkyx7kl9HSx4+Ab2xEYfax2u6b5GzxvOE9sLafR1P4hkl42WzVQuTs8NhhVU6y2bXEIXz+YFNHvX68yeG1ynYwfE7H4QEoRiPlQ7Dq4fDgnCHS+kY3vEdJVq16Xn+teusUUnN3ouPU9UzgxsDD8ARRa6yfYCGj2v72wLkSSJjZaN7QX4QUTb99EUmY4T9Nd70a5RJBKItrZy2A/+j2ViRJEgSd7+rnfk7S/rLVvY6G/CtSMYEkNvl7BfjXMrrtjB5yiKuLIpGHgaPWFX9Vy/n4ghKoL8UCS1dRwfxw+Gc6bn+MMx23N8Wpbfn+s+vh8RhmKet23By9OyXJx+NY+C4HS1vYCEoQ51xq2k0bs2l63+Obc81hLHNroOSMJxXu95JAyVtu1hecEwUBRG4r0G1/92JQgj2gN779uYz23bH+4Hmta1Z2v22z6Krv0tjvf6+7lIBBkROkWRBBeFoVwLjgl96NN1fDqueFY/jPADse8TxPV/8XuRCEQyUCSq4vwwQlOkv7J29F8V6TkhN6uJDsMbk9M8PyCMZLwgui7RdqD/kIQPJJQklCDCja7py1tsDV633OwSUQT+t5gAHkSIZ+6fHva5WGQpRJJkOo6P5Qm+pLDPfbz1WcIownJ9bEkSyciyRMvxScU0wlDo954XkJAkGj2PMAyR5Rurodq24HkXe7OA5hukI28nQ0dkPxFwpWHT6HnDNcgNAmQZbD+g1fcDuL7U/zvq78uj66r7G5ZHz/Xxg4ggFG0p9H30benob1cGa85gbX0tQbBGzx1yuq817aHt3nwNOrFpebj+tTWv5/ok+sgjwt598/m/XquUWyJh3A+En+mtWkwRhoCMCG5t0z9BFFHvOpiaqLxUZPpOeMHn2rLFuPaCiM22Q9oUVV6WJ/ZD2bhO1wmodgd7ppCeG9C0vKGvt2l5wp66RdfVOmKv4vrC/yJLwh9luQGyJKFIwk7xgy02at8HFvi39tu6fb62G9ojuhYEu528lt70AlEcEvYdKIKX6jWc+CoSRjfukaO+jt36Tq/lVm3bx9CUYeFHhND9wzUminCDEMsTfuJ675r91u3veSvt6/XqwL7xAjFPm5aH5Yo9ph8Kn2nH9vvrm9gTN3te334f+M/FmGzbvkiSC8Ohz9QPQ+od57o+Er6iAFlWhnv6WxVkhDD054IYl6/HH7u9yGcgEd9+QkrQ98luj9j0+gFAEHPWCyJUOcSKttgKW57jtUqj577qGvJGwyFekCTpE8B/jaLo1Bt87VtKOqZT49rE1hXQFIWuK5palUTFgaIoTGSMoVJablh4QUTSUPGCkExMY6YQZ7lm4/gBuYQuIp/9Dch4xqBh+dS6LvmEwVK9g+vDQzvz7C6l+OKZdbKmzt965xz/4YsX6Xo+d0/n2DuWYq1pIcsya3WL0+UmbhAxnY+hyQqOH/DTjy1g6qI0M64r7BlL8fvPLlHtOXzwwBjfOC/I7ZxAQINN5eI8OF9AliXqXYeuG1BM6nzjQpW5QgJTk/GCkEbX5dJmj6NzWWpdj422TUJXadoeRKISYaNls1TrgSQR12WqHVF1kDBU9oymmMzHqHZcJCRycZUvndkgFzf4e+9a4ItnNji12mSt6RBGEbm4xq7RFJsdlyAMWW86uL4gMvS2jN5iQmUk/dpKxG8mHzgwysuLDXaOJOk4PusthyPTWU6sNtEUieW6xcHJLHNFQVB7ptxmLG1wdr1D0lCYKca5vNHjyGyW8YzJS4tNluo9VhsWXdsniELSpsZKwyYbV3lgrkC95/HyUoMwipjIGLhhxErdwu5r7ExMEUSSQYRChNufzK9l0kqIrJWB7pIYVJnIw+q0EBGMTZsKhbjOUsPGDSIGhbohomLtwGSG+VKCbFznxat1ah2HiVxMKOAowvMDLlR6pEyVf/+DhykkDd69d4Ry0+bBhTwHxtPEdQXLC7hvLocqy0znY6y3HExNYffIjVme+YTOe/aOsFK3gCJjqRjPL9ZYqVnX9fvrlZgKXiDm756xNB1HGIZ/550LnF7rYGgyH7xr/Ibz9o2nqPfcPryMjOWFPLKzwOm1NpsdhwcXCoDIMPnwwXHOr7dvIDb/qyLv3jPCmbVWPytRotZzOTiZZiqXQEJkSaUMFdsLWK73MFSZs+UOuqZQSOisNHpsNIXOtP1rSQO5uEpCVyk3bZxQZH+OJnUato8kSeQTOtMFUYp/bLnFRsshAsYyOj9y3wwXNgTMatvx8YOQYsqgkDCIIrha7dC0fXw/RJLFQmmqMilTVMjmExpjaZMjMzkeXOjyiReW2WjaBEA+oZEzNc6sC/LMXaU4mYTBYrVL2wnImCo7RhKcKbepdUUwtZDQ2D2aJKartB1fBBqcAENTODCe4txGm6ubPZKmwkwuQRBFtO2AUlonH9d4ZakpnlGTWWnY+GHIe3aVCIHFuoBSWGlYbLRsEoaAebHdgD3jKX7m/Xt4aalB2/b5oaO3zly/k0391pVf/4l7+KnffBGAf/bBnQAcnMywue04Q5FQZImFUoKpXIzpvIA2/M0nr9J2PO4aTzOejRFEETtLKX7soRlGUiYfOjjGpfUOyBJ7xlKUEgZfOrtBTJXYMZLmfftGOLfRIYoiDvX13JGZLJbnM5WNk0/o3L+QZ9dIgv/0xCX2jae4Z1ZUfuSTBj/+4CwvLzX47kPj1HoeE9kYIymDh3cUr3v+0bTJY7tLQx1771yOMBQbyoShoMkKHz0ygakr/MP37eL3nl1k12iKYsLACUI+sH+UkZTJu/aUWG85PNTX0wAHJjL86P0zPHVxE8vx8UKhYwxNYb6QYNdYmkd3FnH8AFUWFaaP7Cry8mKDzY7NbCGB5QV4QcRSrcep1SYnV5vEdY2feHiG33t2iavVLroiCIN/9sP7SJsanz9VZiwT44GFW1fC3JG3p3zXoXEubLT5wqkylbZD71s0VmKqhK4qQITlBeiKTCauMV9M0ux5rDS6dOwQWYaZfBxVlYkpMn4kNs6GqnBho0PPDUjoCmMZg54bMZOP808/tA+Ah3YUiKKIUkLn2GqLPaNJ/u67dpAyVdabNjtHk33oFHj6co1dI0k+FER89sQaD+8osGskSQS8b/8oIHFuvc3u0QT3zBXYaNmkDI1jKw1evFJHkuEnHppjoZSkZfs8tKNwu9fnnbtLGKqAOC4mbw6XPZAP3TXOiZUme8fTRFHE2XKbQ1MZXrxaZ994mlLKoGl57J/IcG69zZGZLO/eO3Lba75WURWZDx8c4/y6gIj/VmW2EOehHQXats8D89fa5vBUlo7jo0gS+8av2cnzxQQPLhToOj4fvGuMi5Uu88UEluszXxIhhVbfmZKJazywUCCfNPi779zBn76yynxRwEEW4jptx2OxarHesmjaPpbrY7khxYSAbqt2XeK6Qtu5ffLPtyO6DAsjSfaMpnCDiI/dM4mhKgRRxOGp7Ou61h275e0l+7fZLQlNZiIXZyJroskSz1+ti6rxfIwHF4pUOg5ZU8MLQp65UiWlqyRNjSgKSZgaPTcgZaiYmsJI2uD5KzXWmjY7igniuspLSw0ioBBX6bgiYUciRNdUVFkaRNMIwpBCyqDW8bD9QNhSisze0SQnV5u4AWRiGroiIckS+8bTXFhvsVgT+2gJiBkyd42mOVlu4vjCMS5LEEng+5A2Ne6eydJxAtqWqJjNJgx2lhKASK7dUUrg+iHPXK6RMFRUReJMuY3t+sR1hWLK5P37RkmZAurR9kM+cniclaZNveMyV0z0qQU8Hr9r7KYBMBDw1e/cM0IxZZAxNR7aZou9FvmhwyP8wSsbtz3G6DsY4rrKVC5G3FDpOj77xoU9tn88xadeWcX2BZSjpsrMFxMUkzpn1jokTYX5YhIJ2DOWui4ABvCevSO0LI+nL23i+hGzhfjQrrx7Jvu63+mNkod3imfIxvVXhQMeyF2TGVq2SFJ5aKHA81fr2F4wrBS+nRyeztCxPSazMUZSJk3Lo2l7fPDA2F8oJOTN5Ifvm6bWdal1HCZzcb56boNq26Zli+TVmxWd6DJIkoRzE096TAEr6FfIh9zgJH81GSTdD64sSzCRMRnLGPiBmCsdx+PkSgtTk0kaKiMZg48dmWa1YfHKcpMwDBlLm7y83GTXSJIDk2mev1wnm9B5//5RXlpsEIQhu0ZTzBcTrDYs5otJRtMGT1+qMZo2KKUMHj8wRkxTcIOQd+wqDZMPbyaHpjJ89O5JTq01uVzp0nV8PnxwjOlCQgTtJHjX3hKffHGVi5W2KG5AopQyWSjGeepSFcsLUSUotx2CMGIiE+ORnQXOlltcqPToOT6KDClTY0cphSRF1Hsu6y2HpuWjqyLYFkZi/6mqCqWkTs8NMFQZN4Cu49K2RbAzjIQP5fBMjp4jAjJEYPki0aoQ17hStyCCQlKj2vFo2z6aIjGVi9FzfTpeiBxFqLKEIokkgIgIRRIQinMFk6+er2LqMvm4ge0FPDyf49hqm3LTwg8ipnIxKm2bStfHUGAia3K5KhKGdUXo6v/58T189VyFWtdjKmdwerVDJAn/f8/xSZk6e8ZT3D+X5/G7xkjHVH7hz89iajIfvXuCRs/ne49cX4n68I4CEpBL6Ezl4oylTd6/f5SJrEkYRewaSbHesvn955awvYCPHJrg3XtH6Do+p1cbPHulzmw+wVwxwX1zeYIw4qlLmyiSRLllM52P8ch8gV/80nk6joBGzSd09k6kuVrtsX88xd7xDKWkwWdPrAlEJgk6XoAEPDRfYCRj8I1zVQIi3rGzQNqU+Z2nl/FDMDSJhK4S0xTKLQdFEg47RRL/7ZtI0XVCzq63CIJ+1bQiMZdPMJkxeX6pQdpQ6DouTTtCVcR5KVPBj0QCu0JEiNT3a4uqxaQhfHJ7x9M0ujafPSHWnXxC4YeOTvHKcpvz6x0mcwIOMogiZnJxji83uFTtokoyTVtAHU7lYpxcbRHTFExNodyyiWkyQRhi+8J3nour/Mz7d3N4+vZ+3TcUDlGSpBTwI8BPIvTSfwF+P4qi1ht2k5vI0aNHo7dCifAdef3yVinvviPfmtzpv7e33Om/t6/c6bu3t9zpv7ev3IFDfOvItwOHeEfefnKn797ecqf/3t5yp//evnKn797ecqf/3r5yp+/e3nKn/97e8h2BQ4yiqA38GvBrkiQ9Bvwe8Iv96rB/GUXRhTfyflvlyM99jrot8gfiqoShKzy8o8j3HZnkgYUCT12s8qtfu0StYzORjVFKmSRMle85NMGDCwWCMOK5KzWalocqSSyMJJkvJvCDkK+eq/DC1RorDZtCQueemRzT+TiHb5NJuFjtcbbc4mqtRxhG/MC9U6w2bTY7DpIEXzm9wWjG5KOHJ3jmco3jK01BmNywaFoeU7k4+yfTaH0OmkHG30whwcM7Cpxf7/DclRr5hE5cUxjPCjL35y7XiRvKkLtiu7Rtjxeu1kmZKk3L41y5xVLd5uhsng8dHO3jO7dIxVR2jSTZOZLkC6c22D2a4P37x5AkibDfVi3b48xam9GMyQ8dnebZSzWevlzlnbuLRBE8ca7CvrE0f/TiMkEUcX6jxWrdRpbgB+6d4n//2OE3pO9fWqzTcXzum8sPicBfvFrnAwfG2DeeBhj2L8BsPs7JtRY9x2ckbXLfXB5Flqh3XT57Yo0zqy2BbQs8urPIB+8aZ61pcWy5yZm1JmfXuxiKxHwpQaXtstKwmM6aPHuljheGfPddYxRSJkv1HlEEp1ebVDsubdujYfs8tFDgn3x4D7/61cus1C1G0gYzuRheGPHZ42t03YCZfBxFAjeM8PyIvWNJXF9AUNlegBOEOH5Es+uQjmtMZGOUmw4Hp9LUex65mMaPPTzHrpEUVzZFJYwfhEzkYhSTBoYm8+SFTdqWz/3zORZrFmMZkz2jaVqOx0Qmxp6xFC8t1llvOcgSzBUT7L4N1j8IeKF/+amTlFsO989ncX34s2MrlFuvDtWgyxDXZZKmgSRFLBQT3D2TJ4xEqfj33j3F1VqX8+ttMjEdTZE5tdpkvWVzYCLNXDFJPqlz/1z+dRME/1UWLwh57nKNIIw4XW7RtDwWigkWqxazxTgfOTyBqsicWGmy2RGwauWmTTaucXQ2zxdOrfEfv3wBZImPHp5kLGNytdpDkmDnSJJ8QkdCYrYYZ6VusVzv0XMDFopJUjGV33zyChc2OiwUExyeElnfGy2Hb1yocHK1CYAsydw9neGuySyjGYPPHCvjBSE/8fAs+YTB185V2GjbBGHEqbU2D+8ssKuU6n8Xcna9zflyG8cPmS4keGxnkSCCmUKMq9Uelze73DOTQ5ElnrxQxfYCHttd4nKlw397dpH5kTj/+PF9FBIGz12p8WevrHJyrYkmiWzT9+8fIaYL2Kj75/JUOg5hBNO5OAenMqw2LD71yipjGZMdxQRfOVvh0FSGlxYbfO7kGt979yRJQ+PzJ9Y4s9EmE9MoJQ0yMY3Feo9SQmfXWJqJTIzvu2eSbJ8se6sD+I6D/a0rq7U2j/3C14gi+MP/4UHunhbVA1v77//8wUPsGEnwxNlNHpwv8OCOAidWmvzpyytUOy65hM6P3j/NjptU4t5Koijihat1HD/kvrk8uvqt68VXlho0LY/758U6e3K1SaXtcHQuT/IW8Gfnym3+7NgqjZ7HdD7GX3twllrX5fx6h33jacYy5nXP+uJiA8sNuG8+NySB3mjbnFxpsaOUHHLsAJxcbVJu2lS7LsdXmhyeylBMGsh9rg9RIS4gaRZKCUbTJuWmzYWNDlc2e7x3X4mvnttEVSXesaPIV89WOLnWYiZv8uGDEzy4o0hSV3n+ah0/DO+sK3+J5RPPL/GpY6s0uy7rbYvNjkcYgiSLCmY3EFwMu0sJYobKpUqX6UKM2bywAWfyInt7MhdnoZSg3LJZrlmYqsznT5U5X2lTiGvcM5tnJp9g50iSZy/XSJkaZ9ZbLNcs/sajc8Q1lRNrLbqOT9NyBRx5EDGaMjA1gW4xljbZN57kYqXLXCHJY7tLw3l9YqVJteuyUIxzYaPLbEFUkp5cbbFzJMl0Pk7T8nhxsT608QBa/X2Boco0ex4dx2ffePpVeUxei4RhdNM59PJSg5Yl4My9IOxzbShU2g4nVpoCmlmVuW8uf1t4xb9o8YOQZ6/UuLLZZTIb44GFAuY2IvXt0rY9nr9a7/el2KOUmxb//E9O0rBcPDdEVkU28mQ2xo6RJLOFBCCg25+9XONr5ypsth0+dHCc4ytNgjBkPBsTUIt+SLlp0+x5rDYtokjwHq42LDZaDpoqc/dMBkWWOLPaotJH7mjZHposKvz9KML1AtY7Ak5GAYoJjVCWCIOQkbRJMaFz/0KBd++9NefNM5eqPHWpygf2C45FgIP/66dp9ymD79gtb135d5/5Ar/yNbF3e2Aa/vvfE3211W45OptlKifW5bligh9/cI6YrvD0pSprTVEtcd9cjqu1Hp98cRlTU3h0VwlDlVlv2ewaEUgKkxmTtiOqGmfyMZ65UuPUapO0qTGSNlEkwe9j+yGXNjo0+jyI88UEthdQbjk8urOIrspc3uwyljaptR3+4xPnsf2QR3aV+MmH5zm12uxXHcgcnErTtHwubHRYqnU5sdIkZWrsHElxtdbFcgNm83HOb3QwNZmdI0ke3TXC0dkcsiyxVOvyi184j6pIfOyeKUpJgxOrTaIIDk9nmS8mOLna5PRqi47tcbXeI58weGRnkXtmcqw0LM6V2+wdTw0pBs6vt1luWNwznSNuKDx3uYamytw7I+65Xa5sdrm82eVg3/55PXJutcUH/q+v3/C9DNw3l6HtRIylDYIgpOMGTGRjvH//KEdmcjx5cRNdkfHDiGMrDQ5NZpnIxrD68POjaYNDU9mhvkoYKmlD5c9PrTObj3N6rUnD8vn7797JeDbGiZUmyw0LiYipXJwDE69/7em5Ps9dqZOP628bZJfleo8/fGGZPWMpPnjXOC3b4z8/cYGTKy1qPZe5Qpx//pG7XnffvtFybLlBvedx95RAXDq+3MT1A2K6QscJmO77sFKmwm984zLltsPe0RTVroehSRyZzlFuWjx/pUbT9snGNLwAmpZDXFe5fz5PGEWsNR1ycY1i0qBle8iyRM8O0DWZ8bTJp46toioS983msbyQi5U2jhfynr0jPLqryKdeWROQdI7HRC6OBByZyZEyVWpdl0xMI4wG/KMp/vDFZcoNi/ligq4b8K49I/1q+WuyVOtxYaPD/ok0jf6aeu9sjrSpAcLvdWqLjQWCauXZyzXSMY27b+Mr/o1vXuaV5SYfvXucKJJQFYkLG4JPynYDJnMxkoZKru979oOQ33tuEdsNeWxXkacvVnllpUlMk5nMxdg1kqLjevzZK2U0BRK6KvTfziLv2zfKNy5scm69zd7RFIt1i6cuVGg7AR84MMrfe/euYeXaJ55f4vOn1pEBXZPZP55h33iKmUKc06stPnVshUrb5QfuneL7jkzxJy+v8MmXV8iaOu/YXaTn+vzB88sEQYAiy9wzm+c9e0e4ZzZH2/L4D185TzamMZ4RVcSvLDc5udLgkR0Flho2+8dSJEyVtYbD/okUta5HuWmx2XXJJzTatk/b9vnAvhFOr3Wo91z8MGQsE+MD+0e5Uu0N+yMMI/77c0v84YvLQEgpZTKWiTGaMji11iJtqKh9zmg/FHCt+8ZS3Dubv26Pul0Gtp8EnN/oYLkBKVOl3vM4OpvlYqVLJqbxyM7i0Gfz2WNr/P++eZmFYpzvv3eKJ85WWK5bvHNXiYlcDFOTuXsqw+88s8ilSpepfJxKy8bUFP76g7OcXmvxxNkNHC+k1vN4aEeees/jwEQaLxBVfrtKKZ68uMmZcovJXIz37R1BVmSCIOK++Tz/+YmLvLLU4PG7Ruk5AS8uNfiJh+a4p1+xWuu6vLLUIKbJfOF0mRMrbR5cyHNkJseVzS57RlNERHzp9AYnV1uMZgz+6Yf2MZaJcanS4bMnypwrC2Spg1NZJrIGnz2xzlTW5IWrIkYxno5jajLT+QR7RgXy0uVqj8d2F3ls1wgXNjr8x6+c59x6mx3FJLOFOCEwk4vx209f5Wq1x1whzg/fP0vL8vjSmXWIIu6dyxMEgg7hffvGeHhn4bb79jecEwz4LkQl2BzwfwK/C7wD+Ayw+42830BalodrXyug7fkRPd/nsyfKuH7IUt3ivz1zlYuVLmEEV6oWmiIITNebNpPZGLWuy1MXqxxbbojN7FqLv/POHZxYbfLx55d5calOx/YxVJnjK00e3lGkkNSHxt9W8YOQP3l5hQsbbV5ZbjKaNtnsOsQ0labl8vJSg0rbIWmonCm3Wa71KLdsen34xp4bkI9rPHHOYDYfp+v6NHoesiSxYyRJ2/J4aanBqdWWCGxkYyyUklyqdLhYERBf2T5Z8XZ54myFCxsdzq+3MTWZJy9WATi+0qRpu3z6lTWW6sKBvXcsTRgJZf7M5SoLpSQ7R1KcXG3x5MUqT1+q0rY9UqZGNqbx8ReWaVkep9eadJ0Axw/57aeu9PmFrofm+L1nl/lfHt/zbff9lc0uT5ytACLQdWAiw69//TKWF3Bho8Mv/vDdQwf+U/13/cLJdTquz2Ktx32zOWKawuHpLJ89scZ/e2aR1YaN4/vEdZUza232jKb44ukNXlys8+zlGj3HR5IEabnlCsLFr/U5TwB+7RtXmMia1LruECd4awX4F09vcKXaY7Pj0LYFAW6iDzFg9fEQN9ouMiIQJwGn11roqozbZ1C/Dre1ZnF8WRDsHu8vhqoiY3shP/+9d/ErT1zghat1Gj2X8UwMQ1NI6ArHVwR05NfOV0j04SgmszEWiglMXcELAp44W+H0WouYrjBfTDCWMYcL/83kF/78LF86U8HzA06vNZEk6DivDY/WDf//7P13uGVXetaL/maeK4edQ9WuXFIlpVJsSZ3c0d3GtANOGB+DzQUeDlzCxfdewsGYdLj2BQwYY4NtDgaMcwd1VEtq5Vw57to5rpxnnvP8MeZatXcFhW51t2TX9zx6VHutuWYaY3zji+8Lrh3SsAXH12rD5sRyHVVRKSQ1zq61SOoq85UuEgI7d7Ml+KxeWqixfzTDfbuL6Ir8hiTut2S7nFhu8OJ8jVMrDTaaAtLAUAUg52jWYDJvsmc4zVfPbVLpOFQ6Ds2ex1QhwXrT5l9/7RK1rgiU/KdvXGHfaIaNlo2mSIykTXIJjX1jadqnfVK6wmtLdWRJYrqYZLNlc3qlieeHXN7sMF/pcmK5QcpQ+Oq5TXqu4O7RFZkTy3Ue2T9MteuxVOsRRYJH49EDI/zxiTXWmhbrDQtFljixVOf+3UNYXsBGy2au3KFlCYzvXLLBS/M1HtgzxGOnXRwvYLPtcG61RYRYQxIioHhmrUWt63Bho01a0/nMPVN8/uQav//ayoA/RZMlZssdCgmdTELlG5cqDKV1XD/k9okswxmd33h2nlMx4aoiSXhhxLNXKpxcbhCEEf//r11m/0iKs+ttIsT6nyt1r65/CU6sNJkZSuGFIT/76N7rxnHXz33hVkDpXSof/TfPEtNc8UO/8gKX/9n3cma1yfiWY37tG3OkTRVFlnl5vsadO3L8m8cvDZzhoaRO0/L4Z585+pbhUS6XOjx9WYAXyZL0prBmN5PlWo+vXxDwBV4Qcmw6z1fObgLCXvnk0eshaQH+3ROznFtrUmo77B9No6sy3Zj35kq5w196ZM/g2CvlLt+4VB78/fB+AUfz2Kl16j2Ps2tN/soH9qHIEuW2w1fObrLWsHhlsYbrhzw/W+XIVBY3CDFVhdlyhyAMcbyQ28YzyLJEBLw4VxP73qUSIcJee362ykq9h+uHnF2TqHQ8em7IvtE0z86K92eoMvfM3NpX/qTJa4t1fu3pOeYq3QFm/0BCBuuWCM7FELoA9ZU2Z1fbyBK8tiQxktZJmwIOvNxyKHccGj2Xes8jAmpdn8XaGjuLSdwgEtAdMY+dIkv8o8+e5Z6ZIpdLHerdmDfKD9BUBQkx//wwYjRjoCky2YTGULpBUld4aN8wpZbNV8+JNfnlM+uMZExOrzYxNZmuEwzWz9cvbLJQ6XFSajCeNcklNZ64UGKu3OXkcgNVkejGRWWjWYPRzM2DAG9Fzq23Bmuob5st13o8caFEvefS7HnsGhYJnkf2j/ClM+ssVnucXWtxz0wByw34xE30y7tBTiw3+MrZTc6vt9g7kiKMeFP4xiculrlS6iBJMJ41KaR0fv5z53j2SmXgKykSLFS7fPzwOGfXWvyVD+xFVWRemq/x2Ol1Hju9jqEqPHOlQj6h0eh5FFO64IX0Q8Gh6Aa4geBIDrfwGAEsVrsosoztb7fPLQJazvU8uwGw2b3Kr1DtdVBliXMbbXpuwHDauC5g5Pshv/z1y3hBxIX1Fv/xz4tC3H4CDG7ZLe9m6SfAAF5cFv+fLbXJbznmlcUGp5YbqIrMRE7A7t+5I8/Xz28yV+lyaDKLocn89guLnFkVsYFSSxQD55M6Xzu3yVDa4ImegPE0VIXHTjucWWuy3rCQZaFb5Zg/sGUL3k/Pj0joCvmEgFTUVZkX5qrcOZ3n4mabXcMpPn9ybUAmEW4yAAEAAElEQVSL8fnXVyg1LbxQJKHzSZ3XlxtoisTZtZaATPRDogiema3i+ld51EH4268t1ql1BbTz4ckc/+Tz53l9SUDeOW5A2tRYb9pERCzVenzm7im+fGaDVxbrLFW7uH6EHhcaFJM6Xzyzge0FXC61+dlH99K2Pb5wel3w7HVcdhSTvDgvinfThjpImPfF9UM+e3KNIIxYbVj8xAMzb2t8f/TXn7vh5yHw4oLwV86vx5CQwLn1JlfKHe7ZVWB2s0sYRaw1LMIIXpqrsWs4ha7ISJIUQyIazJY6vLpYJwgj5sodql2XWldAsWmK4LD9ux+/ja+e2+TyZhtJktg3mmY0YzKSeXuJn2cuVzi7JoCnhtI6k/lvnnLjOyW/8uQVZksdnr9S5dBEji+eWef3X1ul0nEIQpgtdcgnL/NPvv/Id+0eVxsWj58X9v+plQaVtsPXL5QwNDGX80l9ABG31uixWrcJgdW6LZjMJDi53MQPwgHlR2trzNbz+NKZTSTpalyrD3Xaj3Vpyva96ktnN7fxW/3+ays8cbEc86kFSBKcWWuT1GVemKsxXUjQtn0BKSjBaMbEDwUcs+0HfONyhWJK4+Jmm4PjmUEyKwwjPntyDdcPObfWwguFjmj2vAFU3hdOrdO0PM6tt/gr79+LLEs8f6XKieUGAMXkjfnkzq83+fVn5omiiFcWanzvsQleXawDsNm0B7G6meEUu4ZSFJM659aafP7kOlEU8dTlEhtNh82mjSRFFFIGOwoJlus9NmOKGgBdlbmw0RYUE2st1psWT14Uv21ZHkiwXO/xyL4R7popcHmzza88eYX1loXrC3/q5YU6Hzw4QhDBlVKbUyuiQHmjJeBkf/3pOTabNmEEF9ablDqu4HWNn3W+0sNyfTbbDk9dFMmTluUxXUiQ0GQul7pEwKuLdYopg+dmKxiaQkJTePyCGOuNlo3thWiKhOUFJDVlcFy5LYr1J3IJXluqc9t4lnPrLf7qB/by8kKNX/3GFZZrojFBlpvkEzpuEADSgM80qSs4XkhCVzg5nGa9aW/zUa+VkysNXpyrcbnUZqkqGl46rs9I2uDr5zfRYlj0nhvwQ8d3APDzXzhHrSsKvfr0LF3H5+xak/t2FRnPJTi53OCPXl9js2UjScLnHkoLmPBLm22WaxabbZukpvDMbJnDkzm+cGqdXcNJWpbgq11vWtS6LkldZbbUYSqfZCRjcGa1yW+/uEjX8bm02abr+piawmK1xx/9tfcB8JWzG6w3bZ66VGahImDaL260RDFbEPHygsiHnFpp0HY8kroKSPzLHzjGH762wh+8tkK15yEh4la25yNLEl9oOSiyoAlK6DKGojCWFXp+vWnRcwOWaj08P+KJCyW+cm4TP4iYK3cxNIWRjEG14w44yi+Wuvznb1yh6fh0HaFPLpe6GKqMoclstByShvKG8eB3urzuMvAE8K+iKNq6u/5e3Bn2bRFNkblRn4ksSZiaQjahkdBUJAmIiQFlWSjChKZgaDJJXRmcS1MkTE1GliCpK2iKhCqJ4xVZwlDlwblvJLIkkdAVNFURihwoJA38IESVZRLxtRRZJp/QKKvCaOgfK0ugKuI6miJjagqKLHh0NEUia2qYqjxwjDVFRpElsgkxnP0EzY2k/5xm/NyqLHA0DVVmKGWgKJIgZJQl9PjcthegKTIJXZy/f25DlenJ4vihlI6pybQs8b2EhOO7MTauwNveGl6QJDCNNycafTNJ6IrYOGN+M12VMVR5QM4tx/jTyS3vI5tQcYJg8L5TMeh1Ov69LItxliUxBklDJaEr8bsWeOKyJOaKIwtiaEWWBsR+4t0pyJIkMtBSsO3hZQnySVGVIiHwVFX56vhvfUdX56sInstIRDGZMPE77X9PzMUkS+LeMwkNRZbImKrAe5UlNEVGV2RSurg/CTA08W9NkTB1BTk+LmNoSBJoihSvCxntJvjkfcknNeSY0ExVpG+JylVCvGNFkZBliYypxc8ncGal+JmC8Oq6lSQpVsi35K1KQruqE/oGYkJTcAKB2dxfF1vnjyJL6IrA1ja2dJdoqoIWH6tIstAhqowqS2QMFUWWUOM5ZCgyaV0dzBdJEoZvJqGiyTKKLCMhcI4lSfB5mJpC1owEhjWikCGhq2iqWD+aKjpndVXB0EXQ0NRk8VyyhBSJdZTUFJT42fqGoqkrgzUkSRLJLc8mS5BLaiR1ZfAu+rx9kgSGIvYJCUlwHynyQC8YqkLGFHNSU4Q+qXddTFUZ6A1NkWIeoy245rLQa/3rKLJ4jznzW9ebt+Q7K1lDpRMbaUa83q7doo0Yq96KjXBVlknp6mAvkiRIm8pgT3srkthioyRvYhO8FTHjPSKMIpK60AeqLJyHm9kaAGmjr1PE/RdSOmHkDhyNrZLcspcnja33LSrrxD2Iz/rX12I7yfVDTE3opwjBvaerMp4PvhxhaAqqIhMEIboikmEJXaXnCrsqbYjkI4TI8R6S1JVt7yyhfev7yjcD3XdLvr2SMVW02J6+1k59M5EkCUmKkGVh62mx/amr0sBX2HpORRaVvooi0XMiNEVBkkRiwVBFALhv/xOJ8/dtOlWRiQhRlav+iq5c9Sf6+1IQRmQTWnxOoVO6TjBYP/15rCkymioW1FYbQBDEi0KqfjfmtyJb11DfNuvrE00W72zrcQldcP3oitAZyXdxFxgQ62ppYK++FT2bjN9332YBKMSBxK12hR7b3Qld2eLLqOiKPNCppirsezn22UAkuxRZGtjLEhIy0TbeFEWWBnbMN0uK0PeDNEXeZgcOvpfF3PIC/6bdfO/u0b0l10rimriHxFWbWZEl8gmxd6qKHHOCiOBi2tREbCHesxVFzOd+UWV/HYHQyeIYGSX29/odCoaqoEg+vhQhS0Lv+WGEEl9HU6WB36qrMr24M0mSJXIJnYYleEX0eK1GxPpblvGliCjWv14gDe4/jCKiKBr4N309lk0IH1mSJExdJm2qaB2JiDh2ENsdauw7BVE4iK0kYvvC9oLB+fpryfXD6+yPG+kVRZYGRQ7fjH2XT+pUe9cnvLeOLYjni6IojhPI5ExN7FGIZ3F8EUMyFGHvSVL/3q4+Qz8WUY19n44cDO7BiPcuVZFj/17C0N5+133/Pfav/V6Qrb5hQlfIJTQRb0QiRLzzYuq7qyXNOOYZRhE5U6MZF+5ospivssQgLprUlW2GlBRvZpoiE4UR3k12G0m6GvMiLhaNJIjiuJrYx7bzfkkShGH/73gtbAkG922nvp/Qi9eehBS/b0nw/gGyIiFLMqaqbJs7kiTsFdcPySRU2raP62/3X5K6QtOKfZRYT/W/l2PdcCPJmBqaIuH6ESlD7PFJTcX2g0Ecpa+r+nHdbFIbvIesqVHruAP9K55TwVSFLyXHDpUkSZiqQiEZ62BJIqGpqLLgNQRRzJuO/a6UEdvEkoipSTIDHZaMdVdfJ5iqwlBKE+81tlcNTUZXJKxrYpi6KmKPOVOLYxrinKa+NRbSt22VbbH2sM8hFv/G9cNBvK+vb6T4fef6e4om7jOT0AbvUIypGHcNmSAU8SQ5nhNhKOaeoclv6NuK86uD68iyFNts4poJXSGIC7i3xiSTmkKd2J83FBo98Y51RcbQxLiNpE2Ro4h93CASfGn5pBbPMXGPksQgJmtqMkYcmzPj3EP/OZO6GutrGMkY4l3F89INxO+3orn0nzsVjwsQxyMUmpaPqcmEkRw/c+zbx3Mroavo8R7dt2ElVBw/QJEZjJEW26xqnHwUccGAhKqQTaikDXWw/8iShBo/s65K4FwdA0OXUT0RK4wQ81SO54L5FsbwneYES0dR1HnHTvgW5fjx49Gjf+tX+cNTG+wpquRTSdKmxvcem+TOnQX2jqRZrvX4nZeXqHdFdc1wRkdTFB7cOzRoQ1+q9nAD0XkwkUuQix3JK+U2c6Uu5Y5D1lTZO5phKKUzmr15hWTL9lhrWLQsD9sLeXDvEI2eR73nkjZUXpqvMZzWuXeXqPycK3eYyJks1Xq4fkAxZbB3NB0reEG27fih+HwkRbnjMFfqkE/qIqmS0hlJG8xVuiR1ZfBM10oQRlwpd8glNJqWR7XrsFq3ODSR5dBkjnNrTWZLHbIJldFMgh3FBC/MVdk7kt7WWbZc6+EHAXOVHmNZkyNTOTaagmDynhiK8eXFGkcnszx2egNVkVgot3lmtoquyPy/PnE7H7p97B3BWd1o2nQcn70jKSRJEqT36y3u310ctKD2xxdgNGuwUO0ShULZ9yGWXD/k1GqDlVoPVZJxgoA7dhTYN5qm5/osVrtUOi5XSh10RXSydCyf+VqXA6NpXrhSoe2G/MBd0yiKRLXrEIYRy9Uea02LjuMzV+nyZ++a4kfv3cnvvrpC0/LJJhQmcwmkCB47s0GtZ3PHjhxuAIQRbSfgrp15Gj0PSYKm5RNFgiC43HEYShnsGk5xcaPNw/uGWKxaDKV13n9glFxSo+t4PH25iipBNqlRTOoEESxWO1Q6LvftKjBf6VFI6+woJGj0fEYyBsWULiBVLJcogtGsSTG1PQB/7fi5fsj/eGmRzabFvbuHcIOIr51b40tnNtEVkGUZzwsxNQUnCLDcEFMBTdOYyBnkUjoTGRMvDLltIsftE1mCMKLnhnzg4DDrTZv1hkXCEMSOV0odKh2HfaNpxrIJDFUeVBXfkjeX/vjNV7qossRitYsThIxmDDZbNuPZxADmptQW8DqGJlPviv/vGU4zX+7wK0/NokoyP3DPFLqmUOuI1vQdxSQZU8PyAqbzCTZaDl3Xp2P7jGcNckmdr5xd5/x6myOTWSYLSY5N5an3XOYrHc6uNTEUGS+EY9NZhjMmYxmTl+arOH7A9xwax1QVLm22qVsupiJzeq3FfbsKFFOickaSBNTQfKVLEMFwyojJrX2m8gk2Wzalti1IYxGVrpYbcHQ6T6Pr8buvLXNwLMOn75zEUBWWaz1Or9R5fbFBLqXiBfDo/hFUVabWcTg2nR9UuhbjfULAdNQYThtM5xO8OF/j9oks6w2L3311hZ94YAduEHFqqcHzc1V2FhNkEzoTOZMzay1migmmCykySY37dhXRFJnjx48z9ql/zFlbjOWtwPm7Wz78//s6jh/xzM99GBBrr/I9/xgADfjdv/Y+ZooJXpivcWw6x1Q+Sb3r8vTlMpYrgoiPHhx9w07cG8lqw8Lxght2hr8d2WzZtG2PvSNpJEl0Y9V7LntH0jclf25ZHs9eqRCEIfmEzsP7R+g4Piv1HjPF1HUG6lrDwvIC9m65V9sLWKgKqLHMlmfvX9/xAi6XOuwfy5COizgcX3RMlzs2MhJDaZ3htEGp49DouixUujx6cIRnL1dJ6goHJ7Jc3GhxcqXB3pEUd0yLfV9VZJZrPYIw2ravfLOcYG9V3ktr+bud2HsnOMHOrTV56mKZpu1SaTucXG4QhSJpUEhoNCwXP5L42JFxMobKC3M1jk7n2DuUYr7e4/axDKoqMZFLMpI2qPVEtbuhKrw8X+GVhTo7h5IC2s/U2DeS4vXlJvmkxmqtx/mNFn/x4b1Yns9q3SKIIkoth4Qu07FFZamuKdhuQDapsXs4xVK1x3jOZN8WeNT+Hj1dSLBY64nOf1Xetn78IORKuTuw8YDBZxlTpWGJJPV0Ifm2K/FvJjdaQ319ktQVLC9kz7Cw3/vr3VAUvDBk30h6GwzYu5GbYaHSpdZ1ySbUgX58I+n7YUMpnaEY5srxA/7r8wvYboDlBiDDJ45MoCkyk/nEQO9HUcRcpctCuctSvccnDo9zYqWOKosglyRJuEFIs+fStDzKbRs/FOO5WOmyWrdJGAp37cgjSRJz5TaL1R4RYq8wVYU9Iyk6boBCxDculQlCUWV+x448lufj+BF7h1PkUzp37ihwYDxz047B9YbFiZUGD+4ZIp/UOX78OD/5C/+FX3pStBa9l3Tdn0bp69f+OB0/fhz7k/+Yjgs78io/dHyGsWyCCInhtM4HDowiyxJXyh06jk8xpTMzlKJj+3zjcomsobFvLIOqSNS6LjuLSRarPUYzBlYM9z+eM7m82Wah0iOX1ESBbyQCekEYsVy36MXnHs0a+EHEetPmnl0FggCqHYe0qWKqMr/41Qv4fsT3HB7n4f0jrNStQXBtZzFJzwsoNW3qPZcL6y0yCY2dhSQbbZuO5bN3JMHZ9TYZU/jH+8audom4bsD/fGWJjKlxz0yRfEpjodIligQ0ZC6hUW47rNR7+EHEaqNHMaWzf0zAH3Ydn+V6j53F5CBQWu+6lNoOe0ZSaIqAdtQU6YaoQwBNy4thJ1NvWrRwre60XJ+P/NLXWWlc7fBUgbGszs98cC9XSl32DKexPR8r7vZ8YM8QE/kElzbbqLIoPj2/1mb/WIpi2qDnBEBEPil8nyiKuFLukjIUkrrKq4s1dhaSLFS7NHoen75jEkNTKLVtah2RwRjOGN8U/F+4Jb71RvG5d5NYbsA3LpfZOyLoR/wg5PHzJRaqbcotl51DSX7s/hnU2Of7bu19pZZN0xL2/0K1S6ll03Z8ikmdWs9lPGsShJA2VT53YoXZUodHD45weUOMx6HpLJWWwysLNdYaNjsLCbp+wErDIp/Q+J7bRomQBJRpxiSX0mjZHrosD7o8juzI8stfmyWf1Hj0wEjczdKh3nP4/junODqd58tnNogi2OzY7B9N0XFC7tmRJwTRPaSrBJFITswMJXn6colS02XPSIp6z+OeXQV2D2/3ldq2x2rDYtdQip4bUG477B1JDWDWLDdgsdZlupAcJBPEvO+QMTXGsuZNx+61xRqnVpp8/PA4Ddsjrass13qoiozl+wynDFG4bqqDuO4rCzUsL+CO6RznN9rMlTqkDJViSh90Yz9+bhNdk8kndRpdj7tm8tw2nmWu3GWh0mHnUJK25fPSQpVGz+Mjh8Z4aN/I4L7OrzV56lKZtKkQBBK3T2YopgwmcgbLdYuXF6qs1W0+eXSCo9N5zq02+eKZDcayBrdNZNEVmf/+8hKGDHYQ8ci+YfaNZdg9nIII/ufLy0zkDBK6ykhadAK9uljjQ7eNMVvqsG80Q0JXWG1YHBzLUOu6tC2XhuWTNUUjQ63j8ej+YS6VOlheMCgAu2dngaV6b9t4nFlp8MUz6yiyxHDGIJ/QmcyZnF1vUUjoqKqMJos9JowkJnIme0bSAx/1ZuO3UOmiyBKbLRvLCygkdTZbNsemsixULVKGyv6x9AC9ZbnW4TefXeTIVJb37Rvh1YUapbbDvTHNgBEjcr2yUGOl3mMyn6DWdVAkiQ8eHGO9afPyooijL9d7PHpghKWaxeGJLB0noOv4zAwlOLPWZrHSZSxncHQqH3eUReweTvHMbJnTyw0e3T9CGMGLCzV+4K5pCmnhD7h+yFylw1DK4MWFCufX2oNcSaXtDDpsT600mC21KaYMfuy+HSiKQrPncXKlzmJVxBT3jKSZLiT54pkNjk3l+PqlEmNpnVzSIKkrFJI6U4UEaw2LjabN4akce0fSVDoOXzqzwZnVBofHM0wWk3TdgAMjaX7npQWevlLjQwdH+Z7D4wRBwFfObaIrCsd25PGDCEmCY9P5gc9xM06wdzoJdgD4FWAsiqIjkiQdA74viqJfeMcucgM5fvx49G5zim7JW5N3o0N7S9663Bq/97bcGr/3rtwau/e23Bq/967cSoJdlT8JSbBb8t6RW2P33pZb4/fellvj996VW2P33pZb4/felVtj996WW+P33pabJcHe6R7bXwP+LvCrAFEUnZIk6b8D39YkGFzvCEsSjKYNHj04jOeLbq5S06bnh/hBgBdEZE2NP3vnJIs1izCKaFkeq02bo1M5/rf37eI3n1tgqdrD1GS8MKLVc3GDiAf3DfEvPnOMM6tN/vljF5AkeHjvEH98UhDA64qEoijct6vITz64k1cWG7xwpcLrSzXsACbzJiNpHUmSycXttUEQstywqHZcAdelCxjHv/3RgwM8/D96bYV/+eWLAHz66ASKKg061HYWkmQTGrWey5HJLGfXWizXe+woJJnMC7I6UbUQ0bREO28YRjQsD9vzGc+Y6LoiWjW7LmtNm1rXxYtbRVOGQsbUqPdceu71HE9y3PaqyOLfTnDdIdvEUODiP31ngiJrDYvfem6BjaaFqSlc2Gizs5jk7338Nr50doPPn1qj5/j0XB+QmS4kmC21qXW9mPsszYP7RvD8kMfOCDzu28azcfs/dF2fSxsdOjG2uBxDNvWhCBV5C29ELIoEYxmdas8nCEMkGGAh30wkwFTAFkWg3OgVKjf5vC/FhMq+sQynVxq4QcRI1uS2sQzLtS5LtR4JXeFDB0c5vdYipav8rY8e4AMHR5krd/j6hRKnlhu4Qcgnjk7wZ+6cemsDsEWev1Ll3z1xmVcWajj+N59gV/pty1yFHFIVmXxCJ4oiHD/kI4fG+OefOcbzc1UubLTZNyqqoxO6yqeOTVwHh1DtODx2ZgNTlfn0HZOD75++XObSZoc7d+QGuMWfODqxrRLND0K+eGaDasfhew6NUWo7vL7U4PBklgf2fHM8O99p2WzZfPnsBllT45NHJwbQOf/X8ws8fblCMaXTcXwubbTpeT57htO4vuAS6blhDAsgYFFzpkbH8bEcj7YTEiLW9AN7h1FliZbtM7vZpucFpDSFhuWzdfpr8tX1IEswnNZwPMHx5YWgSqCpMp4fomsyUSjI3lVFwCWNZ0xB/t6yRdcHDHg0immdQlKHKEKVZcENFESkEyqGIrNnNMVI2uCJi2V6Mf+GLIk28T0jKaodARGQMlTOrTYJItEWbvsCmlGLoU73j6b4xNEJHju5zqVyhygSLeG2F9C2fRK6wh3TOZYbNpW2w9GpLD9w9zR/8Noq59YFbv2RqSyKJHgmJQnSusJG28HyAlQZ3n9gFNePqPVcfvaRPXzqjsltY3rtvvdeCp7/aZLff2WJv/N7pwH4mx/ex9/4iODDvM5uASayOiESni/WlRuE3LUjz9//1CFuGxecEE9cLHFhvcX59TZrTYvhlEbK0MglBCnxBw8KTpqza01+5ckr6IqosJyrdDk0keOHj09T73k8emCYtu3z2hZd9spCjd98boHhtMH/83sOkE2o/JvHL3NurcX33zXFJ49OEIQRXzqzQbltc/dMgcfPl3jyYglNkfnwbSN85p4dzFe6/MGrK1S6DgfHsvzg8eltHV4bTaGPcgmNjxwa4yvnNqh2XMJIYIBP5hOkDGGPVDsuJ1ebSEQcmczx0L5hTizXefx8CT8IMWKYoh2FBD/xwAwfvG0M2/P5F1+8wEvzNTKmSi6hs1rvUe64hGHEw/uH2T+a4o9OrNFzA5KaykbLwgtC0qZKQlM5PJXlI7eP0bB8bhvP8L59w9/+yXJLvmNyaqUheHI325xcbrDetnG/BbslocJdO4s0LI/Fahc/EHC8hqpQ6YqO+oQmcfdMkeO7ilxYb4ku5p6H5fpEUQSx/b9nOB3DowYDiFA/jOhaHh0vYCqf4Kfft5sH9w7zhdNrPH6+RNv2OL6rSNYUML9hJA32pGdnKzFRdY5PHp3g9aVG/JkgT/ejiOlCAglo9DxOrTbpOj6P7h/B1GVGMybfe3TipiTTXcfn86fWOLvWIqUrzJY6JA2Vv/WRA8wMXe0A84KQf/Wli7wwX+XYdI6//qH9jG2p2n/iouAne2jvEPtH03zh9PqgUvk7yfFycaPNs7MVdg0n+dBtY296fM/1+fzJddxAdLWd32hzYCzNI/tHbvqbk8sNXlmsc/t4htsnM/zLL15ko2kJ5Ajb544deRZrPYIQ7p3J88zlKg3LxfMDut47V8D6dkWRrvISZwyVu3fm+asf3Mf9e4a4tNnmmcsVZoaSfOi20Rt2xW3d9x4Ygf/5t2/ZLe9GuZl9ufVzNYbscr0ANYYpdvyQrKmS0FXWm9Z1/nFfJEBXJTKGRtpQ6DiCn+TodA7LDzi/2qLr+EQIeKOACD+ICIJo4E9osqC3iCKYzCWo9xxadgyNFKMxtByhW9O6TNMOrrsfmRg6TRGw7WlTo2v7RESkDZVCSud7bhsjaSh85dwmrh+ys5hkNGvy6P4RHthT5LEzG7wSV/U3ei737iowXUgShPC9Ryd4cb7Kbzw7T6ntMJw2+Mjto+weSbNQ7XHnjhyHJ3N8/tT6Df3PN5KnLgme9wf2FJkZEjxoYQTfe2xigGZ0M3nfP32M1fYb6xEVyCQ0DE2i54YDWo/94xn+zkcO8Ievr/KV85t0bY9sQud///B+/sJDu970vp+4WGK+3OXBvUPbuM5KLZsvnd2IxzhiKGVw1848T14sk09qgz2o2RP8aYoMnzo2eVO41XezPDdb4fxGm+MzBe7YkR+M5e0TGf7Vly4yW2pzz0yB//JT9yK/CRXFt0temKtydq3FnTty1GM+7qblcn69zf17isyWOnz5zAaNnugm3Aq5e62oEnwL5tUNRYth2Qcwv/H1FVnEEIZTOoos44cihlHtuNheSEJTODiRYd9Imkf2D/OvH59lpd4lDAXM6SeOTHD3TJ7vPTrJs7Nl/sOTV9AUib/9kYPc8wYcQ7Wuy2On19FVmU8fm3xDOLZXF2r85f/2Kq4XcHAiy1y5g+UK5KfP3LWD//jUZVYbIsahKxK3TeSYGUoyX+lS77kcncpyYqlJveeSNETn63DGJGMoXNxs4/oRSU3wMHthhISAFAwiEcN0fGFbKhIEUR9GWUB0ThcSLNWEHSLH+70kwWjGoG2LuE9fFFli/0iSlu0L+EpJotpz0RUJL4jw/GhAQ1RIaQynDVbqPdp2gKkJCgs7nhiKBNN5k1LsC2YMDdsPSesye0dFl/3lzQ499+o9mKrEjmKCclvY2HbcFVZM62RMDS8IIYpoWh5tW/DF5UwVWZEZSunsHkqy2rTx/JC245MxNP7Bp2/nfftubrtVOw6//9oqFzdaHJ7MIUkRp2J+++VahytlS+yDCZXdwynati8QGqo9ql3R4fk3Prwf14/4t49fwg9CVhsWXhBxz0yBjuNTbdtESPS8AEOVUSUJyw/puT6uHw1i0BLwRuFlCRHDmsibA2jJVs+l7QguzaypUWrbtG0BWZhL6MgydGwfL+bYvm0izQO7h3nqchlVlnl0/zBPXiqzVBWdcJYnkL36PPbCTZCQpQgvEPs8CNtAAtKG6FK8c2eBXYUkf3hyjY7jc3giQzGtc3qlhabIPLBniHLb5uxaiyiKqPc8wZGWMpCkiErHJYoEV3I+pdPoeaw2BBfhz3/fIf78Q7vf4M2880mwZBRFL11j9Po3O/idkpblXfdZFEGp7fDClRqSJJy6ju1vU9CNnsfXLpRi3hiF1XoPTZF5falOSle4Uu5Sadt4MTdO1/HRNYWX5mqcX2vxh6+tst4UpKC/99oqta6D5YUDbPhTqw3+8HUVJHh1sTYwzBYq3cE9C24jaFsePU8YZxKCbN4JQn73lZVBEuy3nl+kbXu4fsiTl0oUUzrLdbFoym2HpKGST2h86ewGHdun4/jUui5LtR4dx8cPQmRJpm17hFGEF4bYruDGqnUFqbLjCzgCywsHJMpBJEgsO06wjVh5q/Q/D98k0dMXJwDPu37cvhk5sdzg3HqLRk9A2UiShOUGfP7UOi/NV1mu9ei6AX4QoqsylY6NEysQIrhU6lJIGZxbb2G5Anby3FoTTZHxowjPDwcJsK3PGv/8hgZ+EMF6y31bWPsRYMWXuVmi601yi9QsnxPLIgEGUGra+EFIreMSAr4d8MSlMmE85//gtVU+cHCUVxbrLFZ7nFxpMpTW+eq5TT52ePxt42p//tQalzba31ICDMT7G0jcreoGIbYniDd1GZ66WGajafFSTBz82KmNuBXcZaHaHQSM+3J2rUWlLcBkZ0sdjkzlcPyAVxYEEelXzm4Onvf0SnMbufl602a2JJBeX19qsFzv4XghL8xVuX938U3hb94NcmK5QbUjAspLtR77RtNEEXz13CYdx+fMapOkLrPasIki6DoNHC+k189WRdBxQnquILMPw2ibQesEok0/n9TpOoGA7QQc//otYGtCOIyg1PYQjDxC/Aj8+CB/S9LdDcCzfGyvSxBG1629IBJGbivG/e+5Vx3epuWL4E0Jzq+1BxxN/d+VWg5ty0VXFRw/FOsxfkDXuvoMkieMwtlSlz98bZXleo92/Kw9RyT7wghsP+TlxfqAbPvcWgvXX2ax2qEWk4a+vtwgCCK8UOiZqizhB0I3BSE8fbkS8+xJ/P5rK9clwW7Je0P+1VcuDfaC//zsPH/jIwc5vdpk4prjIsS+0Y8z+6EIzpxcbvDyfI3bxrP0XJ8TSw2Waz1eXxKE48u1HhlDYzxnkjFV7t9dJKmrfPHMBuW2Q6XjsFrvEUZwerVBMaWxbzTDywt1Gj0P2wsGuuyLZ9Yptx3KbYcTK3VuH8/y/JUqAF84tcYnj06w2bK5tNkG4LHT65xeaQhC+CjixLLOntEMJ5YazJY7lGKd++pCfVsS7MRynVrXpdZ1eWm+ykKlR6ltU245tB2fasdBloSDu1TrsdG0UGQJxwvRFJkX5qqU2w5+EA14lFw/5EtnN/jAwVHOrrZ5fanBRtOm1JbwgzaKJFHrCd3wZLx/rDdt/CBiM7QJBIoiTsfDUANOLDXx/YjDUzlemq9x3+7iANbilnz75NvRXXcjeXGuxpVyh1cW65Tb9psWKr2ZWD6cXWtgedHABvOCgCZbSeAjXl+qx9C7XRq2i+2GW2zFCC/wubDRImNquH6ALAvejQhwvRAvDHH9kC+cXmeqkOTiRpuzq01UReYrZzd4aO8wy/UeQymdFVlmrSmgRrqOKM74xqUyi9Ue87Evkor5Ohs9wVO7XO+x2bIJwoinLpbYN5ahYwcCxmjoxrBcl0sdFipdLm608YKQWtdlLGvylbMb/MyjewfHzZU6vDBfpdpxeHWxzonlBh87PA6IRNqJpQYAL83XSOoKc+UuIOyX72QS7KWFGk3L4+Ryk3t3FbdBsd5IZksdVhuCX+fCeouhtMErC3Xu2128KUzZi/NVuk7Ai/M1yh2H+UqXlVqPSsdBUySeulQmoQluia+ec2jZPo4XvmHA4zshW+3ztuNzqdTmi2c2uH/PEC/H7+3USpPju4pvGoh/ofxtvtlb8o7KmdUm41v+9sMIP/aPvS0KtNL1UHveGwa9hX8Q4QYuLVtwDqmOz8sLdfwgouN4g5jIzU7j9Q1uYKHW2/adH0Gp4w5+7/g39qAHp/Ajar5H2/YJ48B60/LpOAFfOLPOvpEUi9UefhBSatvsG8mQ0BTGcyaXNlpc3GizWO2iqzJfP+/x0L5hkrrKufUWnz+1zmK1R6Pn0nE8TiwbnN9oM11I8sJcjWQMgwbX+583E9sLeG1R+K8vzdewvZD1psBHv7De4v43KdB8swQYiABew/KQrKsJDlkKubDe4n+9usS5tTbNnmB6qvdcvnBqjR8+vuMNg/9b9fzLC7VtSbCTK02qHZfZUkckMC0Rx2paHrWuO9iDzq232GyJZ7202eaumIbjvSJ+EPJiHLt4cb7KwfHMYCz/6PUVLmy0CcKQVxbrzFd722zn75REUcQLc1WiCL5xqdL/lC+cWmcobfDZE2s0LZd672ZMX9vlnU6AAXjXBCX7KzwMwXNDVj1bwLXH/GJ9FdVxAy6sC0jPufICq/UedlxYUuu6PHelTDGls1Dt8PlT66w1LGRJ4gunN94wCXZ2rUk59nmulDsDOokbyX96+gotyyMII04uN/DjjfXkcpOOE7DZcgfxF8sX8IprDSsu6IdvXCpjeRFBGGF5LqYmU+t5aLJE1/UJI2haMXdadFWPXqtPt+7nfgiNnk/XadMPew6+j2Cz5WyPzyEgai9udkloMm4QEsTv+NqCsiCMKLddem4wiL9Y1xjdQQSLdXvwt+sL/W274AbtmB7F32ar237EXLkHEoNrA1Q6rqCRAYJoS7wogrrlIwGu57PesNE1ERsHEX//nZeX3zAJdmatxcWNFit1QXUDorCz3nOpdJxBs0i969GymoxmDZ6/UiNC+AazGy2em61wabND0/Jie1uMy+tLdTRFUPL4vhi/NiBFYq/aFh7l5nvj1mM6bsBSVeQ4JEk8Y/+7Zs/DiQfVD4Ue7zd6EP92ttSl2vHougFRFPGF0+uUO84gr3KjuLhENEgAiZhwNPi+7YR4gcuJpQbn49isH4acWWuhK/Lg/l5aqLLZFL5I172ag9ho2duSfxsth6btD+ZVBPybx2ffNAn2TnvzFUmS9vafVJKkHwTW3+FrXCfpm1SAmJrMrqFkjIWvYmpXSRBFRb/MgbE0xZROxlAZTpvIksRELsHD+4fJJTQSuqgCypgqSUNBkSSmCwn2jKR5cO/QgPjzrp05TE1BVwSJn6HKjGYMHtw7RNpQmcgn0RRB6pc1RcV2PqkzljXJJlSGMwZJTUGRRAbV0EX16AN7ryrb9x8cRpYEseP+sTSThSTDaYOUrjCZT7CzmECRJQ5P5BhOCbLRsazJrmHByzOcNiimNAopjXxSo5DQSRkqqiKLd2CqjMe8TwlNZmtYX1cEYaPyJrH+flb6rYimvT1uk5vJ3pE0w2mDrKmxeziJpsgUUhoP7S2yO66mzcQcUpoiM5YzMdSrd1lIagylDY5M5gTxniIzktbJp3SGUzqFpDYg7H07ktBF4OLtyLeaStEVifGsOZjjCV1hJK2TTagxyS/sHU5iagoJXeXBeH7tHxXvaTRroCkyhydzNyS6fjM5PlOgmNLf9nO/kfTnlCIJAtKkJgiTd4+mGM6Y7BkRVcb3zORRZYm0od4wWLJ7OIUWkzBOF8T3uiKza1gEde7cmSdlKDGO7XZesZGMMSB+3DeaZn/Mw7F/NPOeSIABA+6ejKkyEeNGSxLcPpkVzzycYigtguimKjOWMRnNmvT5ifvzx1BlMqaGoclsnSISohKzEK8ZTREkqW+Fr9lQGBB39qU/hxTp6r9FgYHQoSnjxvrI1JTBeu+TzYNYG4YmU0xq7B5Jce30NnWZkYyBqQkS75GMgRJfU1ekmDwVNFWKuxIF9nQ+oaMqgsA03Sf0jglBp3MmGVMb4FA/tG+IQtpEVwTB50TWZCqfRIuJnLPGVQJTGZgZSlJI6qiyzH273xsdh7fkevn00atho/ftEd1EqZuo10TcOaIpwp6QZYmxrMn+sUz8vdBfQ2lhPyR0hYmcyURe7N07iskBef29M0WU+PeicgrGMgaH4qDD/tE0+0eFc70vrrK7e2cRVZYEd8VoOub0EDqyH2gYSusMpXUkCY7PFNlRTJHQFNKmykTeZO9ImsOTWWFnJDWKKYN9Y9ud+L0jaWRJIpvQODKVI2Oq5BPiWmlDZTyXYMdQkuG0znTeJG2opGLdPjOUZPdwKiaxlkkaKsmYVPzOmOtmz2iKiVwCU1PIJzSmCmLfMzUZWRb7wd6RDEldQddksgl90MluqDKmJjORMzi2Iw8w4Oh4r8qun/vCW/7vT4vsH0sPMOmThvot2y0SMJZLkE9qqPF+oSoS5hZ7U46P2VFMMpo1SKoKuioN9rJ+QreYMhhKCz8ha6oMpQ2KydgX0VWypsbdOwuM58TaHs4YJDSFQxNZErrCjhgdYiJvcmBUcBsUU4IL4Y7pPGNZc7BeJ/MmQymd8WyC0azBzFCSfEKQcO8bS5NPCp/hjTjCdhQE51ghqbOrmCSf1AR35cz2gNF0McHOQhJFlpjKJ7YF9/q6rT82oxmTXOKq3fWdlL5enMonSOlvXi86XUiS0BU0ReLuXUJP7hpOviFPT1+n7xlJcffOPClDpZAU1cuyLLFrKImhKZiawsGxNKYmzv9u0kJirzC4e2ceYGAbT8Y6+5b8yZLx/Ha/ve8XgLDV+3rPULkujnAjkSUwFJmkrqIpMrqqMJ1PMJ4zMVQFVRadBmq8N197PmnLfxlD4drVZigSchz3MeQ39rFlRMV6Uhed5boik9YVMqbK0akc04UUKV0hZahM5RMUUzq7h1NMFxIUUwaFlMZELkFSV9g/liGf0NBV4WPetTNPJu6OS+kaUwWTuwZrJj3ofL+R/3kzMVSZnTE/2f7RDDuLSQxNRlflbd23N5O3WuKqqzKmLvi/ZDle82mdh/eNCB9RkWI/SebYjhym9sYaaquev1av7xlJociisyOX0MgmNO7amUeWpG170K7hpLgvTRlwtL2XRFXkwTjvH8tsG8v7dw9TTIl1NplLMJX77vCbSVv23cMT2ThuIA0SO3ftLDAzlEZ/s8Dgd0lUWSJliPWa0FSShkrfFFMVGErppA2VDxwYJhXbfxJiXe0eTpExVSbzSe6eKZDQFFK6yvFdb5xs3TV0Nc409SZFO584Iroa+z6arooExVjO5JEDogN/a+yjkNTYWUyST+qoisyu4RQJTRYxY1XGUEUsdyxroKsi3pnQJFRZxJ4VWcRjFFno6v6obR09sY6hmDTQrhlXCaHT1RsMdyG290xVGeh9VZa22dT9d5sxr8ZUZen6RETGkAfxFkOVURQJU5MZSgsOSF1VtsV+ZCCbUNFijsL+V2Z8rUTMR7j1efrxIENT2DGUxNRksgkNQ1UwVYWH3wT1Y89wiuG0jqnJzBST7BpKkjFVRjMGxYQ2eHZDkxnJCp21o5ggZahoMuRTBntHUjx6YARJksglRJxIlmAya4ruW0UmofefX8HUZXRV+qbixKoMaVMjm9TImJrYaxQxZ9Kmti0epivC/+2/LlWWyCd1jk3lMDSxVx+ZypGNx9FQJd6Ka7z1EC32sydyJocmshiajCKLGNyOorB7U4bKjnyC6UISVZFJ6sIekBHzMGkog3eR0GQyhkpSv3qV7zl08yRmX95pTrD7gH8GPATUgXngd6Io+uV37CI3kOPHj0dPP/00P/+5c/zg8SmK6RSyDIWkgRFHYAM/xA1CvCBElSS6bkDKFG3vRBGWF5LSFapdl3xSR1dlLNfH8yM0VUAT6YpMy/YppvUBJEjHEhUQaVOlHWf0JUkatNFrqoLjB6iSRK3jCILhtIEbhMKwkyS8MIwrnAM8LySSRIA0jKCQ2u50lts2CVVB02SkGCKg53oYmooqi0poU1Nw/XDQ+RRJoipia6ze80MUWVR6WF5IPiFaTlVZVGO5QYTrhTQsl2JCJUQmZSj4Qchyo8dISme9IUj/3CBiLGfSsn0yuooky9S7NglNJggj2pZLy3UZyaRwHJeTK21+/KE9/bF7R3BWXT8kCEI0VZBoGqqMqSuEcdVAFIlx8fyQlKnStX3atoA9G84kkGUJQ1XYaNhkDZlQlpARG4cbhIRhyEbTxpAl0qZG03YJooi0rmJqKnXLJaHIbLRsTE2imDLJpXTqXQckca5mz6VlubhByEjGiDubQoppg0bXYzSrkzF06pZoIw6CiIVqh+l8iprlkUuqpHUN1/PxIuEYdG2f0UyChmUThhIT+QQJQ6XcFpnznKmhqaLdeKNlUTR1Ukkdxw2IiMgk9ME77M/TnhuQNtW3lNy50fi1bQ/PCyh3HRKajO34LNe7LGw2Ob/aoGN36Tge9+2dImUm0BVBMJxNakwNpxnLp8gmdBzXx9QVuo5P2tBwg5CMoRJFER0nYDyfEGsthkc0NQUvCJElMW43kht9v/X3QRgRRtENg51hGOGH0QBG0PaCt90p990WN17jfaL548eP8/LLL9OyPDKmiuOLDlDXD+KAi0yt4+B4noABlEWCX5aEniCGkfWCkKSuMZw1CELxPqNQtJZnTR0/8Lmw1kKSJLHB6UKX1NsWiYTOZD5F03KBiLbtk4wDP23LI2FoGApsdhwKCR1JFk6eLEHP8ei5IaYCbScgZegkDQVdlnDCCEOVqXcdwijC0FQSikIkieRwx3Kp2y4aMgES+aRKSldpOT5JTZDnWq6HGwRkTZ16zyVraLihmENJXcXUFLquj+P4IEtoikIUhThuiKZKJAwNPwyxHJ9sQuwrPTcgCENszyeXNFAlqHY8krpCBNiuL1r6g4AdxRSOF2B7IfmUvm0s+2vvWuLyW/LulNlyE98NuG1KBIWPHz/O933fP+a/9OA3f+puduYT+MhMFRJEYYTlCxiCju1SzJjbgqlRFAkbQpKwvSDW8WKP1xV5m+7uOT6qLGySasdlOCMKHdwYRhCu12Ud20NXRUAKIAxDOvEc7stWfegFIY4XoEgSiiJf1ZGuD5Jwpm8UDN6qj/rnU2QJPxDl35osx1AnEUEQ4gURCV3YOlEU0Yor97QYKkaSILWlY8MPBHSELMkkNJm242Mo0LACxnPmoKowjCIMRaHliA7XrCkg5FKmSATYMRxF/72+FznB3s59vp3rfzs4wb7d73Tr+NlegCyJudixPYIoZLXWpd7q8o25OjuyGpqqEgUBqaRK2jSJgoCuD7eN50joKglDpmH7zBQyGJrYH2sdB1WJAOFkrte7McyuTiGlE0QM7C0vCAkjASQSBAGaKgox/DC6WlgW77kSfSi6aNCdFIYRXiB8nLSh4gViHQVhNAg22J5AfSAupOv/pu9FyvE1+prD9voQyMrgPPJN7Kq++EFIGF1FWQgjsV6vlSAI6dg+CUMd6Iq+9HWbMdA92+2u7yQ3g+MH1+nTN5Kt9uO1OuNmsvU41xc+qgR0HY+htEHHEfA9CU2h5/h4QYAkSTS7DqWOS1qXkWSJpKEjRxHrjS5+FLFnNMNq1WYsp7PatAiiEB0ZNwzJmBpdJ8DzQ3JJjTC+nipFeF6IrMpsNh1ypkZSVTBNEcwPpYiEopFLafQclzCSKaR1NEXZBkf2Ru9tq93yw4fg//zJW3bLu1mutS+PHz/Or/7qr/L/farCL/3I/QwlRZwjjJEZUqbGZstiImMQhGD7Pj3Hx0dCkxUa3R6qohIFHkO5DH4YkE8aSEQEoURESEJXYzQKH4kQUAjDAEmWRbxDUWlZNqoqYSgquqZS7znMFBI0bU/s6UGEj8SOYopy0yapy8iyTBDBZstCkxVMJUBWDBQ5IEK57l7CKEBVxLPlkjpeEBL4IV4YCZj2iMHa7evTCHC8gIypDiBD+/5k2/aIwghNVeLCOXmb7fVG/ufN5Fp96cetEDeCrb2R7vz3XzrBLz+5igzcPy0xXMyxazjL8b2jDKV10rpBwhDndgNhr9leSC6hkTQ0vBieq95zKCR1sgn9LenLa+97q7h+uG3/kuPY1rV7UF9X3gyi990uW2MP/b/778T1AzabDlMFcwCF+N3iJerP0a331+y55JI6QRBS6zn0HA9dFv51veNiqFBquyR0lbblkEvo7BhO07Y8/Cii1uxh6DqaJqNJEpoKja6Prkm0bZ+xbIJax6Hc6zGeSaMp4j68MEQNIxYaNocnCgxlDbqOg+2K4qF8QqVh+eQSOn4UkNI1iGOgiiTh+AGW65PQ1bjwScLQFLqWS8cNCIIA01BJG3qcOBLzrWt7RBKkjTcv3r9RnOlmY1fr2HhhRCFp0HVceq7PWFYE/Wsd0e1S63rkkxq6KpouLD/A8QKKKYOO49Ps2oxmk7QtV/g/knhXfhCR1BVatkdCVbCDAF1WsL2QjKFQ6tjkkpqI10TgeQGGpmJoMglNxfEDal2HYsqg2rXJGjqKImNqEgvVLpoqk9U1OnbA7tEUjZ4XN2pIVDsOhZRByxKfyVJEzwsZjfcFooiNls1IRtjCpaZNJEUMJTVSpoHlifh7ylRxHB9NUzA1FUWGri18tp7r0+y6TMYFSB0nQJNlnMDHD6JBMZEfhiiyTBiENLoOsiLofWRJdBJlDJWO46MpEp4vHOlccvs432j8vCAc6ChJkgb6KAgiXF+gsSUMjXxCpdp1Gc0maPZcHD8gbSgkdA1Jkqh3XFK6Qs1yiGII8wgJy/MxZHkAhxgRCZ3hBbhxnA1gupDi1fkqE2mVthshK+BHEXlTw/MjZE2imDDEviMJiEpNgY7jx4lXCV1VmCu3GU4bsU6OcH3h1yc0Ubxh6gptx0MBTF3ECz0vIIhEQUWt52CqUOuF7BvPMFduc2gyz0tzFY5NpqnbEY2OTTGloamaKBDURfK5Y7t4oaAh0WVZwHAqYGiKiJF1XbIJnZYl3l8xKeZN2xIUVAlNA1nEGlYbHWRZYt/I1S7M7xQn2H8Efgq4gvCpPgX8TeDbmgQDWKz2OL3exnpunmI2RTGhsmsky/HdRcJQomG5TOYTDKVNzq+3qHRs9o9lIfLixJcIdoiKI4lX5qpkU5rgIEIkVoppBUNTWKkLaJ49Q2kShkqt51KzXIaSOnXLGxgCQoG42F6A6wU0bI8DoxkMTZzH9gJ6XkBSFwswDMGJIKFKlNoCCihCGAT9JN1w2hDtll0XRQHHDdk1nKLSdqhbHvtH07Rtn67rU0jq1CyXVs9jZiiFoSk0LY9Gz8XyfDqWz90zRWpdAb9RTBkUUzqltoOuyDgxjupG22P/WJqOI/BB04aGG0pIssJwNkkYRRRTOkNp0UZ8YV3AshRMnVOrNdIJA9fzWak1eObCBg0v4GNHJxnOvHPVLboqE8RwLoWkPjCU3CCk1HZQZXnAa1DrOnQcn1xKVDA9P1thLGcynDFYb1m4SR03DLH9kJyhYeoi2zwzlOL0ahM3Thw2LZepgspGS8A4TRVMzqy3CIKQ6aEU41mTVxdqDKU0mlZAGEVUOw4JU0HfEE5rylRZrdt03YB6T6Nth3TdgNsm0jS78ZwIRZLx5HKDWs9lppgkn9AptS0UWWE0lyBjGpTaNrWeS73U5lKpyz0zBQIDqi2byXwCVVZY7zrsS+o4gTBiqx2HMBJVFH1jNJOQafTcuGr+rSV5oiii1nXRZInNtk3KUJgvtVmsWYzlDF5brKMQcKHi0nFCQMW6UqPcCRjL6ORSBlPZBJ6scGq1jaJI7CwkCcIIRZb50O1jAtLUDRhOG7ghVDoOGVPD8UJmy00MRWVHMYkki24+yw0oXJM40BSREKx2HHIJDTV21PvPqcgSyk3qLGRZQt9i1LzXEmDAdQEnEJtGn+8vCCNShhrDo4p28uG0QTFtsFDpIssB59dthtKagHJFopDWMCKV0ysNdjopRrIGyzUBs1RIGpxYatDzfQ6NZ2nbHj0vZLKYpGH5+LLHUtVio+miSAJapeV47BvNoOsqry03uWNHjg0nGBiHsgRzlS57R9LYfsQrCzU0VebIdB4/Crmw3gVJBPLft2+U4UyCl+YrRJGo3nlmtswdOwoUkxrllkcxJQJCqgJrTZukrlLruuQTYt0OpTXKHY/dw2lmS20sVzi4aw0rxkIOOTSeZa7aFRVYkoAx2j2SZNdImuG0SRAKbsFza11ySQ1Fkrm82eKBPcO0gwA/itjs2ARBhOX6LNS73LUjT63rUkzpuGFE1/Hfk7j3t0TIRsPF8QJu20K1+L9i9J6/+puv8W9+/C7R4TqcRjNk3K6LoSlkEqJatNnzaFguji/gAMO4eKaQ1CnXLbquL6CnJEhq6mAfTMaFA7Wuy2jWHAQMtgYfFFlio2WhShJDaUMUB20RWZa3JcDEZ1f1oabI1wVual2XlKG8YSfEVn0kyxI927tu3xno3C3n2WzaREQYqkJCF8f3XB8viGj03AGMYj8hoMoCclSVJJ66VGH3SJLNlkXXEc59MaXTti3cIGTvcIrNtsNY1hzch6HK1Lou2YT2nu4GuyXXSxhFOL6AFM0ZCq8v1Ti73uTEUpOe4/CcBxNZYZv90D3TrDR9hlKiKGe95VFIRyw3Anw/4MJKh6Gswd0zRSJJIkImbarMV7rIRMyWu6R0hT2jGYjtro2WzZVSm/2jWTIJjZbts1Jvc3gyi66Kudl3sGc3u+RTKiNpk1LbxnJ8lBjJoe9XAMiSWAf9314ptRnNmCQNlZYtilZShoohb1+b/bXjBSFDaYNa10VVpOsS8FvXQr3r0HYCdhYFJ0R/zVfjor9+gdlWURSZXEoXOgIFL4ZiSRvqdQlzUSwWoKvb9c93Qt5Id91IttqPb9U+tNyAzZbNzFAqLjwQ+iUZ7/W6GlHvuSzXuiiyTMvysByfADg2naeQ1Lmw3uRyqYPnBTx5YZNUUuURXyJpKvy3F5bouB4fOjjC+UqX9aaNhPCLDk1mOTCW5elLJawgZDhlMppScSOJyVyCcs/D9mwWqz3u2pFnI9aLOwupuHtWZqFqcWgiQ7XjDObbW31vX7kA/+fbesO35N0gX183WCj7XJ5fJnNoN0okoJssL0CRJaIQWk6AG4ignWFoeJaPacpMmVl6jk8QiZhLISW6Jc6tCz6VbEIjjEQn+mrDIqEp5BIymqJS7dhsNh2Wa3VyCY2MqaIoAROZkOdnK6wURTDUckIqbRtZBs8PKLdcym2HfErnoX0j9JyApAET+TRrjR7n15s0uj63TWU5u9Zmz3AKN4iodx1GMgaqLLPRtLFcUTCRiSvqiymdpuWx0bTQVYU9I2nCMGSl5qCpIpDXc32MuDg3Y6oUUgZeIGI6UQQrtR7ZhAjWJnXRsRCGYs33ffMwhGbPpeP47BlJbeOHuna9vZ2EUBRFPHGxTB987JWViAcSUO4FrNYdmk5Az+6w2ujx4J4RTizXOTqdo5A22GzZ3Daew9QVcqoewyF619mJwMA22wqNutG0kSWJsZxIMs6VO0zmRUd2XwduTSLcyHfVFFFoXe045JP6TYtf362yNfbQ/7s/lroqOlS+E9K0vLh7Sb2h3d6/x63354cRVzY71HtO7JtqnFwpEQQhGdNgJKMzmk2w0bKotG1hD9UsrpSaOF7IaDbB7qyIn55fb7N7OImuqmiSjKnrvLxYp2N7jOcSOH7IbKmD7QmEr2rPpdKyaTsB+0bTpAyN52bLSAj0i8vlHuN5nSCUuHNnnuG0ieuHbDYtAa1pu+SSBruHkoOCoZ4fMl/pMp4zObdY5/BkXnSOySIJFUaC31VCIhXbUYok3dAnfzs+QlJXma92xVxQFZqWjR9apAwFyw0YzyUwdZVX52uEROwYSlLreIznTFqWy+nVFoWkxkRBRpJl1ps2hqbg+QFrDQsvDBlOm6T0EFVRaNsuu4fTtCyXuUqXluViuT4zQ1kmCgmWaj0MTWa51mPXcJrdQ0leWqhx5848ChJPXCgxnNWZLqRiHmWbtKmw2XKYiDvfeo7PZsthJJNAVmSubLa5Z6bIaE4UPy9UukwXkqQMDcuL6LkBCV1hvenQswPaTofRrAFI1Doulh+iyiJps380Qz6ls1jtkDV1hnMJXlio0ux65FIaOVNA/dctl64XiA7ShEAyAMHp/upSlbbl8+CeYS6WWiQ1jablstGyIITxXJKHDwy/aTJf+L1X/1ZkEdd3w5CEqdGnTeuXsm02LSRJMLy0nQBNFd1p5zeaTOYT9DzBO2/7Aaaq4IchlxoWwymDobRBIWXQc31WmuI+ZVn464ok0CUMXWGx2ea2iSxJXTRD6LrII8yWuoREjKQN2pZHqe3w0L4RrpRaNC0fohBVFcWlhaSBokh85eym4Bs3VdKmiudGZFMaQykDZFHIvd60CWIuNdvzKbccEprKqZUau4aSrFY7+H7A4xerHJzIIKkKlZ6PhE86oTGsxl3gqorjiPvyfFHgu9myGc2ZzBQFt+bsRovlWpeErrKoKOwoJthsO6iyhKl6zFXahFHERC7JzrfQCQ3vfBLsB4HfBX4ceBj4SeCj7/A1rpMgjPj4v3sBgDPrXaA2+C6XUMmZItN9YCzDockM/+2FJZwgZCxjUEwZNC2XncVkDCOi8upinbNrTfwg5NBkThh1kYD78KOIx89v4gUh+aSAC9psCTLtkYzogpjImfztjx7ka+c3eX2pwWypw2bLRpVFG/Gv/vl7cIKQ335hia7j4/ghPcfn5EoDVZHw/ZDNjoupSmQTOp4v8P93DCW5c0eey5ttLm62seJE1+7hNHOVLh3H5/hMAUkS/Da5hMZyvUfXCXhgzxA/fv9O/tuLizxzuSKSMbrCriFB2FftuuwdTXFwPMtcqUO95+IFIWsNm7Shsm8sxXDKYLbUpWW7dBxRVZpP6Hz08Bj37CrgeCG/+ew8ry7V+zRO12HH9uX4P32cS7/wiXd0HvzBayus1C32jqb5vjsm6bk+P//5c7y+WKdlCePxpx7axW+/uES16zBVSDJf7jBfERvQUEqLiQFFS6ofiiqKyZyAZliq91ipCS4oPwyJEBUPTsyfdu2jSrw5VusbSf/3KV1GBtpbuJGk+EtZEtBUGVOl0hZEkn3cVEOV2TsiYKrGciZnVpsEYcRdO/LsHc3QcfwYn9znvt1D/MQDOzFUhVMrDR4/XyKhK/z4/TvflAsB4MtnN3l9qc4Lc1Vatk+lLQyUN5KFhkCLXWq4QOemx8nAbRMZZoaSWG7IzFAS2w8ptWxun8jywlyVC+uCRHHXSIqH9w4L3jBV5pH9wxy/Br/5q+c2ObvWYjRr8GP37XzPwBl+O+XLZzf4yrlNWpZHx/FxfIHZXEzqHJnK4nghryzWWIrx8EU3lhS33xu0bJda10NTZHYWTZbrtlgXYbSNv0KLYdYe2jdMtePwykJN8ChKV+d7FEEqbnPuuYEItisSQQiHY+jGlYbFSNpgvtoVGziQimEyvbjDUpEl7pnJkzM1nrhYFlX0ksAqFhA+muAMC4RxqyrCeQ+BYlJ0xo5mDFq2z3DaYKpg8sKVGi3bG1QMuUE4gFuQEAmJ5XpP4FBLcOeOPP+PD+zltcU6T5wvsRbvA44vrjuZN9kzkmGtYVFuO3hx50oQCujPP3PHBIem8lQ7LrIEP3zvDsayV4sHtnZM7Pq5L9zqBnuXyr/+6kV++YkrAPzQPVP8ix+4g7mNJn0mhB7wM7/9OpoMd80U+Zsf3s+L8zVyCY0ff2Anlzc7/PrTc7y8UI/JjMXOkk9qsbHr4gXC4M8lNA5NZvn4kQk+GfOJfvnsBufX24znTH7k3h3bdF4YRvzPl5Z4/EKJjKHymbun3xIfxRvJi3NVnrtSJWOq/MQDM28pIPz6Up0nL5ZJ6go/8cDMTRO+ry7U+MWvXqJteRwcz3BgPMMnjkzw2ZNrLNd6yLHxvG80LRySIMRyA/aOpPj911ZZrVtEiOIKLwjRZBGUD+OCi4wpoI4m8gn+2WeOkjU1nrxY5sRyg6G0zo/fP/MtvZtb8u6Rasfhf768zLOzFWZL7W3Y+FtlvirChKc/f/G676618yRgumCSSeikY3i88+tt0SEfN17lEwKWXJYkwUXhR2gyTBUSrDXtmJxd5YMHR/neY5O8/8AI/+Rz53jyUom0oXLPTIG5cpeG5XFkMseHbh8d8GqFYcTvvLJMqeVweDLLSt3iy2c3yCZU/vqH9vPEhTKKDD98fAejW/aSk8sNvnpukwsbLfaPZSgkNLpxwcfWNfz4+RKnV5uMZAwe2T/EP/zjc9hewH27isiygDfdWUzwlbOblNsOD+4Z4icf2nUdR8xzsxVenK8N9mVVlvnM3VNMF64G/tq2x2+/uITlBnz49lGOTee/qXF+t8pyrcc//OMzWG7AD9wzzQ8d37Ht+5bt8Z+emuPLZ9fZbDn4MZpJnytyZkjA6fyvV5ax3GDbPPyNZ5e3neu3X1q77vqfPV16y/f6G89fPZ8iCRstjETicvdImvt2FbljR44P3Tb2pufq2y2NEPb/3Be4fMtueVfKjezLRsfl3z+zCMDf+NwSw09ssHckxXrTJgwjVEUWKBFAEAoecjkO/CUNhbShstlyiCK4d3eBH7l3J+fXW/zKU1do9jxySY37Yi65U6tNurbPxw6NkjQ1fu/VFZbrvQHviyyJoLjrhzfk5gbhP/bZSCQQRWW+8Cv2DKe4tNGi60XbjtcU0XXb96M1VRGd6KFIXOWTOnfvzHP3TIHXF+s8N1cjY6j8/U8d4sxqk5cXagMfYaNlxxX8MJw2+PDtozHfmMSlzRZXyt04cGdyz0yRH7t/J8/OVnj6Upmm7XNsOocXhHzx9AaGKvORw2P8jQ8feEfG99g/eIz2FsrmNvDVyw243ABWrzl6dvCvVAwj9sDeIf7tj9xFpe3w9//4DB3b51N3TPITD1y1kSodh995eRkvCPnUsQn2jWZ4frbKLz9xGVmC//3D+3nqUoVXFmqMZQ1+8YfvfFtJhM+dXGO+0mVmKMln7p7+Zl7Dn2qZLbX5/Kl1NEVm70ia8+stsgltEA+6kVwpdfhHnz3L2bUmHVvw9t0o1nWtbbSV9xsEXF2ffxuuwuf5wfa4wTcbS5MlmM4n+Hc/fjfPzlb4X68ss1q3COLO8pmhFI/sH8bUFB47vc5myx5016QNlU8emaDSdVipWzQtl9GMyf17hvjgwRGev1K7oR31duX//YeneW2xTtbUiBDJYUOTB9DI9+8u8NpiY2AraYqgYyikdKQISjF/6KeOTbLWsFio9EQnuSu49KJI6MhEnGBPGSrHZ/K8Ml/jYrk7iNVKgKkJTvJAgPygqRI5U8PyAnIJTRQUdAT6RiGpiYIDN8API/aPZvi7HzvI8V0Ffvq3Xma51mMsa7LRtGk7PsemsvzmT9/PP3/sPGfXWnFcPWKlbqHIEaWWG3dWiZvpQxdGgxiSmBvDaYO7Z/KcXG4iSaJDr9q7qsQUSYydokiiED6pc/tEhp98aDcP7R3iL/9fr/DclSoRxGhlYp/aOocl4IfvneZf/sAdb2ssW7bHb7+wRMfx6Dk+c5Uew2mdXEJjpW5RattICFSWYkrn/QdGOLPa5EtnNgjCCFMXKG4JTaGY0qh1PVq2T0KTuX/PEH/p4d381xcWeW62Oiiu2FFMMp41Wa5bLNd6uH5AylC5a2eeCxsd/DDC8wM6jh8nWmW6g2IOFcvxcUW/C1IMUTicMai0nQFfWx+NQpFFcn73cIpDExkubLSZq3SxXdENdqMYeH9/DiMxpildwYrjc4WUzieOjvODd0/zR6+v8tJclbWW4OjuugF+IFDq7p4pslzrcanUHhTMKZKgtArDaMBf5seEYaosIGZ/4fuPcs9M4Q3H7B1NgkVRNCdJ0o8CfwQsAx+Losh6J69xI7Hcmwfbe06AjMiYVrsOry36+KEIzjYtjzBOJFQ7Lit1i/1jGRar3QGkV6ltoysy+aTOWlM8iuMJZ6Nji2x31xFdPhtNi3xSp2F5zFe6tG2fekyCKtqJBVxew/Kw3GAQoFlrWASh6ADSFImW5eH6AUEgEUYuIA2Ipq+UO9R6Ho4X0nECUnrIbLmD44VEUcTlUoexjIEfRqw0LPGMIaw3LeYrXSodB9cXFVpqELFc7w1ar+sdl9nNNmEEjZ6AduxDrCxVLXRFodZz8eOgUkKTqVsuPS9gtW7h+CGrTVskhG6wIK6Vasd+kyPeukRRxFpDnG8tJqdu9DzKLYeeG2D74n2/tFDF8gJcP6TSdii1bAHfEkYDclcv2L7pVrsOSV1ho2njBSLwHUYgSRGOF90wAQbfWgJs6+8d/yrR5NXnFf8PI2jbovXXCyNc7ypxoOeH1LsuasZkvtzB9UWL9pVyh72jGeYrXRRZouP4tCxBBmyklcH7s1zRyfhWkmCCrDOg3nXxwwjLe+ME2NuREFhtWAK2JRRdQBlTpeeKSpdKW1QcR4TU2i4d16dt++woJFltWFzb/9onLy+1nJvCMfxpk9WGRcv2aNke5bZDUhNwB1lTpdpx2WzZ9FyhryJgYKkgNv5mTxBJu1FIue2KTe+aBBgIctKeFzBX7sS6JRokvraKSCyL7/x4d5Uk2GzZg2q/9aZNz7lq/DhBiBxGBPHvwihiqdojZagDh3aQnA8jWrYPUYQXRMgS2L7gMwgi6LiikzBjqDR6HsNpg3NrbdwgxI91gITYdL1AVMYXkjrVriMgT+JnavRcXl9q0HMDGpZLEIZ4vliriiRR7rgMpVxalofjBwMjMIK4k9jj8mabfFInjMTzj30LBvct+e7Is1eqg8RVn/y6GzBIgvUlCEVlcF9HNS2PrhOw2rCE3eD5uDF0BUDXCei5ogLbj6uuNUV0La3Wr5peq/HeuNmy8cNoGza6G4SsxVXOUXRVP34r0j9H2/Zpxd1db/U3PTeg3nNvmgS7uNmOiaADKl2XKUfoE9cPBTxiJCoG27aoKhNdYgENy6fScYgQsE1hJPZxL4QgCmObReiFYT+k2nGpdVyypja4t2rHfUf3tlvy3ZVyxxEVwi0BH+3erGrrDeTaX0RAteuhKQoy0HE8/DAcEHlHiACFqQvnsL8HuqGwWb0giuHwAlq2z2pDdCguxH5J1/G5XOrEUOMebdsb2GwQox+0BDH7WsPicqkNQMvyObfWEnthIAjOtwZv1hoWfhDStn1sN+Byx2Eyl7huDffXQrntcGGjjR2vh3PrLY5M5WhZHvMVsRYtL6BuuQKO55okWP88G007DqiI5PXWJFi96w38u7WG9ScuCbZU6w0IwC9ttq/7vtpxqXWFj+kF4SCYIOwbYV+cXm0MYNi+UxJEDCCUAk10Ud63q7htz3mr4n0b7u+WfPuk1LHZWlbYjfdrO45BdBwfVZHxgzC2M0LcQHCwOH6I6/dhnCIqbYe1psWJlYagNAgjLDeg0nHYbAndbPsBpY6HZvuDeEZfwohBUvhmsvWriKtdL1EQsVa3rtP5IeDFOhli/zuKCEMGyT3L9al0XGZLHTZaDmEoktMnluos1UV7/2rdJm0IiP6u64uu2Z7LasOKucIUFiq9uOBQFDR3HJ9y22GtYdOyhQ2z2bSF3+T6SKhcKXW/uYG7gWxNgL0dcYIIRREB7J4XsNKwaNviZJev0WPlthhHgLWGzb7RDBdLLYIwIgAulzrMV0QR7GbLoW37FFNvveu3v4+svQN2659GWW3YRJFAnOrvQVvjQTeS2XIHy/OxvRsHv/ty7efXLlP7moUbxDGDa4/7Zve2KIKm7XFxs816UyA/CMhRBn57x/ZZi2OlQRjhx/EAyw2odB1KLdHpZrsB3ThWdmmzM7CjSm3nm06CuV7Acs3CDyOqXRcAPwzxnXCAZHGl3BOJ/0gE+x0/AgSctB/D8UURnF9roimCfkeghwUDW8ENQiRPIgg9VEXi4maHas/dFneJANsTz96PIQZBFOtL0YHuxeMVgfA5w0jA4EYRth9wfqPFbRMZNpvC31ypi6YBooiVuk3b8lmsxvqx0WMohnNUZGLamXjs4/GRuBpLjohQJOHbzVdE4YDlCt25VcJI+JCmKmD1LS+g2nXFGPdcVmq9wfNZboiiSAPbfOu7OLvaetvjWevEyG9+yGrDxvYCgb5mefScYBBjlhC0BeW2w5n4Om4QgitiZJIk0bBEF3EYhjiesAVnS102GnYMmx0RRSFNy8fxe3h+iOMLW9LyQpbr1uAzLxD7F5J4Z2Ek7qFt+QNbkvhde0FE2/Kxt7yUfhEJodhvW7bHasOm3hOoEjfTASKOFV6NSQeC5sEPRBOJ7QWUWw6XNts0LZ+2I6g//CDE9UU8wvICFiodOo6IcWwdZ8cLB4n1rdcPQgGTeHGj/Z1JgkmSdPqaeygiICJfjDl7jr0T17mZpE2VUIFrc2GmJnPvzgKZhEq14/Hg3iIP7R3hH372DJWOw327CkzkE8yVuxyezHF0KkvT9vmZR3bzO68so0gSD+0bRldk6j2PO6ZzdF0xSLWuw4HxLMemclzabOP6AQfHs2w0bfaOpnlw75AgCdRkJnMm81WRcf/4kXHGsiZhGHFsOkej53HPTIFyy6aQ1ImISGgK59fbpEyV6bxJy/LpeQF7R8R5Ty03OLnaJAojTE3hg7eN8uxshc2Www8fn6bUFpUL+0dTnN9os9m0+dSxSR45MDIIEi3Xe2iKzKeOTnJ2vcVaw+KenXnu3V3kmctVDsSwihc322QMlY8dHcMLBNnxZsuhYwtoxNsnMtw+nuX+PUW8IKJlufyPl5eRI4F7Xe44EF518vsymdWZyL9zrd6SJPHh20c5t9bijpjIfiJn8omj4wIr1vbZP5bmZx/dzW89v8R6w+bAWJq7d+b449fXSBoqhyazXCl3yCc0QCSHRjKC+LaYMrhjR56vXygBwtC3vZCpvMlaw8aK+RaasVJJaAIGp9pxB/d4bXxFRiRgiavkFAnRMh5EpBMCwiqMYNdQgrSh89pSHT+MBq3qrh+iKhL37CyST2qc3xDdUEvVHm3bY2Yoyfv2D9NxAu7fXeTLZzfpOj4/dM80XhBxZCrHfKVDzw04PlNkOC345+7dVaTrBOSTGjsKb22M3n9whKSuYGgyi5UuuxyT15dbwjH6JsdUl0GKoXR++qFdSLJITNy5I89qw6LWdbhjOs9EzuBLZ0ukDYUH9wxxaFJ0dLYsjwf3DF1/rwdGeGWhzt7R9K0EWCwfODhCEIp5rckyi7UudyiCa+L+3UUMVeFzJ9fIJhQqLRfTUMgYGkldYWcxSc/1eWmhzkja4ME9RZ6fq1LreZgKbLY9gihiOKUiy6L79Ifv3cF8pYsXrFHpuKgxDK3lCSN132iGrKnw+lKDkYwh+MEcnz9zxySqKvPcbJV7dxU4sVjnpcU6qixx21gGRZWpdxwqXRdZlviLj+whY6r80lcvEUWCI2+lYTGc1jk8KeZ/hOhoG80YNC0PZUuLuaEpqLJMBHzk9hH+6/NLlNo2xaROvSeKG9KmytHJLIs1i/2jadabFk/PVkioCh84OMpfeHCGZ69U8P2QV5fqAoPbC9hoOnz08CiFlMlGw2Kx2sX2Qipdh4blcWA0zQP7hrl3psBsuYMqyxwcz9x0DB/8zk2XW/I25Z99/1F+5NdeIAgj/uGnDwNwdCpHZcsxEjCeM/mp9+3iffuGeWa2MiBfv2+XqIQSfKb+gBdoKK0zmU9wcaNN1/VjEnedY9M5PnDwKins+w+M8Npinf1j6euqbE1N4XtuHyOKBDb6o/vfnEz2zeShvcMEYZnxnMnoW4Q9fmDPELYXMpTS35BQ+hNHJrhc6tBzAg5NZtk5lOTBvUNYXsBI2iCSIlo9j6GMQdpQBx2We4bTeH7AY2c2SOkKEhJt2yOXUEmZGpYbIksR+8cypAyV28azA6LyR/eP8MJclV3DKdK3IEn/xMi+kTS3T2SBiOdmq4xlRIDDfxOjRfBnicpGU1XwgoAwEsVqKV3h40fGCJFJGyrjOYMvndmg0XUpt21kWebYdJ5cQiObUDmxXGe5ZjORMzg6nefUcpOW7XFoKsu9u4o8un8EUxPdkf/thUUmcgk+enhU2OljGfYOp3n/gatr1tQUHj0wwpVSh+O7Cty1s8Bvv7jI7uEU33tsgq9fKKEp1+8l9+0u0nUDcjHM1/7RDFfKnevW8PsPjPDSfI29oymOTuU4tdKi1nX4/rumWKz2mMwlmBlKIksSlY7Dg3uHGc1s5zYGBjrujh05ujFqwOHJ3LZjpgsJ7tiRo9b1uPeajv4/CXJ8V4EH9w6x2bL5wXuu72KYKSZ59MAIlhdwudQhDKDleLQsF11R+NDto3z6jgn+6efPs9a0aNtXu8F0RcD1dGPH69oq/L7c7HNVEk5932/pFwZqMgylDEazJooiocrw0UPj5BI69+95+2P0Gx/7zkB+3ZJ3Rg6MZ7fZLQ/sLrJ/LMNSTdivQ0mNmuWRNlQs14dIIm0qNC2fsaxJzlSZq3YJgoiH9w/z4J5hDo5nWG9YbLYc4bfuG2b3cIrHTm/gByEfvn2UrKlhOT4vzteodR1kWSalKwyldcIQFms9FEkiqUv0vAgvhtDKJwwsP6Drior6jx4a5/Rai4Sm8OFDI3z1bIkL6y2iSHAFK7LEWMbADQTn6ERO8LF6QUjDEinbmWKSB/YM8dC+YV6Zr/PHp4Td8lPv28VsqcMfn1jjI4dGWWvYLNZ6pHWFtu2zs5jkI4fGaNk+bhDyF943w5MXyqRNleG0wbHpHPtG03FnrETX8blrZx43EDwwfhjxY/ftfMfG8m99aCe/9PWlG34nA4YCTgCRBIYKvi+6B3YUk0TAj967k6ypcWw6zyP7h1mtW/y5e7d3s+4bTXP7RAbbC7lzZx6A7z06yWJVdO1/4sg4OwpJPndyjTt35N9WAgzggwdHObPa5PDUtSVlt+StyF0789S7LqYmc3gyy/NzNSZziUE86Eby6P5hTiw1UCSJtYZF2xZwgR0nHAT5E5pE1tREUY0fYqoyhZTGZsuJkU4kZoaEv9yyfExNJmOKmELH9al3PdwgwlAFR1K57YpzR7A11Js1BL9eLe4GSuoyQRANeDTff3CUjx8eZyJrUuu4nF5tCjvHVHlk/wgHx7NMFRMkdZXXl+pIiET5wfEMHzgwSs/zOb/eotH1mMib3Lu7yMP7Rnj6chlNkTkwdnOf/M1E1xR+5L4dfPbkGruGUmiqxOtLDYoJnaG0jqbIfPzoOOfXsvza0wuEYcR4zhSw7SNpcgmN565UyJoaf+WD+wQ04oagcGn1PE6vNomiiLGMST5lUEypgMT33zXJM5er/OHrK3HSISJjKuwoJKl2XYIoousEjGV1jk7lObnS5I4deVRJ4ivnNlBkiUOTWYpJnZWGBUgcnszy6TsmyCd1fuCeaZ68WOYDB0c4vdrk8maHH7l3B8W0zp+7bwdfPbvJh28bZbVhMZ41BSxso0e962L5AUSIeHgkkqLuluTbndM5PnjbKH98Yo1sQsV2A56/UsUNRHFnxtTYP5bG8QJ6bshY1uTOnTke3jfMcMbkJx7axX/4+ix+FHFkMstKwyIKQ+o9f9BNn0to/J2PHnzb47mzmOToVI6m5XH3zgInVhoMp3VmiinOrbVo9NyBfZY2VR49MMpdO/L8wmMXSBsKpirRcQKGMgaT+QSlps3lzQ5jWdFB/D2HxgjCkOjEGm3HI6EpHJnMcWgixzOzZQpJjbWmw8xwkg8fHOEblytIiALx5VqXKJKYzBks1y3CSOKBPUUub3aodB3RxS3LFNMC4W6tYXFmrYkUQcrQSOhyTH1kcM/OAkenspxdb/HyfI2GLd6d5QjYW8EDDmlTY7ognqPnBUzkTPIJnWYMJTqdN/nooTHef3AEkFAVWKr2BgWttZ7H3uEUnzw2ycllgTRWbrtCv+gKoxnBmRvE1BAbTYsQGE7rPHpghE8eHX/TMZOi6JsNUW85iSTNvNH3URQtfssXeQM5fvx49N0gi7wl37p8t4g+b8k7I7fG770tt8bvvSu3xu69LbfG770rW8duK2TUOyXfDljTt3Ofb+f6b/W8345zvh3Zev1ba++9K7fG7r0tt8bvvS23xu+9K7fG7r0tt8bvvSu3xu69LbfG770tkiS9GkXRtcBg70wn2Lc7yfVW5L+/sMBvPb/IVN4km9D5yKExhmNi5wjR6ZDUVYIw4pWFGi/N17hjR45HD4wyX+nS6LnsHk5xpdxhKp9kPHfz6uVqx2G+0mX/aIZc8uZQcV4Qcma1ST4puomulfPrLS6st7ltPMNYzmSu3GHfaJp8cnslTNfxOblSp2MHHJ7KMZVPUG47LFa77B/LCKzWIOTUSpP5cgfbDxjPJgTPjSyjqRK3jWeRJYkzaw0Wyj0UReKTRycGECdz5Q5PXSqTUGU+feckkiTxwlyV2c02YzmT+XKX5ZrFRw+Pk9BlZksdKh2HtKnxwYOj3D4huuAWqh2CEIopjT98bZVIilCQ+PqFTcIoYrYsWta/79go//bH7n1LY7vetFhrWNw+kUWRJc6sthjNGOwoXq0gdLyAf//kLI2ex1//4H5GsqKKZanao9J1ODKZY6nWZbnWY60hMLpXGxYfuX2Mu2eK/N4ryzx3pULP9VEkmaypcNeuImt1ixfnq0xkE9y5M0/D8nD9kE8cGSdComl51LoOJ5YbBH5I3fJYa9jcu7vABw6OIksSt01kSRsqry3W+LWn51itWTiB6LQ6OpUnocnMDKUFbILjs2s4xUN7h/k/PnuWE8t1CkmVDx+a4Kfft5uvntvE8UM+cmiUi5sdhlMGCV3h3HqT2VKHI5M57t8zxMWNNq4fcngyy+WSgIoayeis1C0OjmfeEOJws2WzUu9x23j2ppBUN5Jmz+VLZzfYWUwymU/wzGyFHQWT52drPHWpxFK9R88JB1WnugzjOYPRjMGVsqjiK6Q0fvKh3RTTGudW23zsyBhnVtsUUiqXNztkTZXbJ3IcGMtQ6zo8f6UqqgZH0oP78IKQ06tNikmdXTdYd9fKXLlD0/I4OpV7W6TCf5LE9UPOrDXJmSrtuLLi5fkamiIzkTcptRxats98qU2l66JIMgcnMhRTOpMx39zlcpuJXIIPHhylZfs8c7nMSEYnoancPpnjxFKd3cMpdhRTKDLsHk6zUOnwjcsVMqbKp++YZCxj8tjpNb5ydgPLC3lo7zCVjk3H8ZkZSnNsOsdrS3V0RWI8l6DrBoymNF5bbjKU0rhjZ4EghEbXZbNtc3Qqx6G4uvz8eouO7SNJokLa9nzCCC5ttMklNHYOJdFVhUubbWzXR1MVbp/IcGQqP3g/rh+gKQqHJ7M0eh5L1S5+FLHZEu3/D+wZYiK3vYslCCNOLtdZbdiD6qkr5Q7DaYNKx2H3cIqhuOru8mYbywsopnQ2WzYHxjLMlbskNDmGcIs4PJkdcDptDRbf4gN7d8tjp9Zxg5Dvu2NiQGy+dfz+4advp5DQGc8l2DuaumEHVdPy+Pr5TYbSBg/vG2a9ZbPRtDg8mRPdkrbH50+tsWckzf27t3fBOn7AmdUWI2mDnTHh9pVyh7btU0hoVLouhyezA5ug2fO4XGpvm5+WG/D4+U10VWbvaJqFapekpnB4Kkf2JntKpWPz+6+skE1ofN+dU29pT+mvt6GUzsxbJLi9VqIo4vx6e7BmXlms8dxshQtrLXYMpXjkwAirdYt6V8AxqIrMRM4koSlMF5LsG83QdX1ySY2W5b3t/fCWbJdvR2LrW5WLG20aPQE59/pSI4YWtNFleGWpTssKMFWBMqHIkE3oDKU00qbGzmKSP3v3NF3XZ6NpCzjuMKTjBUwXknz49lHOrrVo9nw+cniURtfjpYUauYTKx49McLnU5qtnN5nKJVisd3lg9zBd1+fCRovP3DXNZtthodLhE0cmyCV16jEc+o6igHm+kX0ThBFnVpukDIV9o998hfKlTQFzeGQyhyy/Pc7UpWqPcsfhyFT2m+q07+ukI5PZ94w91h+bvSNpCnEnw2ypQ8fxOTqVG0A4Xyulls1SrcfB8QyWF7BU7bF3NM0TF0o8ebHE7RNZxjImxbTG7uE0pZbNXLnL1y9ukjM1jk7nYv5mkKWIlKFy764heo7Pv378Eo2ex/v2Fql2PU4tN8iZKg3Hp9kTMOd/72O3c9+eIv/j5SVeXaix2uiRNjQSusqHDo5wdr2Nocr8mWOTSLLMZtvm5HKD9YbFp+6YZKqQGOw9N5KFSpd6z+XIVG5bB/K//9p5/tXX5jBUuPgLt+yWd7P09fZ/eFTik5/8JACH/sEX6HlwYMhE0zQUWeKBvUPct6tA2tQ4PJXb5mOW2w4nlussVbvcu3uI1Ybw6WeKSfww4kqlw2K5y5GpHD/50G5OrzT4g9dW2DeWYSxjEgEjGQNVhj94bZXdQ0km8kmmCglun8iy3rB4/Pwmd88UAInHz29Q6Th84MAY9+wukDU1zq8LCD5DkfjyuQ3mq102Gw53zRT4c/fuYLbUhkgiAvaPpbm40abedfm+O6dw/IDPnVxn70iKkZgn+MhkljBim51SatssVXvX+diVjsNCpcvekbToDDNUDFXEUSQASXCY9ByfnhtwJNYZYRhxbr2FqogYzpvJtTZPzw24sNG6aUzL9QLu+D++hHUNilLBkPjZD+2j1fVZqnU5PFVgOG0gSZBJqKR0lWNT+TeMf91IVuo9Nlv2Np1R7TicWW2yUrfYUUzwvn0jN9WX34rYXiC4wK+JHX03pT8v+nG894IsVru8NF/jwHiGA6MZnr9SYb7awfZCZopJGpbHl05v0LRcRjIGAg0Mfuz+GR7aN8Svf2OOs+stPD/g1EoTRYIfuGcHmYSKoSpMZE2en6uSNhV2FFOcX2+z3ugxmjFwgoiPHx7H9UN+99UVNBnGsibHpvM8uG+YF+dqXCm3GUrrMbID3Lu7yIHRDJdLHXYOJQd+le0FnFius1K3sByfMJLYM5qi3BZjktQVym2X9x8c5pH9I2/KHX9urcmplSYP7hli5i3Ena6VMIx49kqFtbrFcr3HubUm9+0aYrKQIJ/QSZsqL85XKSZ1MqbKfLXHnVM5npurMplP8OMxD9/rSzUeO7XBxw+PsVCzSOgKG80ery42yCc0ASPohXzktjGuVDsYiswHbhM8hSeWGzy0d5iZ4dQgfp0xVdaaNtW2w0jGYCxrMjOU5H+9vMJrSwIR4K6dxRhZp0ulbfPUpQpJXeYDB0fZUUiy2ba5fSJLUr/qP7VtYZNUYuSeg2MZHto7jCxLvL5Y5/m5KgfHM9wzk+dXn5pjttzhjukclbZLSMS+kTT7xzLoqgIx5+K+kTRLNfHuNlo2GVMliiQOTqQ5Nl1gtd5jttQhbSjkEjrFtE6t65I2VF5ZqHHPzjyPXyyjyTI/+/69143RVh96upDg9GqD1YbN7uEUsiQJPi9dpm37fPb1FV5fbvK3P3oAx49wghBC0aFoaAoHxjKU2jb5hMaL8zW8IOR9e4exfdHVJKhrBD3RRC4x4AiTiPj8yXWatuiIenGuxkN7h3hw3zDLtR75pE5Sl/nauRL5lMbD+0SXFUSsNyyyCY27dhZoOz6BH3Kp3OG+XUWalsd41uRKWfCIHZ3OoUgSv/LUFbKGyvfdOcWu4RRRJPYkgEMTWeZi6qdcQqXW9Tg8maVt+yxWuyQ0hScubNJzA4ZSOnPVHg/sLtCwfObLbWo9n7t35vnJh3YP3vGVcodLG22CKGI0IxDY+n5Eo+dycqVBEAjEllLbZiKXYDRjcHKlyXpTdPW9ttxgLGPyM4/sRlHe2Af5E+HR+2HEP/rcObwg4uJmB12R+MalMndM59lo2eQSGvWey4/fP8MrCzX+9dcusVTr8fgFkzCCE8sNoggeO71OUlfRFIm/9MieGxr2URTx+6+t0HUCzq23+MkHd930vp6drfD6UgNJgh+7b+c23Ngr5Q7/5Zl5lmo9ZoaSDKV0dFXh9GqT/+19u7ed54tnNnj8/CZNy+P4rgJ/6eE9/N6rK9hewIWNNj/xwAzPzlb43Mk1Xlms4/khGVNlNGPiRxG3jWdYqPRQZImnLpZ5ebHGRNak0XP56Yf3sNmy+U/fuMIzs1VSusJm22HnUJLfem4h5koQCosInrxUYmcxxUK1i+OFJDSJE0sN/j+fvJ3Pn1rj/HobLwgHHGSeH+DcgELjs6dK/P1PvTmGs+UG/P6rK3hBxHKs0M+ttZAlib/w0MwgYfgrT13ht54T7cKrjR7/+S/cR63r8gevrxBFcGG9zUbT4okLJXpewGbLJqWrPHOpwl/54F5+6auX2GzZAwxdVYYvnt2k6wQx2V6dL5/bjJUTPH+lytGpHOdiKMlK18XzwwF0yImlOk9dqvDgniHmK10e2jfMz/3+aS6XOtvgAV9ZaJA2VdQY9s8PQnYOpfgfLy3xxMXyAEv17HqHzabFmTWB2fz6Un3w7FEU8dyVKpWOw0QuwV/7YMjLC4J3Zr7SGRDvVrsuI2mDK+UOf+7eG0MqOH7A7726guuHzJW71xF1v5H8ylNXBvM9EfOwzFc6NHvuDeeAG8JS3WGp7gw+q/Q8fuHzZ8klDTRF4o9OrDKRM5mv9FBlgSl7766iICReqlPveTxzpcov/+hdAyf7mcsVTiyL+/jx+2cYuQEUT182mjZ/fEIQhrdtn0cPfOtQYO9FefpymVMrTVbqPYopnRfnapQ7NrYXkjYUHF9gD3vBVXzfp2fL5BIasiTenRNEqLLE05crIlnsCZz8YkrH8UMMVYzP3pE0O4eSFBIaJ1YaXNhok9AULm50+MDBEX7xy5dYqgty1ycvldFkiSCMSJsqxZRBy/aIIkHgmU9q1Lsuji+wnQ+MZhjPGpxZbaFrMk8Xkvy9j99Gzw340pkNzq21yCdV1psCfna53qPcdknqgiS3D3Vb6bgUUzoHxjL89Q/tY6nW4+X5GidWGhybyrFS77Fc63Gl3GWl3qPaccklVM6stvi7Hzu4be94eaHG77y8PEjk952dC+stbpvI8vpSg595dA+L1S6fP7WOF4RUuy7jWZMnL5SRZQErpSny4LdHprbDRsFV4vJb8u6Tr5zd4LeeXwAE9vcPH9/BbKlFfssxv/jlS4xkDG6fyHB0Os9ffnTvdcGA33h2nuevVFFj4vZTK02CUPBhfvqOSf79E7O8vtRAliT++WfMbUHypy6WORvvnT/54Aw9L+CzJ9Zw/IBKx2Uqn2CjafO9xyYA+KMTq9S6Lq8t1fnZR4VD8LuvLvOFU+sEYcR41qDW8yimdN63b5gfvQlMzy9+5RJPX64gS4I/5C89sudN31dfH0kS/MQDM28IzXIzubDR5stnNwBR2PHrT89xYllwj8iyxNfObxKEEaUtnBW6Kg+IgcczCY5MZZmtdDg8kWOh0uMHbgBZ9t2Wd2Ny6b0gV8odHju9zunVBnPlLhtNextJe1+6MeWAF4DdcSnFENevLTV4bbkOSIK/y/IIwhBJgqSh8Y2Lm6w1XQxV5qlLJQpJnZfmq+SSOovVHk9frrDRtGhYPkld4bMn1tEUCT+MeGm+ThRzAyxUe/zcJ27nD15fpWV5A17IG62Nl+ZrvDBXBeAH71G+qWDfQqXLF06tAwLP/+3AENa7Ln/4+qqwNzsOHz385nAkW2WtYfHZ2B7r2D4P7x9+W7//bkl/bE6uNPmLD+9mpd7jcyfFc/Qcn4f2Xf8c3v/N3n/H23Wl933wd/e9Ty+3F1x0orKCfTh9JM2MykgaNRdJbrIjO5HivJFfK7Fj2bGjOB+XWHkjJW5xbMmSJY00Kp4+JIccctgLQKIDF7ffe3rdfe/3j7XPwb3ABQiwzBBjPJ8PCeCcfXZbaz3rqb9fKAJ5XhBxdqNLo+/h+hFffGONz7+6TLvv8+U31hnNGuwcSZMzVaIYnj1fpeMISNz/fFzotwFnQ1pX+ObZKidWOkOOkbPX4BBqOS6/9LnXeHSvgHrtDo10UdDzwnxjCPv54nydfMqg3nVZaTlAzLMX6/zU/bOstdzhnrFZNjoOf/jqcsKN6vORA2PD7/63r14AwA3ge/7J43z5v/vIzb7y2/JtkM17y89/I2b+U7DS7KMnRG5nag6D+XJ6vc2X3ljn7h0FHqn3hz5mFMX83ktL/OnrK3TdgN9/eRlNkah2BZyTsHfFHvyNs1Xyls6vP3GejY6DH8XsHcsgS3B4Ms83zlYEZ3oUcWgiyz07SsiSxG88eZ6Vps3nXllmR8niqyc3iGN49nydn310F/fvLPLFE2vEccQ3z9U4u9Gh44j5/vJCnRPLTcJI8BvnTI2JpChZkWVatuAWfXVRcO/dOZMnb+l0HFEQO7BTfvKBWT738jKuH3Fuo8tPJvZQHIvnt72QP319lZyl4QaC3+T0eieBZNbYO5ZFV2R0VcbxQx7cXebVpSZPnq4AAh7xrQobNts8cSyKGRbqfXRV5i99YNdVx3/ynz95VQIMoOHG/OMvnEVXJYIw5munq5QsDUWRSOuiYPCxfT3+/HXiX1dKx/H53MvLhFHMakLRMXg3j5/eYLXlMFO00BSZh/e8+3r/8VMbnFrrIEsSP/vozu940mmwLmzvchzv/S7NvsdvPHGeC9Ueo1mDo1N5njizwcm1DnIS96n3XGx/YEWJeJUsiSLUD+wf4ctvrNNOaEMG8n8+eYG8paJKElLiJwh4Ulkcm8TlDE3m8VMbKLJEtesRxaAp8MU31rn/zAbHl9o0+n7CJRVjajLPnK9x50wBTZEx5mV+7rHdqIrMV95c58tvrvHqQhPbDzFVhYwpaDS6rp/ELBS+dbFGztK5O6FZ2U5Wmja/9vVz1HseL15q8Pd+8PBNw6a/eKnO//XkBRZqPVZaDnEc8/T5OrMlS0A59jwafV/A1iWczv8hEv6kqcmU0jofOzjO3/7cCTqOzx+9tsKOcopawq/o+OKdIgl+xi+/sYalKciyxPOXhL3Zc0NeuNTgV37wMC/ON3h1scliwlHdtn1ylsZDu8tIEvzWcws0+x6qInNsrs6ByTwS8Mevr9DoexDDa4stpgoms6U0l2p9fuTey/7Tn76+yuOnNxJOrJgdpRSmprBrJM0//tIpFus2pbTGZN7iG2creEHE46c2kCUJCUgbKjtH0uwqp1jruEmjh9AzXz9VIQgFH1bW1Jgrp7l/Z5Faz+PMehc3CDk0KYoEdpbTfPNcFV2V+ddPz2P7AbIkoSoyf/EKnbnZh75zJscX31hnvtpjMm+SMVRMTaHt+PTcgC+cWIMYfu7fv8S9O4psdNwhpvR4zqCY1tlZSvPipQa1rkvPC3nmvEhoBmFMx/G5VBOckXvHMqiyzHjO5Oun1pmv9QV/XRKM+52XlvnGuSqeH4EkDRsqBvecNUWjzIBvcSK/xv7xDE8nBei//+ISj+0f5XxF0ON4Qcgje0d4+VKdlxeaBKEo9P7FT9zBRsfhy2+sAyKJ//KlJq4fstFxmS2lWG/ZzNcFF9xXT66z1nLoe2INKzL80WsrpHWFWs8jjmO+eU7s+T90zzQrTZvffn6Bly816Hth0uzg831HhB/xB68s89TZCn4QU0hr7Cqn0RSZA5NZvnhijZOronCl7fjDgtW/9uG91113t0aZ3Y1IfPU/Nn80QH28Cvwx3vav179UvPXPG7qla5zjRs55JWTl5n/HV/y57U1cg7TuysMGEt3oi7jGtePr3tBlCYMbY2W9PHZXvodNf4+uP5CDd3blvcVcexzj7a653dy65p1fdk6vCzu67f1e/7PN7+TKQ8NN7yLa5kbfBQTU7WXTeaNrvO8bP03y/22G9ao5f+Va2vTB1W/ntmwnV+rHzeN2s3rurab6tcdv6zfbneaGdfR17ufqveCtZ8nACL/6Hq7WxW99R1d+s81cT/4RbfvdW9zsbbllZfN+9FZ7xvV047XOLf68+qjt9ti3gsreQjh/vVt9n8zXG7qPTS/ySrX0PnmM2/IuybsyL691jnjrnvF2TjW0oa7QB1vs/+vYPm9Xrrd33tjvr71/v53z3Apy5djc7HuLNhnqm32Za/kZ2+r7t6On4hu71+2uN/RtbqFxui3vnVzLH7uJXwKX9d6VX1912m1slu3PHl9zHW3+7Fo21LVYra/no9+YqbFVj28X13m35Fq23Nu5zrul37ec87Iyec+0yftRS93MfHm/yHCdxFesjRuJE9zAZrPdnvYWH236bnvf5kpb6oYvtt1vtr3u1uPfDZqhbU9+1VfbPe+NffZOZNvzbZ7M28zra9/C1RGVzafaLh59TbP7OtfYVrve5Ka12Ye+lj123Vf9FhvRNe29bfzRK8X3Bonlmx/rm3kNm58v2o5M9qrzXv+uxBhvf0y8ZWe++vrbnW3zyFxr794s3xWdYKos8Xd/4CD/7pkFZoomOUvj4wfHGMtZVDsOIPHRg6IK7f6dJX7h4/v51oUad80W+PAdY+wop2j0ffaMpjm70WWmaF0T3kGSJH70vpkEDjGz7TED+cDeEXKmRjGlbekCA0EW+rOP7uTkSptDUznGcyYXqj32jl59zk8enWSyYNJ1Aw5P5smndH70PkFCPSBl/MDeETKGygO7Srh+xHjewNQUNFlGU2UOTeaQJJgsmDywu4QqS/zAXVOAaCf+uQ/uYf9YBlNT+aG7p5Bliaypcm5dEGOf2+iyVO/zfUcmMHWVs+sdql2PrKHykQNj7BxJ86P3zXCh0iOOY0ppnc+9tExEjCLFfP3UBjExF6qiauxTh0eYLL01XIulK/zofTMsN20OTwk4xJGMzkjGGMKOgMj2BlFM0/b5hY/tA6CU1vnM3dPUei5HpvNcqvW5e7YwrLJYrPf5nsMTHNtZoueGPH2ugu0FKIpE1tC4d67IStPm+Qt1Jgsmd80UaDqiw+VTd05ALPOxAZTOYpMgimn0PFYTOMSPHBhHkSUOJnCI/+hHjvIvnzrPct3GCQKKKYPDU3nShsLOchovjOm6PjvLGT6wr8z/9PkTvLrYpGhpfPTQBH/lsd188Y01XD/i+46Mc2qtw0hGwCHeN1fk/EaHg5N5Htk7wnjexPUjjk7nOb0uoBHHcgZLDZsDE9d+74aq8KP3zrDY6CeE8Tcuf+3De/jiiTVmSxbThRRPna0wW7R45nyNJ09vsNi0sb3LakmVYDxvMJbWuFhzUCTIpzV+5uFdlNI6J1bafOrIhIDpszTObvTImipHpgUc4scOjvFMAoe4GWrlA3tHRatzWt8WUmyzTORNfvDuqSEc4n+p8sH9oxTTGnlTo+MGfN+RcZ670EBTJKaSDpGOE3ChImBQZUniwFSOclpnMm9yfLnJ+Y0eE3mTjx0co9kL+Ob5CuW0TtrQODiZ49XFBjvLaXaU0qiKxO7RDOcrXZ46K4ihP3PXNGM5kyiKhnCIj+4dodJ16doBO0dS3LWjyEvzDTQVxrMWth8wmjUEmWxa4+7ZElEc86m+x1rb4ch0fgj9FkYxj+wRVUy6qmB7gYAPSeAQd5bT6KrM6TUBBaWrMgcmcuwbzzJXTlNMa3x4/yiaKnNkWsAQXar28KOYjbbYZx7eU75q77h/ZwlNllhs2hyZylNKCzjEH7p7ilrPY3fSrbNzJM2njk5i+6J1fK3tcGAiy/khHKJo+T88tf26vN0F9v6V70kgPPww5geSqvm9Y1sJ5n/x4/sopQ0m8ib7xjLbQoH9hUd2MVtKUU7pPLZ/lH3jGdZaAl4G4Oc/tJc/eX2FXaPpq6DSPnzH6Ja9swj8wF2TAg4xpVHtels6DD9zzzRnN7pboJw/e98MBUtDVxX2joqO8JShbtuZOJC/+Yn97CinyBoqP3zvjXVSPbZvlEJK6PC30wUGcGAiSxRfXjNZQ+WpsxVOrnfYUUzzoTtGEjhEj9PrbTRZYSJvYmkyM+UU+8ay9L2QH7FmaNk+h25yP7wt72/ZO5bh+45M8NDuEvWex0uXGrQdn7Wmg67Cy5cadJwIQwE/EtXMGUtjJK2RMkR16Y/cO03fDVlpO6w2bOI4ouuF7Cim+dihMU6stBI4xHHafZ/D0zmypsqnj07xkTvG+MrJdSbzJpdqfR7aXcb2Qk6utvnhe2eodBwuVnt8+qjQFz9y7wznNrrsGMAhpvWrutwf3FXG0hQyhvq2IZ92bdqHbtYmKqZ1fvieaapd97o64VoyVbD4gbumaDs+d95C9thgbPYmPuFsKcX33zk5hEPcTjRF5rP3zbBQ73NgIovthVyq99k7luHQZI7HT1c4MJllPGdQzhjsHsmw0XH44L4Rvn5qnZypcnSmQKvv44UxsiSqo+/fVaZre/yLr5+lafs8uqtEpe/zxnKLrKHSdn0aPY+cpfM3v2c/H9g7ym89t8ALl2qsNvqkDY2UrvLhO8Z4c62Noch85u5pYkTl7ysLTdZaDt9/1wQzxfQ1x3ksa/KDd03R6F9tW//3H9/N//bVC+gKt7vA3scy/6ufHnaD/ZWHRffBVCFFX4O+D3vLJqqqosoyD+0tcf9ckZylb5kTsizxo/dNsyexFx7cVWK54bDU6LGrnCGMY85U2ixUbY5M5/nhe2fYNZLmD15ZYs9ohokEXnw0a/Bj903zuVdWmCsLH3OmmOLARI7/z/fu52snN7hvR4EYiblymlrX46N3jHHfrhJ5SyM4HBNGMZ+6c4ovHl/jYq3Letvl2FyRn7h/B2fXRdcKksS+sQyn19rUeh4/fM8MthfwJ8dX2TOSYSRrDPVTFEMhpQm7LWfxY/fNcCmBNx2IJEn86L0zzNd67B5Js5DAIZqagF6XJJCQ2Deeoe+F9L3LevfumQKqLKEp8g3B215p8+weTfPmavuaMa0v/MIHufPvfQn3imBmXoef+/A+Wn2fhXqfwzMFRjOG2ANNjYyhctdM4YbnEUDW1Pjhe6ZZT/yy4bu5b4b9E1mW6n1mS6mrYLzfLfnogTHGEji373QXGIh18dn7xLzY/w6gi7+dUkjp/LUP7eG5izXuGM9yx0SOfWNZLla7OH7IXClFI4FDbDs+I1kdWRKwnn/uoZ08um+EqcJ53lxp4wQhbyy3kCWJz943TdrUMVWFybzBs+frZEyZ2WKaU2ttVpoO41kdL4z53iMT+EHEf3pxCUWB8YzBnTuKPLpnlG+dr3G+1qGc0rF9Makf2l3mjgkBhzhXSg39KkGZo/OBfSPYfkgcxewZy1DpeFys9rB0mWrH44P7R9/SFpkuWPyNj+zh1aUWj+4pX5du5Fpy31yJv/LYLlaaDgv1Lm+udHhwd4mpgkUhpZPRFZ6bb1C0NHKWynytz5GpHM9drDOZN/lkYif+ox8+yn8+scr3HR7nUs3BUCVWWzavLDTIWQZRFOGFER87MM75ahdDVfjogTGiOOaVxSaPJPf/6N4RcpZGzlRZbtrUugLeciJvMldKUUzrvLLQYM9IhnvnShyeyjJf63PvjiJPnd3A0hQ+cmCcmZLFetu9yn/69J2TTBcFtU+t67F/IsO9O4rIssQvfd8Bnj1fZf9ElvvmivxfT17g7EaHu2fyVDouMRJ7xzLsGctgacowprh3NMOlWo+j03nW2y4ZQyUGDk5kuXO2wHLD5uwQDlGjnDGo9Ty+/84JXphvcGwuz1ferKKr0lVdYLDVh54ppiglaEJ7RrPIMrh+RMpQ6DgB5bTGKwst/uYn9uHH4HoRkhSDBKaqsm88Q6Xj8v13TfLCxTpuGPHY3lGBaiSLjsjzG11iYibzFuW0Tq3n8dEDY/zJ8RXafY+YmBfnmzy0u8zDe0ZYbPQopnRSusKX3linlFJ5bN8YMULXrrT65C2de2aLdF2fjx8c5/R6hwd2lui4AT963zQXKj2CMObOmTyfvXea33jyPDlTdGqNZg1GMpfj7oencsyWUrQdn4KlUe+JGEI76WL72MExHj+9ge2GlNIaF6p9Ht5TGsKHN/oBx+aKw7jAdMHiJ+7fwd2zBaIYRjIG9+woDK/3mQSSMYxi9o1l2Oi4TBUEHGIxpbOSwCG+tNBiPGfwV28AdUZ6tzPE3wk5duxYfJuw7taU22SDt7bcHr9bW26P360rt8fu1pbb43fryuaxey/gCG8mof3deP33QjY/0+21d+vK7bG7teX2+N3acnv8bl25PXa3ttwev1tXbo/drS23x+/WFkmSXorj+NiVn39XdILB9o64lhRSS4hKThD4jyGgSLCrnOLITIGpvMVy06aQUkkZKm+stKl3XOZG0qy3HS5sdFFVmZGMjuNHhHGM50dISEzkdc5V+8RRzAM7SxyazjNTtAijmD95fYVXFwRJ9UcPjFJIGewby/DxQ+O8stDkS2+sst4WOJq2F/Dk6Q2cIOLgRI4d5RRvrLTZNSIquvteyFrTZveowMd+/lKD0bTOZ4/N8uE7xrC9gH/6lTO8uthkR9FismAxX+1xsdanZXuEYczOkRR/46P7WG87PHOuzovzdXKWyo/fP0vHDqh1PU6sCAzYibxJ1w1Za9n0vJAwGsKZMqApkSRIaTJ9PyKMwNIkdpTT7BnNADFfObmBH2zf4p/R4MQ/EEGJvhfw1ZMbaLLo2LuSTPu1xSan1zustRyWGjY/cOckD+wu8aevr/LaYpMj0znOrHd55VIDSYJdIxn2jmdYb7ucWW9zaDKH7UVoisSu0QyKDLIk0XF8njlXo9J12Gi72L44Jm/pWLrMqZUOIaJj6f6dJfZPZPjmuRqNvkcUhbTsiGt1g8oIXrFBO294E7nmwXsG0CRQVJk4jPDj5LuYbZpEhRQslYmcyXLTFhjNukrOUtlRTOEEYs7qKqy1XYIw5shUDkWRuX+uiKrKfON0BUtX+OF7Zrh/V4k/fGWZb12o8cH9o3zq6NW4/wOxvZD//WtnOLHc5sGdBZ48U+XVJYGz/k7S7BJivpmqDJJElHBumJrKQ7tLfGDfKM+crxGEEVMFk4JlcGgqx8N7yjx+eoNa10NTJPaPZzl2E9wWNyJn1zu8stjk0GTubVU9A5xaa/P6Uouj0/mb7rx7t+Q/fGuef/XURfww4kP7RKeTpki8ttDklaUWEjG7R1LsKGeYr/VxPI+uG9JxQoJYdOKqMqiKzGwxRRjFXKwK7ruDk1kcP6LRE7xb1Z7A0dcUUd3o+skaimPCCFKGTDllUOm4OIFQOnMlk7GsxXLL4dhckQd2lUjrKm+uNPgPzy0KIlFEd1chpQmOnzAWnYWWihNEww5EGUibCuoANzn5XFNEBfzOUorVlstcOYWmSLwwL7CJgyjCDSLcTfospcmMZXWadoAiS3zq6ASzpQytvsv5Spenz9XwA8GJtm88k+CXy5xaadFyAqI4FjBIkkRKV7BUmbYbIMsSRUtHAvp+SM8LmS1YfP9dkzy2f2wLNvmV+97tbrD3p/zOcxf5W3/wJgD/1Qd38rc+dRi4evxkQFVgImfysYPjHJwUncLztT6OH/Kxg+PcPVvgr//mSzx9rsae0TT//Cfu5pnzNV5eaLB7NM1IxuSxfSOMb+o+X2va/MLvvMpivc+n75zgQ/vHmK/1afRcnr1Qo9n3eWh3ib/x0f08c67KU+eqPLqnjJFg6h+cyPFDd0/TdQO+cabCSNZgOm/y8mKTgxM5js5s1X/Pnq+x3LR5dG+ZyaSS+/hSi5NrbYhFFexU3mQp6Y6cK6f46sl1XrxY5/hKi1Ja5888MMdHD4zx+ddWePZ8lY8fGueD+0b56sl1Tq+26XohBUvD0GTWWg6Xav2EHzDE9iMe2lXmv/n4Pp6/UOfXnzjLUtPB1GSmCiY9N2Ct7eKHEboskbM0ZFnG1BT+7AM7OF/p8pWT6+QtjV/5gUM8sm+M2/LdJW3H5/FTG9h+yG8/d4nXl9rXtOduRCTgvrkC6y2HlbYj9hpDZaaYQpclXl9uMdg+TFWinBFd0htth54bMpbVKaZ1NjouMhJjOYOj0wX+8mO7CGP4f5+dH/IcrLVdZgspHthVSu455vFTGxiawl94ZNdV6xFgodbnG2crrDRtXD/k8HQeRZZQZZlyRmex3mdHKcXp9Q4XKl0u1fqkdIVH947wsYPjbLQd/sNzCyzX+5zd6KCpMo/tHeWDd4zyiYPj23au3oxEUcwTZzZo2T4f2jfK7760xOOnNrh/Z5G5kTTFlM5H7nj31qEbhHzt5AZhFPPxg+NY+vUJtG9Enr9Y51Ktx8N7ypTTBl87tU4QxkRxjKkpmJrM2fUumiK6VZp9n1Jaw/EFt9BsyeLjh8Y5s9bhV79wiq4bcGRaIGCst10uVnq0bRcnYGjPvJM5+3ZFUNGLa0sIvyMCPrx/lL//maNv2Wmxed/7/z0Gn/70bbvl/SjXsi83f64Ao1kNNxAcJd97aJzTG6IzxA9jsqbCsbkyGVPFVGXunSvSsn3+3TOXWGvbgusu4Ynyw5ipgsF4zuJ8pUvbDrA0CTuIhd8gS3hhRBTFBJt8S0UCRZZwE0d7sw89EHWwWGTQFAnHvwycZMhgGTJuEOEFwk6XZYjCGEtX8KOQMJJwfOF/5gyFsbxF1xG+kKXKuGEsOMxG00zmLV5fahJGcRJ/ihnPmuQslclCiomcQYzgUOx5IR89MIqS2B8fOzDG+UqP15aaHJ7KDbv8X5yvc7Ha46Hd5bfd5Qtb4y1/7/dfZt25/vFpXUZCIoxEh0IprRHGEndOFzi2s8gL8w2Wmn12lVP8jY/u54X5Go+f2mC6kGLfeCbpaOiRNhT+wqO7kCWJJ85skLc0Hts7yhNnKvTcgI8cGGO+2uP0eof75opJHOmyCK6fjeE7UhWB2vHaUpMjU3kOXQMh472Wi9UeL87X2TuW4Z4dxaFdYWmiw+b4cotzG12O7SxtQVW4UhZqfZ67WMPSZS5U+ryy0CBtqHz66CQfPzQ+RLs5t9Hh5YXt7e73Uk4st/jaqXXcICKlKYxlDf79ty6x0rSZyBpcqPXxgghVBi+8vP5kQJYh+DZsVJok1vmVPHdZXWamnOaxvSPcvaOIH0ZM5U3+zTcvcqHSo+cF1LseYRwzlbcoWBpuGPFj980wmjWREh+91vN4bN9IEittcedMngMTORbrfZ44vUG163JoKs9HD4xtQScaSBTFPH56g7bj85E7xlhu2vzV//dFql0RB75/rsgbq23qPR9Vlqh0HXRZppg2MHWZlCYTI6PKEkgxrh9xodqn5/giFiNB1rwc1vfCEMeLQRYoT4cmsrQcn/GcSdsW3TqaKtF1AmQpJool/DBGBgxdpmDp9N2AII7JWVrS9VXkN781T73vo0oSETFhDFIsYnWGKvR1GImxz5gyUSwhSxKyFGOoCqauoCsKpbTOWtum2nHxo3gICx3Hgp85CCO8ZN6oEiCJeSQhxtlQZPxYxJ8HPPGP7i0xkrE4tdamlBLdU2c2OmQMlZypUul4SSxf2NEFS+XPPrSTc5UuJ5aarLVdimmd//YT+/nBu6ZI6W+dJvGCiK+fWsf2Q3RVwfVDFut9XltqUkobZA1hWzb7gl9yrpyiaOn88fFVvCCgZQfoqszhiSyGrjKeMXhtuUHLDsjoKvW+jx9FWKqIt/thjB+KuLypyRydzuH4MfWeS8HSsf0Q2w8JwoCeF5E1VeRkDve9kPW2S7QJYlFXJAopjTiKqfUE4aeuSpiaihtEEIe4wVZbUwNUlas+VwBTF3O/n8TXxrIinrXe8Yb6AECXJcpZg/t3lnj81DptJ2S6YPLg7hHSukKMxEbHZrlpc6HS28RbK+ZASpfJWTqqLKErEtWum4xHiKlr/PyHd/NnH9p53TH8rkiCbXScbcnN/G2U7uAVhjGcq/bpeiGaIhHFkDFUOk5A1w3ww4j5eh8/iIaGVaXjocgQJueVgLW2M5wA3zhXoW77pDSFnKny/MU6QSQCmV84sc6+sQwt2ydGbCjPXazT6vtcrPSodBz6vpgwLy82Ob3RIQgiVpoOp9c62H6IhMS5Spcwiqn3PBZ0FUWRObazxLPnq3zjTIX1tstCvY+pydheSKPnDzmiOm7Ar339HIcmc3z15Bo9L2StLfFvvzkvIFnqfTZaDmEcs95xia9I3sSb3t3gg/amPvq+H3Nuo0ul49Ky/etuel0fVpt9QJAnnt/oAgIO5a5NQV4/jHj89AZdJ+CrJ9cZz5n81vMLZEyVp85WWWnanFwVZJgi8SNxsdZnod7nUr2PLMHptQ5jWRPHD1lpOXSdgD1jaZ48XaHt+Ffda8sOhoSDAEEMz8/XOV/pUut5W5THtSSCofK+Wdl8bj8Gf7uJfA1p2gFNuzv8d9sJqXRcVhoOiiI2OFUWyslQJRYbNvvGMpzbELCXbyy3SekKIDGeN/iT11foOAGNvsfDu8tbICg3yzfPVXnidIWO43Oh0mG97d5U4u9aEiPmW++Kd9D3fb55vsbZ9S5+FNOyRTvuSNbAS0ghL1R7vL7UZDRrsN52OTiZG5Ilvhvy9VMb9L2Q1abDockc8iA7fBPytZMbeEHERtv5jiTB3CDiPz63yErTJopj/vT4KuWsQRzHLNT6wzE8s9HnUt0himO8KwY2SBxSgpCTa50t3x1f7qAg1kO1t/U3tn81I3PXjei69uUPYrhYc1hpusTAE6c36LoBGUPlG6c36CWLLAQ8L6TrXT5nGEO9v5V3MIIhIfZm8UM4u95joWajyrDQEMSjthdecx73/YhLdWcYjPq9l5Z5aHeZSkck3we3stZ2qXZd8ilN6JbwaqZBzw5obvqk49goEpvef5evntwgjOHQZA5d/e6h8/wvQX75D98c/v3XvzHP3/rUYY4vt7iyrCBCOJBLDYfPv7aCFwrY3igSARaAINkTHT/i+HKL/+eZed5YaeMFES9favLpOyd55nyVH77nMvTgv31mnhMrLfwg4vOvrlDreoDEG8stVlo2YRTTcwN2jWT4xtkqbdtnqdFnNGOw2nKodjx2jaTZ6Aj7YqHe54UoRpElVpo2hxKoYhCBnW9dqAHw1NmYHz82SxjFfO3UOl0n4PRah3vnijx+ap29Y1k22g737Chybr3LF99Yxw1CLlZ6TBcspgomn3t5CS+I+O3nF8ibGq8tNnlxvoEbhMiShKnJNPs+620XPwyHCfCveSEHJrP8yeurnK/0CGJBuN3s+wmfgRA/jOn5HhLCgfvXT1/E9iNatkez7/NrT5zn4b2jSNLN6/dbVW6V7q53Ii9fanCh0uPpsxVOLL+zBBgIW+XFS83hv0OEPdZ120TRVkfRCWKWmy4y7vDz5ZbLWmI3SUCtJwqz8imNOBZ27MVKF02Vads+1Y7LuUqXu2cLvLbYYKXlYmoyv/PCAkdnjl51f0+erfDKpQZvrrbJGCqXan3GEoLuSsdlMm/x1NkqEvDSQgMvEBtYFIGpKbx8qcHri03OV7oEYYwkwddOrWNoAs77ndovC/U+ry22AOg5a3zu5SW6bsBio89HDoxRThvXDSLerJxc7XA6sVdGswYP7X5nMFxtx+eb5wTA7VNnq+wZzXB2vctyw0aWBRxY1w1Yb4lk/PMX6+wZzfDiJQ+AC5Uea22HtKHyey8ucqHSxQtjqh2XtKHS7HtDX3Qg34kEGFz2o0HM+4YdIAFfO7XBR09t8EP3TN/wuf76U3A7B3bryInlFhOb/h0Cax0ROJOAP3h1BVNTsL0QSRIJp42Ox0jaoJTRWWzY9Dyf48tNHD8EJOI4Htq6vY2Acxt9Af8NtDYlaTZ5BlskiCHYtDa2M9mHPn7EFv8ewI3AtS+vpnBTQMCxBz7E5QBt0wlpOd3hp+1NK+LEcpuTqx3CKN7iOzT7PoYmc77SYzxnIksCpixrasxXe3zs4DgAO0opnjhdEUHalvAte17IU2eFbnnyTIU/99DcNd7EW8vmeMtbJcCAoY81eAddz0WV4Rv9CpfqPdbbDn0vZKPtYj51nrW2y4VKlzPrXRYbfVw/ouP6pHSVXaMZMobKfFXEfiQkTiwLnZ+6WOXNlQ5xDG3bvyoJ9vJCkwuV3vAdHZzMiaSMH7Hecr5jSbAnT2/Q6PssNWwOTuZ4KbErQNCPPHmmQhxD191g18jVEGvD85zZoNr1eHWxSa3rstqyMVSZjKEyV04Pn+/xUxW6bnCV3f1eShwLSpPnLtSp9zyKKR3bF7a8H8bUe/7l+OAV7nXEW3MHvVvix8KXv1I6XsT5jS59N6TSddlRSvPHr63w+lKLes/dUqw9X+ujysLm+fffusSH7xhDliTajs9k3uKb56osN2yCKKbScTkwkePJMxVeutRgteXghfFwfl4p87Uery+J+f6C0eBzLy+x0nKIYji30aPa9ei5AWFSFCwkouUEyJIo3lcVmTCKUGUZJwi3xC6DWOzFV0kEfS/kpYUmhiqzUO/jh/E2fFvigxDw3Yiue1lBdJyQvhvw0kJjmIwIrtS0MXje5c9CoOVcOfjhMBEyXxMxyW319RUxv2BT5X+MiO/7V0ysvh/xxJkqhZRO3w2RiOn7EVEMfc9joyP8vLZz+c5r/YDffmGBKIZqV9hi622Xz720xFwpzcN73touPLPe4eRqh2bfo+MEpAyFZ85XcbwIP2yRMTXiWMQp4xgu1fp0HB8nCIeF1bYf8dJiUyRs4piuG4g5ILnDcWptc23bj3h5oQUIGNyVpoOc5CkGz9jzvGFDwXbxLC+MqXS8LePgBDFO4F/zmX3A32aqhVy5Z8BGxxv+fbM+CKIYp+mw/vrqMK640HDonlynkNKJ4phm36PvBXhXrOs4uU7PE/mfKxtD7MDn339rgSPTxeuO4XdFJC3/NvBXQWSSs4bCSMbE1BQypko5o2NpCqoskTFVDE1BlkR2U1ckVFkSnUSyqGY2VIkkQU1aF/ipYzmDUlofYjDLEhQtDSO5xt6xDKWMTkoT589ZGrmUhiyJ85iqQsFUkWWZtKEIDo+Ujq7KFFI65bSBqshYmsJ0wcJUZXaPZEibKqoikTFUSimdlK4mFU0SclIJcHAyi5lcU5UkNFVmtmgJfNSUjqUryJKEoSrbVjK8leiKjKWrNzQm5YyoVJ/IC4NQlaUt1etijCTGsiaGJjOacIPMlVNM5AWusyRJTBUtcqaKrsgYCuRMgfVaTutIksRIxkjGV6OQ0pIxVpksWFi6iq4qWxaCIoN2hWFhajLljIGiyLzfY2Gb61kVWUJTJFKGgqEqWJpC2kjmhSRRsMScmSpYjGQMDE3G1GRmSxYjaWPIqTWRM6+bQNo5kiJrqkhITOYtjPc4SC8hktaz5RS6KpPSVQopjayhYmoye8cyKLJE3tJI62JdX4vn7+3KVEF0OEzkjbeVABPnEO930C3x7RZVFutHliUkSaKY1snqCkVLx9Auj6Emi6p2VZZQEj21neiyCCQPf6dIaKrAN77Rt3/lq5QRBqksSWRNsX6Laf0qnkW49n3dyHGaInS+LEukDZW8pQ0djGudd/AuJEnwoeRM8buMoW05xtKEPk3rylXPNzi/tOnvSlLRNvi3pkqUMwajWQNNeZ8roNtylewoXZ6rReutE/GKDKWUTsZQmSla5CyVtK4ynjPYVU6R0dUkaSP46cayhtgrc2KPvFKf3DmTR0/mzUhaZ6aUImOqjOQMDFVBSTqg949nGU94hqbzAmtbkiBvaUzkzaG+SukKu0dFQHoiZ25xxNOGSi7pBJhK7kORJSZyyT6enH8Q0J7MW0zkTRRF7EeaImHqokpwMm8ymRfXnC2lmCpYyR6mkNJVSmk94R1UsXQZQ1PQZOEo5k0RPJgpWWjq5XVsqDJXNJsPK8llSex9xbQqdJYscXA8919UAuy/FJkqWEgSTBWtLXvdOxFDEfvjQCTEvrJd0YIiiWrLweEyovp1MBc1VSalK+wby7B3LI0sQS6xcfTElpsuCFtrupjCUGUMVb4qeDh83rxJJtmfBroia2roijzsLNg1kiZjqhQsDU0WlaCltMZk3mLPWAZDlYWPkKAp5C2NrKlcxU32dqS0yUbbN55hNLE9RzIGKV3F0GTK6Xd+nYGM54TOlCVpqGPeiViaQjEl9N5k3mQiCXTnLJWcqZHWFUYzBhlTJWNqzBRTKLLE6Cb/LmuoTBUs9k9kURU58UMVMoaCpau8n7d+SRK+15VclLflu0vy1tWWvLTpv6yhJEgPUqLHFMppnWJa6K7posVE1kRXRZzFUGV0VR7GP3RFJpX4GhLv3yCVpkiXUXG4/KehyqLyPvGVZEk8g6aITq+0oZIxhA2TT2noqsyukfQwYTiaNTb5haILxVRlSkkB6uC7tyub4y1vR2SE7s+YKmM5E0sXY5XSFY5M5ymnjaHvXUwJ3kpLE/vVXCk1tAkNTWbPqOBhliSYKaSG8YaBb71ZxLsQe+Rgvxmca3Kb479dMrj2aNZAV2Sm8tbwPidz5pDT9q18/MH3UwVTxCtUBV1VruL+nCxcjsl8OxJgIPiEJvImWUOlmNLImiozBWu4BvT388aUiKbIFFIaoxkxjw5MZLF04Zdvvn1FlkRMUBZxMeFbXLZxpgrWcMynC5fHLJMcZ22an1dKOW0Mbc3JvMld0znkxLdQZRFD0FUZRZZR5cs6VU2Qc0R8TsHQFAxNxlCVbWMTm+MJm0WcW8LSlC0691qibNJvcoLANJU3bziWc+X9DM6jKok+VGXe7VBhNok/a4pM2tDQFWkYU1EEoBSqIm3R2RM5i9Sm2IwswXTRumG7cCyJy6QMhVJGJ6OrjKTFZ7mEw62QEn8aqkzWUoeFEJvvI6WJ74tpHVURcXtNkbfsgduNl6HJmKoyjPcKX1bo6sGzyzJoqnzN/fS9dnGvGUOTJQqWNvxelSFnCR2Ts1RSunIVOtyW3yOeTZW3xg5lYKbw1mP4XcMJ9ku/9tv83T8+zWwWyoUcH9g3wnQhhRPElFMaZxJIw6m8wfn1Lrm0zofvGCcGymmdjuMjSTJ5U2O1ZdP3QybyJh07YKUpugJ2jaZZbTpkTBXHDXGjkLGcyWrDptH3eGjPCJIkkTe1pB0x4OlzVSZzBoemCsBAEYtWzHrXo+v6pA2NrKHw3MUqfhBzcDqPqSqstmxGcwa6rIAEHdunlDaIiKl2HHRFYaaUGjrY1Y7DasummDLImiq1nofjBzRtnyiMGcka7BvP0XF8wjDm5GqbfEpl/3iOlu0TEdN1ApabfabzKdxAdLmst236bkA+o9Po+swUTOp9nyCK2TOaptpxOF/pcWxXkVLKoJwx0VSJx0+uU+95pAyFOJI4udLgpfkKISr/9i/dz66R/BBntWX7KLJI4F0pQRjR6PtYqsxKS0BCqopM1w1o9kVVStf1aXQ9vChmImcgy2KxrzQdZksWbcfH0oRhaqoyPS8ko8tcrPWRgHrHo+GIc4nEm8FX31wV5J45i08cnCCWoN5xWW05FNM6Ly/UaHV9DE1BUWS6joB8W+t43DVTRFMgjiUUSeLJ0xtYmowXRYCoAh7PaGiaxkzBJI6h1neRJYk7JnKstx18P2L/pKj0cfwAL4jxwgjHC8kaKo2eS63vkzXUBHIh4oMHxshbOhcqPSxdwVAUCmmVrKHjBiGaKuMHEWEU07R9DkzkklZsiyCCek9UHUwXLDRFxknaeneUU9sqos04udWuw3rLYedIho22zTdOVZAk6DkBz85vsFrvc7Z+ubJARWTuTUlUD4xkFMZyBrqusKeUQdNVdpVTBLHE7tE0rb5PSlXoBQEFy2D3WJqJnMVCvYeuymiKcL7ShkpKV2k7PiSdSzlTe9e7Z6IoptbzKKa0tw0FNOjqLKX1b5tBu1mOHTvGU888x2uLdUBi50iaKKlE98KIJ06tI0lwbK5M3tJYbdvISLRsj/WWTdcO0HUBFRvFMndM5ui5AafXWjR7Pp++e4pqx6XZ87EMBc/3ObHcZe+YBSgEccR6y2Uib3JytcOR6SxzJYvXljq4YUC14/HJI5MosoA82zuewUwMONePePb8Bhst0b4eRHB0Os+Ll2p0HR9TUZgZTaMgc3q9heeHFDMmY1kdRZYJw4gL1Q5BDOWUzp2zJXKmxkbXEUaNLOA2ZCmm54RExLy52iKta8RxyEw5w85Smmbfpd4P+MShcfp+RBCKKq2nz26gyBJZU+XgZJ61tsNo1uRCpUPfDWnYHmbSOl/K6JRTBotNG1mK2TOaYbXlMJo1OL7c5N7ZIsWMSSmtD4sTBmtv0LVxGwrx/S3/4+depd73+D//3AOAGL/qx39l+P0vfnQ3I2kT01CYKYpKQqG7VFq26OgeyRpoiky14/DEmQ3unS2yazSD7YUsNvrMFlPYfkg5c7UTdmatxXLT4a6ZAhlTo+34aIrMRsum44bMFC3GciZuELJY6zNbThFFQq/nUzq5pLCl3vNI6Qq6Il9T/7lBSMcJhgEAuLyPp3UF2w8ppPQtuk88Y8T5jR6jWY3xXApLV3C8kEv1PrtHUmiqQtvx8fwILwwxNVVUkUeicq5lexiqQjUhWp7IWbhByInlFiuNHnlLp5QxCYKA1ZZDpeMwVbSwNA3LUHD8kHt3lGjbPseXWuRTKnfPFq96vveaE+y2vPuyHSdYq++jKhIrDZtvXahyYqnBm2stHNtnvecTeuABATCZkdhTzoMqghn5lIbtis7eSJI4PJXl+++cYaHR5+RyWwQ6LZ19YxlROX+2wnrLxtIVJhOoqCiSaNse5za63DtXQpVl6n0XkBjPGliGwmxRJKgW6n3SukLLDpDlGAmZyYJJ1wlIGyrLzT6yJDFXSm9blBPHwl4B0QFesDTCWMB1mZpCy/aH5NtRFNPs+1i6QkpXKGcMoijmUq2PrMDFjQ6GKir7s6b6rnXY216I44cU0zpdx+fMeof941mCSMDoWLryrnIzdF0BS5x7m4WUV4oXRMJnSPRe2/E3wciLwHPX8SFJILZtn7ShEkQxfTdAVUSwO45jXllo4Pkhu0YzOEGEF0RUWg61vstq06HZczg8k+dS3UZB4rXlOntGMqw0bWZKGcophWcv1CmldJZafQxVJmcaxMREYUze0jE1iQsbXTZ6DildA1nCd0MiCSYLKXq2hx9H7CmlsaOYatNhtGDxsYNjrHYczq11uXMmz3jOouN43Ds38pYB6c12iw6cuW23vK/lSvvy2LFjzP3M/8JLyx6fmoEH7zrI0R15+m7Icsvhs/dO8+JCE0uR8cIIXVOYyJtiEUhQsHS8MGKt1Wej7VJKGwRRzHrbQZZiipZBOWuwVO/T7LqMFVJ0HI96z6Wc1llp2qRNjY7jY7shMZCzRFHMhUqfnCWgn6pdl1rbZrJo4gcwN5IR0MlNh8PTBZ67WKXSdhjPmcwWM4ykNbp+xGKjz0zJREGi4/qM5Ux6ToQfBqy0bExVZapgMp1P0bQ9mo7HaMbECyOqbY87JrOUMzpvLLdI6yqKLFHri7gJskTe0NA1WcCJJnp2d2LDqYn/up1fONAtg+LetyNXxlssVWbP//CFLceYwOGpFBOlFDvLWe7fVaLZ90kbMm075M6ZPAsNmzvGsxTTBtWuS73rUkjr7Cyn6Xkhy40+OVMjpasoMrRsH1WRh0XOjZ6HqQl93vcCvCCikNKHNmI5rW+7hw3268F+8532n0Hsq9WuRyGlDX2zVt9HUyVSuoofRjT7PiOZ64/bYH/OmSptJ6DWcbGSAt7B8x47doznn3/hHccd3o4EYUS1KzpKlKRQdL7aZbHeZ7Jgsd6yOV/psXskw8Vqh4vVHjtH0mgKpAydvufz9NkqcRDghDGHZwrUez6zOZ0LdYeDk3l6XkDR0ql2bFZaNmstB88P2TlqsdEL2FNOM5ozWaz1k5howFjOoO0GTOQMDo7nyBgaLy80MBSo9XyyKY375soU0jpzSRwrCGMyprj/th0QxhGrLYe+E3DHRJZcSqPa9bhzOj9E4NAUmZ4bUM4YV827wdjFsSgQ3M4eGqw92wtxA+H/ADx3vsLZjS737CgykjWodjyatkcppXF6rc1kwSKKBVydriq0EghlQSURs9KwqfRsOv0QQ5PYPZLFDSOkJI4zX++RN0VXzSN7yyzUbMbzBlEscWK5ye6RDK8sNdhVtlhruThBgKHIpHSN3WMZVppiDCYLFrqqcGAiy5NnKiw1e4ymDVq2jywJKFpTkZgqpzi31sH1A9Kmxo5SmnbfI5fSaTsBk3mdIARVUSimNWodl7VWHy+Mcf0AVVGxg4CprND756sdwkjm8GSGrhey0XIwNAXLUNlRtGg7IY2+hyaDqas8uLuMqkhstFxMXcFQJZ49X2OqkGKmZPLyfJM7JjOoksSXTq7xwNwIh6bz1LoOPdfn+fk698yW2DOW3QLr/FZ2Z88VCGJ6EjeVJVhp2RRTOkgQR2KNN/o++ZTKeM7i8dMbzOQtXltoMDuSYjRroiZra6PjCNQjXaPtuLT6ARN5k1rPw/VCCENOVrrcOVlg33QW14/Z6DhMF1LUeh6KFOMHMbWey1hexJhlWSKtqTx7vkIcQRCF+BHsLKXJmwrFjMkX31hhPGOQsTSmCinma33GsyZnK20UBJqKrsnsKKchAtcPOV/t8OZSh52jaQ5O50ipCnlT5YVLdWw/4jN3zyDJEn/w0iK7R1OEsYjPlzM6+ZTOrtEMp1ZbXKx0uXOmyFTRYpCa8sOIVt+j1uvz7Lk6xbQm9kpJ5e6dOWIULFVBU2UqHQdDk2n2PTK6xn27ysMxvBYn2HdNEuzZZ5/lN791kXt3lMinTdK6Qr3vEEUxiqyydzwr4P2iiL4XkjZUbC+g4wTkTBVJkkmbKo7rs9rsk0+LqkkAKY6p9T1Gs5ZISLgBla4IaGqKTJjgl7p+iBdEZJOX7ocRiiTa8Af4psKZk/HDGF2ViWOBo60pMn4gMD5VRaLnBuRTOl4QoSeJiyCKhtjMmqoMg/phJPCy4ygSvEnJ/Wz+XmBoRxiqQhjHqLLAt47jmJSh0nUCJGIsXSSKvKTHNgjFMenESYyS9yeeTcLSVdGaGkZIiAWRNVX6vnj2jiOCXhEyXcfl4kaDSsfjM8d2I0nSDTm0g3ekyoLHR5KkIWbsdjK4dwnR7msk1aWDd+kFEVKS8DNUmQhpONZt20/GTEAqGbo6hH4JAxF4i2NwwhBdVshaGi3bw/PDYYVHhERaV1Fl0bbcc3zCOMbU1cTIcylZGm4Yk9IVgigmQmIkbdBxfPpegO0FFCyNthuQ0lVMVcX2A4gjYknC0jQBA9VzqHRd8qbgs3MDGM9btPo+uiIJpazJKEnFgQCfENUCqiKz0bbJGhqqKqpOxXNLVxmgg3e3zdobjl8cC4g7BdFeG0YxfhRRbfc4vdLi6I4Cza7PiYUKsqxgWTJRKJFNumayaQNDUShlTdKGRsvxSWkSJctEUkQFSxTF9P2Q0iZH4Mp72/zvAf/UjTgNUSS4G94Lw/Jm7uNGxA8jUSn5Ds+3efxcPxTzWFcgBscPkYCuF1BKCezmjKFQylgEYUyr74pqR1l0FQZhhBuGBEkQS9c1wjAiiKDZ98gZAuPXDQNSqoqRVHs6CRef40cYmtCJomJIIoxj/DDRmYFIMCmKcCBV+XKFvRtEQ0xowYEYYWiim8P1fFRVrO+0riLJEkEQCohCS0XXVCRJzC3XD0UFtiJR77rieAnSpkYQxXhBiIyEoSnYXkAQJfjDSfdw2/EopQ1cX/AS6YpEkHB/6apCFEHKUOi5ATlLo+f4RHEMkkzGUIhj0d5u6Qq2KxLGpq7ihzFasp43O0SDYNJdwOdvB5Pe1/L1V9dohR4/fN8OQIzfL//yr/A3n4ev/OIjmJrGSMagOwjsmCqOH2KqYo9QFRktme/XcvgHum+wZ8KgU1HaEky50vaIohg3CEXV8aaO2SiKCeN4S1e4FwibwLhGZ+0Afnm7e3T8UHAIbjpfnKxxYLg/b9aV19p7Bt9JktAFXhDRdwMKyd5QbbsU0hpRFOH4MaYudIilq7i+eMeaKlNpOVi6wKlv9lzCKKaUMSBZ59s9x+0k2K0n2yXBBpC3fhjStT28ICSXMvHDkKVam3rPJWdqnFvrkk6pTGUN+n7EztE8IxkdRdXwg4D1ls1UKY2piT2tZXtICcyXockYm5K1QShgRFuOiyYrhHGE6wZomkIUx4xkLVz/8rwezP3BWh2In3DjiI6DyzbbdusvTLjEtBtAeHB9oQe2W3MD23qwF/lBJLq0N10rCCPB/3CTQck4joe+2bWeA96fBOXb6SgviIYQRoN3sdluE/wpktj/gXrXxdSUQa4AEGNuajJ9Lxwm6rxQcKwCGCpYugiSdl0fU5HpesIH67khtuvRckTwpNX3QY7J6jqWrtKwXdYaPZGEiCUUSYybE8ZYqkLf9al3HVw/oJA2KWUtFAlsLyJtqViq8BWjMMSLhN9xIzIYv7/6b57ir92T4Z577nnnA3Bb3jPZLgn2L/7Fv+DvP9vgn/7ko6R0mYKpous6WlKcBhDGEbYj8JIsUyUKB5XoEbqqoibrpesIPhSJeBiYixDxiyCKcFwPGZlYikmbIrkcRBEyiGKYOCJnilhJxhQJpDgWEFuNrsdY3mSt1SetqlimOrQ9vCCi57goyMiKRMbSaXQ9DF2GKEKVFSQZYi7rQscLhtc0VRU/iChmdAGbHoaEQN66HLexvZA4jhOeZWHbtPo2lqJhGApIEq4vjg3DEE1Rhu9lYNsQx8iyfJX99nZkO905v97kn3/xJdo9h13jI3z/sV1kdY0IEajOWwYQsdzoc2CygOMLmDTHjymmNCxdwPW6QSTQiBL9tll/d51gGGMRvJYRxBGqIiNJYqwH+9nmeA1cHefZrEPfLT/4Oym2F6Ar8vB96ZrCRssGYlquz97Ry0gE78Xed635FEWx2MvlyzHFIIzoOGKfcULhp6cMgdLS6XustPuM5SxMRabnBzhehKlKlDIWXTfE8Vx6XiSK9OLEbo8EXF0ci6yNqSggS6hIrLb6WLpCzlA4vdZmbjRHGEV0un3Wux4ThQyThRSOG2D7Al4uRmZuJEsQBHiRQLEIoxg5mS9h4udnTRUv8attL8JMOEF7jkfPC1BlmXzKGHZiqcn6vdbau3L+XinXGruu7W+CdleSNSFsgJ4boGsKpiaKZQfS90JAxOpi4kT3aRDHVDoOOVMnZapEkShIVCUBJ5gxNfwgJEZ04HbdAE1mSMlRyurkTJHYUmVhgw38NT9JHPpJPFSTJWo9j4KloigKfVfEkA1dHXJ79b0ABWjYHkEUk1IVtCRWYiWcT3EsztVxRUGQH4oYx0bbJqMp1G2frK6gagIlxA8i3CAgjOKk8F3GS/w5SZYFmg9JgVMSg8ybKo1+QM5UcEPEPrHJTh1040VxPIS+zJnaFht28/gN9M5gXg0KGqSk4smLIgxFouMGpHRtuDd1nYC+G1DtOuwdzw3taC8IsTQFWRZzzAsiiAT0LBKMZVP0XD+Jsyv4YUTKUNFVmWbPww8j8ikdVQYnCDGTeJkiyZhGwuuFiI95vihysjRxnoG1OfC9dVUe7smVtoOhxhTTJm4YEwVCZ8eJfldl0JOcgkw8fN5mzxve3+a4u67KtGyXjK7ghjFyLH6vaQphFOMkMS/L1CAKqfV9xnMWfhhvOefg734Q4YU+nb4rkPo0lSiGdj9Oig0NzIQP7FpJsO8KTrAwitj3d7583WNGMho//dAcf3J8jbbtYygyGx1HDIQkMZ4z+Mzdk/zLp+bxEuU+lTfZUU7x5kobJ4i4czrPf/PRvfxXv/kyPS/EVCUe2TvKHRNZJvMmv/PCIj034Cfvn+XRfaN85c11Fup9pgsWhyZz/MGrS/TdkENTeVK6wv07i1ys9qj1PI5M5fjdl5Zo9DzqPQ8niNg3lubOmSJ7RtP80WsrrDRtWraPF0TcM1vgLz62m92jaf7ZV87w4nydRs+HpDW5mDb4S4/u5AP7R/mPzy3w3MU6fhAxU7KYyFm0bIE97AURO0oW5zZ6uEHERw6McngqzzPna3ScgHMbHSxd5X/6gUPcv7PEL/3eazx9tjpU2pMFi5ypsFh3cIOQMBKTL4pium6InxDDKokSHsh/+/unuPCPPvWWY+sFEb/z4iLrLQfHD7lQ7SFJMJYxeHB3mR+6e2qLAfSfj6/y5TfEGK93XEppnf/6o/vY6DicXe+SNhSWGzbPnK+x3LCJiZnIm3zyyCTFlM6/fOoCPTcgiiJkWWbnSDrJRPv0vIC+Fw7xWSUJTEWQQG4WSQJDlshYKrYXDvFRBxWh24kEFFJCSW5HAXblb1VJtH5uxzuW1WW8JNiiyqKNOmuJpNyAQ+XAZI6+6/ONszVUWeITh8aYKwsYnUJK4yfv3zEkCv/C8VVOrXW4cyY/xC2/Uhw/5H//6lmBl9y0cfwQ1w8JrvXANyGqBLPlFLIk+JWI4a6ZPP/mLzzAcxfrvHypwe7RND909zRfP7XOa4st9o9nGcsZPH22ynTR4rP3zlw3KNNxfH7nhUVsL+QH7pp6VyFdXl5o8I0zFcZzJj9238w7TrK9udLmK2+uU0xr/Pix2XcF5vG1xQZ/5w9PsNSwmSla1PsejZ4wzmIk4igekqB/5I4RlhoO5ytdophhoGeA4Q9ivd83l6faDVhs9EjoRVAkMY9VReLYziITOYvlhk2l6w4DfgO4Tl2RWG05Q/LPpYaN44WkTWEoZg2NH7x7kiAUXGa6IiMBp9c7BGEsINAk8AOR0LZ0lcm8xaN7S3zu5WWadoAqSxyczGJpCmsth3rfQ1dFUqDjBIBEOaPy2L4xwbm00EBTZMazJhdrXWGAxAIuUrwDyBoyXhjjJFjUg6DWwGFA5LywNNGt6IcRliYzXUjTsl0cPyZjKEllmUiUS5Iw1IopnT/38Bw//fBO4HKA4rXk77e7wd6f8sg//AorCS72//CHx3nzH3yapWqLv/m8+P4T//wZ4DK0JoCZwGJIsoAIKlo6u8fS3DmT57P3zV4FHfyVN9c5sdxi/3iGthPw5kqbtu3TdQPuni3wUw/u4OVLDd5YaXPHeIamHbDRcXh4d5lvXajxx6+tkDU1fuHj+/jwHWP0vYDffn6RrhvwqaMT7B3L8tKlOr/13AIt2+d7Dk9cpVerXZfffXGJKI757H0zW+7xqbMVfv2J86QNlV/5wcNMFSzCKOZ3X1zk8dMb5EyNA5NZ2nbATNHiR+6Z5vOvrXCp1ufBXSUe2Tuy5Xn/9PVVnj5Xoe+FlDM6T5+tstF2uXs2TxjFvLbUopjWkgpO4RhEwGjGoNH3iOKYVt+n0fcFpIsqYfuDqk+JyZzBfTtL/O1PHRzC9NyW7x5Zbdn8vT96g2fO1YTN9zbOkdFlupvsuw/uLVOzfS5WuqLIDIE08cH9o1iawvPzglPD8UJ6XritPZjSJPIpnTASMCufunMSVRaBmk8enWD/eJY3V9r82tfPUut6TBZM7pwp8JP3z9J1A37vpSVkSeKz980wmjWodBz+v79/nAuVLnftKPDzH97L/vHsts/zx6+t8PlXl0npKj/98BzHdpaG3/3Rays8eXoDP4hQVZmOLXj4do2m+fs/dIS8pbFY7/P5V5fRVZmfOLaDfOrGOqwcP+Rvf+44q02bz9wzzccOjvN7Ly0RE/PZe2e2hT5+P0gcx/z+y8ss1vs8tLvMw3vKxHHM519d4dXFJl3H546JHD/xwCwrTZsvnVinkNJIGwrnNrq0+j4ZU+ELJ9ZYa7nEcYyuSIQxw+TYwL/JmSqjGYOLtd6QRwKglFKZKqRo9H06tkeECCz0HP8qDrGBaPL2nNk3IxICciZCwAx9eP8o/+pnH7ih3w7sli+daXPkySp/8oufeGc3c1veE9lc4DGwLzc6Xf7MHzUA+NSvfXP4fVaXGc2Z9L0Qx4/oecGwuEXAAQr73tRV7p7J8w9/+Cj/8qkLfPNcVfiohspKy6ZtB5i6Qs5QqXRdGn1/GHDbO5YhZ2msNB26jk/XDZFlidGMTsbUODyVY66c4vWlFi9dauD6IXlLpdYPII758ftn+Osf2cdyw+afffUML1yoEcRCz47nTC7VeoRJwVreEtCke0Yz/MBdU2iKxK/88Zu8vtSEpJBUUwR8ctsOWGs75E2NTx2dpJjWCaOQP319jZbj89i+ER7dO8p/fO4Sx5fbSBLcNVPADSK6rp90p0TMllL8/c8c4cxah6++uc56x0WRJe6ZLfBTD+zg9eUWL19qsGcsww/eNfWOx/dn/vWzPHm2fvmDhSr/+oXqNY+XEPEld9O4FlLqED1ksmDxZx7cwccOjvOHr6wQxTGNvsfxpRZHpvP85cd28U++fJqnz1bxgohiWufYXJH75oo8c75Gs+/zQ3dPMZG3+M3nLuEGEZ+9d5rvPSLYc0+utvnyG0KHHp3O842zFcoZg584NntL8iR/9c11/s3TFwljEZDXVdFF8uKlxpATqmipPPvLH3/X6RziOOYPX11mvtrngV0lHt1kX3fdgH/3zEVeuNggImZnOc3R6Tx/+voKLy00RRFZLIp5ZoopTFXixGr3mtdKqeAEWzksBz4xElu4qZQkhukE23NF3YhkNBlNU4jjmEf3jLB/Iku95/HipTrz1b6I3akyU3mTjhvScUXReQxcrPSG95k3VUazBoem8tw7V6DR87l7R4GP3DG25XqvLjb5jSfP4QUxP/3wHB++4vtryb/55kX+2ZfP0PME51fGVNk3luXARJaz611Or3cYz5n81AOzfO3UBrWuS8cJWG+7BAPSpySmUs4YtPoeXhgjA7NFEy8SSVbbC9E1haPTOapdbwj9N9CjPS8avuuUJhIWA9NBU0CVZRRFZqYg4FmjWDQRNPo+aUPhzuk8ryy2CKKImaJJFEtUOi49J8AJoqvGUZEEzHXaUNEVibYTiISfKjNVsFBlOLHSEQWXCD0zktHJWRq1nuBqjhH0G5IseMWIRZHFdMEkbShcqPSHvJSDImclSb5NF0z8KKZo6RyczDGeNyGOxdpbaLBYt7l3tsCvfvZOwdG1Sc6sd/jC8bXEPhNP5vgRp9Y67CynuFjtYfshG22Hli3QVkazBnlL58Ryk07CpyZJ8POPzXGp4fLGapv9Y1n+/MM7+KdfOcvZjS62Fw4LWafzBo2+P/QpACxNFEYMzqdIUErr2JuSpYYq8+juMq8ut4GY+3YUOb7SImtoHJrKsday6bohc+UU0wWLKIbFRo+TKx0WG316ybmn8yZpU2Wt7ZDSVGJEw8POcpp754qYqsLXTq2z1rLxggg/jDETePBB/CtGJHX7XpgU5YrivLGcxQf2jfDmSosza10UReL+HQVeWGjhhRF3jGdYbtq0bR89gQjv++GwU+waJi4A41md//unj3HXbPGax3xXJMGa9rXJ2wZS6/rM12xqXY8wimjZPm4gArtRLEjhv3hifUjOFgO1vjfsypJliQvVHv/5xCp2knV2gphLtR5TBYv5ao1GXwS5np9vMJYXsEIrTZtSSucb5yqi7TaKeW2xwcN7Rnh1sTk0Ep8+V6XZ92naPhsdl4yhcmqty+GpAk+drdJxAhp9j44dIEmw2LA5s95BkSXWWg7NJEkTx6AkVdQnVzuM5y3qPY9aVxhTFyo9TE3h5GqbVvLe3lzp4IVi4s5X+8QIyKOlhk3fC1FkAec3kjFEINoP8cMYWRakzS1bpu8FuEE0hDVSpMtOVgzbJkMa3f5bjluj71HtuPTcgPOVLm4QJeeXuFgVibuBcRDHMWfWO9R6Hmsth74XkNIVnr9YG77nly810VUBreaHovOubfscX24hS6JqwvZDiEFRIpbqfUxdQMX4YbRls45jrkqADT53w5jYDobzafAeriUx0OpfOxBz5W83k0ReKR1PdOGFMURhTBCFkCTNJEnC9GU22g5n1jvEcYwTRMxXRTvyAON4re2wayRNHMecXhfk4afXO9dMglW7LherXVqOR9cRUJnXU043I0EM1Y7oOnJ9MccuVvusNG3OJMTmFyo9/DDi9JowxM5udGj0XQCWGzZdL7gu5M1K00mSHnC+0n1Xk2Bn1wXZ71pLbIrbQZXd1Pk2OkRxTK3rUe26zCRwSe9EXrzUpJ5UlCzWBSm1m5CuilojITHwykKTiMubzyBgs3m4w1gQvYZRvIWodrBc4iBmodqn2fNRZJlKxyWddEUO2v7DSDhQElDpRDh+iBdGBHaUVI4Kg8TxIrG5SlKyTsW9eMFlXR6JdlXqPZc3VtrDsQ6iWMCrGCq1nosfiup2P4yTtRhjexHHl1uYmpLow4i+26XrBcMktCDtFMZnyxEddJvn/2C52kkS3VAlbE/MzzASRtRqyyZKquLWPVHFFAOhI2CSoqSi9KVLjWES7LbcGrKyiRi2n5grDRcmrzguhqFxZ/sRmhIRxRKBIqoMzabgO7xY7V2VBDuT6Onjy60EEtBlo+2gJrCFC/X+8JjXk2MAXrzUEEa3LxyGF+brfPiOMdbb7tBGOLfRZe9YltNrXWpdD9sPubDRpe+HWyCML9X6Cdk9zF9xj89drBNG8XC/nSpYdByfxUafZl+s25fmG+wbz7LUsKn1PC7VhI1wer2zJQkWRTFnNzrUuqJqs9YVdkIYRVyo9ui7AXEcs95ySRtKct2YnKVxqSYKaYJQQALHiLU6SIAB+KEgMV6s21yq9W8nwb4L5WK1x6WqmK9vNx/Q31SFFAPnqj36Xoi7KYjQcQLOrHcopnQafR/bC+lfIwEG0PdjJNsfVl+fW++Qs3Tylsa5jS77x7OcWmtT73k0+h5xEqRaaztUO+6wgn6h3mM0a3BiuU216+Ile/vZ9e62SbAoinkz2RttP+TMeneYBAtCQSxf63rYnrAn246P60estRwu1XrcOVPgYrUn9tBQwLPmU/kbeo+LdWHPAbww32DvWOayHqn137dJsL4n4MJB6N+H95Rxg4iL1R6NZHymiwErTZuz612iOKbScZmvBnhhxFLTJmuoie4S+72bBP82ew6yJOZRHEtbEmAgPr9U7w9h3jVVwrGF7XYteacJMJL7G5h2YQSvL7Xe1nlOrHlvfdBted/Ieju8ym4B6PkRUVvYtG4QDQN4IILfXhgTxGLGVLsury81ObHcxvZDKl3Rcdu2ffqesPM7jr8lEBhEsNR0yNoBXTcYIjHIccxGx0WRZU6utjE1mVrXo+P4qLLEesdDTgLtry+2uVjtMV/tc7HSI4jEvXWdgLbTJY7jJAAsqvqllkMprXNmvUvP9VlvO0lyIh6u1/lqf9g1Yfshz16o8amjk3zrQp2eF+IHERcrPXRFYT5JsgHM17oMqvDrgUcmgb1+baHJQqNPreex2rSH1BaLjf7Q3z2/0RWw6++woPJbFxo3dXwMWxLrEUL/IIEiyay3HVaaDm+stIb6+8X5Ooaq8MZKi3NrXRbq9hBNKO55rLUdXphvUOm6BGHM8eUWTdun1hWFSidW2sMk2NkNoUPrPY9XFhvESWyg3vME5OYtJs/P1wjjmNWmQ8pQyBgCAi/cpJ9bTsByw2bP2PZcn29X3CTuA3B6rbMlCbbatFlrufS9gGbfJ29qvDhf52K1n3RfiDkw2M+CMLjutfrbfD3c464whMKYd5QAA+j6EUYsOs2Or7SYLFicq3Sp97wh4oUXRqRsn1rPR5Yl1ttiD968NXbcAE2VWW/ZvLIAO8tpzqx1rkqCvbnSEk0IwGtLzRtKgsVxzDfPVoT9GQv91HNCKh0XQ5W5VO8nyFEeXzu5gRtENHo+zb43TA6JE4k/Gj13uOdHkCTQRYelQLOKOL3WwdSUIbRqFMX0va1Jqv4VxoEfis4nIxZx52zScVZP4t1tO+bUWgfbF00QS3UbQ1No2/6WwujNEsbQtD0Bl6vICaSisKcKKZ3lZn8Y/xg8T9vxsYMQZ5Pt7IkA/qZ7jQT9hi3jBYldv8mpjqIYOYhYatjkLI0ocllq9AVEdHLcfKWPLMO5Spe1lsPuKzh2zyU66FKtR94S1Ect2xdNGpUuGx3RvVXtuCBJ9D2fjKGy1u5gb3q3cQzPzzdxQ7HnbHQcvnBiTcxRP9yyf661XSS2JpGdKwy8MBaIS4OCdDmB6Xx5qTlElnh1qZmgxsGJ5RaaIlPveaQNhUrH486ZPK8vtvCjmJ57+T1Xui52IJDu/OCyvVbpuJxZ7zCSNthou/hBhBOIxhfbDwl7AsXJDSLReZjE3cI4HvLNtW2fN5ZbggIoQZ45sdrB9kTe5eyGKGoPI3CiSCR94+vH0wdS7Xo8P1//7k+CldMG165dEXJgMsOxnUXWWjYbicE1X+3ScUM0WWI6b/GzH9jJP/zTU7RsH12BfWMZdpXTCY5nwCN7yvzsI7t5/PQGlY5H0dJ4YFeJmaLFY/tG6CUbxg/eNcVdswUaPY+7ZwuUMzr3zk7wey8v0XECjs0VCeOYh3aXma/12Gi7fPSOUbxgkXpPo5zWafZ97psrUkhpPLqvzB++soyqSLQSJ/qeHXmOzZWYKVkcmc7TcwOB15u0qY7lTB7bP8rRmTwXKl0afQ/HD9kzmqGQ0pnMWzx3oYYThByeyvHKQhPHj3hwd5mDkzmekivMFEyOL7dJGSo/et8Md4xnuG+uQLXr0nVFF8We0QzFtMaZtS5OIJz/oqXhBhFN28dJcK4VWRp2RIFIyJRzb51oGM0Y7B/PstqymSqYnF7vsksSVQ/3zhW3VMdIksSDu8q0bZ/JvMlay6GQ0vneQxNUui5vrrb55NEJ5qt9qh2HU4lBubOU4hMHxylndBbqdgJNEKEoCndO5ei4IS1LVB+0bE9wQCA22LylUu/5hPHlyhZFloZEiN1kU4sAXREbyubFO+iM0WSYLqbZaNvDyuLNoivCCRjoxbQuMuItJ9xynCIJks62HSQbjCA3L6YTgkhJkK0fnspzcDLL7720jKkp3L+rzM5yalidNVO0trzTN1Za3LOjcM1xmsiZPLi7LNqfJZmO62O7wZYKk7craU3mjokcshQzX7OJ45hH9pbYUUrxwK4SL8zXOTCRQ1NkHthV4pWFBoemcpTTBk+drbCznCb7FpwVc+UUs6UUfS/g6MyNBW5uVO6bK9F1K0wXrCG58TuRe3cUqXU9RrLGW5Lt3qh87MAYT53d4PxGjzvGM6y3XVaSqg4viFCkGDsQFb+fuWeaM+tdXrrUIAwjtIRs1Q2EsRUjOrc+uG+EpabD6fUOticwkjVFJLosTeb+nUWmiynOVbpYuqDwHOBpCxJpmcW6jR+G5FNCx3Qdn2LaQJclsimND+wdJUiSZaYmY2kq3zxfFdAcuookxfTdEF2RyaU0do2k+dC+UVabDssNG1OXuWdHEUMRfIMrTQdLU4CI1baLJMF4Tud7Do9ju8JxM1SZuVKKN1bbVDsufTccQkLYfshEVqfvRzTtgDiOiJKCLUURfJGqIqqSimmd9baL44fkLJX941lqHY+WI/DjFxu2gGZLa8QRqIogTP3kkYl3Zcxvy7dPPrS3yJPnRMBhV0k460en81fZLYYq4CFkCbKmlqwZQS4/ljXYP55jqmBxcCJ31TUe3FXi1cUmD02VaNkiCSQqHQP2jmXYP55NinCaPDxVpml7LDcdPrC3TNESXKg5U+P7Dov5NVO02DmSotX3uWu2AMCxnUXmayLAe/+u0lUcnvvHM5xZF0n6A5Nb7/GThye4WOmSszQe3CWC63lL466ZAvWeR84U1b2DAoyxnMk9Owqc2+hy/6aOFBDY5g/sLOEHkVhzOZMojpiv9Xl4dxlFhq+drLCjZCHJknDkLRXXj9lRslhrO0Sx4KqYr/ZQFYmCqbLRFY5s1lSYK6e4d67AHRPbd83clltbDk3muH9XkabjU++6w8DO9Tr2N4siwWTOZKXlDO27R/aUqPdEkrdjB8SIdfTBfaMJDHrEetvFDULW2+4QsnsQVxQVsjrFlE4YC/L0h/eMDIvLBuvw/p0lXr7UoNp1mS5awn4pphjJGJyrdJElaZjoun9nkYOTWU6uwj2zRe6+hh0nyxKP7Ruh2nXJmCrHdl52HFVF5v6dJfpeQBAKuN5WP2Cx0eeOiezwWoenclyq9TBUhT2jNx602zmS5p4dBS5Uenzq6AR3TGSHAc/38/pLGyp3zxY4X7mso0xN4d65IrIEtm8KPVpOk9ZVql2BTpG3NE6tdSinddKmwmrT5uR6B1kCS5UJogROXxbw5WEME3mDiZzgTq0nlRQyMFM02TOWY6lhoysSfhSTNTSRJN2mQFSTwDIE78w7EUMBRU4CHJrCp+/cLjXy1vI3HnvnHS235dsn29ktEjCZM5guWrTsYBg8H1SpGwpYukZKk0kZKgcnczy0e4SFus1X3lwjpSvkUzoLtR61nk9KVxhJ6yw1+6w2HbwgwtRk7ttRJGOqXKr2aDk+9Z4I+u0eSWNqQkeN5SyCUAQEW7bPwXKKsxtdJOB7Do9zaDLHSMbg4T0lvnxiDTeMmSpY7BvL8OpSUxQbaQqltM6OssXOERE7MlSZFy42hvysGUNFVSSOTudZbTlcrPYYSRv82H2iO/5H75vhP72wSK3r89DuMo/sHaHreDxxpooiSzwwV8IOooRvS8H2I3aNpPjAvhHOV7p0HQFDH0uwdyzN3rEMUSySSgcmcu8KbP9PPzTHv/zm/HWPGXR7AhgyZCyNem/QiSExVbCIEH7OzpEMR6fz3D9XotIRSawfvGuaZ89XeWBXiSMzeY7NFWn2PVw/Yiync3gyx/27yjx9rkK95/ORO8YoZwwuVnt4QcRj+0aH93LPbIFa16WcMTg8meXJM1XGcgaj2XdWWPqdkk8dmWSxbjOeE53fhqqwayTFH7++ipMEzHeWU8yV33mh65ViasrQvn5g11b7ekc5xZGpHF03YEcJposWd88WiYEnz1TQvZA4EtQEB6dypDWFr52qDO0mkRS+bEeNZTXadoATXLaxVBlkGeJYGsYNQHS4WLpM1w2vKvjYTlQglrYWnc4UDGRZJghjPnlknKlCimJaQ5UkAlHDQy6lMlswGc2F1LoeY1kTmZhXl1o4CZTxVMFiMmdweDrP/TtLLDdt7pu7OqD+4O4yJ1baeEHIhzbN1+uJJEn82LFZ3lxpU+97KJLESMbgwESWQ5M5SmmdVxaazBQtfuaROf74tdUEYs/gYlK8pSsimRfFsHskxVrbpWUH6KrE0Zk8XTekY/u0nQBLV/jQHSNcqtqkDQGxeG5dJMWqXZFAU5MOra4rihKjGCxdwJUqkswdExlB3xIJe2Sh7lBO6zyws8DT5+v4oUAw8yNYbznUex5tx99SkKMAhiYzW0qRMVUMVR5y4GVMlcm8yeHJLF8/XUEKQsJQUAHsKKWSmInDcqNPFCdxUEUU/xCDpSvsH8+SszSOL7Vo9j0UWUAehlGEksAl3jGepeeFjKR1Dk3lhkWOfS/E9kLeTJLCs6Wr191dswXW2w4jmeIQDtENIk6uttkzluZCtUe375PRFdZaLmlTpZzWuW+HxdPnq6y3XeLkHfzIsVnOrHd5eaHB4ak8P/3I3NA/6NgBXU9AWR6dybFQt+m5ItEouDU1dFUWXYFRTFpXmCpYtB3RJBJGAvr/k0fG+ea5OjExH9o3ynMX60P7fqHWZzxnMFtKsWskTccJ+OTRCV6Yb+AniTlJkjg0lSOlK1ys9imkNKJYICXdMZHlwV0lFAkqHYdL9T62Hybw3SoTOTOhMhK+j50KqXVcFEUa0hvNlVN84tA4ry+3eHG+gaZIfO/BMb56ukrH8fnAnjJnNrqstBwyhoqpyiIBG5NQE0XDwuEr5eBElu85dP142fuWE0ySpH8GHANejuP4F6537LFjx+L3G0b8bbkxeT/i+9+WG5fb43dry+3xu3Xl9tjd2nJ7/G5duc0JduvJdpxgt+XWk9tjd2vL7fG7teX2+N26cnvsbm25PX63rtweu1tbbo/frS23FCeYJEn3Auk4jh+TJOnXJUm6P47jF673m4/8r1/iYkNUth2ZzPLY/hIXKjZ+EHJwOk9aUzi51kaXZVRVIYhCPnV0iuWGzbcuVEkbKnvHckzmTF5fblJO69y/q8z5Socz6x38IKLvBbRtnw/tH8ePYlw/YLHhcMdEhqfPVRnPGqw2XUayGo/uHWOmZGFpCq8tNjkwkWX3WJZvna8hEbOjlOJzr6wQhiH7J7KMZExUFS5s9Nk1kqaQ1vnW+SrnNtpIyJi6PIT+OTJZIGupHJnOMZq1kCUB+ZbSZd5c7TCWMaj1XNpOgKEozI1YAp6j7zGdt1AUmayp8sTpCo/sLbN/PEcUCShBQ5HxYlHC4foRKw2bMI5ZazvcvSPP8cUWfhCy0LAxVJl94xleW2xh6qJSwPEDwjBm12gGVZW5VOuxbzTFty7W6TkhGx1RmfiPfuQQP/HArpuaF14CMzKRN2n0PIIoIoxgRymFpSu8vtik2nXpOD4n11rUuwF3z+YFNnkQsXssyxsrLY5OF/j4wXGePlfht59f4L4dRS7V+yw1+0zkLCxVJm0I3qE3V1qstxzCBO4tQmIsreJFUM7o7CqnOb7cYq3lkDUVXB86nmgzTmkK4zmLhu0N23FlRGurG8SkDZldI2lOrrTpeQHjOQNZkvGjiLYdMlU06dgBeUumbYfUez5IMR8/ME6j73Gx1sNSVRQZjs4UGclovDDfpOsGfPCOUY7NlYiBXeUU/+G5BdaaNp4fMFNOs3MkzWP7xyhYGq8uNskaKqM5E9sLcYKQXeU0xbROzw1YatjDd3w96dg+XzyxStvx6HkhXz6+xsVaLyGn3B4S80oZsMvIiOrBfeNpIkkioykESOiKhKYo3D2d58hsgb4fMltIUem6SWeUiR/EhLGAtBvPmm/JS3Gx2sNIsIiXmzZBGDFXTtP3Ahbr2z97EArYrbGsQSH19rq7BjClu0czV5G/fyek2nX54vEVXrrUIGOISpE3VzsUMzqtvketK3jCpgoGpqbiBiFFS+P5+QatpBOr2fP55NFJAQG10abS8ZBlmMpb7J/I4vohC7Ue56p9JjMmYzmdej8QHHV+wN6xLJoiUe24jGZ0vnW+xmrb5aFdJdKmStfz+fqbVcoZjV2jGcppjT2jOWo9se4FpFOLVtJxu1Drs9ToI0kSWUvlrtk8hqqy1nIopnUsTVQyrzZt8qbGQ3tHObXa5qHdJV5ebPLU6Q1B1KrLXKz2mSpazBQt1toupbTGeNak6wUs1W0+eWiCrh+yVO8zmjMT2M4ufTvEDkNmiiavL7VRZYnJvMlsOcXDu8pcatjcOZ3nidMb+EHMuWqXoqliGipTORNNVVjvOPz4/TNMF7Z2z24OwN/mA3t/y8H/8U8JIjj7jy6P0+bx+8xd46QNjZVWn0tVhwMTaVKGhqWrPLqnzBNnKjy0q8xn7p3BDUK+cbpCEMY8dscoGUNlodYXsIF7SqQNofNOr3V4fbFJ2lR4cFeJ9bYn9uhYdLpnDHWLHqt0XFq2x+6RDCdX26w0baaLFrtGMli6klTh2byx0uKu2QJ3zhRYbtpcrPbYPZJmqnB1Z+rmfTufwBGqijyE3h2I44dcrPQ4u9Gh6wbsHUuT0lVkSWYkqzOWNVlt2vzhq8vsG8ty744CT5+rUkhpPLCrfBVnwlK9x+++uMTesQyzpRR/9NoKRUvj4FSOWtfl6XMVwggmsgZPn69iKQq5lEbW0pjKWeRSKh++Y5w9YxmWGjZz5dS7zstwW77z0nF8/smXTnF6rQNxxJurLVru9X9jKaLS2Ysho8K9O4vEksRo2qDrBrTsABkBq+X5MStth7mSxQO7R2j1XV5ZarFvNIMXxuiyzKN7R3nhUp1iWmUkbSFJolNYkSXGswbztR7rbZeJnMlozqBg6aQMlXMJVMj33zlJywlo9j3GMiZfenMNU5M5OJkTUCVdl10jabRtugcaPY9K12X3SHrYXXBqtc1qy2FHycLUVVKawkuX6hyeyjNZsLa1jeo9jydPreNHMR++Y2wIYbjctOm7AW3HZ7nhcO9c4SoI5yiKuVDtEkawWO9x12zxlq3uD6OYC5Uu5Yxxzc7/laZNs++x3LSZr/bouQEf3D+K7Qd8/WSFjufT6QfsKad4Y73D7nKawzM5NEXl5YU6miyTMRSOL7ewvYB6z6Xe8zm2o0St73J+o8dM0cTQFNbaTvL+A9HND2gJR4spQSSBFIOboFloEvhXwM1oQNqQKaV0un6AJMk8MFdk73gGkPnMfdPMlW4cQvzXHn+af/IlAZ942255f8vARtk8ToPP0sB/9+kDrHdcZAnu3zXCfTsEp3jXDal1HXpOSNP2ma93GU3raIpKJEVIsaBt0FWJfWMZdo9mWGsJhJYwitgzkublS02arqA1iMOYpi1g79bbLk4QkTWF/1truxyazPDlU1V6rqiENzWVjC4QJUxDI62pjGR15soZbC/glcUG00WL2VIGCVGZbyDx2y8tMpo1KGdN5Dhmz3gGGYmjMwUWG31cP2SyYKFJ8CfHl+n5EeNZi5Su0HF9pEigPsyW0pTTuoBUU2R+5O5pllo2jhdR7QnIsw/sGx36kqMZAzeJMxUsnRfm69yzo3AVFGwQRDx5tsJsKXVNbscbldVml4d/9clrfn/XRIpyxuRSU9g/nzwyhakptByfw1M52nZAxlSJ4pjlpsN9OwqsNB1kWWK2YHJipcOOksk3z9X5wN4ysiKjKzIbHYcXLjZ4ZG+ZYkonjmEsZ3Cp1me6aKFIEgv1PrMl6ypOnutJEEa8sdLGCyKOzuRvGXvtQqXLS/N1qn1BWzJbSGOoEq8vt7hzusBHr0FD8V7JW+1hta7Lnx5fpdl3SGsaLccniCLmKz1eX2qiShJ2EGHKMatdQQY2kddoOSFZS6HrCJqVjKGSMTWiMKLrBTheRD6lIMsqpYzOxfU2sSR4nHwvotbzURTRxdXuBUQhlPMmI2mV+WqPnKUykrVQFRnb9al0XA5PFzgyneVCtY+lKSLW4IV4QUij7zNTSPHA7jKOH/CNM1Xmq10kSWI0a+AEIffuKPLBfaOcWm9zYqnNvXNFju0sXTW32o7PqdUOaUPhwETuLWM6jh8yX+3x/HydUloDJLq2z4uXGsL/Gc0wUTDpuSGKBK4f8sJ8nb4f8NjeUU6vdcinNOI44rmLTR7cXeL+nSWiSHCLvbbU4Bunq7iB6HiydI2PHxrj8dMVLE0gjli6gq7KuF6EF4X0nYia7bF/LEOl47DUsPmeQ+MUUgYnVlpMFUzuni0SxfDchVpCx2HR8wJOLLWQkEhZKvvGMuwdz7BYs7lY6eKFEQVL58HdZdZaDmc3OoxlTXaPpjm93qXZdYmIafUD3DCk0nF4cGcp4TQL2TuaommH3LOjwBOnNwiimL2jGZwwZq3ZJ20oxDFoskxEzHje5JWFJrWOw0cOTmCpMn4Ey40e87UeaV3lE0fGafYD4igiY2ooskRMyK997QKaIvN///QxDk5eHxVqc+xwpWmz3LC5WOmx1OozV0wxW7ZwvIjzlS4dJ+DARJZmAhM5W0pxaDLHy5fqyJJELqXz2mKTtC7z2P4xfv3x85xZbw2h/NZaNtWey4GxHKsdm3PrXXYUU6RNFc8PWWr2MFQNQ5VI6TIxCk4QMpY12Oi4LNT7lNM6hyfz1HoObdvHUGXyKR0viDi53CFlyOQTztqOE7F3PM3JlRZhBHvGc9Q6roi9jWQ5u97htcUmkgSP7hvlW+cq1HoeHz1Y5q7ZEq8stHlkT5n5ao+NjsvesSxzpRRfeXMNVZV4aPcITVsghoURHF9qMp43+YWP7+e1pSarzT4pXcVUFc5WOsTA8UsNvDAmliBtKPhBzO6xFOc3+kzlLcZyJhMFk9NrHQoplV/8+IG31HXvy04wSZJ+GfjLwBTw54GJOI5/7VrH7z98Z+z9wP9y09fRVYkwjLdAkSiyaM2VZciZAu/TvgIjVU6IG91A4EZH27zCnKEwU0rhBhG2F1JM6+wby3B8uUUYxXRd4bCKFmiZYlrDT7BBM7qKoggOoWtht+uKRDGt8/CeMitNmyCMWaz3iWNBaingyUIUWUZTwPVjogTnOmOodN2AKMHMfWB3ibWmKyDsErxVGdEaGsfxDSUv3o6c+Z8/ySMPPXDD2fXPv7rMhUqPti0wVo8vt9g1kmbfeJb94xn+2VfPMF8RyT47IRCUJTGukiSARCVZJLg+e98M//G5RTru9pAgNwqJ836WjK4wU7So9TyqXW/L85iqCJDsKFmcT/i0JvMmsizjBxEP7i7xFz+wi//0wiKNvs94zuTPPLjjqmtsro7473/vNb725jptNyB4twjBriNpXSZv6YRxTN7UkCS4L4HIXG05jGYMpooWf/HRXdckzX1tscnXT20gSfDw7jLPnK8B8L2HJ3jxUp1a12M0a/DnHprb8rsvnljl5GoHQ5P5i4/uumlju+cG/D/PzAtjfTrPxw99e43cgQzGr+cG/PIfHOcLx1eHsFAygrxzyKn1bZABnGgcX80pt92alAFNFfCCYcRNcbtICP0wuI7EZfJugL57c1wx4t5FcFRCvLvrLQNZQsDAWBo9L8D1oy17zYB4XpJBV2R2jab5nb/6yBCC7tixY1Q//itbznk7oPT+lH2//Kdb9vL5X/00xuQ+Jn/mn7/lbwcwu5KEMM7//L28sdrhP724SBjFfO/hCf7ah/bwS7//Ol0n4OBklr/3g0c4t97h73z+BCcTx2yunKKcNjhf6ZJP6Ty4q8TukTTnKz0BzXDPNL/74hJBFDOS0fnCiTVWkuDHxw9N8D2Hxvmt5y7x+VdX6LoBxZTO3/n0Qf7ziTUuVnvsGU3z8x/Ze1WAe7Bvpw2RiPv6qQoAP3rvDDs2wbz87ouLfPHEKi9dahKGIfm0wVTeJG/pHJ3J8+PHZvj533yZcxtdDE1mZznNettBlWX+wqM7+fObePK6bsCP/8YzXKoJjlNdkQSnDpAzZDpu9JaclZoiMVuw+NihcVK6ykTe5KceEHvg7U6wW0+u1Qn2Z/7lt4b7/ndaBnuSKoMkCVsVJPpegB9GqLJMOathqgJi5cx6l4yh8Mmjk+Qt4UO8cqnB2UoX2wv4wN4RcpbOaFbAil8JWWd7If/mmxfxgohDUzm+9/AEFypd/s7nT9Dq++Qtjbt3CK6vgS30Dz9zlM+/trzFNuq5AX/vj97g8VPrRMDDu0f4B585QtcJ+P2Xl3hztT0Mhuwfz/JPfuzuLcVJT5ze4PmLdZ44XcHSZXaU0vzPnzlCehsY6/d7Re5X31zn+HILXZX52Ud2XvUMS40+v/fSEt84U2GlaVPteUix0Lk9LxrqqSvF0mSiKMINt/nyOyiGKrFrJMMXfuEx4We9hdy2W24duXJvm//VT5OZ2sfIT//z4WcDu1yWBHzreM6k0nEFD2Hw1vssiDhEIaXRd/0hN+e32/9WrmOvq7KU0AkI+LGsoV4F87Xd+RQJYkkE+/eOZdhZTnNyVcCfjWdNfuaRnUOOdjcIUWUBLf/KQhM3CCmldX79z9235bz/x9fP8tTZKqos8aufvZPZm+CEvlJ33qztokiQMlQgJm9o6JqCpgg4MD+MGM+agrtYkZFkIIYL1R66IqMoEt9/dJKL1T5vrLRo2T5ZQ+H7jkySSaC/o1hAZOuq4IkuZ/Sb4j/+4ok1/uPzC/hhxPcenuBnHrnx336nZKnR55d+73VOLLfoewGSJJHSFII4JgxjspbGP/7Ro3zkwPi3be+73h4WRTF/7Tdf4plzVfqe4L+O45vzvb+TcqXfr0iwo2jRsANaCUfwZrE0iT0jadY6Hl0noJDS+MWP7+cnH7gcDwujmN944jxPn6+SNVR+/NjsVTGdK8fud15Y4D+9sJjAxwsKiZa9Vaeo8uWox/V0zUBMVUJTZIIovipu/W6IhCiGiWO20NtsJ1dCYoKIZwy54NgKtXoj14a3ty8M8pFXxrF0RRJxcQTk9+Z3pklw/Fe+F1O/HG/ZPH6bY4eP7CnzpRPrPHu+wsWajReEGJpMOW3g+AFNW8SZVVlCkSRiYCxrMFkwRXF5X3CitWwfRZbJGTIr7VubK3WzJTiwDwZ8ZSDW3WAdbh6XqbxBjEQrgbJ0AwH3GdxAEFJGwLoHUYwmS/zUAzv4+585Iu7nGp1g7xxU+L0RDfgl4FtAC7gKhFWSpJ+TJOlFSZJerFXfngMbRvEWLMl48BlCqXuBIKO/UgYkhvHgR9uIH0Y4foSXJGOCMKLZ8wgjQajqBeGQ3C2MBJeOH0ZEcYwbRrh+eE2cSxCkikEYi84dLyIMowQbViS7Bs82OG7AzBTF4hkHjxXF4DiCiDZKSOnCKMKPBue6+fd6o+J6V+PVX0+6ScJKJPDE83phRM8N6DqiA82PouEYQjJOsSDwDAd/hjGVtosf3irb9tuTIBLkxAOC2s0SxTG2H9BxAsIoTo6LcPwQP4pwAzF3e574be8aycKBxHFMqy+w0uNvU8YkSNaSn5Aw+6F4Bj8U/3lhhOtHBNG1x7nnBcn9i0rmzZ/33Gs/ezf5zgvEdW5WBlxbm+/hOyl+GNFPEuMDidjCKfptEXG9eNtrbncbEQzJbG/2NjcbY4N/h4lS9sObJ+YdvKs4ua+3WgZxzFAHecHVuMaD8wzOaXtiX7gtt568E39kOA+S/1bbDi1b6O0ogrYdYHvhcG60Eh6YjhvgBuHQHugmnHZeEBOGojin5YhjvSCi6wZDQ7PWdYe2iu2LPbbvhUTRYK4Ke6XSc4f6zwti+t7V83Owbzt+tIWH5kq913MDbD9K7BNhIzmJfg2jmLbjJ4U5EIRx0vkp9rnWFdw3XhCJY4mHZPcDudG1HSe2WCvh33mrPfC23HoSRTHN/vvH2RzsIWEs9qIw2SOixJ4P4xjfFzZ9zw0IExu91vXwk6hO0/ESW16QUw/W2Xbz10tsJYB+clzL9hMi6hgnEFwvl9ewQAoY2EaD3wz0x2C/Ems5HP7OS/iCo0jckxNs1RMDrgM38YtsL9iyZm8lGbxvoWuvfgahR2PcxFaNE3/FCbb6LlfKZr/t/SRxTMIV9z68udvyrot/jWEexEzajj+0HW7UdxD2RHzd+f9ey/WuG8dx4m9GiX8QvbV9D8SR+O2AQ8ULhW89iEnUe95Qh/a9cOirdhK7rOsGRFf4rwNbJ4hiOttw/r2XEsUQhkKPO6Hwrf1Ne0jPEzZkEMX0nMs+cgyJvhM63g1EsbUXxriJjmwmz2L74XCv6t6kzdVz/aG92HmHnIffLul7IY4fDvf4OI7xIxGniomJooj1jvNtvafr7WFhHNOxAxEbjS/7p7eKXBnTEHuvWHvbxhhi6HohfuL3eGF01bwcNDZEkfCLbiSm03XDxEcRusBP1tXWa8eJrrixZxv4TuF7aCgEYXRDe320zbzYLuZyM/JOnmq7vWiw5gZx8c0SxOBf5z1ujh02+n4SN42J4ig5N7hBKPju4k17SDI+g3k02FcG+0Icx3S28aNvRdk83oM9byCD+XHluPTdkDCKhlzJYg3c2MgPcjji7zErLfstf/N+7QT760AF+Hng/wCm4jj+F9c6fmRkJN65c+eWz4JQTDJTU3iLrtTvGhls/LIMWVPjeo8tus7EQtNVeVuYlBuVOBZV6m9H5ufnuXLs3k2Jk0CApshoys3fZBCJAJquysM/1fdgQsWxaKcG0YH4dt9nDNcd93dbbmb8XD8iJkZXZRw/QlOkbefd9cbM8UNsP8TSlPcU6mCgFb/bVcd7vf5uVGLA8QREwrW69q77+7fQQX4Y03V9NEUedlK9n8UNROIha6rX1M3z8/NMTu9gtWVj6QrjV8Cm3Jb3t8zPzzMyOUPXDSildfSb3IN7rgiqpHX1ba2Z7zZ5J3bIzcp7oTe7ruj2yRja27JVNksUi4KQt7JXRAArxtKUb9u7u1F5N20ZL4wIwxgzec73y753W25ebo/d9eWt9GAci0C6gCjSrrt3eIEI6KV0QWD/bsj8/Dxzcztx/BBFkW5637st3z6JY1hr28QxTORNZEn6tq8/2w+RJQk38f0Klo6hvfWcud46eKdxgVtVthu7IIyxfZEEUCRJxI6u80pu1LZ4N8R+Bz7hd6PcCnuf44dISDe2RpM/r5xFgzV/rT1n4PtkjGv7xzcrolhcwryB+3478m6N3WXdtX387N0WN4hwgxBNlt+SEgWS5Lzjo8pCl7zX8u2Ked4Ka++dSJg0TOiqjB+KOG0ci+TuzcbNBnFzU5OR3yeO5UsvvRTHcXzVgnm/RgOfBf5q8vePAf/2ygMkSfo54OcAduzYwYsvvsgrCw2ePFOhlNJ49nwNTZGZyFv8xAOz7BnN3NCFoyjm7EaXvKUxkb8CizmMeH25RdZQ2XcDWMxdN+C1xSaTeZPd17l+FMWcWGmhyBKHp/I3dJ8Def5inTdXWtyzo0i95/HqYhOAT985eU28aMcP+VdPXeDkqsDePjSV52cf3UnubSisf/vNizx1tso9Owr81x/dd9O/f6/bu//otRXOb3TRFIm/9IHdVylxNwg5vtRiJGOwc2Qrpn216/K/fuHUMCs9V06jqzJ/5bHd1zXKzm10aNkBKV3m66cqZA2Vjx8aZzRr8LsvLlHtunzi0DgHJ3OAqKL8recXOLfeZTxn8oF9I3TdgIVan0f3jrB3TMydi9UeElx1nwDNvsfvvLCIH0b80N3TzJZuHCLhnchbjd/Fao9vnKkgS1DpuEiSREzMyZUODdvjB+6c5J4dRbwg4vBUlt944gIvLzbZWU4xljP50P5RRjIGUwULNwj5u59/A0WSmCqY/I1N822j43BiucWe0Qxz5RvnJthOVls2n3t5GVmS+LFj/3/2/jtK0vu870Q/b6qcqzrn7sk5YoBBJgiAYgQDmEVSlmRR1jof7fV6be/1tX3X9vHunl3fXVvBliWZlMQkJpAgCRJExmByDp1jdeWc3nj/eKtrume6ewIGgdB8z8HBzHR1dXXV+/5+z+95vqGXmO9XM5viZvBusRb6+cUEZ+YKiILAr983sGaWxmr4f54fYzxV5oltHTy5o2vVx/zV0VmOT2dxyhJ///0b7+hnenw6y9k5OyNpb78tWn59IsNEqsKh4QgjbT7ihRoX40U2dfhbdnG/vJzk5Eye7d0Bntjeadu8ySJ+l8Tn/vAIVdXOSPsvXzm46s89cOAA5kf+Nb6aTWb4F5/dxUf39N2x3+su3lrs2buP6q/9axTTwh1wcuSfvn/Nxy75zQ9EPXQEXJTqGn/80iRAy6q20tCZylQYiHpXLVh1w+SNKdt//J7BCOJ7hB1kmBbfOj7LQr7O4ZEoh4ajb/nPvJV1s64ZjKfK9ITca+ZHpkp1/u7XT5IqN/jwri7+4eOb39Tr+8axWeZzNZyKXa+sdlgu1jX+2ytTGKbF1q4AH9jRuepzmabVssZZqllWwzNnFvj2iXnuGYzw1UdG1nyun15IkCzVeXRz+5p1ynS6wh++NIFLkfi779tw27mbYNdGf/rqNKZlsaMnyOPb3j5bobu487j72a3EhYUip2bzbOsOMJ+rcSVRal3nYDOL/+srkxyZyPLk9g42dvj5v58fI1/VGIx5+Zcf3Y5LkUiXG0ykKngUiWxVpa4a/PmRaVKlBh0BJ//7p/cQ9Tk5Pp3lpdE0A1EPH9vdc8v7yIEDB/hf/+wZzs3b9d6XDw+8qfv7Lt46/PO/Ps2fH5kDYN/mGH/8G4dWvf9M0+K/vz7NYrHOF+8dWJENalupNtjZG8Qp3xpx8cRMjhcup6g2dI5N5xCaFuIf3dXNWKpCzO/giW0dVFSDkTYfLkWirhn85Rsz5GsaT27vJOp18NMLCQJuhV/b0UlNM/jz16apNHTcisi+fjs7+56hyHt+2HLtZ1fXDH7/m6c5PZfH45DY1O4nWWoQ8zl5ZHMbMb+TkTYf5YbOxnYfsiTyX16eYDxZpivk5vce2fCW1ZEvj6Y5OpVFEOBz9/S/50l+E6kyr09k0U1b+b2rL8S+/pUmWO/03vf6RIZL8SIHBiPs6LnaqzRNi59fSnJmLkdNs4l5H97VtW6fNJ6v8f97fgynLPI7D4+gmxblusbRqSznF4q0+Zx8+mAfvWEPDd3gPz0/xtn5Inv7Q1SaGZdDMS+/9eDwLf0OumFyeq5A0C2zod1+fWfnCjx3MQGs3zt9M1jtszNMi+cuJihUNR7d0n5TOag/Ob/IhYUikijw5cODBN0KJ2dylOo69wxdn1UGkCzWyVZVNrb7kUSBqXSF2WwVWRIIuh1s6169rp/OVPiz16Y5N1+gP+Lh0c1tDMZ8bGj3rblW/tXRGX5wOo6FxdP7+xiKednZE2Q2V+WFKyk6Ay4e39ZxU9bJN8JUusIfvDiBzynxu49suKW+0a3inb733koki3V+/1tnKDc0REHg8EiMRLHetOq02NMf4oGRNgZjntY9sxYM0+KPXpqgUFVRJPve9jplClWNEzN2DmfIrazYk+/EMDdfVfnJ+UUyFZUHNsTY1Rta8XVBEE6s9n3vyiGYZVknBEGoA3uA85ZlvbHKY/4Q+EOAAwcOWD88vcAfvDhB0C03PTZVqqpBf8SNIMA/fHzTTSlHXpvI8Mak3Sj6wr39K5qlRyazvDGZBeDpA9J12Rdg53i5FJGQx8HPLyaYSFUQBYGv3G8vVqvh9FyeX162czIUSbzpBdiyLF4dT2NZ8Op4hke3tHF6zn6O9Zq8VyW2Vssu8HYEgZZl8cMzccp1jUpD53ceGmktjEazceJ1SCs2wvl8jVxFZUunvxXC/VYiXWqQLNZpD7hWSDGX8MLlFOcXiggCPLmtg7FUhcGol529Qb5/ap7j0zl00yToVuiPeFrWBksNRUUS2d8fxgK+f3qey4slyg2bOTmbrZKtNFAkkapm8NSeHsaSJQRB4Mdn4/hdMr1hDy+NplnI1ZjKVPA7ZbwOiZdH01RVnW8cm+X3HtnAYrHOj87GAVYtLuZytZYV1WS68rYNwZZjaZjrkEW2dNqb6huTGbIVlYV8DYckEPPbQZ/5mspivs43js7yV0fnODAQ5lvHTV4aTVFVDRLFGn1hL+W6znSmgmFBZ8BJrqKSKNZxKyKGabXCR398dpFsReX8fJHffWTkTV1bU+lqywJgNlt9Tw/B3mnMZquMJcstK0oLq3Wf1jWDy4slukIu2v2rH4Cm0hV+fC6OadlZYmsNwbLlBtOZKqW6xh/8cpwP7Oxk/0Dktl5zpaFzIV6kJ+SmO+TmpStpCjWNQk1jb3+YqqrzWjNj5pWxNCNtPp45E6dU17m0WOJ3Hx5BEAQuLBQBuBgv0RFw8rMLSdsDWdOZyVXRdDsf5N8/e5Gn9vSwqfP6QjVbuyqb/9rrM3eHYL9CqGkGalO6nyg2+MMXx/E5FT6xr6dVq4wly1yMF5lMVzBMi6NTIr/z0DBuRSLsUchVNbpC9r3xnZPzpEsNwh6Fr9w/1Po5s9kqhZpGTTM4MmHXLz6nvOIQ+6uMiqqzkLftYkaT5bdlCLaEeKGGJAjXhdcvx4/PxZlKV3E7JH7zgaFVC/7JdIWLizYp6ecXk2sOwZb2WEVafyDVsoRYp66zTHv4Vqzr9EXcaz7u9ck0Xz8yiyQI/J1HN7C5c/X69P95fpxEqc6VxSKfu6eP4CqN7WSpwcW4ve4dm86uWad8+8Qsz55bRBJhZ2+Qp/b0rP2L3AC27Yb9RryVNjF3cRdvB5bOHrIocmAgzIujKSp1m3DpVETCHgejyVJrCHZ+ochfvTFLRdVJFOv8y482MxIAryJxabHAX59YYDJtn32ms1UkARLFOpOZCli2PduJGXvQ9pdHZ1HEpVwQ/bbY3lPpMs+eWyTsVfjcPXdrlncrvnNiofXnX15JX/f1hm5wbr5APF/jmeb5VAB+/wN2IH2m3OB7p+apqQYnZnJ8bE8PJ2dy+F0Kh0eiazZCcxWVsVSZ2WyFEzM5ag2duqZTaSqD/vT1aXxOiZ09If7rK1OEPQ4GYyU+vreXxUKdhUINzbAYS5aZaeZLpUoNfnk5yS8uJUkUGwD0ht28Mp5GkewsrvtG3r7a4d2AeL7Gq+MZ6ppOUZIo1HRqqm5nS87k2NTpJ19VEQWBJ7Z38hv3D/LGRIZ8TSdTuX0bYcuybtgEX7KGtFaxKnuvIFVqMJWpsKnDz8tjaTJllTcms+ztD/HqWPq6Idg7Cd0wW+fa18YzK84P8/ka5+YLJIsqpbrGxg6/HS3Q/D5REBBFgUy5wZn5Ah1+J3/44gQXF4sEXQq/uJggUWoQL9SZSJWpNHR29QZb9oA/OL3AM2cXqao6FrZzQbqsUtcM8lV1BYlC1U0uLRZp8zvpCtp1bbJYR5ZEJlJlfnk5iapbuB0Snzko43FIfO/UPKPJEls6A2+rre9sttrqAxyfzvKBNfoXy7EU0WNaFqOJEmfnC0xnqgTdCoZp8eiW9hWPL1Q1/vKonR8901Ml4JL5+cUkhZpGvqqxtSuAQxZaw41yQ+fIRIYL8SKFmkauYq+Vumnyi0spesJlzsy52NoVYFOHH1kSkEWhdT8vWUKqhsnzlxJMxnzoptXKlc2UVfb0h9bs6YDdR5/NVdnS6b+uvli+dvzobJyJVBmAU7M5Nrb7SRTr7OgJ3pZTlGVZzOdrBN3K26JiW+3nX0mUkUShJX54q6EbJt88PstkqowoCi2iyvmFAulyg2xZJVVsoIgiZ+cLfOagTHfI3VqT53M1inX7Olrqx9Y1g2PTOTwOib8+Oc8X7x3guYsJZrJVTs/lGYx6W3vyTLa6rkjp3HyByXSFg4OR64RJYN/vZ+cLjCZKnJjJMZ4s8/MLCQ4NR/nbDw3fkGD1rhyCAViW9fcFQdgN/P0bPda0LP7gxXESxTrTGZOwR0E3jGbGC1xeLN20XHIpP8m8JkcCVkouV9vAl4LyZFHgc4f6WzYPksi6svHlz3UrpBpBEBiKeZlI2aH0WzoDdAZcOGQRj2Ptj9bjkHlqbw+7+oJYFgxGva0BXbJY5zsn55FFgaf3960Ir17CRKpMotigP+LBIQpUGgbtAXEFM+CNySyvT9gb5qf2S/RFPFyKF/m/nx/D45B4cnsn79vacd1z30nkq/aCqxomXUHXinDPhm5Q10xyVY3xVJk2n5OXxzOU6zrjqTLDbV4kUSTmd5AtqzhkkXJD50v77SDbo1NZXryc4kK8SG/EzSOb25lMVVB1k0SxwUib3Aq6zFU1vA6ZTr+T+XyNmWyV3T1BvnNinr/1wBBeh4zfpbB/IMxnDvbRE/JwajbPM2ezdAZcfP/0PDuXTbVrq+QCbWj3NcN1zXesuXlyNs+LV+xhriyKbGj3MdLm4/JiicuLRUzT4vCGNj6wvYPjU1mKdY2aZhfcpmWxtdOPIonIooksiIiiQDxf53KiRMClkC2rbO70kS43sIAjExkOb4gBNjswWwG3Q7ot+a1lWRydylFp6GzrCjCZriCLwlvCCPqbCMuyOD1XwLIsdveGEEUBw7T43ql5NMPC55S4f0OMqM/RGjr+9EKC8WQZhyzymw8MrVrUzOaqtv9801JuLWzrCZJuFuAm8PylJN1BN26HRNCtrLqeW5bFG5NZqprBfcPR1s//yflFpjNVFEngtx4cJl/XuBgvMhj1YJoWLlmiPeAkWWy0mrxuh0SpruNRJARBYCxZYjpToVDTeXRLGz84vcDZebtw7wm6ifmcZCsNRFHglbEM05kq/+HpPevaEZj6e8NH+m8KZFGgsezvC/k6QbfBbLbaIjk8ey6OZlhcTpTY3OFv2dTIksjnDw1QqGnEfA5SpQazmSouZWW4b6rU4Nsn5rAsVrAMb8bW4lcFAZfC7r4gU+kq9wzd3mAb7MPfT88v4nFIN3UYfXUszf/208uIosC/+PC2FXv0csxmqxyZzNDTPDisdjaLeR3IooBhQtS39jp2ai7PCy3ClLAmK++DO7u4GC/SH/GsybIzLJtEoogi6xmKXFmskCrZV+pUprLmEKyh27lxNAkJqyHsVYh4HeSqKsOxtQ8+F+Ilyg0NARhfLAK3PwSLeB18dHc36bLKrt7ra6PBf/LMTT3P1L/90G2/hru4izuBbEXle6fmmcvW8LlkvE6J/oiHn11IUGnoBFwyQZdMf8TXag56nTIBt0JF1Ql5HPRF3PzLj27n/EKRzZ1+/vilSU7M5JjJVMlUVAIumXxNYyZTpaHZGUiGaXFuPs9CvoYsCMxkKxzeEL1ta+k3JjIkS3VyVZXZbHVdEsFdvHOwloXULCdUXFgocHa+QKrUaOWFLuHaz9Ky7IZa2ONgLlsj3KzTu4IuukNu5vM1ekJuXIrEufkCdc3g1EyeUkMnWazjdYqMJesEXDJ9EQ9+p0y+quFSJMJehWozn7CmmqRKDb5zYo4Xr6QJe+wz9XDMy6V4CbA4PpVjOlPF65DoCrn58K4uXh3PYFn2GfJvGubzNdr8Dmazdp6RqtnZjbIoUG2SELMVFUUSKNV1SjWNqmYS9TqI+hwYloV4i2Zkk6ky//WVKVyKyD94/6YVfZnlODwSw9dcu5YrC98rME2Lbx2fo64ZXFos0RfxkCmrDMQ8yKJw0+5VbxdkSWQw5mEqXWW4baXbjlMWcSoiHQEnBwcjbOnyU1MNvvb6NAuFGhGvk88e7OPZ84skiw2OTmVIFhpkqqrdGwu6eHU8w+m5HKW6QZvfSdjjoD9qn5/9Lpsc3tANesIe9vaFuBgv4nHIrT5tQzeYy9W4sFBkLFluKaXihRo/PrtITTUwLJNsRaOq6mzpDCAINtHQ45DoDLgZavOytevt6/nE/E68TomqaqwqqlgNj25pJ9K8/545s0ipoTGZrrCnL7TqGraUkQdwbDKLLIlcjBfxOeVlvcSr9/ALl1OcnMlxdr7Art4gQzEfD25qJ+xRODGdxzAtXriSIl6o88KVJKYFUZ+TzxzowyGLfHBXN4W6Tr6ispTOdGGhQEO3MwQDLoVCVaPN51y176LqJt8+MYeqm0ymKnz64FWSzAtXUhyfzCJKAo9ubmcg6sHrkBFFaPc7+c6JeUzLIllq8MGdNz7DXYtXxjIcncriVES+fN/gmmvTW4U3prK8eCWFLIp8eFenfa1e03+6FqpuMpur0hlw3fD1npsvUNMM9vaFEAWB756aZyZbJVtR2dUbIl1u8MX7Boh6nba6+8g0giBQVTWKdQ2PQ0YQbJLKXx2bpVDVUA0Dn1OhWNM4vCGGKIAoCFRVg4BLac1Ulq5Nh2z3hqczVbzO9WM8qqrOcxcTrbigLxwauO4xL1xO8uJoinozY7fRjC0qNXv5NyK7vyuHYIIgKMCPgd3ATwRB+KeWZR1Z73sUScQhiThlie3dQU7O5pFFi6jPye6+0E3L7e7fEMMpS4Q812+8h4ajeJ0yPpdMT/Nr2YqKW5FwO6SWmkE3LQo1jce2dtAX8dDud657ce7uDSKLAvI6TY218NHd3dQ0ozX0ullbib6IZ1UW7liyTG1JUZSpsMcTWvH1QlXj+6cXsCyYy1XZ1RtEMy1CboVTs3n29K18vGlZnJ3Pky43+G+vTnFkMoMiigQ9jrd8CKabFoos0Bv2rHhfqqrO116fodzQyVdVPA4JSRToC7u5GC/hc8rUdQMBiz19IWqq7R3udym4mlNytyKRr2lUVYNL8RLVhkHE6yDscXDfSJQ2vwunJPDPvneOZLHBxUX7wLmlM4CAgHvZkPLwSJSOgJOgR2mxIz5zoI9MRW2xUnb2BFF1E0GAHU3LzHPzBV4aTTMU8/Dk9k6ePvDuY1QeGIwAFufmC1hgS93jBTIVO7y9Zhg4FRlZEnhwY4x9A2EKVc0OhjVNFElE1Q3ydY1tXQEe2NCGU5YwLfjuqXleGU/z+LYOPrK7m6lMhZ6Q+7bsGSbSFV4Zs5mOoijw+UP9d/aNeA9gNlvl2HSW4ZiP3dfc5zfC+YUiz19KAnaDdFdvCFEAlyKhGTpBt+O6BrbeDFteCntdDe1+F4eGoqi6uaadF8D9I9GWmvNyoky+qvLPvneOgYiH+zfEeGyVtWg8VeHVJvNN1UzubT7HtRgIu8mXVeZyNZ6/nOSxrR189mA/5breIhF8Ym8v09kKfc1C90K8RGfQjUNWuRQvcX6hYCtzTYvfe98I23r8jKcqHJvKYZgWbkVe8z1Ygs9911LoVwsr16mZbIVHNrfTE75ad0S8ThJF2+Zve3eAvoinpXJ1yCJtfieFmsZfvjGDaVnIksjH9nS3vn95OH13yMWDG2OIgvCOKIXfSrxvy5uvJX54ep7vnlzAwq4nV1sTluOFK0kWi3VA4LXxzJpDsEuLJXIVFVU3mz7p1x9mfG6F929tJ1Vu8L5rmJy3g8l0hZMzeUp1fc0GkkO2HQOCbrt+WwsHB8O8MpbCIYurDpGW4HcpSMUGboe0JunLKUt88d4BNGP192EJO3qCnJ0rIAqweR3F281isVgnVWow0uZ9S7NE7+Iu3goki3VeHc9wdr5ATdWZylQ5MBDG45D5tR2dyILAuYUCgiAwEPMwmigznanypfsGGIp5+Xef3Mm5hQIb23yEPQ5+cSnJaLJMxOvAKYuUajoBpduQAgABAABJREFUt8JIm5dHN7fxtSOz6IatujEtC6csMpmusKHdT3vAxaZOPx/c0XXblkbZqka1oSNJIpph3vgb7uIdQdDroFq0+xpup113mJbFP//eeWYyFVyKxGDMy/7+MP/4iU1ohsk9Q7aayrIs5nI1NnX6SJXqRLxOVMPuLSiSQMjj4JvHZkmXVbpDLg4MRvjZBduSLFdVCXsctAVcGJaFIgn4XDJ7+8K8b0s75YZthdYX8TCdqTCRts9+40nbiSXoVhBFgecuJOgKuvmdh4db5/7NnX5CboXP3dNPe8BFT9iDqpsMrRIz8F7H1q4Aj23p4FvH7c/BJkspPLm9m2zVVgFohh0H4XZKCKLAUMxDqtTAqUj89HyCD+26tWbzLy6nuJIo2X++lOAju1cnuDhksdk/eG9DN02m0hUOj0TZ1xfG4xDRTFvt9G7DU3t6VvQbwSbF/+B0HEGAT+zvZTDqZbFQ5y/emGE8VcayLGRRZLFYx+OQmMtVSZca+FwSbqebj+zuYjxVIVmqU6rrgEDQpaxoXu/tC7OjN4gkCvzjxzcjSwJtfidRr5P2gIt0ucGz5+KkSirxQp2uoKt1ns6W7fVLlgQ0zVZ/xnxOHtwYoyvoxilLnJzJ43cpPL71ztj03Sx8TpkvHx5E1c2bVh65FIlDw1EsyyLsVTAti8e2tnN4JMZI2/VrWJvfycOb2lgs1qioBnPZGm1+J+lSg5DHwYZ27wrVkcdh97NDbgWnJPL49o6Ws1Nv2MOlxSKjiRITqTIuRaI75CZdapCrqnQEXATdCl992LZDv7xYYiJV4mLcdsDa0hlgOlPhh2fiHByM8MDG2Pq/7DUfxbn5Aq9PZpjP17i0WOIfPLaRv/d+OxblpdEMp2bzbO7w3XZGWKapemtodib72zkEG0+V+esT9lBqR3eAyXSV802VoCQIPLSprfXY8wsFriRK7O0Lc2o2z2S6QsCt8BuHB1v9T9v2M49LsWcik+lKa3/VDJOtnQGmM1XA/lw/tqebjR3+VizSvoEQs/kqZ2fzuGSRBze2sa0rQFfQzenZPDXVoK4b5KsaPqeC1hy06s2ew6GhCA3d5CO7uzk7V2AiXSbkVvjYnm4iPicb2n3NucfasxlHs+9erGlEvas7cp2PF7mSKCMKAv/TBzeTKau8Op6hI+BiaB2i5RLelUMwy7I0YO2AjGsgCgJ/59ERTs3k2dsX4odnbKs5v1Mm5Fb4wqF+DMvijYksLkW6blCzHC5FWvPGlESh1fwt1TX+6KVJLi8W2dHM1Lqn+aH7nDLDMS+CINyUKudmH7fW966n+rpVbOr0c3GxhCIJK9geqm7LW0VxiRFm2ZvG9k4qqj0AKta01uPvGYrgcUiMJctcXizz4pU0qaJtWeRUJMLut/7Si/mcfHhXF6mSyt7+UOvfsxWVckMHQDMsuoJuwh6FJ7Z1sr07SLGu8UcvTHB8JocoCHysufErksBzFxN0BV28b0s7X7x3gGfOxDm/UKDN72R7d5Cn9l4t6Ip1DYck2jlYls3wzpQ1Pr63h5jfQUfAhSzaMvFr7Q0lSeRz9/Qzla6wscP28b12SHByNk9dM7gYL3F4Q+y2Mt2uRVXVUXXztjz69/aFcEhia9Lf+vf+CA9tauNCvIimmyRLDeqagShAxOfC45A5OBgh7HPyic12A/BHZxZ4fTKDZsBIu4/7RqLcvyGGIAh0hVz89PwiharKsakc5brOlw8rrY36duB3yoiCfeAPuN6Vy+KbRkM3OD6VI+BWbmu9+eXlJOmyylS6yqYO/y2pSeRl4dOyaG96giDw6YN9zOdqqx5An9jeyfHpLH1hz5pr3OZOP5s6fMzlavjXKVhkSWRPX4g9fSFeGUvz6niauVzNZtFkq6t+j99lXxPpcoPnLiU4PpPj0wd6eXRLG989ucBA1INLkXh8eyen5goMxrycmSvw6OZ2JFFYoaJ1O6QV1+fOniAL+RphS8GCFnNFEOAXl1IcGo7ysT29JIp1jkxm2NUTXLUgE4GlFlJf+C6b+lcJimxzaJeCfXtCHr503+CKx3xyfw/JYoPOoGtNIk9DN9BNC69TZmO7b8XQoyPgZCjmIVvRuGcogs95c3uEZphYFm86I2Oy6T2/uy+0ph30uwWSIGJhq/GvdQFYDXv7w7w6nkEUBXauMxwKexyEPA48DglFWv14FvU6ObwhxkK+3moiroY9vSEUUUSR1ydM/fT8IhfjRcaSJR7cGFt98OaU2dUb5Nx8cV0FXbmh45BFZEmgVNNaFjPXwjAtnIqEgIBmmqy1GkmigCSuv3d89aFhYl4HXqfCh9dokoHdaC3WdXv/XmPwtliot2xAAT72JqwV7+Iu3gm8cCXFXK7GZKrChg4fu3qDfGp/L/3N/Nv3bW2nPejC55RbdqOqblLTDPwuhZF2P29M5fjJhSSXE2XGUmVM0+LbJ+aYyVTpDLpoa+b/DMd87O4Nka+qFGs6HqetuAE4MBhmT1+INr/zTWUBtfmdKLKIS5HwON99zd67sNEddBNvDsFiTQWXYVqkSnVUw2yRRz+6p/u63PML8WKr6fbY1g7cisSWrgCqbuJWJAJumWLdPocXahqyKLBYrKMbNqEt7HEw3ObD45BaGXafPnD1mge7KVqsaZRqGs/M5PG7ZEbafDZJN2+z40/O5Ng/YNvKPbW3h6pqsKHd11Ir96xBEqmqOr+8nCLbzBhZLYv7Vx1Rn5Pf/8AWfnYxYQ/BAN2wyNc02nwuntrTQ7aikqtpPDAS5Y2pHL0hN/OeGgICVVVvPVem3MDrlG9IMtnc4eP5SwIuRaJzjVriVxl1zcCybuy2IIoCn9rfy18dncEwLH5weoEv3TeIIku8Wyvl1fqN8/maTdC0oFzXKTds9cZoomS7cpkWqm5QrGkcHIxwbCrH4Q0xaqrB+7d2cDlRYipjO7oEXAoht8K9w1FEwY47GIx5uZwotZrgY6kSu3vDPLjRHgq8OpbmyGSW8wsFNnf46Qq6ODQUoSPoIux1sG8gTKJYx+OUuXc4Srmh0x10tYZdEa+D337o1nLF7iScsrRqVuJ0psJ0psr27gBHp7LkqhqPbW1vEeUFQeDTB/pIlRp0BV1rDhOyFZXXJjJohslDG9voCblJFmuohkW2ol4X9/HQpjZ6wm7C9zmuyyjb0O4jWarTHXJTqGkcGopwei5PT8hD27LnqWsGDklkc6efoFvhcqKMZYHXKaE1if2FZf3iJeiGSV03+NT+XmazVbZcQ4Db2x/iJ+cX8TllijVbDbylK8BPzy9SbmgMRj30Rz3XWULeLB7a2IYiibT7nW+7On0uZw8nTctiW3eQXb1BLsbtTC7/sp6kbpg8dyGJaVlkymqrL1Bp6FRUvamMEzg2nWvZl7oVqfU4y7I4OZNnKl1p9qTt/W0pFy5TbnB+ochQzMv/96md/MGLEySKdeZyNR5p9mdH2rw8e85EFODp/T1IosjepnWrIol8YEcno8kSe/pCdARc/OT8IqpuoeoaFdXAoxk3RUaUJZHP39NPutxYc5/e0OZlIV/DrUh0BNzs6g3z6C2QYt8z3d73b+3k/Vs7ee7CIguFOjXVoN3v5CO7u2kPuHh1PL0iD+NW/DZN0+L5y0mKdY1HN7cT8jg4O19gPFkmX9WYy9fIVTT6o5511Qi/Coj5nPzmA0Mr/q3c0Pn6kWmqzfe0XLcPRo9sasOpiOimRVXVVzRSlgaGumkykS4TL9QRRNjVG2JLZ4DHtr0979OGdj8brlkPu4NudvUGyZRVnt7fS1036Q65EEWBkEfhOyfmOb9g+5C2+52EPAqf39nPd07MMZ2pkio12NETbP13dq5AvFC7rpGUq6gE3ApBl0JXyMnPLyboCnrY3Olnb1+Ybx6fZSFf597h6Kpe5DGfc908qm1dAV4qpxiIevDdgUFooarxtTemaWgmj2/ruOVBycnZHJcWS9f5WEuiwP/wvo2ousHvf+sMyablhVOR2N4VwAJqqkFw2RBvKltFN2zrhPZhO7h4qWixPYxF/ujFCdwOCZ9Tbg1WbhftARefO9RHXTVbEvz3Gl4dz3BqJg9A0K3cshrEZlyphD3KLTfHt3QGkAQBC1ZYTAZcCoGu1Uv+VKnB6dkClxdLfMbnXLWJXqprJIp27t5rE1lGljWG5/M1XrySoiPg5NHN7a3rZ/9AGFU3afPZjZhDazSdOwIuDg1H+O+vTTOaLOFzyViWxYMb28hXNfLVAiNtPgaiXj61v5fj0zm2dgXWbA5dWChyfqHArt4Qmzv9fPXhEUzT4uhUFr9LptTM9Tg3XyBeqPPVh4fpCLj46DpN4OUIrmOjdhfvPpimhSjYls2iAI9tvb5wd8rSdfepqpv84lIC1bB4bIt9KHpiewfpssqBgZVr71iyzGTaHvKemy9y703kZaXLDb5xbBbLgk/s61lz6HEjVBo63z+10LKn+NT+3tt6nrcLn9zfgyyLiIJ9aPjakWnuG45e19xbwvu2dOBqHi7WG1z9vz6whRdHU+zsCa5QgC+HJAo3NZy50cBtCVXVtqhyKQbWGgrSmUyFf/mDC9Q1g+lMhX/3qd2rPm4sWSbdZNPO5WurZhMCbOzwkatq9IZdOFY51N8KXA6ZL14zEF4Nz11Mcm6+QE/IvcI2ZTn8Lpt9nK9qbOp8d1kM3cVd3Aw6Ai7mcjX2DYS4ZyjCxnZ/y1YOrpJ8AAIumdNzeTwOuaUmMEyLRJOEOJuzLdkvxUu2Ja9u0OZ3UVUNXp/M2mSf/X1ohoHbIXNoMMyPzyeI+Zz86OzidefD20FDN1tZP+/VvJ/3ApafP5fqb1kSuX8kxuXFEtu6A/zOwyOrniWKNZ0TMzks7OHpknX9cnxoZxeXFkts7w7Q0E2csogkCHgc0goV0D9+4mpGZrJU56UraQQRplIVBEEgWarT7nfZkQX3DeKQRX50Ns6VhP0ak6U63zw2h2FafHxvz5p2vUvIVlT+5OVJ3pjKsqHdhygIb9kQbDZb5aXRND1hNw8vY/u/XSjUNKJeB7Oyrco0sYeLfpft0PLbDw63GsLbe0IAjCVLzOZq7G2uOa+NZ3h9IoPfJfPFewfWbXA+sLGNzqAb3TTZ/C6KGzg6leVKosSBgcials83QrxQ49vHbfvxT+7vvaGNY5vfyebOAOfmCwgItxSH8m7B7r4QyWIDpyKyqcPPyZkcqVKDoFshX9NwyCKaYfHLyyk+uqeb/oiHqmrwxLYIh4ajjKcrdAdddAdthbFDEnnuQoLvnJxnQ5uP33l4hA3tPs7OFyhUNX52PsnJmQKfu6cPj0Pm+ctJxlMVol4HAzEv9wxGVtyrc7ka09kqsiiwtz+0ZjP93YS6ZvC9UwstG+KGbu+Rx6dy/Noymz+Xcv358Fpkyo0Wqa9Q03h0SztjiRK6aSttrlVbSqvEgLw+kWE8VebQUJR2v+1aFfY6kESBiNdJTTOYz9foi3g4Pp3lxStp2gO2RWJn0MXnD/W3emthj4N0WeXQ8PXOP39xdJZ0qcE9QxHuX2W/uHcoysd2d3NkMsOT2zsZjHl5aTTF0aksk+kK+wfCfGBH1227PYS9jtuyUbwT2NMXIl1qsKUzwOPbOnDI4qo9SUkUiDYjEDoCLg4ORjg1m6eh6/zxS5Ot9325G4csivRFPHx8bw+TmQonp3PECwaJYp2uoJt87Wq+44/OxkmXVc7M5fnqwyN0BV1cjBepaQa5SgOfU2Y2V8Mhi83/pOuuoc2d/hVr6LauAC+PpTFMi28dn8XvUm64TyzB7Vj/Gn/f1g78bgdRry0sqTR0fnJ+EUGAJ7d33lAk9J4Zgi01QytNf+ioz0HIbcvoGvrKqaPzFhu4k5kKZ+YKABx15nh8Wwd9YQ/9EQ8WFvcNR9YNFv9VR7p09X09M1doeXjqloVLENjZE+T8QpF4vsbFRVvmHvU6KNQ07hmMMN9Ro1TXcSsSkiTgcYiU69ezAO4UinWNZLHBYNSzKjtCFIUVVke6YfKLS0lqmsHh4RjZSoP5fA2v05b6LrHIBqJeXhvP2Dkay553Z2+Qnb1BZjJVLi2W2NlUbcxma2zq8BPxOGjoJvFCjalMhUeFNiqqzkLePpSOpcrXDcF0w+SZs3FSpQZPbOtcdTCzfyDMvv7QHZNvpysNOwMAiBfqtzQE0w2TF6+kiRdqnJzJ888+tJVMRSXicbQO61JTRlio2XaHsmirbLZ2BQh7nczla+xrvteDUS/VhoHbEWCk3d9iGSxhpM3Hv3lqB5cSJdyKdEcGV+sFdb4XsGTlKQi3vgaCvUlfjhdRJMFmcy5juo0ly5ycyWFaFvsHwquqFJarHfNVlSOTdubdWtaKk+kyhmlRaRgsFuqrDsE8DrmVvzUYXXlIPTKRYbFQZ7FQZ0d3sHWQcynSCqaQZpj2QGKVE0iloTMQ8zCetn3DHbLYuvcF4apS5sGNbTzQVCquhZ9fTKCbFqlyo1UgiKLAoeEoBwYj/PWJeU7N2tax3SF367nm8zVgbcbqEurqXVuhXyXYIbQidd2kK+BqsazWwmy2iiwJpEsqF+P2PhvzOji8Icb27tXX6uUMw5u952ez1dY+MJWu3vYQTGpaPKu6dVvrzVuNbEXlh2cWUCSRhzfGOLtQpCfkZlt3gD96cQKAV8Yzaw7B0uU63zg2i0MS2NoVWDOTMOBW+PCu7lW/9lbh4U3tBFwKPWH3mgeNZKlBo+nXvlSLrIbt3QHOzheQbpBT0RV0s6XLILpONqNhWjxzNk6yWOexrR1rWlDVNYPXxjM4ZdFmBa/RHbq8WGQ+V6PSsBXsq5EzinWdjoCLsMfxtoae38Vd3C4uLRapayY7e4KtAZYo2Fl/y9ejxUKdU7M5Rtp8rfoqXqjjbR78z84XODwSQxIFHttis+79LgnDtMg17fsrqsHO3iANVedCvES+YnAxXsTvVpBFkXRVoyfsJl/VcMoilxaLvHQlTV/Ew5Pbb88+KuiWCbplFFla1w7nLt5ZlJcpfZb2CgHoCjqZyVZ5bGv7mg0qhywy3ObFslhzDxqMeVsN69lslXDTgcSl2NdvpaHz80tJnLLI+7a022S38QzTmQoz2Spg0R/xcmDAJkpubPe19oAP7uzi13Z0IggCp2fzrUbwbK56w8bxQr7GhXiRTKVBqKQw+BYSI18bz5Ao1kkU6+zsCa6bbXynYVkW//7ZSywWariaWfJRn4KAQMznxK1IzOaqRH1O29auea/a5OKr57l4oWYr8up2dsyNmpurkdCPT2c5Pp1jW1fwxjZpdxiaYfLyqB2H8NJo6raHYAv5WkvpMp+v3VSW2SOb2+gIOIn6nLflwPNOI+BS+OT+XrIVlb88OkO5rmNaFoZl0Rl0k6uolJoqlRevpHhwY4yoz9nqIz69v5eZbBWnLFJVDbJVlWJdI1fVaPc7EUW7tvzdh0f48blFLi+WKNY0UqUGfpeJadrX8WKhTtijXDesXizUsSzb9SlVaqzb51m6Brd3B68bwjR0Y1XF1lsBUbB7jIZpEPU6Kdbt92+1PlddM5jLVekJeVZVHw63+WznmUKNfFXj0mKRp/b1srO3zGDUu6rDSKWh84tLSSzLPue8cCXFpg4/umHx5cODfOk+J5IocGGhyFSm2uopnZsv8F9fnmzV68W6ndXe7ncxnipzfDrLzp7QqnV6RTVIN7OHpzNV7t9w/fsyna1SrOts7Qria5Lm4/k6HofM9u4Anz3Yv4IcdDN4s5+rbphUVYNnzsZRdZMP7+oiuo54YS0E3fZ9tBxL1+rx6RyZcoN7R6IEXArbugKc0HJs6fTTGXTxgWAnf3V0BoBksUGxrrOvP4zbIa3ojw7GvHQEXIwny6TLDcRm7TaTqXLYdrDEqVzN7tJ0k6lMhZqm43FIrWiFlfOUG793BwYj7B8I891T80ylq5Tq+op9otwkzOqmyYd3da+6B1ZVnYV8jd6wZ8XP9zjkFeSRC/Fiy+bxYrz4q5kJdquwgL94Y4aJVIWQW+HBjTEmUxXa/E7mcjVmszZjxd+Uat+qAiLmdeJURBqaSVfQvij7Ih7+3mMbEYS1C7z3CvoiHrZ2BSjUVO4djnJp0ZZKLoUiP3tukZlslWSpTsTroKGZFGoa3SE3qmFy/4YYs7kaDd0OWs1XNS4slNjTF77BT751qLrJXxyZoVDT2NDu4xP7bsw+H02WW96rIY+DzpCbgaiXckPnvuFoiw3X7reVWbIocGwqyxPbr6rZCjWNP31tigvxIh1+J//TB7dS03RMC+4diSKJAqdmbH/Wx7a2o8gSe/pDTKUrHFrFimixWGciVQFshdVaQ5476V88GPWysydIqaFxcPDWPhtZEvG7ZF6fqNLmd/JHL00gizZT4Ev3DeB3Kai6yUS62vJqNkwLr1PBoUh0Bl3cMxix/d1TFQ4MhHlgYwyf46rNUa6i4nPJrU1bksQ1m793cT0ODUWIeB34XPJtSb0vxosYFiRLKpPpSks+vVio8/1T87wxmaUj6Gree+sfIl64kmIiVeHCQpHesHvVomFXb4iFvO0jPhi7/vqvNC1NP3uwn4qqX2cHOhD1MJ2pEnQrBNawYpvOVPj+qQVcisRn7um77jn29oebitE+PA6Jbd2B1kHV65RWDAhudC92hdzMZqt0rzJUkESBXFVla6ef0WSZkXa7kB9LlvjB6TgAH9ndfd3hURJhKbv8bi/pVwtmkwigSAKWAM9fTrJ/ILyqre2lxSI/PrsIwIMbY8iigGlBZ3D9+7g/6uGT+3pp6MZNq983ddjXoGFarXv8duBSJD57sI/FYv2WlPdvFy4sFMmUVXJVlWfPxTEte+DT5nO2BusD69SK//WlSY5MZBEE+Ms3pvk7j258G1/9+nh0Szv7B8N4HfKa69K+fps1OZ4q89WH17aDifmduB0SLlla13J5R08ISbRz6hxrLEapUoPxZBmAU7O5NYdgJ6ZzHJnMIAoCEZ9jTatjVTfJVhs4FHFNdn/Y4yDqc1KsafS/x7Lw7uK9h8l0pbXWq7pJzOdgLmcTYa4kyiuGYD+9sEimrHJ5scxXox6cskRXyIVDFjFMi97Q1et9iazX0A1U3c5ZcsoiG9t93L8hxn9/fYbjM3kUyXb3aOgmQbetjB1P2VnRH9jewYnpPOWGzsV4kfuGoytsn28Wn9jby2KhzkDEy8ZbzMG+i7cPhepVhnipSYRVdZM/eXUaVTf5tz++xIMb2zg6lUMU4OBgpHVe29zpZ1dPqGnvdOM6oi/i4VP7e6lrV2uVU7P51n7RE3KzoydId8jNa+MZ0mWV4ZiHrd0BntzWuSpRYmnv29zpZypTQTcsdt4EuVMUBNwOieGYj/dva19VxXan0B/1MJ+vEfE6VthevR1YKNS5GC9QrOtUVZ2hmO1s8Xvv28CFhSKCALIo8E++fYagW+FvPTC06mCnPWCTWH1O+bbJeEenctRUg2PTWQ6PrE18eSsgiwI9ITfz+RoD0dtX/G3tCjCTrWJZtvrhZqBIIrvWyJP9VUGloXNyJkem6Rjw4MYYQzEvL15JIwrQH3Xzo7MJ8lWN1yayK9TEUZ8TQRD4s9emsCwIuRU2dvgpVDW+cO9Aq8kuCLaSK122s6w6Ay6OTdvEW1U3yFY0/vilSaJeB/uWNb739IfIVBo4Zek6hdO1WLoGj05luW8Z+eoHpxcYS5bZ0xe6bau9W4FDFvnMwT7GkiU2dfjxOGQ0w1w1EuHbJ+ZIFhvE/E5+/d6B674uiQLv39bB147YjjYvjib5/D0DHFzHAv30bJ6xZJlUqW5nTYsiyVKjtQ4uDSmu7Sn96GycqM/JdKbCxg4f4WZtkCjW+f6pBcAejD26CuEz6FY4OBhhOmvn462GiNfR6sUv9VEe2BjjlbE0vWHPLQ/Avn96gfFkmT39oVVf042wWKi33n+HbFuFXogXW1addwKLhTovXkkBdt7WE9s6eHE0hWXZfbQl8tPBwQgvXknRE/YQ9igIgrBqf9TtkPjy4UEausnJmRyz2doKEcZHdnUznirTF/bwyyu2HbCmWwxEvUSafbqhmJdP7OtBM6ybPtsLgsDhkRiGmaYz4FoxjB5LlltOBZfixVX3228emyNbUfE6JTa2+xlp813XFy/VbVWzLAoIAjdFQnjbh2CCIISBPsuyztyxJ7Xsm2w8VaZUtw+6I21+FEkg6Fboavq/Xpu7dLMIehR+4/AQdc1YcZOtNnWfzVa5EC+yrSvwngmfl0Rhhc3jtaqlpR6Lr5mr5FREwqL9Ptl+sCUWCzXaA1ebI4osUFnGMrtT0E2TVKnB+YUCo4kyBwcjN/wc2vxOFElANy26gi48Dom6ahDzOfnswb5Wc8XnlHHIAucXinbDetlnLAi2naBpWmiGyc8vJkgUG8iiYEtDO/wcGooS8iitIc6jm9thsz2Fv7BQZEunv7XptvmdxHwOshXtpllJiWKdC/Eimzr89ITcqLrJ6xMZ5Kba5EYWEEub5e3iU/t7KdQ0BGDJ4UTVTeqaid9l21j4m0MsSbQIeRzE/A4e3dzOZLrC5cUiZ+YK6KbFXK7Kry+zQ3ppNMWxqRxRn4PP39N/lz16GxCb1+LtYqTNx/mFIk5ZpDeyfPgDNc0gU1GpacaqMvZrsTSUcirimiSCmM/JF1cp6sBm3H37+BwWtmVbb3g1pWSETR3+lmXZtTBNi2fPLTKVqdAddLOQrxHoXNnQiXgdq9psrfc+jqfKjCXL7O4NrRhSfHyv7a+/FtMz4lV4ZTyNSxY5MZ1nKOprBgXbWMoxXI7l/e2g81ePRfg3GZIoYIigqxbZcoO/ODJNsljnMwf7r3tsedl14FIkfuOBIQzTuqmcrVtVyXqdMp8+sLq13K0i6nPeFivu7cBIu5fTc3lqqk7IrbBYbFBXDYIehc8e7Kfc0G/4/mqG3fB5t7nYvD6e5plzi+zpDfLJ/at/lqIosKcvhNcp0xdeu/Ezla62hl9zudqaB80nt3ewfyBMqHkAWw0Rr4P2gJN0SV23IVGsa5yaySOKwrr2JJ1BWzG7HhHNpUh86b4B6s18pLu4i3czlt85gmATHUIehXJdZ2PHyoZD0K2QKduNgSVL8Ha/i998YAjTsla1gnHKEh/Z3U2yaCtZT88V6Ql7OD2XxzAtGrqOLIo8faiPkFfhFxeTJItNhna2Sszn4JWxFDGfk1xVva0h2GsTGeZyNQo1nVSp8Z45K7/X0B12cy5uD6HalhHnqqqBppvkaxpn5gu8PmFnj3gcMrpp8tpEhg1tvjUtatfCtddBR8CFIIAkCLQ382kODkaoawavj2eQJZHhmO+GAxOXIt1SFmR/1MOevhB1zeDQ0O0PwMaSZUzLWnevu3c4yrbuAB7l7VdFhtxKa08URZFMRaU37EbA7hlkKw3+8wvjpEoqsiRwJVFatbHokKTW0KfUuD2Xny2dfk7O5NnU4X9bB2BgN2g/ub+XckN/U5ngHofMx/e+u22/r0WiWOcHp20i6Mf39qw6aFkPs9kqf31ynnJDs0lLXkfLrndJ2TKWKOFrZj8uCQkShTrfOTlHzOfkgY0xBAQsLHojHj6+rwdHU5m4HF1Bdys3+cxcnjcms/hcMoNRL7pZQRLtPt5y+JzyTd/7mzv9nJrJs3nZNWiaFuMpew28nCi9LUMwsN1yXhvPcnQqx6cP9F2XzwW2df3x6RweRcKprL92BN0Kr49nyFc1XhxN0R12r+0uI0CqVCfoceCQBHrCHh7b0s62a4YqoijQGXTx3ZPzNukm4iZX1djbH+JDO7ta5wABu5axLFrqo9XwwMYYD7D2eht0X9+L7w65efo2zquGabUIFqOJEp0BF8lSgwMD4Zu+BybTlWbGpe3oYquf7Rrt8mKJxWKdff2h2zp31FSD75y0Bz91TcelyATdCrIk0u53tawMlzDc5lvTteRaKJLtaLTasM7tkFouYIIg0BV0E/E4+fw9/S3hC3BbZIGOgGvVWISBiAePQ0I3rVV/B8uyWv2v49M58lWNn19M8Pce29gi9I8mSjxzNm7nlEbcBFyOFTl1a+FtGYIJgvBL4KPNn3cKSAmC8IJlWf/ozjw/7OgJ8otLSRqayVyuxkibn6cP2Oz9o1NZhmLeN8XwcDukGwZdAjxzNk5NNZhIVfjdR0ZWfM2yLOqaiWrYmR5uReKxrR1rBt6/21Co2XYYxbpGxONoFWwf2NHJxXhxpRzXgnxNRTdM/vjlSSZSFfJVjfaAi76IhwOD4bekIeFxyGzvCZIo1ukMuogX6usesApNz+Kv3D+EbpgtOfrevtB1BWnYaw9sCjW7OXZuvtB67oBL4fP39vOjs3F8TpmZbJVsRaUr6MajyJydL1Cq62xs93FuocBCvk5X0MXGdh/fPjEP2FPsQ83MFqcs8cV7B8hVtZtqdILNVinVbYbm7z48wum5PMenc/brcyu3nPF1qwh5HPzmA0MUahohj8JLo/bEf2nz9jolwh4HvSEX6YpGX8TDh3d282evTXElUSLidbCvL4zHKbeyU2qqgUsROTKRZTRZoivopqIaBN2/GvfMewl9EQ9ffXgEUVipevI5ZYZiXgo1Db9Tbvm8X0nYqs89fSvl77phsqXTR7JYp66ZlOr6LRfe8UK9VezGC/VVh2DAqmuMqpsIgl2kpMsN+z4Nua+zU7wdaIbJM2fiGKZtz/Dlw4Otr0misGoha/8ONWZzNSIeB4JgF4q6ZZKvanQFXXQGXSzkaywW7HDSpaavIomozUa8fIMi+C7eXVhi2FkYqIbF5cUyI22rN0t294WoaQaSaFvv3YjQ8E7AMC1+cSlJsabxvi3tt8zKeztQqGm8cCVF0K3w0MYYv/vwCKlSnZ9cSNDQTD6y+6oVw4323Q/t7uLkbB5ZEnj/OhmnuYrK6bn8m65Bwd4Pn7+cRJFEHtnctmbt+BdHZ1ks1JlIlnlye2fLOmQ5xpMl/uMvRqlrBvP5Kv/h6T2rPtf27gBTmQoOWVyX9ScIa69vS3DIIl84NIBhWutew16nzLZuO19xPYHtR3Z3cSVRoj/iXff5lg59d3EXbwcsy6JY0/G55FteqwdjXj68q4u6ZrK9eQ985fAgpsV1z/XBnV3MZqt0BFytr1VVnZ9dSCAKAo9vs3MLU6UGAbdMvqoxniqzpTPAYrHesu66tFhkMlMhVWrQH/Hw0OYYG5oDt00dPvrCHnTTZH9/mK+/MUO+qpEuq/z1yXk+f6i/ZW11s3j+cpJEqUG6onI5Ubw7BHuX4r7hGL+8nMayrGvY+RYWgGVxKW5HISwphl8azdLQTM4vFHloU9ubcsrZ0O7jK4cHkSVxRQPugQ0xwh4HsvTmiH1rweeUm4Pk6++55Vg6nwqCQE01qKp6i/Sz3MVB3Waue/5eT2H9VsLrlLl/JIYo2CpTAVsd9u+evUjE6yDcjHLQDJOY3+5XHJnIEPU52NDuxzQtnr+cJFVusLHdR8TnYOsaqu0b4ZHN7TywIfaOEVwlUbjpXsudgmFalOs6Affaiv23GhfjRUp1nVJdZypTuWV3nYV8DcO0cCsyG9p8RH0KxbqG1yHx4miaS4kSxaqKU5HY1u3HLUuMJUt87cgM5+cLSJJIV8jFx/f2kK402NEdvKnMcU+z1ygKAp+7p59zC0Uy5QazuSq9Yc9NqUCuxaOb23nwmmtQFAXuGYpwMV5iX3/olp/zdrGQrzdVbrYd8rW1darU4NlzcYIuhXSlwZe2rk4Y1gyzlYG+qdNPVTWQRRHXGu9xqtTgjcksAZfCnr4QT2zrWHcdHE+VyTatlbc6A/zd92247h5uD7h4ak+P7SZkmkymypyYyeN3yTy2tQNJFCjV7V6sU5bsKItinftGotfZV95sL/5GkESBQ0MRLi6WGGnz8uw5W31faeg3nQu2rSvARLqM3CTreZvOVSemc3z9jRk6Ak7yVfWWCBhLmM5WWuSj7d1BdveFWk4WTx/oJVdVyZRV/uroDNu6gjeVFX2reHRLG05ZpC/ipuMGrjPrYfk+uRrCXgd/+6Fhe0javM5U3aSuGwRcNqnyI7u6uZwo4XVKHJvKUdMMvnV8js8f6ufsfIGL8SKXF0uU6zqLETcxv4uIz9HKyl0Lb5cSLGhZVlEQhN8C/sSyrP9FEIQ7pwTD9sHsCbmZSFVQJJHesIvZbJWz8wWqqsHZuQJ/++HhW/b+TJcb/PWJeQQBPrmv94aNHb9LpqYaq8rav3dqgcl0pTURB/vAs5bVy7sJRyYyvDqeYTZXpSvoYiDqbbHFbamuxXMXE9wzFGmxnoIehXihZgdkVlUWCjX294cZbvOtGyT/ZvFrOzqRRAHLstjRs/Z7O5ut8p3mZ3utmmStQmxLV4CRhSKFqsqWZXL3K4mSHdYLvDqeoVTX6Aq4+J2HbJuhn19MAvCT84uU6jqLxToH+sO2lyd2Q/RnFxIcm87x5PYONrT7+cn5RV4ZS9PQTL5438ANJfMuRaJU13HJEoIgtK5BQeC2bRYKVY0Lcdv+cj3rLd0w+e6pBRYLNR7b2kFDNxlLlpnN1tjY7idRqvOjs3F0w8SpSOimymy2ylyuymiiRKJYp6oa/P4Tm7mSKKMbZkuC3hWyww5108K0bk798F7BZLrCK2NpBqKeOyqxvl1cWwiNJcs8cyZOXdfpDLgIehwMtXmJF2o8c8Y+AFbUlfL3b5+YYzRRZi5fY3OHn9cm0jfNnnttPMPRqSzDMS8j7T77Hr9B0W5ZFj8+t8hYskxHwMHPL6ZwOyS+cMgO1t3VG+LJ7Z13xNY2W1ZJlRq4FQl/1L7n3pjMMpWpcO9QdE1Vjm5YWBb0Rdx0BV08srmDI5MZJlKVpqzbxeWlvEWfk4PNINLqMuuRuUzlTb/+u3hrYFkW5+aL6KbJ7t4QoiggCgLZylXWbHvAuaaKci3W1pt5Pb+8kmIhX+OhjW13pAk5nalwbr6ZnXqNXfDtIltRef5SkpBH4dHN7W+aIXxkItNi//VHPAzFvHQsY5feCo5P25YhgiBwfqGwptPAs+cXWSzUOTtX4LcfGn5T68zJ2VxrHegKutZsrFmWxXyuRkfQtebwp1Czc3QN02Q6XV3zZ4a9jjUVuSuer1krDMY8N8yRu9FgYHdfiFSpgUuR1rVL87uUG3q+q7rBv3nmEvFCjS8fHrwppfJd3MWbwXMXk5ybL9AdcvHpA3233OC8di0RBAFpladQpKvM41fH0hybziGLAo1m/lFv2E25oXNsKkdDNzg+naPS0PG7FD6xt4e+iAdZFNjdF6aujqObFumyysZlw+6dvSEe2VLDo0ggCMzmaqTLjeZZ2mqpYW8FumFboguAcDem712Ll8fSqM1B6cujKf7HD2y1835M+1xZbhhciBd5fTJDT8jNpw/0sb07yGvjGUbavXckC3S1nCRBEG6b1Hl2zm6Y7ekP0RV08c1jsxyfydMbcvOxPT0t68a17rklPH8pyanZPANRD49v6+BrR2aoqQaPbG5jb38YVb96Yd/OPfJ2YTxV4vWJLIZpu7MkSw0SxQZeh8QDG2Js7QowGPXyxPZOjk5mOdus8b5wSKGumZyZs/++pdPP4ZHb31sTzQiIrV3+dbOxKg2dZ88tIgg2AXs1teuvCr59Yo75XI2tXYEVbktvJzZ1+LkQL+KSpduyi97ZG+SFKylGEyXGk2V0y17Xd/QEUHU7h6tQU9nQ7ufCQhFREPjLo7Pka2qLgBp0KfRHPTR0g9NzeXb32sRZy7J4cTRNqtTgoU2x1kAk01RARbwOHtgQRZEk5nM1Tszm2NEdZCptZ4x1Bt08taf7lgarqz328EjsTV3bt4PdfUFS5ToO6Xobx1fG0rwxmW31Y3cEgwxGryeopcsNvnFslqlUBa9Lxu+UuXcowpauwJoOHbppYll2NpQiCTdcB4eiXk64chimhW6YnJkvsLs3hCQKFGoaPzm/iFO2SXtLNvvPX0q1yIYj7T7qmsHPLtjCkCd3dPLquK0sNkyrFWlzejbPi1dS9Ec9fGRX97pnwW8cneXnlxLs7Q/zmw8MrXkGOrwhxuENMQo1jbNNFyr3LZzPgh6FLxxaeTZKlxs8dzHBfK5GXTPYfQtWp6W6xk/OJ5BFgQc3xgh7FCqqwb6B8Ir+tNJUg33nxDw11WCx0GBHT+COD9JPzuQ5NZvn2FQWpyIR9jp4en/vLZ1hl++Ty+OJFvI1vn96Abci8an9vXidcovwWNcMvnZkhmJN46FNMfYPROiPeuiPeqhrMaoNg7pu2BnTZ+K2bWO5gd6MmLCaz3Mzqt63a/eQBUHoAj4N/M9vxQ+QBKHlF7m7L8RMttbMrikzFLPDUqXbuEDGk+WWDG8iXWH/DYZgn9zXy1yuRm94ZRPAMC0m03aTstKwlQ9LF/Jbhaqqt3KZbhaWZfHyWJpCTeOhTW0EXIq9QF1MUKxpJAp1ol5HM2zSQhCEVog52Ivz8gW7K+jmw7u6qTQMksUa5YaOKMBbSWR3KRIf3X01iD5dbvDC5RRRn4OHN7W1FopE0WZa2HaajTXVJMuhGiY9QReb2r0rwnInUhVMy2IqXSGet3/PoEtpMbCXBp8uRcK0LEQBDNNkR0+AjqCL6UyFi/ESqm4z6Da0+5nJVplMV1oDxu3dwXWbR5/Y18NUutpqtG/pDOBzysiieMPsmLXww7MLJIsNTszk+J2HhtcsJrJVe6gFcG6+QNirUKprTJTKvDiaIuBWsCyb2Rf0KIiiiGlazOaqiM1QTZ9TJlNpkGmySuZzNXrCbhZyNfoiHgJu5YaezjeDyXSFY1NZNrT72Nt/53Pp7iReHbcLwFSpwa7e0LtuADiXszPeHJLEk9s7WnL5umq0rnm5ec1ejBe5tFjk0mIJjyKhNw+GPaGbL7zPztuWPaPJ8qqMo9XQ0M1W4/jHZxPUNINCTWMhX+fDu7qQJXHNbJqbQUM3eGMyi1MWOT6dw++yWX0f3tVNuaHzypgduPyinuKL0dWbyX0RD09s76Bc19nbH8YhX7WJNE2LiwtFRhMl+iKeFRLv5f2jzLL8hrt4d+FyosRzFxOA/Znt6w+3GpVL+Bcf3nbDxs7RqSxT6Qr3Dkff1OAqU1E5NZMH4PWJzB0ZgkV9TlyKRF0z6AnfOgtzNbwxmWEmW2Uma+8db1ZJ1RFwcX6hiEMWibzJEPLj09lm/WBxbCrHU2sM8l2KaIcvu5V192/dMKndwLKv3e9qKUWjvrVfv22tBG5FZK0ec8zvZKTNS7Ghs3/gze+Dz5yNkyjWOTGT428/NPymlFcBl3JTea43gwvxIsens6iGyQ9Oz98dgt3FW46ZZi28kLfVVg75rWf5n5kv2E2oOduyerjNR2fQxUtX7Prj3HyBRLFOTTWoNAzm8jUe3NjGPc1skE0dPhTJtjda3rM/NZvjwnyBZKlOyOMg5JZpG4gw0u7l8EiMZKnBWLLMvcPRm26OdASdTGcrKKK4pj30XbzzGGsSRgDmcnZmhyyK+FwSNdUg6JaZSVcwTAtVN3ltPMPnDvVzcDC8oiE3nakwliyzoyd4y6rBa5Es1XnpSpo2v5MHN8Y4N19kIl1m/zWNwtVgWbZa3bQsclWV+zfEiBfqpEsNFFHg3ELhpnNQlyzSpjNV0uUGNdXOTIsX6uwFtnb5UQ0To0l8Wuv1lBo6fuc7pwS6vFjGsiwsyyLkVvA6JXJVlajPyaNb20iVVPYPhAm6FaRmN3yhUOO7p+Y5NBTB45Coqm+u5jNNi2+fmKOhmYwlSyuiEK7F+YVia329GC/ekATzboVumCzk7azHpd7JO4HukJvffXjktq8/j0PG71IYjHl54UoaSbAYjPmoNGwxQMznYF9/mKE2L3O5KhOpCuWGxq7eIIWqxlfuH2JrV4DFQp0fNomz5YZNnF0s1jnRdDN6bTzTUtScmMmzkLfXI9WwGEsVMU0Ly7Qo1jVcskRZgNOzBXxOiQ/ssJU9dc3gyGQWn1N6V143dc3Asmy1k9+lrEkOjhfs393dFHVc67azhLlcjWJNQzctCjWNgEthpN237hoc9jgIuhVqqtGqDdZD2Ovgtx4cZixZ5gen7dwvw7Q4OBjhzFye+WaeaX/EgyKJGKZBR8CJblo4ZYmYz8lr4xksy7bZrWsGXqdEpWGseJ3nFuwh1USqQmkdq/p8VeXnFxPkaxrHprJ8bE83XUE346kyU+kKu/tCxK4ZAAbdCp+5p49cRXvT+dWSIOCUJXb0BOiLuHnfLdhnnpsvttaCwZiXr9w/1Oqzr4aekJuxZJnukB35VKprHJvK0eZ33hHnryuJEpcTJdKlOl6nQsAtc2iZ0OVmsHyf1AyzdS68vFiiphrUVIOZbJWty0QlhZpGsWYThGey1RX3qkuR+I37hzi3UCDqdfDdU/MUaxq5qobHIeJxKBwejrG9J8BQ7Maf5ds1BPv/AD8BXrYs66ggCMPA6J38AWcXClRV3c7JcMk4FQnNsFUCD2xsozvkuq5hmio1KDd0BqOeNS+yDe0+zs4XkESBDWv4bdY1u/hxKRIuRbruJqqqOj+/mEQSBTwOifdv7WAg5kERxTcl61warMV8juuYM6OJEj86u4hTEfncPf033TyfzlQ5NmVvOk5Z4vFtHbw+kUHT7aytA4MR2gNO9vSFWu+ZUxbJVhqMJSs8uqWNakPnT1+bwjDh4/t6iHgduBSRnrAHVTeZyVQ4PVu4LlvsZlGoapiWddN2S69PLDXSqmxo97UK5R09QRLFBoJgW/68Op7mxHSO/oiHvog9dfY65BUHu19eTvHs2TjpcoMtXQH29YfZ3h0g5nMQ9Tnoi3qYSFfwI9MX9RD2OHDIIh/f08P5hQKXFkuIgoxLFjk2k6Ohmzy1t5cntndSVQ1S5UbLW/v+kRinZ/MookDM67iugbb8ugO7GLm2gL+Zwd56WBoci4KwbpEU9ToZjHlYyNfZ1Rvi5dEUz55bpKGbzGWrfHhXN4NR21KlJ+RiJlNFtQySTZm3HejtxrSgpuq4HRIPbIyRrTTwuxQe2tSGZUG738lstsoPzizgliU+d6if2WyV03MFtnb5b0rK/8vLSfJVjblcjW3dgVtWh95p6IZJqtwg5nNe1zgcjHpJFhu0+Z1474AE/E5CN0zmsjWuJGybAAv4Vz88T3/Ey+cP9fOJvXZG3LbuALph8tPzCUzLQhIEhtp8fGhXF11BN2Gvw24SL/scTNPi6JTNTrxnKNJau3f3hjg6lWVLZ6D1b0t2DEuN/EpDxymLyJKIZph8//QC05kqUZ+Dx7d28PyVJKYFF+Ml5vN1nt7fu2ahYZoWF+JFfE6ZxWKd+ZwdIrpktVDXDF6fyHByJg9YVFUDj8Mu/B2yHSof9TmI5+t0BJyYpsVkpkLY4yDidZCtqEiCQNCjXHftPralnf6Ih+lMhbPzBfJVDZfSoFC7qh4SgaV+1e51VK938c5CEgSqDb11/cPV4TDYn+O27iCqYVJTbVKJacFjW69aX5bqGi+P2g3Nl0bTfP7Q9dlhN4uAS2ldf4NvYgC8HEG3wm/cP0hDM28rJ2Y1dIfcXIyXcDukN2WveGwqy+sTGTZ2+PnivQPUNAPhmjPj6bk8Pzm3SFfQxSf29d7QovXL9w1wbqGILAr8+n1rK6UW8zWev5Rka1eAtcZCqm7yr35wnrFUmb/90DCPblk9m3NDu48v3Td4Q+ue6WwVzbBIFBs0NGPV5nRf2MPvPDLCbLbKr+24OfuP9bC0dYmCsGZG2pJiPFGs88S2jjXVcxOpMv/Hz67gckj80w9uJbzGwLKhG8xmq3QG3SvsspYj5FZo6AblhvErzRq/i18dPLQxxtGpHJs6fLdEQgS7AfCdE3MYpsVTe3u4vFji9YkM+apKd9DN49vttaEj4MLvUlokHLciEc/X8DhkukO2SrQr6OaBjTF+dDaO1ykT9TpRnSZdQSeVhk7UqxDP14h4HfyD92/kmTNx+iJeIh6ZC02yQKas8pMLCdJlla2dPjZ1+PnCvQNs6vAzm621bIQsi5vOSzFNmgwe6zoyyF28e7C5w8t01m5i9oTtxqEkCtw7HOXl8Qx1zaCqG62mWMSnoBtm66yqGyaGafGD0wtohsVMtspvNKMHvndqgcVince3dVzXVFvKAPE1h0OWZfHDM3FmslVM0yJVtlXCA1EPPzq3QLlukKuofOX+oevOxcthZ5y4mM/X6A65GYx56Qm7SRQbdIXc7Fylcbj0WpasrpZw73CUY1NZNnX6GYx62dsfIldVubcZaSAIwg2tmL5/eoGJVIVNHX4+tOvN78G3g0c2tXGqqeaqaTof3NnJ2fkiu3qCjCcr1DSTH56J89WHR3hgJEqlrvH85SSXF4skC3X+zvs2IAkiQY+y5rntZrCUFXQjtX9v2I3SHMbdCoHy3Qa56e5webFET9jFf35hHL9L5pP7bk1pcSdwowFYTTUo1rU1hye7+4J87+QCAxE3siSyoc3Hkzs62dDuW3Ee6A27GI55OTAYZjZbY9fuIINRL3/80gSzWfta6wq6KVQ1/vML42QrDeayVUwE9g+Gmc1WyVc1Yj4H46kS87k6RycztPmdpCsqHqfMvcNRNnf4+T+eu4IgwIWFIvcORwl5HLwxmW0N1cIex01nKL0dSBbr/Olr0wB89mDfusTEBzbEeGXMJkjLosjrEzap+7unFhCwCfEhj4Mzs7aSp9Pv5DP39NMZdLd6gnXN4Nsn5ijVdT60s6v18/765Dw/u5gg5FYYS5TZ0ySKW5bdbw66FTKVBm5FpjPo4uhkFkkUiPmd9jCdq/dyX9jDyRnbMr4/4sHnlJnKVHlwY5SGZq3IhI8XauzrD7Ox3U/M66RhGK37u64ZbOnwk69q9Ec86yp8vE6ZkXYfp2bzDLd5afM5qWvG1ZiKYv069RbYBMM7IUqxs/Ds/PetXVf7VNWGzkKhRm/Ys+b93Rt2I4sCmmny8miKo5NZPra3e9XXNZer2sq57R1sbrrJPXcxwVS6AthkJsuC752aRxYFPr6v97ozY6GqkSo3GIx6kCWRumYwl6vSHXLjcchYlu2koRkWVVVHEgVyFZX/8vIkAJ/Y27Pqudw0LSqq7TiwfJ9c3t/c0uVnNFnC3dzHl6Pdb88YEsV6az89v1DgYrzE7t4gGzv8CAL8uNljDroVXIpIb9iNaVqcmMkxlanwqf19NxSAvC0nQsuyvgl8c9nfJ4BP3qnnNy17oJWtaEiiwOYuPw9uaGc8XWYk5lvRkEkW6/hdChVV5y/emMEwLe7fEFsx8R5LlkiWGuztCxP1OfmtB4fX/NkL+RrfOTGHIAh8an/vqpvEqdl8i1F1aCh6x7w7f3k5yZm5Ag5Z5DfuH1xxwJ/J2gqNmmqQaFoS3gxCHgVZFLi4WMS0LA4O2oz10WQZy7I3w1Sp0bJzBFtpEfY42N1nq46+e2qeX15O4ZBELGx1VNTrwOeUeXY0TkU1iRcbtzUEW8jX+NbxOUzL4qO7u29qE+sKuhlNlPE4pBXNFJdiD/levJLilbE0F+MlGrrJN47Nsq0rwHS2yvbuIB/d3d1qFPqcErmahmZYXIwXcckiP7+UYDjm4/BIlJpqsxckAT57sB+HLHIlUeLHZxcZTRQZiHpJlxokiw1qS6wUl0LM7+DpA32cns3zo7OL9M4VcMh2yOd4qkLE5+TV8TQxn5NMWaUz6OSZM/F1r7s7gQ/v7m5mbnjWZbFLotBirZimxZ+9NmXfZ4U6Vc1mPJ2ay3N2rkCmotpSd9NkIl0l6lXY3RdGEOBn5xP0RTxs6w7w5PYunr+c5NRMnm8dn+PLhwcRm2y941M5yg0dj1MiW9GoawYL+RrbumxJsKqbvHglhSDAgxvbVjQiukNu8lWNNr8TRXznc0KWhjTdIRefObiysX3/hhi7eoN4HLeeLfFW4yfnE7w6YVs1Rn1OvnV8jgsLttLrwY2xFfemZUHE5yBdarCzN7jCI/nZc4tcjBebn7ltCXEhXmxJ4p2K2GKCHBqOtnLzAKbSFf76pJ2p98GdXdQ0g+cvJQm6FQajXi4niiSLDfojbjZ0+Pno7m6e2tfDyZkcR6dylOp2sR31OXlqb891QbFHJu3meV0z0AwTv0vBMC0+uqeb0WSJFy6niBfquBQJv0vm43t7qOtmiwghSyI7e4LM52pMZ6o8dynB+fkiiiTw4KY2nr+URGzew8s9zDXD5MR0Dq9TZnNngKNTOSzswn0qY7OZ4OoADOAnF1L89iOb39yHehdvCeqawfGZHLpptRqF+jK6vQnMZCr86Nwic7kqLlki4FZo8ztbtYlbkQh7FHJVja7Qm1vv7Wym/hsqj24VS0SgO4VdvbYP+pt93lOzeTTD4sJCkc6Akz95ZQrTtPhHT25iMOpjOlPhv740yWKxzoZ2H9OZ6g0Z4R6n0gp/Xm9t/tG5RdJllTcms6QrDToC1zOmj01l+PobMxgWTKWrvPZPVx+CATelnGjzOZnJVvE5JdvGbBUIgsAT62SZ3So+tOtqrbBW8ytdXqYYX8dC8i+OzHByJm8fdM7G+fwqh1aAP35pkhPTOXrDbv6Xj2xftYHmdkh0BNwENaMVonwXd/FWYmOHf81r+0aYSJXJV22iy5VEiVOzedLlBpfiRcaSFZ6/nGRnb4ioz8Fw1Mt4qkJdNxCb6vPXJzLoptVyI+kOuSnUNLLlBjVN5+BQBEkUUCSBP355koV8jajXySf29RDxOTg+neW7p+eRENjWHWAw6sGtSPicEtOZGm6nzLn5IoIgEPY4EAUB07JaGS03g+l0Bc0EwzLJVhu39T7dxVuPE021OMBYwu5hGJbF2YUSpbqOLArE83X+1Ze28x9/Mc43j81xYaGEIECb385DsSxa+b1LxJJMRW2pec7OFegNu3nxShpP04Lvx+cWuZIoMdLu46O7uynW9VYP5XKiRK6iIolQbXQxlihTrOsoksBioc63js8C8Mn9vava8n5iXw/5mp1rbuftDfGVw2u/Bz85v8jFeImhmJen9l49t+zoCbKjJ4hpWpyczRNwKzy0se2WLJunM/Z7MPUOWpkvPwLP5er84nKS+0dijKXKqIbd2xlp83EhXuSFyyly1QbFmkaqVGcmUyVT1fjNB4YIeoIrzm0OWeTA4M2pbURR4On9vUxnqyusWFdDd8jd6sm93cOiO439A2H2D4T52YVESxUxl6uyod3P6xMZJpuuD2/GqeTNoq4Z/PnrU1QatjJoNSX94RHbqvCHZxYQEPjUgd7WWXrpM/pff3SRn5yLMxjz8Z++uB9ZzDOTrfLaeIYfnLHz7IeiHvseEuD4VJZ4oY4IHByKUKrpfPvEHIlCnUxF5cJCAd2yqDUMwl4HPpfMgYGIPTDpCvCFQwMcn84RdCut3qjXab8WQWBNkluq1OBKosSGGyim7jSOTGY4NpVFEOysqdWGYDOZKqfm8mzp9PPJ/b0ossh4skxX0MV4qtJSz4ynykS8Tn5xKYllgUOR2NMXXiG6mMvVSBYblBsa3zk5xxcPDRD1OVks1DFNi1xFXXF/vTJmR1GMJ8ssFuu4HRIf29PNbJMkcd9IlJpm0NAM2v32GWUw5uW3HxxGFKFY0/nR2UVMyyLkUVqRDplyg4vxIl1Be4B6ei7PC5dT5KsaG9q9DEQ8/Pnr09Q0k997dIT7bmBLqUgiX7pvkM8cNJY5h5i4FJFKw1iTLHcn0Rv2rBAg/PhsnG8cnyPkVjgwGF51CAe2I9BvPTjM+YUCL42m0QydK4vlVYdg3z+9QEMzmUiX2dYd5MRMjucvpSg3dPb0BnHKImfnC5TqtpPdZLqygpRR1wy+/sYMdc1o2bF+9+Q88UKdiNfBlw8PYmFRaRg4FZGtHQFCPgdVzWhdZ2OpMge9V9f4JTL5t0/MMZersas3yGNbO1ZVpXUF3fzth0ZWfR8EQVhBqDo2leX/fG4UhywynanwuXv6W6rDSsNAkQRyFYNcVUPVTapqje3dAebz1XfHEEwQhH8P/GugBjwL7Ab+gWVZ//1OPL8owO7eINOZCrIocHq2wId39bDvGquzV8fTHJnIYgH9YTeVhoZLkSk3rjLrM+UGPzwTx7LsKemv3SAgby5Xa4YLW8zlaqsump0B28JGuong8FvB0sWt6iYNzWQ5WXZvf5iFfI0zcwWePZ/ApcjX5dGcms3z6nia4Ziv5Ucc8ji4f6PtkSoKAidmcvidMhuavq35morb4WYqU2ld2IJg/1esabx/aweXEzZzu9LQOTObZyJdIeBSeN/Wdmy3YGtFA/BWkC43MJoFdbLUuKkh2P6BMEMxLx7H9Y20s/P5lsd1xOtAr5q0B1yUGzqqbrPYZrLV1hDs4U3t1DWD0WSZdKmBZlh4HTL5qspr4xkMy2JXbxBZFNk/EMayLL51bNZuuDe0VoBkuaFjAjs7fEiigKupgrkQL7JYqPHKmG0hmC03KNU1EkU7U6TatFxwSMINr7ubhWVZXEmUUSThuvfT55Svu49uBFEU+LWdXeSrKu0BJ31hN4lSnVfHMzR02/JJ1UVkEWRJIl1ROTKZoTPowjQtRFFge0+QumaQKjYl77pJXbM3sKGol5pm4HFIzU1NYjpTYWdvsMVoWv65hr2OFb/DE9s62NcfJuRR3nTGzJ1Aohl+mSw2VlUk3ckm9Z3CXK7KpXgRTbdYyNf4+N5eFvJ1JFHArUgrlKnn5gvkqiof2dVFRTXovOZaHU2UWv9fGoItb6isx95fWgPtP2vMN+0lEsU6c7kqHofMpXgJQaRVVHqdMnv6wywWGywWatQEA1U3GU2U6Am5mUxX+On5RaI+J7Gm5ZgiiZTqOslimblclVcnMsgiGKYt89/Y4WX/QGTVQ/dcrtbK61ts2hjUNZOxhE0sMCyLdNlWpJ6ZK7Cx3cdCvs7RqSxgW+z+3Uc38OJoinLD4NAaeYoNQ1/13+/incflRAlFElEk+88PbGxDvWYPLNTtPcetSCSLDRq6SXTZwEOWRD5/aIBiXVvx77cLWRLxv0Mh5LeC9fIhbha7ekMcmciwscPHhXipZSfy3IUkqfIss9kqLllElgScirhmdt9y1FSDK4kSUpN0sRY0w6TS0AFpzTDqiwt5mtErZCtvvim8uy+E1ykT9CgYwFo7iKrbysM7ody7mVoh5nPQE3aTLNbXVW27HKJtnS1ebVyshqNTGeL5OplKg7pm4FnlgGtZAlu7/NQ1k47A7dffg//kmZt+7NS//dBt/5y7+JuN4ZiPEzP5ZmaWXQv6nDJRr4O6biIIIqW6RqmuUWnopEsqogAdQRc9YTdfOjxIQzdWNE4W8jVKDYNCTef5SykE4PCGKOmSSl0zmcpU+LPXpslWVEp1jUJNI+J1MBDzsLHDx8Ob2zg3l8ehSGTLKs+ctVU5X7i3n8/d00epoTN8C41aRRaRmrb4tYZxp9/Cu7hDqDSu1pRq849W0wLYJYsYpsX27iAV1WzZ2P/yctLO98C26ZIlkb19IbrD7lbmUNTroDfsJlGss73HJnldjBcB6Ay6mMpUUHWDX15OsrnDz8Z2H8NtXmYyVXb2BJjJ1BhLlvhXz1yipukMx3wMxbzM56vNczFcXCiSKjUYafOtaHjLknidHda1sCyLNyazFOt2VowsiUxlKquez84tFHjhcgoAhyS2+iKFmsZ3T85jmBYf29O9agbPQ5vaONfM0HknYFkWuerV/pcFJAo1jk3l6Ai6GGnzIYsCO3sDHJ3MNm0kNURstYdlweXFYqsftPx9vlXVddTnJOpzcmYuz8tjaYZjXp7c3rmqSuntGn6lyw3OzhcYifluqia8XWzptFURfpdCT8hDuaG3IkZeHku/o0OwckOn0lyjE81+zGrY0O7ji/cOIItCq2avqrodAyKL/OD0ApmKSqqi8tyFRcZS9uB3NldFkQR0w6Qn4ibkUXh1PMNUpopDFnE7ZRyKSMQrM5mucHYuD9hDVl21XQ4CLoWhNi/tASf3DdtDkoc2tbGtO4Bl2r1fUYCaZnLvSJThmHfNntn3Ty9QrGmcnS/wOw8Nv202pT6nQsijYFrQ5l/9zPPTC4uU6jpT6QojbT4+vLOLTEUl7FEo1DTONN+b4ZiPTKVBX8TNXK7G1s7Ada5jvWE3Ua+Dk7M5hmM+fngmzpcPD/LolnZU3SDqdfLiaIoXrqT4xL7eVp88XW5QruskinVeHU3TG7Gd1Io1DY9DxuOw1V59ES+WZXF2vsBkuoymW5TqGl6nTHlZ38bnkvG7ZEp1na6gi6m0vfZfWixS0zReGk1TrGuYFrw4mm4N97pDrlWzwS7Gizx7bhFFEvjsPf3EfE5kSeSz9/SzWKgz+CYt9W8VumFyabFEQzNI6eaK3301uB0Smzr9nJ0voOommzpW73F7HTINTW2ts6OJEgNRD/mqxod2deN3KWxo93FuvoAsigxFvdQ1g++enKdY13hoYxsN3b6vS3Wt+X/7tZUbOpZlEXAp7OgJUKjpGFiI2O5URybstWmk2S/WDJPvnJgjUWzw6JY25poWmEsRUDeDmmpgWhaKJPK9U/NkKyof2NFJV9DNS6MpZrIVKqqBLAn8/FISsLiwUGJbV4BSw+4bL7mFpcsqfpe8wmJxLbxd3iBPWJb1PwqC8HFgDngaeB64I0MwgI/u7ubkTJ6GbiIKcGY2j8shMdLma7F0k8UGumny+niGV7AX0U/u720tmmD7XYuCgNH8MFaDZVlcTpTIllVifid9EQ+iAH0RN/FC7bpG6HCbj984PIQo3tmG9qOb2/E5s3SFXNdJEiNeB/eNREmXVQzTfr3XDcFmcjQ0k4vxIg9tirVupuGYl4jPgaqb9IY9dPhdTGYqiAK4HTLVhtGa4s/lqjxzJk5DN2nzu4j5nPRHPCwWbO/58wtFIh4HqmGg6wbv39pOstTgw7u6uR1s6QyQKDbQDXNdq4GJVBmXIrXUFWuxpyNeZyuM79BwhMuLJaJeB11BN9PZMuW6wa5lU2xJFPjgTvu1ZysNFvI1inWd//LSJJmyikMS2dUf4rHmFPvIZIZj0zkylQZep8xwm5dzC0XaAy76Im6++vAIAbfS+vz29IX4+uvT1HQTpyzSHfYQ8tpMrENDEV64ksa0LIbafVQbBqJge4/fLDTDzkdq8ztbRcDpuQLPX0oC8NTenjtScG3r8vPwpnb6om62dQb46teO41IkGpqJzyHjcUj0hN0sFuyGn9dpZ8mIzff1yESaF66kiHgVuoJu9vWHWweXLV0Bfu/RDXZGX3+In15IoMhCyy4wWapzZCLLVKbCUNR7XcNYuMPD6DeLx7d1cHY+z7au4NtWcK0Fy7J4/nKSTFnlkc3ta75PfpeCBQzEPDy5vZORNi/ngi42tnsZbvO1mijxgm2Xo5t2s/WJ7dcrD+4diXJmrsCuZQrZ4TYfn9rfS66iIgp2gbyaumBzp5/JdBmvU2Z3X4jukB0EH/U6iOdrZCsaXWEXfWEPuWWZWT6nzKf291JVdf765Dx1zWzZkJ6dt4fN1WyVAwMhfE6ZRLHBxXiB2VyVdsVJvKk6rGoG/REPj27uaB0AVd1kMl2hM+gi6LYZT/bgwsl9wxFenchwdDLLeMpWp27uDLC1K8CfvTbF+YUi3z6u8eHdV8kXsiQQ8jr46DL13GoYWSUY9y7eHXh8aycX4yU03WzlVTokkeXl8OYO+1ou1+0sT1GE0WSZkWXMWId8fQPHsizOzBUwLYvdvaF3xWD/nUKiWKdU1xlp865YS+8ZirQUddOZCq+MpmkYBm9MZloWH5s6A3z14V6GY14M0+LkTI6aanBgMLKqpdl4qsx8roYg2IrUbWsMdYZiPkyzOcxZY33f2x9BEW3ld98dyFPbNxCmWNfZ1hVYs2FU1wz+5JVJUqUGH9jRyT1rDNdvFnXNYDpTpSvkIrBGnSuJQqvuWM+dYFOHn4GonSHQt46lsySI5KtaK8R7NXQGXfSEbDeA/e/yDNC7uIugR+E3Hxhq2s5MEC/U2dIV4O+/fxPPnluk3NAIeRSKNY3vnLBV8J+7p5+HNrUtO3uuvLce3NhG0K1wfqHAXK6GBThFgV+/r58fn0uQLNYJehRmshUKNQ2fU8brlNk/EGZXb4hE0SYfPn85hSIKFGsqAvZ5OeJ1cPOpFza2dgZYyNdwKhJ734XZLHdhI+J1MF+w62afy94DFUnkdx8d4Y2JLB/Z3cWDm9pZyNfY1OGjppmoukGm2YTqDLpIlhrUdZPesLu1F8mSyNMH+lo/RzdswqIkCoQ8Cg9ujPEnL0+Sr2l8/Y1p/uH7N9ERcNm5IrqFQ7ZzrtNllajHiSSKvG9LByGPwlS6SqGq8eIVm0h6IVTk0S3tuB3Sin2pUNXwOqVVzxUT6Qovj6U5O19ANyzCHoVP7e9b9Xy2vE8kL9uDxlPlFun1SqLMfasMwfb0hW5omfhWoqGblOoabkWkpplIgj2g7A452d4T5MR0jnxVY6Lp5uN3Kai6yaHhCMenc7gUiY6giw1tPs7OFdjQ7uPpA70YpnXb+a2nZ/PNvpRNFns7lBtr4cdn46TLKufmCnz1kZE3lXO6HvoiHv7OIxtafzdMiza/k1SpcUfqwTeDmM/J4ZEoi8X6Dd2bVN2kqBmEPA5eHUvz/dMLdARcfGBHJ2GPQrai4m6SzRyySKWh41ZEhmM+3r+1g509IbpDLmqawUObYoiCwEibl3RJ5fun4iQKdnM97HEQ8zvZ1x9iIOLFtMASLDqbfbXlr/2bx2aZy9kxL7t6Q3ZvtOkmY1kWC4U6Yc9VtZhDumpX/3b2Yw4NR6hpBg5JbJHJZptKud6Im8MjMaI+Rysj/i/fmGa4zcfuJtFAkUR8LpmBiIew12Hb8u3rpVjXV1XvuRSJX79vgEpDZzxVafVHltak49NZXmzmiU6kyjzQdFTa2RPgv7w8icsh0hVy89jWDjwOiUJNI+xVkESxRXCbylR5aTTFsakc7QGbVLynP8S9y84aTlnii/cOUKrrtPmdzOWqVBo6C4U6U+kqMZ8Dj0MmWWxQqGr84PQ8kigykaqQrarXnYeXBrWaYZEpX/16wKWseS55KyFLInv6QzR0g6BbuSnb24BL4TfuH1r3MZ/a38tUpoJTFlu9+pdH02xoEkbAtnhcrrYaT5VbBNCpTJUP7OhkLltrZUJ/cFcXFxaKbO7wIwgCu3qDnF8oImDbypsWjKdKreiSRLHeilVYyNepawYvXkmzsyfAydnCCoe9a++1pTmKR5FxKSLfODaLacE9g2FOzuSpqvb10BOqM5etoZmWPT+xIOZ1kC5rBN12rMMDm2Is5Or0hN2U6xoOWeIDOzpviizxdu0uS1feB4G/sCwreycXF9OCn11M0hvxkK+qFOs6/9cvrtAV9PDI5jYe2dxOuaFzeCSKqptcWChSVQ3cikzM51wxIQ96FJ4+0EumrLK5c/Xhwqvjaf7bq1NMpau0B5z87sMj7OkP8x9+col4oc6v7ehaIZtfet47hXS50WJbvH/b2rY5vWEPnUEX5bq+qrXPjp4gr4xlGG7z4l52sYQ8Dv7W/UMt+68LC0W8Dpk9faGWIqpUt+Xwf31inulMhXxNY0dPELdDwu2QEJsWQe1+e8h0YirLXx2boz/q4X97es+6frfrwSGLPL7O7wy2wu3Zs3EqqsFvPjC0bubJUMzLF+8dQMAO6js6mcXrlBlq83JkIkehpuGQRX53WYECYBgmXz8yQ10zqTZ0ZnNVijUNlyIR9Tvwu2SSpTr/5aUp+zkkkR3dAQZjPkxLIF1u8ODGNja029eYZpicXygScivs6A1yZbGEJIk8uCFGb8TT2sTaAi5yFZUtnX5kSSRTbtDQTGazJU7P5tnWHVg3EPEXl5JcaOaYfOX+QfwuZYUqT1tDoWdZFsW67dF+I1s+3TD5H75+kvlcjeE2L7//5Cba/E5yFbXpU2uRKWt0h9zs6AlyZbHMVKZCqa5hmBahiobXaRdMIXeIvrBnxe90ocnwe3BDjKBb4dRsnppqtDa4IxNZGrpJu9/J+7d33HYx/nZhQ7vvTYdx3inM5WqcnrUPpK9PZPjI7uuH1Qv5Ggv5GpZlYZpW0+e5wky2SqqkkqvmyFU1vnJ4EMO0ODNnkxOW+zvPZG3fYZ9T5uBgpDVUX46Yz8n3Ty9Qqmls6Qpct6YC/OxCgvFUhZBHQRIEukNuvnBogNfGM1RVg0c2tzOZqXBpscTeVRqgVxJlvA6ZRzdHaPM7KdQ0tnT6mMlUiHiddhB8M9fv3HweLAvNMNk3EGZDm48HN8aYydpEgHuGIgzGvPz4XJyJVAW3Q+I3HxiiM+haIX/f2xfmUrzEQt5WiD19IIgiiRRqOufmCtR1g6jXwSf299Hhd62wSVwPlbuM6nctgh6F33rQzsJoazL0pWua9n91dIYvHx6kWNP5k1cnmzZCN1ZMX4gX+UWTxCAKQssq87rHLRS5kiit2MffS7APhrOYlsV9I9GWl/i1GIh6+Tcf38m3T8zxy8tJksUGpbrObz04TNCt8I1jcxRrGook4HbIWLDqITJfU20FJwLlxtrsvi8e6ueHZxfZ2RNY8xA20hGgPeAkV9U4OLT+oGY6U0GWxOusW5dj6UCbrapr5h0miw2+cWyWSsO2t1hvCFao2Vbj6zWkfnhmgYvxIm1+F7/94PCqdUKy1FgRdL7amg62mnyp1ljvrOB2SPSG3bgdEqa1+mOmMxWePbeIZpr81bFZfv/JLWs+313cxduJqXQFhyyuuscrsshMtkqi2EA1LD65z+RT+3tp6AZfPzLDd0/OM5mu4HVKTKYq11lpL8dHd3eztSvA//mzS5xtWuh3hT1s7AhwerZIwCUjCtAZcOOQJATBwq1IjCZKHA+4eG3CtmqqNXRCIRfbu4M8trWdl0ZTdAZcKyyqbwbjqTKaCaZqEC9U31XZLHexHFfXXnNZBkJX0E1P2M1Im4/ZbJXvn14g6FH4/M5uSnVbxbKh3cfBoTBfe32mqfKyeHxb56r7wo6eYDMbWiTkcdDud9Hmd7JQqDOaKJMq1XltPMPx6RwOWWBbV4ADAyGOTuWajg8SR6eyPLW3h8e2tvO//+wKx6aydAfdnJrN88vLSbpDbr5yeJD+qJdXxtK8PJYmU1Z5YnsH79vcvoI85HfK6KYdJ6EZNiF1NFni4c1trcdMZyqcnMmzscPHR3Z3UWnoK+IWhmNeTkznMEyLkfZ3Z71VVQ1euJykpl2tM2dydSI+F1s7/Tx3IcF0tkqqVOcje3r4wqEBvnNijnS5wW89OMyWrgA9ITffPD5HTbXVG0vDzUpD54UrKdyKxEOb2q773FXdpFCz852W7/HbuoO8PJpmMOa5YQ62ZpgkSw3afM41sxdV3UQ1zNsapi01UV2K1Mo5ejsgiQKfPdhHuaHfESeEN4v11nfLsiM7qqrest/b3h3gR2fjzOdq5Ksq/RH73vvOyQV6wy58LoV7hyMkiw0uLZbQDBPDtDPp/uLINCemc/SEXDyyqYOj03YkgUMWqakGoiiwqcPPP//wNiqqQchj94BeHk1zZbGMx2ErQI5NZZnP1xhNlJjJVhFFAVGAgPvqdfDLyylOzebxOWW+dHgApyzx1N4eJtMVBiJv3z1rmhYL+ToHByMriMevjKWJF+rMN0m3H9nVTV2bo9zQ+dPXpnEpEvcMRfj9Jzfzf/18lLPzBZyySEfARW/Yw6nZPNmKSqps98tiPueKdU4QBDqCLqazVVTdJN3MpgfY0Obn3Lwdi7Opw4/PKfO+LR3ohsmRySxn5wtUVIMdPUH+4IVxTs3mccgi//jxTS3RgdcpIQkCsiQgi3Z/5tHNNmXGsiymMrZL2ES6wkLezlvvDXv49fsGuXc4yreOz+FSJDa0+1p2uI6mArk75F41K3j/QJhSXcfjkNbtq83na7wylqY3bA8YAVKluv17NQwe2th2x/r2j25ub/3e66FQ1ZAlYU2rzuPT9n53aChKZ9DF2bkC5+YLDLd78TkUhtt8mJZtN7ya2rkn5CbmczCTrWJZFiNtPrZ0BlZ8felcqRumbX9baTCTrVFp6Hx0TzdtPhdQbD6mmRUmCPSE3DxzdoG+sIfJVBlFFvnz16b5zEGTff1hnr+c4JWxDB6H1CLK5yoqgiCwoyfQUnDHi3UWizVqqkGm3LCjYsJuNlf9uGQRj1NmMObloY0xFot1PA6Zx7Z03LY6+O0agv1AEIRL2HaIf0cQhDZgbV3tLUIAnr+8yIWFEooEfREfPqdMVS1zcDDMt4/PMZ+vsaMnyKcP9rG7L9hkB9Q4Opkl5nOuaLIv2XUZpsVq7+tr4xkmkhUSxTpOWeSV8TSDMS+X4iUs4MXR1JqH+zeL0USJZ87GERB4+kDvug1SlyLxuXvWPhgdGIywfyC8ptzcpUjohsnPLiTIVhq8NJriMwf7ODaV40qyRH/Yw3iqzGy2Ssjj4FP77GwqVTMo1FReHc/gkET6wi50yy6K8hWNuVzttodgN4NCVePsgs3g+tnFRX77wdV9R5dgNBv5o8kyY6kypmVxz2CYQtP3dCJ1vaTzJxcSvDSaRsBiIl2h3mTAIQh879QC79/azlyuzpVEiaqq43XK9ITdfPpAHydnchyZzPDqeBqHJPJrO7t4eTTNqVk7A2OkzUeiWEfVLaYyVRYKdXb2Bgm4lBWL1MV4kW8dn8XvVKhptiw8XqizvTuwZuNoybbJsKyWreTScMAhi2v6cT93Mcm5+QI9ITdPH+hdtzH17LlFxhIlaprZDL6U2dTu4/WxDFPpKh5FoG5YPHu22lIUFesalmXbMWQrDTTdZCDqYbjNh2VZPHNmgXuGokS8Dn52IYHZtJB7am8Pg1EPxZreum97wm7GkmXa/M5bsmi5C5v56XFInJjJsVio0+53riiAZ7NVvnXcPgSZpkV7wEW63GBnTxCnIiKKAn6XgigIiKKAadqs/rpuEG4WFN8/tcClxSKJYoNP7uvh0S3tCIKAaVpcSZYIuBS6Q2400yRZqnM5XmIqU20FXj+2taNVKGaa1mGFmoZqmLhEiUSxzutNubYkCnxsTw/v23L94PzkTI4/fmmCzqCbqmoQ8SpcjNuZNr/36AZyVY2vHZlBM0ye2NZBvFAnW7HXhH/5se2EPU6qqs5LozZb6qXRFIMxL1XVQDdMptJ15nM1BmNeUqUGDlkk6FYIuGRCHoWz83mGYj7+5JVJRtp8RDwyDcOgVNc5t1DkwGAFtyLx7Lk4XzsyQ3fIzf/7I9twr2EzMp0p34lL4C7eAhybzPCPvnka04T/5cNbeXxHV2v9XcK//fFFDNPiS4cHeXJ7J2PJEg9valvjGa9CXhbqoJkmi4X6dT7YhmmtWDevzTldCp6fzlR4YGPbO8pOvl3UNaPVqKs2vZsM0+L7p+eZz9UYafPhkG2WZdjrYHt3gBevJO0DmiRwcaF0tZEiQF03cTvWtt4p143mnmWta3GhWxaqbqAba0xpgPPzefJVDdO0OD5TWPNx5+YL/OxCArBtUtey6HnpSprTc3na/U4+vrdn1d9hNmtbOutNp4C1cCle5A9fnECRRP7h+zfSuUbN+Z+eH2MqU8Xvkvlb9w8iidf/zKBbaVmf9KzDcO4JeTgwGAaEda2rHtvSwS8uJdjRE1yzCVaqaYwmy6i6Qcz77lGA38XfbJyZy/Pzi0kEwb6Xrz0T+ZwyD21q4+RMnjafE6lZcxdrOvmqykK+RlXVUQ2TuVyV0URpzRyyC/EC/+TbZ5lIlTEsC1EQiOdrvHApybHpLDXVYCDqwe0Q8ekSU5kK6ZLacvM4N1dANUx6Qi6SxQaqnkMUwOtUmEhVbCuqWwiVn2ja5BgWvHgpyf0bblVLdhdvB8q1q9a8tYa9f+mGyd//i5NUVZ3nLib4V0/txLJA0y1mMhWe3NHFwUG7r5CvqkiigGFazGar/MdfjNIf8fCx3d28MJpisdDg4c1t9ITc19mT7e4LtazY4oU6DV2nourIokK8UGdPX5j/+UNb+aOXJjFMi0pzz7+SKPHD0wuohm09FfI4ODGTQxJFSjWN33vfRs7NF+yhrmoQ8SgMRj0tQipAe8DFb9w/yKZ2Hz+/lMTjkHh1PM1AxM3j220m/3MXkxRrGlOZCl+6b4CfnE+g6iYPboxxYDBCyONYN0/+3YAri0Wy1au1i2HZdVRNNVEkW6lTrGk0dINN7T5006Qz6GI+X6NUt4d+E+kKdVUnXVa5EC8gCgJP7e3h2HSOy4t2XdEdcq8glRumxV8enSFTVlu5MUvYPxBmX3/oplQ43zu1wGy2SlfQxWdX6XVVGjpfPzJDRdV5/xrZNOvhI7u7mUhV6Am7byuTu1DV0Ezzhvaby1HXDE7M2FlW61lGv1vwk/MJTs7kqGsGTkWiVNcYPWlbjpfqGkZzSLa7N8h9I1FeG0/ze187gVMW+fSBXjIVlam07SAwnirxylgGw7SjSBDApdhDD0UUkF0yYY+DzqCLF0fTXIwXCXuUZh1ska1onJzJ4ZRFXhpNU9MMxtMVOvwuDgx4eGRLRysrE2xBAdj2bzXVztV8YzLLaxMZOvwuPra3m3a/i3ihxvdPLeBSJD65v/eOqxNfGU9zbCqHJAp86b6B1uCzN+xhIV9DEm1RgSyJ7O4NcXomR76qIksis9kqdc1ENy1MyyJTUZlMVQi4FcZTZV4bz1DXTP7/7P13mGTnnd+Hfk6qHLqqOufuyRmTkCMJgCAIkktySS6XXGolarUSJXstWffK915d+Vp+rm0Fy9basmRbu6Y2c5fkMoMgACJjMJicY+dUXTmfOtl/vNWF6ZnuwYAYgFxpvs+D58EAPVXVp8553/f3+33Dn709y4GRJI9v72b3YEdb1RgPavTEAkK4IEkcmymQq5nctyHFX7t/dNXnLDcsMtUmIZ/C3aNJumMBqk2Lw9N5rqRrBHwyPz2/zG8/EqHStDi7UObAaJJHt3Tzg9MLHJsukq9e5G89Ms4LF5b5xhvT+FSZHf0xkmE/luPxq/sHAZGr+sT2Ht6eKtARVNk9GCNfs3h0SxddUT+SJPHsmSWuZmrcvzHVzo2PBrQ1ydsgho0/OC3WDNN2kSSJhZZd5OkF4Yg1lauzq1VPfGwN56JbxWJJZ77YoCcWYLhlGXkzrPT2VfkdG8dV114X6mYQa8QXDw7zyuUshbrJQknnbz40xsV0hYlsnalsjf2jCb54cJiAJly2njuXxnI8HtrUxXdPLHAxXcWvyWv2xkDsby9eXObMfJloQGPfcAc7+uP0xQKcWxQ1ajSg8G9eukqmYjCSCrG9P4YqCcJIqWRR0S3+p+d1Pn9giFNzJU7OlUhXmmzuiZCrmcQDGnuHhdBB3MMuB0aSzBV0mpaNYbvka8JFbWX24NdkXji/zN9+dANXMzV6YoFV9e3FpQrPnUsTCWh8du/ADS551+NDGYJ5nvdfSZL0z4CK53mOJEkN4NO36/Vdz+PCUg3D9jBtkU0V8Qmf0fs3pvjDQ7OAYO4AbOmN8eV7R/nuCWElsdgakK3gpUsZTs2ViQZUvnrf6A3FteuBpkgEfAojqRB7hxIMJkLsGIizWNI5OPreLFfWY+quhWzNaDdeCnXzllUC6+Hd3rdm2ESDKoen8sSCGv/h0DQRn8ZiUacjKOwz8lUTRZKYyTcYTIa4nKmhmw65moEiyUQDKmOdIapNhw1dYXYNfrAb+56hOD3RAIosEW1tVpbjtjZMX7vYLNTFoe3IlJD1h31Ke8M7v1Tlsa3dTOfq/NrdQze8R65mMN4Z4mq2jiwJloMJSJ7YrH92McNiqYnluOimTSKk8cbVPLmqyWSuztVMjaCmkK2a3DuewvU8yrpFutJkU3eEXQMdTOVqNC2HVMTXzgxbgWE7/Onbs1xKV+mJBdjYHWmxIwJrfqcT2RrpcpN7x5Mkwz56YoH2RqvIUjvA1vPWbtStPDsLJZGB51PXv280VWYwGaJQN3lmVz9XMzXemihQ1C3woKi7rLxLoWFx7SupMvTGg/QnAvzjT+zg8FSef/PSVRRJhB5/7aHxtiS8K+qnbth0RwMMJ5V2kOK+4QTjneH2IPcObh1hv8oXDgxSaIWiXkxXuWc81VY6rBSaqbCPkF9hNBVh/0iCkE/lbzwwRs2wWSjqdMf8xAIaEZ/KPeMpCnWDu8fFPZapNjk0mcdyXI7MBNss0D87Msf3Ty7g1xT+P09vY3NvlB39cUp1i5BP4eRciZ5YgGMzBZ7aKQrRj2zt5vhsiQ1d4vv2PI9oQCXoU9BNZ93GjGE7vHwxS7Vp0zBr3DueYjIrhkhzxQaeJ57xlaHxcsUg4FOIBARDtG44JEJCyt8Z9ZOrGu21+GM7evk/X53E1/JBv29Diteu5FBlic8fGOIP3ppmoaijShLTuRr5uklFt1iuivVSkSSqTZuTcyVmCzoz+Tqm7TKdq3MlU2P3OvkBVfOOEuyXFd86Nk+2YuAB3zw2zxM7+27IkbIcj9ev5jg4luTErGDwyVLuXe0TtvRGkSXB6j00keM1K3dDgLUiS6vWzetRM94Jnj8zX/orOQQbSoZ4bGt3S9Uk1ppSw+TKco10WeftqQJ7hxMslMRArC8e4Old/W3/8nSlyd8cHROWvQGV0WQYw3HavufXoyfmJ9ViMXfexF73W8fmyVQMFktNPnVX/5rM3qAmzimu5+G7ieVO45pn/Gbqs8WyTrFu4rpCrbsWkuGAYIW63k2tCX92KcOZhTKyBIenC3x6HVvWmUIDx4OybjNbqLOx+0b3gRULFt10bspwvmuog4hPwa8p70KY8ujrCKLepEFValqAhyxBzbyTm3gHvxxYeX49b/VzfS0+fdcAm3uipCL+Niu5K+pnZ3+cWFBDU2Us22U4Feb1qzm6YwF8irzK3cTzPI5MFcm2Bt4gmtAXl6ucXayQqTYp1U2yVUPYw8kSAU3FsB10y2FhUafStFp7iJ9srUopb1Fp2nxiVx9hv0rU/94Y09fyAdLV28aHvYPbjOY1t+XKvxq2g94ifVzN1Nk9GGehqPPK5QxnFiokwv72/tsR8vFrB4coNEwOTxWoGcIyd6bQaDtOHJ7M89l9gzf0QZ7Y3ktZt7maqXJoskBVtzkwkmAm3yBXNfjOiXm29Ud5ZncfM/lG20793GIZDw+/KhPwKVRaeSeqLAgpS2W9vSfaroemSmsqCrqjAT6zb5AHN3XxT39wjmLd4huHZtjUE2O0M0x31E9FF/msdcNpn+ey1fef6flh4cxCGVmWcK55IG0Xyg2TE3MlOkI+Qr4mPlXh9HyJS8s1rmSqjHeGydVM/uztOVRFIhn20TBdxjsjzBYa5OsG3a0zkduylk5Xmjy0sRNZljBalpkg+m/X45b7Ya1rvTLMuB75mtleZ2fyjfc8BAtoypouSreC5UqTbx6Zw3E9nt7Vt66z1PV4cyLXfjY6Qr6bKv5/0ZjO1fnRmUWyFYOtvVG29kZ57UqOYsOi1DDpjPrYNSAGLlOtrKermRoN00Y3BSG2Jy5ywNLlZis3WcK0Pbqjfh7YmCLkUyjULVzPxfVEf/diuoqEhOO6/Oxiht2DHXRGfFSbNssVgzeu5oj4VWxXOAJ1Rf1s7IneoAx6ZEsXPzi5SM20yVYNzi9VeP78MlO5Os1uh6vLNbqjAS6lqyIiwXSYyddv63DSctx2LrzjejSvUWU+uKmTbLXJRLbO778xzQMbUmzvj/GbD45RblrkaiZbeqLEgxp/55Fx/s3LV9FNl9MLZTb3RrEcl0rTwnY8litNziyUWCzrPLix3lZsPrxZDJWSYR9N22lbILqux8d39bWt4ZuWw8m5Epbj0R0NEA1qHBgR1nWWJYaWnvsOweXlS1kmWjXlJ3f3YdliQGc5Lkemi7xwISMcKzwRJZQM+9trxgqqTTEIOTpT4tN39fPRbeL78zwP3bS52Bqyn5ort4dgN0NZt1qiBtHDsV2XqmGzUNJZKukENBnLcbEc931FplSbFt88Msfx2SLRgMrn9g2uGvSvhaVyU5BJHI9MRSjyrt0Tg5rSJhB2Rf04rkdfPIDrCVXc/Rs6mcrVWSjqLFeFeitTMRhOhbiyXGuLOUI+RSiHPFgxmnlzIsfldJUDo8n2Glk37LYTmtSqswY6gpxdLLNcMVgoNnjuXJpywxKqacth73AH450RPrajl++cmOf0vJijzOQb9HcEODwlCOJXlmv0xYN0RX3sHIiztS/G1mvyuz61p4/fe32aYzMl+uIBNvdEeWpnH3VDuEhFAiqHJwuMpEKroo4upiv8+9enmCs02N4fYyJb40D45vfFhzIEkyQpBPxdYBj4W0A/sAX44e16D6t1APGA0WSYTb0RogGNQt3iwU2dXF6ucuCah2QkGWK8M8zFdJWhZIilss4LFzKkwj5KLSuZatMWHq3XDcE2dEXIVA3CPoUvHBhqb5L/6Kmtrc3/1hlxz51Lc2Gpwv6RBA9teof17XkeVzMi6+baQde+4QQV3canSmy9xU3158UK61hTJO4eS+C6YLSGOg3TYSrboCsaoNSwCfpVpNZlCmiyCHeM+NEtm8GOEL92zzClhsnuwY4P3OO5I+Tj649tYLbQ4K4hMZBcUVrJksRv3DfCmYUyx2eKLJR0+mIBmpbDo1s6mS81iAdFo/sLewfa7DTTdtEUYc3jtVRUubrFk9t7OD5bYr7YIBHyMVNo0BXx88CGLr5zYh7LcQn5VWRZIhX2ty17VFnCw2srbzw8LiyV6Y0FMW2Xjd0R9g514CGy6a4/EzZNl1hApSvqJxHy8bceGqdmvmPHkK8ZZKoGG7sjNEyHH5xabDf2P7Wnf81D5luTed6azLOhK3IDk+KhTV0cnSmwpSe6LuN6BY9s7kJChF7fO57iH337DIbt0BEUijXrOts2WQYJiXhQ5a7hhLCI2z+ET5Up1EwUSRQrK0ysLxwYIl83iPo1fv8NwQLsjPoZvCY75JfBQuCvKhJhPwdHk0zmauwbTjBXaPCXJxaQgM/uG+CBjZ2YtsvdY6uzclaGjtcyWGRZusG+tK8jQCosDqyW5fDDM0s0DJv5ksiqaFoOS2Wdzb1RPrGrj4Cm4Lge6bKOYburmqKDCREEenS6yHSuznS+QUBT+OzeATxYN/xWlWVCAfF5E2GNj24VbNQTc0W29cWQZYnxzjA7B+I0TJv9ownGOkN85/hC2wIE3rGtqLQy0ECo6bb2RZnM1vF4p1CzXY+ZfJ3jM0Vc16Nm2gQUhYbhcGahTHc0QHfUh6ZIRAKqaHIpEo9u6ebbx+cZ6Aiuq9QE2PABBjffwfvD5t4oiiKCWze1rHG06zLBOiM+YgGVZNjXtrPL3mKDcFNPlEy12ba1WasRs7JurnU+ifhVNvVEmM7V1x2y/lXA9cO7RMhHqWGxUG5i2aJQm8zWyddE1uAndveyqTvCZL5ONKAQ1BQ+vuvdPdsBPrqlm9ev5lBlmQc2rm8XM9YZJlc16In5RQGyBkSBEaDctG86gNw73IHluKjyzc9/Qwmhjk5FfOtmxPlUmbBfxXMtkjfZLwOq0lLYSYRuQipRJAkbD0mCRGD91/OrSttTfj3M5uv83htThHwKv/P45nVtJEu6RVBTqBmOaGiukQs2mgrTEwuimzY7/wowq+/gPw0cGEniuB4BTVk3/FxT5DXX4yd29FI1bN6cyBPQRB6IKkv8X29MoSkyX7p7mGTYx58cnuX582k6QhoDiQB+TW4PjLOVJhu6o2SrhrBWrxs0TIUDIx3k61Z73TBswdCN+DX+s49s5Ot/cgLLcfE8+NRd/fR3BFcN3W4FybDWVtU/sOFGq9k7+OVAQJUxWhb5K7zHa23hFNnDryrsH0kw1Wp+Xpu9C0JV1R0L4Lgeb1zNMZoK0xcP0BHSKDUsRlIh5osNvndykaCm8Pj2HuqGzcbuCNv7YyxXmjiuRyyo4VMVfIpMWbfwmjaW7THWGSbiV7mYrmI7ZXJVk+5oAE2ROTCaoG7YnFmoENIUSrrF61dzJMM+7t/QiQd89b4RUtex7k3b5dmzS9QNh4/t6GG0M0ymaiAjtWvxp3f1kamKTBSfInPPWJJCw2xba/1VQFfER0CVsZx3anJVgnJTKGq294taKB7Q6O0IUqxb9LS+z+FEiNMLZRFhEPJxz3iK586mMWyXbNVgR78gN/67Vyb4yxMLLRebABu7o4R8Kg9v7mQyW+ee95FF+uSOHs4ulNt5ztdjMBFke3+MYt18V5vp2418zWy7PWSrxi0PwVbORpLETQlRvwzI1QyGEiFkSWJ7f4ynd/WRrRosl3ViQZXBRJhHt3RxYalKqWFS0i229EY5M1/GdBw0VabYMOmM+HhgYyebe6I8e3aJcwsVumNi0DLeJeIiPM8jWzVYKOpkq01KdYNExE80oKHIImOsOxZoE6we39ZDWbeIBVQqTZue2I1Dje5oAMv1cF3hYHTfhhQdIQ3Hdbm8LHrDB0aTbO2NcSldJehTGL2N8Rq24/Knb8+yWNQJ+RUe3dJ9g4tHo+WAc3gyT9MUJIJP39XPR7b2kKkaPLm9B8/zSIT9fHxnP29N5sW9o8o8saOXpbJBoW4wkgzTsBy6In6yraGx53nM5Bskwz4GEyEOT+VZrjTpvIZ0c3KuyGtXclSbFoYtVI2JsI+nW3XSt4/Ns6knSs10uGswTrI1vIn4xX3sU2V6O4I8uLmTXN2gLx6kLx5g72AH5xbKqKrM33xwA11R/5rf0VyhQWfrewYo1k2+dWwexxOk/2zVYM/QrZ3rhROPxkuXMuzojxLQVKIBjZ9dzPCZfQOoisy942LQ+F76+NfD9cRw07TFOelWiBF7hzsoNgT5vCfm59+/NonleHxm7wC98QA+VebL9wxT1sW9vJIHO5wM8dX7RpEkiW19ca5mRN9pc0+Evg7xO6z8fcf12NEfY2tvlELdZNdgHMtx+faxefI1k/niO4Kgx7f1cGq+xKm5EgOJYLundjVT4/JylZmcyGTTFJmOkEZvLMC2vlh7/9vWH+PQZI7pbIOdg3FiAZWfnE0TD2qE/Sp3DcUZ7460xQvXIuRTiQWEHX7Tcuhu9fE+fVc/2ZrBzy5kODJd4MRskd96eBy/KiNJEsW66MMtV5o0DOem5MgVfFh2iP8XcAy4v/XneeAvuE1DMA+hzHJtj1hA4b94YhOvX82jyoLhs7knekPmjCxLVA0bnyrzs4sZBhNBclWDXNXgkc1dhP0NeuMBzi2U8WvKKnn2R7Z2o6kynWEfOwbinFsss1DUOTiavCaY+N3huh7nF4W35rnFyqoh2JHpIm9czSFJIvR4pZkb0ETg24eBhRZDx3IEk8WvKvTGA7xyKUM86KNpOZiOy1AixH0bUtw9mqRYNzk5V2asM0RFt/BrMr/18Dibe6N4nsf5JcE83N63vmXf+8WldJWZfJ19I4l2Y3qFAekhBlgLLfZ3MuxjMBliKBlkW1+c7miANybydEX87Wv+1mRehFMmgnxu3yCm41JqWGzpiVKomfzjp7cRC4kBT8Nw6IkFCPoULi1XuLBUQVMlPrq1B0UWvqm7h+IEVJmIX2GxbPCvnr/MdK5OQBOstQOjiVboYaOtVpQlie5YgPlig71DCeIhjce2djNf1Ll3PEXApxBoFaIN0+bPjsxh2i7b+mI8uKkTVZawHMGe+N9fnRSqlP1Dqzxvzy9W8DyxyDVb9oor2NIbveVDXEBTeLIlIxZKNT+O63L3eIrXLmU5s1hpK8F6Yn6CmshDirUW0v/X09vanrhDyRCRgAhS/Nw+IZP2qTJ98SCG7aAqwmrD/y6DuTt4bxBZg2J4dWS60D7MpyvGqrDLd4PjehydLnBlucrWvhgHRpPsHUqwUGySqTSpmS7PnU0T9ils6omyezBOKvKOBWPYr/Kp1kB2PW/3QxN5aobN8dkiw4lQy9vabJMTSi1W43Ay1FZ1KLJE3K+yXGlSapj85NwyT+/qW8X6U5XV+YOxgMY/eHILJ2aL/O6LVxlJhfjUnn7S5Sa2660qpJ/Y3sOZ+TJ98SDJiA8PkV+zrS/Glp4omapBh+vDcT0URSLkU9jSG2UkFaJUt7iSrRLSFH7t7mFSET+/sneAK5kqmarBSGrtbbsr+svLGPxPHU/u6GUyW8d2PT63X9i2XL/9PbO7j189MITteDy+rYermVo7sPZW0B0NtAOsH9jYSd2wW0picV+urJtrQZIkntm9toXEX2XIssSeoXiLOefy1M4epnKNlurNE1YhtsuewQ7CLVvh6C02HmZLOtv7RMEwV2ySiqxdNH390Y1c3V5joCOIb53hjyRBJKCBJN20oawp8pr5ZNfjr90/yvHZIuOdkXXV0LplY1guLhL5urnmz4Bgo15MV/CpCjtvouLvjPpZKgmrFJ9v/Wt4aCLHZK7OM7v711Wg/fnROV65nEWWYEd/nM+29v7r8eSOXk7NldjUHVk3tH4wEeJffWEP80WdBzf91WlQ3sF/3PCp8qqa771i33CC0c4w23pjmI7L8dkiuZqJ2WpCJ0IaP7u4zGJJZ7nS5GsPjhHyqZycK7Yy8jzwPAYTQaZz4myVCvupNkXuioQ48/z2Q2NMFRps7opSN13uHUtyfLZEd8zPZLa+ykbuVvGJXX188+g8EZ/CY9s+nHr2Dt47/KoChhiCrbhwa6pCSJNp2i5Rv8aJ2SJ7hxM8sLGTYsPk/g2rhxq66VAzbHb0x1cpKL5y7whNyyEa0HjpYgbTdqkbNr/32iQdIR/b+qI8uqWLc4tlQj6Fj27toVAXjfSfnkuTivjazcAfnl4kEfIR8avEgxpP7ezj8W09LJQaXFiqkgz7MW2XU/MlLi5V2D0Y5+ldfQwkQmuScqdydc4vVnBcj1Pzfn7z/lF6YwGGkqF2xrQiS/TFgziux9tTBRRZ4uM7+34u27xfFA6MJokGNarXEFNlWZDKlytNJEnin39uN/GQRq1pc2gyz0BHsO0cs6E7wmJJZH8btsvOgRin5yv89Nwy0YDKcsUg3eoj5evmKnLq/pHkLak3boYNXZF1lfrid5Hel6XZ+8HmngjpShzDctk30nHLf+++cRH7EAtq70uN8mFg50CcfN0kFtAwHY/ZglBknpwrtfqmCe7f0Em2atIwHbqjCn/zwXHOLpT53skFMlWDZNjHV+8bYddABwtlnY3dURRZoivqZ67QYEtPlMNTGidnS2iKx2KxgeF4LJYN7htPsr0/znhXWBDEbGELON4lzoMrZ+nQTYj3nRHxPqmIn/0jCWJBje6on9lCgzMLZc4slNg/kuS3H7l5rMrPA91yODJVIFM12NwTodgwef78MnePJtu9uce2dPPG1RzFhtEeZKiK3FZyua7Ht48vMFdocM9Yko/v6iXiV+mJBeiJBdjZH2eprKPKMoblMFfU2Tkg+hwiL1FY7N2/IcWbE3k6ghrjXWHuG09xYrbIhcUqtusSDWjs6QrjVxXuu2aNdz2RJX/XYJx83SISEHXUI5u7GU6GUBWZi0sV9g4leGhjlyDEh3xUmxb3ZJJEAhp102ZX/MbaYipXJx7U8GsynudxeblKRbfa6s67hjpumoV6PWRZYjgVatfVAU2mabkkwj6GEiGG9t8eInE8qPHFg0P0dQQIqMotnfOiAa3tsnFmvky1aeN6Ht88MktPLEDDtKkZDo9v66E3HmAiW6PatOmNB9rE8P0jCTb3iJrv2nqoK+rnaw+O4Xm0n4nxLtE7O7tQJlczaFruKneReEjjv/nUDuYKOrrlIMkSJ+eKzOQbqLJEKurD8YSLyEBHENfz2pEnIPbHBzd28eBG8ee/PDHPYDKEvlxl73AH921M0R0NrFmfdscCPLS5i4FEkI3dEfa1IntURfQwVn4HVZGZzNZ58cIyflXmU3f10zCTbOwKM1fUeelSFlWRb6oA/rCGYBs8z/uiJElfAvA8T5du4wTEcz0sx8MDqobDoYk8n9k7QCLkIx7SeGtSfNF7hxOrmkorLAtFlhjvjDCVqxMNaGzri7FvJMGhiTyHpwo0LREeOpgI8cyePhJhX7sxW25Y/PScyGioNm0+t3/tYv1SukpZt7hrqKOtnpBliX0jCc4vVtpf8gr01vTfa3k0/yJw92iSWtMmFtTY1B1tMwP3jiSYLzUJaDKf2NVHyKdyer7EN96cxrDddhHWHQuQDPtYbKk6zi9V2kwhx/U+EMZ5w7R59uwSnifsDld8oh/a1EksoJKKCGn0Q5s6OTSRZzgV4t5rMo9SEX/7u13B5WWxCZxfqvCkYRMPauzsj/EHb01TrFvMFnV+5/FNjHeG6Y7KHJrM88NTi1xpSYEbhsvbU0V2DcSYLeh8/bEN+FWFxZLOmYU5pnM15orComGsM8xYZxhJklaxmstNi997Ywo8mC82+Mq9o61DpGCTfO/kAsW6yf0bO+kIaVgt9l7Tcoj4Vb5wYIhM1SBfM1kqi2D66XydPaF3voO9wx28NVlgU/f6jbP3grcm85yYLaIpMqOdEUoNi2LDbA/AWopcRlJhzi2WqTUdTs2X+MGpxfb3tlRutoMbCw2TpUqTn13MENQUPrN3gC8eGGKp3LxpAOZfZVxervLalRwjyRAf3db9gQ2ObwZxiGoiIQJv3wvenirwJ2/PkKkYTGTrdEcDjHdF+O1Hxvn2sXkWSzpHpgtIET+u5/GPntrKibkif3x4ltFUaJWE3KfKa6oQx7vCnJ4vs2+4A9sVsvHRzncOMz89t8xCSef0XJmHN3dydKZIR1DDk97J+7EclzeuCo/xg6NJ9txEjXFuUYTFTuXqXEiLgm86VycR9vHM7j4OjCYJtWwgV/D0NeqSv/vYRjJVg1hQZTpXx7JdTsyVUWSJWFDjz47MISP2k78ZUHFdj59dzPD7b0zhAX//8c1rDiIXyzfaitzBLwcSIR9jnWEs16MzIhoB1wbNA9RNl5+cFWeJj+/qvWmuqO241A3nhuDelXuu1DD5xpvTmLbL49t63tWC2HE9fnI2zXKlyUe3dbcbPTd7f/WXnKW6go/v6uPsfJnJXJ3XruS5b0OqtceKtWEkFUY3He7fkGqzDW8FW3qiXEpXUWWJ8a71r1dAU9jaG73p9bJsl2LDpNa0ya9j7fNeUNYtslXjpjaHQZ9oGDZMe13FLIgzaCygrTtkuvY9PcCwXOpNm+gaarDpXJ3fffEqricyYv6rj29b87WqTZtq00aWQL+JheG1GanrwXE9rmZrZCpG2x7kDu7grzKyVYPvnlzA80QN+uiWLiq6xUxeKHk3dIkaoi8e5FK6SiriY0N3hLFUhAvpCk3LRbdsCnWT7liAnniAckOQFrf2xVBliZ+cS5OtGvzuSxM8uLGTn2SXwXO5tFwlGlAJ+RS01nnspYsZJnN17muxqN8NL1/KYtouJdvlrckcn9yzdt18B79gXFNueIjv2nVFr8X1oNK0+cab0+waiK95Jq0bNn/41gy66fDgps5VZGRhfSZec8W6SJakttJMtxxOzJbJtKzCFko621qKn60tq6+G6XBusdzOBN7U08k9YylkWWJHf4wd/TF2DXYwsVzjxUtpKk2L5XITD0iF/WzpXfte1RSJ80sVLMdl/0iCVMTPl+8dWfNnzyyUeXNCZBAHfcpt72uYtssPTy9Sbdo8tbP3pnv1e8XlVo9ipRYHkCUZTxIK0GJdEAgTIR97huI3WCEPJUN0Rf38hzenaZhOOyZBkuDotGiYKorM9v4Yj27pojPip2k5OK7XJrreKq5mqrxyOcdQIsgT23t+IbXwrSBbNXj27BIhn8ozu/vecy9FlqX2ff7LjoCm8Pi2Hv6XpSuUiibL5SbDqRCbe6LYrsjSthyPfM1gttDgie09bOgWlpmbe6JkawaqIvGD00v87GIWz/M4NV/GbuX5fe3BMfJ1k1LDQjcdDi+UaLZcvxRZ4vJyjce39/L0rj7+6K0ZCjWTfSOJdZ/rtfDpu/pZrjTpjoookc09URQJ/ukPLxBQZY5OFd/3sHY9hDSFbNUgVzOoNi0uL9foi4uBx8qz1t8R5PMHhrhvQ4q5gs6OgdW/m245zBUaAFzN1vjqxtFV///FCxleu5LFdlz2jiT4Gw+Mte9J/Zre8kS2xonZIsmwj0e3djOdb7QHZEOJEPeMp1go6lxMV5jOBdgz1IFuOrie21YWrfThrizX2NIbZWN3lD96a4bFks5U63zwzJ5+yrpJyKcw1iUUfsNrWJ5fWKqwWNYJ+1V8qsw3j8xhux5beiN0RgSBePM6Gag3w47+GDP5OhG/eD5LunVbh82GLaxxR1JhfuM9qgZLDZMfnl7Cdj1iQZVCzaRmOVQztXaf8/xShULd5Nh0ERePVGR1nbVeDXv9OpSpNvlfX7qC7XgoEhwYSbD/uiinpuXy4kVhD9oTC7BvuAMQPbfxzh4upCsokoRhu4T9KucXK8SCPvrjN8byaIqM47gEfQqZSlPke6nKqoiia3HveGpVbx7E0O7kXInNPREe39bDQCLI61dzLLTur/mizmAyRK1pYTsuPlV51/nJhzUEMyVJCtLaZyVJ2gDcNuNkSZLaG7jrwaHJPF84OES21uRSusK3j83THfNzeCrP/pEETcshXzd5elcvk7k6gwnhK7mpR7AHVpg8K9PGlWbCQknn6nWZLH5NbgfPxdZpOCyUdH58ZgmgNSF/Zyr8yOauVX9ewcHRhMiZSQTftSF1LYTdT41UxL/KK/PnQSLsW3Oo1x0N8LUHx1b9t7cm81iOR7FhtjOnQn4FCeiPB8lUm6QrTV64sEzdcFAk6QMZgqmyTMinUDdWfx8BTWk3CPWWpHjXYHzVYeNSusqpuRLb+mLsGoxjOy4Ny2H/cILf/dkV/KrCq5ezfHJPPw9t7uKlSxlMu07NsHjuXFoE30ser17KtkOBY0GNiCSRDGvYridkqa2Df3dUNP6Xyk3GUyGWKgZjXRHOLlZ4cFMXg4kQn903QMN0yFUNdNNBNx1eOJ9BlWV+Ze8AluNyOS38XnM1g7eni+waiPPIpi4qhs3e1qK1YkmRqxlczdbwKTc27vYOJ9g7fOvKg/VQaVq8fCnDnx6epTsWoDcWIKDJpMs2taaNDLgIj3YJUUhF/Sq67dIdDVBsWFxerjLWGWbXQFxYTYZ99MWD/P7rU7wxkUM3HbJVg7/z6Ib37PP98+L8oth89o8k3rP9y8+LI9MFKrrFmYUyB8eSN21qflAI+pQbBsPXQm/lWax3TVbsHWRZItySyPtVhb3DCcq6zQMbO+kIaox1hfkXP73E8+eX6Yr4uXc8xf6RxJrWlsW6ieN5dEb8fHRbD/dtSBHUlPbG27QcpnJ1Qj6FTLXJfLHBcDLEidkix2eKFOomH9nazRcPDiJLEo9v6+b/eHUKgMNTefriAS6kq8iSsOq89ju/a6iDV69kGU2FkRDDjHSliabKHJ8ttlmSa8F1PSpNi754gFTEz3BSPINjXRHeuJrjO8fm0U0b2/HY0hvj+GyRo9NFTs6W0E1hzTuTq6/ZcJCltbN/7uAXj8vLVY7PFtt2BA9t6lplKwRgtg7PPlVeNyMGxD30zaNzZCoGdw138NiWG+0ECnWznVGRrjTZRRzX9Xj5coZi3eKxrd2rzgeZapPLy8Jf/fhs8aZnjrenCrxxNcdwMsRn9g6sa7e31uc+3cqW2jUQx7Bdjs2IAPAPcg2PBUTA+OGpAiAyQ758zwiOK5iFyxWDx7f1rCJSONfY766HVMTPFw8OIUvSTRsd3z+5wDePzrFvqIN/8OSWNZs3Jd1sFZRe26rk/eCNK1nOLVVYKreU4mt8PpGX6mHawlp5PawM5VxP5NCupyaMBbX2/buubaIE77Tb1sdQMkjEr6K22PbrwXE9Fksig3I9i8V0WedHp5co6yayBL/5wNiaP3cHd/CLgOW46JazruXnu8HDo6LbTGbrjKTCwvKwVWM8trWLStOkJxrglUs5fmgsUdFNJFkSzP2iTnc8QLMVEt8T9dMV81NrZYD5NYVyw8R2PYp1k0xFp6LbhHwKpu1yb8tu7uRcCYCjM4VbGoIVWnlALjCXa/xcv/cdfPAI+RWoCdvKlZmFMMZtDU48j/pNsinLutWuD9Llm1s7Sy0V9FNjveTrJnuHO5jNN1r/D6LX7FHZqsFfnlggXW5yNVPFp8oMdgT54sHhG/oemUqTY7NFTNvjrsE4i+UmDdPhpxeW8WkKn9s3eMNe73oib6XatMlUmtiOy0y+wbGZAmG/xuPbu9v7TVBTKOsi2zqoKdiOy1xRpzvqf8+DnrUwW6gz07oOp+ZKbZeV24GBjhARn9IegsmSOKfZtkuxbhH2qbw1kScR9nFmocSWnihXMjWiAZWndvQRD2norawkEL2h7f0x4kGNS628nrHOMF+5d4TOiJ9s1eDPj4qcrE/t6We0851zpuW4otkaDdxA7gLhjlSoGZxdKBMPaqtIhtei0rQIacovjKR1dqFMvmaSx2Q6X2+TeP9jhSJLdAQ1npsqkAxpbO6NEAtq9McDRAMqf350juVKk+GkUF0WGwZVw0JVJLoiARQJclWDqWadaEDF8cTZ27Jd/ss/P8loKkzIrxIPqkiS6DNIkkRn2MeeoQ4KdZO6YfPc2TSZqsFSubmmxdp60BSZwUQI3XS4lK4ymAiyoTvK3WNJrixXca87r7qusPy+HUPYckvJ43pieKLIEjXDXrOXPJgIrYr8WPksVzI14kEN1/PY3hfDctw2ucDzPAp1o33GsGyv7eoDEPGp2I5LIqRRrJuMd0UwbZfdA3HKTQtJEiS4jd0RBhNB/s3PrrJU0ZnI1Ngz1IG/ZUGZqRjsG0mIYaXl8ML5ZV65nGFzT5TFksgnrugWuZrBG1ezfPfkInXD5nN7B/jU3oEbzu5zhQY/PLXIZLZO0Cfz9Yc38NMLmfb//+i2HjpCwiFqBUtlnablMtYZvmn91t8R5G8+NP7ONfg5z11rodq0+JPDs+iWwxPbe27Ijnt7qsDx2SLb+2I83Or7L5V1YgFhEXh+qdK2Tnx0SxcbuiP88VszNEyHvniAbLXJw5s6ef7CcpsQ/vPaNspISK2Vf1NPlL/7kY2rrmelafF/vDrJ6bkShu0SbOUzpyL+FvEzwqcZwLId/uVPLzOZrVFpWswWdPYMxfnI1ncI7Lbjsrk7yrlkGcfzsFyRRyZLEn5NZq7QoKxb9MYDq+JUrkXdsHnunHCNOrtQ4XceF6+/ayDOK5cyxIIa5aZFc7nKfLFBPKTxK3sH3zXf/MMagv3XwE+AIUmS/hh4APjN2/bqEgRUiYblISHs+65karxyOcu5hQphv0LTdvj0HjE0+OPDs1R0i50D8VV2V5IEr17OosgS929IcddQB9GASqlh8takkLsPXbcIBTSFX79nmFzNWNcrVpGk9mJyKx6VAK9cyjJbaFComxwYSbwrCxfEgvfTc2kupsWh8K/dP/qB52+BkKwWGyaG5fLgpi7u35jCp4jh4NtTef5/PzhHtWmhybKQUioSpxdKeN7tb9r6VOGHn6kajKwTqP7K5SwXloQNZSriay8iL13KoJsOS+UmW3oj/OnbcxTqJgdHE2zri+F5rGJpxwIajudxYCSJZbtczdQ4Ml3AkyDm1+iOBkhGfORai9rG7gif3TvA908tkqkY7B6Mc3y2SN10uLhcY3NvFFlerbaJBTROz5dRJNg30sHFpSrDyRBL5San5kr8+bE5TMsl2cpYSoY0YTERVNm7hpVWZ8R/wwDzduKtyRzfPbHIdK5OPKRxdqFMtWlRblhISMiKjCSD4kG4VUjPFkQO267+OH5NIV8z+NHpJTZ2i2yy335kA6bt8sL5NM+dS5OtGXQENSRJhIvfjkLj3ZCpNHnuXBqAuml/aBYLm3uiZCoG/R2BD+VZvhlOz5eYytU5MJpss++XyjrfPjaP58Fn9w+uYuU3LYfpfJ1YUOOpHT0UdYsfnl7ic/sHifhVtvXF2NYXw3U9yrqFKkt85/gCfkVmudKk2rT4/den2NIb4xO731FSLZZ0/uLoPB4ez+zua3vMX4s/PzrHdK7OTKFBrWnT1SIFbOyO8srlHLGAim46PLN7oH2Y2NAdYSJTY1NPlO+fWiRdbnJhqcKB0SQ1w+KpneIz7ByIt5v2riusURVZwnW99qFnsaRzaq7Ehu7IKrbSq1eynJgtoSkSX71/tN34CvlUslWDRqsZ1hPz0xn18Z1jC1R0i41dYZYDKkPJEE/tWvve05Rf7P1xB+tjIlNrD2H2DnXw0Kau1gH0HQwmQmzri5EI+9hzE4JI03ba7OgVBuD1GE2FuWuog0rT4u7WUHau+E4Y/dtT+fb9DMIWuDPiI1832fQu9lbnF8ucX6pwdDrPpp7ILZNZziyUeemiKGRUWSZd0a8JANduKPBuJ6IBldHOELN5vZ0focgSn9l7I8nnxQvLnJ4v33A+vB5zhQbfOjaPKkt88eBQ27f8evze61Pkagaz+QZfuW+EntiNQ53OqJ/hZIiybrHrNgwEj86UOL9UpiPoY70T53ypgW66KLLERCvPZS1EA6oY8ivyTUkYj23u4gdnltjVHyMWXruQGewIsnswzkS2ftNrO5wU968qS+sWRQD/0/OXOTJdYDgZ4p//6u41GxPFhsXFpQqm43F2obzua93BHXzYMG2XPzk8Q7Fh8cDGzluyms5WDd6cyLGhM0x/IsSugTiyBPm6wUSm3j4rNS2HcwsVkiE/6UqT2XwB3XIwbJeAIuFTZGIBlfm8zngqxJmFMqcXylzJ1tjYFWEkGaJQN9k6lKAn6uf+DSl+eHqRsm5TbJhEAyrfObnIlw4OM5QMMVdovOvesYKAT6beYuj2dtw+Zcsd3F5U9HcGXLrZUmBI0Gw57zge9Mb96w4c+uIBDo4mydWMG2wSr8X5xQoV3aLScstZIQbvHBBZIsfnSpyaE8OPaEAQkksNkyvLFRqWw4auKAfHUmsSf3OtgWt3NMDuwTjFhsnxmSJBn8pCUafWtG8YukiSRNN0mMrWUGWJQsNivtggXWmyZ7CDoWSQ3YPifPXmRI7lSpOemB9Jknj2bJqrrUHRb94/+r6HMb3xINGASsN02HCbHU+29Eb59N4BvvHmDMWageuBg4dje5gNk66oH8txqegWVzNVfnpumWrTYjARojsa4LGt3STCPh7Z0sViSRBuVvbr7miAjpCPVNjX/m/pcrNNzloo6auGYD89t8yR6QKlhsnffnTDDcOjzT0RXr+So2k5vH41x1hX+IYG8Ep0RTLs49fvGb6lvtntxnhXmLMLZQKaQv+7qNT/Y8GjW7pZKgt3qMlsvd3c/kffOc3RKRGn8Jl9Awx0BPkn3z1Hpmow1hnm731kI29P5bmUrqGbDn5V4dHWvTSX1yk0TOaKOgMdAbpjfvo7gqRLTQ6MJloqItEj8Tyo6CaG7bBY1vE87z0Pqf7yxALLFZHx99fuH0WTJaIBQexyXQ9ZltrZhX5V2BG+X1JyPKjx4KYuFoqCyGU7Llt6YhwYvbF3txZOX1NTjXWGef78Mj85m+brj24kGfEhSRJP7exrP38HRpPtftmpuSL/7CeXuLpcJeLXGO8Os70vxmhnmKBPIdRykGqYTltZbjgOtuOhWw6eJ67JFw8MUW3adIQ0JEni5UsZvn9qkYWiznxRJxnysXe4g66oH58qRi/ZqkHdsDk8VeDzLTtDw3ZQZSFCkSVBAL+UrpII+3hjMs+TO3rI1UyalsM3j8wR9it89b5RAprCfFHUYp4natlC3WRTT+QDsfifztX58dklEiEfn923eoCXqwnbT8/z+MvjC7xxNcdHtna3LaOPzxbRTYfjs0Ue3NjJW1N5Dk8WCPoUvnrfCGOdYU7MllBkieFkCE0WGa664bRcZPx867hw/Qr7FfaNJPjMTRxjVmA7Lq9czmI5Lo9s7iboU+iM+vkvn9zMhXSFp3b0reqhNS2H58+lmc7VaRg2qaifu8eSa9bo6YrRXuvmCg1iAa29567guXPLXF6uMlfU0WSZZFjlyR09DCZClBsWf/L2LBcWK2zujfLV+0YpNUzydZP7NqTaPbK/ODpHsWEyV7T50jUWmGOdYf7JMzt4+XIGy/E4Op1Ht12GAhqdEd+77r8fStfM87znJUk6DtyLIBD9jud5udv1+rIEiZAfq9ok5Fd5dEs3dcNus/SHEiHCLYZBuXXQAtGofHNChKRu7Y1xaq7cZrQlQj52DcbbfsN7BkUm2Mp02XJcjrR8oA+O3lyh0RsP8Nm9g1SaVlt5lK8ZLFcMNnZH1rT4urRcJVczkCRWTfaBtj1Wrmbw2Nbutjz+B6eX+PHpRTRVZrxTTPT5gCyF54sNon6NeEjj+fNpIn6NsN/jye09q5jhp+dFcGpFF9Y2IJQV71eldjNEA9pNbY38mriWjuutahANdAS5mqnR1xGgZjgUWjkZ0/kGI6kwdcPikc2CYbJUbuLXFB7Y0MmmngjxoMb3Ty22m9gf2drNwdEE3z+1RN102BDQWK4IlsqldJWG6SDLUK6b5GsGEb/Khq4IX3twDN1yeO1Klm19Md6azHM1U2vbMjy1o49XLmcJasJOcb4gLNC29YlJ/s8uZFgqN1muNBnvjNwyS/924Yenl5jK1ak2bbb2RQn7VTRZxnLEwFOVQZMlwfrziwEzSIKVLglWQrlhosoSjZYN0kS2xg9OLvL2dAFVkRiIB9gxEOfBjZ231RriZlhRiH7Y+WMHR5PsGexAU6RfqP1Dw7T52cUMniesqr7SsgZZLOnt73axpDPQEaRh2qiyYHeky02ifpWSbiMhUaibTGZqxEMaPTHhByzLEonWevDoli7enMhzz1gSz/NomCKg9mNOT3szK9TNtpVctmqy8TrSl+t6lFv2CU3TQZbEMx8Laty3IUVPzM/ZhTIbu6Or1t5P7enHsMVBfL6oo8hSe92VJYmTcyX64oH2PWdaDv/0h+dJV5r82t1DPLChkxNzJV67nOXNyRyaLHN5ucZoKoymSOiWw9tTBQp1k55YAMNyoXX7xoMasaDGWCrMmYUyluMxla0zkAjStB2GUmG+/pFNN91njF+Qbe4dvDvydRNfy9622Dp/rFjWriAR1vj4NbaZ6yHkU7lvQ4qpdRSBIFSXj27pombY7eF5Muwj6FPQTeeG4tyvKnzl3hEsx1vzPHItTNvl0lKFRNjHxXT1lodg1zLzFFkicE0A+HoqntsFuTXwupXieIUgc3GpctNBzbGZAt89uYAiwc7B+LpDsN5YgELdJB7UiPjXfn57Y0H+n09tZa6o89BtyK1yPRe/qqDIEqbj4l9DmdUV9iMrYNseXTc5j6UrTYxW1kKuZqw7rDwyU0QBJrJ18lWD1BoWI7maSUBT2dEfZ7bQWNdm5p7xFNWm3bZnWw8r6sW5QoOG6axJiFnxrDccl+HbGGp+B3fwflFpWhQbYj+Yya+/nl+L165k28qQ+zd24lNldNMhFfbRMaJRM+w2W12WJaIBlcWyTiLso1po0BsL0Bn1kS4b1AybzojGbEGnLx6kbtiYjtfeN5JhP1XD4o2rOZ47t0zdsIgHFGqGTFm3ODpV4NEt3Xxu38At7R0rSEV8FOsWinx7mdh3cHtxrRXtijjddFyuVfPO5HQs20FbYw+XJOmWchhXbJ5W2ObXwmydhcEj6JP5yNYedg7EOTMvbAiDmsxwMsjT15DD5goNig2Tsc4w8aDKQEeQ/o4gD2xMIUkSI6kwf3F0jt64n1cuZzAdjye297TP135VxkUM+VRZIlttEvGrOI5QUqzUAK9fyXFxqUqhbhLQZA5N5oQjDFA3HGzX4/0ebSJ+lb/xwBiO5932oY7juFxK14hoEnmPts2lLIHkQSygEg9pHBxNcnymSKZqoMoyluPSd83wet9w4oZID58q35Bpu6knwnS+LtQm11l01w2biVav48enl9jSE111Vts/IjLnT8+XURW57ahzLVaUg4W6KUjBH2CfaT2MpML87Uc3oEjSh95/+UVhJBXikc1dgnCUrjCRqXJ6vkS63ESWJVRFPLepiI+qYeO6gjRebJj89QfHuLhU5cULy0iSxBPbRKbVixfEQGe52mSuoHMpXUOWhRVqyK/xyT19NAyXHf0xTMch5NeoGU6LIC2uu+d5nJgr4boee4cTKLLEqbkSb03m2TUY5/4N76xNK4rWlVykWFAj2TpTrtyGE1lx75q2K9QmwfdHWFNkiV/df2t1SbVpEfKpq+uoa/7OUkXn3KKwcP2LY3PtDLON3ZE140LKuo3luJiOR9N20BSZ37hvhK5rBsvX14m/un+Io9MFdg7E259XVeR2/wagIygI+eDRMGzCPpV7x1MMJEJ4nofrefzR4Rks222761xZrvLjM0tEAhqf2tPH//nqJHMFvX3dXQ+29sZ49UqWN6/mCPtV6gY0TIeAprQGT+Jnzy9WQBLf51M7elcNQRZKOnXDZlN35Ofup51fqmBYLulyk3S5uco1ZTgZYnt/jLlCA91yqBsOJ2ZL7SHY9j7h7rO1N4YsS23Vl2461Jo2ffEgv/3weHvWMJmtUTMcVFViPt/Acf2UGwZbemNE/QpfvHv4lsjxF9NVTs8LAmAsqHH/hk4WSzqyJDGcCPGTs2nuGU/SGwvw7ePzLJV0GpbDaCpER0jjbzwwxvg12Yue53FyriTsKXuihFrf4yNbukQUSOscu1TWubBUYSrXst2VJAYTQYKawpbeKNGAxlJZRzcdYaVvu1xMV7iyXGu/z1M7+zi3UOboTJGuiJ+d/TEev64uj4feyVMbTAT5dy9PkKkat/Qdf5jU8QBQbL3ndkmS8Dzv1dvxwhISn9jdx+HJPIosrK2GkiH8msI9YykqTasddBr2qQQ0mULdpDcW4PCkYGfHAxqxgCqUJT7lhmbj9dPEU3OlNrM7ElBvkD1ej2tzCJqWw58dmcO0XaZy0VUqBxBNmJphU6yb3DOWvEHl8MqVLN88OkdPS27/yT39VHWLb7estDojfj62o/cDOwCs2CFpisRv3DtKV9RP3WjQEwvcsOk/sb2HYzMFak2LStMm2LKP/CBZ3++GhzcJ//zT82W+f2qJL98zTEBT+MSuPooNEd6qyMICbb6oUzcs0uVmK9BRY7Gk88aVLNO5Ov0dAbb1xQhqCp0RP9WmhSzB1x/bwNn5Mj5VpicWwK9KhHwKZxdKnJ4vYViuaP75VFJhH0OpMPtHEsSDGn/y9iyGJQ4J3VE/F5YqlBrCLqkn5ue3HhxFVRQmsjV6LmWoGTYPbeqiOxpgU0+EpXKTt6eKxIM+RlIh/vLEAqbt8qm7+n9u6eytYjgZ4spyDZ8q8fDmLsoNi5lCg2RY49RcCccVSs2AJmE7HoblIUkepi02saVyk754gHzd4LceFpLlqWwdD+gIapRbDeSdA7Gb2s7dbiTCPr5wYIhiw/y5fIjfD261sfCBfoaWCqDUEP7JtiPsc7b1xZgr6HgIm7eL6Qo/OZsm5FP49J7+dubMPeNJvnNsgbpp89pVGdMW6sUvHhgkWzPpjQfQFJmvPTjOE9t7ODJVpGk7gC0yKq5Zf7f0RslUm5i217b7vBau56EqEnXT5t7xJN2xACOpEHcNiYJsvCvCeFcEw3ZYKumr1i0xuKrywIYUjaEOvnBAxnQ8LqWrvHQxg6ZIfO3BcYI+hUvL1Xbu388uZFEkkQd4eq6ET5NJhnzs6I/zrWNz5GomwZZtrm453DUkmFEzebEv7RyI85V7R/jJ2SWuZGoUGxbb+6IYlstIMsTO/vi7ss5+2UOU/1PGUzt6OT5bxHa8trWoqkhcy5daKhtM5+r4NXldC7izC2UupqvcNdRxg1/29fh+y05iS2+Up3f1EQ1o/Ob9ozQtZ02LUUmS2pkON4OmymzqiVI3bHJVg3/z0lXuGUu+63q8oz+GqojMj809UVw3QiriJxpQP5R717RdJrI1emOBVUXb9TgwmuSF88s0LZefnE3zsR1r50+8fDlLuqwDEoeuZNe0pQT4wsEhvnl0jgPDiXaxsBa29EZJhgVzej1kqwbfO7mApsh8Zt/AuhZqm7qjlHWLgY7Quo0zT4JE0IcqWcTWuB9W4LgepYaJJsvcTLyvmzY108H1IKit/Z6dEeH/ni7r7LzJmVkwZDvRlLVzINs/F1A5PJVne19sXUX4UDLEP3hyCwsl/T3Z5NzBHXzQSIUFS3qx1FwVNr8eHNcjGfZxKV0lXdY5OlPkiW09BDQZn6rw03NpemIBvhdb4DN7B/n8gUEWijobu6K8NZUXVu8DcYI+0YT47ol5/uLoPLrpoMaDPLmjB91y6YkFOL8omhcXl6oYtosii/NRd8zP3uE4DdOlOxbg8GSez+4bvKW9YwUjiTBTuQYB9cahxx388iCsyegt5c4KjyKgKu1ziypDTzyALL+zRtuOy1K5SVfUj9PKD1tp1Hmex9VMjUhAXXXGGUqG+PqjG9bcZ/2qLGpm22VnfwfZqsHrV7MkQj7u35DCsF2298XbfZJ8zeDbx+exHWHfG/IpLJR0ntndR1m3qBk207k6ffEg07kGhZqFT5U5NVdqW1Q1Lad9JhlJhfnUXf2cW6zwyJYu7hlLtfeajpBGV8SHboqBV6ZiMJwM0RcPMNZ5e7K1QQyz5XU13T8/5ks6+VqTmUKTaylZqiyRCAlGf6luChus1rkk2iL5bu4VdbDluHz/5AJl3eZjO3tvmtEZ0BQ+uYa1fsMU6tKm7TCcDNIV9a95Lzy2tYeBVnzJWmfY+zakeO1KjsFE8BcyAFvB7RpWrtTZ72bN/YvEiiX13mERGVAzLI5OF+mK+vnIth6OzRTZ1hdlS2+UI9NFtvRG+enZZXTL5j+8OY0iSzy6pZuApuB6HvNFnXzNIB7W2NQTZktfhEMTBeqmjWG5dEVNPrGnjx+eSuN6Il5ge1+MvcMdzOTrIIlByOaeCBeXqrzSyrWSZVF3fPPILBPZOoenCm0BBMAze/paf0/c15+6q5/JbH3V/rS9L8ZktkZAUxjrvH2EqsVyk+fOpukIaTyzu/+GM+8rl7McnynSFw/whQNDTOVqaIrCzgFRU+XrBhXd4gf1RZIhH8FbWHfu25BiodTg7akCeCKXMaTdfCTwyOYuHtrYedPhbn8iwK4BESdT1m0kCV64kOE37x9FaT0Xv7p/iLlCg7646Ed+7+QiL13KENIUak2Lly9n2oO5x7Z085m9A1xernJytoTaIpM+vLmz/Yxv6o7w4KZOmpbDkekCx2dKpCJaO/MU4HK6yn/34wu4nsev3z0MEtiux0e39ryneJPtfTGm83USIR+98dX9VEWW+NiOXgzL4Z987yznlyps6nlHtfTw5i4evOb6rcQiJK9Ry17b6+qPB6kZwpI3GlCxXI8dA3E6Qj7qhs2/f22qXd+DeBavZKqkwn66on7S5SZ+VSYVET1t1/PojvqpNC2+dWyepiWigTZ2izgOWZJ4/vwyEkK8Y1guW3qijKTClBsWz19YJqgpxIIKr1zKEfIp6JbDM3v6CGnqDXX1D04tCjKI47JrMM6TrSzHzqivLVTZNRCnalicmasw3h1m33CC6Vwdy/GIB32Ytss3j85RN2wUCf7WI+OshUy1yY9PL5Gvm2zuiaAqMpr87uvwhzIEkyTpnwFfBM5Be6/1gNszBJMEO+BP3p7F9eBfv3iZf/uVA+2mxEJJbzdqzyyUeflSFlWW2ptoRbf4o8MzvHE1R0W32TsUXzc827RddNNZNZgK+97bZbRdr80WWiu0zXE9FEmi0rR4e7rAvpFEe2jkeR7HZ4rtzJvPHxgCYKnSpDPiI1v12DeSuCVf9pX3msnXSUX8tyztXVFIGbbLfKnBJ3f3k6kaa9rWjKTCbO+PM5mtU9ItFDzUlp1B7SZe4j8vaobN4UnhYX09MwkEm0JTZCRJIuJXqegW+brJQEcQWZZIXfM7rByI//zoHM+eFSHRTdtl71AHJ+ZKpCtNkmGN33ttiqWK3rLlVEiENI5NFxnpDDOcDKHIEveOJ3njap4/ODTDZLZObzwg2NJhjVzVYLTFpAExcDAska1RadoMt5pGpxdKqEsydcMmHvLxiV1C5pwK+zFb99O192XIpzCda5BvSVMvpasf+BDs03cNcHy2yFLJ4fdfn2K0M0xfPMin7urj6LSwY5ElCVmWcTwPpFbAsm5xZLqA67kslHQ2dkWoGxavXc4xX2qgyBIf3dbDSxeXObtY4XdfvIrnSWtm1n1Q6I0Hbtj0/lOBqgib0ULdxHZd/t0rE2iKzBcPDvEr18ixZ/INPE+wIGumw19/YLStHuuOifDoswtlRpIhSg2TPzsyR7FhMdYZbr/OD04tcWgih09V+Oe/uvuGdUVrscrWws8uLvP2VIF8zWSsM8JQMrzq862g1DD5r75zhqpu8czuPr50j1C2vTWZ5/BUAVmS+ORdfVxaqhIJqCxXdEzbRZGVtgptOBmkNxagpFs81GrYroSGb+iMsKErzAMbu/juyQVs1+WtyTw1Q+Tf9cYD2I7Lf//ji5R0k66In4NjSTqCGpt7ItQNESR+ZLrIsdkSM/kGX7l3ZF0ffICL6dItf5938OEiElDZ1BMV/uutg+LKGWAFJ2eLnJ4vMdAR5K/dP3qDwsp1PV68kKFp2SxXmmzs3rju+3mex3Qra2U6/47VXUBT3ndjZoU92R8PcH5JKHFOzpXedQgmSdIqixtZltjSe3sIBYbt8OyZNE3L4WM7etcccj13TtgU+TWZrz04tq767N7xFNO5OkstO9R7xpJrvt6KtbUEqMr613S+qLOtN0bdFAPw60lNIPa/3/qDo+TrBr9y1wB/7yOb1nyty8vVFstS2HKsp8LbNdiBXxNnkbUY0yDIKOlKE8NymC2sb4eomyKrAGnt8+oK+mJ+KrpFKqzCOkWyh2jsuB5i/18H33x7ln/x00uoisT/8qW9HBxde907OV/GrypM5xsU6+a6w819Iwn2rWEPfQd38IuEJIkG4K0gWzX41rF5HNdtNzXOL1bY0hNlKBnCclwiLZvnmXwD1/XojgaQkPjLEwtMZGsiL8PzeP1Kjm+8MUUi5Kcz4udqpsZSqcF3TiywZzDBnsE43zpWoVgTKlBZ8jAdsF2HqmHz9M5+lqsGZd1aM9T+3VBuWvhatkeZisG2dxdA38EvAOXmO6MRo7X065ZDKxEM14N7xhLtJn3NsPnmkVlKDQtZklAkQJL4zN4BhpIh3p4q8OZEHkmCX797mO6WSvrodIHBRGjNvkXTctjSG8W0XOqmzZsTOaZzDRzXExEUEqvWdtcT559ziyKbybAdcjWDmXydbx2bBwQpuSPoIxn2tfZxwVC/lK7y4sVlYgGVjqCPWEDj8e09beLc9eiK+GnaLhu6I9iuiyxJdMcCPLK5i0rTomk5t20Q9kEg4lc5PV/Gve6/ex74NQXHc3ntao7OiJ+RzjCqIqNbTlsJ17Qc/t0rExyeLLCpO8LpudJNh2DrYSYvlNz3jKUYSgT59DoWX4osrcpxvx5DyRC/fs/wuv//rxLmCg2+d3IBnyrzxQPDa+ak/TLg+fNpLixV2/afT27v5Wqm1mqqw//25X3Egho/PrPEpXSV+YJOV1RjoeRSamXpgXBMyLYy3w5N5riwWCESUOmK+NnaGyFfM+iJ+1FlmW19MWbywgWpbth89+QCdcMhXzPRFIn/4dkL7OiP43pe22nCp8j4VZmgT8FyXIKqvKoG++6JBa4s1wjslxlKhgj5VHYOxDm3WObFCxl6YwE+u2+Av/4BZMqenitR1i3KusVCSb9hwDadEwq0K5kq/+0Pz3NpucrW3ihfuXeEhulwZKrIybkiewY7aNouT+1897gOTZH50t0jfOnuEV6/muXIVJE/fnuG37h3lKBPodQwKTYsRpKhVUOvlX+3HJdvHZvnlUvZds5z0K8w3hnhy/cM07Rd/vDQNDP5BrIkYbkuflmshb9yl+gZrxANyrrIDFsq62hi00BTRI8+2jrTJMM+5goNFko6H9/Zu8pFQpKEIxtArmagmw7nlyr8hzdn+Nz+Aca7IlzNVlt7l+jzxFv9/85W/vytYrQzzNcfXb/2BnG+6Y0H6YkF2pmY118/EO4sEb/Kv3t5gm8emeO//fTOVc95uiIUyEo8wGK5yYauEAMdIX5l7wD/408vUW5YXFmuQmsI9vKljFDKyhL3tHrOSsuu/6v3jWC3LBXLDQvXE+TGii7s4qNBlbBPZbAjyHLVIBrQiPiFFf5UrsZUrs7VlsKz2rQpNSySYR8LJZ3BRIiPbhPWuGcXykzn6zQMh8OTBaIBlbuGOlbFL1wLVZF5eFM3D2965xz8lXtHqDZtBhPBtuqyYTqkIv51CcLnFioUGxbVpsVSuUki5CMRfvc188NSgv0KsMXzvPef+L0OFstNTMfDdV2Oz5SYyNbaVoYDHUG+et8Ijufx7FmR62O7Hlt6o/THg5ycKzGREV+yX1U4s1jBdd1V7CaAQ5M5vvn2HLIktcIUgzyz+51wT8N2eP1KDlmWeGhj57pelBG/yjN7+lgo6uy5LrStZthcWRYPa28sSDLkYypXbw/BJEnkknkeDCSC7GnlfsQCKtv7Ynh93KAsuxbHZoq8cGGZTd0RPrN3gBcuLHN+sUJAU/jrD4zecGAr1Az+x+cv43oeX390A0PJMPdvTGG7LkenC3zn+AJDySCf3z+ET5VxXI983SAZeseLsz8exHY9In6VhmmjKRKm7RK+ZvpebljIMje1MbwVvH4l17Yz6o0FVsl5ryxX+dGZpVYTvYtq06Iz4qfvJpZ6jiuC4xdKOvGgxkSmxqf39POK6+F5Hq9eyZGrGcLGIRFkIBnEpygslZs8vKWLDV0RFJm2NWe+JrxclytNNvdGaDQctvfHiAU0bFfYHXx+/xCzhQbjXWHeni6QLjcZSobI1ppkKzqLJRFk/d//+AIX0hV648KLdf+IyC4L+YQN0mAiRKVpEQ9qTOfrzBUa/ODUApPZBruH4usy138e5GsGoZaqbSwVpli3sB2Pw5MFGqbNt4/NkasauK6HKosMv6Cm0jBsDNujabvEfSquI9G0HFRF4vden+bNiRwhn8qX7h7mc/sHOTFbFMW+X2WhdCdQ+8PEiu/vq5ezWI6H5TjMF8VBVFVkIn6VfcMJCnWTWEBjJBlCauUhhv0KHSGNN6/muJiucn6hzOcPDlFpNXTz9Xc0MbrlYDkeiuwxnavjU+W24qFh2LxwMYMswWNbugn5FF65nCVTNXhgQ4pTc2VUWabeWmdWiuoLSxWOTBfYO9TBrsEOJrI1iq33vNBq5K+8N4hn9a2JPMsVg0vpKp1RH3jiMKHIEn94aJrnzy/T3xHkqZ29fHxXH69dyVJt2uwfSXDfeIoDo0k0RWKsMywaUKkQZxcrqIrEmxN5UmEfRksBOZWrMd4Vodyw+J3HN6NIEqos8b2Ti+0heaG+2mf5erjeLy9b8D91XFiqcmquhOfBidkifbuCcF3g8ky+wWhnmIWizvnFClt7Y6sYgeLw7HF8tkR3zH/Tpr8kSTy0uZNzixXuukW7wltBoW5yMS3YkvdvSOEBl5drtyXH6v3gwmKVS60s1NML5Tah5FqsPNvXh0Ovhc29UdIVoUpeK6Qa4OFNnfzsQgZZhgduouLwKRKvX8mya7BjXYbmhaUyE5kajiesrtcbgm3qjnB2oYymyKtsOG78uTAX0mU2dIXXZW0WayaKLOFXFZrm+sOtzb1Rdg3ERSbuTRrehi3sowwH1pOMpctNfnxmiUJdWB6vFxr/rWNzbavkbx+bX3cIFvIppMu6KJb9v7zNxju4g/eKFYu1laH5bKHeHkInwyp1w8GvCSsi0xa5PQFVIRpQuX9DCrllp/PT82nSJV2wxRsmL1/K0LRdIj4FVRGvqSgSNcOmZji8OZFjsdTAdlwqTYfOiA8XochZIYD6NYXfuG+Ehmnz6uUc//qFKzywMXXL7gzdsQBnF0Szpjt2R8H+ywprjWXcr8koqkTN9Ij6VeaLzbZi5Y/fmuGVy1miAZVEyEcq4kOVZb53coH5os58sUHEL4heTUuMXl68sMx8Uef8UoXBZJBYQKPUMJnI1hjvjJAM++iNBXhrMo8kC+vghmlTbljsG+ngkc3d7SGcYTscmymKPdvz6AhpTGWFhd9iSafYMBlMhLBtl0/s7iOkKfz47BK66RD0KRy9ksOwXLKWya/s7SfsU9e1OQZ4e7rATL7eznQJ+TS29EY5u1Dm+fPLBH0KX75n+H33NW43VvothZpB3bhx73c9D8+DmuGgmyKeQVEkzi1WSIV9bdXncqWJZbv4VIlCQ+TwrIWaYWM77prqLRAOMomQhm65PLS565d6cPhhYbKlhrAch7lig3hoJYfaI1c3SIR8v5DMs+uxUrvnqgZXMzW29EaJ+FVCPpWlcpPXr2Z5eld/u4bv7wgQ9inUTZe7huLs6I/xr1+4zLNnlsg3TBJBH3XTRpYl6oZDxO8w1hmhULeYL+q4rkehZvLE9h7KusWW3ijnFit0RnwsBFSalovrCevu/o4gOwdijHWG25Z0B0aSLFcMBjoCbGuR8L51bI5vHZsn4lf5yxMLPLBR1A+66fCd4yKX23E9Cg3zpkTyF84vc26xwv6RxLo2sA3Tpmm5q5SKm3qiXGnlCPausd6MpEL87GIG3bSJBrRWn9WkabntvkDEr+JTZfaNJIgFNXK1tYUJayFXFa9RNxyqhoXjefzx4VlM2+Wu4Q4e29KN63p879QCcwWdR7d0YTkeL13McCVTJeRTKekmO/rjFOsWuwZifOONKZ4/v0xn1M94V3gV6VBVZDzgL48v0BsP0BcPoqkyXT4/qaif+8dTHJrK07Rc8nWTQsNkX2dCKDwjPsr6jQKKUsPkXzx3iaphM54KMZwIIUkePzq9xFiXyBjeOVBEN12e3tPHyxezbaeua1E3BMl0KLm+i8a7IRnyMZgIki432/nx6+G1K1kqTYu6aXNuscz9G9+5bxJhXyu+R+XhTV2cXypzftEhEdIwLLEuRAIqmaoY+qzUuLbrta0Wm5bDqbkS3zo2j+m4/MMnt7C5J8q940m+dWyebX1RLmdqbO0Q/eLuWEC4jAQ1/uitGSYydaFo645QqJsiE7Zu4nkeYb/IY6s0bUZTYTZ2R3jhwjKeJwRHPdEAC+VGe85RqJu8NZmnJxa4wSr3WnSE3lH6aorMPWMplivNtuNe3bC5mK4wmAi1v78NXRHOLZZp2i4DHUGirQiid3Od+7CGYJOABnxgQ7C6YSMjWEADHUFevLDcHoIBYgqtKDyzq49cVYSUW7bL1t4o0YBKvmYw2BFEt1zuGUveMAAr61Y7b6lm2CSCGnPFBh7w1+8fxafJHJrI88eHZwGPTLnJ7qEORlMhfnh6iabt8tFWfpciS2zoirQ/X92wRUaGpnBytsjb0wU8T2wWXbFA+4tvmDavX8nRFw/wyOZOOqMBTs2VePbMEpeWq2zri/HUzt41J6UN0+b0fJlvH5tnttDgXKtRdGymyJXlKkPJEKbjEtAUMpUmp+ZFA+XwVJ4LSxUUSeKVyzm+cm+YWEB4il5YqnBoIs8bV7NcXa7x/3hqKy9fyjCZrTPQEeQLB4VK7bP7BugIqvzp27NMtVgBm7sj7Ws8lavzvZMLyJLE5w8MrjvpvRXEguKWFhaYtfb1BiH99zxxcPvGm9PEgz529sdvKu0tNUyyVYNdA3GWKwaf2NXHgdEkw8kQ/+wnF7iwVBEMb9OhOxbgUzv7qOgWOwbi7WHs6fkSffEg411hvnT3MD+7lEGSxIBtY1eEfN0k6FP447dmSEb8fHRrF4tlnVcvZ8lUdYKaypPbu/n///gSluNyfLbIeHeUU3PF9gF26zWM+mubY4okMdYVZrGks1wxeO1Kjs09UY5NF9neF7stmVrHZgq8ejlHvmawezDOFw8OsXOwg0xZ59+9OkG5YdG0RTUlAWG/jGk54LVYe4DtQlfER65mUtYtzi9VUSQJ0/ZomGabNf73n9hMf0cQw3b45J53D4S8g9uPHf0xZvKCMDCVq/Enh2foiwf4tbtHSIQ0tvfFiAW1G0gAruMyW2iQqxn4FJnnzqV5aFMXV7M1eqIBzsyXGUoGCWuikbOxO8xPz6d59XKWLxwcojPi539+4TKn5suMpELEAhqbe6KcmC0BQlLfaDVzv3LPSPswYdgOf3BomgtLFV64sMx//9ndqLKM7bjYrssnryENPLCxE7+qEA+qvH41x5mFEqbtMtoZIqip9HUEWCo1OTJdYCJbI1s1hD1jpcn/9PxlGqbDgZEEB0aTbYn9ihLtlUsZqobIKDs1V2QwHmAwEWK52uSRLZ0YlsdYV7h9cJ3IijwxVZbpCPlWHY7Wgnczr7I7+IVCkcUA1/Y81JbNi33dIKYn5mOgI0iuZjBbaPCjM4t8Zu9qpev2/hjVpk3Qp5CtGTe19Vsrp+H94s2JHJPZOpPZOmOdYZ7a2cdTO1f/zOn5ErmawcHR5Afa/HlzIke2arB7oIOXLi1zekGcWUbWGdR8bHsvJ+aKbZbnzbBvOMHugfhNQ3XfvJpvFx2HpvI8sMbgDeC588ssVwzqk3kqukk8dGNh2hcPYrvCZWA9i0OAVEsxumJPux7+1fOXuZiu8vqVHPtHkoTWsArc2hcl6lfI10323ySIW0ZiMlPHp8k3teVxrxnqOussRdmqwbEZQWQJaDJff2xtRmUy7EM8Hl7bMmUtPLpFZCJt6o7g3cT/fa617+zoj/9S2AvfwR3cDKfnSvzpkVmCmsLvfHQz8ZA461xeruF6Hp/Y3Y9u2oR8CpWmxbNnlghowq40HlSZzNa5eyzFHx6a4WK6wnLFwHYc8k2buumgyhJlxxU2axI4jmB2Oy4ENJl40Mdkto7tujQtl1TYRzKiIcsy3VE/z55d4nKmymf3DnC1ZQl9dqF8y0OwiUyVhuVi2C61pvVBXso7uM241pavabl4nsdrV3KYtsObkzlqLWLb1x/dyGyhgeUIa//lShPPE8SF+zem2m47saAGRZ2AprRVy994c5qJTI14UKMrGsBxxZBtMlunbjjUDZtC3eTYTJGuSACfKvPT82kuLlWwWwTVxbJBd9TPzoEO5ksNKnorU0eS+NiuPjb3iGHVSg19ZbnWtjtLhoUKbMUZxrAdzi9W6Iz4VxFBTNtFt1yQJDojfkY7I6TLTb53cpG6YdMV9ZOvme1z0FyhwQ9OLxLxq/zq/sF3PYd8ELi231LTzRtUYCDWgHvHU7x8OQPAXFHn5GyRhuky3hUmVzMZSgpLy5HOMLGgxpM7ete0iMtWDb55ZBbb9Xi6dd1tx+W5c8tUmxaPb+8hFfbxxI5eYeX2HqzJ/mNAw7S5sFRlMCGUI5lWBtZ4Z4iJTJVQKy9+BT86s8TVTI3eeIAv3f3hq96uZqo0LZftfSLX6KNbe3j1cpYzCyWePZum0DDZM9jB4SnRxxxOhPjDQzPols1jW7oY7Qzz4zNpkhEfZxbK/NtXJjgzX2ahpNO0HBqGTTzooyfip6hbhHwiRuDjO3v5xqFp5os633hzmi8cHCaoKSRDPh7e3MXPLi6zvT+G5HqcmC8zlauzvT/KQ5vEUNVxPZ4/n+bZs2l6YwECmorhuJyZKfKj00vUWxE0KzEFuZpJuqxjWA6LZZ0tvVFS4fWHSpeXq/zhWzNEAyo+de0sxHJDuI6ZtssT23vaA5KN3RH+7mMbRRbfGufYumGTLus0TAfL9djSE+GjW3vY0hNhvtigZtg8vKmLjqDG3uEEf3BouhWnEuAr9460HYwmszVevpTB9WB7XxSQ2NQTZUd/jFNzJcY6w3RHA+RqBmbLBjdfM3Bcj2rTaruLnFuscHA0QVfUz1JZJxbQ2NYXI6Ap9MYDTOcbnJwV/UnT1vFvUqjoJkemi2iKzAMbO3nzao6Fks6p+RJBTeHgSALdsvE8j7mSTjTgIxWRSQR9NC2HPz8yy0y+geW6/MpdSb5/apGm6fDE9h4SYR8vXcy0zyISHpYjrDKHkyEupatM5+o8vq2XvUMd/OmRWVzPY9dAfNWa5bgef/r2LNWmzXhXuJ0ztYKVgVJX1H+DMvjKcrVlzSviO1Zc2lZ9/7rF1YxQ5K8MQfs7gvzsYoawX2Uk9U7vu2bY4MFv3j/aduOYLdR5cyLPmxM5kTEdULm8XOWP35ol4lfojQXoivo5MJpgJBmm1LA4NlPgG3NFclXRR/3dFy+zoz/eEqKoBH0qW3qjLBR1rmSqbOmNcGRa5uuPbmD/SILFUpPJbA2/IvOVe4f5/qlFzi6KmUBXxI9hi/1PkoSLWTSgiR54f5zT8yVUSeZfv3iFrz0wxmyhzosXMsRDIqrnVoa0sizxG/eNkC432wOt7xyf5+RcCUmS6I2JPflz+wZ5ckcv3z46x5GZIlt6omzsfnfL0g9rB24AJyVJepFrBmGe5/3nt+PFXc9jKtdga0+EdKWJJ7lcWa62J+HnFys8dy6NIkv82sEhNrRCAi+mq+we6mAoGeI/++gmtvZFubJca3sWu67HD04vMptvcP/GFL3xINmqgSJBpmbi2C4V3eR3f3YFn6pg2A7VpoVuOrx6JSvki91h5os6uZrBsekCuwY7+PW7h9sb/dVMlR+dTuNTZb509xBl3WIqW0eSxPDo7rF3GLBvTxU4tyhUTn0dQXriErOtAL6G6ZAuN/n916e4b0OKz+4bXBXM+advz3J8pshCScenyoT9Kt88Msvp+ZJg9qkK6XKTTMXgDw5N41dlLixViAcUwTSQWLURJ8M+tvXF+OGpJeqGxSuXs6QiPrJVMdBJV5rtsEfL8ZjK15nON8hUDVIhjXTVaDdt02VxOHY84an9foZg942nkICXLmZ5e6qILMltr/19QwkKNZPZQp2Foo5EHb8qt7JK3mmMXM1UObtQ4eBYkkRQZMX1xQP89sPjHBxLtX1nJ7LCQkiRJKIBja6In0c2dzGQCBLyqZxdEEGEZV0wWA5NZHl4czf/8MlN/H+/e54ry1UsxyMV9nFpucpjW7pF3tqVLBISb03lydcMNFVmsCNI07Lxqwo1w+HiYoVa00FTZZJh/ypbqUylyatXcvTEhCfsdF5M8ncNxNk5EKdpOSxXdH73xSs8srmLJ3e8u3T6ZlgqN9Eth8vLVeqGTcN0eHxbD3//jUkqut0egIEYeNUMsblKhtuSPgtL04hPpqoKq8pyw6TctIkEFCQkUmEff35kDsfzeGRLF+cWKxTqxm31Zb6DW0Mq4uc37hvlaqbKv3zuEhPZGp0RUWxqisyRaZGV+KW7h9uHr3//+hR/dGiaxXIT1xMDANPxeGsyT92wmc3XmcnX2T+S4Eqmil8R2YFvTRRAEnk5+0YSrdBmiUrTpicWIFttcmgih6bI9LaGSiGf3LZH8TyPF84v8+rlLGXdojPio1Q3efVyFrW1YXdew0QOaAoPbuokU2nStFxGU2G6In7GuyOMd4axHI9XL4vDVlCTSYR83DXYwZ8dmWW50sR1PXTLWbOQe2RLNwfHkvxvL01QaVr8769NMJgIsa03xgMbOtnY/U7AKNBW06YiPj6+o/dd7WoXizdXit3BLw6zuQbnFyu4wMV0jSd3igP1tSOsgKbwdx4d58dn0rieKJiux92jKcq6yC1NhjXemswz3hm+KVt5BdVWs/H9DKZ6YgGuLNcI+pQ1FVKZSpMXL4jGSdNyeXpXH4YtQn9T1x14XdcTKoVyk49s7VnXgnotpMvNdp5rutwEJPYNd7C9P9ZW5l+PeEhrW48VW8STgCbObVeWa/TFA6s+48qZwHW9NYkyJd1Ct1wkaGdVrgXbcYXtr+vdZDgkbMdcT1zD9XByrsR3TywgSyIrcr18yslcnUylSd2wMSxnzSHYxXSVpXITy/F440qe//LJtd/zR2cWOb1QQpElXr2c5YsH12681HQL03ZpGM71Isc2KrrZGqTJWOtdDERh6FNkZFm6KVHn7EKFuUKjnSm6Fop1k//1pavUmjZPbO9Z0x73Du7glwlvTuSZbNUXJ+eKPLKlm2hAazc95woNvvHmFKW6hSRDsW4xX2wAEuGAwuGpPPduSPLy5Qz5monjevg1marhiJwmz6MvFsLyhDV/2bawXUFKUxWZpbJorAU0hbppYzkuumXzqT3CBnG+qDORrZEu6QwmQ1iOx13vgXBxtRV87njw4vllDo7dnOBzB788aJg2TVPUcLrt8pOzS23lUKZsUDUshlNBLMdlW1+Ujd1RfnRmkdlCnbBfbSlBxH60VNZRZYnRVIgDo4m2AujsQplq02amUOexLT2YjovRstKv6BaJsI9M1aBpOUQDKn9+dI4Xzy+TrZsENZlUyEdHUEVTJZ7e1UfQJ/N/vDqJJMHXHhxlW2+MZ88s0Rnx0xkVqnqfIlGoC3uoc4sil/3L94zQEwvw8qWsOL95HqmID9vx+PiuPu4a6qDUsAj7FbqiAVzX4/kLy0h4ZGsG929IMZQMUdYt5goNZvJ1DMvFsEwWijrlVjb5XcMdt52wtB6u7bf85Fx6zZ9RJMjXmgQ1RUQzaDLhgIphW0QDWtuyy6fKfGGNZu+1yNWM9l6/WNLZ3BNlOt/g8rJw4DgxW0KW4PR8mWhA5av3jbaJKgslnWrTYnN39KZk5XeDbgrVxGCrN/OLxFSuTq1ps70/hiJL/ORsmpl8A58q8xv3jvAXR+ep6hZnFsrIksQDmzrbfRJYOe8KG1nH9W5rXphuOpyeL9EbD6zpNDCdq/ODU0uAqF8OjCbpjQd4YFMnCyXhCrNUajKSCrF/uAPT8fjXL17h5FyZgCZy9zb1RGmaDs+eFYOnkWSIwURQ2HJ6goyB5OEirOckIBnxQcs6V5Lg6HSRuUKDnQNxaobFlt4YS6UmCyWdumGRr1vIknDXWFlT5ouiBosHVXTL4ckdvYR8KkemC5R1C8Nx6Y362NIT4Y8PCwJKwxR1S1c0wKfvGrjptT4+U6QjpJGtGmzsXlsRma+/M1xauk4lpMgSE9kahbrJ7sF4WzmVqTZ5YyJPw3TwqTJbeqL842e2E/GrzOYbnFusEFBlvn18jqrhkAoL+8iZfIPlSpPvHFfaZLOjM0WuZupMZGu8cGGZ8c4IiXCOVNhPLKixVNb52cVl9gx28PDmTv7DG9O8diXDD04t8YndvYx3hVko6ewejLOxO8oXDw5xYDTBPWNJ+jtC1A2boKYwX2oQDWj41GbLcrXE//yCSTSgAlJ7DX17Kk/Yp2A6HgslnVTYR2c0QDSgsVRusnekk5hf5d++NMFUvo4ExAIap+ZLqC0Rxcn5Eo9t6WZDd4SIX8WwhVNUZ0TYazZMh5ohiNeWk8f1XOYLOrNFYRn90W09VJpWy+FNYq6gAx4V/UaC6cuXslxYqiBJ8NX7RtuDrFPzJf7VTy/huB6/ef8Yj2/vIVNtkq0abO6JthVl3z+5QK5mcmymwG89NI4kCceuT+3pF8NPSfxcptLkm61+5xPbexjoCBL2qcyXxLrpU2RmCw16YmIIJUniTBXyKXSEfdy3IUXQpzDWFebcYoWG6VDWLVRFIuQTJKnRzjA7+uPsH00wkgzx9/7kOBXd4uRcmR39HUiSxL3jKX56bhk8j7IuSCcRn0pPLEAsoPLFg0McnioiSbCplcP163cPt1WY3z+1wHeOC0vXoy3BzcV0FQ+4kq7QuXFt4uj1CPlUMlWDly9l2TeS4NRcifmizmJJpzvm5+xihQc3ir5dvm62r/dEts6+4ZtnQ35Yu8H3W/98IJAQFkOZqoEEGI5HoWbxB4emOTiS4JtH5vBrCoOJkJAVt9RCsaBGotXIKTcsTs6WuJiucnq+zP/76W3EQ1q7ELmYrvLle4Yp7+6jaTp8481prmRqFBoWPVE/p+aKhP0q8aDGWFeYeKvR1B0RygHRgBWZCdmq0W74zBV0XM9rDSYMIgGNoWRQ+FleJx1f+bMii6nrd08s4Lgum3sjxIMiBDDsV1ksNXnxwjIX01WGEiE+s3eAN6/mmSs28Ckyj2/toivmZ67QIORTCWgypuPynWPzHJrMoykyYb/CQ5u6SEYCHBhNtOz1Arx8KUO2anDPeIqHNnbx8miG588vY+gm3z42z47+GIoi8+m7+nFcIeX+o7dm+NO3Z5kv6liOh+t5+BWpzXjYMxQnXzdQb+L37Hker1zOUqibPLK564aGWvteaC0qK03oa9URsaDK5/YPoioSz55JM1esM5tv8O3j8+3GzkJJ55//5BJl3eLQRI6eeICXLwrmxKXlGg9v6qQj5OPYdAHb8YgGNDTFQZHFYe9yuszVTI3Xr+a4azBO2K+gKTIN06batHnuXJrjs0XSFZ1Sw8L1oGFYhP0qx2cKhPwqqYiPhaLIIHJbRepCSTDlYkEhhTYswaTe0hvlaw+NsVQWB9ZE2MebE3nmCg3mCg0ifrWV4yQsoL58zzClhsXvvniFy+kquarBXUMdLJR0bNdj33DiPR+q7htP0TAcXrqY4cJShWOzRf7i2ByX01XctWhmK98pwmLFdBxcD2YKTcDDaXmrzxVEvpQkwb956Wo7kPjKcpVoQGOhqLfsH3+xh9r/2GDYDr5Wbt5acFwhg3/27BLnFytUWtl+ZxbK7Bl851Dneh5l3SJbbbJQ1GmaNq0YOMKawnAyyFJJDJsaphhqvTWZZ7bQEMHMYeEHPVto8PqVHMPJEPdvTDGYDHLPWIotvVF+509PUDVsIppM03I4PJmnI6QhSzP86v5Bqk2hgHVd8blrTWH3gySKB02V29k+1yISEHmBy5UmmiITbbHx/v3rk/zkbJq6YWO5HruH4lzKVHnhwjINUxTkn98/xPnFCi9dyjDQEeRTe/rbBZzwGY/xL5+7RKVpM1doUDcdvnBgsB22fWquxOtXheLX8zxOzpYo1i3+YdxPLKCte7/f5FG7g18wXruaxW7tRYemcvznbMK9Tgm2VG7y9T8+waNbutjcE6VmWLx0McMjm7va9088pPGrrRzEPzg0Tb5mcmK2xG8/LMJibddbU+kyX2zwneMLAO18jp8HB0eTjKRCbbuT6+HXFDRFEF9EQeLwR2/NUtEt7h5L8sA1asZM1WhbkR6dKbynIVg0oBL0Keimw86BGBXdpmbY3HsNach1PY7PFvE8j/0jSS4tVzk+W0SRJZZKTYI+ha/cO8KLF5aZzNbXzAr74alFvnN8gb6OAP/wyS2rlHf1phg6e4g9fD08s7uPbx6Z567hjhvOdCuoNS2sVlZW+SbKiKlcvd08Wirr6w7BdNPGdj0My2E9gdRyWUe3xHvOFde3Fp5sFeYAc8X1s8Nsz8PfuvcsZ+3VaM9gB9GASlm3bprRZdoesiSixQx7/ZXt5Fy55WtvY9vumvf+UqnBCxfSNE0Xx3XvDMHu4JcWK9kHW3sjnJwr4lcVEiEf3z+5gCRJPLG9B78q88KFNCdmSyyXm2iqsKLujQcIqgrlhoVPlfkv/uxUK/sBQj4ZVVGQJRupZTsvhvgOG7oiOC3yDkC2YpCrGsIOzRFnO8cRRMt///oUSBKptmJDQpYk/u5jG97T73mtzd5ktna7Lt8dfAi4nmuQq5nC7h9B+DAsl7enRH28oSvC5w8McmKmxEKxSdNyqBk2siQRD2r86EyaQxM55goNdg918D98dhdBn8o9Y0nemiwAHmcXyuwd6uCRLV0U6hYbuyM0TJs9Q3Ee3NhJf0eIYsOkYTk4rgvIaJpMqWlRbdqcmCvQHQ3QHfPTEw2wVDH4wQ/PE/GrdMf8fHJ3H985scChSdEM1y23nf1+dqHMleUajVaNU9EtDNslqCmcXSjzsR29jHdGAI/vHJ+n2LAIakKdaTsu6UqTTEXnR2fSVJt2y95UIRJQGUyEePbsJI7rcWgi/6ENwa7tt/x4nVzUquFydKaEZYs9Mxn28fTOflIRYfMVuUnN/fZUgeVKk/s3pEhF/GzqjjA/EGcmV+e7JxZ47lyar9wrGqUhTWEkFeL4TFG8b9OmaYtmf6bS5C+OzuF5UBg321m0Pw++c2KeTMUgFfHx1ftGf+7Xeb9YKOl894Q4h1cNi/s3dLJSBlzbqyo2TBZKOn5N5nK6QqVptxvuj23t5uRcia290ds6AAN48eIyV5ZryJLEbz4wegPxciUP23ZdnjuX5oenl3h8Wxe5mgWI5/3sYoU/emua5arB/eNJzi5UaFo2DYu2wqqqmzRMB0+SWK4IKzdFlvCQxPddsyAsbHMDmsxCscHlZUE8rTQtDMuj1FLV/OxihpBfIepX29lfXqtxFLmO/HV2oYLpuPydR8e5e0yolgcTIWHbqsjEAiq98SCVpo1puwwnQzy0qYuQT2nnV60Fw3ZagxR4elffulEjoylhy1dpWtx9jWr69Ss5rmSqLJZ0Qj6VckMoJAFOz5UJaQpDyRA9MT9/7f7R9u+1Mow+u1hmOq8jS9A0HTpCwg5RlSUupqscnsqzvS/Gpu4IJ2aLhP0KliMGG/PFhsimCqjM5BtcTFf5PWeKTd0RLqQr5GomiZCwPd7SE21ZkDfxKTI/PLUkRA9lg7/z6AbCrcibn5xNEw1qdIb9mI5LR1DDcjyWK00kJGIBDU/y2NwTZTJXp6KLjCrL8YgFVQoNk+FkkLenCpTqwh2q3DDbQ9KqbtPXEaSsmwQUmd97fYqm5fD3PrKRoWSITMXglUsZHMfFcSSmWplqm22Xz+4bQJYlXNfDcj2OzxR5/vwyxYbBWGeEpmUzmRURRNcPmVf+XUJaFXu8UNDb9r4zhTo1w+bPj8xhOR7zRZ2PtYQGrgeZqs70VIMNXRE+uq2HBzd1osgSybDWzlPMVI12/faHh2boiQWQJY/5vMhMWyFdzhUcogGNQxN5TFv0TVMNk28emeOv3z/KfFGnZth0R4X9oO1AIiQGhJoq8eiWLrpjos+kKjKdET/xkMbnD4geQ7ZqiAxqSaJmOkzlhQuMIKPD770+zabuME/u6GO8M8yfvDXDqfkyXVE/n903wCd394MnhlGjqRCLJaHkw4OfXsiwtS9+UzebpuVQali8PSVc9gY6glxerjLZyuwO+mQ0WUaW4NvHFpjK1yk3TKq6zVKlSeAWXD8+lO6x53n/QZKkIDDsed6l2/36puNRqBp4tJQmrRykqm7x3/34IkarOH50cxdvTuSxHY/7N6SwHJf/8fnLjKRCbYZdpWkx0BHk/FKZJ7f3sqE7wmy+zlgqTKFu0t8RZCpXJxbU2D+SaMkFdS4v1xhJhhlOBvniwSEupsXBfudAjINjSU7OFnj2bJqhZJBYUG2r1LoifuaLDQY6goykQrx0MYMsy4T8Kpuua3DsGeqgK+onoCmcmC1yNVPD8zw+s2+Ajd1RrmZq/OTsEqmwn+WKKGJmCw1mCw0My8H1RKFje147xDQWUPnyPSMcmy1yYbFCWbfoivoZSYZ4bGs32UqTii7sl6ZydY5OFzizUOalixm+9tAYn7yrnwtLVTHU0S0uL9fY1h9DRuJ/f3USw3aoN4WCSZHABiTcVSzykE/lmd39N/2OF0p62/bsrcnCDblndcPGQ9gThP0KH9najeN57G4xLV6/kuPoTIEtPVGe2d3PwdEE3z62gO16pMtGm+1dN97xmq02bfL1CumKgWk7KLKMKkEy4meh1KCkW6iKTNKvUNEtcjWD/+7Zy4T9YiO+slwloAkpt2W7WI6L7crUmjaaIuO2BgJ4YDsehbrwK9cUmbvHkvg1MT0PqTKG4xHQZPYPJzAdl5l8g809Uf6bT+3g5HyJPzk8S7Fh8MDGLvriAd64KtQxXzw4yF+eWCSoKQQ1halsnT1Dcfo7gpxbLOPi8ezZJQp1sajKEqsCJ28FqYifzx8Y5P98bRLXEwvnyoYlSpL1G/S1a/zIG5ZDMuQjFZapmTa1po3luvhUhT5ZwnJcmpZDRbeEhdNwot2wtByXQxN5AO7fkLqpjdUdrI8j0wVev5KjvyPAr+4X+Vdl3cJ1vfZmNZWr8dZknpl8HVmGjqDGcCpMxK+we6iDxZJOptLkUrrC0eli+3AZDmhUDaclh0/xiT1i7XAcl8uZGkOJYLsxIwG7h+Jkq0E0RaYz6mep3OTJHb14nkfddLiyXGW50qTcsLB8MpIsk640UWThT/+/vXSVStMi7NeIh1SatiOGSnMltvbGeHxbD33xAJoi8/ZUgS29UTzP4/BUgbJuEgmoTGRFc/2lSxnqpkWmalA3hKVQZ8TPmxN50uUmpYZNd1TYodw9luQvjs1h2i5TuTrFhtke2pd1i7cmCuL3bIW9jqfC7ZDW0/Ml/uVzFyk2LLb1RZnNN5gp1LmYrrBQbvDAhk5+7e7hNWXkd0yFfnlx34YUz51L43lwX6v4Ua6zXM5WDTpC4v6zbJdwQKXUKDHeJSwqFFlanRHWmm7IkjgsfvPoHBXd5qmdvauUwSAsgB3XQzcdFoqNWxqCNUyb6VyDoWRwlXpsLU9823E5s1Am7Bf5jSXdYiwV5vxSmcOTeeJBrc0UXUEirJGK+CjUzXWZkyBsRo5OF9nSG237iIf9Kl+9T4TnrqcUOjSZ59++PIGHx289NM6ldJWG6XA1U2VDVwTddCjWzfaQpWE42LbHtXXzoYkcddNmMlvjYrraVpUDzJfecfeeyq0/RCo2LPriAWxHWIutpRJNRfxE/YKhup6dI8BIMkjULxjuN1NI9caEtXfEr67LoA751bZ6SrtJM2Wp3Gwr2NKl9R3NP7Wnnx+eXmLXYLy9nl2PK5ka+ZqJ5bgcmcyv+1q6beN4Hq5DOwdpLZi2IFZYjkPTtgmtUdJczdYo1S08D8638mLv4A5+WWA7whaw0rT41rF5PE+cYf/2oxvRFNHE+osWkTMZ1nBcmMjUKTYskDxCmkQ8qLKrP0ZnNMC5xQrnlypUWrWcpsgcHO5gMl9jTpOpNR1CPonFUhPbhclsVajqW8+4C0itJocq01aIedAitXkYtkNQkzk1X6Iz4qNYNwj61J8ry+fOEOyvFq7fKfo6gnxidy9nF6votiC0hTXRKC3pFobtcHy2RLEh9tpYUORf1wyHUsNkttCg2LA4M18mXWky1hnhN+4bxbRdJrJ15osNCg2Tj2ztJuRXCGiCKHptXssjm0XT+Uq6SiyosbE7wsuXstRtmx+eXmJrb4xgq5H92pUc07k6qiLxxLYe/uLoAifni60cEZXtfVFGUyERGzBTRDcdwn6F84sVumN+euMBDMulp9UUD/kVvndigWMzwmq51rSF/bFh86PTi5xfLJMM+wn7VYKawm8+MNb+3GOdYU7Oltp2xCvnkd6bWADfKpqWI5x1OgKrrtW1/ZaJTI1/8dPLN/xd4dhiIyHsK1NhH49v7+EHpxZ5a7JAd9TPZ/YNEPIJO66rmSpBTaU76ueNqzlADAbuHk3R1xHgie09/P7rUyy1VEy//8Y0fbEgqiIRDajsGogT8qsMJYJtO2jTcdvnE8N2KTcs/Jr8c60xK32dmnFjltCHiWuJbysE4ad29nJuocxgMkQsqPHZfQP8+PQSr17JUaqbbO+NkQi9c/7e2B256Xn5/WClppBaBKTrMd4l6tu3pwqcTZdo2h7TuRqxoIZPkemNBTg0kWMqW0NVFM4sVEmENRzPIxpQMR2XcrFB0K/gIciwkiRxfqmC5Th4noQse3gIVVrEp2A7LhGfylLZwPU8FOmdfpLt0RpcO0iInPlIQOWueIAdfTH+7jV228sVgx0DMaGKvmb4+8zuPvriAd6eLtAR1PjcvkFqps1Utk7Er/Ls2SVsx+Pp3X2r3LCuxak5Yauaiggl2Xr9J1mWeGzr6gFZpiLiFSq6yXxJZ3tf/IbhZt20eWRzF79+Xb5gPKixb7iDhVKDetNiKt9gKBUi7FM4OJpkNt8gFdb48yNzJMM+vnzPCP/1J7dzeblGWbc4O18iXxeWk9v6oszl61xerlE1bJbLTSpNu+V0pVIzRB2UqRmM5cJczdSYLTTo6wjwyOYuzFafvdSwqOjCvjERbn1WCbb1RZnI1DEdl6lcjYlMXcTJGDbxoEbTdtAUiaCmsLk7wvnFCk3ToTfmJ183CLZiMpqWg27Z3Dee5PkLy/zw9BKaKuKEXrqUYbwzgk+VObtYodgwqRni83QENQaTQUZSYbGX+MTrnVks8eZEjkLdFLVOqxc8latxKV1t58oDPLK5i+6on1TE93+z959RlqXnfR/62/HkUDl3jhN6ckIYZJAACJAiwSCRomRaupKp5GvJlnUlS7qyveSrZEuULFsSRYmkCIBEIHLG5BnMTIfpHKsrp5PTzuG9H95dp6u7q3sawAAEvPpZC+iaqnP2CXvvNzz/dF2+4TsPDHN6pY0TRHzk/gmiSOCFkkzRsHzOrXbYM5LjYw9M8o2z61hexH98cY4j02XOrrZRgb3D166tXUNZ9o3mWG25RIkK66Ur8j0GYYymblpYC2w/BCEz5CMBu4bzpBPl1ZWNLpPlNPdMlBgrpji20KDrhdw7VSRjXHNzURSFv/jOPZxYavLozkGypo7thXzuxApZU4Jj+0fzeGGcAJ0Ryw0H2w9Z7zjMDOV48UqV5y/V6LpS8DNSkIDt/dMlKl2PWs9lteUgEmDxxEKTb5zd4OOPTm8L5ksC7QJN22e56TCYM6n2PEbyKdqJ68hEKcU79g1zYqnJy7NVqj2fUsZgvJxiMJvqE7tuVz8SEExRlI8C/wwwgd2KojwI/CMhxMfeiuOryvXsJENT2TuS4/6pIt86X8EPY8ZKee6dKnGlavVzldbaLhfXu5xZaXNkqkSMSDKLdA4nfrfvOTjCYiPHd85XeHWuwbsPjjCTyHdHi+l+w/3IdIlvnJUhgLqmcn+iiHD8iFjEfHeuSS5l0LID/sEXzmIlHq5eGPd9LluWbA6MF6/Z8mxaCm7KTCcTpDhr6hxflDLE9x8eQwjBSD5FLASXK10sL2C94/P2fUP8zktXiYRgvJiWLCUn4F8/M0ut65ExVT5/cpWPPTCB7YdkUyqqorJzOMcX3lilYXnkUxr5lMFXz6yz0ZHy0rFimrmqRSFjkDFUdE1lJJ8iEoL5msXf+exJStkUk2W5mBsrpgiikNmqg+UJnr1Q5W/91KE7PsflhHno+BET5esXiGtth08fXaba80AIlpoOe0fzfPTIZH8yOrfWxvJCji82+eC940yWs/z0feMcW2hSyhpcrnSZr9scGM3zZ5/cyeVKj/cdHuV3XprH9iKuVLt4YcT5tQ47h7Ioisp9U0VOLDTZ6ISEcUxG1xjIGmy0HfxIoCkK+ZRGy5FSWxW5kDMUQTcB7RTANDRCAQ074FvnN8ildEbyKWo9l0LC8FxqOnQT+8P/7oMHmatZOH7IP/n6RS5tdFlvO9R6PieX2jw8U6aUNkgZKosNh199YgffvrDBG4ttnrlYoW75fOTIBKsJ02jrtsbUtP61dqvm2eY1ubUUReHt+4b4yqk1sqZK15ULaF2F4E3UYJvlhzG1noOuaYRhTAxkDZWMqfHU3iF+8137+K1nLuNHMcP5FO8/fC0Q+dRym2MJm6yYMXgwCWK8W99bXU5salZbLj03xA5C/ujoMg3Lw9Q19o3kOTJd4sJ6l7oVcGCsyMM7yzyxe4iL613+5bcu89pcXS4mXpqnlNF5x75hJsoZHpgpM1pwURS5eP3ssRVypk7aVMiZOleqFjPJRlRTVR7ZMYimKswMZLhc6TEzKMe+f/vsLJcrPQ6N5ZkeyFDtujh+zFXHopCSytY4Fnz59BqqovDgjjK/+a59/ItvXsKPYmarPUxdXlPjpTT/29cuMJQ1ubTRJZfSmK/ZVDpSvVvrSfsFTZVJCJYX8rZ9Q7h+xOmVNn4QcXShyYHRPDFw72SBII65b6pEtesxNZChnDXpugGfO7FCpeOx0OjJHI44JogigjjixUtVIiF44VKNE4tNnCCm2vMopnV6bkSMYKFms3/Eo9K588Dbu/XjUR1HNuEFEhSRdePAqJDSVfIpjabts9Z2MHWNFy5XpWIyjPnzb9/FTLJe+NiDk1yp9JgeyPDSbI3Fhk0xbfTDqbfWvZMlvn2+wlLT5uxal0d3Db4pUWDzei1lDH7jHbJxI4Tg7Kq0gyhnDM6sysDc9c41e8KPPzLd3yyeWu6QT+m07ICHbhiTU7rGrz2xs59FCrJxc2mjy0Qpw0ghRRDFPH+pStcNqXRdHpi+ltN1eaPHlUqP9Y603PhTD09dl6dV7XpSXRULvvjGGkIRlNIGj+0eopDSGcxJVvNP3TvO7393nkrH50unV/nFR2b6c9/TB0dZbS+SNfV+GPxm5c1r399A5tZL6a+dWePCeo9iWudvf/AgbAOCjZWyfZvYG9mrW2ut7bLUkrmqLevW9qd7hjJJcPCt7X+EdGlMyGO3tibczHgBaDm3fs2vnF5nqeHQdHyiMELb5nXPr3dww2uMyVtVPqUjYgGKuG1GWjZlYPseKUMjpW//OTVF6YN49p9wE+xu3a2t5YURn3h1kaYdsH8s32/6+lHMAzNlvn1+gxcvVYmFZAUbmkqt5zKUT/HwjjInFhost1xqlrQp+/CRSUoZA1OXj5seyDJfs/nPry72SXfltMq6E5M42uFFgsWGc20wQK7bVVVFFaKfx7u1yhmTMJZrqcWGxVdOr/Pew6P8hXfsZvB7XJscntpezXq3fjzrxsuh1vX4X790gZrl9a18PU2ga5Jtf2mjx46BLANZk0Ja4x37R9g9lOW3vnOZtu1TzhjoqsJwIUUhbbDctFlvu7zr4CiztTkals/51TZ/rMr4B02B0UKK8XKWxYbFjsEcHzg8yqO7DqIC/+mVeeJYMFZMcX6tSy4t3VAOFws8umuAF6/UyBgqw4U0j+0e5F99+zIdRypZHpyWlutHZsrEseDsShs3jKl2XWw/4thCxFN7BxnJp/nOhQpNO6CUNZiv20mOTsT0YJZSRufEUgsRC1RF4dB4gUMTpZucbpwgIm2qOH5EpePyydeXiGLRzwvyw5iXZ2uYmszoulNLQCEEf3h0iXrPZ/dw7pbq5+g2Vi2xkGucwZzBew+NcmalzWLdZr3jcnShQccN+dkHJ/nK6TXeWJRg4b1TJYbyKfww5uxKh6WGw47BLL/wyDQP7Sjz7MUKpq4yXkihqQqWH/KJVxdRVYX3Hx7j3i0N5+mBLB+4Z4yOE2DoKv/xpTmypsavPrnztmuk7eojRyY5v9q5aV38w6hNG/NS9uZ1y8xglg/fP0HPCzgyXQbkWueJPdfIVSeX2pxZbUsQSqGvetjs/f0w632HR5kopRkrpre1Te+4AccXmnTcgJ4vLagHsgaVrkfbDji51Ga9I1UxeU0lY6g0LB9dUxjM6qy2PVp2AJZHytAJY8FczaJl++iaStZQ8YIYTdMwNHh1voHlhRxdaKKrYPkR3g197ShZN/fcgINjOSw/ppROAwpnVjocmSmz3LTRVPrKmPcfHus//0qlR93y+xlGn3h9iY/cP8Fstcdrcw3W2i73TBa5uN6llDGYq1kcGC1Qyhp98vVK06He87hS7aGgsGckz1Be5mVlDX3ba2GzihkD2w85t9ZlvJTmyT2D/WzNhbrFdy5UaNsBOw9krzsnla7La3MNXp9rcHalzWLDIZfSSakKTTtAIAHWUAiev1RluemgKIv8ymMz3DtR5JOvL3F6pUO157FjMEuMuDa2J/8O5gwmShn+3FO7+NTRJWarFm4Y4fiRVK17IU4g7fn/j+ASf+npPVhuwJVqj+WmS85UGciZbLRd3liSytLLlR6nllv0XGlB2bQClGRMH8ia+EHIa3MNUobG3tE8OVP2KE1doW75ZAydjY7LG0tNbD+SvduajBDaMZTD9qTbT8cN0RUFVVPQNYWUoXFkqsTXz66zfzTPrz+1k3xa5xtnNxjImdh+iIaCUKCYUVEVhVhcPz6ausoD2/QWC2mDv/2ha/3sNxabXK1ZKAIals9czSJnavzyYzO4gZxPQpHipctVvnx6jXNrHXYP5/hnv/ggigKfPraM40tl84W1DoWMQT6lY3khhZRO0wkIIznHTpUz+FFEPmWwazDLuw+OsHukwGyly7cvVIhjwUQxzVLT4utnNzBUhQuJAwsoPLJzgLftHeL+6RL7x6SNZtP2+dffucwLl6oEUcyfeWInv/ToDFlT47W5BktNm1ev1nn5aoOuE9C2fMJIUM7K+TuKBZ96fYHnL21wZcMCRcH2w+Q+UNBUBT+KubjR4bW5Om8sSbv9X3h4uo99OH5E1w2pdr0+UXbHYJYzyy02Oi5hJKh2PZ69UKHlBtR7PpmUhookzhqaypN7Bt5U1PGj8hH7h8DjwLMAQog3FEXZfbsnfC+16bG6WXYQM1vp8W+fnUVVFQoZnT/9mLTGSpsqRy81yKU0Kh3Z2B3Om3zp1CpHF5qkDY3dwzl2DuXoeSG/990FFmoWtZ7HPRMlVls2/+HFq6w0HUYKaY5MlxjImrI50ZQXz56RPHtH8lxc7/CNcxtkDK2PCJ9f69C0/L6iYOdQjpG8yUrL5T+/Ms/BsQID+RT3TRb55GuLnFvrMDOQYbXt0nECPnjPGBPlDIoC90+VaNk+v/fqAqdW2hiqwu++soDjR6QNldFCmm+f3wAUwihiMJfiwR0D+GHEatNhreNQShvMDGT53VcWqFs+k6U0H39kgqPzTTqOz4uXa6R0mZ3z5N4hBrMm5ZzBfM3m5HKL4wtNul7IUM7kwZkBXp6tUek4ZEyNjhsSRjGDeZNC2qDWu2YfVLeuZxRbiUXCrUJR8ymdP/+2XdiJemJrrbddwljQsn38MKbjBKw2Hf7DC1f5qfvG+fB9kunx3KUamgr/+CvnKWUNntwzRCljcGGty6ePLnN4osjljS7/zbv2MlxIoaDwgcOjfYmy60fECnTckB0DWem1L0AIKe/0w4jVToSWeMtGsaBhy8FKUUTCphSsdQOMhGkTiyQrJBZ0gohISHXUeseTiyDh03VD2k6ApsA3zq6DgPcdGuW3X5qj7QR9BRwI5mo9rtZ67BjM8VP3jlPputR6Hg/tGODMckcOzIpko3z4/gnaTsB7Do7QsAOEECy3HL51foPpgQwff2S6D3Y5fsSzFyu8Pt+glDH4UBJwC3LB3XYC/s6HDvPRByb5u587TbXno6gK4W1yP266jyNBEIFI0Hs9AbezpsaF9R7/+tkrrDRdqj2Pcta8brO9VbZfTN+1R/x+67FdA7yQWA8WM9KKMIoFGx0prU/rKvm0zuGJAmOFFB+4Z4yfvn+COAkUvbTeZa5m9UPW/TDkldk6E+U08zUbVVUIwphLG12cxOM/l9LYPZTH8kN0VUlCQAX/7BsXOTBWoG55DOVSfPX0OtWOxydeWySMIo7ONxgppKS0XQhELEibGr/wyAzfPr9BEMV9u8PnLlXp+XI8Gi6kGC2k+OIbq6x3XJabNoam8p5Do3z0AakwnRnKojRsHsoN4HghTpL3OFuzqHQ8BrImWVPn4oZcGJcSNVwUS8sFU5efayBr8KVTq8RxzNG5OqeTrIOuG2LqKild5/Ryh+9cqDJRSsmgbl/eM/WuR1ZXGS6Y6IkKqJDRGSveBcB+0upb59fYjEZ85sI6/+Bn78PyIspbHuOHMQ/NlFnruCwkVrCFtM7vvrKAgvz5915W+NsfOoSmSkuJh3cM8NylKqeW2qy1XYbzKR7ace2olY7LN85tUOt5hHHMgbECnYQ5mVUUvnV+g54b8t5DozfZEji+HIc3FZSKonB2tcM3z20AUrmbNTQurXdvaeUzVpTK9emBDClD5Rtn1zkwVujndqmqQlq9Nud/7cw6czULU1eZKKVZqF+zxJ0sZdBUuZjueSHfuVBhKclEPTBW4GrVuo788J5Do1xY73BsoclK2+a+ySL3Tpb52Qev2ZPGseDUcouL69Jn/T+9NM8X3lhlpJDibfuG+IWHZ9g1lOXLp9Z4/lKNQtroz3tbsy6d8NbznAxMFtR6PpWeT34bldTzF9dpJ2DTi7O1Wx7r5FKL5YaDosD5tQ5P3sIi6POn13GDmFPLbTY6DlMDN+c79PygD8N23Fsz5pQtWOntcNO5ulTDdZyIuarFwS15B5uVvs5+6dYNvYWa1W/SL94GLMsYklGsqwqatv3x5uvXnu/fjpFzt+7WW1iWF6Kpym2VC207oNqTjcHRQor3HhrF8kMOjhX47PFlPvn6EooQlHMp3rZ3iCPTZardDc6vtRkvpAhi6LoRHTfiW+crgOCpPUMs1Cwajs++kTwvz9auWW4BTffaPaAAUXyNjLa5L/FjELdokJsa7B/Pc3G9SxjF+CGsxw4vz9YYyJr8xcSa905r/8hdEOwnqW4ERXVNYbZuUU8snJLefULqiGi7AfdPl7hnosjljR6WF/KZ4ys8e7GKmuT9/vwj04wX03zu+DJ/fGKVfFrn/feM8Y69Q1za6DLfcGhYAbYfUem5BKFASXIxJ0ppji00eNu+YXYMZGn0PFp2SMbUeWhHmTcWm9heSL3n8J1zG3iRYDhvMjOY4etn15itSOJfLqWja2rfktQPpdVUNo7pugHrbY8g2XcM5dPcO1lipJBisjzEbLVHtSszmrzQomF5lDMGHSegZftcrlg8tnuIy5UubhD1lfiVjouuqmx0pWouSm7UekJwOb7Y7DvglLIG907ePKduV7FAgg1bjrW1Nvst37pFJlj/XCeknI2Ox3944SpCSIB8qpTmarXHQl3unVZbLi3HZ6Pr8d//1EEe3FHms4nTzqaV8kM7Bvjnv/QgQSTVgBfXu3QcnzeW2sxWeiwmuVj3ThZ5+/5h1tsuOwaz3DdV4iunZQ6Vnaj3v1cQbKqc6VuN/TBrqXG97fh2Ft+3AuKEEMxWLV6frxPHgqbtJ41elzMr7T4IttlvKaSNt9wOMaVrPHQbW84gjAljgaGplNMG46U0hydLPH+pwuWNrrQRDSSBOYgilpuSXJExNK5ULDrJGldXFZQoRlMVNmqSGKspCpaIUBSFwYxOWle5XLGIgc6NyNeWUgARS+XN5UoPP5J9sNFChucuVfm5hybZ6HgcX2yy0XY5MFbgwroERK9We/zjr15AVxXKWZPdwzm+dW6dT766gK6qOIG03VOA+yaLfObYMrYfcXq5xVgxQ73nUU/EC24Ys2MgS9aU98tiw+bZi1UMTeHPPLGz/37dICKI4j6glTa0/r4la+qMFtNEseDLp1Z4+UqNF6/UUBVIGyo/fd8Er8zWObHUZKXhkE9pPH+5ShBGgCCMYlpOwP3TA+iawjv3DzNWTHNsvoGuKZxZafPv3QBNUbhc6dGyfdxA2r6qisJowWTnkFQkppJIjLYT8DsvzVHpumiayq7BLP5mX09RMDWVi+s9Lq73ePlKlfFimvWui6kpjBRSXNjo4XghIw2bg+NFYiFYrttkDI22G5LSVYJQ2uSeXG5JJZaikNIVfu2pnTStkEuVHrWudPnpuHJdVe152F5Eo+dh+fJacsMuQzkDy5PjhKrAgbECM4NZ3nd4lG+d26DjhUwU0/x/PnIPmqqwfzTP0/tHsL2Q1+frnFvtYAcRj+8a5LlLNfaOFG7Zl95anzu+TNcN+al7x/nSqTWuJEDMYE7iA6aucrnSI4ykYu7gaI5LlR5LTRsF6bzymeNLzFYsuq7M72o7IVEco6sqH7p/gq4bcG6tw2LNpuOFDGQNHto5wE/fO87ljR6vz9f5nZcXODxRZKlhU+m62F7EP/rSORTkfnuylKLjyrlUV6XV6PGFBm/fN8x83ea5SxVE4gQQJufifYdH+v2Bdx4Y6Y9Blyo9vCDi1EqbStdlre2yYyDNfMOh1vU5vybn1s1hSlFgMG8wVc6y0XG5siHFJ44fkdYVlps2f/5tu2k7AccXWoRRTL3ncXCswGvzEvBdbtqkdBUvDGnZIfVeB11TKaQ07pssUbd82knG22z11nvHzfpRdYtDIUT7BvXInXfH37RuPtR8Q/qjpnWVnUNZfu+7i3Rdn422Ryggp2tMD2bIp3TqlsflSpcwluqdeyeLLDdtvnByldPLLeZrFg07IIgEe0ayXNmwWG9Ly6/ffmGOv/VTB/nGuQ2+dX4DQ1N5dOcA3zgrmzkjhRRCwJFpiUD7ofTV1FSFnUNZdg/n+NiRSf75Ny9yfLHFYtPhn338CM9erPK7r8yTT+mcWWlTzhp0HAnK3TNRopw12DOS4+RSkIBwDs2ehxfGCOQip6H6uGHEvpEc59dsFEXlzEqbjx6Z5Mun1iimDUo5g+FCilPLLSodL1lAevS8GCXhBwexoOuGnFvrcHi8wLsPjvI/nTvD5UoPNwjRVZWhnMm9E0W+dnYNL4ogkIvKKI45v9aRGVdbAJFCWu97IC/Wbf74DRn2/kuPzjB6C5uftKFtu6E8PFHkjaUWbhCz1nLQNIX1jst4Mc0X3ljlzHKb3SM59o7kOLva5qtn1tg5mEssAgRfP7tOywmYKqdpWIK/9okTNCwfL5R2DWEsG1iqomCoYOoaax2HphX0bRJjERMkm8kYIQNl45golgGfN16iWz3xrSBOAK/rr+bNjWu1d20RawYRa22Hv/O50/2sL5mdIYE3N5Cs+p4X8qF7x/j8yTUMTZEWRHGME0RYvpxE3n/PGLYf8snXlrC8kI8cmWAuGTSWmw5+FEs1kB+xULd5fb7B2dUO+xKp8mYz8Otn1zm/1mV6IMNSw2a+ZvfDGr/Xm3zr40Mhm3MqPmHcpev4LDYchgspDo8Xr7sW9o3m+ZXHZ1BQ3hIribeyWrbP0fkmUwOZW2be/bjU/rEC+0bzLDcdLm10Obva4vRKC8sNabsBdcvrW8BWex6fObHM7pEcB8YKtJ2ApuOTT6k0bdlACSJYbbustN3E+lNIe53+KwqiSHDOb6Og0HVDdgxlGU6Cr1+8XEXTVPYMCxbqFitNp6+mUdWIcsZIiAwalh/xyI4B5mo9ql3pMz5ZzvCX37WXf/nty4klLJQyOpYbEAoZlix97wXLTZuvn11nsWHz5O4hBrImXz+7wWrbIWOo5BImjkgsPyfLaSm9LqbZMZRlvm7R6Hm8Pt/gXMLkE0IuXnOGzkrH7YODKhCJSPrfaypCwOUNqw+Agbz+5xsOu4ezPLpjgAgJln/1zDq/9uRO7tZPTs3X3f7PG105noc3ZILFwFfOrJPWVcZLGWIhPdRHCyk2Oi5BGHNqpcWXTq3y3kOjtGypLgujGFVVODhW4OOPTDNWTHNutcNCw2Kj7fLC5Rr1nse+sTx7R0we2jFAIVGMnVvtIITg2+c3+MA949cxFj/6wCTn1zrsHytsmw+YNzXJFk7rPLFnkHxaJ5fSrrNazKV0simNWAj+6OgyqqJwaaPLb75737asZj+KsfyQhbr0dNdUGc775962i0La4LdfnOPZi1V2DmYZK6UZzJl0vZBCWqeQZJCldI2uK7MIM6aGrqpEImaj63GfIgPrN60E/9PL83z59BpZQ2W+btN2Aq4m6zY3iHn3wVHcIL6ODLJZW4k8m2Hl25WdTPYC6LgecLOlSq17bY53/FsDNTJYWzYK6r1bWxNuEsNk5uj26qezS63+z5Z/6ybDzECWSxsylHr30J3Z8DRsB7i5YWdsUdPdroHzxuK19/bipSp/+0PbP265YcscNSek43ikjZubTuPFa6BjpLyF2467dbduUVerPb54cg1dU/jlx2ZuqdweKaSw3IjVlkM5o/POA8O0nYB///xVvn2+QtP2GcgZjGgKJ5ea/JX/0mCpadFxQo5GgpyZ2MwnZLrvXKjy7fMywzib0vjDY0u3zdS78W4IxDa/vKH8CL51vkLOSNjScYyqwmQ5gxfePI6cWZGWuO89NMrubeykvnl2g7/+gcO3f9G79WNTQRRfR1/ougF5U0cg+ycZU6WYMbiw3kFTFUoZkzMrbb57tZ5YWhnoqlQ2AnQcn9989z7OrXb45OuLVLoOLUfj/FqH9x8eQ1cUOo7ca0exINrcPwhwg5ilpk3HDXhjqSWvdQFuEKIoChlDJYigt2V+UxWo9Dw6Vxs4fogXSEBtvib7Mk/vH8YLBR03xPZDqVAxNXRNwU8sqLww4thCg3smCjx7cYMoFqQNjY4j81cypoaqOqSTPtN4Kc0fHVtmJJ/imNrkA/eM9dVP59Y63D9VYu9Insd2DWL7IY8l9oibKmhF4baK6BtLUxV++r5xLm10eSBRHG3W1n7LWvfWym6Q5J6Fuk0tIfwamgT16z2f0UTNNZw3sbwgaezrVLoeUSQtXdc6Lkemrr3+1lylR3YOJNmhCqstB01V+j2z339lgULa4PhCk7/4tMxvsjyZi/WjALO+36p0vX5uVqXr3nHOrR/G/F/PXuHsWoeNjsd608JO1oENy2fvyDUS09Z+yy8+OvPWf4jb1FA+xU/fN8ZvvzjHStuh0vUoZU1adkBK16QVqqli+xFuIHADH0VRcPUQN4j7inwRCcpZVX5GRVruhgiUCFRFsNRwUNU7y7kWyPkvDGKWGi4ZQ8EJBJWuz0g+xZVKD12VNn11y+c7FySZ+8un1nhyzyCGptBzQ/aN5PnOhXUurPWIYtn7TBtyL7ZvJM8LV2p9e7XX5ps0rQ0cP+LwhOx9pHRV9iB2DbDecTi/2kUISezezHDquAF/8OoibhDxU/eOc3iiSM8L2TWco+2EFDM6OwezXNzocnmjy8X1LlEsCITACWJOLDb5xGuL1Hsu59c6REISAQYzOh1X2gq+5+AoZ9c6NO2ArKHxq0/t5K+8Zz/PX67w2eMrtGyZxzaYNVlq2oThNVV41/GJYoEdxAxmTYppnXLO4NRym14CPtW6Hild5aGZAbk+yRgcXWzihzEX1wOWm04f7LT9CD+IsIOYlcTSrp3kfzlhzPRAhqmyXANdqVq4gcxi0zUVFPj8G2vsG8nhBiFOEBFEQl5DkeD8Wm+reJ04Fog4xvZjqfzS1X6ucNcN+NTrS5xblZlwE6UMT13YIG1q/O7L88xWe1hejB+GdFw5d1xY7/LgjgGCOCbD7UGwzxxb4l988xJCyH7yZgSOHwmKmViqtIZzfHe2TqXr4ocxq22X8VKGoinHU8uLuFKxWGrYeEFMw5bEc0VR0FSVQ2NSfdiwfEnIsHzmqhYtO6Bp+czXLJabDrEQrLUlQGp5EVvbDGlFjulOGPb3haWsztWafNyplTZt20+sSlUG8yZjhTSltIkbRLw615A2iml5vSEkiWqxYXFhvYcQUOl43Kh9iAUUUho9L2I4l2KhbmF5Eastl1JGJ4oFla4Hs3WOzzfJpnSats9UOcNALsVGx2E9cVgTQtrjqoqCE0R9Y5XpwSw7h6UD4G890yKOwXJDLC8kdxvSxI8KBDujKMqfATRFUfYDfx14+a06uLpNgwZkA9IOYi6t91BUaf8iFNCUhDmQeJN23JDRvMnEQIaPHJnkqb3DfPb4Ml4QE4SCWi9AUaT3ZsbQmRpIM1/rEcZCWn+1HBqWR1rXiITgK2dW2TmYp5w1ESIJuWw6jBbSnFxqU8oYFFI6B8YK2EHEV8+usdiwsfyIXUM5vnp6jXNrXYJI4AYxB8fzXNzoUul4MitsJM+rV7vMDGZ5cu8Qr15tsN52aVgemqKQNlXuGS9TtwNypoZAYd9Yno22i+0HnP7BHCsAAQAASURBVF1tc3C8gK6qvPvgCEemS5xIPLv9IKZuuaR0nZ+6dxxF6VCzfJq2x2BO5+Ryi6W6zenlFn4kiIVgKK8jgC+dXiUIBXEMGUPF0BTCWLDatLmxx7LStPqNpeWWVJtESLufW4Fgt6q0obFnJJ8EpAfsGcmz1raZq8kB5eRSi8GcyaO7BuQi3dBoWD6NntdX75UzBjXb5/SS9CWPk0lQUxQURS7uw1hQTJu4gWRRycFSslqiWCHkWrOrlNGpWQHizS1JAYjvsDejqQoX1yUgFEYSYJPPlSGPuiIXzO/aP8z59S7HF5sU0wYffbDArqEcHSfE3ELnXmu7/Qn62EIzCarssW80T8cJ+cRri0SxYMdQllxKp5w1KGeNvt0nyNw5gNlqj+MLTWIhN0macuef63bVcUNUTbLmVFXmSx1fbLLQsJgZzPJzD06RS+lMlH48F8ffPl9hsWFzZlWyuW4Mm/1xqobl84dHF3nuYhXHj7D8iIGswXLTIaUrXK1avHSlRrXrcW6tg6oo/MMvnOU33rGbrKERRoKuGyXgj0IQSWZoEAk0VbIIlaTRsjlqK4rAC6RPcMvxeShXZvdwjqPzTVpOwEDOYN9IjsmytD4MIwkaK0DD9vmv37kbx5eNpPWOy7m1Dj03RAjB1IC0O5yt9vDDCNPQubDWpWkFtJ2AUlqn64Zoqkqj63Npo4uCgutFjBSkJanrR4RRjKFKz/Ga5ZE3dXaUM8yM5Hhi1wCvXG0wW+li+deyFxWk1RAOCK7fbEaAqcim+smVNmMFE0VR+hkcmyWAlaZDrecxVswwVQ5+rDeBd2v7KqQ06knu4iZ4v11v0o8EfhQRNGwe313m8oa0AyhlDYRQ6LkBV6sWlrfKRkeCIO87PMpTe4cYzJmMFdO07YAvnlrl1HKLthPIrKvErveXHp3p2w2M5KVK6/xam9fmG3zp1Bp/7m07ec8haRUyVkzflDu1aVejKLB3JMdKy2WilEbXtreJCCNBLrHFS+sqbuIpfitbn/cfHuXYQoNa12Wx4WDq0tqjnDWJY8GxhSZBFDPfsPjVJ3eQMXV2DWV57lKVL5xcpZw1+OiRCf73b12Wn92X40BK19g9lGOuZrPWXuZte4dYrEvQu2n5KElzpeX4xEKgq5LFKDMqU/1cqvu2qJv84Bq4ZPu3byZt1tVKlwd3DN30e9u/luh3uymz3vOS60YGg9+qts67t1J0bF03345PXOt6/fdVuw3wtrX0WxzQ3+LRHt9mcdDewvzdquS6sTYFeIJbZ4edWur2f/aCt2BBcrfu1jbVcQNcP2K0mGalJZsRfihYTxS6N9ZGx2WuZjFalGHkc7Ue//MXz7HSchjImlhBSMZUmSpnCCPBiUVpIRRt+uoCuppiZijHetshiMR1RMOeG9G9jcLzB6lYQNeX+YYpQ9rlv23vEA/vuN56Jgxj/snXL+AFMoLg3/zqIzcd68L6m7N179aPT9leyFZdcc+NSBsaOVNnaiDDuw+M8tkTy9IJIogopGJWWi7VjosfCabKaX763lF0bTPTVCWMYoppnfmahR9B1lQZK6Z5Yvcg3zq/znzdQtdUSWDzruVvCiTRrt6Tc6GmyrlHTh8iIYxce68KYGoqGUNDVxXagdxDq0JaE85Ve6y1HVKaRj6lk9JV7CDkak3mqgvAUFXqPWnf9q++c5lixiSMYg6M5TkyXWYwlyJtyJzhTOIs1LB9dg5ksIOYlu3zxVOr6KrKSMGk0pF2ZKqq8I791yu775ksUszoGJp62wzQ7erAWKFPVN1aW/stXffN1y1eGBPEgYwKMTXaiWJtqenghTUcX6o4NFVhpJAmn9L5zPFlDE3h157cSdaU53W8lO6vfStdl+/O1uV+OGskpKOI/WN5aQmeTmN7EaqqoKAwnE/dMeBzfLHJudUOD+0o37Fy7q2qeyeLVLsuQsi1ohvI/eCtLKk369JGl9nEFjCMInpbiFCmrrFj6Nodt9lvWWk5REm+zvdbbhDRsHzGiuk7Ps7ekQKljEEYCdqOx7GFJl4UI4QgThyNNmchqQoVeKFAbEEsYqBuBTy8o8zxhVb/2Am+IR+TkEU3H38nFQNWcG1R2HUC3n94LAGoAxbrPYIopt7zuar1mChlGM6l6LkhlzZk3yASckxQkFm5Alhq2kQxTJRTHJ4oEQnB63MNMqbG0wdGOLogr7mUrlLKGJxcauOHMjf88ESRXQkYWu16fSLdUsNmeiDD7313AS+Iedveob4t5kQpw0LDxo9j8mmdyXKGA2MFvnl2nUvrHebrthQRKOD5odzDKAprbYc/OrbMzGAGTVG4Uu2xVLc5PFHk1HKLjKGx2rLRNZWLG13iWLDVxKJhRzhhQhToukRxqr8nioTs07iBRyEjxSNBJEmFaV3DCWLCKKbtCGJkdlvbDYgjefZCAXNVi2LWYDBnJuQcQS5l8Bvv2Mv/+qXzzNWkciiIJIm+1vWwXJn/FMZb7Bq3XC+bpQCWL9WAOVNjx2AWyw9pOyE1y6dt+31CY9v2+cyxZQxNZb5mJ6CrgqnJK1ZXFQ6NF/nI/RO3JB80LJ+vnF4jnfST/TAmCGNmq13GihnyGZ20rjFaSDNRTvP2vcO8erVG05aCCi+MWahbXNiwcBIl3FgxhaEp0iIzCCXxIxJYXsgrc3XOrUol8UDWYLFuEcaJJeDFCpoCXU/2xqIkBkAV1+4dDan0LKZ1aj2pANQ1NZm/5Z7eUBUURQJblh8juhIw/Y3//DoPTA+gKpAyVJ7aO9R3lGnYHkvNa2Db1m3d5pxh6BLMm8inaLsBzeRcCAGWF1BI6QTJjX+50kVVFEQSA3VoQmGj4+J4Pj0fCumE2BpHhEKgoGLqsjfiBRErjk8hpeOGMWfWOpxabl+X5X1j/ahAsL8G/F3AA/4A+Drwv7xVB9+OpWxq8kTGQgJfipCy/SASBAIiP6LWdbGDGDeI0BT4mQcn+bkHJ+m6AeOFFJ9/Y5VKx2Ugqyd2cXDfVJHZ6gBH55tYXsha2+FbFyr8mcd3sNG+jOUFDGRTLDVt0oYMFJVqM5/7p0t03YDzax0myxkUFIJQ8Px8jV1DOSo9D0NXOLHUYrXt8sTuQQ5PFtk7kucPXl2k1vUJwoilpkPH9Xnhco/ZapeUrhFEMT0vZO9IjpFiil99YiffuVBhNpErxkLeAClDY7Zq8fZ9Qzyyc5C9Izk+8foijhcRRVJFZvsx+ZTKUD7F7uEc8zWLrhdwbq3LYM5kpenihPICTukKEyUZvDpSSFFI6+SEtJhUFBU/ilEUFYX4ugHLDSCK5GRwZLrMettF19Q79myuJoybzYXhkakSqy2HJxLLxqyp0XZCQiFZW/N1i6blMVRI88BMmZ4T0HVDlpsORuJPqsQCyw9RAaEoiFiQMlXKaZ1S1mS+bmP5IX6koqmKZLjHgjAMrwP5FGCl7ZLS1STTJ5S2idBv3t/KJTCtK9fYDjde58jGUaXrsR3uK4SUuw7kTB7fM8gnXltKBlz48H3j/PEbK5QyhgQPLL+fiTIzmGWxbnFhvcNy0+EjRyYSe6le355hMGvy9ieGJevkBtuspw+M8PKVOleqHoqiMJBNkTFUOo5Pw/nBN+EZUyppolg27jRNZbXlsNiwcYOYq1XrOlDudrXedvHCiJ1DN9tDgbSuCiLB4Ynt1Q9bq2X7XFzvsmckfx3D7cbKJ/aM0v7u9jk8f5K1ULf4Ty/N89ylKm4QkTU1tGQRmE1ptOwAVZFgp66pCUMp5sJ6l//zmSusNB3cMMbUFcJYZjOWMzo9Vz5vspxm13CBYwsNRCwkYythdoSRQEXaZXmhPGbN8onimK6r8uH7J/jPr8yzULOodj00VWEwp/PUniGOzjURCGw/wvYi/EiGzOdSOhfX5fjXtOSmVVcVDE2l0vXww5gD43l2D2U5vdJhpeVge1GiNPNJG6pkKipgqPBI4tPtBhHVrkfLDeiudDi12GKuLtWPY8UUuiIXwq4fYWqCnh9ft3jTFQmS+5uhpkiA9+B4gStV+RkURc5XsVBQkc20kXyKHUNZPvbA9v7+d+vHt4byJvMNqRYqJePBjSPBVlabqkoLERQF25Nq3GLGIG0YhHGcbKolIBHGgslShssVac1ZTBvStiQSlDIGEwmY9cF7x/sAGEh7nf/q7bv4jy/NsdGp4gQRFzd6fRBsu1IU5Tog6FZB0Zv1RMK0zKX0vsJ0snzrZk4hbbBjMEcQCpZbLsW0waFkTaCqCh+4Z4wvnVrj4HieoVyK1bZDJ2f0A9dbdsA3zm1wdrVNteuTMVQyps7OQopK16OQ1lnvBNLTvuVQTOtkTY0P3DPGTDnN77+2hOOHjJcyPLZ7gLmaxUbXpd7zOTJdvq5R4G7BoJzbKKm2Vv4WGyr/DqOqtqrEOu6tQbCtpd7CJvDA5LVzl0vdmum4FWzb6Nxa8ba1hgrbz6/mFvW2dhtV1tZ74XbNmZQmG54KUM5sPwffO3VNfX1jrtvdultvRTUtnz94bRE/jHnvoVEemClT6XikDHXbRnQUCz59bBk/jEkbKg/OlFEVeGW2jqnL9YmbjCltJ2T/aB43jIiBlK4mSk+FlKbwD37mEP/8axeZrfW2JVbcWFvvLZDz0PdrEjqQ0VEVhbFiig/eM94nMG7a56qqJBICt8yg3MYd9m79GJd5wx4mRhJcxgpp7p8u8aEjE8wnWTaoCgfHC9S6PpEQCBHT8yLunSwxXkpT63rECD5zfIX7p0rcP1UijGKG8ikemC5zarmNqamkDI20rtJyfFKGivAjdE1mPYqEsBoLuQdWttiqxMBQVqdhhegq7BjMMjOY4+cemuQ/PD9H3fJRYknY0zVVrsktH4SMYDg8UeLCRjcBMySJb2IgQ9P26TohYSyJKaoiVe8fuGecPSM5fveVBQZzJildo2b5ZAyN/eMFvDDmmQsVLld63DtZ4rPHVzA0lQvr3X4O0I21mRn/VtXWfsub7UY1BQxd5jRFAnQlJGXodNyIlCYdfboJKKaqcGS6SDFjQFOC8j0v5FvnpW31UN7k15/aBci82WcvVBFCMFnOIJAqsb/3kXuIhSCIBBc3ukyVMzddb7crkeQfCQEvXK79yEGwtKHx0/dJS/16z+NTR5cII8FHH5hk9/D2ayKQhLNN1VLa0K7LaL1nopC4Fsl6+sAIxxdaHJoo/EAAWBwLPvX6Eg3L5+B4gQ/fP3FHz7ta63G1atFyAgxNYTBrMFoscDXV47V5/7r3LpBNZk1TKRjSoWHTkTqM4bX5FobKLZlfmkqSMR/f8RylJ8poBRgqmASR4EqlzV94eg9nV9tcWO9KEK7rc6XSZaSYktfbepswjjEU0HWVrKmyczjPxx6Y4MpGj9cXm+wczDJVzvLfvGsvQzmT4VyKD98/ge3LPVre1PtWnSlD44P3jl/njLFrKMfhiSIdN+DRXYN03ZCOE+AGsVTCJDWYM3lqzxA7h7KYmsr7Do/hRzGfObaUZCir6ImCLUaRgJgQBEiiWtPyGM6nyac0Pv/GCt84t4ETRNwzWaRh+ZSzOq4fY8dCEm8TQr2iyHgXRVUl0cULGM6neGRHmZdm64SJs5XlSZesfMpgrm6zayiLF0b4yibhWSUQMTlTl+quZN9i+RHjpTSrbRfHD2laHvWux9WqJXsupoahykiYzf5IFKu4QURaVyWY6coerabJLEVDk9nAIvHNN1SFyYFM38VKUxW8IGYol2KtZSOArhdypdrjwFiBYlonbWi4QYQTxZQyBkM5k7/49G72b7N226yj8w1ema2jqQpv3zdIxtQSAYRBywnYMZBhX9JH1TWVthPQ6EnxgqErHJkqMT2YlS5mPfk+331whN3DeRYbFv/uuav0fOkUFEQxSuL6EsUxuZTBYC6F5dtJX1i6qGiJRXDKUFEUUDQFXQgUFHKmxv0zJdp2QByLBOySd+vekTyTZQkIvzxbodqTar1eEOOEMZYXsd6Rbk67hnJ89IFJ7p0s8tpcgxu3ccWMjq4o/es0Y+gYmkLG1PnQfeM8f7mGAv3rPa0rffUsJJmjqoICDBdSrDQdVtsum6LlKIZMSsENpQtaIa0TxFDr+dQtn/ceHOE7F6ooimD/WJ6JN3EG+1GBYAeFEH8XCYS95aXfMBFkdJlFUbd8ep5ssqZNlWJakyc3kdPXuj6DhRRRJJn7f/j6Es9erDAzkGMga+D6IZYncxPShsbUQIaWE3JwvIipKTiqtO9qWh5/9smdPL57kP/08gJNy6fW8+m6Hgt1m8GcwZHpMg9Ml/ngPWNcWO+goLDadmkttdgznKNueRiaPPGDuRQZU+fXn9rJYM5kvmaxZzjLa3N1/EBwpdKl44b4if+rqSromsZ9UwUUVWHPcI4jU2XGCyn+7XNXZUjpWpvxQppqkvu13nZ56UqNzxxfZrlhU7M8GVgu5E08M5Dh4lqbY4staskiT9GkJL/SdfsbqbSu4IVS+TFRTPMb79hNIaWRTel869wGRxeagMDQ5ILKSZo9hq7gJLNhPqXz8w9P3/H5XmrYfOb4MkLAzxyZYP9YgYGcyXsOjnKl0uPguPT87XlSolzremx0XawgZlgIPnTfBOfX2nz97AYtO2DfaA5DVTm6ICW9aVNnqmjQcuVN/PiuAb5zsUYQxXihIKVL8K3S9RAixr6hF6WwiYBLiyZETNeTzfScoeFFMVFCv0hrsEnWlN+p/K6ibZpiAmkPuOmFPlpQqfaiPmCmK9c2yL/17SustBzg2ib08kaP5abNoYliH4xJ6Roff2SaN5Za/PvnZ/FCWwYkjubZPZzjqb1D9NyQJ/YM3pLNdGi8SClj8MnXloiiOFGWCdY7PzgApiJZMftG85xcaqFpKn/qoUmWmg5Xqxb5lMZgzqRhyZymk8ttwijmoR0DNy0QV1oOf3R0CSHg/YfHbgLOrlS6fOmU9B4PkmDy29Xn31ilYfmcWGrxl57ec0vQ7P2HxyQ4nU9va+f541KbLP9S1qAoDPaN5vm5BycJwpgvnV7l/FoXJVH3DecMBrMmsRBomsJqyyUS0q5P01Q0JZKsqKxcEIQClhpOooaRAPJ4KcVczaaQ1qUHdXJNljMGXhhRSuvEQmYfvmP/CK/N1fj2uYpkbsaC/aMyL+z8WhfLC4mimFzaYLKcZqqcYbiQYv9oni+dXEVTFMZKaXYO52g7AStNh6FcmulympevNqi0nX4zVUVawK62XKJYkDVVPnBojL/yvv38k69d4OhCI8n5UyikdGIhvbh1VWEgYzJeSvHybB1dk2C5psZJHpkkDWRMHUWFmVKGK5UufiSBjJWWR8bQKGdNGj1JmiimDa5UJXtt93COv/refbcN2b1bP57Vtq8xbruenDBuHC10BQbyJrYfMV5MkzYNsimNjisXrSlD4wOHx/ilx2ZYbjqcXG5xZKrEfRNF/t0LVwkiaV3zG+/YzV9+1x6+eHINU1cYyqUo50ymShk+c2yZXcPZflhs2tD46JFJmpa0wXjXgZG39HMbmsoTe4Zo2T5XKj2G8ykJ7t3m8b/w8DRztR6FlIYXCXpuyDMXKkwPZPj5h6f5qXvHeGW2zm89cwUvCKlZAe/cN8T0QIadQzleulKj50kl5kM7Bji/1qHa9UhpMqR7oW6zVHcYL6cZyqd418FhPnB4nJ4X8vB6jysVSf74jy/MoSgSBNo/WuDzb6zwpx/fyfsPjwKwdYq+XSbY1sqmtr93Ne3Onn//tLR+VhRumcMGXKcozae37zLPbMkJy90GHNo3mmOh4chchBuslW5Vyi0ArqFcCk2VG5nCLUArgPGC2bdqevA2n7P/elv+/8ZStzSQ8nfg7X+37tb3Wi0n6FuQVrseD8yU+YVHbr+nURXZvOq60s71Tz08DUpiJxMLXp9vYHsRXhBi+SF7h7O0nIC0rvWzduwg4u99/hzVrntbIF1Dqs/h5n7j9wuAbTarYiE4OF7gOxcqWH7EasvG1DT2j+X5uQen+Hs/cw9H5xs8vX/7ueV7aXLfrT/52m6fU+t6PLl7iN98916+faHCRscha2oMZE32jRYopj3qlkfPDTF1hX/5nVkQkugThILnLlX42Qcn2TuaZyBn8tCOMo2ezxdOrnJhrcNwzqRh+/2cq5Sucu9EgStVS2bYhXHiwCBwQtGfCXKmiuVFZAyVlK6RT0tL89fnGth+kDDOBVMDGZ7YNcRax+HkUgfLD2U/RBEU0waOL23QNcD1Q0byKYIoJoNCw/IRisJgxsQJIv7NM1cIopiGHfCBwwMcW2iy4QR0nBz5lM5oIYUC7B/Lc2yhkSh6Yv7PZ67w8myNiVKav/H+A9uCX4t1mzeWWxwYy3No/Puz1t/ab/nHXzyJ3bv1CKAn6gA7GTR6AQzqMF1OM1ZI86EjE3zz3DoX16Xa+rlLNXYP5bh3spiQbLO07HWats9iw+Jn7p/oZ3nHQmBqKrUkxiOIYuwgIp/S0TWuy3fdrpYaNs9erDBSSPPBxF5SUWTMyHzNZufgWwsefq+13nHxkh7XUsO+LQi2mUGrawqvzzX6TikK8PZ916sYDo0Xv+9zv7WCOKaZ7Euq3TtT+G8+NkzyvFSk0iOKBRfWOjdZvCvI+SWrwmDOIIoi2t7119uNMa0K0nYzjgVBDG33+gfcirRxzVkGBjNSWeIEMf/06xc4OFag0vN4dIe08GvZAUEsqPZ8jsyUWEls5BRFARUOjBd45/4R/tK79nJyuSXv4bZLxwkoZwzesX+Yh3YMMD2QQVEU3nNojLQh7+3JcobhfIpy1rwpmmPTpnSz3CCi7YS0bJ/NmXmzn/ozRyb57tU6lza6vDxb443FJq/ONWk7PrqqsLOU4537Rji53OrnO210ZB9GU9V+lu+rcw0mShnGSil+7qEp8mmdlhVw32SZSxtdvDCibfvSSUzTZb75YIZLG9JGsmF5tJ2AsUKaxaZDnJDt947k8RI3sMlyWmabOgFhLMn+GVMja2oM5XSWGjZuKO0ll5sObhgRxvLcR3FIEDuJGthgIGfQcy1pvWpqyb4tkLaXcdLjjKSV4mLdIhKgiJiRQgYvDDkwXsBQFSodD1OTOeoTpQyX1nsYuoYXRigoqEhr15mhDD0vZL3j0vMiem7I9EAGU7/9XqHnhvI7S15LOlFJQqobROwczjGZED28IOJLp9ZoJ8RFU1N55/4RIiH4s0/u5JvnKzw4U+bx3cN86vVFvnxqLcmNV2SOspAki2La4LtX24SxJAqkdBVDU3F96UqWNjTKCRG27QTkTHlNGZq0htxou3ihjOsxdVUCTUWTPSM5fuMdu/lfvnSOkWKGuhX0hR2qIvuhm/aJiw2bv/Pp0zy1b4h7Jgp95evmPVhM6/zCw1N8+3yVSAhWWg45UyOIZX9w12Cmbz0sbYR1UrpGz3cQQpIudFVlKG+S0VUWa3aSYUmSjScjF0SSm54xNZptFxWFEwsNlhs290+VMDSFn7p3vJ8/fqv6UYFg/0JRlAngj4BPCiHOvpUH96Prh0QnhPmG159ENhu3fnyDPZsCT+8f5tW5Bl3Hp9KVN/ty08UPJfMnY2jYQYimKLw21+Bnjkzy9IER3nNojNfnG+wfzfdt2HIpgz/z+A4+fXwJN4j48uk10obKYK7En31qJ6WMyTfOrvPilRoNy2ffaJ4P3z/OZCnD/+v3jiZoqMJgziSIYi6sSV/YE0tNYiEnytWWQ8+P+pNNGMZEqoIWS3ucnYM5FusO//QbF6l1XSpdj6blEwNX6xZ7hnMIwI8iPv+GZCIKrg28UYIQW17A+fWufK6QDNogEiw2pAx3E3jpeTFzNYcoirlStRgrppgsZRjIGtQsefMjBEIofbkjQDlrfN+AwGYWCshsIJAMoM+dWMENIi5udPnoAxN85bRCEMYMF1IM5U2uVi2mB7MEccSLV+os1KwkR0swPpyi64aEsSBrKui6wdSAStcNObvWwQ3kdx4LCH2ZPSYHZXHTplJTpRLR8QNqPf/a34X0yN16DW7N+xRIRvjt2mGbXuheELN+IxE8OX+FtC6ZHUleWNbU+L1X5rlc6TKcN9kznMPUVY4vNillDPaO5MmaGoamoqkqi3WLf/PMFUpZk198ZJowFjh+dFtJ/0Qpw9MHhnnuUo1CzWKxLie9H7RioOeF+KFAVRXCKOYzx5Y5NFHkV5/YwVDW5Jf/3St4YcSH75ugvIVWeiOzTlrkyZ+727Dotw4jN4Y/b1ebGNubkbE0VWHf6I9/+Pd9UyXqPZ/dIznunyrh+BGfO7FCLqUxkk9zResxX5MB2E4QY+gKuqpSSOmsuR5CCCZKKRo9DwdpI9txAmJxbaHrOyEK0HFIZPaS+eGHEU4gyKVUPnB4jHcdGuXRXYOsthx2DGZ55mKFr5/duCbtThY3jZ5ckIexwA0FruUTi5hdw3kMTRINnCBCERFCSLXZSD5FWteoWz7fnWuy3nb796QC6JpkX6vI+9vUNebrNn/5945Rt3y6ToSmKaiKIIwFuZSGH0n5/0bXZall0UrQ/s1FQc7U++G/ZiJJ3wydbtrSSLVu+UwPZGhZPqYu7VZ3D+eYr0tFmK4pfWu5u/WTVYZ+7bzpmpz3btzIbeaxPLl7kJWWy2rb5U89MMmnjsksrcGswV94eg+OH/GfX56n0vWodj1+6t5xMqaO3fNYqFv89otXGcql+NiDk9cpv/7LqwustWTI9u7hPIM5M7EKVPmbHzz4fc3HQRTznQsVwkjwnkMj284R9Z7H//jZU8zXLKYHsvzSozN86Das0/FSmpFCiuOLLfww5tx6h24Smvxfl9L88YkVzqy0WWrYREJurFp2wM8/PE0hbfDcxQpT5TRtJ6DW80gbqtycDqRZacpwZScIOTbfYKSQShiJAT035Pxah42Oy2rbYa3lkjJUyhmTlabD1ECGMyttntxzM2Nbvc10salWApge2N7K9LXZxu2/6KSEkDknqspts362/mmpaTFeurkh9Lnjy/2fN6xbT9Zb7RAb3TtTgnW87VVqaUORduRwWzC/t6WjX7lNg2bze42BhuVQ3OaYVzc6/Z+bNzKWfki163/88h09bv5/+8gP+Z3crR9F7RzM8sjOATpuwOPbjA83lqYq/OKj0zx/qcrljS4vXK7xtr2D7B3Os2swy7GFFl03wAtjpsw01a5H2tTJRoKNjkfXDYiSDGKs66/pzX3v9wtu3WmpioIfRn0r0kuVHoWUzlzVZrhgYtZVul7I3pH8bRXDdfuH/U7v1ltZUSxuahwFMZxcbvN/fOsyz1ys0LLlur/nhnzr3DqljIHsbkgHjY22g66piYOMmeSLCh7aMSAZ+X7Il0+vst52We84GKqGG8jNcYxshBfSOrmUVCJlU/p1RCPZLFOT3oZAUWRfY7np4PgRZ1ak6iNIGrbSMsvDCQR7RnNUOy49L6Te8xkvp+i4gWwCKgrLLRc/tDF1jTCWNnByn63zhTdWeH2+yXDe5OGdA9w7WeL5SzV6ntz3FDMGZ1ZkVtr+0Tz3TZX6zipnVzvM1WTGy2ePL/PX33eg/3muVHp03YCj8016Xshc1WL/6PZKoM1cvtSbNHEBKrcBwAC8GCLvejJrEMdkDI237x9mZjDLSCHNettLMp/h+GKLv/uRe/rg9uGJIp87sYKmKvybZ6/wV9+zn19/cieFtE4cQ9P26LohxbSBpiist11en2+wezh3nevAjXV0oUGtJwnnD86U+4DDzz4wRc8PJQH5NnVyqcW5tQ4PzpR/KFnd+0bzzFYt3CC6KZdtu3pwZoBXrzYk2TpxZRLAN85V+GvvO/iWv7+UrvH+w2PMVnu3JVRt1tVqj5YTcGS6xFgxzevzTdKGypm1Li3bp+VIgcFWApYgcT1S5d514UbEK6mt6mQFSbCwvkcO9ebzgxiadkjGUGj0Imo9n9lqjz3DOQayJkemynx3ro7vybygP/P4Tt62Z4j//tOn6SXN9sWGzYX1Dr/7ygLDebOv7opjaTn85VNrMiLCUPmL79zDcD7FRx+Y5JvnNnj52DL5lM6fe9uu277fxbrNy7M1dFVal/qhtLb7jy/OMVvt8f7DY7hByGvzMrtwqWHT8+S4KoEfhUd3DRIDr1ypsdFz0TUQEQzlDDKmzGirdGTkSTY1IM+zgKtVi7fvG+Qfffk8pxZb2H6IpmrkTA1VgYW6TdpQqfX8vlhBgURpJIHPIBIMZk2mSmkWG3bSP5WfLRYQhDG2F1DthnhJX7PnRdKub8t+SQi5j/TDmLrl4QSyv+JHgvFCCj+SmaMgwbdN283FutUnHzaciEi4GJrCcsMhEqKfWfjA9ADLTZv1jkuUWMOPFlPk0jodR+bEmYaa9GZlnM9sxeI/vnAVXVV46Bb3xj1TRR6pDaKrCh++fxI3jHGCiA/fN87R+Sb1ns9zl6pc3OiS3nRrc6WaP4pCLqx3CGNJvt8xmJVE6KbDudUuPS+UoFEg0NSInh/y/OUqF9e7uEF4XW9VEfJ+0zWFtKZw72SR2WqPKJbqslxKx3ICGm5I1w0pZ2SkTa3nIRB0nYizqx3+zmdOc2GjixdIFd7mPZkxNFRV2jdKW0qflu2z1nEQQtBx5D2z2UPb6Pg8d6lONqWx2HCkLakbkjZUPntiOZlXg/792nEDsoZ0S1IU6TpWzpqoqkK1IxXkuqokhHKFrKmy0nIZzqVQVXkfBQkY2/NDUo6PH8UM51PXKWhvVT+SjpoQ4j2KoowDvwT8O0VRisCnhBBviSWiqanY2/xeAKYqmaBqYitkJDRUAQxkTTKmxv/4oUP8l+8uMF+X9mptJyCtK0SxZCQogZSdFrMGn3x9kXNrHX7x0WkenClztdbrT3DNns8nji4QRUJ6OBdSZFPS9uoPX1/i/mmJvLdsn7maxVQpTccNGSkIihmDlh0wWUpTSBuAwumVFlcqPebrNh0nkB7VhpSma4oiFT5a4nFtathexJnVDj0vZKacZq4uvV+LKY2uF5I3dbpugO1HHF+os9ryiJGqjoyh03akbZmmqnihnMxURV6YqqKg62riyyr6tn4COYDFAkQQsdx02Gi7fWCymDZk6OUNoELTCm5pj/FmdXiiQMOWVmkPzMhFkqIoGJqC4wtOLDT52uk1VtsOhqZK2XI+xSO7UoSx4OtnNqhbHnYQoUUKA1mdnUM58mmdhiW/g67noyiG3OQJNfGwjfCSQdcNRT+QemsZKqAoxIJ+rtjWuvHxN/79zvjg229wQyAKYkZyJnYQsdGR3ra7hnN85fQ61Z6HpqocmS7zymydYwtNAH7l8RnGS2kOTRRxg4golpLmWtfj4nqXF6/U8MOYD9wzdttF6SM7BxExPH9xg94tmmDfT3lhTM8L0FSlH5q50fF4/nIVFSUBWgTPXKgwM5gln9J5aEf5puMcGMvTsodww5hHkuDhTYXCnpE8B8by+OEYYRzf0aL1Yw9OcaXSY9dQ9k2tE38SKqVL+T5I28j/9lMnWG44FDM6Hz0ywUbHwwsFtu+TMjQCLyaIQuo9D0NTGciZkoGkSL9ekH79213jsnGS/EVE9DwJrFse/PsXrvL6QpO/+cGDPHepyhffWKVmefjJ4xVgpGCy0XKYrUlf5HLGoBp6KCqEkbz3al2f9Y6bsLQFvbrNUtNlIGswWkhL9mgCbG8eN5/SMA1NMt0UOd5ZXsgby21Smly8aZpC1tD6Pt3LTTlvVLsehhrg3gBsd9yQqXKGYkYna+qsthxWWg6mrjFeTNPzLeJYoCnytXaP5KgmwdOqojA9kOFyxeozfe7WT1617WuNfDsZG7cbw2MhksZNzHRG576ZMutdj+Wmw96RPLMVi2JGT6yFZB5AEAl+/uEp/st3F+g6Ad84u8HhiSKaqvDRByb7x54opXnmQoUgEnz19Bq/+uROnrtU5cRii2LG4M8+ufN7ZuVfXO9yblWCDAM5g7ftHb7pMVerMrB3teXSSYCmR3YOMJAzb1qkBlHMsxer+GHMh+8fZ73tMd3MsNx0MHVpg3t6pc1C3Wa0kOL+qRIN22et7fLbL8wxVDATRp9k9q00HXIpncd3D/GO/cNc3uix1nZZajrYXshq2+HSRo/LG10KGdmMimOZBatrco310EyZdx4cYbFuMzOY3RaIdm/TSypnDTa6gVT6ZbZXZe0ezvPaUmfbv20tQ1PwIoESJwzBO6jyLTIog1tkhd1YlzZ6/Z9fvFK7o+e0us62v691vD7DcPE2WV/dLWzhtXbvlo/bWm64PZC3FSy8E7u4u3W3vtdSVYWn70BF2/NCnr1YIWNovOvACEemyyzU5e71i6fWuLzRo5w1WKjbfYvVSMQoaOwbzvHSbL1PpLvVXmG73/8wLntdk6Q0Q9cAhZ9/aIpXZuvsHsmioHBgLE8x/eYthru35E9W+WHMVg1vIelLFLN6P7h+c40vHRUc1touAoUoloH2QSTnn3xaZ7FhU+36/De/f4yBrEnHDVhL4gRqPY/RgnSucZP4BE2Ra/BLGz2ZTyVADaX1VuiGxEISLHYOZDi/3usrj01NxfYCvIjr7MmFkPEAz1yokjE1ShmTYtpMbL0UxgoZRCxt4G0/lORSVTrg6IrsE4XAStvijaUOAoEbSMvHTx9fYjAnFSEpQ6Nl+5QyBvN1iz88usS+0QLlrMmOwSynl1vSQtANmNqiAltpOXzx5Cog10eGpjKYM7YlX1Y6Ln90bBkhBD//8DSTb5IffCf3XihkH0hLLB+FEMzXLT57bIl6z2et5VBI6xweL7CSuGe8PFvj3QdHk+9XYGgKQRRzbKHJf355np95YIJffGSG335xjovrPVRF4U8/voOMqfHZE8tUOp4ELkZytyTf7hnOs1C3GciaDOSurXFUVblljs9mCSF49mKVWAiec6o/FBAspWt8bMv6+82qZctcoWo/91WW7YX98/5W131Tpdv2dDar0nH5wslVhJBr/qMLTaJY4CcOKGlDw9RUBNJeL7qh99VzIja6zi3XX1sfe12u1zZ1J9fsJvi9+dggks4uV6s2O4czxLHsc2ZNjbYbkE0Z7BrKcnG907dW3T2cp+MG3DtZoLBvmMuVHj0vRCD6IoT4hpyqhiX3eT0vxA2j2+6nvn52nZ4nifcHxvI8uWeI2UqPl2drtGyf8wn53gkigkhgamBqGqkEhNJUhVev1nltvkHD9gljaYtXyGg8tGOAthNQ6UiHrzAWjORNPvn6In/4+hK6ovD7r86z2pKCj83M9hjoehHlREnnbzlhAqnaHspJgOL0SpuG5ZNPaaiKcpMtXt6UcTFbif0CKRKIbuiRRFEsXz+W3x1IopAfxcn4KGjZATsGslQtl42Od5P7RtuVRIOuG1LOSmewpw8MM1nK8m+fu4KuQkrXyZoqD++QdtUZQ84xaV1GZQSRvG57fsSJpSYN69aZiftG8jy4o0zO1BgpphjMpWhYHl88ucb5tQ5LDZum7RNEot+32fw27QA+dXSJnzkyScsJqHU90obGn358B4/uKnN6pQVIgMvxQxxf2k86vrzfFBK1syJ765tCnxg4vdLpu7XpmooQAjeUkTx2EGOoAaYhQcwojmk5LroqBS1hAnTpiUorpauYuko+beAl16LtR0SxoO1IICsGDAUyhoIXymNeWOuwYyhL1tAkObzjEcaCnhcRhNdHI8VC9j1ShoqpqYwW09wzWeLiegdbk0T0QlpHVVXiWLDekefL9kN2D2XxE/wB5NrEiWLqLYdKxyWM3ny0+JHRyoUQ68C/UhTlGeB/AP4+b1Eu2I0S3M1SFenfrKsqsRBy8ZUw15wgRtMUTiy0OL7QImtoZE2dwZxKGMa4YYSqKEyW05xa6aCqCkEQ8erVBmdXOlTaNkOFDPWezx8eXSRjqPzRsRXaToChqfzaUzv4hx+7j7l6j4W6Tc+Tz31i9wBfOrVGxw145lKVIBZ87IFJ/sq793F+vcNA1sQNIiwv4uB4gT0jeZr2EpYXUrd8/DCimDaIFJn3cf9MmV1DWXRV5eRSCy+S4XzZlAwG9KKYsVyKVxcaQIjpKlhehL2FkZFPG8RC9NUKh8YLcoMTy5vPDQUTpQxRHNFxQ6JYWiZK72aZPQIiYUbJn0Pp/kfPC2RG0A2Tmh8J4jtswtxYuqZua9v0i4/M8MLlCi9crrFQt+RNbKg8NFNmuJBio+PiBRGXKpINVkyYZDsGc5CgzRlDAi0ImEsa7IO5FD9zZJxvn6twuSobN5sTJUiLBEWR34kXRjIgciu1Zes1yQ930yeAYwtNihmDQlonnzJQFYX1jgtC8La9g8wMZvjDo0uSTTaWJ44lWPlfvX0Xfhizmiy6dwxJxdjmRLjRcW+7YKr1PF64UmO4kObM6ps39O6kNtllThAxWUon7D6ZrTWQMblvqsh35+q07YDpwQwbCWv87EqbfaN5hvOp/gSkKEo/eHSz/vjECk074MRii7/49J47zhYDeb4f2fnmDKqfxPrMsWXOrrax3Ag3NBBCXu+KIiikdPaO5ji31oXEATyMBX4Qs+o6+MnYoiXyZU0FN5T/SiBT9DfJhiqDczcXkjGSlXl+rcOXT63StKTPrxNIFZemSnuO9bbLaktulIMoJqWrjJXSaIrCeCmVbNYkCJw1dYJIyvSjWIJVCjCQS9HzAjK63Ajn0gZv3zdEz4uo9zwOjhdZaVq8NtckEtK2VFNhupjmyb1DfOi+cT51dKmvLpDAt3x/NypE9aRJ9u3zG9J2Ughypkal6zOaT1FI6ax2XOKEWfPQVJGLlR7LDYt24oH90pU6Xzy5ygfvHXvToOW79eNV6haQ/HaA+Y7BLCstp8/mPTrfZCif4v2Hxpit9fj62TWWW9Karpw1+OVHZyhlDT7x2iLzdZu27WPqat82YGu95+AoRxeako2d5DxVOnK87DgyJ2u97fLtCxuMFdP89L3jKAp84eQqC3Wbpw+M3GRRM5xPIRAsJkHNYRTz9IHR6x5zYKxAOaOznmw0vnJ6jecuVXnn/mH+5gcPXvd9XNrocmalDcnne/u+YYJogKtVi9FCirYTMFHKkDN13rZ3iA/cO86ljW7CzLSZrfUoZwx2DGalXVgss0NA8OKlOm0nYMdgmrlqDyFAV1WMZKGdMzXWOy57R3IM51O8sdSilDX5Wz99gB2DeWl5+n00Imo9+V1LS1iLUu5mG8D9EwU48ebH2vS4l0SdWxNNBjM6DSdEV2A4t70n+sgtfn9j5VI6Tihfa7RwZ8/ZObJ9U+mFS5X+z233zqi+fnBn37kitr+vBrZkmP44Z3Lerf/n1/GFJpcTUHlqIMOh8SI/++AkG22H3/rOFZabNqtNuRZRkOve82tddg7l2Oh47BzKYXkhTfsaOxuu32qkNZlp7G1pEt0pue57KT+R0aiKfJ/LTYdfeXyGr55ZZ6XpJHnQb04OuxsJ9pNVYXz9uD1cMPnTj81waaOH7UeMFFIIIdA1FceXsQ2GJvPPs0lGzGY1er5UZvsRURyTNjRsP8ILpS3eVDnDWtuh64aoqnQ1mSilJZvckvkqGVOTJFhVkbbqmsrMYIaa5VNM63TdEF2T66GsqbHe8fr3g6luWnIhU8uDCD/0JLCnq5QyOg9Ol/h620madAaD+TQLNQmupU2NtKERIyimTcaKabyk+X16pU3a0Ng1mGG9E/GBe0YlIahl03WDfo/iv3q7zJ4ZLaYIYoGmSDegatfj5dnadWqvJ3YPsndUZlBvd28tNZ3+fn2pYb8pCKYriQPBm1RiUoTjhwSJo9Jq2+P1hQa6quAGEattl3smi7K/5kfM1yxevFJjviYdgiodn4PjeZq2z1rLZbKcYbXlUO165FM68zWb3cN5hnImlY5HIW1g3ma99cBMmYPjhcTB5nsjoSqKwtRAhqWGfUt1/o+6Kl2PtbbMpd5api4b2T8O5fgRXz+zJsEBRa6nDo8XKGUNTiy1WG7Y26rtI6Da/eGp8G/sqxk3qI1UkJZqKnTtgLSpokWwazjHF99YpZDWMXXphKRrUqW53nJY60gLxD/3tl287/AY622XXErnp+8d5/x6h51DuUQ9JIHx9xwa5fW5JjsGs28KxA7lTXpeyD2TJT5yZJI4Fnzt7DobbRcryTxUFUk0MTWZh/XU3iE+eM8Ynz6+zJVKj2OLAboi+jEOJIKF1ZbLAzPS2UcIed5evFInoze5WrWS/aUEOkD2NYqmkVhbStBwMGOw1rqezJZL6fz2n3uM/+GzJ1lsOP2IllJaI4iRUTiGRsqU/64kjlnJW8PUZeRP1lSS178GYGwCUArXcqJmqxY502X/WJ4Hpsu4YYRQoG0H9PybO6maIvdyKV3l/Fqb82sdcimdv/DO3fTckKbt8/T+YVBUdg2FnFltM5wzadqSSG+o0jFORQK5p5bbDOdTN0WjNCyfMystTi/Lvepy0+H3vztPxwkppDVipMJp8zNJsur1gOJa02W+ZjFRTDNb6eEEEV5Cnnj3AWlzWe/5iYuSQPhR//osm7LvFYSR3J8FESldSfprUd8lIIhjhLj2HQO4kWCj4yKEwAtlX22t7fLQzkHOrrTQVIWUrvDwjkEsT+IkTVuSF4fyJgezJnXbZ73j0UvGqrShsnu4wGLD6kc12b4EU5fbDnEs8MQ1Evvm/3QVJksppsoZ5usOuZTKY7sHee+hUYppjU8fW0FTFHYMZomEYKPtImKB60ekTZX5uk0+reNbASpQTJuYikozCPAV+Ozx5dtmnMOPCARTFOUw8MvAx4E68Engb75Vx49vNUEIpJy9lKbW9VEVeHhnmXLG5MJ6l5YTUO15VHseipBelHKRleHpvYO8bc8Qf/DaklyUZA2CCJRYKsVenW+yZySk1vV49mKFKJa5YkLIm/DFSzUGs/LkZsd1rtYsDozlE3Q9QlMUvEDKEC0v4jffs5fVlsuXT60xXkzz93/mHiKkldZjuwb5J1+7wOvzDaJY0Oh5jBRSjJXTPLSjxGM7h9gxmMX2Q56/XKOYNnhs9wDPXaqRT2m8eLnKqVWVrhPiBYJgyx2hAHuGsyy3XBQlYDBREfW6IfN1yerRFMmOdpObVFMlumtqKllDxQlisqZGIa3hBnJRenG9J5vj0WYmlbjx1GDdYZh8/zzHgrrlM5A1tm1GHVtscH6tS8qQje+UofLeQ6O8+8AQ//QbV+h5AQfH8mjIBbGhKRyZLvO2fSP8H9+6yFpbLo4ziRWZ5cn8rUpXMso3G5ObpasyhDdKLKW6bsDmuBwJOSFEXtSfnIspFS8UeNEPd0Gzafs5WcywYyiDH0UU0jq2Lzeqbyy2AGnjZvsh/9Mfn2FmKMPf+/BhNFXhmYtVNFVlqpzh4FiBtbZDz4t4bPftbV4MTTY5vSCW4aRvwWcppDWKGR3HD1EVhWrXR9cU7psqUcjoPLJrkD/+zXfQtD3+f1+7yFLDYa5mYfsRlys97p8u8+tP7eyzqOo9j3xa71tFXGOovDXnpGX7fdVG5ic0f8QLI2arXalOUhWEkKGTY8UUPS8kBppOyHA+Td2SuXgpTSMSgjC6dn0bkiBMkNw2ZsJK2dyuZJPwzrSh0thixxUDbnDNb7mUMQhjnzAWpHUZ2IoCihAoSAWZ7UdJSKpCrSfzFe+ZLPHATAldVTg632ShYSeqVFjteFS2BFrvGMjxroPSo/mNpVbCXGkzPZBBU1XCOJbvVVcIRcyzFyq8NFtjMGsSxbL5P1Yw0TSVx3YM8PLVOh1307ZVUOm6fObYEm3nmtdy2wnYM5JD3WxYCbD8kDASfOWsRSxkpkEYy81/3ZLssHLW6LMs79ZPRo2VMiy3JatsMAFBttu2r7QcdFUlm9L6tj26Kr27z6x2aNs+TTsgCGN2DefIpXRats/rcw2ZNzFa4GcfmuCPjq1waqlF1tR4+z6pzlIUhY8/PM3Z1Y5sVggh7Tcdn4d2DFDKGnznoszJbNkBD+0ok0vpXE2IH6dX2teBYPWeR88LuW+yyFzV4rMnVnjmYoVK1+Pjj8z0H6eo8NDMAG0npJQxOL3SxtRVXrnaIIwFdmJ16AZRoiqXbPHRgvyeDE3l4Li0kx3ImXzkyASOH7F/NM9rcw1JiMga1Hoac4l/+C88NM3b9g5zpdJlrJDmhStVaj0fQ1PpOAFdLyAUMcM5uUY7NF5gttLDcgOOLTTJmHJ9cGiswHMXa6hKnacPDl+Xo7W1bteCud7+eHsKzOnF5m2OcK1WWnbfnqR2G5vATTZlKOhvdG+srdaB2m0+wLsPjvDZE6soCtflGdyumpbHrm2EMer3BULdGW2odAuVnbqlQSa+T+LV3bpbd1J+GNNxZZj8dqWpCtWuy1gxzcmlFt88u8GTe4f42tkNOm6AE0Q8NFNOrPhVrtYsHD9K1rQhaUMCA6amUrf8hMxjspE09mWeKfxwYK/rKxBAJFCR4/X5tU4/dwJkY+Vu/T+vNOX6MXyuZvN/Pz/bX8OqqtKfU01d5exqm9WWS86Ua/eMqcnrVSRuMrEgjORe2w8j3EAyaHtuwGIom8G6CqgqQwWTYsbAi6JrfYzE8r/e88maKl4YcW6tgxvEZEyNmaEsA1mDpi2zdDbBM0iIQkkUhJr0NMJYcLXWk64PqsKXTq/JfU+8meMXo2lyTZZP63zg8DiFjM4vPDTNatvhxcs1GrbHa3NNhJB7wrSh8Z9enqfnRkkGoIGuSveMk8ttvDDmj44ucW61w96RPOPFNC9eqTJfkyrRt+8bxtAU7p8q3ZaIc2i8wFzNIhaCeybfXN2UMRQC/83HCtlQvfbfm+RGTZHxFGEkcLNyY7NQtwijmEuVLnEsreV2D+cxdZtza10Gsyanl1tYfsjT+4dpOwEj+RQjyXrvXQdGODxRZLSQflPS0Q/ijPGnHpqi4wSUbqGU/1HXA9NlLD+6Lt5FV2WfzPKiN80o+mHWaDHNxx6Y5Gtn15koZdDVNoM5aV/56nyDIJK5UPmUjuvH+NuE2v8w217bWssnpSLHHDeMiWJBL4gpmCqFrEmj5zFf6zGUT5FPabJX3PPY6MoMQ9uLqPY8psoZntgzyL/+zhXGimliIXjb3mG+e7XOH76+xEQpzccfmaaYNvjIkVtbvW+tjz4wybfPb3B0vsE//doF9ozkeGW2hqIIMobK9GCGas9n50CGVJLh9MB0mU++vsT5hIAcC4EXSpVgLq0ShFKUsNS0KWZ0hvIma21pD1jpSNWXzMSSfXM9URDlTClgUFDouh6xkPu7G79XN4hYazvXgbIC6LoRmZSGoascnioRC8FCzcYNrvVMDU2hmNLxIsGekRzjRZkP/eylKrYfXQeWpXSVjicV7x1X9i0nSllOLLbwwogoiba48f3lU5IQEUYxp5ZbFNPS7e13XpzH8kNqPY9PH19BVeCpPUP8zJEJvnZmnXNrHRm5olzbyw1mTVq2z6tz9T4IVum4/P6riyzWLXIpjULaIIoF352tsdx0iCKBH6qMF9MS0EsUtBldQVc1vCDuv2ddleCZrin9/K9/8c2LCSHT4L2HxnjxSoXlptfPQ4vimDgGU0i3uULOxNQ18imdlu3hxDGGer21aBxvKsIkGKYpSkJciPtKLl1VsVyftKZSSuu0nJBX5+romsZgAhIqCDRFpZQzeWT3IK/M1jm90iaKZW9hU50mBKQMlbSuMle3CUP5mTWSMUCR52kwb1JIGewfy0tHL08qzK6s9wgjwXKzR9OWJJmGFfB///rD/MbvvE6MvGb1GKbKaWo9v6+KAxn1tDmGVjseVyo99o3e2o77R0Un/x3gE8AHhRCrb/XB1RsYMZuQy6a006lZSdiiyonFNo/sLEkk2QuxPSmfV7Y8d+dQBj8UrLflZqVa8ujYAaWsxmrLSSS/CssNi2rPw/JCFEUy4gxDJZtMVqeWW3zuxAqljM54MU0qQbdnBrNUOh67hnJ4UYwXRjxzocLljS5dN2S93eR//vJZVFXl6f0jfOj+Cf67Dxzgb/7RSS6td1A1KU8cyqV49kKN86tdHpgpo6kKf5zkYs1Wxvm5h6dQgO+cq9CwAqJYytJVQCRf0lDO5Mm9w/z+dxf7Ic1eaNNOGm3979EN8YIQOxCoSkgQq+RTOpYfYnsxLSdEaW+eD/qIegw4t9BAd77H0KgvnV5jttJjaiDDLz0qm2xhFPO5EyvMVnu8PFsnY2ikdJV7JgsM5lL84qMzfPbYMgt1uZl0/ZCZwRzVnsd4KU0QCr52ZrUvg1aQi/iRfEra7MXSA3e4kKaYMVCa7nXew6YqNwWeH99kdWj70XWDtOXHP4q9KZoCKV3h8ESOjhuTT23mD2k8f7HKudU2ti+b+ieXZWO2YXv87isL7B3J4fghIMEEVVV475sg6ZslG65DrLUdXp27hRTue6w4ijkwVqDnhYzkTZ6/XMfQ4NmLVSZLGT752hK/+sQOdg3nefu+YQayJufWOuTTklHYcYL+IuGV2TrfvVqnkNb5tSd3kjY0fu7BKS5XpO3CD1pRLPjU60vYfsT5gQ6/+OjMbR+/qXLaPZz7nplsP6x6ZbbGv312FgWpgKz3PEQs+OrZ9QSAElhejB+5HBrLM15KcXKpSWObVHYvkhPM5l/sG/zAnSDG1FV6nlwAbfUV7noR3zi7gR/FDGRNcqZGywmx/Zi8qZIyVNwgxtQ1gihMcsGkzBxADeD0cpuuG/COfUM8vGOAja5Lb4vNVt+/2g3JpTQZ+Jv4DGmqwkrTYaFuo2uSKSpiiIXCegKWa8liK23oCBR6fsRgVqOQ1dkxlGWt7bB7KM9Cw6LthHI82PIVSDBPJZ/WKakKDcvFDaAThP07JxZw/2QBFJVSRuYoDubucqd/0ipjXNvMp26zsd/oSnuJbpIh0XJCJkppTi7F9LyQhu1TTOk0oliqmTMGz16skjJU1rsuv3Johm+eq3B6ud2fn4fzqT6ItGckz54kn+XkUotX5xqAzMkD2D9aYKFuM5QzGcyZmJrKgbEC83WLBxKVbBjFfO3MOq/M1RnIGAznpTpIJPdNo3e9hcTp5TZ2EHH/VBlDVVhsSKuvvSNZDE3l6+dWOL/a4fx6h3snirQ21V6JD//R+QZzNYuBrInlhzyyc4ADYwW+cXadk8uSjbd/LE9KV3loh1zbHV1sMpA1efveYT5zYoV6z6fSkeA4ityQqYqGG0TkUgZnV7vM13q0t+RGqgp4YY3lliOtR+bq/MtfeWhbBvbtQKStNVPePqz90GSBz5+pbPu3rbXZFAO4kITRb1dbSZLn19u8s3gz23lrjtntGhRSTS7X2bn0nY0922VuAiw3tjMuv33dqbNypeswvg1Iud6+xmb1tl+K/onVnWaHwd38sB/3CqKYP3h1gaYd8MB0iYypIxA8vmsQXVNpOwHHF5qkdKlIWWk6KIrSX6dYXkQYCU4stiikNQRS3eKrCgiBG8TYvgQPLE8SbIJYguH99QL8SPYYW2son+LRxBFhIGfy/nvGOLva4cgduirc2nDobv1Y1jZzXd26loFbzkhm+sxgltmqxXrboeOGibLKlA4RyYM3HSY2FQUdZNNUV65FB0jVu849E0VqXY8zK23p7INsMkax7NUIIa1vt17+YRSRMzVqXY+VliNjHVSVKIqksimQjj8Ckago6Pc9FAXato+bWEQJpPtHIW0wXZb7Yy1xWcmlc3zm+DLPXKgwmDNImZrsIbgB1Z4rXyMSDBVSaIrC3tEcQ1mT1abDcM7k2+c3mK1YdN0ARZGuKnL9I9Vz90+V7ohUmUvpfPyR6Ts+lc4dAGDb1Y7BDJPlDEsNqfjUFKkIPLHYZLnpcH6ty8MzJfxI8MB0if3jBboXAjKGTywEbyy38SLB7uEc/8vP3YcfxgzlU3zu+DJfObPOofECf/W9+76v93anpanKdSrxP+mq9Twe3zXIpY0uCoG85gSAwoX1Dk9tYzX+o6w9I3me3j/C79Xm+6DRQsPBdTyCUOAHIbYX4fyAaNdb7pakQBBIEFE1IKOr9PwYQUS1Zyfzsc57D43w756bk/ZqPRdNUYlFTMcNObUiSXp2Qkg5udzivYfGuFKRqu7VlsOnji5R6Xg8vHNgW6eqG6tp+7x0ucZ3LlYk+a9PVlOk+g8lyRod5D2HRrh/qswfvLqAH8YU0zpeGKMgcHwJ7imKIG3o+FFM1tBoOwGWFzKUM1ls2tR6viQTCElMzBoquZSBF8aUMwY1y2epaSfHAgVFRuGIa+fDCWL++TcusNJyrxtnI2Telx7ErLccaj0vUVddW46EsSQslzI6Q7kUuqLwytUmvcRdTEvUe2oCklhbbJ/XOz6pBCyKE7/dlK7cZInohlIB0Ewy2duOw3De5NRKi3rPw/GvgVDzNZvX5hv8xjt289JlCT5uHk4k77eUMdg/Wugf/5Wrda5UutR7PvdNFpkZyHJpo8ta15XXrQqggiKt/RTkmNzzpXWuqso+kkDOb8tNW8b4BBGOD8cWGoDsPz8wOU0QXk/PVxXZtwr8GIjpeWCoKn4Ub7uHk/OY0h9LDF3mcMpsNxUiSVy3g4gzK93+3jiM5LlSwggldnDCTdtCn2rHRVUVUro8Tpic+6WEoJnWJehX7V1TimkKjBbM/jWRNTVGCylGC2mmyxkyKZ2WI0nelY7LufU2QRSjINVtD+0oc2C0SCSu9QiDSPA33reP//nL50nM6PoKdNnHl2Bcref9yYNgQognf6jHf5P/jmKJutpBjB/FPH+5LhVbyVWjKJBSYfdwjoyp8crVJpYnbQ0VwE/kqD1fhspVuj7LTZcgkguoMIaUJpgoZ8imDLkI9GM6TkDHCVioWbwWSqZ2OWswUkjzi4/O8MuPTvO1cxu8dKVGvefRsj0ubXSk1LzlUM6ZEuVU4Kun16h2XPwwJpc2KGQM0rrCmbrFWtvhxGKLnhdS7XqoisKVSo9za3KxuN52SelSWqsoKqPFFNWujxdEDBVMpsqZxH9VIETESD5F1/X74cqGIhUKm/YaQoAXxISh3wfJtn7vkbgz1sdI7ntj4Kwm0ty5moUbSFZktSfzUsIkWDFjqKy1pVpsUy7qBCE9NyRG4ATSOu3geIH5ui0n7WDLZ0s+31rLRlEUMqZCJqVT7Th9BsU19RDJ87b/sDd+Bz9kAVi/VAXqVsBXz1Z4cLrMfE0urttOCAi6bkA5azIzmEVFYb0tv7+Fus0XTq6iKvDorkHesW+YE4tNum7I47sH35R19ZXTa5xb7XBpo0v0Fn3YONlxPbZrkEJa57X5FpYnpcsvXqkyUkjzideW+OXHpvnZByfZNZTjqb2DNO0ATZGKsc1Q083rp5sERKYNjYGcyeNvonC74/ea2IPC9Tkk25XlhfzBa4v4YcyR6RLvO3xnQOMPs+pdl7//+TMsNWwyps5juwZ4bS6g44YYQchEOUscxUQxEEQst6T1xu2w7NvB3LJhE1/L0NralI2l2kwBHN+9blEcxIK0qdF2I/zEB/rGy02qySLOrna5uN4llSx8t6sohtW2y/7xPMsbFlerFmlDox7EN2+qtwB5CoJDY0UWmjaOH6IoUoHxmWPL2AkVTfouy6wvU1O4Z6LAbM3CS3yXSxmdgWyK0ystel4k8362vJ6hq7zzwAi7hvOgwOHxIvvHCtytn6yqbQGGGkk+2K1GyJ4XkTEUFhsWsZBAa9sOaCf+9PtHi9R6HvdNFjm32ubrZ9exvYhMSuWZCxVmqxYTpTQLdZudQ1m+emaNiXKak4stzq51eHjHAI/vHsQLY2w/xA9jzq93mCxnuG+qxI7BLIsNG9ePSWW1PrNxk/33e68s8Pk3VpirW+wYzPKR+yf5mx88wOdOyLnjlx6dIY4Fc3WLoZyJEIIL61JZ+sF7x3giGEJV4C+9ay+vzzfYaLuoiVVq15WM69WWw1dOr/Irj+/khcs11toOr881GC2m+O7VOv/go/cmDDEfy4+YrVh9K+p7p4ogBGdX2yzULeZrFpWuhxuEdFxBPqXLzI84Jq1rLDVsOq4c524UTcn8SZdCWmcknyKKRWKveH3dSIDZWlv/9MpsjZ99ZMdNj/nSG2u3PsCWknmxch4rZ+9s/aSxPej6jbN3xkc7tthICAOC1+Zr/NqTO9/8NdXtX3Mw+8NrOt3Kes27E7+nu3W3fsBygqhvBXV0oYmhqbiBdP14Ys+Q3KNEMVcqPVaaNqEQZAyNd+4fRihSoeIFIU4s7Wk1VSFlaJTSulSiCEEkBF1HAvWbt9gthJ4/svKCkJWWw3/7/v3sTRpGP4yMnbv141HxbfZ2CpAxNB7dNcAzFyvUui4NS7pHRH6M67toamKHJCBWrs/n2qyt86kAOk7IxY2uJOfesIxXkxzV7Vb3bgiX1zvYwWY+0A0H3vKDLsCNo362iiJk36PhhKiKzJDfOZil7QWMFtNSxR5EzFZ7VDsulZ4nc4EbCvtG8jywo8xnjy9juREpQyVn6hSzBocmiuwZzkmr0/UOZ1Y7jJfSjBRk7vhQzuSFS1VWWi77RnP8+lO7yJgaVyo9lho2D8yU+0Q4ywv7FpTfT70Zv+RGQEKSyWX/p+uEBFFEztCJY8HR+VY/4sL2ZT79WCnNeCnNew6OstJ0sPyI6YGMdL8IInIpqWLoxCEvz9b4whsr2EHMa3MNrlZ7HJ64BqQ3LJ+vnVknY6p8+P6JvpvLndaljS7fPLfBRCnNzz449WNBPA2jmKPzTb5+dp25msW+0Tz3TZZYqNustCz8UNCwPF66UvsTB8FAZog9tXeY4UKKk0stSmkN15cqlpYTviU9rreapxQLKBdS7BvJsdb2aDs+qSRTKBZy3jY1hY2uh2mohFGM48UoSoymKgxndS6udymkjcQhQmWyJEllT+4Z5MXLNSYHMpxd6QCCyxvdOwLBsqaOqioYmkrLDvquNMW0jqYqLNYlQBJHgm+cW2cga5DSNGqWz8xgluG8VJFi+cQIUrrCVDnd37OcW20TRglRYBM4SL5cLZY9KifwURVB1tQIg7DvUqMhs6YgsTHUwI8kMDRb6REr26/vw1hQ63p03ODmnkwyniIEbyw1KaYNLC/ok5E3QbBQwErbv2l//Lk3VtFV+T42cx4339/mY90bNmKyRyttdhXETX2kC+s9/vdvXkRJHI+2VspQ+Svv3XfdODNZzjBdlvFDj+8eopQ1mK32aNsBxYxB1pRkZVPT6DiqxAcSdV6IQE9chUB+1q57/T3j+AJNFVh+yG89N3tdJpskmGh0vah/nsKY/vFuVVudx+IwJkhy/HIpDccPrydOCdmz2lxTCkDVNES4CWYJlpsOax0Pz792vcSC69yc3DC67vzpmsLHHprmmfPr/czuc6tdzooOq+NFfu3JGdbbrlQfbip0UNBUeHLPEBOlNO/7F89epyyMY8GXT6/3XU9A2iuraoJBRDKPfLJ8ewv/HyoIpijKHwohfklRlNNc3wuQqjkhjrwVr6O/yWQmuHbDhJtauhseUMyapHSVZtfrh+F5YSTZRoCII/IZg/Wuh4ilx+ombKIqIFBo2j5dL6TlaESRoNpTMDUVL2kcS4u9kJ4X8cfHl/n0sSV6bkg2pVHpuLyx1LlOLRHELmlD43//5iU2OnJgUYB0FLNjMMPplS4ZQz7X1BXqVkAkZDCdH8HLV6rEyMZSFEv12lBexQ/loJcxpC3B3//j0yiqRIhNTWGt7Vwn24yAtKaiqUKCX8nXF4lbN/LupOxt1CPbVTU5J+86MMIXT67Ssn1+/7uL/NqTOxnJp5geyHB5I+Rte4d4Y6mFF4RUejFpV+V3X1mgbnkM5U2alo8fylDXqVIW2wtphjLsT1MlU0tTr1eshLGg5/t85fRGP8fox7027VACJ2S5abPeceX5TN68HwWMlTIU0jqxEAzmTQayJq9crVHv+UwPZOi5IQ3L59mLVUACPLezYGvZPr/33QWW6zZREtT4VnxZThBzfKHBsYUGu4ZyBJE8V/uG85QzBgNZg0sbHf7ts7M8tmuQtbZLxtT4+CPTN+UmvX3fMOJKjYlS+rpNw1rb4WrV4tB4gaFb2Njc9L78iLOrbSbKGaYS33VDU/nZB6eYq1lvGjbrJ+xC4LpB/E5qteXw7QsVRvImH7xn/Dq7p++3gjDiH3/tIldrNnEsiEXAG0stuk5IBIShZM5s3hmxgEr3B+PwqtCfRGH7y2W7e05VZJNoE7C+VW2OU0GfObN9CWChbvPV02vUe3LxtpWJequKBJxda9JxoiQvTSEIg+tUGJWu3/c/DmLBQtNF16RtgRXEvLHYYv9ITgJ5W0gZm5/L8kLeWG7xlTPrjORTPLp7kL9xFwT7iauVptX/uWm9+f3uJI17DYEfhqy1A8IIjs23qPcC9o7mGMianF3tyMwMJ6TnBeRSOrmUxvvvGePhnQPUezIj7Oxym//vF8/iBFJ1/iuPz3B5o8cLV2pEkQR22nbAew+P8sKlGosNmyCKedeBEY5Ml3ljscWnjy+xZzhPx/OJhMDUVAopg4GcgaYqbHRcwiQw9/hik5PL0vbwsZ0D7B3OcWmjy9fOrLNvNM+Te4aZrVh85fQaI/kUh8aLMq+j7VHtuqy0HebrFnM1i7OrXdwgpOeFdCohHSfk/3p2liMzJWIBqiK4vNGRliGayjPnK4SxZEtODWSZr9toihxzJcvap2DKDMH5uo0Q0qv+xgyBkUKK+yZLDOZM6pbPX3rX3u8rE2xrjW6jyAKo9e5MIVVIX9uQjdwhizm6xSC53Lqz11xvXlNSLVat2zzyWp28usHbD9xsnfj9MK9Td7hLETdk1WyW5f/wsiju1t3arGLa4G17h1hs2EyU0nzh5CoX1rq03YD7p0toqsKRqRIrTWlP1HUDVBROLrdZbdooiL51tECuB7wopOvK8cgN4usaWsT0iYp/klW3QzY6bt+mdWu5QYQXxj82lmN36wevW80nINeuDdvnpSs1XD+6zg1FIHsJm70YHQk0XWt53XrLGIlr2Zo3lvsmJIfeHZIgQnEz+NbzhXyfuooXRDx/uUoQwcxgGsuXJKIgiKm2XXq+BKejCM6vd1lo2LhJnygWMJA12DuS48m9QyzUbY4vtqh1PTKmhqrAX37XXhw/ZnIgzf/0x2ewkmziv/E+mZn25VNrxEKw2rb51Sd20XYC/surC3hBzNv3DfH47qFbfLLvv268o5XEerLjhXQcuVcSWQUNmWWcNjRMXWEosZ90g4hvX6iQSxnkUzoTpTQ7BrOMFVN8/cwGf3R0iZcu12i70vGg50cEYUTTCfhHXzzHrz+1iw/dL0lYp5ZbbHSkxepsxdrW7rHnhXx3ts5Azrwpr/vUchs/lGTfes9jtHj75qgXRpxYbFHOGhwa//5B/SuVLrNViwdnyowV01S6Lq/NNZgqZ3CCiC+eXOXMShtVkerCR3cNUOt6/T2AH8bsHv7BnWreiopjwfSgtFDPpTRJrEfghuJHRvL+fkoIwWzNRkMC15qi4CU2qACz1R6XKlaf6NcHBmKBaWgcHCswVkgzWcpg6tK9BWDfaIF9CfHj4nqXb52r8PjuQV68XGXfaIHx0q2vsXxK5//9gQOkDZWXZ2soImahIZ3F/DCWln+KQtPyMXWFi2sxajL/ryVriFLyPhQhbe8cP2Jq0OTMkktf5LnNedkECTb/uHqjsuuGcXArziK3r7dedQTx9qokkKIBPwzRVOi54XXZ6VuXD9s9PRIgok2V1u0fu7XGCiZPHxjlD15d2Pbv622ftC4Bl62fs+dGN2USPrZrkMlyhvNrHcYKaTKmmpCc5bVk+xEdNyIWEkgVCNKGhqYI/AgKKV2q1bZ8pq2lJuBexwm4IRpQkkHs6AeKmRHJa8aRwLO3P9KN8EjPizA0GWvSdqUC7c3auzf+zQ8F/+H5q/25cOvfTyy1aNkeYSQSq0Op8g6EHFNOLP7/2fvv8LjO88wD/p02fQYY9EaQYK+i2NSrJRc5jnvsOHGq07ObZLP5dlN290vZ7Ld7eVM3yW4SJ7HjxCWxHcu2bFm9UyIl9gaitwEwvZ5evj/OYAiQAEmJpETZvH1ZIAZnZk593+d9nvu57yInpkvkVKvhh71AVHni1ByLraUvuDUFX3Kyv2Xl8fNad4L9av3n+67llyyuDq6Eiy0UPHwZooJqIpxfvV746UK+dmEQJos+u9WwfQO6SEBmvqQ3GP1h2ffFWkjYCkBJMxHxtVxtx0OzJWTBN7RbDMuG2YJKSJHqTED/9ZJm8/DhFIossrkrDgLMFg0EEYKSgGb5+13UbZJ1zxp/0POYL5vIokVLVKnrVfvHdLHFlOOBajiI0oVB4pWgpl86iT6eq/HXz4zQFFHYt6aFvuaw3448VcSwHPpaIuSqBk+dSVNQfRNI3fIHV1kUqeo2muWgmjaO52HYNpmKy2xJx1zU/bXw3/OL6gvn/K1eaL4ReMBcUcN0lwYonutRUk1em7RQRAHVdNAt38zXdFyKmsWGjjiJkNxIyEcvkYl68vS8b4qqmSiiQCwoUbxM4/tLHUOuPljnVV9vMyRDvmYgSyK1bI1c1f/3i8NZNnXFkSWRSEAkEQ6wsTNGSJZojQVpjihEFN8Txqn7Xbmux9cOzWDaLmfnK6zviKGaDndvaLugiOZ5HpmqQVNY4bFTc4xmasiiwE/fNdA4P6taIqxqWV7yajGS0QDv2uYbre5d8/o60V6dKJCtGGQrBjv6mhtFuDeKEzMlPvfiOE+fmcOrByWmA5nKUjbOVWdovcH3qZbH1VZH94D0IuPeSxXAFpCpLr7Hl3/Twqu2e654twDVcjma8mXNBHw21OKx2HbhtfECqumSq5o013Wqm69hR8UNXH0srhe/niDWwU/ELECzXYbSFaYKKkNzFeIhibNzVWzHRRQFqobD2rYoD23roj0eZDRb4+RMiU8/NshcScdwXGzX45/2T6DbvmxGwbKYL+scnizy+Kn5ug+ewOnZSt1kWeOZwQxn58u8NJxFkQXw4KY+nxV6x7o2Do7lG14Uv/etk5TUur+o6fDCUJrjMxXiAZHu5jC245Eqajx2ao5UUaMlGkAQ/MSRIok4nu8pOZVXOZkqIgkiYUVkQ2ecU7MVpvIqn395nDVDEbb2NDGWVVENC932CMgCkuD7Q7meP7a5rotmOUuK02XTpZw5VwSyz0uUucBD27vYN9DKcLrKh3b3kowqaKZzRV6PJ2ey3L7hQpboJRqHGzg6XWz8+6mzaf7gMt6Tqy3vzTNbvbwvLS0iacxfxIdsMcbyyxfLjo5nL+v9bwTp8vLH+epY4Zp95w18b6Nm2EiiQEiRmC/r/NvhGRRJ5KN7+pYt7Ny6tpVb1/rJ6KfPpBEEGMvUeHkkx8lUGdv1uGtDG+PZGo8cS5GrmQQlEcO20Qx32ZhooXhwPiPoelqTjNWPpzNxjmBWNWy+8MoENcPhgS0d3NTX/Nbu5A1cFVyET+avMx2PudLFu91haRx0lTiT1wQ2YNvukuTlRP7cXKOa54I7gfrawfVVJAKiXzhSJCjrFt86muKrh6brpBsPURSwHI/2eJB/PTjFYLqKLIlMZKpotsua1ggTeY3JnEquZpAuazw7aDAyX+W+zR0YlsPB8QLPnc3wU3eu4f03917Tc+F6fiHEsNyGhJlu2iiSSFCRCCoi23oSuK7f5RSURRRRaHR+mLbLN4+lyFUMJvK+9Fo8KBMOyBi2QyQgs7k7TkCWMB2Xh4/M0BRRuH1tK2taoxyrE6tWWvO+OJzlVKoMQFdTaMl223sTzJU0OhOhy5KUf2k4x5GpIuDLYHY3vf51tmm7PHJsDtfzmC/r/Pjta3h2MMN0QWNovsqO3iYkQcBzPQJBidvWtvLe7V189bWpxmfYjkf/ZeQUriZc12Mir1JSTUqaRSggsaU7wYnpEv/8ygQnZkqopk1mhcL09Yb58wi7ItSbF/yfprO8L7zjQVCCXM2kMJ7D8WB1S4RHT8zxM3evbWxnOy7PDKbJVg0ePjKD53n8w4vj3La2hU/etppwYPn82XNn0/zDS+O+HxXLzen+Pi108yzkIxcsZjKLctJF3aas20zmVV6vyumlNr/cfAhA6RJ5v4UilrPsGb843kjMM5lVGWn2Y6+V9ke3lyrwAGQqOq+O5dm3dim54FSqzImZEk+W5wkHJNIVHdW0KWoWeH5TjLXI+cYynIbX2KUaPxammPMLYAu4Wk/b6znvjgfnW/y93uvmcfF7KF02iARkP//ugawIWJbfkVbRrMb5tJ2l98ylUsyFmsGa1ouPnde0COZ53mz95/Il2KsEewWz8dcL8yIndKXrJwAVwyYelKmZHoblNLRdPeD8YutCNbuoWVj14ljNcslVrCUP+EJraM3yqFlLP2Shmc2xXDIVg6Jq+YsklyUPuuv6Xh+ZRRPAQjFstrx0UrjkIAj1ldjVw0JRMVc1+MbRFLIo8IFdvSRC/uLS8zy++uok+0dziPUoeSRb5cR0iYJq8NTpWWRZJlo3xTXPe0BMx0Ur+vILnneu6m5epfvl7QB1mZHH9mCqoJ0L2OsISAJdiSC3DrRwy0CS6aJORzxEPCgzX9aZzKn0rzCgrG6JopoWhu1h1LsjrxV021+EzJZ0okEZw3Ix6mbKU3mNWFjm5EyJZDSA5/nB7019zTRHFL54cArVtDk9V+Ynbl9DNChxcqZEoWayqTveKAqHFYl7zmtpf/J0muMzJVqiAeKhKx86t/U0sbkrQUE1G0W5y8FAa5TRTJVESKH1CjXNPQ9+/5snOTRZuCARe70uSuGqD0XXHBchZS3ZxvG4QLysovtyDabj0tscviIz6Bt4+8N2fXbWTFHFdP2uRQ9f4zsSkNnQGScZDSBLIgFZ5DMvjFHRFzonPaqaiRkLEJb9v3uex+GJAo7na5SfSpXobAoTlERSRY3pgkq6rPvGv/UieVssCAjUDKdu6isyX/Ln2smciiz6Hatt8SCnZssIgGH7HfeqaVMzLbIVA8N2G0nmzniQZwbTiKIv3RwPKZTrbEFBFNnRm/AN1S2PqumQq5U4MVOqL2B9LLDCZcHCdNwV2eOXg8++NEGqpPEfHtjIREHjxeEcibDCj9+++g1/5mPHJvmZ+7Zc8Hpu+frNBagtWt2mipfXiZstVy/vw1fA4ri4dpkGXcXq8kWwQ7Pasq9fDJfROAn4BbYHd1woNWnc6AS7gWVQ1i0ePjyD43q8/+beCxKj49kaDx9JIUsCH9vrd85qpoOGw2ROZUt3HA9fAeCl4SxHp0ts64kjCAInUyUKquWPa4kQgnBubVbWTB45NstEXr3s4vf1jkzV5J9enqBq2PzX920jIIsUaia1ejZnuqDdKIJ9n+CNdIRcz2uN1wPvvF9sx8+dlHWXU7MXzsOS6CsZPXwkhVMfHxbk+6NBCdfz+P1vnGAir5IIywzN1/zCeq5GQBIY6Iwzf2yW5rDCoyfmLiiCzZd1XpsosLo1wraeJmBpvuWNoLzIWNP1/MSkYfuFsHgwgGnZTOQ1NMulqts8dSZNQBa5ZU0LNdNhKqdS0mxM20PA8xPDgi95adoujuOxrSfBydky0aDM5/dPcHSqyId29fHz965FFHwJucXQLYeQIjVyR7IoED2PrLS5K/G6OroWZK8FgYuuzV3XI1szaA4HfJ+dxZ9Rlx2r6HZj31pjAaYLGtGghCQITORVpos6zRGF54eyHBjLM18+RzZygUeOz7Kv3un36nieg+MFtnTHL6rOcyV45mya589mOTNXwXb9Tt5oQOJ4qsRMXvMl067JN785WCwI5nkXH3+GMhrBgo4gQFiRfbK3atHVFOSdW7sIyhIevke4atZ9PacKZMomVcMiHJD45G1rAP8+/caRFGXd4qEd3fzfp4cbZPyrcT5dlsrfXc94s/bS8OCZofwl9+X8/dFtj795fuyCIlikPq7olktFt8hUzbqvWT3/vMyBufUGGOu8ayPz+kix36swbJeadW49qy0ipS4m3bzee6ZqekzlNXpW8OKGay+HWGH5/V6QQ7wqwuG65fBWiS1Yrt/+qVt1Dy3PvaCifD5cLiy4na+7fDnjmIfPVFwJvlzXyubpbzWqmp8QGZyvNIoPo/W28QVMFnTKmu8B9dipeQqq2WjDFwDJtokqfrC43ClbYB289erP1xeWu798fWSXw5NFXh49VJdviHFqtsxAW4QT0yV+870XJvAABtqjRBSZcr27783wKTAdMBdXmT0QPBfbdpkpahRUk5ZogEzFYCqv0hJtxrT9jppjUyX+1h7lznWtvsyW4Qflkij4Pg7LBL1zdaZ5vmbyAzu6GWqq0N8avWSX3MXwjaMzjGd9754P7748Q+MdfU2s74gRkMUr1jU3HZfRTPV7JhnzvYDzL4UL6I7H2ubQVbnmN/C9gYUOMUeE7kSY1a0hZoo6x1NF/vNXj7FrVROfe2mC6YIKguDPgXUm72ReY1VLhHBApCMe5MxsyWdbeRALSRRVg+7mEK9N5LFdj7JmEZIlNNv3QdVMX6rn1Ykcg3Mljk37SV9Z9M1/S7rvt2XX/VRN24+L0hWj8X8QiCgya9tiPLSji794apiSZjekFnf0NtESVUgVdRRJ4EsHpy+QPlqJMVcyXDCubFDzgCdOpTk2VaSn2e/w7W4KL9Fpf73IrSBB8Ub373Lw4tlZfua+bVflO8vG5X3reObKpHLfCIr68l1q1Td/V27gTUC67i0w0BZd0Q/uYhhJVxtejYNzFW5ftzTZMVPUcD0P0/ZZ/Ju64pyZKxOURWIhiT/41ik0y+EHd3bz2RfGkSSRp87ME1KkerwZoDmi8NHdvQQViZAskq4anJgpMVvS+F7j4lUNh5eGs+wfyXLvpg56m8Ps6G0ir5rse51qBzdwA293uFw6se24fjy2eFa1HbfhI1zVfTJPuqyTKvkqLq7newWfSFX45B0DHJsqMZlX2dHXhOW4PD+UwXXh7o1tPHk6zXxZ5+x8pSGptzjfcjWg2b7Vgm47qLkaqYKKKAro9dddD0TD4fnhLImQQtXwE8ZhRUTEo78tymxBRxYFHNdje28CzxPoiAU5PVumrPvyabMlnXs2tHPfpnPkVNtxeezkHIPzVTZ3xXnP9i66m0IkwsoVq2Xcsa6NZCRAU1ihI76yrN1jp+Y5PVumLR7kB3Z08fCRFJ4HH9rVSzIa4BO39DNX1hvdXPdv6mBjZ5xkJMDTg+l6F6RHUTV5aTiDarm4ntfojgxKvh/dAg5NFtAtX6rx7g3t12Q9WNZ8O4xc1aBiWKTLIvmaheO6b5siy+XiUkfjAlq9U8h2LdrkIOmyztcPp6jqDg/t6OZfD05i2A5BWWDXqiSxkIRQ/19z+Ny1my5onJ2vYDouJ6aLTOYuT178Bt58ePiKU5bjLim6b+mK161QQkzmaxRqBgFZrBfBvIs205w/H4jLt/993+H1dBq+Xjx9Jt1QZ1gO17oT7PvGvGShkqxZF7ZVvpHPulyopoMs+bJuV+NGiioCtTfJSHxzl89MWt8e4+hUCVkUlrQuCoLA9t4mDozl/cnXdhpdfyIgiL45vKKINEeUi7ZmC0Ld5PUSrI/vV0j1DGlJsyjW5QLzNYOJnIpmOUwXNCwHKrpFPHRhyfl/Pza4RC7irUJIluoSjv4iAg9Ou2U6EyHuXNdKrmry+Ok5n9U0XULVbcazNWRJIB6S+eCuHr50YIoDY3mqus9Q29qdYFVLhHs3tnNgLM+atihHp4uNxO+VyBGminr95+tjyF+JJNdiiHUG3g1c/6gZDidSJc7OVdh2Cc+5G/jehSwulc9zXRBwmS7olHWLsmYzXzIYnCszXfC7DUTBQ5EFn5nsQUgUCMgi0aBEzbKxPYgqIi4+s9fv0haoGA6GZeN5Hh4iyUiA2+vjqO+vUKMprFAzbCzHJRxQiAdlQopLRzxIRzxIXzJCNCgznq0ynlN9bxugryXM9p4mZFHgz58c4vBkEcf1GaaW7aJIAh/c1cfJVImnTqcx7eXlwq4lHA/myibZmkW+5suQns9Cfj1oCr/5XZzaZXqvXk20rhD5X0vZq56W5b80okDpRjPY9xQyFYMvHpjC9TzuXN/GLQOXX2Q5MVNicK7Cuo4YsaCM43ms67jQMyAZUZgtaXQ3hdnQGSMoSw0JpEdPzHJmroLluPzWV4/VTcE9OhIhBKgnsG0qmsIfPT6IKIi4nt/hkK8ZBBQRx/Ow7Lc3o34xFp7rBY9aURR4cGvnW7dDN3AD1zlkUVii3iMLsLkrxtHpsm9DYXmMZ1WaQxIiAp4L0aDI5q4Ea9tjCILAf33fVtJlnd5khOMzJY5O+bYBzREFUYChdIWepnAjblmcb7lSSAIsThc5Llh4eK6H49JQhPHwpQGjQQnLdjDwEASBrkSYkCwRCcnYnkdvMsLu/hb+/sUxRjNVREGgpylEpmISUmSOTReZzNcIB2S29SR4fijLy6M5NnfFGU5XEQSBNVfJP0sShUt6ewPMlfy1e65qcGb2XIFxKF3lloEWokGZde2xxvaCINCX9PNcd65rI1XQMGyH2aJOUTUQ8HOIfckw69uj7Oxv5lN3nZPe29rdxKsTeTZ3xa8ZIXJDZ4xHjqfw8JAEAUEQCMgCRdVdQbbvex8e1NW7fK+ulmiA1yYKaJbDZ18aZ7akE5BFkhGZX7x/PdN5FUWWuH1RAj4oi4xkquiWy57+JPqN1Mt1jfZY4IJx8sB4vuHX6LoQC8iYIQ9JFIkqApPFC8l4AamuwrbowZHxu8rMq2AbcwMrY+ISheZr7Qn2piARUnj9IiuXh7AiLGnNC0oskd9ZDorkt8FfbKK4WsmAZDSAIgk0hxVOzVYaHT4SF0qGXeo7RWBte4wzc1WsN6GVR1R8hkRQkWiJKMiSSFBemiT60M09nJ0r4wFhReTYdBnLcfE8vxBg1I2X+5IRSnrZ7+YR/L9ppuOzkAQIKiKu65vuLXik3YCPREjCsHxPGUX0u8FcD0zLJRzxfcEEQWBDZ2zZoKtq2AzNV3yGmrjU4PLNgihARyzIqmSYmukwmq36cqSWQ8AUqRo2luvxkT19PLClg0eOzzKWqTE4X/GPWxLZ3tOE59FYLHznxCyrW6OMZWv8wr3rlvh9/dUzwwCcna/w0PauN8REBnjH5g6Oz5TY3vPWFDUEQUCUeMNRbUS+UPL1Bq4+5HphtzUa5Mh08UYR7PsIwqKfkaCIJIqoht0YZ0UBEP0CVs1w6hrnPps4GVGomA4dsSDRgMRkQSMSkFjdEmVbb4KP7V3Ft4+lGElXKekOTRGFkCSSCMlIokC+ZuJ6EJAkArJEbzKE58Hq1jCuC/GQTDggoUi+FMitA63c1NfE04MZJEGgIx4goEiEZImb+pr4yqFpJEFga08TH9nTi2G5PD2YYaqgIUsiogiCC0rdMyMWlPnkbasZyVRxMh66aYPge58tRlQBSZIpL7OqvJIxSqAuheP5Pxc8Vt8o7t7Q9Ybfez4uV/1g95rlvzMKvF4e6uWW/zZ2JZd9PQhcpvLj60ZoheJkMixQepOIXdcSa37zkcvedvx//sA13JO3Hn5s71/Ti6lhnA/bcXni9DyeBwXV5GfvWYvnecvGb4cmiw0fGMvxWNzwv6nL98ytGjaiIKJIArIk0h4P0hYL4rkuMyWdkCJRqFkE5EVrSFmipymMKAhYjktBNbEdF8vxsF0PSfCW+EC+XSALoMjSZY8RN/D2xA0dgiuHIuIzcz0IyQIefkHs9rWt7Ohr4kSqglNPUoRkkYH2GOmKSVAW2NrTzB3rW2mPB+lOBHnk+BwjmSq3r22luynMwlDWEg1gux4d8RBBRcSqZ2AX51uuFOfnmER8K4GFnUhGFFqiAWZLGq4HnfEAuZqJZbtYrsdUQaUtGqRq2IQVmbVtUdZ1xJgvG6imgyAI3JyM8IGbezgyVaRq2KhFh2hQZraoIQgC3U0hXM/jjvUrs/2vJe7b1MGrEwXWd8Tob4lwaraM58G69ksX45LRAD937zreua2Lrx+e4bWJPHNlnc2dcX7twY2s77yQ2NMcUernNXgtDsffr0iA7qYwZc2muU1Gt1064iGePZvB8zzwPN/S5fugGiYBkiQ07FbKusM//PRNfOb5MaIBiZMzfrei4/kSeaIoMJyucnq2Qm9zuEEKAV95x7cz8HDxaI/JzFUvHb8sl8+9gWuPrGpyaLLIntXn1jPt8RCnZyv0t0boS0Y4PFmkalhIgoBpu+RPzVFdpOEXD4h0NUcoqibZqq8YF5BF1rdHCcoix1NlzPNlEoVr2x31/YSCenEpkOu2CCYIwp8Ae4FDnuf96sW2Na5QVyIgCb4urLe0myooCWzoiHN6tuIvTiTfIDOkSAQViZmCr3u8+F6VgJAioXluwxtMkWBnXzODcxVqhkM8LNMZDzCZ1zHqlG6BpXnoWEAEvIZvmOd5S9jfsiiwsdOfdIOKhOt6zNf9wWRRoC0aIFXSG8cTUQSaI0ECkkDNtClULez69wqCn0jrbQ4hiyLrO6KkSjpVzcbF10YOSB6GvbyBe1Dy2UxeveAkS1yS4dAZE0nU24RPpkqkSn5qZHC+skQOsS0e4vc/sIO5sk5fMkymYpCpGGzpTnB0qsh3T84xXVCRJZENnXHOzldxXYegIqObDrmaSUAWWdsaZTBdoWrYyKJAazSA4Xhkyxqt8SA39zUznlM5MVNesR6w4NN2weu8fScoWfA7CyxR8JOWiRAzRQ3H8yfzeze2odsum7vifGxfP5FlDD7PzJbZ0duMgEAsJHNzXxND8xUeOTF/zVjfIj6LIij7cl67B1q4f2MHB8ZzvDpeoDniLwDkuvGw47qcna9y86pmmiMBPr53FQfG81QNC8txkUWBHX1NrEpGuLm/mZJqEQlIqKbT0PJejFsHWjk8WWBbT9NlFcAG5yq8MJxloC3COzafY8du6U6wpfuqqMK+IciiwId39fHlg1M4HsSDIpLgjz2CKGCYNk3hALbjkqlnkkVgfXuUB7d18bN3r+XQZIH/78PHmSkaeFxYbFcAT7xw7JAECMlge34n6xsJqN8IK21h6Xf++64GMUEUXp8UqIjfEr9wB51/DgRAkQQSIZmWaIhM1XhduvY3cH1g16oEh6d8w+7+5stbvMaCIookUa4zS/1nS2BLZ5zZsk62YiCIAg9u6eDMXBVFEjAtv1s6GJC5c10bk3kV14Mf2ttHU0jhr54dJiCJ3DrQyi/evx7wC/qmvRDHeEQCEpu6EkRDEkXNwnV9A/eOeIiyZjFsVQkqIvdt6uA/vHMjFcMmKPuFsAUJmo/sWQXAv7w6xUxBIx6S+ck7B/jpu9Zi2m7DO8GwHV6rLzKyFZMNnTFSdb/Kj+3t5871bYQUiS/8zG0cmy4i4Ht1HRzPIQK5moHrQSQQYENXjNOzZaq6jV8XFOhqCpGvWYiO7RMcRD8+U01nxUWGKEBQFkiEAty/uZ2TqTKu6/EDN3Xzrm1dV9SFm4wvr03eHIDLsfhqCcvk6527ay8jyQLwg7tXL/v6R2/t5XOvzFzy/QGBhtF2d+LyJIZuWqHw1hoXmalcm8zJ2vblx0VBvpaltxt4K9DfGuHeTe2UNYvbLiJ1cj4kUaA9HiRdNuhq8iWuVorfeuvrjbZYwE/sLsJAW4zf/cB2qrrNkckC3z4+y/qOGJ+8fTXJSAABgYlcjeeGMjiuS0lz2NQV44EtnTx6Yo5MxZfQ+aE9vbwwnGMyV+PoVJGpgt95JstwesZPjqxujdAUUogFJZ44k0ZfNHAFxStWfb1qcPGVIs73xbmB7y3Egpd3fRdiW9elsS4IyL7XZ6YuQ9oTV3AFgWLNRHfq8e6i+WYxVlp/v1m43PVBS0RmTVsUx3GZzGmYrotuuo0cQTQg0ZMIkq6ZuK5PyhUFf+38Kw9u5LmzGVa1hMlVLTzPYW17nD1rWhhKVzFtj75kmI/v870vdcthOO17jZ2aLXPr2lZ+7LbVuB60x4Ocna+QqSjEQ3KD3Lk433IlWMj7LJwXWfDJAdGgT6o1HY8P7u5FFgT+9IkhBAEcT2BLV4LTs2UCrkdbLEBbPMRMQcVxPToTIToTIfYNJHn+bIbWWJBNXb731U19zTiOx8NHZ6joNretbWU0W6O7KcT7dvY0vNTebKxpiy7pPlvoFn49GGiL8v6be3j3ti4G2iKAsGKc+dJIlprh8OJwlj2rk9ekG6ynOcxP3bGGF0dytEQC3LK2Bc10+NFbV3F4qsT27gQ7+5P83fOjfOPoDJmKQa5mXfcqS4mghGo5y+YiokEJ14VqXc9OxLf5EAXob4mwfyTXuEc3dyXYszrJXElnVYvMbEnl5dE8AjCWVRnJ+PSyVEnDdtwlBed4SCYgiyiiyM/fu57fe+RM429h2c+dSoKvlHHLQCvbehIcnSzy1GAay3aRBLA9D0USaQrLTBWMxnlvCsvcPtCCYbs8fTa75BhFIBmRiYVkshVjRcWvS+UzQxLEwopvS+PSsKa53Gu/cLd6i34/P/+90vve7PsrWzEYz9WWFMH2rE6yKhkmEpSJBWX2rmlB8GC6qDFZV84qqCY13UaWBB7a0c1UXmOupDNTVLFdjw0dMX7h3vV8/uUJTNfjzFzFV0Hx/Pvwwc2dnJ4rMVPQEQWfTJCpmtiuR3tUwUNENW1Kl9FKGKzPp9f7s7mAhfBRFkUc18V2r2zfVevi2fnrsggmCMJuIOp53t2CIPxfQRD2eZ53cKXtQ7KIuszrsgDRoIzr+V4/mulguR6y4CcbBcFnpvzRx25mIq/yN8+OMJ7TfB1eWWRnXxNbehKEFJlEWGK2qBML+S3m+9a08PJojvmyTiggsbEjxkhWJaKIaJZvjjieqxGURR7a3s3vfWA7jxxL8Q8vjhENyty/qYNMxeDgeIHZkp/0kSWB9liQSFDm1rUtvDKaR60zHlXTxqyzDHTb5b07ulnbFuWDu3qJhxRKqsUffOskZ+bKdCVCRIMKGw2LU3MVDMthdUuU3/qBzWxoj3FqtsL+kRzPDqaZKmrE6sadzZEgu1cnCQckclWTbNUgpIjs6k9yaLLIZE5lvqwRkETi9WJgJCCya1WSfM1kMq+xujXMfZs6eOzUPM/VWSNbehL0J32GzKauOJu7Ety7saOx+OxviXBoooAoCstKy4UDUkPPuqc5TE99mz2rk/WCpMiGjhgF1SIRkhsTznxZ4389OkgsKLO1O8HGbJya6bCmNUIyohAPBzg6VaBqONw60MLWngT/6V+PcmyqgOacY4D4xynR3eRLnZQ0i5JuIwpw14ZWIorMK2MFXNfDtB1/krUdtHpG262zyBVZxHM9astk+wUgoog4HriOi+35xcTF+rIB6UIvucXvF/EnL9mvYeCsMPA1Gn8EiIcVokEZUbRRRImuplCjci4KAslokJ+6a+Cikn99yQht8SD3be7go3v66EyEODRZIBFV+M7xOUqq/YYajZTzpBYWH2ssJLN3dZI/+eFdGLbT0OzuSARxXdjV34xmuWTKOrGgQl8yQq56rk1ZlkTuWNdGZyLEM2fS9LVEWN0aQRAE7q+bzeqWw0xRW/bY96xOLpkYL4UD43nKmsXRqRL71rQsKyn5VuEPP7SDT962mvmSzrbeJjoS/rlMFVWyVZNNnXHSVZ3f+upxpgsaibDCLWuSdCZCNIUVHtjSSX9rhM88N4qAwAd39vDHTw7RGg/wK/ev52uHpvjuyTSC4Bcui6rZMBG9e0MHe9ck2bemhWfPpvnygSksx2VDe4SjMyXSi1hSYVkkFpLZ3tvEqVQJRRYRBYG+ZJjZgspsScfFX5gpYn2RhoBe72wE/95Z0xpBlmAsrWLhPzdNYZnmSADVdFjfEQPB9xwZy9SwPVBEgURYpqie8yMMygJBxe849VwPURKJBCRKmrXk+xaey4AooEi+vrhX/4yQIhJQJNa0RvE8l6H5amPcCNYTBuAnEhJhmZ++Y+B13Xc3cH3gJ+5Yy+g3TuB5Hj9+h79IjgeWTyYtJIves62b5kiA7xyfpaAaBGSZgbYIN/U3E03X6G+N0tUU4r9/cDv/dmiG2ZLOVEFFEiBXNYmHFRJhhd7mMGfnq6xrj9IRD5GvmXQ0nfM42LM6yfHpElXDprcpwsauOP0tEX72nrV8d80sh6dK7FvdTFsixHC6yrePz/reYUGZpkiApot4L3zg5h6mCxrdi75vcZI0KEv8yK39ZCtGveu2ypGpIps7E2zvO9ftKEsiu1f7kmeKLLGmLYphO0zma0zmNHavbiZXNVnbFqMlGuDH71hDoWbxymiOY9NFpooqAUlifXuUTd1xnh3Mkqsa6JbD6tYId6xrQxQFXhnLYdoeN69KEA4o/Kf3bAbAsBxaY0uLl9GAQK2ereuKX9543pNYvgD67x9Yzx98Z/iS79/e18RzQzkE4Ja1K0vAdcUDpCsmIUWkM7H83P3Atm7+8ZUZPPw4eCXct6WDx0+lAfjArsvzrdzc1bzs67/+zq38x6+dAC6++Fi84O2KXV7RcXPv8ufj5+9by29+7RTgFw2+H/B6usYuF9dbd9nu/tc/DwqCwMf2riJfM2mPXZyMcP+mDnb2NROvd8Wej4W4cFNXnI/f0n/B32+KNHPTIkLfAj64q5fBuTKrkhE6EqGGF2xF98kO8ZAvwzg8X/Xl0jyPm3r9/fjywUlOpcr0t4YZz6kEZZGD43lmS753slkvJMSCEn3JEMNp9Zqreiiiv86OBGTu2tDG9t4Lj/mi7782u3UD1wiJUGDJei6qCGzojHPfxg4OTuSZLxuAx3t39LB7VTOff2WCyYKGaTnIkkhzWCEalACBX7xvHQFJ5HP7x9FNv8OnNRZgKq8yXdCwXZemcICuRAgPX2JONx1c/ESxvEhuz/UuzZ5fYOFbdaNwSfAVZlTLxXV9wpmvFuNvHFZEf5+iQb9THZfhjIqHR1gWsT0/rrddj5rpEJRFtvY084GbuxEEkVRRZWi+wtn5Krrl0NUUZkt3nD2rk7w8mgcPRjJVJvMq4YDvG+h6sCoZob9F4I71bfzgTT3IksDQfJXxXG2JvFpIkdjR28RQusqu+ni4OE5559YutnY30RY/J+O8ON9y25oEL4+XL3nNfcKiiOn63fn3bmylpNkcnixiOh4hWWRLd4Jfe3ADRc3iSwem6EwE6YyHODVbpiUWwLRdepNhNncl2NaTYCxXIxpQ+MDObr5wYIrWmEJHIogkCvz6g5t4x+YOdMvlpnoc2BL1Y5SfuGMNhu0SC8rcsb7tkvv+dsFiycSLYW1bjOMzJda0Ra6pP/RAe4yB8/ZpVUuEm/vPxVm/eP96PrZvFadmy/zb4WkOjuUpqRYhRcSqF0h128Vx3BX9exewsFaOBCWqdUWL1wNpUcH9fMgC3L2xna5EkNNzlQYxDw9kWaAppPATd6yhUDP5X48OYjouW7rjPLS9B63uEX/XhjYOjRf4mXv89dsHb+5lPFejLxnmjnWt/Pq/HEW3HDZ1xrhtoJWz6QqbuuJLCmAd8SAbOuKopsPGuofd8VSZ4zMlfvKO1axpi/t5Uzw2dMT5ob2r8DyPxxJzqJZDSJFIhGSS0SDjuRrdiRBPD6Yp1kxc4IEtnXx0Tx/jOZV01ahLbfrdZ+s7Y/zKOzbywnAG1fRJgeOZqt+15LmUDD9vGQ7IOK5HRbcQELBdl5rpYDkuLZEAG7sTNIVkZks6uapP5glIIm2JIDf1JNg/midYH8dMx6WsWWzqijNX0slUDDoTISqGxWSu5tsHCQKJoIRu2fW8vADeOVK0CMRDEtGgTDQkU1YtNMtGM88VSMT6gsFddB/FQiIl/dxMtWChc37PTDQg0pUIYbkuk/lz5ICwIqJIIjevulB1ZyFHBufiwJ5kmN39zYQDEgXVIB5U0CyHuze2Y9ouQ/MVdvQ1EQ/6858gCPyPngSDcxVOzRT5mxfG0C2HBzZ38r6dPX5nmeMSCUg8M5ghVdTwPJd3bu1ic3eCuZLGXzw5xEi2hmY6NIVlMlWLgCSgmzaG4xEJyvy3921FtxyeGcwwmqkxnqvheP54HlZELMfDdBzsesONUFdSC8oCmuE0/PDOL1RGFJFwQEI1LHR75UKVAAy0RagaDiFZ8It5jossLdjXiHQlglRNB91yaYkGqOoWtuuyuSvBfFmnrNvMlfQlJJigLNKfDDOZrzXGlrACkig1FHEUEe7d2L7cbjVwXRbBgNuBJ+r/fgK4DVixCBZQ5CVFMEnwq+1beuK0x8IkIwoBSWCubBALytyyppXjMwVemyxyx9pWbl/Xxs5VDs+cyZCpmsiiwK7+Zv7qR/c0/JFEQeDIVJGRTJU1rRGKqsVvvHtzQ4veclz++yOnKNRMbl3byvaeJubLOumKwW1rWwkpEh/Zs4ofuKmHVFGjp9lvWzdsl0LN5JnBNOvaYmzqThANSIQDEg+3phjJVIkEJDZ3xdnV38xUXqegmhRUk72LkulNEYWfu3cd3z4+S0AW+cDOHpoivp5prmrQkQg1gqA71ge5Y30bP3fvWh49McczgxmaIzLv3d7N6rYoDx9J0d+q8Bvv3tQIqH7SdSmoFqbtMFPU6UoEaY4GiQVlKrrFP7w4Tls8xMbOOA9u7eKBLZ2cna/y6kSegbYod6xbOVjpS0b4mbvXIgrC62IRivXunQUsBEkL6EyE+Q8PbiRbNdjW00SqqKGaDpu74o0W5fs3tVPSLJKRAKIo8E8/cxtj2SonUmWKNZN7N7cTCchYtsv+0RzxkMItA0kOjOZpiQXY3d/CockC79rWTWcixPr2KLMljW8fn+WlkTw108a0XboSId61rZP3bOvia4eneepMhpl8DaMugbKxK86G9ji5mkGuarCuPc7u1Un+92NnyFR0uhJh7lrfSqqko4gCA+0xPA9Mx6G3OUxXU5hDEwUquv99Ax0RvnxgmkLN9CckfNZ9U0jhg7t6SUYUvn4kRXMkwJbuOKtbo5RUk3hIYVUywtl0hfZYkERYuYAFez66mkL8zN0DAA05y939SXb3J/lv79vOZ18c4yuvTZOvGkiiQKbmL/bPb/lVRH8gDckiXU1h/vCD2/mDR05zZq6M40JbVKG3JUKuquN6AgNtUZrCCouX0Tf1NRNSJETBDxZdz+Pl0TwV3VrWHHFde2zF4DOkSJcdmF4KGztiZCsGvckw0WW66d5KCHV5sq3nSTL2NEfoafY7F1Ylo/z1j+1haL7qL0gF/3lbeI42dMT5ww/tQBQERFHgXzace95/p6eJ//huf4b919emGMlUKakWvckw/S0R7tnYQVdTiA2dcX5obz9hRSIgi8wUVR4/OcerY3mOpcqEFImb+5rpTUZY3xEjWzXoaY7wqTvXgCDQFFY4NFHghaEM6YpOSzTIrv5mvnZompJq0Z7wDZOTkQCe55GrGUzmVIKKxIaOGDXDZnN3Ex/b24csiVi2w+On5xmcrfCxfX3UDJff/cYJZss6TWGZ3f0tvoyoBJIgMJHzWT6e61HUTIKSQElzyKomjusHkHdtaOPO9e0cHMuRV00yFRPP8xlA79/Zy53r2zkxUyRV0uiIh1ANm28dn0ORBH76rgHuuciEvrP7jXvT3cC1xQd39dIaDWA6Lg9s8TtBO5rCS+KWda1hFFnGcl3WdUT5mXvWsioZoSUaYChdYV17jA/u6qW3OcxwusqB8TwbOuIEZYkP3NzLWLbGqhZfZuvpM2mG0lVWt/qsUkGA7uYQA20x1razJJHyw/tWs7krQTwkM5SuMp71jc0FwS96LC583LyqmYHWKKbjsm/NpX14gvKlx9BESGl0267viLO+4+JWstt7m4gEJGRRJBlVKKoWfckwQ/NVXhzJsrEzzp3r29BMv0iWjHagmhY/tLefde3+nHD/xjzfPjGLIvpj3/t2dnNgLI8gCAjA5q44D2zpbLCLl2MZ/+WP7uYXP38IURT4zE/sW3F/22IK2aqFLMDutct75PzgrtV87uUZcjWTD+3qXfGzPr6vn9mSjiKJ/MBNPStu9+vv3sQ3j6TY0ddEc2T5ZP9NfUnu39ROpmrw0d0rF7c+/dGd/K/vnCESlPm1d25acbvtvQlOzZRpiwfYtIK877tu6uH9I37ny0In4nJ4z7Z2vnMygwD82B0rM6vv39TGgdEc/a1R2lco9t27qYtt3VOUNJMf2rtqxc+6gYvjWsgxvhUSj4ok0rkoiXExnL+muBqIBWX2rL5w7FxMjOpuCjekGBfjE7ee6+rMVAwUSSAoixwYy1PSLD63fxzTcvjYvlXctraNv352hJmixkS2ypbuBNmKybFUGVGA9R1RLNujaliUFqStPF+KdkNHnKJmkq3oCPhSj67nM5gzFYOiZgEe69ri/Mht/bxzaxcF1aQ9HnrdnbKfvPXGM3m9Ym1SYbRQL87Wp8BwQG7I6AZEgRd/68FGB3hRNZkpaqxrj9Vlv+Cuje1UDZvpgspETqUlGuDl0Ty243HHujZ6m8Os7/AT+wFJ5Pb1rUQDMl8/PMNETqUjEeSH963C9eAPv3WaA+NZHE/gljV+F8xwuooi+f6m03mVkm4TkgRqlosk+uuCD+/uYzKvkq/63lmO48u5belJ8NC2LmZLOhM5lcNTBSzHJ835vltR2mJBBucr9Ccj7FzVxBcOTJKrmty3sZ3RrErNtNnaHWdjR5yaaRMPK7RFg4210YGxPMdnikj1bq89q1sYaIvyvpt6MB2X589meGYwTXs8RH9rlA/e3Mv23gSxgMKm7nh9jQttsSC3r7twDfvg1s4VvfckUaC/dWn3+eJ8y4/e0s/u33/8gs6PsAy3DLSQr9lM5FXWtUe5ZaCVn7xzDR3xELbrE/ZMx+HpM/PYDgRkif7WKDdFFOZKOrmayfqOGFu641Q0E0WW+LUHNywr49eeCHFm7pwKUFNE4d6NHcsekyKJV+TL+nbHg1s7uX1dK5Gr5At+pWiNBbl7Qzt3rW9jpqjheh7zZQO5/ux94ZVJUkWN5ohCLORLox+aKJAqaqRKOoLgz323r23hp+5ci+t5/PWzo7w6kaOiO0QCEhs7opyeq2JYDqLoe3P5ClYC+1YnSUQUZupd1NNFFUUU6EiEWd0SZqaos74jxq89uBHNcvjOiTlqhsWWriZWtYY5MlkkEVa4Y10rqumQLusYjk8427M6ybGpIhs6Y6zviPNTd5477nBAaqj4bO1p4ks/dxuHp4r0NIXZ1BVnz5oLSTrxkMJP3bkG2/Ua4+Mff3zXkm1uX9tKQTUbY6ogCLx7ezfv3t6N53mMZKrsH82zb00Le9ck+aG9fbw64asS9bdGSIQU9q5p4d6Nbbw0nGN7b4JVLVEUSaCkWRydLhKUJd61rZN8zeS5sxl2r07yjk0dHJ8uYbkeLdGA35Urw3Nns+wfzRMNSHzqrjUMtMV5ZjDtq24YNj9ySz+JiEIk4HdGnZ4tM1fW2b2qmVRJp2bYNEcU+pJhBueqdCSCTOU0/v6FEV4ZzxNSJKIBie29HXx4Vy+7VyeJBGQ+89wIr07kaYuHaIsFuWVtK1u64xyZLGLaLvtHchyfKZGtGjSFZWqGg247JMMBupv9a//w0RRlzcb1PHb0NnHnuhYOT5WwbJdAQKQjHuKn7ljD9t5m8qrJb331GPtHc4RkiTvWt/KDO3tY137x9ehiyJLID9zUvezfBpbxKlQkke29TWzvbaKzOcyB0bwvqx0LLuku7Uz45NWNned8APuSEX7jPTKHJwt0N4XIVU02dyfYuaoZ1bT511en6IyHeHfdruWWgVa+fHCK/SM5ArLA+3f2EFQkTqXK5FWT/cM5EHySyP/40A4mczWeH85iuy79ySjNYYUj0yU8z+OTt/XTFFaIBRVeGMkyNFdmcK7CfFknGvRJqpLoN3WsbY3SFg+yviNGU1jhcy+NM5lTSUYDfGBnD4PpKs1hhR++pZ+WaICZgkpRs3hhKIthuzRFFPIVnWeHcrieR7qiE5BEEiGF3auT/Kf3bOLoVJH+1gi3DLTx9cMzHJ8uYnkuW7qa+MQtyyuhLEDwvOuvSU4QhN8B9gDtQAY44nne75+3zc8BPwfQ39+/5z9/9gn2j+TZ1hNnuqATUkR+7t51jRtPEgTOpitEAzKrWiK4rl98WFx0KdRMnj2bpqI5vHN7J12XuVBagOX4Ba22WHCJDuyV4PxW2kuholsoktgYYC8Ft96KubjbynLcemfa5X/vdEFlvmywrSdx2d8NsHfvXl599dXL3v7tAsf1eHE4S0kzuW2glUCdwbHQ/VbVbfaPZNFtl3s3tPm+KYrEZE4lWzPY3tOE63nsH8kxOFfmvs0d9DSHqep2oxPufBi2gyKKjXvv7FyFfz4wQV8ywoObOzgyVcR2Pd6zvYt4SGE8W+PgeJ51HbELWLULk20irDS6rJbD5Vw/3XJ47OQcmuXQmQiiiCLHZkqs74ixo7eJ4XSFWEjh5EyZVS1hBtqidCbCBGSRl0ey/POBSZLhAD9771o64kEePT6H5bh8cFfvVdE1f7Ng2A4BSXzD/mHXAm/282faLkX18sdI03YZnKsQC0mYtkdvMkxYkV4XA2447cvQbu9tIlc1eG2iwJq2KF116c/1Hf6C/XKuz2xJ46nTaToSIR7Y3LHkGEqahShAoWaRKmls7opT0S2ydcNkD/jw7r7G+Oi4Hs+dzXAyVWKgLcp7d3Rf8N01w+a5sxnCAYl7NrQv+b69e/fyyf/5T/zZEyMkQhIHf+dBAsr1VWC9gZWxd+9edvzSX/LqRJ4f3reKj+5dzdr26AULfMtx0azlZVlXguf5zOSwLDKUqTbinoV7dKVOVN1yGJyr0NMcpj1+7TwH3izMljRSRY0t3YllpXwXY66k882jKUIBiQ/v6iV6EXmdhXHTdb2GZ+ZKODZd5J9fnuTO9a28/+aVC1zPns0wV9K4a0P7ip3XC4w+RRK4d2P7ivOf63pkqwbNkcBFiUVTeZV05fXHbcvBsB2OTBbZ2BkjeRG/inzNJF8zWNsWW3EOmMzX+N/fPUskIPHb791CIrz8/aqaNoNzFQbaoo2kwXIYy1SZKercurYFRRKXzHvXomvqBq4+Fopg36trhqsBzbSp6HYjvhqarzCcrrJzVXNj3TCRqzGerdESC9AaCZJX/a64x0/PU9VNmsNBREngrvVteJ7Hk6fTqPXY3XHh9rUtBBWJV0aymC7cub71omuE87F3715+9+8e5r98/QT9LWG+9kt3va3i+O8nlFSDn/vca+iOw9/82F46m8Ls3buXW//DX3NqtsyP3b6an77z9cu/GbaD53HJOSdb9YnLC9vplsNopkZXU4jmsIIHFFSDiayGatqs74yhmv5nn5kr8cJQjg/t6m0QIE3b9VnzEYWSZhENSEvuPcP2458FWb43A57nMVPUSEYCF405rgaWGztHs1X+7LFBDozn6W0O8ysPbmRXf5JYUGY4XfXl90y/Q2FT14UJ4dmSxnNnM3QkQty3sR1BEPA8D8vxbkijXmW8Hec+py75ufheMG2XVyfyHBovMJatcXN/Mz+4s2dJDOe6HjNFlYruNKS/C6pBWXP44oFJ5ss6D23v4j3bu31ydVVHRGC2pHN2vsLta1tJRgMMp6usaolcNqElVdSYLWls62m64ph4Ma6Xa6fWifkXi5cXY7mcTVE1eWE4S0skwO3rWt9QTqusmfzzK5PMlQw+sqeXHb2XZy2ygBeHs0zlVfauSaJIIiXNAs9DFEXWd8Q4M1dhIldj/0iOWEjkljVtPLCl86K5I9f1SJcNYiGJ2Hlr5Gt9/VzX40SqRFiR2LCMF+DV+PyXR3ON9fDWnkTjfNuOy1i2xuOn5nloRxcDbT4p/PhMiZ6mcINIYdpu3fLo3LOsmjaG5ZKMBtAth7Ju0R4LIggCer17cTGKqsl3T87T1RTk3o0dqKaNKAgXbFc1bEqaRU9TCEEQODpV5NRsmdZogGMzJUqqxR3rWnlPvci3AN1yEAUBSfTnoYV9FQThNc/z9p5/Xq7XItj/BPZ6nvegIAiPAic8z/uNlbZva2vzQsmueoJHYFVL+KoOXjdw7TA+Ps6aNWve6t24LNj1FmFJEFZMyryZqBl2XXrCN0u9FqzVS+H1Xr+5ko5a13RMhOWGtOb1Uxb6/sLb6fn7fkLV8ANVP2D1E+39LUvlL8bHxwkmOynrNiICq1sjNxadbyMs9+xNF1RM20MUYXVLlOuoXt5AWbdwHI94WEG+hnIs1zPeqnHT9TzKmuVLiISUN+X+KKgmhXr3dkci+JZ5b1xNvNHrV9EtbMcjHlKQpatz8idyvh+KLAn0tyzvGXcD53AjZnl740bc8vbG2Pg4xNrrRSxxRVLm2w2a5aCZDuGAdEn1k7crLjV2ljULx6vPb5cR29mOx1RBxfP8zpjFstc3cPVxY+5bioV1ciwoN+YQ1/OYzPleyEFFvKiVx5uJN/va+WsFGwRoepPWCsthqqBiXedr2svB98Ozp1sOqukQVqQr8r6+1pgpar4Kk+D7A4uXcVO99tprnud5FwSa1/Nq9rKrc2vWrGHzL/wFp2fLKJLI//zITdy3aflW6sXQLYeTqRKdiRB9yRuLz7cC1ws7AqCk+q3Cq1oiy7auPn5qnhMzJQB+cGeP7x10FVDWLc7OVVjdGn1d7PunzqT562dHAHjX1k4+9QYMWa8Ur/f6/beHT/DaeAHVcrhnQxvNkQDvu6mbDZ1xXNfj0GQB8OUUr1Y35Q2sjOvp+ft+xWimynRBY+eqZprCPkP1718Yo6xZvgRr0Pc5/NMfvnkJO3Xv3r1s/vm/4NhMCUUS+PNP7OLO9RfXP76B6wd79+7lW0++wHRBZUt3gmhQ5pf/+TWyVZOALPJ3P7HvuksOTuVVvvLaNAAbO+MrSj+8WSiqJsemS6xujbC69cI5+1rhrRo3XxrO8spYHoAHtvhm8VeCofmKL13Sn1yRhf65l8b59vFZAD511wDv2tZ1Rd95OVhgRQZlaVn2+ZXijVy/maLGvxycAmB9R4wf3LmyHOVCTNffGlnSJTOerTGZV9nZ10xTRMF1XX7qs6+iWw6JkMzfXkRW8wZ83IhZ3t64Ebe8vbFr9x62/OJf4rge/S0RPv1DO9/qXVoWU3mVsWyNbT2JC/w8F2NwroJhOzw7mMau+4L9u3dseBP39M3DSmOn53k8fmqeZwYzhBWJaFDik7etXuJ9sxxmiiq/8S/HGlKp//1DO67Vrt8Ab6+5byGf4+Hncy7WgaOaNqdSZXqTy8sAL4eFdTL4cnE/cqvvy1lSTX7pnw9hux69zWH++OM3X+mhXBW82dfuldEcL43kALhvU3vDM3AluK7H4akCjuv7RF8tv7nLXdMOp6tUdIsdvU3XZWf42+nZe6P49HcHmSmotMWC/M4PbLkmqlWm7XIiVaIlElgi+fh68OtfPsJMUUMWBf7qR3df1Jd8AYIgHFru9eu1CFYBaoIgPA/kgAucO8+TQ+TOWJCgLNIRDy7xu1jAfEljcL7KLQMtjS6xx07NM5KuIom+38p4tsbZ+Qq7+pPLFkFu4Hsb3z01x0xB48hUkZ+9e+0FlfC+ZJiT9cTMxYpViyUsl2sHregW82WD1a0RFEnkm0dTpMsGB8cL/Nw9axuTj+d5GLbLM4O+Kf19mzqWfNY7NneQrxpUDJuP71vFTFEjokgkV+gIM20Xy3GvueSC63qM52okI4HGvpR1i2cGM8gixIMi7XHfT6pmWCTC/v6cSJV4figL+Fq5O1c147oeVdN+XVJgN3AD1wtU00YWxSWB38GxPIenCjy4pZPORIhvHp2tax0bfPDmHkQ8IgGRV8bKrG6NEJIlPrirl4puEw3aSzoxZElANW2CknjZ8gY38NbB87xGYOl58L++c5rRbJV3bu3i371jA//hwY08dnqeW9a0XHcFMPA9cqJB33h2Vctbz7D87sk5UkWdI1NFfu6etSsqANQMG0USr8tzuoBsVSdV1Nje07wiAaSn2fd8kyWBritkXRdqJo8cn8XzoKhaKxZ1Pr7X9wsLByQe3LIyucx2XGaKvpfhlbIID00WeGbQ9wRTpF7WruArtyDpvKU7wfbe5X3ILhe65eC4XoMN2ZcMIwgCU/kaouD7z8WCMlXDpi958Xt/IaYLjUuNmE4zHf7i6WEqusVwuspP3zWAKIr8x3dt5IXhLPdt8gsBi8eIG7iBq4XLlf28Wt5rF0M0KGM7DrIo3YhbrmOYtstXXpvCclw+trefcMCXIv+le9dxcDLPR3ddn35u6YrOZ18aJxaUmMjV+Ni+VciieEFidzRTbRA8fN61cNHOtoWx+fCkL+O2b00Lq65B965pu8yWNDoToWuuamTaLo+fmuPZsxmOTBXB89i9OsmXX53il+9b34hFMhUD1bSXkI16myP8/L1rOTNb4QM3r0wKuYHvP5xMlRv5nEA9n7MSHj0xx0RORZEEPnXXAOFLSJfbjktVtxAEP9+0qiWM5bgANEUC/Pt3bOD54Qx3LuOhB76U3lxJ495NHbRdpED+dkZPcxhJFBAFLquweHquzHNn/eslSwIbOmJEAjK26y6xWXm9aKxpB1pW7C5NFTW+eTQFQM1wuGuRp/z5WC4+zlUNnh/K0h4Pcuf6NmzHZbzuJ3mp3GFJtagY1o1GGHxp29mSjll/lhZwvtXOG4FTzwufTJUZSVcRBPjkbasveP48z8P1aMzVhyYLjGdr7FzVjCRAT3OEX31wA48cn2X3qiRNkQA1wyYgvzGvyOu1CFYEvuB53r8IgvBh4ALXbs/z/gb4G4A9e/Z6T56eo2q45Gomv/rlI6zviPGRXb1EgjKfe2mMbx2bJRKQuXNdCx/ctYqxbJUj00VKNZO2eIiSavLE6XmKqsWRqSK//d4tjeCjrFsInPPRMG2X4zMlWqNvvJJ5PWI5nzQ45w8VDcqXzdJYCRXdIhqQr2qXj2m7PHs2g+t53LuxnZAivaFEQrB+3LIkIC46BQuftaU7gSj4HVinUiVuX9e25O9lzeL3vnmKfM3gI7v7GM3W0Eybnaua2bemBQGPf3hpghMzJda2xdjRl+CDu/xb23U9TPvcwPPwkRleGMrSlQhhex6u6/uD9TSH+OCuXsayKjXDxgO6EiFeHsnx5Jl5JnMqP3Z7Pz3NUQR888R4SEa1HL7wygT5qsm6jhgPbOm8ZvKJzw1lODxZRJEEbu5PkiqofPv4HKmiSr5mUdZ97d5XRrIEFZFs1eAHd/aQCCoYtkNQFgnIAvtHsnzz6CyxoMzeNUm29iRojwcJytdvm+4NXF3UDJugLL4pzKCnzsxzerbCvjUt3DKw1Lje8zyG5qscniow0Ba74O8jmSqO43JqroJq2Ny9oR3dcvj28Tks1+WeDW2UdRvNsPjjx4fA8/3AfuGedVR1k1zN4sxcmb96ephCzaCnOcxNvU3Ewgo7VzWTqWh86eAkoiDwe+/f1mBovjiSxXbBdl2OTubZ1nNlieAbuDaYK2n84ucPYbkuf/rxm1nfGcdyXP7tiB/4H5su8+/esYFoSGZ7T4JVyTCu65EqabRGg9eNNEE0KPMTd6xBt9yGYTv4SafXxgusaolctBhxtRP8C3OBIokrSiKcmSvz6Ik5IgGJT9zSv6If2htBTbcQReGii/aTMyX+7Mkh3rOtiw/vuSCUBfwC2P2ffgbNcrhnYxt//5O3LrvdmrYon7p7AEkQLnpPHJossH8kx/qOGO9eoXNLlgRyVYNs1bxoV3soIPPBXb3+glpceRx+5PgsZ2bLtMdD/OQda1aM8YbTFdJlg5v7m1f0aTs5U+KfXp5AEuGO9S0rFsE+8/wYp+dKtMdD/J9P7FpxETRdUEkVNPasaVmW4TqVV/nzJ4fYP5JFFAW29cR5z/ZuilWT//f8KLbtclN/kt2rmuiv3+Oe55Eq6TSF5CX+Aa+O59k/nCMSlFhd19I3bN9wPVXQKOkWQbnY2H51a5Qt3QkUSWQyp/LNYykUUSAalOmIB7l/c8eK85/t+GuReEi5LGWCTMXg4SMzBGSRD+3qveJnwV8b1IgEpO8ZWbQbuPYYSldRLQ/Ntqlo5lu9OzewAv7Pk4P8n6dHATg2VeSPPr4LgGeHMpyYKbEqGWGqqJKojz8rFWzGMjVem8xz94b2a+61VVItvvTKJINzFdrjvk/Jf/7KMQzH4Qdv6uGBLZ2NuMHzPGZLGrbj8dE9fTiex6vjeb54YJIf2tOHIAgcGM8zOFumKazwlUPTiIJASyRARbd4fijDrzywgf6WaMODxHRcgrJEUTUJKVIjr3CxuKesWzxxap6wIvHg1k6+fmSGmYJGezzIR/f08W+HZ6joFu/d0X3Vk7X/tH+cv3p2hELNJBKQ8IDJwzPIksB4tsp9GzsYz6k8dnIOURT49+9Yz4Nbz8UU923q4La1rTiu1zinz57NMDhXIR6SuWWghfUdS7u5q4ZN4DonJd3A64PretRMuxFTBBX/2pqOyxcPTPA3z43yvh3ddDWHKKkW3c1BLAe2dicAP5Y5MF5kMq9yx/pWoorMvoEWmiMBJnMqmarBQFsE1XT4+qEZnjgzz0BrhPs3d7KxI8ZfPT2MLIl8dE8f6zpiPHF6jq8dSuHUE+pn5yrsWZ2krFt8+ruD2I7HeE7lP75rEwBHp4qcmSvTGQ8hSwIlzaIpHOCOda2NWPZi6xfVtHl2MENIkbhnY/tV66RaCc8MphnP1rhzfRvr2mM8N5RBNR3u2dhOLOh7QH/qrgHceoxWUA22dDc1jsN2PebLOgLw4kgO23ZZIAIcny7x7KCfUxUFgWRE4Ydv6efF4Sxn5ircMtDCvjVLcyCO66FZDrGgjGm75KoG00WNTV1xPrK7jy8fnOSFs1n2rm6mPRFmQ0cMD8hUdI5MFpgva1iOR2dTEPBzq0XV5NETc+RVk4e2d6FbLt89OYftuLx7exc7epuhvv9j2Rpj2Rpr26M8dnKeQxMF+lvC/PgdA7REA2QrBrmawbqOGGdmK8yWNDZ3JfjWsRSW43HHulZuXdtKoWYgCMKbQs6pGvbr8rhPFX2P6609y3tcO67HcLpKayzwhoq7u1Y10x4L0h4PkquZHBzLYzkeo9kqTWGFT9zSv+wc77geluNe8Le5ks7puTIbOmI8emKOV0ZzWK7fNbx426phc2a2jO16nJwpopou79zSztHpMt88lmJ1a5TPPD+KZrls74nzy/ev56beZla3RTg2XeTJ02kkUSBfNTg1W2bnqiY2dMSRJIEP7Oy9aP7wei2C7Qd+HvgX4EHgsxfbWDNtVMMvIBi2x9On5nj6jMg/vzxBJCBRVk2qposiQlW3eXk0T6qkIwkQVCQiAZmyZhJUJM7MVogGZf7sibNYrotm+Be2KaJw36Z23zSxqFPULDzPY+9AkpMzlboBm0AyEuBDuy5+0i8Xr00UODNbZlVLmFvXthKQRPaP5MjWDHqbwsiSyNaeBPNlnbFsja3dftu/53mcnq3g4RENSAzNV8nVTLqbQiTCCtGgzMa68d5sSWMkXaWgmgynqwiCwINbOpcksl6dKPDCUBZBgE/c0v+Gg9gnTs1zfKZEXzLMD+29egyyU7PlhkxhMhKgqJqcmi2zuz/JPRt9dm26ohOU/OsIYDkuL43kEIA71rViOR4PbulgMFklGVUIyhKvTuT5wiuTdMRDfGhXD1XD5ksHppjI1Xjk+CyfuGUVTSGFf31thnBAIh4U+e7JOSzb5ZXRHF1NYQbaosyUdP7yqSGGMzWi9SBzuqBxarZEc1hhR2+Cg2N5RtIVHjmWYltvgrNzFUqahetBMqpQqFk4rofneXz2pXGaQgFiIQlJFEmEFHTL5rXJArbjcXC8QFgRiQRkblvbym3rWkmEFKbzGqPZKlMFjSdPz9MWD7K2PUo8qHD3hna6mkJUdIuTMyVmSjqxoMy+NUlsx7ukLMJiVHQbgNFMjZdGcgzOlanoNrbrV/gXQ3Ncvn5klq8f8dl4bVHfa+PlkSyuJzBVUIkFZIbTFXb0NZGtmuzqb+Zd27qWZXhM5Hy5oZt6mxvX+gbenjg2XeThIylsx+WX71//uu7B8+FL35bpTASXXUSqhs2jJ+YIKRJHpgq01A11t3THOT1b5vnBLPvHsngeCAK8Y3Mnv/3eLcwUNZ48M8+pmRJHp4qUdZu+5jAHx/O4rsdkXiVbNfn2sRQ10yFbMXDqz8BYXuPViQKKKNAckZkpGCyUwQtahZOzFcISHO9PMjhfRRJgXXuMI1PFhiSZ5Zw7hv/1yCl+5LaBN3yObuDa4Te/epTD00UAfvVLh3jkV+8lU9VZCFM94GuvTXFoqsjLIzlEQeC+TR3+vBLyC0+KJGI7LnnVpC0afMvkYoOydAER4ekzaVJFncH5CqtbI8sm1x89McuZOb/IfOf6lZl+rwfv2d7FcLpKT3MYw3bI18wLOqQmcr5nRc1wyFSMC/YtXdH51rEUrdEgD23vbiRmpgsqJ2bKbO6KL0t2+vaxFL/1teOIAvy/H9vDrWuXP6aP/fVL1EyXJ0/Pc8f6VrqWIRL98/5xKob/MD91Jrvi8Xqex3i2RkAWGzHccviTxwc5NlWiPR7kng1tyxbpyprN1w5No1suhuWs2Al2YqbI73z9BGFZ5E8/vouuFYodXzwwycmZIm2xID96az9B8cLFUr5m8uUDU5Q0i6LmJ/WWw9ePTPtG18DXDs1w+7rl5dKeH8qQKmrEQjVc14NlcrDTeZUf+LPnUOvH+Mf1RC7A2fkKuuUwlq3y6IkUlfo6YjKv8eTpDLbjNcbkp0+neXYwQyQg8sjRaUzHYyKvIUsCd69v4zcf2oKHxz++NM5ErkqmYrKtt4m/f3GUqu7LHc6VNNJVg0TI71CYLmj8w4tj2I5HZyLE6bky3U0hZosak3kVRRb55fvW84Gbe0lGA6QrOsPpKhs747TFguwfzfHquC8h/fF9qxqFKNW0OTNXoS8ZXiLHeHa+0ojPxrK1FeU0a4bNC8NZ4kH5osbnhyaLPHc2gyD4379AkvM8j7myTjISuOHPfAMXYDRbA/xu6C++PM5tKzzfN/DWYqEABvDVwyn+6OO7MG2Xv3thDNeDo9NFPr6vnzOzFXb1N/MTd6y5ID/gOC6//61TqKbNi8M5/uTjN3N8usQ/vDhKSbP4xfvWs3dNC7bj8uSZNLrlcP+mdjwE4kEZQYCXR/NUDZs717c2kn++B/w5cnJRNXnqTBo8j9NzFWqaRaaqc2jCJlU0EEUQPWiNBrm1rhbkeqCaDrrlUFANBueqPHs2QzwosWtVE//9kdMcny6xtTtOQbUYy/nzTCLss88BXhsvcM/GVlpjIVJFjaZwgHhQ4qnBDPmqQW9LmLXtcbb3JHhgcyem4/LIsRSvjOUJSCJ3bmilpFq8OlEgX7N4bbyAKApUdH/NP5WvMVfSmS/rfPbFcT5198AVk5EXMJKu8D8eOY1d/30hBgHA9vjqoRT7R3KYjkdNt5Blic88P0ZRtdje28RUQeN0qsRItka2YtAaDbCuI86hyTwl1UYQ4LnBNE2RAM2RAJ+6e4BsxeRbx1IEZYGP7llF72UW9RYkksOKxIbOOKmixjODGTriQR7Y0nGje/otxtcOzzCVV9nR28RAe5SpvIppO8wUNSayVfKqxSujOTTLwXIcYkGFm/qauGWglYe2d3JwLE+6rJOv6nzr6AyW4/nF9c5YPb/nKyCEFZF8zfdmHZ6vUNRs9o9kOTheIBKUWNMaIVcz+ObRFB4CuZrOhs4Eo5kqXz44RViRGMlUCSsyJ1NFXhnNcVNvE0+dSTORrfHqpJ/4Dysi92/uIFVS6W+JMpqpcmKmxF0b2ulLhjkxU+amvqZGrvSZQZ8YoEgi3c0hNnclruh8Pnl6ntcmCn6sFw1waKpIZyLIe7Z3Iwp+91yqqDGRV/nRW/s5PFlEtxxOz5Z559ZONnbG8YAvHZjiK69NEQ5I/H/evZlYUOaZwQynZ0sUVJNIQG7EgevaY5xMlXnsxCzpig6CwP2bOshUdH77q8cYy9ZojQVJFTQAFFFgoD3G4HyZ//7NU+RqJu/d3sVIpsaZuTJ7Vye5bV07qmnz6Il5bNfluaEMoiDwrq0deAh8+1iKsmEjiwKd8RCnZsr8zr8dp6c5zPr2KM8NZchVTU6lSqimg+X4DQO65ZKrmIgiBCWB07NFhtM1DMvh6HSRmaLGiyN+0a67OcxIuoIoiqxuCSNLEk1hham8xvHpItmqyWS+xpcOTHJspkgyHOBn7lnLe7ZfPbn/yZzKqdky23oSrGqJcGAsz4vDWVpjAT5xS/8lu5hU0+arr01jux7TBY27N7QxkqmxoSOGIoucSpUbawpFEvjkbauZzKuN8XIlpCs6MwW/WPmhXb08ecZvBvrcS+OIgsDZ+pre8/w18VReY7akUVAtWqIB3rG5g387NM3xmRLbe5tY3xEnXzO4daCVR0/MMlvSefjwDIcmCmRrJmFFxLBs+pqjpAoaM3mVf3x5gkePp1AtD0WEWEjhiwcmKGsWpuNyaCKP6YAkwmSuxuOn5gnIIuvbY9RMh1RJR/A8HM/FtH2J45ZYgI54CMfx+Ni+/hWP/7osgnmed0gQBL0uh3jU87wDF9veOS+zbriA62LYLgXVarxuujBf1kgVwQUEoCnsUVAtZksaLZEA0ZDMfMWvXnqePwi3xYJs6orznRNzyILAULrKqmSYwfkKT59JI4kiFcNCEiAgizw/lOVXHlhPzXBIhGWeG8ywfzTH3Rva+Ni+C2/2kmrVO8sUCqrF5u44o+kaf/v8CNmaSTQgM1cyuG1tC/tHshyeKjKaqZGIKPQ1h2kKK3TGgxydLHLnhjaKqsXhyQKpokZZs3HxCMoiIcWXnogFZWqbbGYKKs8NZZnKqySjAQo1i31rkgynq0uKYKrp1K8LaKbD60FZtzidKrOmNcJ4zl/4TBc0LMd9Q62Ly6E1GkAUBDw8WqMKLw5nGclUOZUqE5BFnj2bIVXQWNcR44dvWUVHPMSXD07xxKl5eprDzJd1zsyVmcqrzJV0RFHgrvVtTORU5ss6o5kaJ2aK9CUjHJ8uYjn+Av9PHj9LMqTQEg9xdq7MfPlcEhvHZSpfYypfw/VoJL51y0USoFizGE7D/tE8C6Hbwl08ma9iu+C4NJgSsgi6fW6b2ZKBJIAigSxKKJKAarqNTzJsl7Ju8/jpOZ4aTLO1O85YVsV0XHb1N3F8ukwkIHFgNMfOVUkc1+OHb+nnm0dTPHJsllRJ47aBVr5xZIZoUOb9O3u4a8PFF6oTuRqzJZ19A0nCikRBNRkfrVFUrcbxXwrZmv+8zpdNJBFEQaBm2FieR1NY4dWJAkPzFWqGzU/c4Sf8TdtlOF2lOaLw8JEUjusxW9T52L7rU6rjBi4PI5kap2fLOK7Hv742zS/fvx7H9RCFC1mVzw9lmClo7BtIUlQt2mJBLMfjxIzvF/TNYylyVZM1LRE+dc9aDMvh+HSJXf3NzBR1XhzOUDVsjk0XKakJRrM1KprFZ180sB2Xs/NVPPximgt87oUxXh7LcsuaFr5zfJa5sokHyCIUVYMjMyVsx8MDRPzndrlHQLdcdM5bfC6C5sDLY4XG79Ggztr25buPS9ayL9/AdYAXhnKNf5+crQL+HNC5aJvf/Mox2hMhKoZFLChzaCpPcz3Zsr03wa5VSf7t8AyzJZ11HTF29jWRrRps7U7wr69NcypV5gdu6ubuDe2kyzpn5ips7Iz7nc11Nt/zQ1mKmsW9G9ovmySwHPvRclwePpIiUzF459ZOmiMBUkWdSODCAtlcWePxk/O8VO9MOpkqrVgEK+sWw/NVdNthW0/Tkm6zxVgYB0KKxPbeJsq6xf95coiRTI13b+/kY3vPBb39Lf68va49xkSuxkimxt0b2ggpErbj8n+eHObsvF8w2NqdaCwYHj0xR0W3GU5X+OX7119wDv7w2ycp1QsKf/itE3zjV+5bdl9r9XnZ8eDMbHHZItir4/ll33s+nj+b4b994yQBSeDPfngXW1bo/Dw0UaBmulQNm3zNoHeZItg/vjTS2LenBjMrfud/+/oJjk75JKM/euwMn/7YrmW3Ozyex3ChamiUVJOOZY4zU9L9BCpwcqa4YhFstqg3xsv5irbivqUKKpYHBdWiotsElym4/OXTg5Tq4+vXDqcaRbCRTJV/OTjFK2M5RjMVaubSEdo8L2jxlxUeZd3hqbO5JX/TjDnmyjqHJ/0FNfjri9qYTwJ657YuXhhKM1NUMR04larw9GCa589mODCWRzUdZFGgNaqQq5pYjkPNsJFskc88P8rhyQIf2tXH8ZkStuvxtUMzJEJ+p9hyeOTYLNMFDfDY0dvEgbE8Jd3igU0dhGSR2bJOSbP41tEUM8Vz8+ZcSUcQYHC2QlCRCCkSXU0h1rbHqBo2uarB4ckia9qi3LyqubEeWFgbLKhGHBzL89pkkYAs8tvv3Uws6Htd7h/J0RYLsPc8FvFieHVD91hI5vRsmemCxr41yYv6+tzA2xffOJ7mz97qnbiBy4Zq2g0yo2q6PHFqDkWUeGEow/HpIr/7/m2s64hTqPmdUI+fmmMsWyUZUdAthy+8PM7nX55gNFMjFpL58yeH+MdP3cpQusrTZ9LYjuv7u4siq1rD1AyHw5MFVrdGkSU/KXtsusjvf/MUogh/+KHtVHWHTz86yFCmguM4OK5A1bDxPBprcsGFquHwwlCGP33iLNt7E+zobWI4XSFXNTk9UySvWZi2hyDAj/ztfoqaP769OlGgNRbAsP0Dz9XOdS+mShpffGUaFwgpAt1NEWRJYL6kUzFs0lWD8UyNp07P84ePnEIWReIhGdv1MCyHF4b97mOzLjmVjCjIooBqOiiSyIlUmdmSn3zc1JXgqTNpfvTW1Sten6Jq4nmQjAaYLWkcGMuzpjW6rBzd733jZKMAthJS9VyD44Fk27w6UWA47SdGg7LEZEGlWLMwHBdJFBBOzyOJArbjEg8pjGQqeJ6fGxtoi5KtGbw0kqOomsyXDXavbiGsiHief2+1x0Pctrb1gk73VycKvDjsE4Q+vFvk0GSB+bJfHNze23TF8tA38MZhWA7PD2UwbRfVsHl6MM2J6SJFzcJ2XDJV84J4Kq9aPHM2yzNns/zFU4PEQwFKuo1lu418UU61KI4XluSPSovCwarp8txgBkn087sA/+XrxwjIMprl+h1PDoxmKozM16gZJgFFRgDKmsGRSY//+Z0ztMYCvkJBxUC3XFzPj9++fniGVEHH8TxmChqJsNLwGlNNh7mShmY5lDWLbx9LcTJVpqsphCTC6dkyD23vfkMkoJOpEp9/eaJO0PI77acLGlu6/QLKbQOtTGRrDKUrvDZRYDJXZUdvkomcSjKq8Pn9ExQ1k5ZogJF0lbFsDdfz+H/PDBMPK2QrBmfmKtiOi2m7nJkrs6U7wUxe5eRsmbFsDQ+PZEThqTNppvJqvXus/hy3RnhhJENFs+mMB+lIBDk7V8Gpk/Qd1x93Hzk+x+m5CgFJpKzbCHhkKga65TCereLhx9Oe5xFSJEzbZb6iY9oOhu3RkQj65H8XTs+WMG0Px/VY3RrmmUGdLx2cRDMdBEHArk9Kf//CKJu7E/69aNpkqgZD6Sq6ZVPVbU5M+7J579jSjtgUYTRTJVM1Gc3UMB2bmumhiCp/9/wod6xrJRG+Oh1h3zqewrBcRjNVfun+9Yxna9iuy/HpEjv7SuxcdXHPtvPxtUMzVA2bEzMlEmGFqbzKSKZaV58QOTCa54kz84iCwPbeBE3hwBKp9/FcjaAskirqKJLIk2fSZCsGp2fLxEJ+N1+qoNEWD7JndZKuphAHxwu8PJxlOFvDtB2aIwH+5tlhZgoalgtPnpqnJRYgGQlwfKZERbeZyNUwbRet/t2q6XB0qsDBsQJfOzxNQBYJSAI1y79+puuPDYuxMHYsiKU5toduOxyqr0vPR0m3Kek2hZpJRVtZwh+u0yIYgOd5v3q526qmvRwBdFlYi6QuPaCk2Y3FtmpoiOK54gNApuJXiAfnywy0RhnLqX7L4byEIiuUdYt8zSQekhEFoc4osvi1Lx1hd38zqZLO8ekiRdX3RDqZKnPfpnZqpsPu/iTj2Rp/+8IoUzmVsm7T3RQiGpQZy1Qp6TYCvrbryVSRA2N5UkWNyUKNkmaRq5rMFzWCikQ0IKPbNo+dmmdde5RczWRwroIg+O/vaQ4TUkRU00Y1bP748bOkyzqa5RCQRdpiQXqTfkFNEQUG5yoNQ/JbB1rwXJemSICOeJBnBtOsaomwbgWJmsX4++fHeOZsGlEQ+LUHNnAiVWbnquarVgADWNUS4cdvX43rebTGgqxpK/HqeJ7upjD/dniGmm5zIlUiVdTYtaqZ1miQs/MVyrpFesrAtG1eHS+SKqrYns9uSBU0bNfDdBxcF5IRhVOzZVqiCggChu0/zLmqRaikoy2+sepY5iU8wPYufG0x9POiUstd/rMcDxwb4MIEulf/e1l3AIcXR/wkmwgcnixi2R6aZWPaHrmayUxBZVtPnMG5CjMFFdVyGclU0S2XcEDipZEcd21oZyRTJVsx2LmqecnkXtYt/t8zo6QrOu2JINu6E5xMlfHwLrsAdv7++wOeh+M6UG9lbq4nbufKOg8fmcZDAM9jLKsiSwII/pcttOIvh/l6smpde/SiDIlLoWbYhF5HK/MNLA/D9p+x8xc9+9Yk+c7xWQKyvzAcTvv6/fGgxMf29jNdVElGAsiS2GDD/9F3z1LRbfpbIgiiXyD91jGTwdkyZcOmLeYzqsayVTTDAkGsM0s935erbDAyXyUYkPBcj9pyDx7+E3dipsKJmcqS131pQlj8VC//CW8MluOTO27g7YXzx3y48L4wPX9cCwckJEEgXzM5OeMH/j/7uYO0xUI0hRV6kxHKmuUzHT2PfWtaeH4oi+W4/Otr09yxro2Hj6SoGjYvDGVwPRAFn111erbE2vYYmmnzgZt7G2N4tmpwYqbEmrYo6bJBXzLMSLrKP748QXNY4ZfuX09zWKFq2PQ0hzkyVWQ0U0WRRI5P+0nxfCLI9r4mArIv67Yw7z91Zp5sxaQrEUS3HO7deI5M4Xke3z05z3RBZXd/kqfOpHlhOMOa1ii3rlX5xC0XMrjGsjW+dTRFNCjz0T19pEoaJdXi+aEsJc1kKl9jpqCzb3WSdEXn+eEsPU0hRjJVBCBTNXl+KM2W7gQ7+5oxbYeKZjFiu+j2ubk0EVIoqr7vgOV4BOSl4/xM8Vwi7Fiqdln3gWMtn3LyvMt7pv/o8UEmcioAf/7UMP/3k3uW3W5x4U0zlv/OycLl7fOJ1LmFxrNDKxfL6k1UeEC2oi1bBPvTJ0437vuTc9UVP2uucu7cvjy0coHQWvRc1XSTtmWKQk+eTi/7Xsd1GZyvMJ6tXVAAe72Yr5g8dTq95Dn38MkNFcPhn/aPYy9aV6imzT88P8xE4dxxOo5HqmwSD4h0JEJUDQvX8ShpFk+enuexU/MEZZGHtndyaLJIeyzIfCzIT925BkkU+NaxFIcni9zU20SuajKaq1JUTU7PVkgVNcIBienCBH3NYSq6zd89P0YyotDfGuVfDk5j2i4TuRpzZZ2QLBENSmzrbeLgeJ6z8xWOz5QYzdRojwX52qFpHtrRxbu3djE4V8ZyPdrjQY5MFXlmMNNgfIcUif0jOd65tYsXh7MMzvnzZW8yTFssiO14F8z7T55Oc3zGV0koaibgd0VcTfWIG1gZl+sdBlfHP+zKnrwbeLOhW86SxNFUwZfUEkVoiwb448fPcuvaVr57cg5J8J/dgOSTcDd1xfl/z44yW9KxXA9Hs8hUDF4dz3NqtszJlG///tJIDtfzfEn/lgi5qkFJs2iLBvn02BmeG8owW9LRLYcf/uuXSUYUqoZDoWayUnjsAc0hic+8MIZmuewfzdMakTEsmzr38ty96EFePRcLuB7MlZeX7Vz8fZrlMZqtIeIrRrier060eD4Dl5phE637Szr1hHtQFjFtv+AnIiBIAtNFlcH5CuCxrt1XpXj0xCwnZ0r8jw/fBPhS2yOZGjf1NVFULb52aAYPjw/e3MuLI1nSZYPRTG1Zudznh3MXvLYcFtbwTv1kZGsW2VoJgaXPr1M/mIAkICDQEg0wmVcxbJeq4fBnTwyyoSuBBHh47B/N8czgPIIgEJRlFElAFAVuX9vCT989wPODOWqmzXu2d+F5vhLOULrKV16bZluP32nTFFYaeQHwZe1OzZa5eVUzW7qvrBvnBi4PUwUNRRIpaxbDmSr7h7MYixI/lxrjVQtUa/nn61L5Iwc/Z7uAguog4BAJiFiOx/GZApGAQrqsY3sg4OeLRQkKqklVtwjUi7Ca6Tb21QOqusOLI1kUyS+cOK7L7tXJOmH2XFx8fKbESLpaf549XhjKsW/AvaChYDlYjku6YjA4V2Y6ryFLEJAlOuNBhjM+iVw1LNJlnULN4OnBNJbtkq/pjVzhk2eyTOY1bl/bxniuxlC6iiwKxIIyJdXCqhNyXxjOkQjJxEL+CG7UC46zJYPZUgZJAFmChWVQvmaRqZhLroFuu5yePxe751WLoXR12TWu4/mKUJIAouifY9NxEeCCnGnVcKgaGooEjuOvj+fLxrL3zmhGJSCL6AuDr3duK9OFdEmnajpopsupVImAJKGZTj1T6iIL8I0js37x1PHw6mtkvX4QlguD8xV+62sn+Msf3X3R63c+tHpncfI8u5lESOHgXJ6KbvOd47PcuraFw1NFTNvlmcEM/S3RC94DfjG1pFns6m/mw3v6mM6r7Ohr4guvTAJ+PvPYdBFREOhtDrO5M866jhivjOWZyKnkqgYF1aQtFmQqrzKZV9HrhVtRFFjTGmFjZ5wjUyUUSaCgmhg5z/+7AJmqwe0DLRybKvLYqTlM218LO66H5S5dQ+qOR6pkkK4YpIq+nK8kitiuS0k993wvrnFplot2jQjcRc3m1Gz5ottccRFMEAQRiHmed/FvuoYwbIc3qpK8+AGrN5Atge361W/NsshVfZ8j0/G7xwKijiIvDI4QDkpIAggITBdUpgv+g1pUrXol0+OLB6b41rFZwgEJx/U7tAo1E93yB98FhrNh2n5iWJEIKyKvjRdIV/1iWzQg17uzXOIhGRdQJIHpgslc2S/aSYJA1XQIKSLtsQC/8a4NfOPILIcmi5R1C830i3VhRWRdWwzNcsjVDAKSyIvDWXI1k5+9e4D37ujh1798hANjOda0xQCP2ZLOmtYon/6hnXTEgr5OtiiwuiVCWbe5ZaClweBOFTWyFRMPjz9/aghBEKjqNndcRGLljWBh8PA8DwEBWRIJKCLbexI8O5ihZtqYRYd/fmWSXauTbOtJ8MpYDs10ODtfoaj5A73rgeF4pKvnHlhJgNmygSjUx1rPW1IoXa4Adr3CBbJVCwk/eBDw7/GXR/N84q9fJhKS0S2X3qYQnYkgp2crZKsGpu3wj/vHydXPS0G1eM/2c7rgAn4nmGbZHJkq8I3DM6hX6bw4HlRMh+eHcvQnw4SaRJ4bzPDFV6ZojQbY2pNgbXsM14WP7OmjqFoX9cf47sk5clW/SPyLrdE3pEv+ymiOl0ZytMWDfGLfqjfFs+p7EbmqwZdfncJ2PD5wc88S0+W+ZIQ//NAODk8UeOZsmn96eYJgfbx9/HQa03ZpiQb4xfvWAVAzbQ5NFlBNm6PTRfxlmEdVtxtsx6puM5FTFy1cHXK1C2dga4XOrLca2arBlw5M8gcf3PFW78oNXAM4HhiWS02yqVR86QeAiuGimn7xY6qgElZkJFEgEZY5PFXAdT3mSjqeB986liIgC3i6x4m6RILterRHAxR1m6m8ryleNRx+7LbVqKbN7z58kvFcDd12uH2gjc6mILmqQVmzKGsWr47nmSvp2K4v+2zaLpN5lY0dMXTL5Z9enmC6oDGSqXJsqsQTp+dpjwcpqj7DTrccWmMBfvXBjcSC58LOkmZxuh6k7h/JcmSqwGxJRzWchmTRAg5NFhhOVzEtB9v1SBU1/u8zw4iigIjfNaxZLoZtka3ofObFUeZLBrmqgW476JYvbd0ckpFkkYmsyqmZEvtH82QqOuvao/zuwyd5YEsHP7SnD0n0pbYBPr9/nE/dvfaKr+9QusYDy7w+lq4s8+qFUA3nXNyxQnHrfIxnKqzvunAhnisbl/X+xc3/Vf3yVivPnJlma9+F3T4Hxy6v423J919mlnwiXWR1+4WkFnEFGsJcycDzPBznyuOU5chNi3F+KGS7LCmALUbFdFFzKlI9PFZNZ4mSwOGpIiFJ9GWmkxGS0QDTeZXvnvTlcY5MFhrqDYok0hwONNYpPgPaj9GS0QBBxffSW9MWZTxbI1czyVVNf33iyYxnaxj1TvtE3ftsuqgiCHB4osBXDk5TNmx29zfzh4+cpjcZBjxWt0aYKWp0JkKcSpU5OlVirm64vUCu++yL46imw0M7uljbFuXodJGxbI2D4wVaIgqD83pdwUJc4pd7AzdwA28ddNPh/NWVn7vwScNPnUnzzJk0AUWipynEbFkHD9piAV4cypCp+p0VQRniQYXu5hCf3z9BLCRRMyxM26WiW+i2iywKlFMlNNMlUzXIVQy6msPUdJui6he8qoZDvuYn7C6VMH/iTGbJej2nXt4c+npxHg/uAtieT3xZ2F8PPxkuCvWck+Mg2mBZDk0hGcPxWNfucXa+gmU7PHJslt9+aDMBRar7kJts703wvpt6cOsJ4cm8ylRe5dh0ib5khIB0Yb7lSgvQ57/fBUIiBCSRtngAx/MIySKW4yIIfnfbq+N5ZFFEEqlLMbuIokA86GC7fi7rK6/N8NjJNNE6IWQqr/IL962jqDWRq5mIgp+H+9l71hJa5BnteR5PnZkH4FnNulEEe5OQjCh+t5LlMJ1X0d8I8/kqwuMcEczUHEqas6S4tZg7broetungeRfez7brodRfNB0XWRJwXZfmiMKGzhgnpkv1bhMLy3GxHJfmsIIo+LHXpXxSS5rJf/36Sc7OlbFcl8mchijALQMtrG6Nohk2JcfF9TwSIZmhdAXN8pZ9bofSNSZzNSJBGcNy/PFYgFhQWnLsJd1GNW36W8JUz1tDnCPW13+/zOt4sdjX8erj8qLk+sU+dbHFw0rbuXCuALYM5qtm472mAx7uklYB2wO7Pg+IgCgKjbX2Asq6Q6qoYdjOBeomK6GkWfzzKxMYlktfMkw06FvStEQDfHRPHxO5Gn3Nvorcu7d1sbu/mfFsDRBYLh0+mavx//v2acq6xft39hILyaSKGoos8uHdfYxmqrw8mkMSwxyazDM4W+IbR1Lctq6Fde0xLMeholscmijQ1xKmqtt+PtdyMF3/2CeyNSzXI13RfWWHevf0QiOF43j87QtjSKLQ6MjSL3bB8dc3Bc2moNnIIisSU94MrKSytIA3VAQTBOELwC/gDyOvAU2CIPyx53mffiOfd6WwrsIi9nLgBypLK86W6RJSPEzbQTNtJFFAqreye55v+LbYsN0DyrpNWfdvDvALLwvyjFXdRlzQzxLA9by64SoYlt/FJUsCVr31/Na1rXQmQhydKjCSreG4HkXNRhb8j9A8l9mSzo/93QGqug0INEUUMmU/EDVsiaG0zxR1XI/RTJWS5ssd/PlTwzxyPMV3T6TxgKJaIBoQcTw4qpp85rkRTs9VGJqvEg1KtMeDbO9tQjNtBtpiBBWRH7mtn+FMFUUSODFTQrdcTsyUuH1dK3dvvPo68Nmqwd+9MEpRtUiEZAbaYoxnVebKGqmiL3v4v797hlXJsC/ZV7OY0nWSEQXH86joFz4wC5fc9Vgir/l2xsJRLr6nq5aL4VooIuRVg4oWojkSoKBWSRV1/v6FMfqSYXb0Nl/Q/RQPKTy4tZMvH5ykULOuavfLAjx8xtFMUfPZc8IC285jV38zPU0haoZDSbV49myGW9a0LMusaAr7kkPR4NIurhMzJaqGzZ7VSRRJxHU9KoZNIiRfULAdq3saZCsGFd1e9nsWMDhX4cuv+uflvdu7eOe2rhW3/V6FabvMljTyNdP3ZRzLsbo1ytbuBIa14MOi0t8SwXRcRtJVUiWNzniYLx6c5NXxfH3x6hMHBM9Dt32ZttfG80QCfkv1SsyhBdS5CG9beB4cWCSPeAPfe7Bcj7xqc35MvDAPlVQLXfHnf8Oy2dIVZ76k47oucyWVx0/Osq49zqMn5yirFjXTJqiIVA2bjlgQ2/VoiQYoaxaqafsd6rNlCjWDoCIxnqvR1Rxi30ArUwWN5rBCf0ukLq/ms/NaowHWd8T42XvW8dJI1u960S3OzFY4mSpT1mymChqrW0J4HoQDMu/e1rmkAAb+vNEcUTgyVWR9e5ThdNVnfasmo5kKcyUNEGiOKDx5ep6KbtMcVggHJF4eKTGR98fhWwZa2LO6GWvUoaTbDKWrmI7vAaaati9xApiOjW763f9zJZ2D475ptiwKjGRqPpkjr/L3L44j4Muurm6NcHquwv2bO1h7Gd3vF0NZU5d9XTcvb8Zc0xpmKOMf86auy9uXYmX5Yle6ol/W+xfjcsOfTGn5Ao8iXrtYfSXZxI5EmLnqhV1vL41kMW33ogv4a4VLfWUjcQBLxgEPKFRNJMnX1Z/Jq/zNsyN8fN8q5ks6+ZqF67o4rq+fHw8pVHSbT97aT3udWfzkqTlMx6WkWfzc9m7ev7OHdEXnhaEshycLCILfqbahPYph+3NxZyKI68Jd61tZ2xbjubMZXp0oYDq+zMnp2QrrO2IYlsu2ngT3beqguynE0ekip1IVjk4XaYsFaI0GeGBzO8+ezTBb0oiHFMayNdJlna+8Ns3B8TxCfbwIKAISvsxNPFwkEpD40O6+a3RFbuAGbuByYNgXFsEW4OIXNgQBdMdFFsG0bAzH47WJAq7n4SGg1HMcVcPh+HQR2/ZJwPGwguN6fv4EPwG3ELJXdMdXKilpPrHtPFWfy8nXrqTs8FZAs1xEzikCuJ4f30uiL8douX63cqqkE5R8zxfH9eOYRFD2CVO22/DOzFQMBtqifOvYLI7rcnSqyJnZCpIA7fHARZPGVxNtsSBSnRhu2A6KJKCIAi6gWi624yHiX++A7Cd/JdHPQ0SCEo7jq3KUdZN0xfXlGEWRV0bzvGd7F7NFjaJmsb49dkE8OZSucnq2gmE7fGjXjbnizUCmYvDpR0/zyPHZRZYc1xcuNTQs2Mkuly53bAdZEVFNh4mcRkWf475N7Yykqwy0RXE82Fz3DOxMhPjR2/rZ0p1gY2fikgTrwxNFzs5XyNZMypqFVZf0OziWJ1c1mK8YWI5LWyzIfMVAtS5+JIYDxnmFfd2+sNBvuTCSXVlm/O2O88/S+QWuxViQOV8Oumnz3Nks79x6zrjAcT0G5yo0RRR6zytyFmqmT2I1bD7z/Cge8L4d3fzKgxsJKRLv3tbJ4ckSW3sSPDeUaSgvlFWLz77o8eN3rOaRY7OEZIn37+rhm0dmeXWigO24FGomtwy0EpRFvnRgivs3tTGR1yiqJrIoUKhZjGermA48cjRFJCjXx1IXw/FwXY91bVFmClpDOnRhTJ7I1i5a2Foohr0RvNX8tXddIt/6RjvBtnqeVxYE4UeBbwP/Gb8Y9pYUwWTxyrowzm/pfj3wAL1RmV/6KQJ+iyUCtEQUbMelvKgqufjmkOpdRgvdaGL9/YosEQsqdDcFGa0XuVTTAwEUEV4ezbG2PYYgirREFNIVcwkr1XXg2My5Jr2QLGBUHF8vF3+A1Ay7IdWSq7e+usBIuspoutoI0hzPZ1fYnr+/n395wi/geVDUfC3qqbzKeKbGtt4EJc3mPdu6+B8f3sFv/MvhBjNDs1x+/V8Oc/C/vKuxX76uK29IP3dBIiwWlHns1ByjGZ/5fjLlM9IVUUCRJFwXVMPmzGyZ756YI1czcT2PgCQwa9qIonBF98LbFQtJFknwpSA9oGq4DGWqROtSNa7noUgiGzribOyMcd+mpQVMzXR497ZOPvP8yDUpgC3AhYYevSQIxIMSsaDMQFuUU6kyR6aKHJ8psWtVM6ppLxsIv3dHN1N5lc5EqFEEG8/6ZosAtuNx14Y2vnks1ZCR+MGdPUs+47a1rTw/nKUvGb5oAQzgyFSBsUwN1XQ4OJ7ntnWtDTPn7yXkayZjWf98LfbyyVYNPvfSOFN5lZrpM8VKmoVmOexZnWR7b4LRdJVXJ/L80/4J1nfEmMhVOZmqgOAn13XLOacHvEiyAM8jp1rkls8tf+9BENjQeWWJ+Bt4e2DFeUjwJYlCiohmw2Reo6jZFDUb23XZP5LnpRHfSF6SAE+gMxzgplUJhuZ9ObO5ks4nbunHdFzGs1W2dsc5MO4XmFpiCh/Z3UdXU4iHtnchCAIvDmc5M1cmKIvcv6kDWRKJBiQG5yvcsqaFqm5RM2ySkQAjmSqxkMy21gg3r2pmTZvfCfbQdn8MPTZd5GSqzM6+Zrb2JIgEJPqTEQ5OFDBtP4HvuR5nZit85vkxLMclEVY4MV1Ct102dMT51dtX8+VXp8hWDTwXjk+XSEYUUiWdsCKRCMkUNQ9Z8uODxXPSAkvbcVw8BAzbJRKQCci+/IlumciSH1dGgzLNEYXupjDpinHFRbAFuafzYVzmpDmUPlfMOTqzvB76+RDl88upPjLla0foaV9hTgwoAWD5AtmVIh5a/junV5B97EqEEAXhAk/h6w1hRQBENMtPDGeqvnyP7YJnu5ycLfMnT5zFcl3iQRHT9lmyiiiysTNGWJH49vFZ1rRG+cX71/P82QwBSaRmOhyZyjPQFuGZwQxlzSfYSaKA63gMZ2qsbvGlUprCCv2tYZKRAB4wmq0SUQQqhsvW7gT3b2pntqTTGgvyji0dDeasLImMZGp0JULIokAyGuCJ0xkM2yFbNVjXHmNXfzN//8IY+0dyFFQDEAgpNq7nIQKhgEQ8rHB6rsKH3rrLcAM3cAMsUZ5a/u/1bUTPXxeqpleff/03Snh4DQ8fF726qENAEBDqHRnLDcu+/+O16d56s+G4+F31i5KLC/mHhYKYJ4AsCDgejOdq9DZHiAclNnTG+cKBKX7s9tU8tL2L/SM5PrKnj5FMjVhQxvM8pgsq7fEg6YrO2rYY0UW+oAv5lquBxTkTSeD/z95/R1l2need8G+feHOqnKtzBrqREwECzDmINBUsyhItOVvfjOebb8Zh7AmeoJnxLHvJsj22ZVlZlkiRFCnmAJLIQKMDutGpuqorh1s3h5PP98c+dbuqu6q70AgkpH7WIgFU3brhnHPPfvf7PoGBXBzbCyg2HBkbYa+pkiWZ2/dDfKRloqYIBnNxVhs2tuvjeYL+XIxaWxLFu9MGqlDQFEFfJkZMV/nsg+N4QYihKbx0pcTL0xWODGW5f2cXF5ca7OtPY3sBd45k35gP+BOGMAypWR5pU0P5MUcxWK7P7zwzxZdOzPETap6yLZhqZKm4jngkSXAQMzRG8gnOLdXw/ZBWJGxoRvlGhwazvDxTpma51Cw5CDs8lNvytWxPOnykTA3Hl+KJtuOjiqvfJC8Mma9ZNNoeXSmTgwMZfrRN69K/jD3MNwttL8C/xh7u6YkiL06Vcf2AvoxJTzrGuw/0YWgKQ7k4QRhwuVhnotggCODzx2eJ6yrPTK6iCUHC1PjuuSVajk9vJsa5hSqlpsMzl4v8yYsztDyf8a4k89U2J2cqHTKmqSpYrs/zk6syz/fELKPdKRKGSsuR2Vt2R90IviXFLGvXwmrLxV2sXjdIleq/v7hXTKl5Y8eTWx2C6UIIHfg48OthGLpCiB/bUbzWU/614kZvfDs3lK1+3ylmIvvEsUIMx/dx/euLvGuHrAGyiAx86S260nDQVQXHkwxxP5RT/7mKxWLVRlUEfWkTTbk+92w99Oj363++nrzh3uA9wdXh2hpTdW0JVoRkgNVtn9JEkePTZdquz5eOzxBAJ/RuDSsNlzCqpmdKLf705TlURfDpu4fpzWw/4LTWdvmtp6bwgoDdvWlena+RiWm0HI+hbJwgCLhSsViqWrRcF1NTmC1blJp25zwIwk6Oz1/GBSRpKjhuiI8c5ipCsuOzcY17xgp4Eas4FdPoS8d498G+DZlu85U2n39plqnVBpb71lVC+YTKUD7BC1Nl/vlXz7KrN4WmCIQQLNdtTF3peK+vh64q1zUz9XWMnTX2znQ0WZkuXT9hGe9OMt6dvO7nm+HgQJYXp8pUWg67etMbNiNvJaptqZDLxDQe3dPzugvoJy+scHGpzv07uujPmvyjP30FPwilynNPN23H5+mJIl8+OU+p4RAQkjA0BCGVlkPbDfjRxRV+cGGl41mdMlWen1qlZXtbFtV/2b6fazBV6MvE+Nn7bmej/GWBJmQjRNrWyvXb1FU0RWA5Hq4fslCzGO9KQBjSdjyaEYs6CCGjaxiaSlfKZKFi03J8ZsptPjaWZ0dPkj94boZiw6E3E+PR3d0y0L1m8WvfeJX9/Rk+dfcI6ZjGH70ww2LVYqVus1i1uHM4RyJqtsz1Z3hsXy8z5TauH3JkKIPlBXzgcD8TK00mVhrEdIU/OT7Lu/Z188++fAbXD3hltsJ//6GDxA25me9Lx5gym9RtD11VGOtKEtfloC0b12l5Hru70vRnTRQhLXfCULI35yotKi0ZKB9GDSPHC6i2PNyIVBQgj18QXrXAsD1pP+0HsigS0bE2oib+p+4e5thoHj8IObpJsPxrxeGBzRszzjb7esV1qq6FTdalzRDXN19vvFtYqjPb5G40tsh30DaxZHqjkN2CWKIrm1d1Q/k4piZuKbP0rYIqIKmrlFpXs4sDZCMsZcrvdq3tslK3qLU9YprCuw72UWm57OhOcWQoy39+eoq5SptXF+r8wkPjjHclmCw20VSBQOGrpxZ4brKEpgiODGUxNJXZ1SYImZ9315iGIuBrp5coJHUWaxbLkZXmx44O8v959140VWGpZvHkhRV+/buXGIsU3ecX6xwczLCrK8m3zy1hezLo3XYDSk2bY6N5NCEHb33ZGF4QYLnS5r3UlIq3QsJgtJDgp+4a+rGdh9u4jduIsM1b+BrLfM3lZu3+5a/9chPYro8fhjcdtP1FQEyXmUVaRDzVFKlIMFQFOwxACdEUhZ09SRZqNk5bZpZ2p03mqxaVtstqvZ+a5bGnL81CxeKd+zLRsEnw8WPDNGyPgwOZyKZWYn2/5fVCU2St5Huy5uxNmwzn4yzWLBZr0s6yK6lTajmYQhCoCgldwfHl5x/Ixtg/kOWrpxfwQ4EThPSkYiRNnx4/ZGdPkj19KT58ZJDhQoKG7fHCZInulMmR4SzPXi7heAHPTZa4f2cXd45kWa5b5BMGw/lbDUn58SIMQyaLTdIxnZ5NMk6/cWaJVxdqjBQSfOru1692W6nbfPXUPDFd5WNHh15TP/VbZ5c4PVd9Ww/ABFz3/tfUpyKUQ6vFuk3M0AiCkK6UwWrT4ehIjiAMeWxfDydnKzh+gCoEJ2aqPLq3l5W6heeHDKxTC9Uslz94bpq26/P+w/1k4wZhSMfyOSEUbE+6fDietAkVAj52bJCXrpSprBNvGepGq/L17/0nHWsCkZ/k2hugK2kwWtjY51uz5p6vtGk6Hi9OlXkmyl4UQt6/ijW7s7+aKbX5109O0LY9DE3B80O8KApJVQTllns1wzmwURTBSt3iiyfmWK5ZMjZJVWi5AZMrdeYqMpYA4NxinYQus9GuJY2sH4CtofY6s4/fCrzRPfi+9I3nCbfajf13wBRwEviBEGIM+LFlgiVNjTdL2GmoG2+Qr+XkrJ3Mtb+Zq1jEI9suJwhwvfDGNwEhrZEmiw2WazY16/pOiRyIScbkYs3aMMaRjR7JKPIjuW/TCdncUfbm2OyvFBGp3ULprbvWfFvL1HFvwLKtNOVZmym38IMQPwiZr1o3HYK1HZ8gDInpKv/56SmemijSnTS4sNRgtBBnd0+KQtLgwd0FJlZa1Noetu9HxwbihoKqyvRFTQFTA8+5eq6ulUUrgs7g8S8iHC/EC0OCENpBQMbUSBgqg7kEY91JHC/kw3cMMFLYvKicr7Rx/YC5chvLC+T1/RYcLD+QasUw9Dl+xWVipclH7xzkc4+M8+T5FTw/5DuvLnHHcI6etEnS1FisWqw2bfb1pTfkeA3l4nzq7mGajse+PplZ8di+Hk7PVblzOPe63ueR4Sy/9qk7pL/0utecLDZZrFrcMZTF8QOycf1NZXY9P1liYlkGmo4WEresagjDkJOzFb52eoGYrjBfafPQ7i7qlkvD8vjiy3N88eU5lmoW1baD48vNkq4Kqi2PsDN0vt5buPF2rqbfYKxdCilDwQ8FCUPdkiF7G39xoaz7pxdAQkjLmUpb5muWmw5P7O/hk3cNM1duyaFz02FPb5rDQxmeu1zCcn0qLYeW49OVNjkwkKFpeSzXLZq2x+HuLO892Me//+Ek5xbrOF7ATKnNvv40j+7pYTgf45W5CnXLZWo1kJt0U8P1A1IxHTfw8YOQetuNVGoqL0yVubzSpGn7XF6RlrpTxQaVlkut7eD5Ib/zzBV++t4R9valIJTh8M9PrpJPmvyjDx3g+HSFuu2yUGlTbXksGhYzlSa/+aNJFAFJQ6UVqURtzyMZM2hZLuW2XNA7VsbIgWIny1NAEN17glBubIQiZGC2JjA1ha6UyYO7unh0b+8bdi6TseubGrC5DctmWJ+zWdwky3AzbMWEM3WwX6MYbLuKtVpr8weat5C/uV3YW9QcI10plprXZ67lEwZn57eXxfZWY+0oCQFly7uu9vb8EEf4pGMahqpQrNt4QUjK1Gk6AQ3bR1cVHt7dzR+/NIsfhjiOzz/98iuMFJLcPZqnbru8eKWMIKTl+jheQKnlYKgKHpDSVQZyMTRFQdcEru9zZr4drUGS0PKOvT2dOurScoPzi3VematyfqHGYs0mbqgsVNoMFxLMVy3CUDCal3lh5Zbgu+eWKdZtEobGE/t6Wa63eXm6QrHpkDRkgPtDu7r5Hz566C08+rdxG7exFV5L+sRarWpGfZT1g7C1jO319zbbu9XuxE8+soZCoEDLlk4WuYSO7Yd4npSgaKrMiR/Oxyg2XVzXZygf53/7qTv53WevcGKmwlA+TkxXqbc9qbZdt11UhKA/G+Nzj+wkjAiHm2F9v+X1QleEzHwRsjZtOT6vzNdwvCCyxRRUHYdQCBzgQG8S1w8pJE38MOTnHxjlu+dWMDWFlu3hegHZuCYz3TWFjx0d3FB//ejiCq8uyDW7N2Oyty/NK3NV9kQZ4MP5BL/48I7X/bneSlTbLs9dXqUnbXJsNM9zkyWemVhFVQQ/d/8oXamNNeN0ZAE+G53H1zvMPDNfjWI+XC4XGxwavJ6o5XgBbccnm5BEo5lSi4Vqm5eny5Rbzo899+f14GYiCMsLWalbGJpCIWkylE9w/448r8zXySV0RgpxPnC4n0tLdSwvIGkofPnEHH/wwgzZmMYvP7qLu8fyAJE9u6z2p1db7OtP4YehJAGHcgAuBAzm4nIAEtng/eenrjCSj7FUsztkvt50jHLL6QxQboa1mvIn4TSFvD36qTXL5fvnlzk4eDVb8OHd3cQNlUNDGb51ZokrpRan56QTSi6hc2ahTrV1dc8VAE1LOhu46zK3PMen5Xi469iInh+iC9FxdbO9QBLhTA0/DLi01L7ue9bawuL3bXB4r4MCaCqoioLjBtveF28FAay+GUqwMAz/FfCv1v3oihDi8Vt5rjcC3pv0bXq9N/YQyeQMIsWUH0jGby6usScf4+JynboVINj8xhSE4PghE8uNTd+HAExdIRnTqLdcvCDsFJ2GKuWT6bhGy5FBs2t2i28k1mcXvFYEobwtHxnKslCx0FTB/v7rg83XY6lm8ccvzhCE8N6DfXiBlKQGIewsJGjaHvM1i6lSi4vFBtmYTrnlkDA0dEXgBiFN2yNtqnh+gK4qtB1/4w1DRCo8IktKIRVwf1FVYv666wag7Xr0pA2mik3+yt3DTJfbfOvsIh+6Y5C+TQaUBwcznJytEIYy6NhQpVS89Cbnp9VtD+n2JVBEiK4Knr28yseODnFqpsrkapPJYpOLyw2ycZ2PHR3kv7w4gx+ELNdsHt/fi+XK8MvBXPy6Id8dwznueJ0DsDUIIdDXseCrLZcvn5gnCEO+eXaRTExnrCvBJzfJvHA9H32bwZw3Ql/G5JU5omLuxhaOm2Gm1GJqtYnrBTw9UeSlKyUWqzZD+RizpRYTKw0sN2B/f4pzi1IVuMZU8gI67JXbuArtmnuLAiBgNJ9gMGfScgIMTaEZWSb0ZeIMvU0Zjn+ZMZY3uVKWxVh28znIdRBEXvVio7q77fiUWzLTsGFJQshQLsE79vTw9KUiO7qSHBrMsqM7yffPr0QKLZ/uhE4QQNrUoiGaS7lpc36pgarAXKXdUWe3PZ9a26U/E0MIwd9+5x4qLZdX5qq8ulgjDOUGQQFars+/+d4Ed43lSZs65ZZN2wlYrLXJxgzaTpSBqirSVq0QZ7okmxjPTBTZ1ZNkpJDg668scma+hhCCtuPz9VcWeNeBfl6Zq/L8ZElmptoer87XsD2ZNzKUTxAEISsNi5iuEgYBbS/oMMkFso5LGAoNO9hg7bwGFVBUgRMNxUQQ4nguthfwtdOLnSbMG9FwCLe4B273WfMJndVoXd2KlHItyu2th2BsY4leX/eY21RyqVs8zn4TOyX9mc3XtKS5uULs7rE8MUOFzd0Sf6xYO0qakCqBNQPguK50WMJeIJ0QvNAlCKWiwA0ClqoWxYaNH4T0pE360iaXlmWzcqbUIgxCdvVlmFxtEoYBbiDrthYuCzW7E8J+73iBpuOjKpBPmuzpTTOQlcHaU8UmQRBgriP1DOfjmKqCqSmk4jqFIGCq2ML2dHoyMQ4MZNjfn+bh3d38xvcu8cJUibiuUm253DOe72Sxnp6rSSvSmMpwPs49O/KcW6ixpzeFqr55Q9TbuI3buDluZQVcPwBbQ1yXqocw2JhR/ZMOLfJK22op0xRYC1bwAvk5Q8DyQ9RQOhcd7EuzoyfFQs3C1FUSusp8tY2mCv7u43t48sIK06UWfWmT8a4E7znYz8GBDMOFBLoq+OHFItm4Tl8mxqfvGWam1GJfv2zU3kzJs77f8nrh+CGmJjquOuW2hxsEGKp8D0lDIQhkuIcfWVxrmoIipALiT16c5bG9PZycqdCwXRQUXl2o8+GjgxwayHLfjq4Nr5eIPpsaOQG852Afj+7t7tjv/iTAjabE+jbXqh9cWOFSRE4dysVpRGT3tWy8rmse/449PRyfLrO/P/OGqPl29aQ4My+tzgezMc4v1mV+ZzR8sz2f33t2mmrb5eHd3ezpTfF/f/MCk8U6CxULN8ogfTviZj29dEyhHblYuX5A2/Zo2h6nZmsMZOXeaLrU5uhoDkNXqdse3zy7jOX6rNQtcgmDpWobkEOwsUKC/f1papbL3WP5TrZ825H7I98P8PyA1YZDTNdoOT5uEPLs5Gqn3+v5shpUFcF4V4ILS80big3WUEgZdCc1zi39ZcmOeP1oOf51asyYrvLQrm5qlsur8zWuFBuseAGOH0h3tCC8LuPZ1AReIK3315+pS8vNDeuIG4LrBlwuNmk58vk8YLVmEyqvjYDydkJMA9eXpL9C0sDxQsxITOF6ATeJwtsSmiLJITd8zK08sRDiV4H/BNSB/wAcA/474Ju38nyvF4ambGcvvy2sqYBUIRuS2zn4hgoE4KxrvHQYT5H1Tjqm4voy8NQPQ4ZycbwAyi2HTExjuWax3JCfYq028UPJlPKuYUsJpHw2E9MYysdJmRovT1ew1k2UwyDEJsBtOhHL4CeDAbAeuYhVko7p/NQ2Zd0LVasTclhuuTy6t5eRQpP7xvM8P1niu+eW8fyAluOhqwLXDVBVhbbjRfJi8H1By/UJwxDL9a+bNncsHpHHbLvs57cLFCELeSeQn1VVBD0JnZbj4UQ3oiulFilD5f/59gX8APqyMUYKSd5z8PohWMLQ+Ln7x3j2colu26PtBdhN603/HJ4PgYCUKfMxqpbLYq3NHz4/zVhXgpWGzXy5xem5KilT4x27uzvst7Vm3BdfnmOh2iYT1/ncIzu3fK0gCPnuuWVWmzaP7+t9TZadm0FR5HEmlGGamZjObFk2ocW6m/YfPH+FL748z47uJP/Lxw6jvQ4m/R3DOQZzkkl4baDwzWC7Pl84Psty3eaHF1doWB4Nx8X34fJKk4mVJiIMMXWV1YaDFwQ3DCP9y4T1A671txJdgZ3dKabLLQhBV0JipvQfPzaa594dXdw1mufzx2dw/ZAd3UkOD2a2bcN5Gz85ODKS40pZZg7uH8xv62/Wvj3XEr0UReC4Pg3LxQsgFTPIxjW++PIcXzoxx2rT4dE9PezrT/O988uEYYgiBHYQIkI5YHry/DJNx+f8Up2a5XP8SgVVkbZknh/QmzY5OJBmrCvJkxeWmSu3OTSYZWKlSS5uUGm7JKL8Tj8ilpydr/GOPd18/OgwXzoxR08qxuRqA1XI7IfLKw0Wqm1+6u5h/tsP9PH/fOsCpabNV04t8K79vVwuNtBVgSIELcfjN5+a4te+fh7XD+hKmcR0yZRWlGigLgQxXaU/G+Pu8TyvLtSYr1go0WDZUKWlbz5p0JcyeeZyadPjHADimnuVEJL9+vJ0hRenSizWLM4v1hnvSvKJY7duy1Z3N/c9zMWguI0lM2UonfzDgW16E/ZtMRzabiZILqZQtuRFuKNne/ce4W/+OSutG7PyXg8ur7bZv4lT7OWVzadcQgjuHMqxUGnz47LEv1kTxg9DVNbqNDnAHs7HmSw28QJpN+X7AZqioArIJTRURZAyNWK6SkxXGSkkGFpNMLXapGZ5XClbeIG01lxpOPSkdH76vmGeu1xmsWZjuwFKXHBoMMPJmSonZqv88qNd3DuW4/efm8GJS5WZ7QU8P1Xi6GieMAx56UqZctvhHXu6eXRvD8s1m2+dXSSfNBnIxnh8fy99mRgNy2W23CamqxiagqIITs5Wabs+Hz86xESxQVxrsW8gwzv2dPP0xCq//cwV9vSm+O8+cOCtOTG3cRu3sSluZTt87T0uZUgrwCD4yetL3AgC0DVQhELoXGWqawISpkARsiYa704gkNb8A5kYT00Uadg+rhsSCp+LxQZqtJc7MJDhvYf6+MGForx3xzQOD2aI6wqlpssfvTjLp+4e5sFdV8chhwaz6KokRMR0ld6bWD6tx/p+y6/+4YnXfAzWSMGyES+ddWrWVSedhh2QNKXdcHcqxp2DWX5wqUi17aAIyMUNlmoW5ZZLuekw2p2Qg7mqtNPWVIWVmkX//j5enq6wuzdFT9rk5EyF41cquH6AK+APX5jh0/cM053aJqvsTULL8biw1GAkH8cPQv74pVlAWmlvRhq+Fmv52YYmLfFWm9JW7R27ezYlOh0YyHBgIHPdz28VI4UEf/OxXShC2huema9haAp/7aFxkqZGre1Rbcve5Eypxe7eFMWGTbnpUrdlX+3tutO/0fuOqZCLm2TiUGxYOB5UbY+ZsuwXDUY2h7qqYGoqbcfD9QMuLjfY2S3toOX5dDrkQk1V+MCRgc5rXFhq0JcxqVsefhBiez5yZCzIJTQqbQcCOUxXAFUJOzm2M+U2uZi2bWevpu1SbNxaHm9SF1K1+na6Wb8BeGJ/Lz+1jpjecjxenq7Qk5a52pW2S9XySBgq947n6c/E+OOXZjfsrVTkPbfadjecqRudtfo1TWcH3l4L5WuE6wGRMtwLQpKGynzNRYTQkzYQQrBYs6PvgHzgdvryihDsuEm/7FbtEH8pDMN/KYR4H9AD/CJyKPZjGYKJ7e7mt/VkSLliNIBae2ZNbD4Q0yO7QVUB4a/zkuXqRR4iGTMJQ8XxAhq2x0S0MR8tJFiotvGCEC2a9CpcZUZtphJbI380LI+J5QaGpnItIcQNZWPnJ3lxupXztr8/zUypxUypia4K7hrNccdwli++PMefnZqnK6FTSOodP1TbD2i3XWptVxYZjvTbdT05ZV9/fNTIo/YvSkZgXBN4IRuGEboC+aSB5QYkBezsSZGKqSzVbLqjG3vLDVCEbEbWLI8whHaxSbFhsVSztizshnJxCEMWa23ab64IDABNERSSOjXLxXbltT5TavPCVEn60TseMUOj7Xhk4zqzlTYfPDJAsWFz16hsRFfbLi9dKVNsOGRMjU/fO7rpa81V2pyeqwLw/FSJD98xyJn5Ki9PVzgwkOnI3beLdEzn0/cMd7I1zi7UODSYue478WzUuJ0sNlmoW4xEyofLxQa5hPGaNwC3smFYrLb5J196hQuLDXrSJr4f4voBvi/vfeutLx3bp27/5WAaKcjvU8xUqLaDDQzZtSMSkUYjNj/EVTnUMHWVd+7t5oFd3UysNLDdgJbrU0gYHJ8uM7HSJG5ovHNfD3/zsd1v8Se7jTcaXQmzYxtcSGxfhXntUqQAPSmT1ZaL7UfNcSHw/JA/fH6auUo7svLTedf+Pi6vNFmoWMR0hWxMp2J5hGHIct3C8UOycQNTlcSFpiPv9d3pGNm4xt7+DF88PsvvPz+NGbHf/u4Tu/ntp6e4tNKIsgW7OTVbpeUE7OpN8bGjQ4x3J7lcbLJSlxvlWtvl4nKdMAiJ6yrn5mv87cd2M96V4PJKg6ZdR1cld3q8K8n9O7v44olZ+by2DPdtOT5/5Z5hXpmvYbly0x2GUhm22pD3UNcPsbwAUxPEhYKmCkxNZV9/htOzlc4xXPuerq/P1q/5mgqZmIbjhzQdl3/3gwk8X9oLyUDsbQZ4bYJjW+SKSVb2zQuPK5WrQ6QfTZS39ZrTK5ubhW9XmOuvu7Nda1+7FUpbWDWKN3EjF9tiN6MpW79nfy0I7scUQnPttXgtwgBMU0UNpA2x5flMFJv4vrRS94IAPwgRIiSbMvF8ONif5gN3DDBaSFJIGvzPXznLct0iCEKcEHpSCglTRVMFSVPmqsY0jYODGV66UsYLAqpth996+gphCNmEzpdOzFFpubQdHz8ICJH2PRMrDYJAksn+4Llppsstfqgo1G2Pzz4wznLdptxyeGRPd6dubDo+Qgi6kgaKIiSjGkFvOoamKvxvnzyC54esNm2+/eoykysNwhAqLZeF6ptPrrqN27iNrXEzzc12VrK2G7wt7LCuRQhYLqxpczVFoCrSlnkolyAVZRn6Adw3nueDRwbY0ZPi7/7+cc7O16hZsrHXsH0uLdcZyiVYqlnEdY2fe2AU1wv4wvE5vCBkoWphewEnZyo8uqd7gwNETJdONl8+uUCl5fCeg30MZONbvOs3Fmt9MFXIfWwIqCoE/tWfm5pKTNdImzqP7Onmbzy+m4VKi995ZprFmoWqKqw2bBqez9dOL2KqaqfnVmk5VNse/9c3znNoMMMrc1V++dGdnF2oEQLLdZtC0sByfa6sNm+6p7203KDScrhjONfJ+34j8ZWTC8xVJKnjrtFcJzNoqthkutTCcn3u39G15Wu/Y083o4UEuYTO85MlpldbNGwPRZHvfawrsW1V2a1iTVHWjjLdXT/oKNq6UwZ3jeVZrLY5NprjmYlipG4M8f3wbW3Pf239pYirdbHtQ6klRQRr5Ok14vy943ke39+HoSo0bI//9KNJYrpCpS3oTeuECHb1SFerqdUmV1Y374kcG82hqyrZuE4urtF0fGbLbWzfp9yUA4G19ygE+H64QRRRsbxNj/9m1oftW5XTAM3X8bdvZ/zcfSMbIkqePL/CucU6QsAju7uptT3SMT2yB5eDsM8fn92g2FJVQc1yUYXoRMWsOZQohAhFECL7/5skHv2lgIj+T1cV7hrNcXKmRhhZsdWia1yNZi1r9uu243ey5Qg3jxQ4PJQhtUVW9BpudQi2dlV8EPhPYRieFG/oJOq14Y3wNu4817rBl64KgohFnTQ1fEIabXmVKkL6IRu6Sj3y7F8bfilIdUrDlkyhEFn0td2gk9N1YamOpiqEKw2SpkY9OtFi7XXX8iqueX8K8kJwfRmEZ6Lg+J7M5rrm8WsXyGYBeddCQTYRHJ/rhkNvFrxb0HbGdJV9/WlOzlb4l9+5yKHBLB843M9UscH5hTpuELCzO4nrByzXHBKmhu0FBGFIw/YRQuYZiGsq9bVm9V8kOJHycP1HVRWB64coQjY3MjGNqdUWpq6iqyo//9AYXzm5iB8EJAyNO0dyUei6y/Rqm88fn+VvPLrrOhn+6bkq6ZgMDq3b3ltCWojpCiOFOC9PO53XC0K4stqkkDQYKSSwPZ+u3jRCQFfKZF9/mn1ctdx8YGeB3352ipSp8a1Xl7ccgnWlDFKmRsP2GIk2Iz+6WKTl+BQbKxwbyb3mPK+BbLyzcblzi+boew/28fmX5tjTl2IoK5tIP7xU5PiVMpoi+OyD4x2f7jcDl5YbfOnlOWZKbUoth1LTJq4paKqCIvxblin/pENBFik3sttWBKiawFBUVCE3xWvrgu2FBEj7MHvdDdgN5QBsb3+a/+/79zPeLb3sV+o2M6UWf/LSLK4fMFNqoakKk8Um+/vfONbfbfx44AfRhSRen6WBrkLD8bCjzaoQcGAgzZdOzNF0PLwgxECqmOqWR8vx+fQ9IxiqgqHBb/5oiqYVUrc8XD+kO2Wwp6+LmVKLlbqNH4bs603TnTYxNYXPH59jstgkaWpczjT4hYfGeXxfDw3bZbrU5vmpCh8/Okg2YTBdavGVUwvcO17gZ+8bxfED9B8Kvv3qMqam0rQ9arbPi1dKnF2ocmwkxzMTq2TieqR0TGFqChMrDc4vNmjaXudYJUyNyloORjSwUAipRkr6C4u1SPEekIsbuEGAqamoiqBYt6m03M5mce17aiqgKMoGT/W1oaLthgShrOgsJ0DXBMWGxUfuHHjNKtr1sLbo/LlvIvNmoHtz20QRbm/w5q97z2vX3c2gqJs/bzKuUbTfnJ2es8UXy7hBA+mesTzfeXXpTXk/28HavmErBEBMU/j/fWAfXzu9xESxyUrdwnKlCgxCVEUhaWrEdNmQmSy1uHMkT8qUDhOLNUsykYVgV0+SlKlxcCCDoSqsNhxSpiQSAfSmTC62bFRFodR0yMR1VAFxTaWl+tR8V2aAqApt32e+bPHcZIldvUncIKBpeSiKoNhwaLv+pg4PvWmTT909zORKnZWGQ8rUmKtYHBzMcHgog6mpKPj8wy+cZrLYxNRk/sLDu2Sz8DZu4zZ+fNjqfiWQ6uutshnXY7OHrG9A/yRj7S1qQvZqsnGduiXzlFw/QCDoTpuoiuDLp+Zp2x6eH5BP6MQ0hZrtoUeE5wvLDYQi+N75Zf7O47tprlsbHS9gvtym0nb5g+dn+MidA7TdgH19aeKGymy53cl4fnm6wsCRt2YIth6qkJ0TU1VQRShV9xmTXT1pyk0HCFms2zwU18nGs3zm3hG+/eoSl5brnJ0XKIokMhVdR64zhsK+/jSKIuR+WsieRbFhs1K3mau0uXc8j+XJ9W9P343jM5ZrFn92ch6Q9t1P7O97w4/Bms1/EIaM5hP8aW1OOi+FAU9flEQlVRE8tKt7078XQnTcPQaycf7whRnajse//t4Ehwaz7OlL8eE7Bt/w970ZHt/fSzZeZiAbJxeR9YQQPLa3hzAM+bdPXuaPXrhCuelKImzwk020X4OpRgT3a0pELcof8MMQQ4G4oVGOerwh0LR9UqYgUFSsyPPTdn1OzlT5yJ1DCAG/9vVLlFsuuqqSNFW6UiYfPDxALqFzfLpCLq6TiW/eo3E8n7rl4vsBMUPj6GieLx6flRbvTafDzdJVqf66tt+y1f3yL7Bo6C3DYNZE1zfu9dYG2YoQ7OlN8w/eu4cvvjzPqdkK3akYlh+Qimk0La8T0+T4IV4QdlxL0jGNhYpF3FCxHJ9a5Ojyl01ltx4Hh9Is16VKcakq7/UBSEFSIPfhni/vo4qATFwnYah4gVxv03GN5aok9obR3yVNld19aQ7eRDV7q7v5l4QQ3wR2AP+9ECLNj/F7p22DJaGJiI0fEi22KkEY4vsyJ8LxNw5BVAVSpkouabJQaaMqgv6USSPms9qwycZ1dFVQarqdg25GgW4xXSNpqgQ41O2NTYO1EwvS+xPA9d0Nv1dVBY0A4YeoqiAM5D8JZfh3EMombSam4gVyMNSyPZKGgu3LoZ2cLCtYrn/TRUoVktEURFNpJQjfEpbWreZDBGHIasPG8WRopOX6CEUyv2OGxmSxheV6OH6I3XI7w8C18xQI6EoarDaczucUvD2CGrcDBflZTU0Gmtfa62wyQzoBp0EI1XXD13zCgFDwDz+4n9lym8f39dKdNjm7UOP5yyXarh95nV+PnpSJIgR1x2W+8uazdTUB9+0oyM+pK1hOgBDyM7t+yHzFwvUDpktt7hnP8/fftYfhfIJqyyVuqJ3F7NJKg66ESc1yO+G6myFhaPzCQ+NYnk8mYhaMdSV4daHOaCHxmgdg28WH7hjkQ9cUwK1oo+RF8nl4c4ZgT19a4de+cY6W4zOz2iSqDWnYPqb29vUnXvt+qEJay62RF/wwRFdACIXBXJykoXJ5pRENkwWqkHYAfhBKCwRdIa6r2J7MJXR8mcHiRyzOoWyMe3fk+f75FeYim7bulMloIcEDO7s6AzCAnrRJT9qk1nYRhFxaadKdMvjhheLtIdhfAHSnY8R1lRCZzXfLEAJdER2VuqEq5JMGEytNyUgLAlIxg6Wajev77OlLMV1qsaMryW987yKrTQdVEZxdqDMS5UscGshyfqFOJi7VYw/u6qI7ZfI/f+UMF5cbuH5I2/HJJ3S+c3aR+apFseFEdj9yQPWuA738xvcm8IOQJy8s05+Nsbs3xWfuHaUnbfLk+WW+f6FIGIaUmi7/8YeX8UPZ6Km1Xf7+E3sopAzKTYevnV5AUwSGpmKqAjOydHt8Xw/ffnWJVEw2nYQi2NWbZKnmULc8DFUhYWidoGkIyMZ1mWPobyS+SDdF0alB1ipITQXbC3GFTxjCSsOWG2UhuG+8wGAu/rqcB5pb5GRuM9u6Y9cNkDa39z48Z/PCRhHbK3gShkIzqlW3myU52rW5MjqfNLlSeXOGYHKodz2SpgFcX5OUmg5N22e8kODCFpaJbybW1qGbIR3Xec/BAS4sNzm3VO80PoQAQ1PJxg0ODaZRFJXVho2mKNGATOamdicNJoS0Bt3bl+aRPd1cKbXY1ZumK+1wcanBd15dZl9/ivt2FlBVQbnp4IUhn7l7hJ09SR7c3Y3l+HztlQXmKhaXVxqsNGzGu5N4gRw837ejQN3ySBoaXQljy8w6IQQP7uzivQf7+OKJeWZKLZ7Y38t7DvR16qiW43csmDRV8LlHdnJ0C6LQbdzGbbx12Cp+qZDQqFm3HmX/dhmCSfKMIBnTGCkkmFltSUu4UPYQVEXGT4TAK3NVFqsWhLK3Mtolrc5FGPK1s0ukQ6kyycZ1nru8Sjqm88m7h1motNnbl+Lbry6jVds4ns/vPjtNIWkwWWzwiWPD9GbMaADnsatn673rG4FsTKUandv1q6zrh+RMjZSpsrMnxf/y8SNoqsIXXp7l+JUyA5kY1bbLct2iNx2jNyPVvkEoiaUNSxKbuhIGQQgJU+Xx/b3s7E4xmItTs1x2dqd4aqKIH8gYkYd2dW87D1UI0RF636xu84OQWtsll9BfU433oSMDnJmvMtadZL7a7iieyy2v89rbIU4t1yzySZ1DgxlqbZdX5mtU2y7lLVT1bwYyMZ137uvd8LNS02Gy2GRHd5Ja2wVk5jthuKn64icRcUM2zV3PpxmJEZKGSiquoSuS1NudMji/UNvwdwFguSH9WYOa5WK5PqYM/aNueZRbDl0pg6W6RdVy6UmZ9KZNHt/fw2BOftcThtoZKF6Ltu2zXLNpux7t5QYXl+oyC4qNsSy+H77tBlvbo9htDkOlkye/hvV7nzfj/Vz7+7GuJF85ucAvPTJOOur5Pba3h4FsnK6UQTahk03oPLCrC9sLaNou3zu3TLXl4l/jLJHQVVIxDVWBWtsjE5N25W3X/0s1/EoaCglTY7V+VbiQMVXuHMlzcalBy/Hxw6BzMgxVUEiZGKqC7fkkTY09fSn29WWotuUgvul4zJXbpA2d6VKTthuAkIPHpZrF6bkq9+0obPmebnUI9jngKHA5DMOWEKILaYn4Y4GpKaRyJguVzfMGdAVySZN7RnOcXZCh6nv7pK/tUs2maXvEdRHJf+WqldBV7hjJ07BcLMdjpCvB5ZUWcV1hR3eKvkyMQkLne+dXsNwARRGkTJX3H+pDCIVzi3VajkdWCLwgQCEEIX37Y7rKSuTNqgBxXY2ktC6qIovB0UKCatvFUBUKSYNqW/q5hp6PoQp6Uib37ygwkItxbrHBmbkqASFGELKzO0khKTM0vn9ehjRey84SRLlEQG86RtOW4dq2HWwx5nh9N7XNcDOZ4lYYyMboTsVYbTjs6E5wYDDDwcEMV4oNTsxUMDWwXTkxDsOrUn0l+gxJQ8Fx/Q1Dr81sJ6+FpvzkT+tjKgzlE9QsDz8MGS0kmFiu07TljUVTBNmETkxXOTAgg1V39qToy5hoiixOTV3l5x8c7zznXaN59vSmuLAkpfmbhbGOdyfJxXXqbW8Dc/zNgKlKxs7u3hSWGzCXb1O3PI6OyMwaLwiJGypNxyeX0Lmy2sJyAp6fLPHUJRko/HMPjGJqKmEAhaROLqHz1x4e58JSnabtkTA0TE3ZkL9kaMoGS4P3Hernod3dpIxbVwbULJepYpOxrmTHG/xmeHRvDzFDlQXX68wm2wovT5f5e39wglLLuc4pKuTtIdu+Vhm7hrguLQlVoaBrCtm4BgiqbVfe33tS/ItPH2Wp1uZff/8Sthtwz3iBE9NlzizUcLyA3kwMBZmV15uJ4XoBd45k+eSxEV66UmIuIk6871A/n3tkF3/4/DT5pI4iFKptl49vkSv0zv297OlP8+UTc1huwEjhrWd33sYbjwd2dvEHz08ThPDgzq0LMlizmVGxPR9VUdGEIBQhSUPjwECGuYpFzfJQFYXdPSnimkJ/xuTgQIa26/PydIVyy2GhajGcT/Do3h7++MXZTiivKgSHh9IoQqE3HePLJ+doOB4CGYI9UkhQaTkRe03pqIa9ACZWmjx5YQVNUdjXn+Tx/b08sb8XU1M5MJDmt56aom5LBdqHjwygqgrvPdjPB48M8H994xxfObWIpgpURWG+3CafNIjrUskShvCjS0Wars97D/ZRt1zGu5I8tr+X2VKLH14qcmq2ShCGxDQFTVNZqNokDY1cXKftSTvRquXStn1sXxIjWo5PiFQ/r1+a2t6aokwGF1te2Nl4rT0uiMLJbS9gttx+3QHsQt18rUiZCvVrw982ga6Cv2Y7pG7vvfRskR3Wk46z1NrcKnE9EoYOTXnDT23lOXgNcqnNN/1j3UlOzL22gVN8m05AA4XNvd/fdaCP47OyubGeL9e0ZY20tz/DdKWF9SbLmjVxre2muC43c42wJUlbgnxC5+Fd3fwfXz/PxEodRch9hm/IXM9MXOfO4SzHRvKMdSf5wYUV9vSmuLTcYH9/mp3dSR7Y1YXjhwxmYxwYzPCBwwP8p6enZPYXkmHsByHdSZMP3jHILz68g/NLdXb3pK7Ln/zlR3fx0pUy1bbMMXX9kKbt8t1zS/z1R3ZSSBi8dKVMzXL50cWg26F5AAEAAElEQVQij+y5nv3+vfPLnJiu0J02+cw9IzRsj8Vam1//3iW6U1Illk0YfO6RnfzZiXl29SXZeTsH8zZu4ycCmwXNC6DU8jb0B9b239u9qwZv4d56u70MU5X5iuWWS0Bkga6p7OlL8Tce3cXTE0XajhyAWZ60kFOEIB+RRWKagqYo6KrM+trdk+TnHxjjh5eK7O1tkjA09valOH6lxLfOLnFkKMsn7xrinvECfhDSm4lxYrpCKlIPAB2FwRox04tU728m6uuGm/IYCBShkIpptF0fQ1OiwVyMH1xYod72GO9K0rA8Ki2Xf/+DST5+dJCDgxn+2sPjvDhVYrSQoNJ22dWT4Mpqm4Spcd94gfce6gek29HpuSorDZuhXJzzi3UShto5tmvwA2md25U0r+tN9KRNPnlsmHLL4eDg1mTCMAz54xdnWKhaHBjI8P7D/ds+NtmEzkO75TqnROrAMJTuLsdGc9hucNMc57lKmz9+cYYwhB1dSb5zbomm7XJxqfZj3QOGYcifvDRD0/Z5YWqV/qzJgf40bcdjteG84T3BNwuCkLbjMZCL83Bvik/ePcS//PYEV0oNLFeSWC8sOZ2+7MY/lpanmiLdNLrTJg/v6mZPb4qG4zFVbOJ4IZOrDZZq8jrsSkqi41pu2FZYqNvoqqBhS3KzooirUThC1oz5hM5y4/UPQm/lXL3Wv9nMjezav1ev2YcJIKErBMihetJQGC0kmC01KFvX18fhNc9lqJGST5WxAIqi4AfBdcq/lKnIAeM1b0gBDC1S2q17/IWlOg/s7EZTrm4aNFXp3EcqLYff/NEk55fqLFUtKi2XtYfqqkIQytfSBBRSOnt60jw9UcQP5Rr6s/eN8O1zyxus4+WxANffPjHy7YKetMGn7x5mpJDkB+eXeWpiFUHI4/t6+YUHx/nq6QX8ICQd01iuX6be9ujJmPw3791H0tRYrttMl5rULY9Dg1nedaCXLxyfY7rUYiAbZ1d3it97fpr5SpuFqoUbBEwsNxA3uYJvtXsbAgeBDwP/E5AE3pxu7DZxx0CWpcqyVFJFSi9FgOsFKIrCew728jP3jjGx0uDFKyXOzNVo2gG6qjCUj0u/fF8yeCw3YLQQ58hQltWmw5VSi4tLDRKGynA+zhMH+jgymOW/+i8npHevkL65cUNFU1UKSYO9/WlKTRvXDzFVhV95dCerLYeXr1R47vIqP7q0wnyU1fGeg33cM5bn3/1wklLTwVBVupIGpq7iegEJU2NnT5Jvn11GQd4oGo5PqeUwVEhweCjDUs1irtxCUQQHBjP88qM7OTEtLeomiw2OXynjeJK5oUZ1ghqxyglDLDfobMi3+u7FNWi9gc3vcnN7Iel+EG4obl6YLKEIODaa55E9PaRNjS+dmCefMFEVBVNVyMQMYobCTKmNoUDdCfD8EM8PaFjBdZ9xOzd6L3jjB4FvNAZycVqOR7XtQAj1tsf9O7u4vNKkWLcwNY3RriRjhST92Rg/c98oCVPFUBW+cWYRzw85MpS97nnTMf2GuVe26/P9C8vMlltvOJsvpgnCMMSOBplBKId5z14u8Zl7Rzg1VyFhqLQcn7GuJI4XMJiLUbc8Ts9VuXM4y3AhxskoF6badqm1PXrS8rs6mEuQNFWOT5f5xitLlJoO+YTBaFeCj9w5yO5IIRaGIcWGQzauY2gKQoiOKuxW8YWXZim3JPvsFx/esa2/SZoaj1/D1nojsNqw+bOTc1TaLmfmajSs6wdgPy5sNtCKBBqb2r3GdYVDg1kEISdmqrjRRakpkIqZ7OtLMV1uE4Yhd47k+OyDY3zjzBKeH7B/IENfNsa3zy1hu9KmbWdPivt3dvGvvnORlbrN0eEcO3qSvP/wAMP5+AbP9icObLTc6EqZ/HcfPLDtzzqUi/Mrj+6ibrnbHozexk82nrpUZDXaYD15ocgH7xy6of2urqoUkiYDuTi9KZPPPjjGxEoTQ1O4uNyg3i6Qjut89M4B/tGfnqHccsjEDT5z7wghsnHz5IUVXD/k1KwcNKmKQjamMVpI8Lce283lYpO5ikU6rnFlpUGI4M6RHGEo86+GcnH29KURwHsP9fHAzi7++KVZVEXQdn0+fMcAn1gXGrynL82OniSXV5pU2y7fOLtENq5zZr7KX3tonP5sgkd2d9OwvcgDX+eZyRLdqQQDuRjPTKwShtKS7dBQhvOL0iroz07OYzk+J6bLrDQcHM8nCEDxApq2R5gMcSI1vOeHZOI6B/oztB2fw0MZvnxynsVqG+9aD+QIAVL9tdmtztAUmraPpik0bY+dPa+vGX/3+BYKqYTJQuPmA6nebJzpknzcdtnfy9XNw7Dr28w229WX5Eq5jQD29d7YfmgNu7ewYBwrpIBlYPv20/o2dyn2FknJfZmrTbOkfvU+PVJIcGAgw1MTRWKaiuW+scwOLaqt1wZf6wdgKnTC0tcjRDZehwtJ/sVn7qSQMPijF2eptWUIfRCGxA2NB3YUsNyAquViuwGP7++lK2XStD1+80eTdKdMPnp0kHvGC3h+SG/a5OBghvt3dPEnL80S1xWOjnSztzfNb3x/grPzNZKmxs7uJIoibsi0X6sDG7ZsAD17eRWActPF9mTmbiZSYG42BJsty+u3WLdx/YBC0uAHF1bwI+bm988vY2gK7z3Yx3LdomlLBdpntrCqvo3buI23Dt4mJMeEruBGPRSQPYZ8Qr/qlLMNqFGRrylX6/r1TckdhRillkvNurm7zXXPLWRj0vODde4P4XVqA00Fb93P+rMx/uEHD/Ds5VWePL/SUdJrqoLlBXzojkEWajZ3Dme5YyTLN15Z6lgxJwyVX3x4J7PlFn9+ekG6EKkqlbbLYtXi4GCWu8ZyLFVtplZldpQT3T/l8RDcO17g3nFJmpoptZgttzk8dHWYoyoCVbn1AVhCgdY2mq3rH1JI6hRSJglDpS8T48RMFUNVuLBc5wMMMJiN8RJS3ZZP6MxVLC4t10kYCpbnc/dYgSf297G3L03K1DZVyXzl5DxfOTVPwtQYySf46ftG+OjRQdIx7TpV1ZdOzHFltcVoIbGp/e5oV4LRrhsrx9Yy2ABmy7eeaT2QjfPJY8N8+9wSL06V+MDhgRvmkF1ZbXJxqUHcUKO9dsh0qcnxKKe8nHR4ZM8bv9ffLsLwah7WqZkqcV2VbjhxnWrbI4iIdT/JENBxi1qotkmZGn92chEhQmzXl9bPDekotb5GM6Phiq4qDOUSxE2VYt3hoV1d3L+zgKLI/s9P3zfKnr40/+b7l4jrKgcG09t2BmrZXqQGCojpKrm4TrXlYns+qZjOeHeCc9eo09agRxlJ23VST5kq/VmTK6ttaR2/7neqcr2zz7Wkrc5jo8gHZ506TUGqtwZzSearLbwg7JAlgjDsDKPWjkomJu0lXT/6u3yc8a4kqw2LiWKLy8UmfrBReLDWu17r9yhC9gYdP0RTBCHSildEx1INAnn9rrmmaCqqEBsUrUJAf0busyeWGzRsr7PmDBcS/JV7h4kbV++vfhDy3OQqJ2cqXFqW4pNi08FUFeqOR+AHxA2NgWyMhuUxX7UQQlBte9QsDzcICQJp+zpTaZMyNt674xqEQunEJ2yW7fZGY6vzfCNsptRbD8HVDC8/jGJB3IDVhstH78xxZbVJsekwU2qx2nLIJQx++dGdBJFq9n2H+1mp29w5lENbd//8W7/7klSmrjSpWS7pmIYmBIEA2w9Imyr2un2cHGy+OUOw30CelyeQQ7A68Hng3lt8vteFMISZioWuyi9MwlBJmhpdKROiTWOx7rCjJ4kQ8PREkXRM49hojuF8HD8I6c/EqLVdXp6pIggZ7UryM/eP8K++fVFayLkBQQDzVZvTs1WemyjRdgMMTUFTYFd3kmRcJ5cwiOkqjheQNDTec7CfgWwMU1eprbY4u1CTYdJhyHh3kod3d3N4KMNs2eLIUJZXF+rkEzqjXUkGsnFqbWnfltJVvqssgwARgkLAq4t17hjOEdcVxroSTBabiCDg+ckynzjm8JE7B/nInYOcmqnwj794ismVFm4QkInraIpk97Rdn+XIf1NRJHOpscUI+o0cgAE02jdnN3zt9IKUM44XeOf+Xk7NVPh/f3iZUsPlgZ0F+jIxnpss8ezlVS4tS6bsasuReR4h5BI6fWmTC8sNHM/fMu9s/c1cFWyZdfR6FvztDtC2+zhNkey59WdrMfJFXdunzJSbmLrgfQd7+eGlEg3b48pqk0rLZd/ACD3pq+ypjx3dXJ2yHVQtl5W6je1Jxn1Ch/rmvbfXDNeXLA9dCdFUBccNqFkeotLmC8dnWahYNG2PbMLgPQf6+MjRAV6ZrXF6rsp7Dvbxzn29xHT5fX/mcpGEobFWo+zoSdE/X0NTBS3bZ67Spm65hKEsnu11O6Lvnlvm1GyVQtLgrz4wtqki7lY+m/znj5/28WvfOM/XX1mgZXsYmrjhIvdWQiALuKbjX8fiSZkaji9tOj0/IGlqxA2VvnQcTRVoikom8ux3/RBTU/lb79yF5QakZivs6Eny4TsGOTCQ4e6xApWWy/HpMv/XN8+zXLPoTpt4QchDu7roSpnsjprgQgjyCWNDsXtxqc5zkyV2dieptl0uF5s8tKuLY6NbD4+3gqqILS0UbuPth+enVjuF5sszZWDre7wfSmvOff0ZdvUkSZgaZxfqLNdtIKTYsHnywgrdKQNFQCqmMl/xuLzSoC9t8osPj5MyNX7vuWlc38f1ZVbB0ZEcJ2cr7O5Lc3K2yqfvGcEPQv75V89ycraGH0rCTa3tMZyP4wUhBwYy/Nz9o0wWm3z33DKD2RhD+TjZuM6R4dyG9z2YMXlwR4Fc3OCe8TwTyw1pmwJRRoKsec4v1knF9E7gu6IIkobGrp4kXzwx17F4BDg7X8NyA1qux1hXkkrbpWkLbNfDC2Q8fcPxMAKZgWZ5ASlT5SN3DvLKfJXpUjOyGwluONDf6u57oD/Fq4sNSRaKGmmvFZoiOgHX/haWfQ1ne0zPHd1Xh2B7erZnk5reIjMypWvAzV83rmuogsj6cntDeTO2+b1L065+/u0un9uc1aHrm5+bF65UOv9ev2ZQtrMniSrEpgOp1wMBaCJE1RS8LerpMOQ6dSJAywspNix+9Q9P0JU0eGS3tH8a707w5ZPzuH7IZLFFzJD7DNsLuLDU4MGUyYtTZWwvYK7SxvECzi/WWKhaJE2N/mycSysN5iry+jk8lCUd1xnIxTA0hZrlsdKw+M6rKwShbPCmTY1zi3WCIOTIcDba0LucX6zx9MQqQSg39aoi5D4ilAqFhKHy0K6uDZ/r8kqDYsPhvvE8L09X2NGdJBk1NO8YzrJct1AQnJ6toiiC5ZrNU5eKKEKQjm2ep3Ibt3Ebby2uvV/1Zww+eKifb7+6zHzVkjlOQkRW9YL2NZtpU5OZuWtQAEMX5OIGbcfH8nx8b6PVmgBp8XwL2yQV6b7jrzVEQ0lu0VVBaPu40docsnEABlBuuUwVW/zjDx/iQ3eU+eLxWZ6dLCEQNG2P8e4k79zbQ3fa5D0H+nhwZzfPXF7Fdn0GsnFema8ShnBgIEtMV+hNmwzn49KazZcknrlKm+60yZ3DOR7Y1cVY1+ZEm5FCYts2gNvFUFeCiyvbG/oIIB3TuGMkRyqm85E7Bzi/UOe5yyVqlsOLUyW+fXaR80sNBNIFo5Ay+P65FQxVABuVz8P5zT+L5fp88YTMoQ7CkJF8gssrTZ6fLKEpgs/cO7LBAWVteLVQ3ZpEVLfkeRzrTmxKXNVVhcf29XBhsc49WxCVtoNqy+U3vn+J2XJb5o/3p7e0s/eDkD87Oc9y3aZYt+nNxJhabWJHPTk/hOW6Q1fyx0OEbNge/+WFGWptD1MTzFXaFBvSOcvUZB7P2jDiJ9nGNET2WbKmGmVrBbwyVyWmKwzkEgxmY9Qtl5Oz1c7fpAyVgVyM6VIbQxU0HI+fvX+UQtKkkDLYfQ0Z7O6xPP/rJ44wtdpkvDu5rX3CU5dW+JffukCt7REg88dU5apbgarIfaCzxYRCEQIUCLztWSXWbZ+C4xHXVQQe65N6Nms/GarAu+a1NUU6Q81V2ixWLcRaP1WAoWsYusydrVsy66ppeXjh1UFLiLxW8glJzJyrWPjR3u30XBXL9alHES3XQrvGP1wRdHqdInqNNfvRIBqAGZpAFdLyrDslIyeWazZTq03CaB1Ixw2e2NfLvv4033hlkUpLOrJ9+u5hBrIblXw/uLjCH78wQ7nlENNVFCEwNAVVEQjCzvs+OJRFAb58cp4gCHG9gOlyC6JjIAh5Yl8vv/fc9Ibnb3kgCGTefCj3pdceiqTWMeZ4zRBIN5Eo3g41Oi8JfWM29lYuSmu/Gykk2d+X4juvLmH5VweKqqBzTJqOjBTQovuD5wccny5Tbjmcmq3QsD0cL+DkTJWvnprnF9aJAEYLSUYjZ4/lmsVcpY3lBizVZMyNgnSrurBUR1OUaM8zR8N2sV0fRcge3b6+DDtuosK91SHY/WEY3iWEeBkgDMOyEOLH1rELgX39KZZqbVw/kPlEimBHV4KulMn5xTo7uqXFz77+NP/ogwd5bnIVNwi5ayRHf1aqRv7bz5+i3LD5yJ1D/NUHxzg7X+XUXJW26+P7AaEqSOgKs+U2QRhQSOooIWiazOIaiuscG80xXWrx1VMLhGHIucU6vekYD+3u4spqi0vLdSptNwqyVrmy2sLUFEKkBaIqBKmYznsP9WG5Ab/37BQpU5fDq5iO5cowyiCE0XyCi0t1zi3WiRsq3Sk9Co8XHJ+u0JuJoSuCP3xhBl3TyCWlmieua/RnY/z+c9NYURiaCGW+SFfKZEBVuFJqyaIxuJpd8Eavc+ZNbOSCIOS755aZLDY5NVvhgV1dPDO5Ssv2KbVspkstTF2h0nKJR4PHwVwM2/Ox3YC67bHakGo8LwgRQsHQwg0F+LVT8ICrzYk1K4dbmcbHVTgwkObkbL1TzG/3+OmqvKFeEyd33Y1JVwTta1aLgFAunp2/lQyJphNyYDDNS1MV0jGdrqTBkcHsGzLIASgkDJy1oNQQejMJ6sVbZ1RdiyCU9pn5hLSum69aOFHzR1NkUtmhgTR3jeWYXm3xJ8dnmF5ts6M7yUePykytluMzlJOF9yvzNR7b28OO7iS//I6dKIoMZHx5poLt+tw9lmdX78ZQxbViu9R0KNZtFmsW411Jsls0GbeDjx0b5OJS44Z5ZG8VWo6HHXkUu1vkyLwZUJDft2trPVXIQjAb03GiKk2NvpeGLoipCr1ZkyCAmuXRmzEZKyRo2B7pmMZQLkHT9ohpgvNLDbzA577xLg4MZLh/ZxeeL9Wva0wfIWTI9em5KqoQNGyfgwMZ3nVAsuxBZjtthacuFSm3XK4Um8xV2uiqzAy7lSHYbfzFQmbdUGDtervRNsnzQmlzNppnR3eS756T6pmpYpNK28EPQlq2L60AMnEuLjWothxmym0ejqxZPnlsiEvLDfb2p7Fcn//4VIuWI4OYh/KyuK9bLpPRc7Ycn1MzZZKGKtXxYUhcV1msWvzJS1KNcnAwwz/+0EGE2NjEeGaiyG98b4KEqfLPPnqIgWycY6N5Lq802N2bQlEEHz82xMRyg4FsjIWqxc7eFIYm7aVjulTWHh6UKuS+TIzu1BoLNWS14XDXWI5PHBvm2ckipYYj8zbqFn4A+aSO7Uor54FcHEXActXmhxdXaToeBCAUgSbCbVsa6wqsNh160zEUAeNdSZ6fLN3QX3wzrA1YQqTN5WbImDpw851NsXaVWbJQv7lyDODo2OYDBE3d3tpvR3knIWwghdwIa+Hi16KyjhlzI9fk9XVZLrm9bcpaVua1MG7wOff0pnjvoT5WmzZ1q/mGMC7XNpqOL5n215Ka1r73cV0hE9dpuT5BlDNZbrkEocwTadoeK3UbTVX4Xz9xmN97bpp62+1ck70ZSWAayUslO8BgLoapKezuTfHo3p4oY1Ke69FCAtcPeGGqxOWVBs9flmrPB3d28ezlVXZ0p5gptXnq0gpnF+p8/fQiqiqYWG4ykI3xN9+5i109Kb50Yp6LSzV60iaZuMH7D/XRmzVZqdt859VlHtjZxSfvGtqQ1bzasPnyyfmoIZzhp+/bqOra2ZPiV3pSrNRtfvuZKRq2R7Fhs7M7RbnlbOpOcBu3cRtvPa69m5aaDr//wgympqIpYPlyH1rZQgW2piRTkOH1figdWpbrNjFNkfcrXSH0rlpXhUhywFbvZ6ulRFOI3pfAXSPkEJI0NVKmQiamslSz8YKre31tXZNQEPLDSys8fqCXg4MZLi3nqNkeSUOlbrl8+9Ullus2y3WbgwMZdvZI1wiAkzMVzi3WATgynMXxfB6JSD9/9YExDE3h33x/ApBkvr/64NjND/4bDGUb5I+145syVf7+E3uoWS5CCObKFqamoCgQelIJ/MKVMvPlNjFd5UyUaZUyVTRF2sCPbsPaL6arpGM6+YRLJq7zsaODHeKGF4Ry/YuGYBeW6uztS1Ftexy6gd3hn748x2rk4vJLj2zuuHLXaJ67Xude7eJyHUURWJ5Pw/YYyGz8vJ4f8M2zSzQsj3cd6CVuaMyUyqiKYLLYIKFrvDxd3nDd/+vvX+J9hwZeV5/hVjBfaUcxLDYXl+Tnajs+rh+5KkXF0lvlFnMr1nxEDfikqXFoMMNffWCUJy8UubhUR9cUdvakyMZ0apbDmfkaXhCS0AV3jGRYrjnoCriBJM/eM17YMn6iaXtMl1qMFBL0pLaX+fzilBwIrNWcIdCw/I7SabXhstpwN61JFehE3Jgq11n/rX/c+h9fqTgdO9O0KV0uNnt+Lfq79QNOVcjjeP/OAi9OlWXWIfK8mJrMoVWEYLQrycWlOoamYqkeridr+bXzFyKzakHD9wOcKIvPC2Qmu3rNex7KmQzn4sxVLFYaDp4XoAqZXxeEcg9bSOp84tgwXz+zSMvxaVguri8ziO8b7+LCkoxBUoVAVwWmpmC5csTkeAGLdYv+rHQ+WXNFaF3bgAVatk8+aVBqOtwxnGP/PWnSMY20qfFPv3yGS8s1yi2HLx2fI2lqBH6IG4KmhrRsr5M/3/YCzi7UODyY4cJibYP1oUCuW2tr0LW41QEY0fMGoZB50GHU64bOAExE/0sYMut+MxWVJIv43DteYKbc5sJyXTpbIM9/Oq7RduR1LK8NgWnIuIOW7XFuoUoQyIxuVRFoikLC2HxfbHs+f/zSLLbrc36pzuHBLOWWQ9LUeOqS3Nvn4jpeEKIKQRBI29K4LuhKmfzUPUPXDTKvOya3eCxdIYTK2hBYiB7eXMXeDaEIaQ3z0pUyhqrQsH26UwaFpMl/8759tB2f719Y4Y9fnGUwF+Mz945y344Cv/fcNN85u4SpqezuTVJuOtQtlz96YZqG7RI3NMYKSebKbfkFV6TNUG/GjAo5m8f2dnNltY3tBezuTfPOfb18++wiioBS22Nmokh30mSh2masS7JOgzCk7QT0peMUkgZGlKeRjRvs6E6QjUtrxSfPL1OzPNpuQG/aoDcdY7XpSEauoXFkOMOpWfnldvyAHd1J8rZHIWFgaAr/5YWZTr6A5fokDJ1iw2Vvn8k94wVOz1V4eqJEGIZkYjp3juTY3ZviE0cH+du/d5zpcouErnBwIMOl5fp1nt+vF7EbyMRBhs+mYxrFhk3CUPmzk/M8vKubP3x+GkVIJtbl5QY9aYNTsxWmS228oMVwPs5doynOL1Rx/YCaLX26/cCnkDSotKQqRFEE/RmDpZrTkc2u3aQNVcgJfqS00iQR/IaNm/XYP5Tlp+8dpdS+xJXVtpy6A2zC/F0PQwFTVaKbz/VfKXXdotTeZFOgK0LKT4UgaaqMdSUZzsXYP5Dmp+8dZWKlzu8/N0M8anSCtAc0NYWYfuu2CpqqcP+OLoo1Cz9i/b9RiOsKqioQkU1X3fLpz5gd5kzd8okbKiNdSd57qJ/fe3Yazw9Jmip9GbPDpFlrFtUtD8fzqUQy3LWm9GhXgr/z+G68KID3Wjy2t4dnL6+ysyfJN88uUmw4pGMaf/0dO2/5s/WmY/TeYLDyVuIffuAAz11epVh33jKLAwHkkxqZuMZi1enkk6gKJE0dUxXkUyaBLzfEpqbyuUfGOT5TYaVmM96d5N7xPM9cLpEyNaptuUEyVKXTrK5bHsrpeSaLLZbqtgy2RV6z11rpK4psxJ+Zr/HzD4zx4K6ubQ+Kx7qTlKcrQEgQhizVLdLbCES+jb/4WKlfJQSUGtIGeKurSjZuBF97ZZHPH5/jsb09/PwDY1wptai0HGqWh6nKMOd8wqDpeLh+gK5q/OaPJjkzV+Vn7h+lJ20yX7WYLrVIxzRcL6QnbXbCxQGycZ0Hd3ZxZr5GTFcoNh2enVxlqBxnMBfn2EiWHd1JPD+URbEfbspGfnpiFccPcFqS2TWQlbVNIVmg1HT4/EuzZOM6T+yX1i4rDZt8wojsfOSREBGDvJAyOspLy/U5M1/lSyfm+eqpRRzf59hInnsPS8b0H704HRF1ZLB1zfKYWmnwb5+coO34pEyVhq3i+SE9aQMvCFmu2Z019Eb3OUNV6E7FuGMoy2rLZSgX56lLxU2zJWI3KGXWr/dnZ8sMF64nPPSkTVi6+VCrvW6ne6OB1PoQ6a02GK1tSqwcz2ctBqa1TXnwQHrzjcdctHG+GbJxldWWfK3d27R9DLYIlXlodze/89wsAH2ZjQ0KIQSfe2QnvWmTX/v6ORYq1mu2BtHXOQcIoCupU7M8NA0UVaD6GxsUIlIU9mXjjOTiXC42KDYdwtCPFBQy806qBUIalstvP3OFU7MVhJDbVCPKK/3MPSMEocxkXaxaXFltccdwjkJSOlJ88+wSXhCyuzdFf1bWGe850MfX/JC67fHydIV3H+xjT59kNs9XpeWW6wdMrjYJAmm9noppzFfaJE0N1w9YrNrMVy3ef3iAA4MyW7Y3HePgQCZ6jxuhCIGkdknrms1wbrHGasNBIcT1A3IJHSEEO3qSHL49BLuN2/iJwLX2tHJJCHF9r9P42kDWvMZZJUTWOPmETj5p4niS4e37AbYboGkK3QmdIAwpt5wb5g+vMdBFKAlzQXjVLsuMyA+6KjgwkOH0XJXQDVAVGZMhYhqWJyMxEHLfkTBUUobKju4kV0ptGlG+6VOXiuzvz7BQtehNx1ipS3V53bLQNdkX6r6m+X1wMEOpKbNVZ8stKi2Xr5xawPGkg9DP3jfK7t4U5xfr9KZNfvuZKWK6ykfvHHxde/HXgsSNCpcIa9ZWI4U4xabNpaU6NdtjJJfgzpEs3UmThu4xkIvRn4kxVWxGGapNWk7AK9GeKxvXubDUYCAb5+RsFc8PODaa33R/9fee2M0r87XOYLEvI4nqMV3pEEZfmavyrbNLAHzkzoHr1Dnr4UQLsLNO8jJTanFhqc7BwcxNG6XbxY7uJEO5OH2ZGJ+8a+i6wdXUapPz0WD05ekKn7l3hISh8IfPTjNVbkEYbshfA5grtfmPP7rMf/3efW/Ie9wuRgsJ+jMxXp4uk4xpOG5Ab9pkqWaja4KWs/kA5c3AdgZgkdiwo2oyNEUOVVSVYyM5PnZsiMFcgpF8nKWqRYCsbeNGjPmqTyamISyPbNzgPQf6+Z1np9E1lWMjWf7pRw7dMH/9668sMlVscmG5zr6+NO873M+hwRvXLPv6M3z31aUNn219tMO1x1aNhgbX2gt6IZgKEelWKnDWiP6bnZ+17C1dlWSt9bOepCGHQ14IfmQRbygCVQkxdI1sXOfZiRIxQ+m4GJiqjHxI6CoH+jNULYeG7RGGIWF49dOt/ZsA2rZHs+1iRxEz7UASGB1f9qvjmugQlMe7k3z2wR18/vgsL06WUAgwdZ2DgxmKdWlPa6gq5xbr/PrP3MV0qcn//rVz+EHIfTu6+BefOcov/dbzNG1po/uJu4b4jz+cRFUC4rq8Rs7O1xnv9jkylCMT18nFjU2t6x/b10PSVPnU3cPcMZzr3LuW69Ledmq1ie/IPnnNutovt70QtKtKMVNVeGWuyt6+NMOFBPMVuf6F6/q7b9Z3S49EA34oySCVtoeCJB8cGkyzUndIGCoN26Petqm2ZXzQ+vNXbXs8M1nig3cMop5eYKUp1axrexfPCzoDNT+UvXTPD9BjKrYPqqpw33CWctMhmzB498G+Td+rVPWF0nkpadByfHRVoWX7KIrc2+7sSXJkKMdCrc3FpQbzlRZ+IGdCXcmb91ZvtUP3r4A/BXqFEP8c+BTwj2/xud4QtB2fwWycmuWxI21KyWVSJ2lopGN6J49jrtzmd5+Z4syCHB4t1iy6osHIgYE03z+/Qhj6fOH4HOPdSQ4NZlip26w2LdKmzs6eFJ97ZAf/01fPYqgKpZbLr757D5eLzQ5b8Z37ehFC8CcvzXBhKaDcdjub75ih8eDObqZWm+zrS5NLGOQSOo/u7eH4lQr/45+dpTtl8rP3j/KVUwtYro+mCN5/ZICdXUn+1u++RM32MHWVnT1pEobKF463SURF0zv29LCnN0U6rlOsW1xYahDTVPIJHUOVAfTpmE5MV/jVd++l2j5LEITs6Enyv37iDrwg4MWpMoeHMqxEw6dH9/by2YfG+edfPctC1d5yMVrPgN0OxDaay5+6Z4TJYpOUqfH85Cqz5TYfOjLAydkqCUNjR0+K07NVutJmZNsS0LBdPnHXEP/+BxZNO0AoLn4QEtNVBnMxEroM2UvFVP7JRw7x+89Oc3q2SjmyZxRAX9qgZvlUIkZziGwYllo3tw9SBPSlZdE2nE/geGGU0RVuOriCqzLSfEonbWp4fsCVkrXhWGfjGvfsKPC9V5e3bNRYXkg+oZM2dYYLCd51oI9P3jWEqgj+/BVZgP+1h8dlJkvC6BSScUPlZ+8fveWMK9vzeXhXVxQS6vNqVOi9XpgqfPiOAb57foW65bFcs1EVQTah05uOsVizSJkCU5dhmqam8qE7+lmuWSzWLB7Z091hiGUTOn/9kZ387nNXeGWuxsmZKj9938gGRUPfDQqd9XYUJ2ekdN71Q8Iw7DR+vnFmkUvLDR7YWeDusdemGPhxYyAX55Hd3XztlYXrLEzeDGiKIGEoPLq7h0DAQNbBdv3I8swjpqns6U/Rsn2G83F29qR414Fedvem+eTdI6zUbQxVIZvQuWe8gOMF/PnpBb51domYofDhOwY4NJjlPz8zxUJVsky7k5IccSO8+2DflovyjfD4vl7uGcuzULH46ukFFCF4aJNMlNv4y4fLK1cHHEt1OQTbKstcUwS5pEmp6aApQjalg5BH9/YwWWySSxh0p0wGc/FOKPre/jSrdZuZckvaDPgB79zXy/ciBdnevhTjkU3nehtDIQSfumckyqlos9qQlrZ+IO3S3n2wD88PeGxfD/PlNu/cv3k+wXsP9nNhsU46rnHvNZuHF6ZKTJfkEDCXkGr2vX2pDVkJ85U2Xzu9CMhGwpryMqar3D1W4LeevkLL8Vis2dw1CtOlFh8/Nsi3zi6jqdLqomF7tN0WM2WLharNaFeC/mycfNKk3LCYr9rYXtBp1N3oDieArrTJ+w/3c6A/w3LD5vJKk66UQTyqtVKGoBEpZgup7RkhWFuQQ8Ib6gKvwl/XxLFukJy8vgRbrLXoz11vCfHgrl4urs7e9DWPjeY5NVtDCDh2g1zQ9cc0l9q8jrhvvMA3Xl0BpNJuK1RaVz/BheXmTd8jwFjf5k0wU1M7odmFLSxm7x3v4p37evni8Rnqr0EFbarRZtVfey2BoaskghBNFYQBxHTJIF3bSObi0qpdUQSltstiZCOtCijENfIpk3cd6GO0kGSu0mKpZiGAoVyCuu3Rm4lxeDDDz9431iEyTa+2+PzxGc4t1hnrSjDenSQMQyZXmqiKkFYsEYYLCVIxDdsNGLsmK2Uwm+DnHxzjz08t0HR8BLBct7l3PM9H7hjE0BW+d26ZqiXtYE5Mlzk+nevk1mw2AAPIJw0+eWyIl2cqHBjYeJ4Wqm2evLDC2fkaaVNjutRiZ08KPwj5W+/cte1zcRtvT9ymCb29sJlVlQBiuoLvBwTIRq2qKLh+QNxQCJyg0+AVQHfS4Ld+8R5ScZPjU2X+y4vTnJytSjJvV4L7d3ZxckbmIimRzVWnua2KSLGhRg3hEIRAFZK4YnsBIdG+DIHtBWiKws6uBEt1iyCUjNaG5TGUi2O5BisNW6orvICx7hR7+jPs7kvzg4tF2o5PueXQn42hCEEqphE35OK1fyDNE/t7I3vFjQuario8vr+XIAj59e9dAqSSfyAbx3YDig2bDxzu54n9vTx7eZWXpysAXF5pbkq0eTOwtz/Hy7M3Xl81VQ75+tOSBNSwPdqOTy5uoKkq/+xjh1ipO7zrQC9n5mtUWi6aIjg8mOOFKyWGcjE0VcEPQ/b0pTm/VO/UpUKw6T55vaIOpALlg0cGNjxmfYTAVpZxa/jo0UHOL9bZEw3KwjDkyyfncbyAyWLzdRFZ16MrZfIrj8rnWlsLLy03uLzS4OhIjp50jLgh85BGuxKkosyzmWqbluPj+ddn03ohWNtU4L+RiOkqP33fCCGwUGnTn4tRati8OFXC8UMaVgXbCzA1geVuz5LvtWKtkX6z5x7ImOzqSbJUt5lYlop+xw8YyiX48B2D7BtI8679vfzbJydx/QDLC7h7LI/rB0ytSocML5C5UfmEge0FPLKnG00RfPDIAGPdNyditV2fWtvFD0POztduOgR736E+/vz0HKfmZObXVhnnhiqHFoYq2NWXwnEDKi2XYtNGCGkt2wpAFQH9GZNjI3menVzFcgKUKDJl/dWzNvDoT5usNGzcQNZ5A9kYmbhBuelQaTs4rhx+BGFIXFPZ2Z1kJdpjVtoyMkQVkIkbfOzOwchZQvAL+8f4R198BdcPSMU0inWbtuujKKJzz1YEHaXVmgJ37RwHoST464okJXs+JHSVf/lXjvI7z05FNv9SEer4Po4n7e+atsdXTy/wtx/fxbdfXabWdvnFh8cBeGBnF2fmauzuS/HX37GL+UqbV+br1NsumirXq6btc89Yks+9YxyB2HTomTI13rlv4x643HT4t9+f4JmJIsO5OIZqU2xsJJLHNIUgvOowJoQ8BzFdpSdt0pU0mCm3WKk7hKFUga2Hoch8zNfSlVOF3J+4PggF4poKQhLydEUhmzAwVEHTkcq6/rTJ4/v6eGWuypmFKrt6UjheglOzFVw/pCepI1SFastF1wS1tst3X13k0kpDktfDEBEKFEVhuJCgbtdRFPlau3tSrDRsdvUmaTkBO7uTUcYxHOhPs1x3yG/Sl4vpKp+8e5iZUosD/Wn+41OTCOC5yyXGC0lURfBPPnyIwUi08K2zi/zh89PMllsMZGMcG705ee6W6s8wDH9PCPES8C7kPerjYRi+eivP9UZhV2+qoyBwA/D9kLtG853MlvcclCe31nb5xpklyi2bliOZDaamoihychiG8MzlVVQh6EoZfObe0Y6vcRgGfOruYXb3pfnQkQFeulLmnrECY13JDT7ODdsjYWg8srsHTZEKm7/3xF7qtosiBGcXanwkPsh4VxJFwNRqi2cvr/LtV5coNR1W6jbfPLNIJq6zvz/DHcNZPnh4QLJW37GTb5xZpDcT4+NHB0maGr2ZGKsNGZD9xP5eDg1meWVOskYNVaGQ1JkptelLG3SnTUYLCfb3Z0iaGn/38d189fQCpqby5IUVHC/gu+eWuFJq05+NMZiLk47JAuSZiVV+//lpaUemyuNTb3tY0TdWUQQxTXrurmc/q1uonzLxmzeODg5k+Afv3cdzk6v8+akFpktt7hzO8nfeuZua5dKwPe4ey1NtO6zU2kysNKlbHv/3N87RcgOats9YIc694wXScZ0wlD6t+aROXybGwYEsv/ruvfzDL5yi7rj4vgwtbNiBZGyp0lowE9NIGBrVttsJWkwZCum4Rr3t0nSuFgEiugbuGM6y0rCJ6Spz5TaVtoPbcDp2i64vr9eDA2ksLyQWdYViuoquKsxWrA0M4lzC4PBgltlSi/NLDXlTZWOBoCkCVQhpf9OVIKYrpGM6p2erXFxqAHLQs3a9roWUtx2f1YZzy0Owr55a4MWpUhRoGeDeYtGWMCQzo2oFaIosKnVNDrgWqhauHzKcT7BYk4y8B3YUaNpygX3PgT6KDZv/9weXeXWhzv07CnzkzkHMdd1mRZGshFLTYWKlgSLgo0eH2P0a7QjXiurdvalOsWu5PmfnZUFzcqb6thqCPX2pyMnZCqtNZ1N/6FuBKuT1GBCiAW1/4+9GC3HuHMlx344Co4Ukz02uEobw6J5uvnxyATuylLhnPMtdY3ke29uz4fl70lcXzbX8rELKpDttsli1+OKJefxANghNTYaNPrirm5FtWHLcKtIxnXS/Tj4pVS6F5O1cr9uAvqxBbVneazORJV78GjvgtUbSrt4UD+/s5mtnFqlaLkO5GEPZGD+4sMLevhQ9aZMfXVzhpSsVHtvbw+HBDJbrSd/x1SaJKGS7YXucW6wR01Xec6CX/NFBWrbPw7u7cf2AhuWRTxoUkgbvOtDLfMUiF9dZqFn0Z2KdxramKvz0vSMym3EL9faR4Sz/7rP3bPq7oVycs/PyfTxzeRXPDzkzX+VvPHa1wb1eObzZnOgDh/t5+lKRI8OSqXf3WJ6dPWn++ScOc2ahyqN7eijWbf7Pb57n1GwFRZHNr+F8grih8NVTTWnXGz23psia5NrXEkDKVOhNx/iVx3ZRbbs8O1kiZap89sExMnG9w/5LGiqNSE2Vi2+PuX3X0OZDpPt2FPj+pdJN//4de7uZeX4WAbz/UP+Wj1s/kErHNh/63zNe4Lefl0OwGznt/MJDO6hbHglD5YOHB7Z8nKkpWBEDMLGF1fUdY7lOPTh6g3yTzbKyNsP6zxnTNn/Npu3hRE+20thcidafjfHhIwO8OFXi3GLjNW42BaESRhmUCrbt0ZMyWG445OMGuzLSKnCu2kYTgp09SQrJGMWmTSvK13B9T9brhsZIIcFALsbj+3uYKbX59z+8zImZCg/u7OajRwc5OJAhpqud3DyAcssBBIcGM+zvT/P+aL/wyB6p8jw6kus8NhvX+aWHd+AFwabn6VN3j/CJY8O0XZ+vnpqn1vZ4x95uLq82GczGuXssz0ypxfHpMq4f8B9+eJmjI7mb5mBcXm0ysdJgarXJZx8c66zZXzu9yEK1zaWlBveM57lrLE8uoXPP26h+uo1bx1D2x5N5cxu3Bv0a8qqKJPQkDJnHq0YOLgtVi0rTwdA1+rMGNcuRipwoL+wf/PErPLiri48dHeLvv3sfX3p5lu+cWyYEKi2XtutjaioxXaE/G2e+0o4y2AX3jOV5dG8Pv/3MFSZXm+iKIGnKPbqmCixXZqGu1G1yCR1dE/z6X72bM3M1/uSlWcpNm7ih8di+Hvb2pSk2bL58Yg5TV6m35XDs2GgO1wdDE1hugK4K/trD450syx9dLDJbkQP82Yhk8FN3DXcIPGtQFJmPdX6pzrsP9HJ+qUHK1BjvSiKEIKar7OpJ8cpcFUNTOsSGtwIfPzrCH704t+nvBHKfNt6V4LF9vagCzp6QQ65CUqfWdjg6ktswsLtvR4GBbIyUqZFPGhwdzXUGhGtk0YmVqxvBW8lYXcMdwzmCUKpjriVWXItrHVeEECSiTM3kFm4djhfw7OVVyi2Hh3d3X6f02wrriSCXVxr8zjNT5BIGizWLzz44zi8+PB451WhcXKrzzTOLuH4QHR+parx2C35g4M0binp+sMG6GGRe2ffOLdOwPd57qI8gDOlOmrx0pcxKw4lU6fLY66qQjknbtUlCXltJU4FQ0FjHmhdIclQQ0nFmWu9+tIY1p4M1leJDu7vY2Zui3vJwg0UWKxZBGLLSsPnhpRVmK22ycYPBXIzZcpv7dxbIxvWoLxBiuQa269N0fDJxnVOzVfwg5M6R3LZU6O8/3E8+oaOpgpimcue6emvLYyBEJyMK5DnvTRm4fojr+Th+yNgaYckLSBoaP/fAKELA51+aI1fXqVk+85V2JztqvCvJ4eEcj+7t4cRslcVam9lSi8WazFvNxDXyCZOPHB0gFzP40xNzXFyq03YDmo7Px+7s5vxyg9OzFZZdp6M0q1o+F5YaGJro2M4rikAIwUA2xqGhDC9dqZBP6BwczPJfv2cvJ2arNNoul1eaLNbachjmyQFITBNMFNtk4yoLVWmr2nKCTp0OkvQQUwVHR3Kcnqsy3p3gE3cN8/TlErPlFklDi/qdCjXbJZsw2NuX5tRsleF8gjAXkor6mb/w0DjzFYuByA3h5x/cwdMTRXpTBk9NrBKEcj/10O7XTlq+XGwysVxnptxCEYL3Huyj1HCYXG1Ss1ySMZ2D/WkWqxbnoh5s2wmYKTWlw4of8NDOLsotl3JTDlENVdBaR0SP6wqKF2Bt0lYdLcTRVYW65VBquHjhWsSIwAlkLpqiKKDIuI97xvKd7N6dPUmGcibHp6v8zH2jPHN5lT19acIwZG9/hhenSowUEmiK4O88sZta22O21GK63GKx2ubCUlMOOIVAVxR0VaU/E+MTdw3x4pUyvh9weDDLS9MVPn3vMKOFFDVLWqyemauxFOV136hPNpSLd5y5jo7kODlT5aHd3TL7K1K1raHaclmq2TRtn5rlMbHSvOkw+vWQsC4CtbXnEEKMhmE4feM/efPw4TsGmR2RcuJf++Z5FioW+weuNrZ396bY3Zvi+ckSz06uMrnawFSVqPkS8vJ0hWOjOXb1pnj/kX7my2129EgLkVpbFmSO53Ol1GIon6DYkL78m0m5/+zUAsW6jaYK/t4Tu+nNxEjFNCDkxStlelImcV3h//7meU7OVNBUwZGhHDFNJWmqXF5pcnquSi5h8L7D/Ty2twcRhXdfKbUo1h0KCYOzC3WOjebY0ZXC1NrcPZZnd2+aL748xx88P00YSvnl6TmpmkqYKu852Mc941c3l4/t6+XsQr1jO3SgP42mytDYwWycXT0p7hkvIIRgV2+K/kyMhu1xeChLd8qIFgsZbOj4Ae4mljRbrY22LdV5Lcfju+eW0RTBE/v7rmu0xQ0VI1qkKy15Y7600mClbnNxucHfeHRnJ8T7n375DOWWy3zVJp/Q8YOArqTJYD7Bz9w3yr/5/iXimkItlJYrz0wUuW9HF0P5BMt1izCURd9MxUIRoKsquYQa+VRr1CyNtuvTkzJ4aHc3jhvw1ERxQ7C9ENKr+l986wKGquD4AV0pg96MyYRoULc8Kb1WBL1pk75MjOnVlvTF9UMSphy26aqCt+54zlZaPHl+CUNVMDre69FrIm+USVOlJx3jjpEstbbL5EqTLxyf5R17ejA0Bc/faPV373ieuuWSjes3bErdCMWGDDA/PVul2naioHQ20k+2CT8I6U3FGMqrrNQdDg5mOTyUY0d3islii+FCPPLsVVEVhR09KQ4NZjk0mKErZfLqQk1Ki4OQyWKTpy+tUmo6HBnOsjdiin/kzkG+cmpeZq8JQWOLLJEboTtl0r17Y1Ec01X296e5uNzgyPDbx77n0nKDf/PkBNWWw+ViI8rhef3wwyhw0/axQ6kSTeoq3RHx4MBAhoODGX7mvjGATpZR2/Z48kKRtqtweChDJmZwbDS3rdd8x+5uzi/W0RWFdEyjkNQZyscRQqoQ3n9k6ybuG4n1A7rbuI2uZIyLyCFYNi4L8WtLB0OVRJw7hnOMdMUZyMYIQ5OBXJznpkodpvBje7sptzx29qTwgpA/fHGWl6clK/PwcI7hfIKPHR3ilfkqvekYYRiSTRgcjhRgrh/w+89NU2o63DOe5x17erh7rMDdY1u/fyEEhra1cvvKapPlukUmZrC3L7WhEdCTNtnXn+bAQJofXChSajrXNT+G8wk+fMcANcvjzk3unR88MsA79/XIUOd1z33XmGyar6E7ZTCcl9lHhweyrNQt8kmD8S5pd72GtKlhef6GjYYi5GArBIpNh2cmiiRNmZ+pKMp1za1y6+q6sVy/uUIcYLFuMdx9fcPm0LrPnDa3bgxJUzlZY3hb2P8B9KQNig0HUxNktyAbxQytQ6JJmVtvQl6YKvLkhWVMTeG9h/q4Y3jzQd7aIFOIq3kF12KpancGj80brLtD+ThTJfl9uXe8a8vHrQVhw9bZFFOrV1VQjU18/tdw/65u9vSlWanZFLeh+AeiZgCkdQ1DEwShIPB9pkrSQr1uu2Q9jd6sScvxSJmazErwfGZW22Ti0mImCEJ0TaE/E6Pp+Hz11CLPTJR4z8E+hvJxqm0XVRWdfNuvn1mk3HQYyMV4dE+PtN5qSVvvR3b3dGpo+b2+fphkaArGDdSHamT9XmzIxvWvf/cSu3pS6KrgM/eM4gchdcul3HKwtxGyF4YhE8sNqm1Zazrr/iYd06i2Ne7bUeA9B/vYP5B5w7Jqb+MnH0OFnww78NvYHq5Ve/pAX0LHDUIqLbfj0lFtedQUj7btkSkk6M+aXFxqULM9fCFYaVhcWKrz/OQqR4az9GVj3DWaJ580CIKAStuTWR+KwseODfClEwvoimBPX5p/8uGDHJ+ucHAgzVLNwvYC4obGrzy6k3OLNZ6fLJNLaDy6t5tS06U3bfLk+RVGu5L8N+/by289NUXC1Gg7AfeOF0iaGklD49xijf5snI8fHSJuqAznE/y7H0ygK4IvnZjncw+P86cn5qm2XRqWi6oofPfVZfqzsSjXqXldnQCwrz/Nvn657q9X4q9hpJDgbz62C0WIDnH7zcL6fsuNXimmK+zpS3FoIMsn7xri33zvEl4QkjJVTF2lNxOnGFl7r8d6u+z1A6a162ZXT4qPHR3EC8LXlYWtKoK7b6BMvxn+yj0jzFXaW/Y9nrpU5HefvULD9ji/WOcfvHffa1qXZkotvvjyHJeLTQazMq4EpDJ97bDMltvkkwb3jOWZXJHZvNX29TVKch1Z5dJygxMzFfb3p1+XTXAYhnzpxDyTxSb37yhsGABMFmUPEuT6/Pi+Xr57bplvvbpEJqZRakgluMCn7YaIMJS1UDTE26qy0yIScgj0JE1ScY3J5XqkflLww4DelMlyw+7k2odAxhC0vJBsXIMQ2m6AF0QqJV3h8kqTqWKLbFzn0V3dfP/iCuWmdH+Zr1jULZ9sXOe/fs8+bM8nnzD48kn52b0g5OhIjlxc5+Jyg760yY8mVkkYKmK2giIE85U2F5cbHBhIbxpfEdNVLq00MDWVwVy802u6FkEQ8v0Ly9TaHo/v68W6pnZSkcfO0FX29iXoz8Y4MVOhaXskDJ1XF+p85M5BCkmd6VKLIAwxNdkn7E7LvaK0f82SNDW8IODySoPj0xXSpkoYysym751bIQgCTF3r5MDX2i7fvbDCaD7OWFeSUtPBXff22o6PHwh0TYmsZhVUVQ6rTs5USerSvvvUXJXH9/fx+P4+lmsW//npSU7PVahZHvnIxaTl+gxkYwgBmuIQ0zQSRkilJa39VUWSA4byCc7M1cjENZ65vMpdo3l++ZEdLNdtdvWm+A8/uMzTl1fpTuqM5uP0Z2KIqKwVQnSst01N7Xz/QLqNrP33sbEC1bbLzu7r3TI2gx+EnFusSRe3uM5QLkbV8iLBQshLUyV85IB/KBej3PJ4abqMJsSGXLT5is0T+/uotT2eubxKXFfYPyhjkTQh+O75lc5reqGs2R0/iFRkUgGoAAsVi7gu4xEycV0qHV0ZFeP4sg/XnzLZP5ChJy3/+fGjg7Qcn66UyfHpMvv7ZSbxJ44NMVVscd+OPMevVOjNmJSbDvmkwZGhHFOrTfIJHV1TEAjmKhZN24sUmyFhGNC0Pfwg5H//5B0A/M4zU+zoTrJSd3j3gRTHpyv0pmLUCh5jXQk+cdfQTftl3zyzyMXlBvfvKPD337UHVRF84aVZrpRafP74LL/0yA4ShsY94wWem5TOM91pE2ULZ4r1uKUhmBDi7wH/FFji6kA+BO64hef6ZeBz0X/+qzAMf18I8U7gPwOTwHQYhp+92fP86cuzzFcs4oaK7QbEdJXnJ8t84MggqXUL8b3jeeoth7btgRCUmg7daZOVSKGzpzfNgzs3brp3dKc4M1dlruLxXCRbLzZtxgqJjgpqPdTowLcdn2+eXSKmq3zoyAD/9skJzi3WScc0+tImp+dqrDZsNEVhuW7x8w+McXy6zFylLTe42TiP7unm1YUac5U2Tdvjpakyddvl4kqDTFzjRxeLnJiRN+pCUmZoPDNRxI2CZnNxjbrlSamu5W1aYN01muOl6TKHBrM8tKuLwVyCpuMxnI8znE8wvdri6Yki9+0ocGm5znJNWiKeW6hRabvyCyfkDV5XFOwwQFev2heshapfi1rUkDg5c1WlNJCNb2BReH7AV08t4Achpq7Qm0nS9gLcaPFQIzZCGIa8NF3Bdn0sVzLcc3EDTRGstqTCaaEqs9sKKTOyXPP5zaemmKtY/J+fuoO//tsvUm27xA2dB8YTnJqrECIiRV6a3qTON5xl2o7PSCFJT8rk7HxNWhkqIrJfkAt9y5HMCU0V9KVNvCCMVHW6VCyqCu/Y081IIcG//8FlLNen5fhRI07D1K4vUD0fLi43MFT1OjtERUBX0ugM3LpTMRZrVV5drHNitsJgLs4vPbwDPww3fB+6Uiafvmdkk7OzfTx7eZV8xOrNxQ1WmzZxQ6flbq+RtB6OF1JpOTi+3mGP9aRNnp5YZTFijPzKO3by7VeXmCw2ado+J2cqPBB9Z/f0pnhwVxfPTZY4OpLj1GyFIISlutUpTLpSJj93/xjPXi4hBBx+A60nPnBkgA+8Yc/21mC+0iZtapyZrdCyr/r/ws3l19cqEa+F5/mdIbjwYbg/wcH+DMmYTiam09ykKXlyrtphk77nYP9r8mvPJw3+q3fv4cx8TQ52u5L8wkPj2F6w4bq/jdt4K7HezsQPo3wCL2R96RczNPb1S5X5ocEMl1dktsI79/VGSg/Z9O/NxOhOm6w2bPozMc4t1onpKpoqODaa59N3SzZysWlTSMrMw/WqkZbtU2petYd+vTg1W+ELx+d4dUFmOLzvcD8jhQR9aZnb+GtfPyct2Uotfu7+USaLTcY32XDs2WLjuIat1EUtx+PUTJWnJookDI1dPSn29aV55vIqubjOAzu6iOkqF5cbEWsNMgkDYbkb1qgghHp0P1KApy6t8oljQxwYzFxXE8JGck/bvfkgAKQ1yWZYrDmdIvpGhftL0xWpRA/h+akyf2OLx/2jDx7gv7w0yz1jhU2bciBrq7WP4NxA/vsb373ExIocJP2nH03x//z05o2n7pTBUs0mrinktxi8+esOQBBu/TnTMR2ioXF8i0wz2Dj42urY9mXMTsB3Jn5j1UnL8bcO69sEjg8iCPF8D9tTyCd1BrpSUk0WWXWtNqIcP01BVRSOjuT50aViZFUTMpSP0ZU0mK+28YKQdtslHZOb2UODGepRtsDR4SwP7+7iq6cWuLBY5+yCVHgZqsqH7hjg8X2bW5W+HhSSBotVi6Qpz0EQQjKm8oEjA5xdqPLiVJmBTKyz59kKJ2YqFBs2lZbDO/Z0b7Ca+ejRQWbLbQaysS2/47fxFxe2d3vg+XbCZmQDy/MxdB0tDPD9AFOT+9vvnFsmCEP29KeZKjZJxzRCZJZH2w1YqLT51tklvnFmkZW6ja4pPJbrAaES01SaqoemCuZKFg/s6KKQMvilh3dwYanOC5OrzFctNFWhNxPj0FCW0a4kp2ar6Kpgue6w2nAJkQOJ03NVDg9mOr2Q+arFAzuvZv5+4MgA79zXu2G96c/G2NMrB21xXWWuarEY5VquDXWOjmbxfKly2nODXKqb4Vo1zpuF9f2WnT3JTa2hBbC7N8nunjQHBiURESGIaQp+KPs0Q7kYP7y4wmAu/pqdVHZuM+fzjYbl+hiqghIpB7caVoDsLa0/LmG4Zua5/dcSQnB4KMuuntR1do4Ax0Zz/ODiCq4XMpiPc994ni+fWrxuOHJpuc57I+X/mkJrrtzmwOsgjNiRFSTAucX6hiFYd8qQTXcvoD8bY6Ysvz+GqrBcs+lNm1xckoQmLwg71nhxQ5XWaG6wae9AsOZ4JO3sZqsWsOYRJ59nteWSTxqUGtJ2TRLTBIoakksYfPBwP996dYl6y6UURZhciK7nwVyMydVmRMoPUUQQkfdkHIqiyO+ZtHGU37d8QicEfnipiOX6pGLyccWGTU9akpf+9OU5HC/g0nKDzz2y47rP5QchdrQHaG3SE17D1GqzE6WRMFZZqFqdHkrGVKnaHo4XoAhBXybGYs2m0nJxgxA/dGk7niTRxw1cP6Dt+sR0FT9UyMYN/u4TeygkDX732Su8ulDj2YlV3CDAUBXclMlIIcFsuc18pY2qCA4PxlBV6ZkYhHIQthS5h6WivKi18yiiPudwLs6BwSxj+ThPXy6xqyeJqSkIIWjaHi9OldAEfO2VRVw/5OuvLFCzJKGhZrnMRv0mXRVcKbXQVAXLDxhIxmi78hwfHMxEtoABy3WLy0XZj55YaTBXaXN0JMe+vjTvPdjHXKWN5QacX6qTisnc6fcf7idhqJvmV1+L7pS5bZUnyOH4S1fKVFpyEJyJ6xwZSnNqpkoANByfIIRCUmW0K8l0WTrLVV1vg8NFgHTDODFbxfWlxeVoIcGH7xzgxFRlw2vKnrCC7duoUb6uItaUcyG+7ZNLSBHEcs2L8tXCyH5d574deZwAapbLg7u6iBsacUOj7fg8GQ3bWo7Hzz843lH2Pry7h7/zey9RtVwajs8PLiyzUJWkh/cd6uNn74/xf3ztHN89t4wfBHh+iK5JwchQ7upxX3PiMjSFH1xcYaoo95KffXBsy73petiez5nIYevETKUj4lmbZQTrHF3Gu5P8Dx85yLmFOnFD2ZaC9lZ3HL8K7AvDcPUW/349vhWG4b8XQujAs8DvRz//nTAMt5UzJqeqUWGClElPrDQ4MJjp5Des4ZW5Kv/hqSmKDZsd3Ul+6eEdZOI6P3XXcIfBdC0e2NnFQrWNP1lCEYKZUpOUqRPTFN514Gp2zJXVJheXZB5Qte0yV5bsAdf3OLdYj4LlA6aKTbIxKdvvzcgw0b9yzwgD2RjfP79Cre0hEHzi2CDfOLPEC1MlJpYb7OhJkjRVzLb0rXXcoOOLHCKDXf/89IKUECuCh3Z1UWo6OJ6UXj+4s4ujm7CQ7t/Zxf3rmjzrVSxN2+OLJ+bwg5CxrgT/f/b+O0yS9D7sPL/hI73P8ra72ns7PR6DGWDgCEN4AqBAQhLlTivxuKJErbTavd3jPatbnbQSpeNJKy5FIxqAFOFJAAMzfqbH9kz77vK+Kr2NjIj7I7Jyqrqrqr2p7vfzPPNMV1VWRlRGZsQb7/szXzzax1++M9PMYJPZ1h7yMuXqDaZyNSRZJh1S6U34sRyXQsVidLGyIs11yVKU0FKtbW+Cb+WHYikiNVex6E8EKdUanJ8rkgwaPLolyWAy2BoEhEyV7rgfy3W9Xk3AE9vSqIrCnu4IyaBBPKAzmApQa9hcnCuRq9T54cmZ5gnGplRrMFwvUWuYxAI6fl3lE/u7+OS+Ln52bo7nLmYYSAZ537YUjwwl+ft/+CZ1G9JBjYChMZgMoqkSIwteg3GfrlC3vQuk1+TXbv1dXzra27oI1KteHW1Z8iKLTV2lZnt/B5K3imiozaaVztJg7L3XNNDcjqkp+DSFre0hBpJ+vn58gq6oj7HFcmuh6GbriJicNVSe3t2OT1N4dXiR0YUyVcumtE7fkuWWygDoKvg0hXLdxlBlUiETy3ZbUeYz+Sq/88LwssGXV6JraRyoKjJfOdbPV471A/Anr44xnqnQfkl9X1WReVj0awJgX2+U8UyZV4YXWwtaV5MLJgF+wxv0rjYJLOFlUlaa73kbr8lvte7wj57eRqlur1r7vnVOc6Gx7Lzxg3dnODdX5NhgYt1yA6oir/i5plxer18QbqdffmiAX/2Tt3Bc+IWjXsqVcUlTpM8e6ubvPbGlNVH/zz62s/Uz13WJ+XWvN0PE5BeO9GI1+4Hpmsxgys+hvjg7mqn/JyZyzBdqfHxfJx0R34qJnYhf4+hgnPHFCsc23fg1odiM/ALvs/tX784QNFQGkgFUxQs0Kte9vn4hU2PPKmOQ61W1bP6Xb5/k3GwRy/bq/G9r9ya6euN+ynWbLe0hRhbL9DSDlhQJ/IaK67hkStaai/gRn0bYp/HIUGrVBXRdkak0JytM/erOL2tl0z24OY6peZMO603M9Mb9nGr229ycWjty8eP7u3liWxtBU12zT9PyKR11nYmUsWULpadm8ms+bldXhHJ9ke6Yf80JvbaID1WRsB2XxBp9wwC64z7emfL6kA0k1r6RDZsKuaqNpnBZE/olD25K0tms6PDB7esvFD08lOTlCwtX1Yhdbj7GdcGxAVwUySvdtVhugOsSD+icmSlStWz8mszjW1N8+YE+CrUGr49maDgO88U6C8UabWHTi8Y80EWubLG3O8rmVJAfn54jYmqULYeQ6WXsjyyWCfu8QKH2yJUzaSzbua5r4KcOdDGbrxE0VM7MFOiM+loLVcmgyZGBBFqzp4K8zgShV05MbpaOX3k8DdUrByZcu/5f//ad3oUbFveJhc+NRFulJHJH2OTjB3r5+uvj+DSFRFDn6ECSp3a2MZD0U6za/N6LI+SrDToiKr1xP+fnvAn4Ur3hZZRaDgnNYE9PhB+dmkPCC9g8OhDHb6hoisxjW1JcmCvx+y+NMpuvsqsryod2d1KuN3jf1hSKLDd7dimt61vDcSnVGs15EZl4wOvJqMlemWdz2RzRpQEXmVKdnZ1hdneFGUgFUWWJZMggX7H42J5O0mGjNQG8USyfb9nZGcZQuKzMlip782iPDKV4YlsbqiyxORUkV7HoSwTY0x3hrTEvWPFbb03y5QeubkLzdrBsx8tyu+SYvDGW5ZlTsySbbU7WKu295MFNCTRFZq5Q5chA4poXKTengzy2NUXVsjncH1/1+pspW0zlKmiqTK5icW7e6zs7mV3ZD36h9F7GXXvE5NxskXTYuKGMaVNT2Ncb5dxMsVX6fEnUr/PVh/p5ZyJPpW43A1QUynWZsUWLC/MlkGUsq4EqS6iKTCKgsVCq4zcUcF2qtruijKGuQCJg0BYyOTdf9MqTO95Efcj0rgGO61U0agv7eHJbG6OZMjO5KotlL9i+VGs0F9G8Um+aIlO1vEUHU5NRJInepJ83x3P4dJXuqNncB4ljgwnGMxW+8/YUmiLz6YPd9Cb8pEMmz5+bY75Ya1YQKjOQCNBwHB7clCTq1zGaC4LmGo1sdVXmY3s7uThfWrcKUCJgtBYXO6M+traFeGcyj+Q2+4E1Fy5URaIn7sN2IejTsJrZa2Gfxk/PzjKyUMLUZBzHJRHU0RWFh7ckefbsPCFTIR0yeOZUhVzVqy5lqBJHBxLEAjp7e8L88SvjqIrMg5sTZCsWp6cL1Bo2piph2Q66qqCrCm1hpTmPIzFbqCHhVe349IFuXrq4SHfMR6HW4EBvDFNT+M6JKVRZ4n/59ilvTtr1ggW0Zl8zQ5XwqTJIsDkdQsLl/FyZVEgnoHvVtra2hzjQE6PheGXzc2ULy3boifuRJYlUyGBsscxv/8xLHtjVFaFQaxBvjv8DhsLmGwhGsGyneQxWP9b5qsWFuSLZisWWthD1hkPFcr2EDNdtLnK5NGyXTx/o4fxcmcVSjYSmkwgZrfs3gKCu8KFd7fwfPzoHkvfcf/DCKJ1Rk86IwXTe+9wHDYUdXREkJM7PFZnOVb3KEJWGN3fafG3d5ntRkSTKlo0qS7SFfezujjHb7EU+manQ32yHU6q9l3nXvkqweVfUx0TGOz+FfXprESzi14kHDP7O+zaTq1jN5AyZoXSAzxzqXTG3+rG9nZyfK9IT8/PaWAYooypSK4mhd537O6BZNSrEmZkiu5dlvi61uOqM+lZkHJdqNs+dn+fMTIFDfTE+c6inGVS5uusdfY4Buev83RVc1x1u/rPBygJqX5Ak6THgt1zX/cP1nkMCHhlKcqZZU35LW4hMqU7QVC+7SCylkMYDGnt7Inx8f9cV9zEe0Pnlhwf55P5uXjo/z+++OErFqvHQUJKIT8N1Xd6ZzPP142OEfV6Du68+NEB3zM9csYahKhwZiKMpEq8Me/1q2iM+HtmSZmt7iKF0EFWROTmVb66i+tjeEeL1sRxvjGaoNyN2A7rKF5t1O/26yr/78Tl2dITZ0h5ia1uIVMig3nDoiPjoifn5648OokoSz56fx9QUjvTHrynVfq5QI1+1UGRv0kJVZCI+zcue6Yqws6uH7qifeFDjd54d5ttveydAy3bY3hHhoaEkX3/Vy9BbbREs24ziGEgG+GsP9ntlZS55s0qSxOeP9DCVq5IOGvynZy/SHjGxHZeIqVFt2OQqFs+dm6dUb9AZ9Xn7LMmU6w1MTWFPd5TjIxl64n6+cqwfy3bIVer83d9/nclsmZGFEt89MUW25F0wwj4Fv64wW2hg2Rb1hs3x0Sw/PjVPsdqgVG2QCvUQ8en4dZn+pB9FlvjcoR7SYYNK3ebfPXOOrqjJg5sSbOsI8623pqjbDkPpINmy1YzUrzNfqLOrM0zddshX6gwvVNA1Gavhpb16aagRFMnl4kKZxVKdYDPNuVBpULZsFEmiLxEgYHjl37a1h3l4KEnY1IgFDCazN2eycy0H++L0JwIsFOv86fExZvJVKpbNtvYgw/NlFsrrlxs0VK93XcN2vZRaoD/hAyQe35risS0pFFliIuP1zjs1VUJXZA4PxHlwc4KdnRFURaZYa/Dnr0/QsB0+treTRNDgk/u7WCzVSQS94/KTM3OYmswjQylRcqcpbGr4dWXNiVBDAV1RKNZtXECTvAGbqsgMJAPU6jZ1xxvQ7u4KM56p8s5kHgewXRdDkbCag10XCceF9ohvzcHi0YEERrM07FIkT9WyW+UZXhvNXFXN7fvN1XUlEu6EnoRXAsZ23FaN6ktvwiVJWjNTRZKkFdG2sixhyN4Rf3BTkgc3vTfozJUt/urdGcBboOpvlraI+rTW9f/BTUnY5C2ujS6UCfvUVo+ea3WwL0bDdtneEWIgEeCli4teScFije0dYTqjPoYXymy7BX0NCtUG+ao3joj6NR4eSnKgN8afvT5BsdYgZKr84N0ZNEXm6Z3tdMd8FGs2r40sUqg06IwaTGS9gf3SCEWRvGyXZFDnI3s61swg7YronFvwgq+2t1/dJH5ljV6Zlu1lMeerFtva136dPn2wm7OzRTRF5gPr9Of6v54f5i/fnWZrs3TUapN0O7siJIIGpXqDIwNr91/a1hHmhfNev7JDvWs/7uJ8Gdt1mS1UqVk2hnb5GSkZNNiUClKsNTgysPaYpDvqw9/sL5NapUH18r9heK5ENKDjrLEIY+pecFS2VKf3Cg3On9iW5vdeGKG2WKa+SpP6JT5NRpHwIrZd0DWZoKGiNBd9reYkR2/cj4RErdEgGTTwGypzxTpfe3iQ8UyZH52a4a3xHGFDJWBopEI6e7qjhE2V77w9zYV5r+Y+eJl7AA9uTrKzM4IkeTfs600+Oo7Ln742zkSmwiNDyRWl0Ncztlim1rDZlAq2rsFHLwmi+tDudt6ZyLMpFbziBOGhfi970NRkseAlrFhk3pS+df1uhJvv0kxlCVBVlQN9Md6ZyrNYqmNqKh/Z00HVsvmjV8bIlOtEfTpdUW+hP1u2KNdtumJmM7jV4vXRLLLkTbLGAxptzRKDP3+wh309UWoNh0LV4j8+exFVloj5NXLlOkFD4SN7Olvnqa89MkimVCNTsqg1bF68sMCb4zn8usz7t6fZ1xPj9bEMowtlLlxSvrDWsDk5VaAtbBDz6/zhK6PULC8wZamM4ZcfWKdu9AawfL7Fcb3rY7Wy8h5dBhZLdfoSgdY49W+/bzOvjWYxVC/IMOb32mFISHfNvfTroxl+cmaO9rDJpw92r7gunZ/1soXmi3WylfqqAe/LqYp8Q/MmkiRxoPfyrPmqZXNqukB72OSt8SwdER+TmUqrlYKLS9yvsbCsJPPBZeOuj+zuYL5Ua1XfuRHv25peM4N8oVjn2XPzAFQsm198sJ/vvD3FiUmvBUrddtE1Bb+msDkdJOrXeGMs5/WvMjTcupfVZLugy5AKGnxgZztD6RC//bPz5MoWDjYyYKoKO7rCqJJEZ9SHz1D5m48M8j/8xQmqda+qVSqkkwjofP+dWQpVC7+hMpQyyVYt5ot1UkGdvT1RNqdD7OuJ0nBcMqU6E9kKPTE/m9JBTk8XcF2v31u2bLXuxR7fmubP35j0SlKW67SHTbZ3hPn8Ea9K0mcP9zC2WF5RUu9S/cnAqhUulov4Nb76UD/VZh+kD+3p4HvvTLd6GMYCXqCjqSq8PpKlZjsMJvw4QMjQWmXv0yEDn6bSHfFRaXilNg1Z4huvjWPqCv/wqS3s740xna+SKzdIhw26Yj5GFsv4dYUP7mznYF+cBzclyFUa5CoWkgTtYZP3bWsjEfQSAApVi8e2pijXGvzei6NIuM2ye9490UKpTlvY4NWRRabzVUYWylTqNnPFGnKzasnhgTinpwtYDcdr86LKPLm9jV9+ZJALc0X+68tjzBdraIrEQCrI07vaef/2NlzX5RuvTzCRrWCo3j4PtYV46cICsgQT2SqqLPP4Nu89PDxfQpakKy6qLDeTrzKZ9TIqTU1hKlfhG69NIEsSnznUvXqGmEurdHl72KA94iMd1vn+iWkatkPUp6Iq3ji37rj87i8d4exsge3tQX50ao7f+PN3Wk91YiLLr390Fwf6Ynz9+BgvXVik2vDG9If64/z0zBxVy2GxbFGzHN63LU2mWCdXtrwkmpBBpuTN0afDJjP5Ksc2xTk/WyJkO1i2S1/Sz66uML/z3DBT+RojCyVeH8vywZ1t/OW7M0iSt9j15CUBgpbt8OSONpJBgz09UY4OxNnSFmytUQD0JgL83SeGGM9U6E/46Uv48ekqr1xc4NWRLE9uTzPUFmJnZ5hs2eKhwQR9cT9nZwr89Mwc88U6n9jfue69IMDTuzp4etfK7wUM9bJ7EvDWeKayVRaKdU5NF3h7IrdifuRS17sIdgH4sSRJ3wZaIQqu6/7v1/l8AL8C/Hnz368C2wAd+IEkST9wXXdu+YMlSfobwN8A6O3t5VB/fMUNXmyNRmsPbU5yYb5EzXL40tFrG8zEAzo7u6Ls681j207rjfDmeI5nTs1wfq5Ef4JWY9NUyOCrD72XOvvwUIqHh1IsFGssluoMpoIrBg/b2kP80kMDjCyWeHQoxbfemmp9oB/anKQz4qMv4aduu7x8cYGwqXklXky1NUH29K523p7I0RcPtCKcHr+OMilTuQp//Mo4jutysC9GxKfRHfMR8Wn8wtE+yvUGcrMpoqrIRAM6/ckA70zm6IiYjC6WmXxljPNzhTV7BkTN995+a0XxAq0SRwBfPNrLixcX0WSJb709RbHaIOr3egy8dHGRHR1hDvXFeX0sQ73hcGq6wELJIh7QGV0ss7U9RMSnoSsmOzrDZCp1araLLHnp8emQSlvY4PBAnBfOLVC3HX50ao75okW+ZpEOG2iKTMyv8V9eGKEz6kdXJXriflIhk9lCjd99fphcM5vv9EyR7Z0R/oeP7uDdyRwvX1zEbTYwd12YKdToift5eChFqdbguXNzvD6WRZUlIo53bL0I6wa6qnB8NEvYp/HBne0cH17k/FyRvmQA24Ent7fxwGCcdNgk3FxMfGxL6pqP/fWwXZfvnJjiR6dmWxmPxZrjpVpfImp6zY5zlQaKohAPaDRsl/liFdeVKNVtspUG6ZDBa6NZHt+a5tGhFK+NLvLyxUU0RcZvqDyxLb3i5Hl+1usTB156/0ObjVapDPAWT05OeZHsbc1BjuA17/3mGxNkSpfXdwcv6qM75me+WKNSd3Bcl2KtQSKoI0sSWzvCSJJXampLW4iLsyXOzha9Uk9Rk85ogHenckR9Km0RP58+2L1utJSuypdNyhqqzKZ0kAtzRXaI47aqgAiovmupMuQqDZxm82vwglpKyx6j3IR5hGKtwUKp5mU2NxzCpsY335rkwlzJayy8v3vF41+4sMBLFxbRFIkvH+sncoVycasxVIVHl11nYkGd09MF9nZH6Uv4eXV40Su3OpHnkc2pdcvbXatUyOAT+7p46cICB/piPLI5heU4LBTr9CX8vDOZpyPiYyZfJRk0CJoqh/pj/ODdacAbW6hKHXvZgockQWfEh4vEa6NZBtZYOHGXTQbW166Agl/3mj7LwEB89QhFU1Go1G1qDWfdHkuSJNGfCHgZ4+tEn79wfp6G7QVn5SrWqgucQVPj2KYEmVKNY+vcJPxPH9/F3/n91/BpCr/2wa1rPs52bKp1G1VaO7MsHTJb47X1+oFUmhnvjuNirdOj8lMHevjBuzPs7oqs2eB+KlfFcbwm2WOL65f/TAdNHt2S4o9eGUWSvJKlSzX8l0jAppQ35prMVQgaKoPJIAd6o7wykiFTrpMKGhzqj/GR3R08d26easMhU/JKrr8+luHLD/Tx/Pl5FFmmN+FnSzpEvtpAkb3+EzOSF3iWq1g8vDmJ5ThsX7Y4ut54eblCs2wSeGOiq1kEG1ss86fHxwF4fGuK/atM5IF3LNPbrq6fk3aDE4rCvWX556lir3PyFO46EZ9GddnXigwdUR99cT+PDqUYXSy3Mkvmm3Mdrusyma8QMlXGMxV0VWFXV5hHh1L8/MFuXhnOkG6WVa03HK93WKXBlvZgq1dwwIBvvDaODIxmKjy8OUm+alGxHN4ay5Ap1RloZkd/660pLNvl6GAcQ1PJli3OztaIvDlJZ9THyEKZ6VyVqZxXJn9p3PPDk7Ocni6gyhKfPdyD1ew7UK5fe9/ou9nS9aPWsOmOmWQrxRU/VxSZi/Ml/s0Pz/JPP7qDrqgPVVl5X/bolhTpkEk8qF93ANXNdmbGW+SYylXJVxvEl80DHuqPUaw1aI+YpO5g1toPTs5wdqaIKks8MpRiZKHM5nQQn6owW6iRK2vs6QrwxmiGQs1me3uI+LL9lWXpigt4N6pq2V4WTrOHpyJLuC5kynXChsaW9hBzhTqpkNHK/Dw3UyQVMnBcl63tQV6+kKFUb9CwvfJ+fkOl4bi8cGEBrRks32h490MN1wsO/MUH+1ko1umMmoRMjQc3JfnmmxMYmkKh2iAeMEiFdC+RIajzyw/18wcvj7GzM8KTO9K8OpxhrlDzMk/ifqoNh3jAYHtnuJUxkinXm3OK7y1YRfw6j21JYWgK8wXvXuHxrelW1nvY1FoLZjfKr6ssfVyyJQu/plBv9nAyVIVt7WHensgxnbeQJG98+MGdbQzPlzk7U8BQZYKmxoHeGJlyneximeFm5SnHdak3vEzIR7ekeXcyT85nsbsrwiNbUnBmDkmS8GkK79vmzQv/3SeGGEwF+c7bU/h1mX09Ufb2RHlyexs1yyFftbg4X2Rvd4QLC2Vizcy4J7al6Y75eOH8PBPZCjP5GnG/hqZIHB2IU23YvH97G48Mpfj68THensgzk69yoDfK5w/3oikyW9vDfPZwD68OZzgzk+fcbInXxzLs740RD+h8an8XIUNFkrwF26XA66pl8523p6hYNnua2UHFWoPnz88zkAzy1I62tV7+Fe/xP3l1DMt2GV0s8/F9Xj+spX61Y4vlVRfBEkGDnpgfVZb49MEeYgGdv3pnmphfp+G4PLolgalptEdMzkzn+emZOT6xv4uOaIBCbZqArlCq26gy9CZD+DSFoKFypD/BX707S6lmsyUdZnd3iOGFMtlynWRQJ1ex+OHJWcayZaoNh6iu8bnD3trHX7wxwdmZImFTY1MqxNb2MG+P5wjoGp/a38XIQhlTVyhU6+TK9ebCl9l8r3j9xC4NlPzBuzOcmi6gqzJ7u6PM5GukQuZlcwS7uiKt3oS1hs10rsK/feYcVcvh1HSef/35/fz49BxvjGVJhgy+eKSXsUyFyVyVscUy3z0x7SXuXEXpyquxvSPEUFuAXMWiLWzSE1v/ea932my0+Z/e/O+KJElqB/7rJd+edl3385IkHQU+DHwCwHXdpSuyJUnST4EhYMUimOu6vw38NsChQ4eupnoX4KX5/r0nhq724ZfpTfj5yO4Ois0UUFjqcyCxsyvC/p7oigmh1SSCxqrRm5Ik8eSyD++RgRqT2QoPDyVX9MX5xP4untye5ltvTVFrOCsm86N+nUeGbnzhI1exWiXoFFmibjv87gsjxAM6XzjSy/femWa+UGtNrKVDXppzLe1gqjJRv8ZCoe5N/sgSsutNJiyf31ks11ff+DrSYZOf29vJ2+M5nj03z7nZIgFDYSARxKcrzOSrxIM6pqpSb7jUbZdYc8AX8XkZL+ANJP7+k1t4YDDB8HwRSZIYzVQoVhr8g6eGSIYMXrm4yJlZb5qyI+LjY3s7m+WKgpyf8xpqdsV8bO8Ic3IqzxtjWaZz1VZpvpCpsqc7wshCmUe3pJjK1zg9U0SSoC/hpzPqAzKETG+B0ad5g6AdHZFWivyxwSSu60Vf/N6LI/TG/XTHfBzsi9Ee8aKlQ6ZKT8x/xSiUW8lx4NxMARfvRJgOGcwX60iSRMhQqFoOLi5hU2NbR5iG7VC3HMoNr1SAqUj8t7emKFQtrxmy1CxH1Vwo/cZr4wwvlLBdODIQ54M72y+bnOlL+AkaKpbjrBptvDQgVmTppkRR3SvOzhZRFHnVsmCKDLguh/riPLm9jRcvzvFHr0xgajLbOsL8rcc28Vs/Pk+mVCdTtkgEDHoSXmPYct3m0S0pfuMj2/mrd2dw8RZqrydqUJIkfm5vJ47j3vLG0RtVMize03crVXmvPvVShoyhKfgCOgulOgm/yoG+G5skLtcb/N6LI1TqNts7wmxpC9KfCPDvf3IegPFLFgAs2+GlCwtMZKt0RkxKtcZ1LYJdalt7eEU20/aOMO9M5r2yHVcoQXM93r+9DdvxFnxKNZufP9jNQDLAxfkih/tjBA2t1QPt5FSBoKFRqtvNqEuvyfuZmQK1pUabLhSrNp1RhcP9qy8AAPQng1yY917TzetktxwbTPD6WJZU0MC/RlkGVwJVlVEa8rqvUXvEZFeXlwWUCKw9kfP41jTfPTHN9o7wmsc0oKvs6AxTqdvrjh2mczWebmadjWYq7Frj2um6XtNsWZap2zZ+Lt/udK7aLIWoc36+uMqzeCzbRVdkJAmq66wwfvpgNx/d09Hq77CawWSAoKkxm6+yr2f9iYznzs8TNFQO9sV5YzSD7To4truiREUqpLO9I0KuYpEKGUznqxzojRAP6rRHTDanghzqjzGQDPLcuQV64gE+sCPNX7w5xfBCie0dYWoNh6lcFVNT2NER4asP9fPjM3MsFus8MJig1nCYzFWJ+TX29Uavu5xv2FTZ2RlmdLHcysa6ktqybMXKOv0tBOF66TIsVUoXY/G7V1CXKNa96+LSKVZV5BW9gOMBg//+Q1tJhU0+daCLWsNpBeB2RLx+UX/17gy5cp2yZSPh9dBJh0yObU4iSRKH+mKte/MfnZplPFNBkrzr8HKJoE6h2uDJthCfOdjNnxwfJ1+x+MmZeUYWR0kFDX79w1uxbNfrJTKRozfua05QeuWjJ7NV2iMm07nqijkBoNlqoFmWTVf4yJ52xjIVDvRc3blzozFU5bLPn65IhH1eRkrUpzGRqbQCvpfTFHndYMY74WBfjEJ1ju6YrzXvs6QvEeAXH7xzcyRLlkqHu8DmtiB7uiPIskS2XEeSwbZd0mGTX354gOfPLxAP6Gxrv/7ybtfjhydnOTNTQAKObUpwuD/Oz856rVoGUgG+uqWfr782wbnZIl1pk0rdC3iu1BtYjssL5xZJhnQe3Jzw+jrla61Ac0WWsLwEeoxmCcOBpJ9Ht6Qu68/0hSO9PL2rjb/1X45j2V6/qH/4gS08d26eRzanKFs2m1NBJrIVapZDW9hkvBn047ouxWqDobZQq9RbxKfxqQPdq/zFzfsIFxRJ4uGhxA2V1LtajuPgM1SKtQa1htsqtRfxef3S28IGiuT18ctXLLa0h3j/9jYe3pxkdLHMyxcXybw1hSR5pdJTIYPumI+t7V6vuPliD6enC2iKxPaOMJILf/DKKB1hk2y5TtSvo8gSRwfjnGtmSp6dLbK3J4qpKTQclz973WuHM9QeZjAdRJIkgqbGUJuPvT1RijWvAteLFxfpb1bbOjVToFRrcKQ/TsSn8cWjfYwulkkGdGIBfcWCy/aOMNs7wvzxq2MYqoIiSUznqsSbj1vqhbecqSmXHcfXRjOUajYnJnI8uCmxZlBc67V33yvXufSZ3NER5uJ8CUVmzbL0DwzG6YiYhH1aK9kmGTLY3R3Bdlzev72Dp3a0MZWt8A//+E0c1+W/vT7Bw5uTbGkL8v7taUYXy3x4VztffXigNR/28vAipub11IoGNPb1xvnfP7uXbNniO29P8f13pokHbAK6St12ifg0r6RpTxRTk/nZ2Xk2p4I8uDnBH7w0SsVyWCyX+d470wR0Fct28Ouq18ZEV9nfG2NnZ4Tx7OrXt6Wxv2U7zQSEDJoi8cWjfSuCC5bUGw6//+IomVKNXMUrk1quNyjXG4xnvD5g84UatYbNscEEF2aLGKpM2NRar//NEDI1vvbIJr70gLf/5ioVSZa7rkUw13X/xXX8zjTw+KXflySpC/h/Az/nuq7d/F7Ydd28JEkKcBj419ezn7fKrq6VF/59PTEkySvptrMzfNPqQz+0ee3o3KCp8fkjvTdlO6vZkg6xOOD1sDrYF+Obb04CXop8plwn05xUWih6/9/aHuL0dIG2iMHe7ihP72rnBydn+N++dxq/rlCseVGuSzVFw6ZCZ/T6ByTbO0L0xH0Uaw16Yn62tHm9uHRF4txciZ1dYd4ez3qTAF1h9vd62WzLJxPiAZ0PNZuVvnxxkYo1TypokKlYBAyVmu3g0xSqls1iqc5AMtBaXPHrXkRb2FQZagtwajpPw3bY1h4iHvDKTg2lQwwvlGgPm0SbCzqq7JWD64r5GUwF+ezhHhzHba2CLzXddJt9zZZPiDmOy0/PzrG1PcSh/jjH7qI+R4mgTq7SwFAV9m2O0h7x8fZEltHFMjG/hl9XCZlqq/SnZTucni4g170L3lcfHiBXbfDSxUXqDYdEUKc75mNPt3cxXijVvdqw7SG+tEb98ahf52uPeK/fdL7KXMFrbLpke0eYRED3MvnWyBS9H+3sDPMfflz3okFwQfJ6zDUcb3AQ8XsTlsfqCf7240MokkS20uCXHhpgIlehYtkEDBVf8wL+0T2dPLWjnYlspTlhu/pA5nqIBbC1Hei7ulJXwu23tS2E1XBpOA57l/XE+ti+TuYLNbpiPp7Ydu0Z28uVajaV5oJB1bJbzccf35ri7fHcZeOW10Yy1BoOVcumP7kUlHHzPbWjjX29UaI+/ZaVzRle8IJVxjJlbMflE/u7qDXsVlPe58/Nc2Iyx76eGLu7IjwwGOfifIlK3WahWCdgqEg0sGyXVMjgY3s7+MUHB9btt/TVhwdbpSi+sE5VgaW+r/GAgbZGul/NsrGbTY5L60Sd7+yMEDY1VEVaERh1qc8f6eWzh3rWPV/6dIUvPdBHrmLRuc7f2R3zcXxEQlW8Zt1raY+YXtlNv46pr35rkQ4bdEZ9FKoNtq5T9vHBzQneGs+gqQp7e6NrPs6yHaZzVdrC5poZhvmqFwlLV+SK14+FZuBOd8zH2GKJhZJFJKySKVtYDQdDk9nSFqI34WdXZ4T/87mLDCaDDC945RPLtQabU0Ee25rmW29NUqw1ODmV59hggk/s71oRxPHQ5iRnZwsc6Y8jSdJlZYlWa8B+ra7n2rspFeTxrSkqzV4mgnCzxQM604U6suRNTgt3p4O9cX5yzmv9vpS5K0uS1x/IstEViS890Mdg0pswlCRpxaSTZTvMF2vM5qv0JQKUmy0LfLrCFw730Na8hsmyxK6uCMVaAwmv32XZsvngJeeuj+3p9FojhA0MVWmVJvyV//IqAPOlOlGfwcNDCf7oFS+b1W+ofPlYHyen8uiqTMNxODYQZ2dn+LI5gSe3p0mHDG+S09QIm9ptmQy/ky4tZZsMavxPH99JplxHkb05rY1iczp01x+vJ7e38XY4R2fEt6LUdtSvX1ap4fAVyoTdKktTmLGAzo5Ob0FlKZjKr6sMpoM8uT1NrlLnnYk82zpCPLgpzlvjORZLXn8/SZJo2PD3378VQ5PRFa9fX6ZUJ6CrnJkuMJX3Psv/6yd2077G/UfY1NnfF+PUVIGHh7xS0EtZWa+PZhhdLDNbqPHKcIavHOvDcV0uzpcoVBt8cGc7siytuOdaS0/cf1PGXNfiyZ3tfPedaeoNx1sgsGwarssjmxK4rsvZmSK6KhP1aQwmA3xsbwdDbWHGM2Xifi8h4VBfjFdHMmxOBy8br31gRxsDyYBXBcNQkRWplRlzcqrQys5PBgyG2oJMZavsW9ZqQuK9vsEDSa8XoKkpK+4DHhlK8tLFRf77D25rZYruuaRdhakp6/Y6Bq8U41++M00qaNB/DSUNl2xrD/PcuXn6k/4VgQ1r8esqn9zfxXim0lrMj/g1vnh0/Xl1SZIuCxrc0Rnmg7s6qDccjg56r0HEp5EKGWRKdQabWYdPbGvjoc3J1n3pcu/f1saJiTymrvBg87hsToeYzVe9XmhBg6CpEPUbpIIGruTy9C7v+pgrWxSrDa+spLzsfO4CrkTI1Pjw7g78uoJfV1fs/9Aax+XJHW28PpqlK+pjeN67v7ZsrzrFaotg5bpXVrNs2QylgxRrFu1hH3/2+gSPDKV46eICA8lgK7vyy8f6eHM8i09Tb0kCx5UWv5Zc0yKYJEnfZJ1+0a7r/ty1PF/TPwPagG80F48+BHy2We7QAf7Qdd3J63je20aRV6/9u5HJskRH1NecSJJ5YDDBT8/O0RnxkQ4ZPL2rnVPTBfY2Tx4hU2utvPclAkiSxFM72mkPm/zx8XFUGd4YzTCTqyEDm5LBq57QHmte5HZ1hVsnD1WR+cVjA/z07FyrRvXoYhnLdtnfE0PXZBaKXv+si/NlPrhz7f4ZALu7Isw0TzY7mj282kImYwtl2sMmXVEfuWU1mjujvhUXzC8e1fj68QmyFYveRIAvHOnl1HSe9ojJwb4YqiLz8X1d9MYDJIJ664KwWoQVeCdaXV35+jywKcEDa5SUsR0XWeKONejNlOr0JvzeRFnE5BP7OzE0mfdvb+NAbxRFlumJ+xjPVJjKVdiUDPLHr44xlauwtyfKUDLA9s4wkgwSEtmy5ZV/HMnQFjb54M523p3Ks6sz3FoAcxy3tQCzRJIkTk7l+d6JaSTJixTvXpYOm15nEu9+NZ2rUqpZSK5L0FR5YCDO0U0JRhYqnJ8rUqk1COoq+3qiqIrM33liS+t3f3Jmjh0dYXIVi7/zvs30xPytz/WV0ptd191QDaXvRmFdIt+M1F2v7rFwZ0mSdFnUrCxJ7OqMMLpY4uGb0KMwFTJ4ZCjJdL7KsWW1spffNC7n11UMVWFTKsjh/lt3sy1J75VvWSzVGc945V/8yxZKZvPVVrni9ZrYruXhzSmOj2bY3h5qvY7LbzQe3JzkwWVBRf/gqa384N0Z/ujVURLNjLDxbAUJGEgGObYpSVt4/ZI5D21KEP3ELlRFWreP1+ZUkGzJoj1qrnm+8+sKSOA6Xn+E9aRCxrqlEJdczfgqaKhr9jxb0p8M8LVHvIjF9W4s9vfG8OtqM5J39W1H/TpfOdbHxYUyT6+zOHOwL8ZH93Z5zZZTa988f/utKc7PFogHDf7ag/2rvr5tIS97bq5Qu+KizuNbU/zxK2O8NZ4jV64TMjQO9yf47OEe3pnMMbpQomI5LJTqJIMGv/qBLbw1nsN2XLJli20dYX7+YDcRn9ebda4wR2fU12r8vvyYHBmIrygvdbdcDyVJWrMEoiDcDF8+1sfvPD9CIqjz6JYbC/4Qbp3eZACai2DdzTYPqiwRDhlkynUO9cX4v71/7co688Ua2bJFT9yPg8vfenwzIVNt9q/2JtIattNaiAkaKj/fLJfuut69/HKqIq96X/GVB/v51ltTHOqLETRV9vfEePH8Ig3HxXZc3rctzf7eKP/X8yO8OuxlDDy9q73Zi8dhIlNhKldlb0+EB1bpM3Iv+8S+Tn5yeh6vnpE3Xnzftuur2CFcWcBQb/g9dqvHCk9sS9MeMUmHjFZrjf29MWJ+neGFEqWazZvjOS7MeT1LVUXmU/t76Iz6eWV4EathoykKT2xL0RP3rdjXQq2BA4T9Or/4UD8PNbNBV/sbHdebX/3Vp7ZSqtmoirQikGhfT5Qt7UEc1yUR0IkHdBJBY90Aq7vB0vGL+XU+f6iH33l+BBkXTZU53Bfn84d7+PM3JpstWgx2dUcIGhodET8vX1zkuXPzKLLELxztZagttOZCxvIKJAB9cW+ByHbd1sIMeOPSj+7pvOz3A4bKpw91M52rtvpmXepmLTxP5Srs7IzgOC7VhoP/GiuWHhmIc7Avdk3nrZ64/6aU4TNUhZ/bu/L18xsqv/GR7UxkKytaeKy2AAawvTPMb/3CAaTmPO7p6QL1hkN3zFssjwcNIj6NLxzu4Wfn5sGFn52d45P7uzkzUwBgPFOhVG/wsb2dSEDQUJjMVQnoKgf7Ytd0zgibWqudTlvYwLIdQqa25gJl1K9zsC/KH7w0SkfEbPXkzpUt+hKXVypTFZmDNylwu2E7KLJ0XefEa80E+5fN/38KaAd+r/n1F4Dha9464Lru31zl2/+x+d8tN1eo8Y3Xxr0GrAe6N2yGyKnpPCcm8uzpjlxxxf1KchWLFy/M88ZoFl1VKNW88nauS6tE4pa20IrtDCQDfOZQN7bjrojs290dbU3A/c3ffQUXsIFi7b0Fpdl8lT97fQJFlvj0we4V9aVzZYtvvDaB47rMFaqtsjwAdduhI2IykAwQambGZZq91s7NFnlzNMvIYvmqbuh9usLHlp3EJLy+UT+3t5P+lJ8XL2R49uw8yaCxovGi7bhIeP0RlrqKZMsW45ky333b6ztSbzg8uiWFqSnX1Bfhnckcr41kMDQFWZLY3xtdtczf8HyJb745id9Q+dzhnitOat1sz5+b5+WLiwQMlYeHUrxva4qITyMZ1AkYKts6wmiKzFSuwn99eZSpXJWjA3HApVCx+P470/zw5Byb0wH298TpjJoUqw3ONtOzJQk2p4OtvnfQbPh+fJyJbIWDfbEVJUizzcVK1/Xey91iPmddp6YLZMsWtuNSsRxmCjUUSeYff2gbv/vCCC9fXGhFb15qczrAN16bwKcpaIp01QvbIwslvvXWFGFT5dMHe25qn6D7ib2sxXx1nV5Cwp2VLdf50+Pj2I7LJw90tRaFzs8VeXcq38raulFX6vlTbzicmSmQapZvCJkqmiqvGYxxMzVshz9+dYxK3WsM/tlDXtNpy3b4k+Pj1BsO5+eKfO7wtWe47+gMs+MaIpYt2+Gt8SwN2yXk04iYKhfmvRLHo5kKtYZ9VQNqXZWveNOVq1hM56toqrTm4lXD8UoFG6qMoa2d4T22WObPX59AUSQ+d6hn1Yzoq+W6Lj88Oct0vspjW1Lr3gxeqbQIwId2dXiLP2vcLIP3Wjx7bgHbcXn+/MKatfu7Y37+1mObWjeEa/n225O8O5mnLWzypQf6Vs20k2XpqnoEgBckE/ZpFKoW1QZoqstTO9oYWyxzsC/OXKHGmdkspWqDgK6wtT2EJEnkK3V2doXZ0xVtRcke7IuxtztyWaT9as7NFvjeiWniAYNPH+y+JWVDb7VK3ea7J6ZoOF6Eavg6FrOF+4OhKXRETKLNPhrC3Wmx+F73r0zzvsrBG3FKeJHhharF905MI0sSH9rdviK4pSPiY1M6SLneIBUyMLWVi1jfOzHFyakCe3siPLHNO0d3Rn381bszLJbqXJwv80tXkZ3x4KbkiiCwpaDT8/NFdq3Ry+f8XJFvvTkFkku17qCrMnPF2mWTmeCNF663JO3d5tL5lkN9Cfy6TLHu4AIjCxX+3TPnvLmPO9hi4X7wyvAip6byHOiLXXXPqefPzfPKcIZtHaHLMiVvFlNTVg3sH14o8fpoljfGsvQn/AwmgyyU62xJh+lP+tncFuRLD/ThNM/pq80HZMsWL5ybZ6ZQI1+12N8bu2x8Waha/NErY1Qtm5/b20Vvws+b4wscH8nQFfXx6YPdvDK8yFvjWbIli3jAYFdX+IbGw0tu5We9Urf50+Nj5KsNPrqnA1WReWeqQG/Cj6FJFKoNbNflzfEsk9kKs4UatuPyhaN91BsO//HZC0xlK82/U6ZQbVzxb16+QJAIGvz1RwaBq6+q0xHxrVt14maYLXj9GV+4ME8yYPDWeJbHt157cMzdtnDfFjbXrZ5xqaVjcm62yHfengK83ou/8EAfH63U6YsHkGWJFy8uUq43eGcyz5PbLQ71x3nu3HxrLjwE/LWHBviTV8d4rhnE0pvw89SOqz9fLP8chEytVTVtPUcHE7w9kafecOiM+cmW6yyU6nzzralVr6trcV2XH5ycZSZf5fGtqRWJDMvN5qv88atjDC+U2NMd5bOHeijWGnzjtXEkJH7+YPeqWWvLXdNsueu6PwGQJOl/dl330WU/+mazd9eGc36uSLlZQujCfImDG3QR7AfvzmDZLjP56g0vgn39+DgX50uMZcrs7Y7SsB1evLDAXKHGXKHGnu7oijJzS9Z6oy59sCvLJmlV5b1JknPLjsHwQpl9a9SIn85V+frxcXZ0ejVk/7RZDzwZ1Pnysf4V9YQt22mt8m9epwH7WrxMtzxdUT/zxRrnZ0uMZsp86+1JvvbwILrqLep847UJr4nuoR4+vKuDk1N5dnSGUZelpK7VJH49tYbND07O0LBdXr64yNGBONlyfdVFsHOzRRqOS75iMZWtrBkVcqucmMzhAj5N4a892I8iS/zw5Awz+RpQ48JckVTIxHa8NPVaw+HN8RxBQ2UiV/Vqz7owPF9kPFPmt79yGNf1erwosrTi/Ty2WOaV4UW6oj4msl7t54vzpRWLYPt7o1SsBpoirxuhL3h8moTtukiyjCZLLJYs/vLdGZ7YnuadyRyZskV1Kr/q744slL2+LQ2bv3hjil95fNNVbfNUM8plvlhnMldZ9X0tXFlt2Tn1fLN/oXD3GV4oU6h6Ze7OzRZJh0ws2+XVYS9a+S/fmebj+7pu+X786NQsJ6fyqLLEX3uo/7ZOcrh4N2TgXZ9Xfcxtmg+tWTbvTuWpWDb7e6LoqsJCuc7IQpmwqfKX787wzkQe23X5/JEeuqKXj21OTOT5wckZAD62t3PNccboYhldlZkv1qnU7VUXOCI+jbawwXyxtu65cGyxTMNxaTguE62b4eszV6jxo1MzFGve+/JLD6xd0rFQ9co++tcocwhe2cFy3SZbrq8ZqWw7biuQaq33wJKruUmv1B18uoJlO9SsmzN5sa83SjxgsFCqAy7/2/dP0R7xtfrs4cJbEzmgWR68ZDFbqDJbqF3WG269BbBcxcJQZUxN4d2pQmv8PpOv3rQm0bfTmZkCIwte7X+vL4PITBZWN7JQodZwvF6ypfo1TRQJt8/F+ff6iE5lvQUx13WpNXt7LRRrnBjPtfrwnJwqcLDvvclzRZb48K52LswVKdVsfnRqthXw47oup6eLFGsWXz8+TsjUWpm61hXGCVejN+FfEbAa9et86kBXq6rMc+fmcVyXesOhXG+gqzr1hs2PTs3Q0TzfAzxzapY3xrJsbQ/x4auYCLzbXTrfEvGpKIrX5U0CZgs1fnZ2jvFMmd/48A4i/lsTzFC1bGoN56b0od2IGrbDs2fnAXj+3MJVL4KdmMzhuC7vTuavu8f2jahatncPEzT4lfdtItos+/azs/OkQga7rlB2ujNiMluoUW/YTGbLqwaGjWcqrful83NFehN+LjZLsk1kK0znqzx/foFMqc5UrsKOzgjBmxB085Mzc7w2kmGoLbhqZtSNmshWmG+2kDk1XWBnZxjXdRleKOHTFGbyNYo1m1zZ4rFt3pxWKmigyhKn50u4LiSCBomg3jpvreft8Rw/PDVDOmTymUPdaIq84tiU6w0cl9seOH+p10ayzYQCiVTI4PR04boWwe5VqZCxYs79w7vb+X999xSFWoP/8ONz/NrT21dk/C1xl91Qu9dwc/3ShQWeP79Ab9zPJ/d3XfWCqaEqfPpgN+OZMtvaw/xfLwyjyg4X50rrZq86jsvLw4s0bJejg3EWS3VONO+xXhleXHNt4dlz85yYyJMp14n5deYKNaZyVUo17/p2cb5IPLB+YPD1vvNTkiQNuq57AUCSpAEgdYXfuSttaQvxbnOyfb3m5ne7pYaQHev0drhalu0QD+joqsTDQ0n290RRZInxTIV4QL9s0FKp20znvSbeVctZ0UdjKlvhd54fxtQUkkEdWfKazuYq9daHcktbiJNTXvPG5Sm64NVo/eT+LuaKVV44v8B0rso7kzn+6Ue2twbIF+ZLfO/EFLP5Krbr8ol93ezsDGPZDo7rlTq8VoFmc3SAqF/jJ2cUMqU6c4bK//5Xp9naHiLm8y5EdbyJrr090RWTip860EWh2lj15LSecr3B7784ytmZIn5doTfuR5LW7sexuzvCWKZM0FDvyOTJvp4YrwwvsqMj3BqQ9SUCXn1bTebEZJ7RhWk6oyYPD6V4fTTDvu4I3XEfFctmsVhjIlvBAS7MlTg+vMjB/vhlPWwAnjk9y0KxzksXF9AVhYBxeXadqSmtqMIradgO33tnmlzF4qkdbaRDJoWqRaVu3xelE13gjZEcrguKBKoiMZ2vEjRknjk1y1Dai3RPBnWMVSZvt3eE0VUZx3HZ1nH1i687OsKMLJQIm9ptyUK5VykSLA2D269Qvk24cwZTAd4a17Fst7Wor8oSuUqDmfzNuW5fjaVrpu26OLc5cVBTZD55oJvh+dKKPhOaIvPpg92MLpZvWgPwWsNmMlulI2KumpW00Ozxma9YbE4HaTguUVOjEjKQJWg0HJ4/P48keZGr//jD2y5bAKovm6Bbb7Lusa0pvn9imi1tIYLm6kPuWsMbN4VMbd0soJ6En6+/No6hyvTe4LXecWEiW6Vq2cwXa2s+7sxMgd/+6Xl0Rea/e3LLmtfFU9NeSY4Lc16gy2qvezyg8+T2NCML5ct6YC2XK3sZ4oYm8/Su9jVLiHxsbwffPTHNvu7omq/ttdreEWZ3V5hT015Eo0SDyWwFn6bw371/M6dmijy+LY3juOzqivDDkzO8PpphIBlYMcm7npNTeb7/zjS6KvMLR/rY3RVhMlshEdDX7UN3N+uM+lpjgZ41bloFASDqU8lXLCJ+nYjvzk7ACWvrihq82zyvp4Lefb8ie2WcT88UMHWFtyZyVC0budlL8VKqIpMOmczkqyvObZIkcXggxu+/OIpfV3n27Dxb0iEifo2P7+vizEyh1YdsPUs9u9vDJhXLbkXQf2h3B0FDpWrZvDK8SNjU2NsTbd0j7+2OMpOv4dcV9vdGyZQsTs8UeHMsx1vjXs+mN8ez/OHLo7RHTM7MFPjQrva7omTtjbh0vmW+UCMZMChWG9iud09cqjUImxpjmTIR/7XPn1xJrmLxBy+NUmvYfGBH+zVl8d8rVMUbw40ulq8pGG21+Zbb5aHNSZ47N898scY3355iW3Mf/t0z57AdF5+m0LAdBlJBTkzkOD9X5IHBxMrAfAl2doWZzFY52BdbtQrMQNLrHziZrfLwkBdMc2xTghcvLDCYDJII6q0S05vbgmzvCLO/J0rVssmUvXPB9XxOT097wb5nZ4rYjnvTX9/umI+OiEm+arGzM0x3zM+RgThTuYpX+lGSyFcsClWL4bkSnz/cS8Sv0Z8MYGoKmXKdeECnWrcZWSzzn58fZigd5JGh1KrzjKdnCrguzOSrZMr1VgUS8L73J6+OYTvwif2dd7Q3Z3/Sz6npPIPJAKmQyeGBm1Mmb6PanA7y9K52LNthV2eEbLlOvtJolRbdnA4xulimWGuQr1j82tPbV32eTx3oRpFlDFW6piywpfKKo4tlypa96iKp67o8e26efKXBk9vT/OTMHDOFGo9vSbXmzh/alOTN8Sw7O8OXfR4zpTp/+e40Pl2lN+7jhfNexpqhyezpjhD1a2TLFv3rvC/bIybtES/BYktbiI6ISdBQeWcyhwRXFVx/vaPPfwD8WJKkC82v+4HVyhre9eIB/arS7e92n9zfxWKpflPSgT+5v4szM0W2tAdbJ81D/XG2d4QxVHlFdKvruvzRK6OMZcpMZr0stKOD8VYU6O+/NMobY1kkoCfmTUjZjou8LFMqGTTWbUi5FNF1bqbI8+cWUBWJn5yZ55P7u3j27Dynpr0eUDO5Kg4wkanya09vvWl9DUzNq/dq2Q5ji2V0S2Z4vkyyzyAZ1FEVmU2rDNav56JSqFqMLHgnt02pAF1RHx/f10WuYrWy3C7VFjb56kN37j18aW8L8E7if+PRQRRZ4ndfGAZgKlclGdTpivpwJdjVFSXm10GSOD68yB+8PIqqeH3ADq5R1isdMpkv1Jgt1NjdGcGnqzeU+Ti6WObsjFd28bWRLMcGE/zeSyPUGw6PbU3dc73+LiUBc+Wa1z8TCdt2adgOI4sVZvJVvnysn1NTBTang6sOKnd0RvjXn9tPrWHTcQ2LWT1xP3/j0avLGhPW5kXRecEEZcu+szsjrClsanzlWP+K79muS8SnEjJDty0D6oltaRIBnbaIecsifNfTFfWtuuh9rWUjruTPX59gMlslFTJWzXDqjPrYlAqSq1gcHUzw4oVFIgGdxbLF1vYgW9pCLJTqzBdrjC6U+b0XR/jKsf4VCzv7eqK4rouqyOsu3imSRHfMT8BQm4E/l59Hg4ZKe9hHsdZYM+oNYGyh3Pr56GJ5RenoaxU0VQ71xSjX7XUDhX5yeo6xRS/S/+XhxTUjZA/2RvnR6Vn2dEXXLIdYrjd49twClbpNzK+v6NO23JvjWS4ulLz+sangqgExAJ873Htd5TPX89Mzc/zo1CyW7SBJkA4bxIMm/YkA1YZ7WV+xTx7opmzZzOZrV/0enshUcF2oWQ5zxSqb0yF+5bGNfT1MhQy+9sgArnv1TamF+9PwQhlZlijXG8wVanSskmkr3HkB33vXl6VMC1mS+Ccf2c5vPXOeZEhnIlshoCkoshcQu5rPHOom0+yjuNyDm5LUGw6vj2YJ+7TWhPilke9rsR2X//ryKJmyxfaOEKmQsSwrLc/h/jgvnF/gjbEs4M33LC2CJYIGXzjy3rWjM+JwerqA47qYqkLZanB8JEPUrzFXqPHBnRt/AQwun28p12xKtQauCzJgqDL9iQCb08FWUPJ8sYZPU66qLPLVmC/WqDbvVyaylftyEQy8ubZSvXFNmTirzbfcLpoi0x3z8da4gsRSBZhJprJV8lWLeEDn++9MY2oKVcsrMfr8uXnawiamJmOoCh0RH//gyS1M5ao8tHn19iANx8Wvq2xOBznV/Bxf2oLlE/s6WSxbre9ZtsPvvzRKvmKxuyvCk1dZAnu5Q/1xjjdLTd6KBUZTU/j8snPO+bkiv/vCCNlynbBfZV9PhFPTRRbLdeYK3v3HgWZmbXvEbN3L/NW7MziOy0SmQipo8OzZ+VUXwQ70RsmW63REfCQDK8+n07kqlu3deE5kK/QlAtQaNtmyRTpk3NZz3bb2ML1xP5oi3zNlZ2/U0vGcK1T53RdGkCWJowPx1j1TW9jEzlbWDZpTFZmfP9h9zds+2Bfn+fPz9CcCa56bXhle5LeeOYfjwlimRKXutL7fCjTpibK3J7rq778xnmWymV0eNN67Xwg0e5V/+YE+ag1n3WvOg5uSDKVDhEy1dc8RC+jXNB9+XVc013W/J0nSELCt+a1TruuuHUoq3HKqIt+0zJV02Fz1uVZ7MzquFwF8erpArmIxkAwwV3jvrZAOG16vIEniFx8aYCJb9fp09USv+ST7+LY03z0xTane4JnTs7xvW5qHh5KMZcrUG15z26UeHZW6vWb08PXoifv57KEeRhZKvDqcQZYltnaEeGTLzUuAXCjW+MOXR6k3HBJBA5+u8PjWFIamkN6AkwpLNzSPbUnx2miGLW0hXr64iE9XeK4ZQTDUFmQyW6FYa3CwN0YiaKz7Pv7AjjYO9Eb56Zk5xjKVNZs0Xq102IscKNdtBpIBspU69WaJueXv43vZJ/d1cXamSLZcp1y3kSSI+FS2tYdIBg0eHlr/ZjQe3JglZO8FAUOj0qgjwQ1nhgi3lypLHOyLc2a2wGO3qfRDwFDXXHi4lyz1hcxVrFV/Pp3zytdJeJHtDdvh7Iw3hvFrUXZ1RXliW1szUtKl1JwoWj65r8jSFXuwAeSrDQKGStVyaDguqw1LTE3hy8f6yFetFdGal+qJ+zk+kkFRJDpvMIM2aKj8wgN9LJZqDCTXjpjb3R3m1ZFFFEli+zrlhSdzVSQkL6p1WfPy5YrVRmuidG6d7DOAN0azaIrEJw/c+jKhy9UbTrNPkUTDgc6on02pIL0J/5qlmz57qIfFVSZ513KoP0auYhE01XVf+43mZo65hXvXpnSQkYUyAUMhukFbENwPOkMmS20W26LvXZeeO7+AqcnUGg47OkJM5bxz+VrXW22d+YnHtqTY0REm7Fs/C3o1lu2QbW5zrlBjf2+s9RxL2ahL12xZktZdnP+z1ycYy5QxNIUvHuklZKokmwtxn9gfv2fLu+arFm0Rk2zVomG7+A2Vf/FzO0iFvfHFG2NZnjk1i67KfOlo300JnupPBNjZGaZQbXCo794ONF2PLEuENljvzE8e6EaWJIKmyoHeGCcmcvQl/JiaTMSnt/pYJYM6+apXbu//fPZic7zZi19X2dEZYcc65R99mkJb2MseXS1LbrZQ5Y9eHsN2XVwXtraHqFo2+aVzwRXGlms50Bu7rYHP2bJFqd6gVPMy2DoiPh4aStCwXaJ+fc1e6U9sS9Of8JMMGSyW6mtmEg6mgmtWJtjWEWIsU8Z23Fbbmz94aZRs+foXEW/EeqXW71f5qsXvPD/Mq8MZNqUCrWsdwJ7uKI7rZTTfbFfTY7tmeZXWACQJYn6NTNlbA7gavXE/b43l0FWZA70xtraHsW23VcJYVeSr6qd8NcEy67mud50kSV+55Ft7JUnCdd3fvaG9ETYcRfZS6vNVi/aIQVvY4OFlk2yfPdTD/t4obSGTeEBnR2eYoOn1v7hWbWGTrphJttxoNd1uC5t87nAPpVoDVZY4PpKlP+m/oQjpJa8OL5IpWzwwGCdkanRGfXRGfezvjSFJN/+Gf7FUx7K9uqm9Cf+65YI2kqG2UKtPWTJo8OrIYutm6eJ8iYbtosgyA6kAfl1dd1AsyxLpsMmnDnRfcwTVaoKGylcf6seyXXy6guu6HOqPkS1bPDCwepTSvebwQIJdXRGmsxXy1QaaKvPIUIJHt9wb77972eH+GD89O4dPU9iUvj+jKTeyX/vgViqWfdMibAXPh3d3cGIix7ZVoiMXS3X+/PUJpnIV0iGTqVyVWEDn2GCSstXg4aEkB3q9IJ0vHevjhfMLdEZ9151l/9SOtma5vOC6k3Cmplwxg6Yn7uevPzqILEnXPGG4mnhAv2Lj4AcGk6RDJpoir1tueSbvRfUtlOpYjoMhX/63pMMmqZDBxfniutlnkuT19pSklX0Pb4cP7mzn2bPz/PTcLD5VoSvm4wM729jZGeHZc3OYmsIDA4kVi3yaIl9TJmPUr19XhKYg3Au+/EAfXVEfHREfvfE7V4ZJWF9v0k8qaOC4LptT3j2c47rMF2okgl621qcO9PDc+XlkSVpR5vhqSZJ03QG8pqbw/m1tXJgvcrAvRlvY5GuPeFHgS/fnDwzGSQZ1QqbWmjCbL9Z4dThDT9zX6sU0W6ghSxISXjQ5wBeP9FJZoxzUvWJzKsjXHh7gP/zkPIosMZQOkQiuLJsGXnBIply/KYtgiizxgZ1XX55LuHuETY0vH+tnoVjjx6fn2NMdJeLTGEgGqFo2L15YpD1isqcrQsWy+eGpWXIVi2KtQaZsXdVihyJLfO5wD+V6Y9VFwoVivRmo5L0/t7aHCJkaj29NMbpYvmOZctdqT3eEj+7p5AcnZ2gLGcQCOp/Y18U7kznKdZujawTZKbLEUFuITangdc+DGaqyoqpDsdZoBQ/OFKrX9wcJN9VCsY4qe2VTwz69VRoUvIzdg30xtJtwH3g9HtycZCZfJV9t8NlD3fh0ldfHMszkaywUa1e8X96Ueq9amK7K3KliANd7ZT+87N8m8H7gNUAsgt2HPr6vi6hPJxUyeHxrakWGl6kp7O6KLvvae8s1HK7Y1HE1XzjSx9sTuRUTKB2R9yKi+29SVO14pszPmk1Lbcfl6V3vDdhuVamXwVSQvT0RSjX7no2O6on76Yn76UsEGFkocag/zumpAjOFKsPzJWwHfnJ2jl84enkJq+VuZgSVF3Hg/VuSJB4Z2pDtDa/bM6dmSYUMilWLXd1e+vIHdrSJkkYbwN6eKKOZCpHrDCwQ7ixZlsQC2C2wdJ1ZzY9OzVKue31E9nZH2dERppZ0qFo2EZ/Go1veG8OkQyYf33djmUhtYZOnd3Xc0HMsdyfOy1fT5+qJbWmOj2QYSofWDBCaK9SYK9QIGhonJvNrPu/enihzhRqGqjCUvjl94q6WLEv8+oe3se9ElDMzBXZ1RdjTHeWV4UXeHPOaNaeCRiuwRxCEa5MIGnzmUM+d3g3hCgaSQTpjPmzHbfXXkCWJY5sSDM+XeGAwga7KdzRgc3d3hN3d780HXHrtkSTpsnP1j07OMpGtcGo6T2/cT8jUeGpHGycmcitK7yqydE8vgIF3vfvYvi4yFYufnJ7D0BTOzBbY1sz6fmAgQdWyifp1+m6w8opw7/jRqdlW6dFfenigFcS1fK4sYKg8MBCnWrdJhnQ6r6HfqbLOHM9QOshEV4Rqw+bgsrmy/b2xm9YG5XbQFJkvHOnl/dvS/Pj0HImgTrZc5+J8GYCT04U1y8nBzZ0HCxoqj21NMbJQ4sh9EgB+t+uN+5u943w8sS3dSv4AeGpnG+9O5tcNJryVFFni08vGcLmKxc/OeHPmhap1VeO7tTIdb6frLYf495Z/LUlSBPgvN2WPhA2nLWzy4T0dvD6a4fxckc3rTFokQzrnZiX066z9uqsrsmp/iIVijXcm8wwkA+tGK18tCbg4X/TqsA7enqgSRZZ4YtvtTUG+2U5M5LgwX+JgX2zV3i8AU7kKxWqDhzYlSYdNemJ+GrbD7zw/TKHaWLPkkHBr1Bs2b45lSYdMfvWpLfjv8Zu+e0k6bODXFcI+VRw3QVgmV7Z49tw8sYDGscFEa2Er0iy7tL83xif2d7Vu3j++rwvbcXllOIMiw/6e2Kol/e4lZ2cKTOerHOiN3fBibF8icMU+qD5dYbZQJVu2GGpbe2EtbGp86sCdyZQ6N1tgKlfl6V3tfOZQD67r8ty5Bd6ZyFFr2Pg0dcOVMBIEQbhWyYBOwFBpOO6KMr1+XcFvqBjaxuzfoioSIwsl0mGzlVF9ac+h+4njuOQrFsVqg44oKyZbI37thgOBhHtPxKcxnqng0xWMNbJRXNdlIluh0CwlnqtYN6VKk6rIt71c361g2Q7HRzIYqsxnDnUjSRJnZwoAzbYUt3ecebPLQTqOy3Pn5ylWGzyyJXXPBxTcLA3b4Wdn56nbDo9tSa0a+LitPdwKVLgbGKrc6vF6tSUR7wY36x1ZBoZu0nMJG9APT85wYa6EJMFXHzTXTJmv1G3awgaGJqPexAmm77w9xXyxzlvjWX7lsU1XVUt0PadnCnREfNQaDukbrDl6v6haNj84OYPrQq5c58vH+ld93J+/PknVsjkzU+BrjwwC3qDm80d6mSvU6IndWK8T4dqcmMxTbzjMFqqMZcpsvYsurML63p7wjt1cocZ4psL2DjE5KwgAL1yY50zzhrIn9l5m2Pu3pdmcDpII6pfdXLw5nuW5c140m6kprVJJ96JMqc63357Cdb3eBB/b23nlX7pB5XqDiKmhKzJ2syn33SRXtvjWW95rsliq8/F9XVycL/HK8CIAA8kAT2xru+E69IIgCHe7E1N5itUGLi5vjWfZ1xvFcV1+dGoW1/V6PH7xaO+d3s1r1nBcIj4NVZZo2C73+9zsO5N5nj+/QM22qdTtG+43Ktz73r+9jaG20Krj6CXnZot8881J3pnM0x3zoSoSH95986oibHTHRzK8cH4BgJCpsjnttQ75/BEVWZKuqcT23ejiQolXhzOAdz/1vm2ixcbVODVd4I2xLOC9LzZCP0rLdtAUmYhPa5Uq3QiutyfYN4Glv1IBtgN/fLN2Sth4li6CqiyhKGsvbqVDJlXLIR02VpRNvFFLJRB0VUa+Cc+bDBqYmkLQUIndhMiV+8HSCTBbttatB2uoMlXLxrhk4BQ0VBEpcgfEA94g1lBl8V7fYJLNY6cpMlGRQSkILd41qICuyoSXfTZkWVozUm15ROvN7vl5t1EVCUWSaLjumpG8N1vQUIkGdIy6TfIuXEhSFQlVlrBst3X8o34dTfG+t7U9LBbAhFuq/9e/fad3QRAAr+yrocq4QCrk3RtIkleCK1+xSAQ35v2CT1OI+nV0VUa5x7O9r4ahyfh1Bdtx6RZBqMJVUNYZRy8xVKX1GVNlmcQV+s/eb9a631je4mUjiy4FGjjuhr1W3AmJoI4sSTiuS/I6e1HfbqosEzBUNEXGt4FaqVzvjPO/XPbvBjDiuu74TdgfYYN6Ylua7piPVMhYdyHj5/Z1MpOv3vSJhI/t7eT8XJGemP+mlDDa0x2lLWxiqspNaQR7P1BkiS8c6WW+WFv3Iv7pQ92MLpQ3VMrsvexvP76Zw/2L9CcD192gWrgz/uZjm9jVFaEn7qdDRG8KQsvh/jjdMR8BQ11R3mc9OzsjGKqCKkv03+PXp5Cp8bkjPcwX6mxZpzThzeTXVb70QB/5ikXHNfSHuF0ChsrnDvcyW6i2SmPFAzpfPtZP1bI3fGSuIAjC1XpwcxK/oWI1HA4PeG0BJOCLR3pZKNXo3KCTtR/c2c5gqkB72BS9j/FKQf6jp7cxV6hxqP/2tH8Q7n29CT9fPNLH0ztrpMMGnVHRU265fT1RgoaKoSo3pY3L3SYRNPjKg2LsfK06Ij6+cqyPhuNumKA7n67wucM9zOSrt72P84243p5gP5EkqQ043PzW2Zu3S8JGpCnyitJBVcvmuyemqFoOT+9sJ9aMANEUme7YypN9rmLxvRNTKLLMR3Z3XFezPJ+urNor7EaIk/a1MzXlsuM7m6/yl+/OEPFpfGhXO2FTu+nHSrg+LvCDkzPkqxbbOjbOhUvwTOerjC6WqVgO/YnAPd/DSBCuxWrBGD89M8fwQokHBhOr9gDZnL49C0LLua7LD07OMp2r8NiWNL23qQF9OmSu6PVyO9ztGd+pkLHixnNkocRPz8zRHvHx5PabW8FAEO5H45kyz5yaJRUy+cCONjFuuYvt64le9j2frtCtb9xJW12VN1yp45+cmWNkocSDmxLr9l2/krXmW4bavFJswt3txESO4yMZtrWHODqYuNO7c0W9Cf9tG8/e7Szb4XsnpslXLZ7a0UY6ZN7zn7mIT7vtvc3uBbENmDWZDBp3JHPt0jnma2mHdF01UCRJ+izwMvAZ4LPAS5Ikffp6nku4N52fKzI8X2Y6V+WtiRyW7fD8+XleHV7EdVfWC31nMsdktsrYYpnTzR4ed9JMvsozp2cZz5Tv9K5saA3b4YXzC/zxq2PM5qucmy0yuihe07tJveFwdqbAayMZ/uTVcZwNVMtXgGfPzXN8JMNPz8wxU6je6d0RhLtaqdbg+EiGhWKdFy8sXNXvvDGW5dmz81Qt+5bt11yxxomJHPPFOi83+09tNPPFGs+cnmVkoXSnd+WGnJjI8dMzc1Tq3vF++eIi88V66/gIgnBjXh3OMF+sc3IqL8YtdzHHcXlleJEXzi/QsJ3W9y/MFXnm9CyZkjgf3g6FqsVrzXHLCxdubHyw2nzLyak8PzkzR7HWuBm7K9xCz5+fZ7FU5/nzC9j38P161bJ59ux8qzfSvWBkocy52SKz+RpvjGbv9O5cNct2eP7cPMdHLp+/FYQ7pVC1+PHpWb751iRzhdp1zTFfbzjmbwCHXdedBZAkKQX8APjT63w+4R7TFfXh0xXqDYe+uJ/XRjK81By8BU2Vbe3h1mN7mz+XZYmuu6Ck1zffnKRQbfDuZJ6//fgmEfl7nd4cz/LihQXmizUA+hOi3N7dRlMkclWLiUwFn6bwzmSe3d0bK0LyfpYp1ZnKVTE15Z6+IRKEm8GnKXRGTSazVQaTV874Glko8cypWQAajsPjW29NY+eoTycR1Fko1jdsmeDvnphmvlDjxHiOX3l8E9o1ROPdLaZzVf7q3RnAm4T5wM52BlMBxjMVEkFdRLQKwk0wmAowvFAi4tNEH9q72MnpPM+enQe8e4VD/XEcF7755hSO6zKbr/K5w713eC/vfQFdpT1iMp2rsukGxweXzrcsFGt878Q04E0qfnRP583YZeEWGUwGeXsiR3/Sf0/3s3vxwgKvNxeKYn6NvsTGHBcv1xb22sWU6/aGKrd+fCTDSxe9+duQqa1aQUMQbrdnTs9xfrbIQqlG0FBJBIxrnmO+3kUweWkBrGmB68wqE+5NUb/OLz88gO24mJpCofpehJFfW/m26475+euPDiIhod+mBu3r8esqhWoDn6aIBbAb4Gse52TQ4OmdbQy1ha4pTVW49WRJ4rOHevjOW1OoinxdpUiFO2dbe5hCtYGhyoSusu+RINyvZFniMwd7qDZs/PqVh7+mpiBJ4Lpc1eOvl67K/MLRPuoNZ8Oeg5eaIRuajLxBx01Gs4m77bit43CwL872jjCGqtzTk06CcLvs6Y4ylA6hNz9vwt1p+TVv6Xwo4V2vqpaN7xZeE4X3yLLE5w5d/bhlPZfOt+SrFpoiYdku/g069rifPLmjjWObEvf8sVp6n0vSe2PLjS5kanz1oX4azXnRjWL5e+1eORbCxudvvhfbwyafP9JL1Kdd8xzz9V5NvydJ0veBP2x+/TngO9f5XMI9SlNkls6Xu7sjBAwFTZFXbQBpqHfPifUT+zsZWSjfk40qb6cdnWF8uoIqS+K1vIvt7IwQ0FVkSRK1uzeYR7ek6Iz6iAdEloIgXA1Zlq56IqktbPK5wz2Uag02pW5trzBFljbsAhjAR/d0cHG+RGfUt2EntmMBnc8f7iFbsdi87HjfygVQQbgfbeRz3f1iIBng0we7aThuK0NZkuALR3qYylVv+TVReM+1jFuuZPl8S9jU+NzhXhZL9TvSD1W4doG7uKfqzXK4P0Y8oBEw1HuqgpCqyNxF051XZU93lIChYqgy3TExRyTcHR7fmqIn7icR1K+7F9l1nUld1/01SZJ+HngILzDot13X/bPr2gPhvjG4QQbMfl1le0f4yg8Urmijlna632yk1HzhPYossbVdlCYQhFulI3LnSzRvBKam3BPjpnTYvKcmXQRBEK7XagGMUb9OVJSxvGekQgap0PVNIgrCrSBJEpvT4t72biECHoS7jarINzz/dd3hBK7rfh34+g1tXRAEQRAEQRAEQRCEDaH/1799VY8b/s2P3OI9EQRBEARBEISrc02LYJIkFQB3tR8Bruu6Gz8MVBAEQRAEQRAEQRAEQRAEQRAEQdjwrmkRzHVdkZsqXJWFYo3jIxl6E362td/etVHXdXllOEOp1uDYpsSGakC5US0d7564/54oiXQ/eWs8y2y+xpHBOGFT9JXaSPJVi5cvLJIKGeztid7p3RGEe9J8scZrIxn6kwG2tIlh8N1iOlflrfEsm9LBm1qu5eJ8ibMzBXZ1ReiMinKYwo272qwpQbhb2I7LSxcWaDguDwwm0FWv6fzp6QIjCyUO9MWuuxeHcPeZyVd5cyzLYCoo+oMJd4Xh+RJnZgrs7IrQdQ+MxV4dXiRftXhgMCF6zQpX5Y2xLPOFGkcH44TEHN1NdVd+AiVJ6gS+BewAgq7rNu7wLgnX6IcnZ5nIVnh3Kk93zE/wNjbyvDBf4rlz84DXTPaxLanbtu371Q9PzTKRWTrePnGi3iAajssPT84CULFsPra38w7vkXAtfnpmjrMzRQA6oibpkOhlIwg321+9O8N0rsrJqQLdsY1/I36v+N6JKTJli1PTBf7245tQFfmGn9NxXL715iQNx2UsU+GXHx64CXsqCIKwsZycyvPSxUUAfLrC4f44juvy3RNTuC4slup8/kjvHd5L4Wb5/jvTLBTrnJou8CuPbWotegrCneC6Lt96axLLdhldLPO1Rwbv9C7dkJGFEj87O9/6+oltbXdwb4SNYDpX5ZlT3hydZTt8aHfHHd6je8tduQgGLALvB/7sTu+IcH3CPpWJrNcsXVOk27rtkKEiSxKO6xIy79a3+L0lbKpM4B1vMXDeOGQJdFWm3nAI+8TC5UaztNisqzI+kfEqCLdE2NSYzlXx6TLaTVhoEW6OsE8jU7YINMd8N4MkQdBUyZYtMX4U1iWyu4R7WchUkSRwXVrnQgkJv65Qqtki2PEeEzY1Fop1/LqCIt/eeRtBuJQkSQQNlUzZuieq1AQMFUWWsB1XnDuFq+LTvTl0yxbvmVtBct3VWnzdHSRJ+jHw5JUywUKRiFv3p2/PTgk3zbb2EBNjo7R19jCdryIBHVEfxrJFlFKtwVimguO4yLJEw3Yua0onsXqjOuHGKJKELHnZQorsDUYcFwxVJurXMDWF4eFhUh3djC2WsZy78yhIeItzEZ/GXLGG60KgOch3XCjWGriui6l539NVGUWSsBwHVZYJGAohQ2OxXMe2XcI+jWLNIlOqI0kSqZBBZJ0FpHLdplC10BSZWEBvvV8zpTqW7RA2NXz61S9gVC2bfKWBokjE/To3Mvc3PDxM3Zeg1nCu/0mE2yoR0OmM+hgeHqagxVb8bHdX5A7tlbCetydyK77e3RXh9XfPokZuzbjlStdEGZBkCdd1ufS0LeFlUCsSWLa74nmWP68EyJKEi4vrvvd9WfImyny6gqpI5CvWZdtYepzjvvc89hXGokuPvxNkCTRFJh7QSQaNa/rsLT/2YaBvlcet9v640nNd7ePaNEinb+8213rcrdzmWo95dyKHfclzDQ8Pk+7sYXSxjGXfu9e+Sz8z633W1jtnSHiLg6t9/hRJIuxTKdbs1mtpqDKGKuO44NcVqg2HQsXCBTRZwgUc120tKNuOi+OuPI+s/Dskoj6NjqjJ6MgIvX19LJbqOC5EfNqKe4YryVUsqpZNwFDXrVCRq1gsluooskRn1IfrumTKlrdIaqjM5Ku4zfFwsdbAaY6TXbwxs9N8sXRVbk18KbJEw3G9v9dx77n7FkWSiAe9c6S6xiT68PAw/f39t3fHhJvmVo5bhJWWn6+XgjxUWUKSvHtan6aQq1gARP0aUb9OplQHQJElLNshoKsEmwuYw8PDK+ZbCrVbV2Rp6dO//BynKzK24664/qz2uKXrjdxcBAmaKoulOrbjoisypq6gKzILxTq24+DTFWJ+HVWRmS/WcF2XeEBfMWlcsWzylffuw/PN64BfV1cNdqk1HOYKNRq2Q8SvEfPrq/6dxVqDUq2BoXrj3YlsBYCOiEmt4VCp26iyRNin4dcVZvJVKnWHoKliOy7Zcp3GFQa2bSGDdNhkeHgYf6KDYrWBT1foiNxY5Y9s2aJcb+C4YGoyMb/enBdxWSjWKdUaIHnHLWRqLBRrt/Q9s1FoioTjeO9RQ5WpWPaKsZGpytiul8kW9eu0hQ1GR0bo7O5lZKGM47qkQwYz+epdO28meOPn3niAkKkyPDxMrK2L2XyVhuONXS3bwb4Hx3H3kmRQpyPi4/jx467rupfdKGzYRTBJkv4G8DcAlHDqYPff+s+3ee+EG/WZ7X6e+T9+jb/5r/6IH7zrpXv+/MFuPnuop/WYf/ODM/z/fnYBx4Vaw8Zx4N6dsri76DK4zSGqJHmLlj5dZVMqyJGBOJ/Y38WhQ4f40m/+Ab/1o7PU79IDIwHpsEFbyODifIlawyEdMumK+ZjNVxnLlJEkCVOV2dEZQZGhPexjMlehLx6gN+Hn5/Z28qfHxwHYnA7y7bcmeWcyj+O6fHRPJ//o6W3Ia9z0/9Ero0xmqwB85VgfiaDBbKHK7784CkBP3M+nD3Zf9d/z396Y4MJcCYDPHOqmO+a/7tdm7/4DlD/8/8Cy797rgLDSplSAH/7q4xw6dIj5J//Fip8N/+ZH7tBeCeu5NGNg+Dc/gtExRMcv/n/uzA4BuiI1JyRWfl/Cu7Fzcag31l9M0xRwHC57DlOVSYUMJAnGFytXvGYr0uXPcTeRgWTQ4NGtKf75x3bwvoePXfVnb7Vjfz2PudmPu5+3eejQIX7pX/5X/s0PzlBt3MVvvFvgeheT11okk4HdXWFOTheoNz/EIV0h2Zy4CxoKF+dLDM+XcZuPV1UZx3HQFAWfrlCsWVj25QvyS1QZdndH+d8+vZfPf/hx/ut3fsw335wEYEdnmA/ubL+qv8GyHf7tj84B3kLWX3907fJK/+NfvMPJqTwA//CpLVi2yyvDXmk4XZX56Zk5bMelXG+wUKxRsRxvUkyRWCxb2M1JMlOTSYdMchWLVEBjPFfDdRwq9+D7TpHg6V3t/PIjgxzoja36mEOHDvHqq6/e5j0TbpY7PW6532gSWM1gIU2RkGWJREAnEdAZSAZ4dSSDT1fZnArw1x/dxE/PzOG4LlPZKl0x34rz3KFDh1bMtyyVurxVLr1mGKqE7XDFRR/wzvmKJLG3J0Y8qHNxrki2bBHxaRzqjzNXqHFyOk+uXKcz6uOjezpJhXT+7HXvunB0IM4//MDW1vP96fFxxhbLAHzxSA9/+MoYrustJv6txzddtv3vvj3FH748Sq3hsK09xD/5yHYM9fJg1f/z2Yuthch8uc5fnpwB4FBfjO64n1eHM3RETPZ0R3lkKMlvfu8UxWqDZFBnLFPh/GyB0hUmT7qjJs/++vs5dOgQe/7ub1GqeWE9/+WXj1535Z2qZfPvf3ye4YUSmVKd/b0xPrCzjZ2dEc7OFPjdF0Y4M5MnU7bY2hZiW3uY//TcBRZL1nVt716iyqDKcqtqwFyhvuLnuiwRMBQajsvenij/48/t4vMffpx/8G+/zm/92Bt/7O6K8r13pu/E7gvX4O89sYlf/cA2Dh06xNO/8Z/5wclZSjULuRkoX607Yk76LtYZMXn+H78fSZKOu6576NKfb9i6Lq7r/rbruodc1z20s1/UyNyI/vnPHwbgyW1tpEIGHRHfZf27PrCznc6on5CpsqMjhN9QUGVvMKUpEj5VImTIG/eNfBdQ5ctPBDLQHjXZlA7i02S6oz4O9MUYTAXpifvY1xNtPfapHW0MJK9/IeZmk5r/yXhRcyFTZXt7iF96eJCwTyfi03lgU4ztHWGObkoQ8+v4dZWjgwlSIYODvXG2tgfZ1RmhJ+bjcH+cjojJQDJA2KexryfKB3e20xY2GUwFeXgoueYCGMCB3hghU2Vbe4h4wIsmSwYMhtqChEyV/b3Ra/r79vd4zzeYCtAevrFIME2ROdK/+mSFcPcxFInPXMOCqXB/8msyprr2OSnuV0mFDJJBHX1ZuWJd8c6X8aDOUDpE2FTRFQlTk9BlCb+msHSqCxkKqZBJ1K8T9alIeNeSVEAl4tfY2xPho3s6ifg1Lj09+lSJZEBDkbx9TYUMjEvKJsvN/yRAk6EtePnz3A66DBG/Rm/CzyNDyRvqb3onFqnX2mb4DmzTuAPb/PDW1Y/XU9vb2JQO3cI9urM0WSIZ0Fk6DUhA1KfSETYxVQlVBp8moyne5ytoyCvOBZoMhuwt5MT8GomAhqnKaMsGi7IE7RGDo4MJtrSFUGTvHLK1PciRwTjxgM6jW9M8NJQkaHqlsrd3hOiKGARNjZ2dYQaSATrCJjG/RkCXUSVv4nf5NuIBnYc2JeiJe/34euI+euJ+Ij6NPd1Xn/2sKTIH+2IEDZVDVxj3fHBnG1G/xpa2EDs7w2zvCJEI6rRHTD62t4PumJ902ODn9nbSHfeTDhlsbw/TlwzQGTHx6wp+XWFnR5iBpJ/BVIDuRIDt7SESQZOAfu/dtXRETfb2RBlKB+/0rgjCXW1pfAOX338rkne+TgQ04kEdU5WINTO9trWFaAub7O6K8uCmJJvSQdIhgw/u7GCoLUg67AUfvH97etXz3PL5lltFkb1xnV+XMZvrRqoMuzrDJIL6inFcQJcxNWnFaxH1qYRNlc6on20dIT5zsJvOqI+OqMnu7gi9CX/re21hkz3dEQ4PxDnYF2dzOkh3zMejl8wlHeiNEjJVhtqCpEImR/rjBA2Vw2tcB/b0RBlqC9EWNnh0S2rVBTCAw83n2dcT5fNHe0kEDOIBna880E9PzM/mdJD+RIBD/TF6E37290SJ+DQe2pziE3s7SAR0rnQp+NWnhlr/fmpHO0FD5bGtqRtqPWFqCvt6ovQnAmzvCNMZNRlMeuft3oSfHR0h2iM+dndF6E8GODoY54M72rjN3U3uOrIEQ+kgsYBGOmRwdCBOKrgyS/CBwTjpsEk8YPDQ5mRr3PL0rna6Yn5ChsZnDnVxpCdwJ/4E4SqlQxqPb30v6/npXe10x7x73gN9MdrDJgFDxljnXlu4s772yPo9nTdsJthyhw4dckVk2cYkogI3NnH8NjZx/DYucew2NnH8Ni5x7DY2cfw2LnHsNjZx/O4O19LPbnmAgTh+G5c4dhubOH4blzh2G5s4fhvbhsoEkyRJkyTpB8Be4PuSJB290/skCIIgCIIgCIIgCIIgCIIgCIIgbBzXX9flFnJd1wKevNP7IQiCIAiCIAiCIAiCIAiCIAiCIGxMd2UmmCAIgiAIgiAIgiAIgiAIgiAIgiDcCLEIJgiCIAiCIAiCIAiCIAiCIAiCINxzxCKYIAiCIAiCIAiCIAiCIAiCIAiCcM8Ri2CCIAiCIAiCIAiCIAiCIAiCIAjCPUcsggmCIAiCIAiCIAiCIAiCIAiCIAj3HLEIJgiCIAiCIAiCIAiCIAiCIAiCINxzxCKYIAiCIAiCIAiCIAiCIAiCIAiCcM8Ri2CCIAiCIAiCIAiCIAiCIAiCIAjCPUcsggmCIAiCIAiCIAiCIAiCIAiCIAj3HLEIJgiCIAiCIAiCIAiCIAiCIAiCINxzbvkimOT5kiRJ/6z5da8kSUdu9XYFQRAEQRAEQRAEQRAEQRAEQRCE+9ftyAT7LeAY8IXm1wXg392G7QqCIAiCIAiCIAiCIAiCIAiCIAj3KfU2bOOo67oHJEl6HcB13YwkSfpt2K4gCIIgCIIgCIIgCIIgCIIgCIJwn7odmWCWJEkK4AJIkpQCnNuwXUEQBEEQBEEQBEEQBEEQBEEQBOE+dTsWwf4N8GdAWpKk/wV4Fvhfb8N2BUEQBEEQBEEQBEEQBEEQBEEQhPvULS+H6Lru70uSdBx4PyABn3Bd9+St3q4gCIIgCIIgCIIgCIIgCIIgCIJw/7pli2CSJMWXfTkL/OHyn7muu3irti0IgiAIgiAIgiAIgiAIgiAIgiDc325lJthxvD5gEtALZJr/jgKjwMAt3LYgCIIgCIIgCIIgCIIgCIIgCIJwH7tlPcFc1x1wXXcQ+D7wMdd1k67rJoCPAt+4VdsVBEEQBEEQBEEQBEEQBEEQBEEQhFu2CLbMYdd1v7P0heu63wUeuw3bFQRBEARBEARBEARBEARBEARBEO5Tt7Ic4pJ5SZL+KfB7eOURvwQs3IbtCoIgCIIgCIIgCIIgCIIgCIIgCPep25EJ9gUgBfwZ8OdAuvk9QRAEQRAEQRAEQRAEQRAEQRAEQbglbnkmmOu6i8DflyQpDDiu6xZv9TYFQRAEQRAEQRAEQRAEQRAEQRCE+9stzwSTJGm3JEmvA28D70iSdFySpF23eruCIAiCIAiCIAiCIAiCIAiCIAjC/et2lEP8/wL/0HXdPtd1+4BfBX77NmxXEARBEARBEARBEARBEARBEARBuE/djkWwgOu6zyx94bruj4HAbdiuIAiCIAiCIAiCIAiCIAiCIAiCcJ+65T3BgAuSJP0PwH9pfv0l4OJt2K4gCIIgCIIgCIIgCIIgCIIgCIJwn7odi2C/BPwL4OuABPwU+Gu3YbuCIAiCIAiCIAiCINwl+n/921f1uOHf/Mgt3hNBEARBEAThfnE7yiFuAnqa29KA9+MthAmCIAiCIAiCIAiCIAiCIAiCIAjCLXE7MsF+H/i/AycA5zZsTxAEQRAEQRAEQRAEQRAEQRAEQbjP3Y5FsDnXdb95G7YjCIIgCIIgCIIgCIIgCIIgCIIgCMDtWQT755Ik/Ufgh0Bt6Zuu637jNmxbEARBEARBEARBEARBEARBEARBuA/djkWwrwLb8PqBLZVDdAGxCCYIgiAIgiAIgiAIgiAIgiAIgiDcErdjEWyv67q7b8N2BEEQBEEQBEEQBEEQBEEQBEEQBAEA+TZs40VJknbchu0IgiAIgiAIgiAIgiAIgiAIgiAIAnB7MsEeBn5RkqSLeD3BJMB1XXfPbdi2IAiCIAiCIAiCIAiCIAiCIAiCcB+6HYtgT9+GbQiCIAiCIAiCIAiCIAiCIAiCIAhCyy1fBHNdd+RWb0MQBEEQBEEQBEEQBEEQBEEQBEEQlrsdPcEEQRAEQRAEQRAEQRAEQRAEQRAE4bYSi2CCIAiCIAiCIAiCIAiCIAiCIAjCPUcsggmCIAiCIAiCIAiCIAiCIAiCIAj3HLEIJgiCIAiCIAiCIAiCIAiCIAiCINxzxCKYIAiCIAiCIAiCIAiCIAiCIAiCcM8Ri2CCIAiCIAiCIAiCIAiCIAiCIAjCPeeuXQSTJOlfSZL0M0mS/vWd3hdBEARBEARBEARBEARBEARBEARhY1Hv9A6sRpKkA0DAdd1HJEn695IkHXZd95X1fqf/17992fcMGXpiOoamsbktyFyuSqluU6jWsWxIR00eHExSrlmcnikxmPQzslgCFzqiPpJBk60dYWzb5mfnFjjUG0VVZN6dynFupoTruqRCBjG/RlfMx2zeIuRT2d8bZSpX48x0HkmGkKHSGfMzPF/Ctl3aoyaGqlCsWpTrNqamsCkVYL5U49tvTdGXCHCgJ8pEpgqSS2fY5M3JPNvbgnznxBS247KtM0LYUPnYvi4qdZvvvD1FOqjjN1VK9QY+VeHsTIGgqXFkIM5Csc6JiRzJoEG+aqEpEsWazb7eCM+emacr6ufhoRS5Sp2XhxeJ+nX8mszIQomXhxdxbYf+dJCJTJVcqYamSrRH/Ph0hQtzRWzboVSz6U0G2NUR5nvvTlKsOKgyVCybXH3lsXlyc4j/+LVHW1+/O5lDVWS2tIVWPK5q2cwVarRHTKqWTa5iUbVspnIVtraHSYdMACayFWp1m7cnsvh0BVWWmS9VcVwYSAT4yelZxjMVogGNowNJXhlepF63KdQaNBo2iibj2javj+Xoj/twgblCnbptEwvoHB5IUKs7vD62wEzeIh3UKdUbRAI65WqDqVwV2wZVA9kFF2gLG5TrDjg2cyUHXYW6BXVAA/wGVGvQAIIapMIGM/kaJQtUCRQJqg6EdfDrKgvFBqoEKGA1wMbbTkAGXYNcDaKmRCJokKvZuI7NpnSYTakQxZrFuZk8uqrSm/DRFfPjuC4LxTqFmkXcb9Ad87OtI0zEVPnLd2c43Bcn6NOoWg18ukrEp9GXCGBqyopjZNkO07kqqgS/9+IwF+fLBHSJZ07NslBx0PD+5usRVsECTAVCfp2dHSHeHM8jyS5H+1N87kgvs/kq70zmeGAwQcjUUWUZ23WRJNjXE0WSpBXP2bAdpnJVUiEDXZGZyFaIB3QChkqmVGeuUCNoqnRGfSt+z3ZcJrMVEkEdv776qXPp/doRMVGV92IMHMdlYpXfrTccxjNlHNelJ+7HUFe+to2Gw/HRDJvSAZJB8zpfxfdMZisEdJWIX2t9byZf5b+9Pk7Ep1FtNHhjJEdQl2iLBfj+iUnmC3X+7hOb+enZecYXSwymQyQCJo5rc3qqgE+XOD1dwrZtdnSEyVQbLBQtVNkh5DNoWA1mCjWSQYPeuI/XRvN0RHRSER/Vmo2qyczlyiyU6vQnA4RMHU2RwXV4Z7pEQJc52h9H0xROTuaJmRqRgIauyIxmq6QDOrbrMJ2tYereea1ct9Fkif50kPl8jUq9zni2jqlLOA58cEc747kqpyZzBHSNwVQAn6YwvFhmNl+hJ+ZjsWwxX6igqSpDbSHawwbn5sosFMq0hXwMtYeYK1hM5kpcmC3QcKEvahINGIwtVmiLmrQFdS4uVihULFRZQlUUJMem1HAo1xy6ohqd8RCODZlylVK1TqkhUShXiQYMPrq3i5fOz1N3XHZ1RjjYH+eTB3pax275dW/4Nz9yw+8P4dZZOlbLj9Ol45a2gISqavTETI5tTpEp1Kk2bOqOS1fznKIoMvu7IrwylkGRZB7fmqbSaJApWuzsDPPuZAFZhnTIJGDInJktsa0txNhiiZ+cnac9ZPDFB/pwkTg9lUdXZeIBnddHM0R8OjXLxsGlN+anZrtsSgXIlC1kGXyawlSuSt2ymcpVifg1jg0mmC3UmMhW8OkK6ZDB+dkiAUOlUmtwfq5Ew3HojvrZ1BYiFtDIlCzawia6unYcVqnWYLFUpy1kcHq6wMnpPIOpIK4LE7kStg1T+Qq6rLCnK8xYpsLIQonxbJmQodIVMalYDpbjXZ/KtQY1yyFTqYMDPlMhW7Yo1RpIrkO54VKp2SSCOoYi05UI8MFdHWRLdfJViwN9cfb1Rlech1c7ppf6l99+nX/7s0lSfnjln639uKXn+nePwEc+svbjDv/Pf0nQUHjmv3//mo/5737/Gf787TIacHadfVva5v9zL3zhC1d+3Hp/5y/+px/yk7NVwjK89b+u/bid/+TblBz45i/0snv37hva5if/1bd5fYYrPm61v9OyHZ4/O8efHh/l1FSBhWKFbBWcNZ9ldSEN4n6FhbKNY4OuQ8RnEPEpNFyXWs2h4bg4LhRrFomATiJk4CCxoz3M6FyR18Zz9McMao7EQ5vifGhPNxfmSnTFfZyZyTOdLTGyUKNqNXh4KEVP3M/YYpmOqJ8HBhPUGg5Rv8Z8ocZiqU7I1NBVmWTQYHSxRK5iUbcd0iGDyUyF6XyVgWQQRZY41B/HdV3GMxXGM2XOzRZYKNQJmTIhU2dPbwxTU6jUbbpiPkKGyrffmkTXFHZ3RpjMVvHpMgPJIPPFGsWaheO62DZIMkhIpEMG6bD3uVkaR6myxGS2wtaOMOVag+l8lf6En/FMhapl0xH10RHxkatYFGsNui4Zj90M88Uajuu27iOuR6FqMVeoocoSuiojSxLpsMlMvkquUiceMEgGjdZjz80WqdUbjGUrRP0GtbrNTLGCrshsSgYYy1QYni8yW6wRNjSSQZ181cZq2JyaKdAZNXhrPMdUpgIS+DWVbKmBA3RENDJlb6xh2S61hjd+vhVUwKdBV9Tk8ECSgVSQwwMJNqeDvDWeY2t7CEmSmMpWyFUsdndH1hw3CxvL8nGLT4JwQCXm0+lOBnhqezu5So2Lc2UmsyVy5QYAqupSqbuYqkJXzMdAIkDAVHl7LEs4oKNrCn5FodKwmcqU8akOY9kGPl1hd3eEvT0x5oo1FrJ5/uLdBaTmObVu2wR0lXylRjrsI+rXGF6oMpOrYKqgyBJIEiFDpy1i0h0PcH5yjsUaJIMGk4tVSlaDwXSQHUmNZ0eKJPwG1YZNtmIR8es8MRji9ZkatuWQDpn0JgIEVYU/f3uCqF8nFtBQJIl40GB3V4Th+RKaImM5Dpoq0xv3k/BpnJ0t8dy5OWIBnZ64n2zFolqt4aDy2LYUjwyl0VWZMzN5Xh1eoFJ3eGxLmmhAZ3i+RMNxyZfqPLQlSTrsnQ8rdZv5Yo3OqA9Fllac0+oNh9dXuX9cmm8ZTAbY/BvfXfM4K4Amgd8ECZlNCT+aJjO+WGVTW5j9/VFeu5hhKldhS3uQrz44wLszBc5OF4n4VCp1h7awSd12yFfq+AwNx3aIBw2ChkKp3iCgacyXaszmajy5K82erhjPnptHBmRJRlVhMBWkI2wymatSsRpoikzQ0EiFjMv2eSJbIWh48xUAuYpFplRHkSXSYeOye+wla927X4/pXBVDlXHxxhlt4dWvL1XLZipTYTJfYWt7iGTQZCxT4o9eHOHt8RyVhsOXHujjY/u6WvMY5XqDt8dzbGsPEfHrN7Sfl1oaB0T9GtmyhSxB3XYoVCzGF8uMZysEdZVYQMd2Xf7qxBTFmk0ipPLi2Qx1t4GCxETB+8yHdMCFRgN0FRwJCs3JIAVvDgvAp0DVBh3QdHBscFxwnPfmy6xLfmc9EpAwYXNHhIF4gMl8lZ54gGyxTt2x6UsGkFzwqRI/Pb/AQCKAocq8NpLBsh0WyzUO9cT56qObWtfhTLmO7UBPwsdAIkjDcUkFDeaKNeIBjcWSRSygY6gyJ8ZztEdMOlYZs4wtlJkv1djVFeHkZJ7//Ox53hjLsinhZyJbIxXS+eShbn58eoZ3JwqkQzpVy6FQbzCQ8FO1XHyawuZ0kLFMmddGsyT8OvlKHV2TGUiF2NERRpZd/uKNaXRVQldkbMfhqW0pnjmzwKH+GPt6Y/zpK+MsliqU6g5hn8ZsoYoqS7SFfVi2Aw4kwjq5coOJbJnBVICo36AtbDKe8eZK5ot1IqZOPKBxcqZAW8igM+ZjKltjUyrAVKbKufk8uiKjKwrxoE48oFNtOLw9kcWQoDfho2rLOI5NZ9RPplznzHSehg3JsI7VcNFVhc6IQblu49cVzs6WMDWwbZmQqZCrWFiuQ0fYj0+VmC9bhAwVQ5VxHJfJXJl0yEdHzMeZqTyGruDYDh2xIPGAxuhiGVV2OT1b5kBXmM8cHWAg6WdLW/iyY3h8JEM6bJArW1QsG8d1efbsHAuFGpoisViuk/AbvDmexVRc3re9Hb+hUbca/MnxUXRF5eGhJA9tSvLCxQx/cnyMnohJzXGJmTqPb2tjfLFIzXFJ+HVOTGTJVCz2dEeRHIfnzi+Q+/+z958BktzneS/6q6rOabqnJ+edzRHA7iJnkmACs0iKIilR0baSfa8tn+tjS7aP7rWtIx/bkmydY0lWpCgxiAEkQYIASGRggc05zOzk1DlXV/7fD9XTO7M7sxnEApznA7mYqa6uqfCv933e930etc5QZ5SQx8d8ocpcUSfglWgJBwn4ZDTDoayZSEAi5KWrJURb1Iffq5CtasSCPrZ2R5nJqRyczBPzeTiTLtMS8nFbX5ycaiI5NgsVi1LdxCu73HI8pNARDYGAA5NZMlWT7pYgXTE/I5kq7QGZfN3EcQSOJBH2SXRG/MxULTYkfJxKadhCsLkzQrZqoigSD29sI18zyNdN+hNh0uU6Po+HsqbTFfGQLluMZiuUqhpBnxfNMrGQGUoEMGyZsWwVIYFmgLexlsjAJ/f08vufuv3ya4UQ4iqWlB8vJEn6dSAjhPiqJEk/BfQIIf77atv3bdgqPJ/8v96UY5FZnhRLuIWHy0EBhOQu4qth6X4kwCODeY3ZtwS0R9zFpKJZCECWQIjlx+hXwHLAvsKBR/0edMvGuNKGNwkHfvvdvP+RB/i9v/kuf/bSOJIE//yxTdy1Ltnc5ouvTZCtGnTF/BTrFlO5Gvsn8tRNh119Mf7FezeTr5k8dybNt47MUtFMdMtBkSR3EZdAkaQf29/0dodfBgcJy3GLSPGgB9OBgEemJx7gQ7f18ssPrGsGZHv37uXf/Nm3GM/U+JvXJinW36yUe2UojfvdwX2GEiG3COYIh/ZogM/cNcDn7xlc9pnvHJ1jNF0lHvLSlwhyYrZM2K/wgR3d/P0bUxyeKjCUDPNTe/rYO9Ta/NxTJ+Y5PV8hGvDw8/cNXRIoO47gr1+boKiabOiI8OHbepZ8doHT82WiAQ9fuG/ILfIAX9k/xTOnUggB79rawefuXn6sv//UGQ5OFogGPPzBT99BJHD9JMKhqQIvnM3gkSU+d88grWEft+/eQ9vn/wvjmdoV14c1vPVQZPgnDw3zL9+/lb1795J9z/+x7PdrhbBbExcXuyZ+73H83Rvp/sIfXPO+Fkv6ovHvkE/G51HwKDKSEOi2g2WLJglg2O77sKga6LZAAvYMxtnVH+flkaxLWFsOOdXEtB0kXOIo5PMwkAzRHvETDXio6jYCWCjVmcjWqJs2Ub+HD93WQ6FmcHiqSDzsRZJA1W0qmkWlblC3BI4Q+D0y969vIxH20RMP0pcI8qm9/Sv+jbpl89evTlDTbcp1k6dOLFCoGyiShN+rUNFMbFvgNM6BIrsxzpuJgEfmgY1t/NHP3MFD991z1c/e0mv/Gw/28FuP33HZbS63r+F/9WQzHo34ZE787geu+J0f2xniDz736HV/5/Vs98/fG+OfvuvBS7a54989SUF/c75zteLhSvvau3cvv/Cfv8x/ffrsLfne80jgVSRMxy0aXXyISiO/CHhlNnREeGRzBxXNZLZQZyKnIksSewbjSLLE2fkKY5kqiiLhVWQKNQPTdvB5FNYlQ3xsdy8bO6L87b5JDkzkKdWt5vcpEvTEg83mnb2DCSq6ydcPzmI7gnXJECXNoi3qZ0N7BNN2ODVfxnbcJESzbOIhL1u7W/iVB4fZ3BXlqRPzHJoq8tr5LEGvQk882FhXNMJ+xU2GawZ7B1v5qd19HJkpYlgOD2xs486hVvbu3cuBAwdu+BxP51W+fmgGIeDDt/WwoSNyzfuo6RZ//doE+8fzLtkiYGt3jC1dUV4by3EuVWF7T4wv3LuOZMTH7//gDAfG84znVHetlQS2I+E47rosSe66frnc8VZGR9TP7oE4BdUkHvKyvaeF7xydwyNL7B5M8B8+vnPZ9VupeXUlrMU1Nx9Xe+5h+fm/3rjlRrE07nm7QcZ9ti/3rpEl+Ok7+2mL+Pjia5OU6o1CQsDDUDLIVEFDMyw8ssxgW4hv//r9IMn89asTlOomGzsj7Oxt4ZuHZwF3Tfvq/mmOTBeJBTz8YSNuWcq37BvL3/S/82rDsKXZ8+JnAl6ZvYMJTsyW0UwbRQaPInPf+iRbumNM5VQmcm6BcfdAgp++s5/BZLi5nzfG87wymsXnkfn83YMgwd/um+TwVIF40MfuwQSfvXvgkmMRQvDXr05QUE2G28N89Pbe6z0FnJgt8cypFKphIUkQ9Hp43/YutvUsJ9OFEHxx3yRPHJ6lWDdZ1xbmf//AFn7hL/czVagv2/Z3P7Kdn7tviL179/K+f/OXjKartEV8/PHn9lz3ca6E58+mOTxVZL5UJ+xTGElXsW3BRE4lU9WwGxfqevjKtyNkwO+VsWw3h5EkCPs8DLdH2D2YwLQdEiEf6YpGMuwnEvBQ1232jecI+xX+w8d30t3iFsL27t3LV77/PP/2WyewHEFPS4DnzqYpNp7zNdxaUCTY2dvC/+uxTTyyuaMZt/zNaxM8eWyeUt1ECEGuZqDqNqp5+fKsvEJN4GrqCWu4MWzrjvK9f/YQkiQdFELsvfj3t6ocYhwoN/5dAhIXbyBJ0j+SJOmAJEkHstncm3YgF6/zV3PD2rjE/OUgLvr39RA4AqgZNpppN/d3cQEMwLSvLqnSLRvrx8gInJtaAGC68cIXAnf6rQHHERRUt6iSKutopk1ZcyvvICjVLfI1k3zNwLDc82DZAscRWI7jngsB5q3IctyicIul7vkSAnTLwXYEhuWgmQ75qoF10c2Uqxo4QjSuy48XtrjwjNqOe7yGbWPaAtN2mC3WL/lMvua2IpXrFtmKy8jVdLcLTDVsHOFOL+Zqy+fXFv+7qlsY9qUPrOUIyo2AJn/RZ/NLP7vkYc/VDOqmTd20KdQunZdbKLnPQ0WzqBk3Fizlq8aS43SfK9t2/732hLw94DhwPlN7qw9jDW8hBBfe8QLQTQfTcrBth4puYTfef7rlNNYzgWpamI11W+BOfxZrJpYt0E2Hsm7hCIFlu1Mrli3QTBvbEWSqenONKtcNNNPGsBwcR2A6gql8HdW0MR33MyXVwnLc94FhOzhCIIRL5udqOpmqu+ZevEYuhWa6k+UA8yUNzbKxbQfTdtBMy+0yW3IOnB9DQm45brNRVbv+dfgbR+du6BiW/plV4+r+6H0j6g195/XgOwfKK/58aQHsZuO/Hr627adytVu22GAJ3OL0CgUwcOMeN28QlOomluMm4xXNwrIddMstQqdKGqbtYDvuGqE21geE26Fu2IL5oka+8VnDdi7JTaq6RUVzP1fRLcYyrgqG0yAAHCEwLJtUWaOqudOWmmlTt9x1wo0d7ebznqsZ6KZNTXdjrUxFbz5T2arejDmrusVcsd6Ml3LV69UTWBkF1WjmaZdbiy6Hmm6hGTaa6VDWLFTDXbNmCnXqho0QUDcc8qpBzbAoqSa6ZWM77vpp2W6es7imO+LtWwADN4dcjFlzNYNqI1+zHEG6rF3h02tYw+pYGve83eBw5efaEW6+l6+5jbyLf69uWlQX4zpbYAs3zzTsCzEJuGtYQTWbvEehZpAquy/cin4hblnKt7wZf+e1bCsu+oxpO8wXNWzHwXIczAafU6iZLJQ06oZN3bAxLfcdd2me7f69huVQ0U0qmolhOc34dfH3F8N9j7rn50bfM4s8QU13j9U9rkv36QgoqiZV3eUrqrrFbFGjrF3aSDyRuxDDLa6jBdVcxiXcDCwepzt97b6/q3pj2sW58Az+OOLtWwEOYDsOdiOHcSdPHaqahWbapMsXchnbEdQNm5mCe61Uw25yLouYK9ab/Nl0QUXV1wpgtyps4V7DdGV53DLbWD9rutXgnN216EpYaf1/u77P3k6YW4EDXoq3wyTYJ4A+IcQfrbZ9W1ubGBoaQgg3ibIdQVvUj0eWVvvINUM0/ke6ebtcAzAxMcHQ0NBbfRi3DN7M+0wzbXTLIeRTmpNIl4NqWJi2IOL3uJISK+Bar1+1UczxexRiQa/b3Sdd6PJbw48X74Tnb/EVdjOfGSGgoptISEQCnkvuT4F7LwsEUb/3LXkvLF47sfZeuuUhhFtMEsKV4FFkiYmJCeIdPaiGK7kb9K4s07KGWw9v1bp5pXXp7YCa7sYV0cDqccWbjctdv8pF63pVd4uukYAH+ce40K7lHCvjnRCzvJ3gCEFNtxACogEvjnAJW68iXZe84cTEBD19A+RqBv6GFO8abl1cvA6tPX9vX1zu2jlCrPh+0xtNDAGvgv8y8tUrQTcdNMsm6FUuK329hqvD2+nZc3Nkt6AXWZIjv1Xx1PVANOQ2bsZRvp2u3dXAsgU1w8KnyAR9l+aubwYvc6MQDUlyWH5PXg3eadfvnQpHCDKN4Yb2qL+5xhw8eFAIIS55Cd2qAt2vAf8Y+CrwHuCvLrfx0NAQBw4c4IenU/zpi2MA3L+hjX/67o035WCqusXfvz6Fath8cGcXGy/yrVrD9eNmSZu8E1Cqm3z5jSl0y+FDu7oZbr92eZbVoFs2/8/z5xECkhEfP3fv0GW3T1c0vrRvCuCy8gDXcv3GMlX+4pVxRlJVOmMB7t+QJFXWCXhlPnPXALGA98o7WcNNxdv9+ctUdL56YBohBJ/Y3XeJj9v1Yt9YjtfOuxPGj23rZEdvy7LfH5sp8sPTacB919y1rvWSfbzZ2Lt3L3/xrWf50Zk08aCXz9w1cIlf3xpuDXzz0Cxf3u+up+/f0cUv3L+O2+7YTfJz/xXdshlqC/OlX77nLT7KNVwt3qp187XzOfaNrb4u3eqYKaj89jdPUDdtHtjQxm/epBj9WrHa9VuUMgK4ZzhJTzzANw658lI7elt4bFvnj+X4KprJ378xRd1weHxX93VJ9b1T8XaPWd5OGMtU+ctXJhjPVtnR28JDG9vJ1gzOp6sAfO7ugabX29Vi7969PP5v/5oz8+606L/78Da29by91rGfFGQqOl87OI3jCD6+u4/eeHDt+XsbY7Vr9+ypFMdnS6xrC/OxO5bn+n/83CiG5eD3yvzaIxuu+rtsR/DHz41iO27Dyy8/OHzDx/+TjrfTs7dovwDw0KZ29gwmGE1X+M7ReQDuGIjzyOaOt/IQL4uZgsq3Ds8iyxKf3tvf9PW8Xrydrt3V4MtvTDHfmPr+lYeGifgvlBPmS/Vm3PypPX3XHCO8WTg4WeDFc+49+fDmdnYPXCIytyreadfvnYr/57lRvvSGy7V84d5BfuWh9QBIknRope1vydYMIcQhQJMk6SXAEUK8cTWf64kHmp2lfZchQ+uGzZffmOKvXhlvVgwvh4WS5nYvCMF49taUopopqPyvl8b4+sGZmz4ivYarx2yxzp+/PM4/XMd1WChpqIYrQTWRu3n3Wb5m8PevTzGSqmJYzlV1XoZ9niahngzf2MsfXJmDl0eynE9X0S0bRZJ44WyGw1MFclWjKaGyhjVcC2YKKoblymZM5a9O9ksIwVMnFvjTF89zZmFl2a7FZ0SWJOKhS4uziZCv2UWUrmj86Yvnee5s+vr+iBvA62N5Dk4W2DeWJ1t9E7XG1nBDSIQ9pCsaC2WNePDC/ZSr6mSrxlXFIWtYg0eRODpd5MRsCb/3xsJ32xF85+gcf/biGOcz1Zt0hJeHu1a7cdGNyvu+GUiEfciShOU4HJjI852jc2ime5zXM7HywrkMf/rieQ5PFa7pc6my1pALFEzcojnHGt7ZmM6r/OmL55nM1RqyWBZ10+b1sRxnFyp4PRJh//X10QY8MvOlOqW6STy0Ngl2q2IkXeHAeIEDEwWOzxbf6sNZw5uE85kqzpK8aCnPlWy895JhH5mKzl+9Ms6X35hqSv2tBkWWSDRyp7Vpz588tDZyZEm6cP1bgr4mR7sar6SZNl/dP81fvDxOaomE7nTe5Ti/eXimGUO+mZjKqZgNufjZwuUl1d4qLJQ0/uLlcb56YBrtx2xHsnhNI34PvouUpaZyalMKe/pNPHfHZ0r86Yvn+eHp1FVt3xpeck+uxR3vOOSqOm9M5MlVdcoNmfgr4VadBEMI8c+u9TNbu1v4jx/fSblusqs/jmW7gfvFQfZYtspMQcVyBCfnSlfsRhhMhljfESFb0dncdWtOgR2bKblG9Jqroz/UFr7yh9Zw03F8pki5blKum8wU1Gua5lrXFmZdW5iaYbGrL77sd0XVIOz3rCpj6DiCsmYSC3iRL5IYOrNQpqCaDLWF2NUX5z1bl3czC+H6SkT8HjyN/Yf9Hj5/zwCluknvTZiumS9q5GoGu/riJMI+Ij6F8VyN8WwNv1emPeKnbtgrjlWvYQ2rYXNXlNG0m8BdbDy8Gsp1i9ONLuRDk0W2dF34XKluEvQqbOqMEr/b6waWK7xH+1tDfP6eQRwh+M7ReWq6zZGpIvetT+L3/PjuYUV2n19pzWH1lkY85GfvYCuW49DZcqErrjXio6SadLfcGp1ya7i1YVgOGzoiyBJXJKGuhFxV5+xCBctxODJVZP1lYpWqbqFI0mXfz4txRDTgXVXmcCgZ5pN7+pku1PjYDZjPv1mI+Dz89J19TOVUXmlMAm/tbuGuda20RfzMl+q0BL1XJQNn2g6HJt3i18HJAndcQ9fpYDLMcHuYimZxW3/8uv6WNazheqA1PLyOzhSJBrx4FJ37Btp4ZFM7JxfKtEV8+Dwy79vWdd1FsM1dEVLlxIoNRmu4dSBLrryQ5Tgo0vLcc+hfPXnV+5n4vcdv9qGt4SbivvVtPHcmRcSvUNNt9o3l6IoFCPoUPrG7j1RZozMW4NXz2YZPu8lYtsr2K0xwfmpvP5mKTteS+LamW8iShFeRVuTn1vDOwFBbmM/dPYjjCPxeGdsRtEf9/Ny9g2ims+yeWIqpvNr0cj8+U6Jzm7vdkelik+NcKGn0t4Zu+Bgv5s2WxrDbe1uYyqt4FJlNt6j614nZEqW6SaluMp1Xr1mlrKyZ+BT5uhRk3rO1k63dMZKNeGAptvXEmMypIMGWG+TMF9eLlXKPg5N5arrNsZkS961vuyJ/uK5xT4IrlbcUmmlj2g7RNUWqtyXKmsnRmSKxgIeWoJd4yMfOq1BKualFMEmSdgghTtzMfV4rFos/tiP4+/3TZCv6JWO3ybCPQ1NFCqrB5qtYNLyKzN7BBF8/OMO3j8zxiT19N6UwcDOxqTPCaLpKS9C76stlDW8+NnZGGUlViQY8dLdc+R4payZHpor0JoKsb49cIkUA8NJIhgMTBZIRH5+9a6BZqFqK752YZyRVZaA1xE/t6Vv2u+G2CEemi4QkhbuGWi8hqH50Js2xmRJdLQE+c2c/UmPEJRrw3rQXQkfMT2vYR0E1eG00y3ypTsDr4f07urh3fZIv7ptEluDTe/tvmdHpNby1EEJwZLqIZjrsHUqsWAAO+Tx8am//Ne03EvDQmwgyV6wva2pYHJWPBjx8/p5BJAl+97unqGgWn7ijl5++a2DZfhblEbZ2RXl9PM/6jsiPtQAGEPAqZBvmu7HgWvB2q0LVLfZP5HEEPLa1CwBFkiiqJjXdolS/1Az7WlHVLQ5PFeiMBW7ZpG0NN4bh9jBHpn14FYmBGyQBgj6F8WyNXFW/bLPOeLbGt4/M4VFcWZiLk8dFfPPwLC+ey7CxM8qvPbK+GUcshSxLfHz3rVf8ggsSuPGQl4/f0cvJ+TLVRhEqEfLx3380woGJAkNtIT6xuw/VsNnZ27Jql7tXkdnQ4cblSxstrgZeRV5VgnoNa7geFGoGx2ZLDCVDDCZXbpLMVXW+vH8ayxbs6IsRDXh5aGM7liP4L8+eQwJ64kF29Lasuo+rgRASCyUN3XKWySit4daCbQvOLJRxBGg32HSxhlsPjiM4PF3AduBXHlrPNw7PMJqqkq3q5GsGn9rbR0c00Cw4rG+PcHKujN8jX1URIuBVlm03mavxxJE5ALyKhGY63D4Q59FbWBZvDdeP9qifJ4/Ncy5VaXJTVyp69sSDxIJe6obFxs4Lcenmrijj2RrxkJf2qJ+RVIWFssYdA4nrfoc8eXye0XSVobYQH7+jj6dPpTg1V6YnHuCn7xzgMxfl/LcaNnZGOLNQJujzLLOCKNVNjk5f4BVXwsk5V/o74FX47N3Xbkciy9Kqa0A04OXTd14bL7MSpvMq3zw8iyzBJ/f0X8Jtb+mO8dr5HOvawgSuUhljpfylpJr83RtT6JbNB3Z037LDLmtYGSfnSjx1YoGpfI1czUC3nIb39JUnRm929Pk/JUny4Xp4/Z0QoniT93/VqJs22YbE0MXjmHXDxnEcon4P+8ZyfHx330q7WIb5Ur05WjdXrN9yRbANHVF+/VG3Q3gp+WA7gpF0hUTIR+dVFBeyVZ10WWdjZ2TVqaM1rI717RF+7dENl1yHi1HRTKbyKsdmSiyUNA5PFfnFB4aI+D2MpqvLgsfpvHv/5qoGNcOmJXjpdVncZqZQb0yGXPjurpYA/+Sh9Y0x4EuPaVFGbjEpfTN8hQJehS/cN8TBiTzfOjyLaTtIEjy4sY2KbmE7DpmawZHpIu/d3nXTv38Nbz+cz9R4vqEpLhDct77tmvcxV6xT0Sw2dkSaE5JKQ+PbdsSygvBMwX0OKppFQTWYLbifBTi9UFm2X8cRjKSrxIIe7tvQxt3DyVWnH95MnF2ooEhQ022mCyrbg2veGrciZop1YgEPQrixBIDpCMIeGRkF077xMb6nTsxzaLJAPOTjVx4cJrEmQfOm4/mzaXyKzH0brn1tuh50twT51YdXf5dfC+qGzYaOCMPtYTyXWbtmC3UcITAsQaqsrVoEe/ZUilzNIFXW+cJ9g0T8b6+i/HQjDiqqrozGz983xGROxbQd8jWNcwsVVMMiV9X5+sEZOmMBpvMqn79ncNV9fvi2nkveM2tYw1uBp04usFDSODZd5B89PHxJw47tCPaN5chXDQJemblCnc/eNUAk4OH3nzqD0cgN7l7XelU58+XgUSTuXNeKLEnUDGutgecWxf7JAoZlI4Tbdf/h23ve6kNaw03E6YUyL5zNkCprnJgt8sm9/RydKnJgsoBhOaRKOh3RC7xRf2vohuKP2WId2xGYtsNs0aArFmDmKmXs1/D2xCK/tBI3tRIifg+/eP8QQrBM1WhTZ5T17REUWWIkXeGvX50gEfZRUE0+ctvVr0tF1WC2WGd9e6R5bIv82WIMOFfUMG3nludAB5NhfvWRS/nGZ0+lmMqrHJ4q8ksPrluxSDidryOEmwfkqsY1F8FWwqLE8aaO6LJrJ4TLl4T9nmvizhfXC7ux74uLYPcMJ7lzhcb+a0W6ojXlJGcK6loR7G2GmUKd2UKdhZKOIxxifsWNYa/CZuemFsGEEA9IkrQR+EXggCRJbwB/KYR45mZ+z0qYzqu8Mpol4JHJVHWGOyLcva6VybzKPcPJZdv2JUL0tYYoqiZ9rSG+dmCaaMDDe7Z2LpuyyVR0njuTJhH2cc9QKyfnyoS8CtuvUnbrzYBqWKiGvaJJ48ULgWU7fPf4POdTVbwemZ+9Z/CyxFjdsPnK/mkMy2EiF+WDO7tv6Fgrmolpi6vSgy6qBpIk0fI2TYYqmskzp1J4FZn3bu9ccSLEsh1yNYO2iJ+vHZihVDebMgMeRcIjy7wxnufpUylCPoWfvrOfvkSI+zckefV8js6Yn+cbvkPv3dZFWTN5/myajmiAhza2cWy2xLbu2LKX4cm5EsdmSuzoaWFnXwu5qk7AqyyTMXlwYzv7J/Js6Ig0C2CluokQ4qZJFZxZKJMM+Xh1LIdu2VQ0C9Oy+b3vn+YTu/sQSGQqBkeni2zridGXWLnDpNbwJbhRk9I1XEBNt9BMm+Qtdk79S0bsVyvMljUT2xYrrmvpssZXD0wjBOzqa2H3QGLZdkvXy6JqsL27hWMzRTfocgS39ce5ZzjJRK7G+3e4EqLHZ0qcmCshhCBV1pEliZ+5q58TcyWyFYNHNrfTEvLy9MkUpu3w2LbON3W8fq5U59xCBb9XJuxdI1pvVaxLhklXdBwh6Gs0N/g8MppuUdJtIj6d7x2f57FtndedeB2aLHA+UyPk0/Aoa/fCatAtm5Jq0h7131Ah6Ykjs/zd664Br2k7PLxKN/NYpupOirZHuGtd66r700ybsmYuI51WwsVyxyvBshzOpCoMJcNEAiuH+e1RP3cMxEmVtUti5KXY1d9CuqLh88jLOnMvxvbeGIcmi/TEAwS9P57pjqdPzvONw3Pctz7Jz907tOI2Qgh+cHKBmYLKh3b1rqqUcO/6JM+cTNHVEkAIGE1X+c7ROWqGTbqscWymQN0UdMUCdMT8GJZzVZrzi++ZmYLKyyNZehNBHtzYft1/8xpuHm52nHurQQhBpqITC3qb8ZTXIyOvsO69Mprl9HyFmYKKIkvYQvC3r0/yubsHeGhTG4enCpzPVNBMm119cdcioKoT8ilXJQ+6FLbt8LUD0/TEg/zmo8M35W9dw81HyCtTUt1GsLVC/jsHi3yL36Nwcq7Eoakiz51N8bUD0/S3huiMBdg72Mqmrgj5mkGxbtDTEiTgVa4YfyzlOS6+Z3b1ufGGIsvEg15mi3XuvkxMtIZLYTuCbFWnNey7ZYo0hZqBokjNQsrS987Dm9o5OlNk6xJuarUY3HEEPzqTJl8zeHRLR7PhamlsXNFMnjg8y/lMjba6iSxJfPmNKR7Y2Ma5VIVMReeRzR10xgK8MZ7nfKbKXetaWd8ewXYEX9k/jWrY9LdWeGRzO8dmSk1O96FN7RycLLCpM/qmndvr4Vs00+aZUyksx+GxbV3LilorrcuLfIntOFQ0V2XEsJxlXOydQwnKmklL0HvVqhKm7XAuVWGoNUz4orwiW9X56v4ZHCHIrTO4f0lj4KujOf729UkcIfit921mY8fVFZl29rYwnq1ycq7CeLbGtp7YJdzqld5LqbLG82fTtEf9PLq5Y8Wcb11bmK3dUSqaxe5rkC1fw3Jopk25fuO59bViXTKEokC+ZmDbNjNFDVmW0PQrT6/f9ExVCDEiSdJvAweAPwLukNyz8a+FEN+42d+3iFfPZ5kt1PnOsTk8sisV80sPrqM94qeqWTxzKsW2nhi98SCyLPE7j29npqgynVc5Pe92+a9vjyzTVN0/kWe2WGe2WGeuWCdfM5CjfoJeBdN22DeWQ5El7l7nTgE4jrgpHbqroayZ/O2+SXTT4eHN7Vd8WJ84MsdzZ9PopsO2ntgVRwMtx8FqdKTfqMliuqLxlTemsYW44njpWKbKt4/OIUsSn9zTt2ys91bDqbkyc8U6e4cSyxLn4zMlVwMXV0fdo8jc0R9fJu33jUOzzBbr9LcG0Sz3/K5rC/PgxnY6Y36CPoVnTqU4PlOkNexHM93rNZgM0xsP8jevTXJ8tkRfPEhfosRMoc5cUWOuqPGZu/r5mbsGsC8iZZ4/m8GwHDIVHYHgh6fT+DwyH9nVw9lUha6WADt6W9jQcYHcmivW+YeD7svso7f3su4G/eW+tG+Sbx91JRBqukXdsJFwC7r7JwqMpGo8tq2zeY/o1sr3aanu3v+G5fCuLR1rXhk3AbYj+KtXJzAsh/ds7WRn360zSdTfGuKTe/rQTHvZ/bmIdFnjK/vdNeZDu7rZ0OHKJYymq+zsbcG0HYRw77nvHpvn6EyRj9zWw4ZGAKYaFq+P5anoJmOZGgsljWxFZ7AtzGvnc3xqbz8fv6OXbx2Z5Y3xAv2tYZ47m8Z2BDMFtblOTeVVjk4XEQL2jedZlwwzmq6iGhazhTrv3d71pnUWHZgoYAqwDIcXR3IMtb91DRprWB3fOz5HrmYgBHz3yAzv295FXbdQG0HaZNH1Z3KD8eu7hoOtYUCiNeJb0zVfBbYj+PvXpyioJjt6W3hsW+eVP7QKqrrV/PfixOhKeHk0S7ais1DS2NnbsqJuvWbafPG1Saq6xV3rWpclkBfjauLM/+O7J3l9LE93PMCf/9ydeDyXJvSSJF3RDxcgFvDysdt7r/idv/TAMI9srtIXD102MT0+U2KhVOfu9clVu091y2bfWB6/R+auodZVibf/9uwIqZLG8ZkiH7+9l+gKTVTj2Rp/u28K03Yo1S3+xXs3r7gvx4GyZnFmIc3r4zk8ssyp+TIT2Rr5moEQwiV6gh42d0R5YyJPpqJxbKZ4iYfrUhyaKjS7j7MVg/mSxvae1WUUwb1Pr6QmcD0wLDdv8Soyd69b/bz+JGC2WOfrNzHOvRXx/NkMR6Zdn4RP7uljpqFishLBp5k2Fc1kMq8S8Mpops1cSSNb1gn6FEp1C810GMtU+bvXJ3n8th5eOJsh4FW4d7iVTNXg9v74qpOiS/Hfnh0hXdHJVg2+c2yOj+++tWWnflJxfLaEg2s3e6rho7uGtzeW8i0fvq2b+ZJGTTcxbajULSq6TSLkY2dfCxNZlT958TzzRY271rXyq4+sv6JSzCLPsSgxtxQRv+eSn10MxxG8MZFHtxzuGW79sUvM3+p48vg859NVOmMBPnv3W79ujqQqPHl8HnA51GTYh2457nsn6OVzdw1Q1lzfKt2yUSRpSQwe412bO0CSUGSJ2WKd47MlAN4Yz/P4ru5lsfHd61rZ2h3Do8hs7Y4S8is4jmC+pPHUiQUmcyq5ms6JuRLv29bF/ok8IPHySJb17ZGGooHLL2mmzfaelmW+dps6o9csJe80OLeriaWKqsGXXp+6Zr7l7EKF0XQVgGMzxSuq4jy2rZNY0MOro1n+6pUJdMumJejjfdu7mt7pyYifT+/t59hMkefPprlrXetl80bLdvhXXz/GvrEcPS1B/uIX7ly2vWE5lOoG6bJGW8S3LIc5n62Sr7m2DUeniwy3Ra6qqSLs9zDQGmahpDOZUzm3UL1mjmrfWK7Jk27pitEZC1zy3R5F5v07bmzo4+2K61WqEEKwf6KAaljcM5xEliT+dt+kW0gcTPDwptUb/W5EHePizx6YyPPlN6Z47myaqm5h2QJbgCQEL41m+KWHLt9kdbM9wXYBvwA8DjwDfFgIcUiSpB7gNeBNK4L1J0IcmMhTUA1qmsVcsY5hO2zujDJX0tjUGWUiW6MnHuRcqsKewQQPbWrHI8ucWajg9yiXdOD2J0KcXagQ9iuoDT3sbFXHclyvmgMTrul1LOAlHvLyxJE5/B6ZT9/Zf1NGSy9GSTXRG4WR1FWM+S2UNQZbQ6QrOu/b3kVHLIAQgtPzFbyKdImJYjTg5fFd3cwV69w+EL+hY81VjWaXbKqsXZYETld0hABbuB0ut2oRrKga/ODkAgAV3VwWzPUmgiiTEo4QvDKaZSKn8s2Al//zp3bREvIihGCuWOfYTJEXzqb5/D2DtMcCbO2K0hbxc2q+TL5qkK3qlDWLoM+zjPg/NltiuqCyUKoT9MoNvzGJsUyNaMDjatq+PomExLu3djLUFuZ8pkoy7GO+pNHfGiRVduVBDcvhqVMLVDWL47MleuLBZYRMpqI3i2npsnbD5MB4tuaeM81krlinpluAhNn4jqphMl1QaYv5iPi8SLja4aW6ybZGwANut9FiALNQ1rhtyXfUdIuzqQr9idBVJeFrcGE5Ytk53cmtUwQDLqs7n2msxQCpss66tghffmOKompwcDLP4zt7eHRzByfmikzma7w+Vifq9zaLYK+M5jgxW2KmoBL1exjPVjFtgZFymuT40rUpU9Hpbw0ymq7iCJhvkNovnsuwbyyHAGwBEb9C3bQ5OVemNeTFchz6Euuv20T+cig3vKQEMH+R7O8abh0UVKOZLBUb18y4qCnFcpyrkixeDR/b3cuZhQqbLjOt85MO3bIbxu7uencj+Kk7ejEsB59H5oM7V5fwLdYMnj2dZn17GN8qE3pV3WoW1RYuE9vNl+p849As3oY/12oTLAcmCuRVg4puUajrtEevP6aaK9b55uFZfIrMp/f20xJaObYNeJVlhMJqx//fnjmHaliMZqr86iMbVtzu4GSBQ5NufJ0I+VaNH+uGTd20kSQJWVp5KkuRJXTLbhacV0O6oqEaFkemi9RNm9aQj1rjuiw+q4osEQl4SUb9zXO/UNLYtYTXW4xFBlpD6JbDCw1J30XJyUTIe1kPi7FMlSePzRMJePjMnQNXNPu+FhyeKnCwcV5bgt4mIfKTiOxNjnNvRSyU3Xv6wGSe8azKB3d2sbUrypmFMhLSsufqoU3tPHs6jUeWkHHjm3zN4LvH5+hPBBGOgyOgZti8NpbDEa4PaVU3+fbReaIBD5mKflXEbEUzcQQ4QlCqr95AsIa3FpO5Gour6lR+Lb58J2BpTvP0iRRF1WTR7q1uCXJVN89ui/o5MlWkqlk4jfynqluXLYK5Chlu/HJqrszGjhJbu2PXRHieS1d47XwOAJ8ic+/61afUfxKRbpzfRZ7mrZ7QTJX1psx7uqzTHvXjCIEsSZTrJsfnijx3Jk1Bde+r9oifkXSVaMDD1w7M8PevTzHcHuGzdw/QGQsQ9ivUdJv+VjdmrWhLYuOyxp2NycGCavKurR2cW6hSqpt0xnx899g8Vc2kJeQlEfThUSQsW+AIwWi6yoaOCB+9vZfxXI2dvTfOdaTLGv9waAal0cB/pemu/EUc1tXyLd0tAbyKhCO4KjlBn0emNezD51HI13SqulsES5W1ZTFfuqzxw9OuupRuOauqfz1zKsWRqUKjqd5GNWwOThR4ZIvbRHcuVeHUXIl953NIkkRvIoRm2s214j1bOzkxW0KRZRIhH//jR6O0Rnx8em/fFYvcvfEgsiThUSQ6W67M7Zm2w6m5Mq1hH/2tIfpbQ5xLVVANm5dGMswVNTZ2RvjQrp9saV/bEXz90IzL9/fHiQW9bOyIrFgItR3Bqbky0YCHobYwZxbKTOVVTs6WAFfFbGdvS7MZdKX6hGbanJ4vUzdtDkwUSIS8fGpv/zXZ7/zoTIqj0yW29cR4X8M2Z6GsMZlXUQ0bw3KjFQmQJZm7h688ZXyzWbn/AfwZ7tRXM2ISQsw1psPeNBRqOq+PF6hqFkK4VetDUwVmC3X2DCWYyNWwHYepfI3WsJ8zC2Ue2tTO5q4oPfEAXkUm4FU4NFXg2HSRXf1xdg8kGGwLoZsO5zNVZgt1khEfX94/TU23cByBLEtEA66Pk2E5GJbDTL7Otp6rK4I9fzbNZE7l/g3JJjm7GvoSQXYPJiiqxmXla8CVXqmbNlXd4hcfWNfsLj86U+K5M+6i9+HbuOQ7N3REVpy6WIonjszy9KkUt/W18Iv3r1smIbmIjR0RZnpb0Eyb3YOXn1i7rS9OrmrgUaRrNhD/ccLvUfB7ZXTTucTvYjAZ5pceWIfjCP7T9880kmvBVF5lZ6gFSZLYM5TghZEMtoCvH57l/vVJvIrEVF7lpZEs4JrF+jwyI6kyv/JX+/noHb18YGc3sYCHWMDL5q4o79naSU88SE88SKFmcHKuxH//0Qgn58pEAgrjuRohr4fOmB/bcdAswb7zOR7Z3M5wexghBC83pE/6W0NNchbcINbvkYkFPLRH/ZftcL4auLILsFCqY1gOFc1C4Ca/i7Ab04fnUzUmczV+cHKB9qifTZ1RSnWzKR000BrijoE4pbp5iYTCk8fmmS3W8Xtl/tGDwyvek2u4FH6PzO0Dccp1k7uGbq4sxZmFMq+PuTKbF082ZBp+jddbsDw1V2bf+RyKDMPtEW7vj7PvfJYfnUljWDaG5TCSrvKhXd0YlpvAdUQDy+67aGOcvyceRNUtDFuwqSPCtp4Y9wwn0S2biWyNdEVj90CCrd1RdvW2cGK2xLOnU0iSxFyxTrrikkUbOiJM51VM2+b0fIVsRaNuuMHn0s7rV0azjKZdiYaB1hDfPjpHSTX55J4+2q7xfCy1kkqVa9d1Ltfw5uOuda08eWwBAdzRmOC+WJIq6FVuSA64Mxa4oSLaTwJCPg8Pb25nIlvjzhtc7zI1g+MzJbwemfdt76QtsvK5PzJdpKKZjKarVHRrxcJVMuzDq0iMZ2s8vGn1Ls+xTK0RZ7oTqKsVwSIBD9N5lWBYJhq4Mam38xm3i1ORpGY8sxKeODzLN4/McNdQK7/26MYVt1ENG82yEUBeNVb9znLd5AcnF/AqEu/fvvq0XizgYaEMQa+Mz7NyOtMS9NIZDZBXDAZXaaoYz1R5/lyauWId3bKZLdSbPhE+BfweiaDPg0eWOJ+uYm9xsB2Hg5MFdNNma3es2bDx3WNzzBU1Al6FT+7pdaXlHMGeoQTbu1sI+ZXLSu2cS1WxHEFRNZkv1Rlexdj8erAojSlJF95/P6nY2h1jvqThCHHDce6tioc3tTNbrBP2eRhJV/jGYZtzqQrzJff+FAi2dMU4Ol3k8FSBgFdCkiRKmkVNtyioOrYDY1mV4fYQkiyRrWpUNIsj0wXWtUe4f32y0eBXJl3RKWvmFZtAlzaARIJrkx63KowlijCmZb6FR7KGm4WlfMvIQoVcVV/2e8exGcvWiPo9DLSG2DuY4PRCGa8icW6hQtsGN0dRdYuvHJimpJp85PYehtsjSJLEe7Z18vJollxV55lTKaq6dUW+aikifg+SBEKsvaNWwqNbOjgyVWRzV/QtL4CBazXw3Nk0Nd2mPaqwUKoT8ipEgl4e3NhOd0uA0/NldMvhBycX6I0HMW2HiVyNVFnDcgTRgJdzqSrD7RG+cN8QE9kah6eKHJ0p8d5tndwznGShXGeoLcxvfOkgE7kavYkQ/3Bwll9/ZD0Bj8K3j84R9ikUajpl1eT18Twf2NFFV8zPN4/M8dJIht9410Z2DyTI1nS+fWSWnX1x9lyBn7wcxrK15mDCZF69YhFsKBlelW/RDIv//PQ5MhWNX3pgeJnSUUcswC89MIwjBLPFOn/96gTr2sI8dJlpm1jAy1Ay3PBRc7mCPUPL/9aAT8GrSJi2IOCReeLILFXd4r3bupZxM4enCpyZL+OVJSSvQkfUz2CjaehcqsJ3j87x9KkURdXAq8icXijzxVcnkGWJ9liAD+zo4nc/ugPLEfzwdApHCLKNSfCVinqG5fD9E/PNY/nlB9chS24z27/82lGqusX/+z2b2LRCc9xLIxmOTpeQJPjZewbZPZBgIltjLFPjyWPzbOuOMZKqYtkOkiTx1IkF8qrBY1s7V5VKfyeiXDeZbfj0fXn/NJs7o5yZrzSbmBzHvddawz6OTBd5YzwPwJ7BBAcnC1Q0E91yaIv4kSSoGhb3b2hjpqCu2Ljw9KkU59PV5nDG4akCliP4/D2DVyU9un8iz//93HmqmsmLIxliAS/3DLcS8irIEgR9rkKf44ADhLzSFZsy4eYXwb4hhPji0h9IkvTPhBB/ePHPbyaEgG8dmSdb1Vjk8yVJwiNLSBJ8anc/3z42SzwUpKpbhHwykiTx3aNzvHur69lyYrbEybkyz5xaIBHyUdVdbVDhwFcPuD5ZD2xsI1fVyTYI3Ps2JBlqC9PdEiToU5jI1gh4lRU7CnXLRpakZRe7rJkcmnRvhO8cnWdjZ4UdPS0MNT4vhEAznWYnqCRJl4wYnph1Zfj2DiWWEWAHJwsokkQ85FtGrC2Vy7uCOuKKUA2LH5xcIFc1eHU0x/u2dzGYvPTv9Shyc5pCCIFqWIR8HjTTxqvIy17eQZ/C47tuzVHUswsVRtIVdvW10B4J8Lm7BslU9RWv8eKkxxfuHeTbx+boigUYbr+w3X3r23juTIpzqSqa6VBUTV4fyy97GT60sZ1js2UEcCZVoW+ywO0DcdojAWYLKiMZV7rzzHyFrT0xDk8XqBs25zNVDMtmtmDSFw8xr9aJBDzMFGpNMicS8PIv3ruJF89lyVYNKpqJR4LxXI1kxEfdtHl9LMcX901hWDYf2NlN0KcghKBu2tes+w/u6PNUTkWWJYp1k0Xe1ytBI3ZAtwWn50okIz5yNYP2aICZgs2GhobzImR5dfkmu1HcEALEilusYTU8ehWSWOB23Qe88mUlmpauWa+dz1FUTd4Yz7NnMNHs+FiU4wD4+B29K64f4DYyWI5YsVPk1fPZZtfJo5s78Coyr43l8CoSmYqbrGcrOq+P5emMBRhodScE712f5HymykvnsjjCYUdvC/maziujOe4cbEU1TFJlnb94eZydvS1M5mtUdYvZYp0DE3myFYN7h5MMJsMUVIPb+2P85SuTtEX8WI5gOBGkopkUawYhv4eWoJdHtrTj88gIISioRjOY2DeWQzUsnjuTplQ3yVQ1fudD26/qWqyEscxap+6tijMLVYQQCGjKWqiGddMDMM208cjSWhPAZbB7IHFTdN+/e3SWE3MlJOCZU2l+5q6VJyBs4XaiOkIgVnk7Zao6huXQ1RJgLKuye3DlAt26thBPHpvH55Evq+PfHvWjtoUJNxKD1brtDk4Wmp5gq8nzeRWZ8+kqHkUi6Fv9vvq/XzjPQrHOmbkyn7t7kJYVCnRDyTDbumOMpqu8f/vq03PnMzW8ioQsSZxLV9m6SjJT1W18ioxhO6iGTcsKso8VzWIiV6VuOIxmqivu509fGmMs4zYRBBpJ1WKDgS2gL+pDF5Ap65ycLfHnL48zlAzjCJcIOTCZZ6GsMVdwJQ9BoJk2+ycKrG8Ps6U7RsSv8MfPjxALevnVhzesSmDt6mthpqCSqeicmi83uqNvzkqxvaeFWMCLV5F/ohL+leDzyLx/x+r34K0KxxEYl3mmF6GZNp2xAL/y4DB/+sJ5Ts2XsWynETvZ7OxtwbIFQgieO5tGCFe1YSAR4IVzWWzHaeaILvmmgSOoag6GVSfiV5CAk3Nl7hiIs1DWaA37ODlbvuL0hmFeSD6PTpX45O4bPStreDOQWVIgKa9N7L0jsJRveXkkg24vj0kUWaaoGhyYyPPCuQweRaY/EUKSJF4fz7N7MIHfI/MnL47x7SOzqKbNsdki//7D2zk2W2K4LcJ7tnbyDwenAXe9Ug2LoFe5JHc0bYeXR7I4QvDgRjdP6kuE+MydA5i2c1klkJ9UrG+PsP4mNsbcKEp1k4jfQ288SLFuoFsO7dEA03mVqm7SEY2zq6+Fct2iqBq8Opoh7PfSGvGRjPiYK2oMtYXpSwR58tg8puNweLLA2YUKm7uixINeHtrYzubOCP/nD87yxkQBy3bQTIeHNnXw0miWmmZxaKpAMuxyt/GgF8N2KKgmNd2m2FB/ODVXYvdAgldGMtRNh1dHs80imGhMi51NVa5aFnFLV5SRVAVJkq44PAAuh7US3+I4gtfOu8o0AN8+OneJ3UfQp2DZDi+dy3Byvswb4zk2d0bobLm0iHRitsQzp1IossRn7nQVI14ezXBwosADG9vwKjLj2Ron50rcv76NQIPnO3oyBbi83XuWSMXHQ150y2HPUIJ7h5M8uKm9ydvYjpvVOI5ANKa7h1pDHJouEvZ7KGsWkzm1eX5u74+TLmuU6iZHpgrEAp5l00f5msE3D81wZqFMezSw7Fj+4cAUr4xmkST4m9cm+O0PbWvmu/mawb6xHFN5tbkv3bQpqgYBr4IiS/TEXa7+9oEEHkXm0GSBJ4/NEQt6SYZ9q07CvRMRD3nZ2h1lMqfS1agd2EuaxJ87m+b1cVfyffOS4RTLcWO3aMDLI4MJkhEfz5/N8MZ4nnvXJ/nE7pXlbsuqieM4xINejs8WKWsWx2aKTOba2NARxXEEr5zPUtUs7h1OEl+Sj4qGwppm2qQqOl2SxMsjGeqGxVcPziBLEps6I0xkVdINxbOqbvP8mQwPbbo8v3mzOZifA/7gop/9PPCHN/l7lkGSYCAR4IeGgwAUIOT3IEuulMpLoxmqmk08BO/b3oVXlvn/PXkKIVxpok/s7uXZ0ynOzFdYKGlNTUtwC1WL46u5qsG6tghnF6qE/Qq7+uLN5LQjGuDn71+34vHNFFS+cWiWdEXj8R3d3NuYinhtNMsr57NISPi9bvI+na/zq4+sRwjBPxyc4WyqQnvUz6f39JO4iKSo6RbPnk4hhPsiWipDMdwWYTxbIx70LiM37uiPI0susXE9skkBj8LmziivVnP0xANXNcnxxJE53hjPE/TJhP0e4kEfP3PXzZV5udmoaCZHZ4o8dyaDV3a1Tjd3RvnI7T3sWYWgAnjxXIaDkwWGkmE+uacPSZJQDYvjMyWyNZ2Qz+t2DSeC5GomA60h7lmfJOBTCHoVtvXEmCqofP/4AobtNJPdbx6e4YVzGaq6xUJRJxnxIR+RXLLGEXhkGdMWtEV8COCe4SQ7emO8MioxmatTN206Ij5qmtvdmW0kN+dSVZ4+ucDrYzlMW1CqG9QNG0eI5mLy3WPzjKary0ZQV0K6rDGWrbGlK0o85EO3bA5PF5kuqGSrBrYjcENg6RLvskzNpFg3USQJCY2WkJ9S3WTLVXopfXBnN6fmygy1hW4Zs9h3El4ayXBgokBvIsinGvf1xRBC8I1Ds0zlVe4YiDPcHuHQZIG+RLBpyg6uNNziuzZfM1YsgpU1k6+8MU3dtPngzu5LAsz1HRGOTBVJhLz89asTqKZNzbBoDfsIepVmR3K6rGHaDtt6WprB4P/40Qivj+VxEAy0hmgL+1ANi2LdoKJZhYFZ1AABAABJREFUnJ53O6V7E0EUWXIlzxSZI1OuTNYzpxb4uXuH0Eybw1MltnTFCPoU7hxqZe9Qgq8dmGb/RAFbCN6/o5NHN3dwaq7Ms6dTmJZNSbNIhHwMt0foT4QwbQdZdgnfxeni60E8vOYDdavi1GyJxqR+01vjYhJ872Dihjo7R1IVvnd8gbBf4TN3DVxWcm0Nl8dssc50XmV7T2xVnfyg10OpYTAf9a8ey0T9HiqaRTTgIbzKtFLI62EsWyNT0elLrE78jGdVbEegWzYzhfqqk2B9iSAnZkt0twQIrxJnZas6L55zpfoMy+Fjd/SuuJ0jRDMhX82vEyBT0ajoFrotI5yVt5vM1Xjm1AI1w+ar+6dXjaX64kFKdRNFlled3gJIBH0slOsEvV5Cq1yDTEUjXdHRLYex7PJpWSEEx2dLlOoWBdVAAu4dbkWW4OxCFVuA5cBEXgcJHAElzSToV+hrDTKWrdEa9qFIEv/1mXOUVIN40MvOvjibuyKcXXCbljZ1Rvniq5P84EQKyxGEvR5+4YGV84WeeJB3bengiSNzjKSqhHwK79py/d51F+OtJhYrmsnJuTL9raGrkvZZwwWYtsOX35giWzV4aFP7il3sQgi+dXiWfeN5tnRF+ezdA/zW+zZzYrbMvvEcZdUkU9XZPRhne0+Mbx6ebXZGG5bgwEKBumUjHJBlQIBuOtiOaHrVAa4ncUmjLxFkJFVFkiDi9zKYvPL91dPiZ6ro5heP7/zJliW6lVFUL0yCaTdmE76GWxAXvw/BXT9CPg//8Xun8Soy23tamk1//a0h/B65uRbUDBvVsJjIqTxxZA7LEZxdqNAS9FKqm+zsbaGsWfzJC2MMt4f56O3LY4yTc2WOTBcBd2J7b6MheGmDxkTWnRi6rT9+TdJZ14pUWWM8W2NrV2xVyec1XIr2qJ+WoJezC2USYR+W7TCdr2HagqPTJVqCXj56ey9/+uIYo+kq6aqOT5G5P9pGwKOQDPsI+xWOzRRJlXWmcjXsRsPoi+cyjKQr/Jenz7qetEhuviy5qlF1w8YwHSZzKrGgF+EIfB6ZuVKdDR1Rwn6F9+/oIl3RsIXgnmGXey2qJifmyty2ZAL820fn+PrBGVqCXsYytcYE1eXzsXjIx8/eO3RD58+yHb5yYJrxTA1HuFze7hXsaMYzNf74+RHOp2volk13PMj3Ty6wvaeFXX0ty2QFF/23bEdQrLt2I0enS41j9nLHQILvn5hHNx3eGM/TGvYR8Mj4PDKWLZqDGIu4vS/OD06kyFZ0OmKBZZxNwCPT0xLkgU1tFGtuwWkyX6dUd6e8In7Psud5MBnmvdu7+MahWc6lqvg8Co9t62zmXBPZGpmqzrGZEmF/rflZIQTnsyqqYSFLEgVV5w+eGSEZ8fGZu/r52oFpRtJV2iM+7hhI0Brx8Z+eOkO2ovOBnd3ctz5JZyyw7G87MVeiqlvkVYNPxS7vVfhOgyRJTR+0VFljLFNja/cFvjVXM5jM1SiqJm0RP3eva2UgGWZjR4S2iB8h3Ia9uZLWrJEs3ncX409eOM8zp1KE/QoPb25npqCSKhvMFlyFMCEE3zsxz49Op0hX3Anij9zeQ8jnYVdfCwGvwnB7hMFkBQlBUbN4fTzH6fkyliOYzKsEPTKW7bCYeVoC5orqisezFDeFJZEk6WeAzwLrJEn69pJfRYHczfiOK6GnNYjfK1E3BTZuYaw7FiBV1njmVIr71rfx6T39xMM+/uOTp5pjuN8/Mc/69jARv4egT2EwGWJTZ5THd3RxPlOlNeTj3vVJCjWD+zYkXa1J2S06GZZD+CrUq6ZyKkemC4ykqkzlVTpbAlQ0kz9/eZyFkkZvPEi0Ia+XbBSsdMthpqByer7MSErGr8j8/P3rmMzVCPpc/zKfRybi93B2ocJMQSUW8HBstshsQeP+DUmCXoXARQSI1CgMhv2ey050HJwscHAyz9buGPevb2M8V6M15CMR9vGb79rIz907RCzoveJLwnYEBycLnM9UKdYNdvbGkZDIVvWbnoxnKjpPHpsj4FX46O29N1Rke+rEAtN5lbFMFamxbyFgaKa0InGTrxl85+gcr4xmaQ37EEKgW24B60v7Jnn65AKpskZb1E/Y76UvHqSim7w8kkEzbT6xuw+vIvHEEdd743c+vJVnT6Y5MJnnc3+2j6BXoaJbSIDdIJjmSnV8imsoWlRNhHCDx8/e1U9PPERbxI+r1yrh9ch87p5B/vzlcbJVnfaInz0DCVJljZDPw4nZMpu7ooR8Hh7b1olqWHxoVw9CiGaH9PlVuqjB7QL5h0Mz6KbDSKrCz9471DymdW1hynUL4Vco1XWqxsrd8LYDkuJ2Yqu6yQvn0jx9aoFt3TH+9eNbLysX2hL0sq4tzPeOu14aH729Z81Q9yagqlt8+8gcL49k6EuEmC3Ul02nLoVhO80unNPzFR7b1sFtfUO0BL3NtUYIV/pgqC1EPOhjxyq63KmSRlkzKaomJ+dKlxTBHt3cwd3rWjkzX+GFcxnOzJfxSBK24xLAbREfC2WNkXSVnniQn9rdy9cPzRLwypxdqLBQ1hC40p+JkI/tPS28b1snf/byGBPZGprlSsl6FImQTyHgVZgr1pt+dfmaQTLiJxnx4VNkAl6ZkXSFnniAbNUgFvAgBAwkwxyZLvKHPxzhzHyZzpYA969v4x8/PNycrPztx7dxfLbI9p6WZgGsplvMl+qNpPPq7uOiql95ozW8JZgpXAjGshVXL1s3bZbOYjx5YoGdSxprrhVjWTeJqmgW6bJG5BbqFn07QTNtvnFwBssRTOdVPrW3f8XtEg3NeUlyfaJWw5HpInXDYiqvklV1enyXxj0VzWQ8W6VQMzi3UF51X+PZGi+PZpAliXdt6Vh1/XxjLE9RNTk9X6Zm2EQDlzaG+D1uN2hBNeiJrz4VNNga4jtH3biq/zIFOoRbJBKOQJJXbkQZy1TJ1QwcITg5V1p1V4mwjzv64/g88mWnGoXkvk9k2W0gYIWl0nLc6WTTdpoeios4MVvmh6fTWI6D3lApeP5spmHIHWQqV8cG7MbfJwEhn8K6ZIjP3DWAIwQvnMvwg5MmwnGo6RatYT+Wc2FSR5ElWkJeokEvZc3EEYLpgspfvTrOwYkCW7pj/MxdA8ua1RRZ4uRcCcsWyyRsXj2f5cRsidv7E9y17ubKF18rrjfe/v6JBWYL7mT1Lz84/KYSm+80FFWTbNUlGsYyVXYPxHn6VIqpnMoDG9vY2h3jXKrKUycXGvG3KwVdN2wOTObJV3WiAS97hxLcOdSKaQtOzpVJRnycz1QbE+sgCfee9+Dmu5oNhn3Bb8GxwXLcQllKcfOJHb1x7h1uvSpP58UCGLjTKPesX10Cdg1vHdbqXu9szK7gI+yRZQqqTqVu0RMPkq3pdMUCvGdbJz5F4n+9NE5fIsiHdnVzPl3l8LQ7zVHRTYJeD4osUaqbJMN+/B6FyZzLH4xna5c0+SVCXqbzKpmqzvr2S5shi6rBt47MIoRLyr5Zkxq24zadG5bDaLrK5+8ZfFO+550Il6AO8/zZNHOlMu0RP73xIKppo1s2f/TDEUbTVZIRHyXNpG7YxGIeHMdh/0Qe03aI+j1EAh7SFZ3OmB9dd+M1v0dmPFPDsB1MyyHglUmG/XhkOJuqMNga5OBUHqdR/OppCVLVLOJBH9u7Y027lt/50LamqowQgljQy57BRLNR0HEE49kaQa/roWXaYSqauWqT2c2Em6/phP0ePnJbDx+5rXdZEXahpPG94/M8fzbNmYUyuukQD/nojwfYdz7HWKbG4alCg4dwY7G9Qwnqpk26rPHcmRQRv5eiajCerdES9LCrL04y7E7h6ZaDbjocmymxsy/GYGuYH51JUdFM7hhIYFgOL41mkWXXD/Qbh2YZTIbZ3BXlxGyRbx+dI+j1sKUzRiTgIexT2D9RYK5Yp6JbbOmKIgGjadd+RQi3Aa+smbw6muXARJ6BRIBnTqcxbUFNtwj5FJIRPzt6Y5Q1k68dmCZf0ynVDfYMxDm9UGUsq5KrmuwdauXpkwscnykyVaijmyF+890bObtQIVPWEbj2GT+3QrGyMxbg9v44QZ/Czt74m36tfxwQQjCRc+sBV5LnXMSilYJm2oymK/TEgzy6uYPJxrTgmfkK6zvCPLy5A0mSmvLhumXz6miWomqwuSvK/SvEcYenCnzz8CxCuP6FPS1BOmIBNNNhfWcERZY5l6qyfzzP6+N5KppFb8Ig+7LOUDJMpqLx+K4e5gpqw5/SbUw/MVdGEg6WAL8iYwe8XFzSmCle2ff7ZrUKvwrMA23Af1ny8wpw7CZ9x6oQwHNnMk1TNEVyg/iueABZlinVTUzboSPm5z99/wwvj2ZRDZuQT2GwNcS+sTwfu6OHRze341UUogGFF0azjKbcpOAL9w3hkSWeP5vm2EyJAxN5V3ZRCH75weEVZV8WUdZMNnRGqBtugl3TLLJVDctyg4FY0ItHltnYEaY/EeD+DW3YjcV671Arp+fdSTBFljg0VeCFsy4B8pm7+umMBfjs3QP8wbPnCHgUnjmdoqQa1E2Hp0+m2NodQzVspvJqc7T3wGSBl0eyKLLEZ+8eaBRKluPMQpm/fGWcRMhLvmZwcCLP8dkyGzoi/Ma7NhANeIkGPFQ1a9lina8ZvDSSoTXs44ENbUiSW6DZPRhnKl9jcyxKIuRlU2f0qhKla8Wp+XLD9N5kLFu9RA9UNVw5h6uR9VNkqfGwt5Ct6uRVE68isfeiApgrZ+Z2q9QNm1RZI1vV6Y0HCXgVqrrFD8+kGUlXUQ2bXM1kW3eMrx+aoVA3sW2Hqm5x+0AcryLz1IkFFqV0zqUqTOZUJEkiGfbSGfUT8Xt4aFM7c0WNmmZR1i0My8K0BV5FIur3UDNs/ucL58mrBr947xCfucudgMlUDdfDwnJY3xHhF+4f4uBkkaJqMNAaYq5U56fu6OOei6RM7tuQ5ORsiduvICG16HGzGOS2R/xs6IjwxngOn0dCQiG9eh0NgevxMdgW5ny6Rq5mQEOi5YVzmSt65rkd3Salusl0Xr3i9mu4Ms6nq8wV61R1i7OpMj977+AysquoGkT8HjyKjN+jcPe6Vs4ulJkv63zn6Dz9rSE+uedCh83r43leO59DkSUevqdj1am9wWSYmm4xna8R8LqyRbIksVCq88pojlLdIBkJIIRDuuLK4E6X6tR0C9O2aY8GkHD99SQJzmdrlOsmIymNlqCHdW1hDNNmU0eUPUMJtnXHqOk2Nc3CI7sGtB4J6rpFyKOgmTZ3DrVyfLaIR5HQLfe5LddNDNuhpyXITLHOZE6lM+Yn7Pfg9yj0J4K8OpqjVDcRgGkJ4iG3cFZUDeIhH+s7IqxrC/PCuQynFyo8tLGNbxyapVQ36UsEVyXhL8Z8cU0O8VZFIuxjoeKSl4sFk4uGYZnM1i4J4q4Fd/THyVR0YkHvWz7tcaujpJqrejNJUuMddgXT8daQj5ph45EkEsHVY8CaYWM6ICznkgnoRcyXVKZyKqbt+kythtmCimULJEkwf5kAv6AamLZDTbfRTHvFaba6YWPZbvFnMTZaCWPZGvGgD1mCyZzKzr6VC2+L+3ATWXPFuHhTZ5Sw34Nq2Gy+jNzMdF7lyHQJRZb4xJ7VvWgCXhnDcpY1WlyMiN9De8SPbtkMJJbHnYu1uohPwcFNziuahVeRGjIrYC9hghXJJQmfPpWmvzXMa+fzjGVc8mT3YIKNnTF8iqsacWK2zLauKBXD5uhUkfs3JHnxXAbLEUiSKzmTKmvkVYOabvEL969rKivkagbr2yNYjoN3SUFx/3gBRwj2T+TZ3BUl6FXwrSAB+ePAyblSM94ez9aWGa5fDkrjOkmSdEPr3U8i2iJu49B4tsrt/XHKmsWpObdofnCywNbuGJO5GqruqjkMt4U5PlPiBycX2D+RJ+hVaIu4McfJ2RIf391LUTWYKdSJBTzYjoPVIBbA9VbwSHLjXy4W7zbbcdfKqmaRDPvobw2y6yIJp6vBS2fT/Nb7t97QeVnDm4OAcmECbO1RfechulLDleRKSamWw2ReZSgZRjVtzi5UsGyHomowV1TZ0RNjXXuY8WwV24HulgB3rUsy1BrmpdEs6YrGnsEE0wWVU3NldvXFkWWJmu5OcgR9Cq+MZjk9X2JDR5SxrOt3uvR9JkmuQoYtxCUeujcbi/u/FXy23k6wbIdDDV7Jr8jUdAuPDF5Zoi8e5FuHXZ+pXNVVMBpKhljfEUGzXAlr03ZYKGv0K25s1hULYDmCmmGh6jYtQQ+zRR3V0JFtgWzbWLYrU31oqohhOyiN+2mxoSYR9jHYFsajuPzvC+cyRAMeHt7YjixL3L+hzW0mWvRnliXuHU4S9XvIVnVG01X+3bdP8m8+uJVjMyXqps1gMsSxmSK39cXZeRM9ROMhb0MCu879G9qanOp0XmX/RJ5MRUc13IKiYTkoikRnLEAi5OfITIlT8xW6W/wMt0XoiAUYy1bZ2hXj7nWt/P3rk1R1m3zNpDceRJJgrqgxW1T5+B19zWGQv9s3iW3bVFWL70zP4VVkCjWzwSFbBLwysuTGx32JEH/20hggSJXqzBU1ogEv23tj/Ma7NtLdEsQBTr9Wpice5OBkgXOpCmXNor815EorF+rMFur4PQqa5fDCSLYRvwu2dEW5ezjJ7kHXy6s9GmhwoTUWyhqOI0hGXJ91WwiKqsHJOXcaVZElJNnNrTd3Rdkz1MpkrsojmzsQQlySI9w11Mr69jBhn4d0RWP/RJ7+RKg5kfp2Q0l1FcwOThbwyBI/e+/gskKu4wheGMlQrps8sqnjkonXbx2eZb7kylp/4b4h9gwlODFXQrdtRlM1/nbfJP2JEI9sbsejyMwU6k1FkmTEv2x/jiMoayb7J/Js6AhzZr7K/euT3Lu+jS3dMY7NFDkyVeQ7R+d4YEMS0xbE/B5sRzQaUOvolkNLyMsHdjg8fy6DEJCuaA0uzWlK1lu2g8BENZbHqXcOXZ6zhptUBBNCTAKTwL03Y3/XCsdxu9kW+QVFhq6Y241QNx3aon4+dFs3T59KcWS6iG7aeBSZ4fYIfo/CgYk8z5xKcXt/C7/9oW18/dAsr4xmCXhkBpNhynWTp08ucDZVwXHcwlamYnA+U+WNiTw/d88Qhu3QGvaxd6i12cm9qMsa9iv84v3r+MbhWYqqwf/40XlCPoWHN7bREQtQrFscmSrw1MkU3z2+wOM7u/nU3n4e3NjO9p4WJnI1NnREODxVBCBf03n+bJr3be8iHvJx73AbR6aL7B1s5cRskbmSxp3rEjiOIOT3Lis4VTSXULAdt+K+UhHs2VMpPLLE4ekisYCHc6kqfo9LNmimQ9Dr8PcNSY7h9jBeWcZyHHI1g6JqMpapMdweaUqdPLChvalP/8imjuuW+7oS1reHOTFbwt/QlV6KuWKdrx+cAeATe/pIhLwcmiySjPjY2n1p8v6BHd2cXiiDgB+dSbO5E3b1xS4hgI5MFzmXqjCTVzkyU8RxBO/e2sFAQxLk5FypWSSQJRskmC9pRIMKlbqJ5biTVgtljeMzRRbKGlM5ldfH8iiyK3coyTDQGqYnHkCzHM4sVJgv1cnWDGTJ7ei2HAfDFlR0i/0TeQ5NFpgvaRybKvFr71rPrr443zk653puRXy0R3x8/dAs4HojBH0KQV9wRceSzV1R6oZ9WXktWZb41J4+JvMqGxtTO7IskYz4UHX3BbUK/9eEwE2qP723n+MzpYa5rkFrxH9ZCcpFbOyIcGa+TNjvoXsFneQ1XDsGWkPUdAvLEWztihH2XXjJPXcmzZHpIh0xPz9z5wCyLHHfhjbCfg9/u28Sb9TfXG8WsejjZTd04pd2vx+YzHNgIs/9G9rY2evKKZ5LVdzGg/EC59IVvnd8nnLdxLQFuwddg+ddfXFqmkXFpzBXqDdNMjNVN3jc0hVlz0CCZ0+n8XtkxjJusWE6rzJbqvP4ri5+dCbNQrHOyfkKqmkTDXiIB72kKzo51cBwBIok8dHbe/j6wRlmi67nHpJLcp9eKNMacmUdkmE/j2zu4Pb+OK+ez/Pq+RydMR8hr8KewTjxoJd/8rcH6UuEeHRLBw9vamcsW2vKggQ9biKx9HxdDZRVpi/W8Najblx4Duq6yypJ0vIFsVgzMCyH620+7IgF1jpYr4DRdJVnT7tTEl2xAJ9bwZTX71H41J4+Zop1tnatTuy/OpphvqghSXBwMsdtK0iYAM1n2XJAEivLBMqS291mOoL6ZSQHO2NuvCZJEh2x1bv8XPkik7aoj8gqEzp5VePlhs66V5H5hfuHV9xOIHjqxDxeRebjt68uXbaYxEoSBL0rr0VWQxJ5Oa1+KcazVYqqgSxLTGdr3Du88qRIruGl5r4T7BULQhs6ojywsY3JnMpP7VneULCtO4YiS8zmXcnmU/NlZAk0S6BI4pIijSWgrFlIEpyZL5MI+VAazWy7BxOcmiszVdBoDXk4PFXkxGyJ4bYwzxTqdDc8YpNhP5ppM1/UKNUtIgG3yeL7J+YZTIbZ0BFhKBmmNezDFmKZr+yW7iin5sr4PBJ/8fI40YCHz909+JZIi69vj3ByruzG261XH299YGcXZxYq9MWDa9P61whJkuiNBzk5V+KHZ9L8zJ399LeGmCmoTSmbswsVhtpCeGSZf/zwer5+aBa9kbtppk1JMzk6U0IIeHk0S9TvZag9TMTn4eXRLDX9QtVXCFAvWo8cgIb3rozrhawoMj9958qeiFfEWthyy2JpA8Ca1/I7DytJCFu2jZBklIZtxmypTizkbcqgPn1qgYpmUdHcSbGw34MkSzx/JkNRtbh/Q1vTa/HIdJHXx/JEAx529rYwlVP51pFZZImm5K9pC14fz1Oqm/zNaxN89u4BdzJltsRQMsRP7ekjU9HZtgJPc7OgyBKf2tvH1BL+Yg1XB48is6kryvlMDZ9HQtUtvnJgBst2ODrjFlANy8GyBbmqgWYKehNB6oaN7bjShv2JICXNom5anElV6Yr5+chtvQgERdVk31iOYzMOpbpBVbdc1QHcwrwigex1Ob+6YdMa8fLxO3p591ZXQnr/eJ7zje7rgdYQ69sj7B1qZe9QK9mqzgvnMgy3hbl7OMndw0n+8IfnmrJu3zsxT6Hm5m5/9/okjoCXR3P88Wd3LyuWVjSTw1NFeuKBa26+liSpeaxL8fy5DNmKO/3kOAJFltnYGaUt7OPx23rIVHQGk2Fsp8qmziiGJYgGPPQlQnxl/zRPnZwn38gp+1tDICIcmixS1S1XjnJjksNTRe5f30aqonFkusTJeVfKVGkMMPzFK+MYloNXlqhoNi0BLxO5Gr3xACPpKpW6hRCNhmDNpKpZ/Oa7N/Lo5g4sy+EHJxcoe2Aqr9LR4IMWecCQTyFd1vB4ZGxbEPIpeGSJ+zYk6YmH3GPe7DbXLRbrWkNu8asj5qem23z27gFeGc3y6vkshu3QGfYT9Cjopk0y4udfvm8zXz0wzen5MnXDIhnxN1Uvfng6TVE1yFQNumIBMhWNrpYgE1mVjZ1RWoJvL0nUZ08v8N2j8+imzYbOKJYDqmETCwgOTRUQuCpwRxp1hKA3x3uX2NvMl+ocmS4S8XuaHvZV3aY/EWI0U6VUN/F7ZIqqSV9rkC1dMbpbAsRDXqqadcm6+a0js0zmVGzhsL49yvu2d9PdEuAvXh4nFnTfJ6+N5fDKMo9sbmdnbwu5mkZSd1B1i7pkN+1IzqaqBD0yI2m3FlGoL5ddFEBtSQHMr0jcOdTKr79r4xXP282SQ3xZCPGAJEkVlsdKEiCEEG/e2wuXQKjoVvOLbQfSFZ2DkwW6Yn46Yz6++OokBybzqLqFkCTaIn5aAh4sx2EsU0WzHDTT4vWxHNmKzlAyRFWzeM/WTs4uuBM545kafYkAbWE/+aqBV5FJl3W+c2yWc6kaddNmU2eEX390I/2tQabzrn/DRFZlU0eEjR0RXh/PM1/SaIv4iAR9/NSefp45leKFs2mXGNYtfng6zUKpzoObXCK1Nexjrlgn0TCye/ZUmqdPLvCjM2n+t/dv4dEtHdzWH+dbh2fZ0BHlnz+2ic6WYFO/fWn1++6hJLOFOh0xP7YjGMtUOT5bYjqv8shmV16nIxbAtAV+r4yq2wQ8Kj6PwrbeGO1RP2XtgiTH947PNzwqHHriQZJhnzsp5vfwrcOuP9DByTym7Vb4H7mCSd31IFXWeOLILH6Pws/eM0g0cKnU43ypjtVYfeeLdY7PFDk97/o1tIZ87BvPMVOo8/Cmdnb0thD0KeweSLiLp2nR1eJn25LJsqpm8tzZNGGfh6Kq89SpBWzLweuVsRzBI5s6KNQMvn1kjlRZp6clwLTtUDNtclUN3fLi9yi0+hWG2sL88FQaWXI1/wMeibJmU9UdYn6FmN/Lxs4IXS1BRtIVzqYqVOommmUT8MgYlivr1hbxoRo2x2dKrnwjAkl2fcrmS3XOLZRJlTRKqt6s4If8Cnf0x0lG/HgVdx8X44enU0xkVQ5PFfnQbd0YlsOmzuglHVOuPNxyYs7vkRsSQFd3LUuqxdcPzPDJO/voT4b58M4uokHfVXVnDbWF+bVHN1xyz6/h+pEI+/iVh9bxtQMzCC6QsLpl860js2QqOhs6ImiWTcjnYTqv8qMzaUI+BVmWmnrcTxyew6u4/63I0BL00ZcIoRoW49kafkXhz18aZ65Y51uH5/jU3j5a/F5mCipCwLeOzNAVC6IaNumKjgSopkXY58GwHCq66+ky3B7GNG1OzLpBT8jvoW7atEX8/Ny9g/zzrx4hX9Op6Saq6WCYNv/hu6exBIT9Cm0RL36PjN8jcc9wKz86k2GhpFFSDaYQvHbeDQIWzV6FcEkgnyLTEvQQ9CqMZ12da1fCIENVN+lPBPnPn7oNn6Lwm39/mMl8jdF0lYKqc2quzAMbkvg8MqphUTdtdvS0MJ6r8d7tV+8Fk66sGZffqshULhTBaqbLLGmGzVLqeCJf4yP//WXetbWT//2DW24qQbx/Is/rYzk2dUaXBb5vBtJljVzNWPEdAW4nV65qsLEjclmpu2vFuVSFZ06l6IwF+NjtPZfsu6yZfPfYHCdm3Qkjv0ehqlmXeK2CW1DsiK0uEQhQ0d1nVQLK+urCUc4Ss+GFikFf8tJtqrqF6Qgc4RoIr4bWkCvB6pElooHVw/eabmHZDnXDRpJWkSZMqegNPfbJ/KXeIIv4zpE5d82V4PsnU/zmKoXBuukmIbaAuilYqQdvMlsjW9WxHDg2U1z1O4s1A912kG2Jsrb6+chUTDTTds25Vwky8jWd2WId3bI5MVfi7uELF0BqEDD/8cnTpMsaMgK7kUvZglWYX/c6bemO0h7xk6lqdET9mJbDybkSmulQ0zyEfAptEb8rAWTaCCAa8PCPHx7mf74wxqZOtwmvLepDNRxGU1Xmixo/PJ3it967iX/00DBCXJisf/FchpFUhTsG3AmgqlalornvvaDvx9/0098a4lcfXu96dVxDvBXyedh9BVWBNayOMwtlDk26pMbd61r55J6+pt/uE0dmOTlXJhH2IiH4b8+coyPmpyvmJ+RzGxlN2+20tRsNeJIEUwWV3/3INl4fz2LZF256e4X7/+IftQQU7l63wqJ2ldCNy5XD1/BWYvWVdw3vBOSrl06TaxbEgxKWIoNwOYmj0wVG01Vawz4qmoUiSxyfLfGh23uoGRa66fpt5msGU3m1KdU7na+Rr+nkajr7xnNUVJOFUp1E2NeQDvZRqptE/Aq65Xo7FVSTF89lmMmrfPG1CW7ri/OxO3rf9Inntoh/xabwNVwZ961vw9OY2vujH42gmTaOcH1VW4JefIqEI9zYqqAavDKawxYOCgIHV8VpZ1+coCfAmXSVsUyVfWM5t8nJhtaQF9ux8coShiXchmncpmmBRFvYR9jnYSqvUtVNjk4X+EBDOjMe8nJspogjoCXo4fvH5xlKhtnSHeXlkQyj6Rohv8L/5/1bUWSJ923rYixTI+z3sKOnhX1jOayGjGdFNQn5FEzb4cxCld54kHjIx4/OpBnL1Dg0Bb9wf+C6CigLJY1vH51FM20e2tRBZ9Tf4KLDrGuLkAjnAYlHt3Sg6hbPn0kTD3n5+ftca5pkw4alXDd59XyOqZxKQTUI+zyEvAoTuRrRgIJHkchUdf7w2RGEgO8em8Oy3b/PsBxqmkUs6KFuWuimTblukapodMX81Ayb/kSA0/MVCjWXAw94PZgN77ETs2W+fmiGz909yAvnMsyXNY7N6li2Qyzg5V9/cBv9ySDHZ0rMlerEQ65E+LNn0iiS67PsVWR+cYlf7nxJ411b2jFtm68ecAcZ7g8meXhjG196fYpDk3nKmolXltFMG1mSUA2bsGnztYPT/OBEio0dEZ4+lSIR8lFUDQqqgd/jykeWNXcdWpR7DvoUnjg8i2raPL6z+22jqvLsqTTzJXdS7uHNQTZ3uYprx2aKvDSSBeDOoVZ8jYGWjqifL+2b5Fyqwsfu6OVLr08xlqkQ8Xv5/35sB5Ik8fCmdkJehU/u6cfvlfi716cIeN28pqZbfOPQDLpp8/HdvfQlQmQqGt84NEvdsFgo66iGxen5Cpu7IkQDHr5/Yp5K3aTWUE3L1wzCPoUfnJgnWzPoiATo6PFxZLqEV3eVn7Z0Rvg33zxGtmpQ0kx002leq9XgUyT+yaPrr2o9v1mTYA80/v8t0R8TiEsC90LdolivcD5dxbDdRdNpaPr7Pe7DPlfUOJuqYDnCHTOVJc4uVLh7uJXJnMq9w0mG2sK8ej5LLOjl9oE4rWEv4YAXJImKZrKuPURLwMfBySJSQy7mqwem6U+EeN/2Tl4ezVLWTA5MFpAlieH2MPGQl40dUR7Y4Ha3vmdrB36PzB/+cIRC3XTNJRskwe39cdIVja8emEYI2DOYoC3qZ7qgEg/JnJwrs749wni2RqnhdzCeU4kFfVR1qymvsohjsyWyVYMzCy5htFDSUCSJ2wfiHJ8tsaO3hU/c0UuuZqCbNs+eTtMW9bOxPcIn97qyZrGAl7vXtTKZV3GEYCRVwZYlBpMhPnp7D4mQD810GM/WWCjVOT5TwqPIhH3KmyJ/cnah4kqZ6a7040o+Gdu6W/jR6QxvTOTwKVJTukWRJeqm3fS9WjwH4E6KPHViAb9H4Y6BBBXN4m9enWBDR5jvn1jgXMr1C8vVDHTDxhJgCZupfB2/V2a+WCdT0dAtG9sWeBQZYdjojiDpkehqCdIS9GI5DgcmcoDEcFuYgdYgz5xKo0iS23lcN/nm4Vn6EiESYR/dsSAyEpJkEvIqtAQ9BLwKthCU6iaTOZPWiA9wu0eOTBUZSVXxeyQsIcjVTCzbNXqvaoJTc2Xaon42dUaZyLldEEsRaJCxluPwxOE5JMktKl6NWfvugQTv2drJn708cVXX0nAEr0/kGc/VWNcWpm6YdLW4XUO7+uJs6IiQrxm8cDZDW9THow2N2kWsSRncfPTEQ/zCA+twHNEcrU6VdFqCbgdIa9jXlBhdnBidbdz7L49k3U6RxjREqqwvu2++dXiOVFnDo0h4FZlqw/cuU9Gp6TbxkJskBb0e1ndGmMrXCPs8KDIEFIWeeNCVxLIdhtvC1A2H6ZpBXbewhSDgUZpmzDXdZqGkU6qbKBLkayaOIzg2W2KwLUzIp/DurZ28dj7HQknjxXM5jIYJr2E75FWT/eMF15hXltBMm43tEUYyVUJehXzNIFXRifi93NYfp6ZblOquLBnAD04uEPJ6sG0H03RwhENJtTg+U2SyMe17dLrKgfE82ZpBbzxArqrxL69SKmitBHbrIhaUqTWKBL5GLi9fNLlX1WyEMDgzX2auUGfdEk8vxxFkqzrxkPteX/QDvVocnS42/V8e2dxxWUIhXdGI+r3XNV1SUk2+vH8a2xEslDUe3by86aWsmXzljWksRzDb28J7tl19kfdKODFbwrAcpvMquZpB50VFLN20GUlVMRoNO3uHEiTCPhxH8OzpFMW6ybu2dFw1EVLRzKYhsHYZOcHWkJd01WzEHStLCbqm2O6/c7XVvf2CfoW+RAhFlvBdpkg6ka2hW43p/LpO1wo+ZLv6Y0T9HlTTYtcq3mJAs2MXwHCuziUmV9XpWcE/bDJbY3GwZKG0upxjWbMwTAck16NtNXhkN7ZXJHDEyu/+Ys1kIus2qZ1fQY/5zEKFiZzqSsFdBR8vA51RP6pu8+9+dIp0RSfglQl7Fcp1E810sGybPn+Y9miAx7Z2MJKu8v2TC3iUIEdnSvS3BjkxW6I7HmD3QIJ42Mf+8QLPnFrAsBz+8uUJBttClOuuL6VPkTkxVybsVzg+U+LTd/ZTN1wlh1jA05AaenMJvENTBc4uVNgzmGjKq6+m6jCZq/Ha+RwDyRD3rfk93VQkQl58DQJnUdL02dNpUmWN2WK90VwgYTnuhEW+4cHn97jkxaJPT7FuYloOQrhr2e8/dRbbcVYsfF0ONcNmIncZnfMr4L51b2qP7BrWsIZVUFKNS34mgELdRpHAr7g8CEgoss79G5IMtoYoaxabOqPcsy7JgxvaOTSZ54v7Jpkr1nlkS3tzX0GvwnxJI13R8MgS45kaAa+CJEns7Ivz+5/cxVMnFjg9V2KqUGdHb4yelgABr0xFs6gbNobtcHKu/LYho9/JODFb4vhsiZ29LU2eTDNt/uhH5zg9V2k0nPrweeRGQ7eChMt9hWQZ23HQTUHNuBDTyZLAdASJkI8717UyXagzk1epmza66eAIwYJlNyeFFMmdyBe4tjdeBVTT5uR8kapmU67DE0fmCHg93DXcSjLsZ2NHBEmSODJdQsLlHfYMJqgbJtMFjbDfnUrqjgfZ0h3jdz+6AyFcvmNzVxTTdjniY9NF1iXDPHlsnqm8StCn8MsPrMPfyKc8siujfT04m6pwbLrIybkyZ+Yr/Pz9QzywIUlnS5BEyJ3AOpuqMJap8oOG52d71E9HLMA3Ds2SrWoIAbsHEwy3h5nK1zBth3jIy+HpAiGfh5DPgwDuHW6lqJqcmi9RrOnIsnu9BK4CQsDrp6a5TWM1zWYgGaI/EWL3YILZgkq10fSXCPvY3Bmlqps8fzaDJIFhOhyZKmI5DrOFOumK1rSmSFU07hpupbvFHRI5Pl3E61EQjiCnmXgVi8NTBb6yX6Gm2/S0BHj6dIpTcyUUWcbbkLc8NV9hKl9nrqiSrhgEPBLhoIe+eIjOlgB+jyvVl624fse67aBbNq+NZpkp1fHKrqTk/RvaeWCj26z5+M4ukmE/3z02x8ujWQaTIV47n6Un3v+24BW398TIVHRaw75lHr1LPXdbw176EkHyVQOfIvGl16eomxZ51WC2UKdQM/EqMgOtIdJljZaQl55EgMONCcKA130GNdMmU9HJVg2EEHztwAztUT/j2RonZkskQj6SER/nFioUVYNj0yXqhk1fIsRUTkWS3HePaTuoBrx6Psd0oY5A4JVdmcu64TaYPnVyHq+iNBoyxBULYAB9rSGCV+k1fLM8wZDcdtNjQogdN2ufVwshLpVWsRu6+1aja2ARHhn8XrcYYzoOPo9CyOtWqe8aSrqSXuvbuG/9hc/csy5JMuzH55H42oEZRlJVtnTF+K33biLk93A+XSHs8/DGRJ6WoAfLdhjNVHi/1MVt/XFmC3VkSeIjt3ejmZdO0Sxq43tkidaQl4pmcnahzPoOVw4s5FMQwtW9PDxVYPdAHK/iehMsjoivbw9zdLqI7bjSML/zxAnawj7eva2TOxv6pobloFnu4mXaDlM5lYWyhmELVMPm5+8fwnbcF9YigfSLD6wjV9U5NFVkInfBW+y+DW3ch5s8jaar2I7g2EyJr+2f4WfuHqA94mddW5jT82X8XgXHEXTEAm/KhM6mziin58sEvO5U1UoI+hTmiu51eHEkywd39tAZC9Aa9tERDbCuLcQro1lawz50y3a1ahvki1dxif1DUwXeGM9TVA2QJGIBD3XD9fnweRWEaeP3yJyZL/Ebf3eIDR0RtnRFOT5baniBCDyyhE+REEgMJsNu17BuUtEsinWTvKrjlSUCXhmERG88wGS+jscRzBZV+hNBfvn9m/j6wVlOz7v7reo2muUQCXgYSrqkfN2w2dARoVw3yApBRTPZu7mDUwsVTFMhp1qYtoNPkYiHvIB7D65EOL1nWycDyRBeRebJY/MAaObl2SLVsHh9LE8s6GVTV4y2iJds9er6Cuumw3ShzlyxztmFCpGAl+G2MC+ey/LgxjaCPoXZYp3ZYp2t3bE16cMfA2IXecp0tvjZ2h2jMxbggzu7sRv+OR2xABs7I0zkqmSrBoemCty/oa0hCSo1n8+Dk+5zVG4U7mVJ4l88tpHf+/6ZpozhY1s7yVU1slWT9R1hZnIq6zsibOyMMld0dYhlSeLlkSzzJR2PIrF7IIFu2cyXNCQhiAa8xAKuPKMiS9y1LkGqrFE3XYJYswSKIhPyKbRHA9w56PowLpQ0slUDWYZY0Itm2TiOwLAEPgX8PoX+RIhKQ1I24JWZztfdgL2k4ZFLZKo6IZ+H7piPPUOtHJ8tc3q+jGE5RIOuZ9j5TAXdcuiOBZnM1RjL1NyiuXCnOeZLOrf1J9706Z01vLnwKR4Wy5QBbyPsEsuDOZ/H9aIbbAvT0/AuchpxzJPH5jiXquDgkvA+j8xn73b1vq8mQN/VF3cnwbqily2A7RvL8dr5HGG/WxAey9TY3BltyvteCYZ9wfdKX+FdYtkCu/F3L8Yi1wvNtNk3liPk83DnUILtPS3MlzQ6YwGSK0x3jWdVeuIBarqXj93Rw12N6YXpgsrJhq/O/vF8s4P0SjgxW2rGlocn86tvKLnvfI8skS7pDLVfGnYXlhS+LleIua0/znimhkeR2Nx1mZ4z19LMnSRaZRLM5/WwsTNCqqxd1hT6Azu7OTZbwivLPLzx6ib526Ird8J2xQMosoS9pKFiJRTUxvkQMF9avSioyAqyZKLIMsoqOY9u226jkuWQKl9aeIuHvAwlQ2QqOnXDwaOAscqtKQGmAwtljb96dYJUqY4tQAMsIVjfHuH0fJl0xSAedH3IfngmjSMctnXHGgbhVaq6xfqOCJbt8MTROdoift67vZORVIXT8yW+fWyuOe0nBHg9bld+yKfw+XsGG96TAbZ1x/jr1yYxLId3b+1oGlYvRb7mesH2NyRMrgeW7fBiQ5P/xXOZZh6wGl4ZzZEqa8yXNHb0tlwSP6zh+nHHQIKxrIoQgs1dbuPa6fkyQggcIfB5pAYhoTamLgWm5ZAMu7HQneuS3LM+SVfMzxNHZjk8XUI4DlP5+lUbP3llN281GhJX3zo8x68+suGq/JYvxlz1xt4Da1jDGq4P6zuipMeLK/7OFq7UnSUkt5AhSwy1hvinn97EZF6lKxZoEqzRoJd1bW7T1tK1PujzsL2nBWPKacR+rr1CR+OzAa/CJ/f0MdofJ+BVmoWuD+zoZjAZ4onDc8wXNT68a3UZ5jX8+PDCuQyG5ZCt6M0imCMEWmOaN+xT6G8Nc1t/HCHcAurBqSJeGXriQXriQZ44MoO1pGcs4JGoaq6Nx4HJAiGvRKjh75WvuUS5aQvKdfdDSylExSMRCXiQkDCtC8MOmarBPxya4bWxLP/ivZtc+UXTYTAZ4usHZ/AqEuPZKtGAB9N2CPp8mLbbaHhwosBwe5jhRhPiop9ue9TPnsYkzSJP5voSCd69tZOB1jDtUX/TDudaYDuC9W1hd5JHQLFu8spojn1jOTyKxO88vo32qJ98zeDsQoWA1417EyEvh6cKnJwtkq+ZxMNehAMfuaOHBze28er5HK+P51ANm2LdJOCRSUb8rGuP8O8/kuTn//INCqqbdwY8CpZwkGQZRwjqpk065fIqmzqjPLixjQc2tnNwssBCSSPo83Bbn9vI+HvfP00k4CXoVZBlqOomo+maa6Pic+VSJRa5RhefvrOfk3NlZgp11reHCfkVVN1itljnT144j2a6Mo4LDa93SZLYM5hgvqQR8inolluI0UyHaNDPb39oC8lwgFjQS0csgEAj1+BgfvaeQf7h0DTjGXdwQW4UKz9/7wCDreHmtF+x7nKxpu1weKqIZQu+d3yeD992668/n9rbz+7BBJ2xwLIG1oFEsDGZKZp8mW45CMnBsGxMy5UfbAl6yVV14kEfPzyd5vhsiaJqkqpoVDWTZNhHa9hP0Oty4wOtIVrDXuaLGobt7muuqNIa9jGSqlDRAhiNBnDXLspPVbeIB70UVYOw34sku/+drWiohtsA73jc6+M+y4KCatKf8CIEtAY9zJmXNm4ABBWQFff+fvfWzkuGOVbDTSuCCSEcSZKOSpI0IISYuln7vbrvXuFngALEQh6qmoUjQJagq8VH3XSTyZage2L9Hpn+1iBT+Rp+r8yX9k2SCHuJ+L3ctz6JR5HZ3BUlV9XxKjJbu6KMZqr8t2fOsaOvhfs3tPG/fWALAIcm8/z2t07g88h8/eA0c8U6hi341UfWN4MEcF8O+ZrBtp4YXkVmqC1ExO+hplvEQz5XE3m6hE9R+JWH1vHYtk5eGslQ1SyeP5vhPVs7eNcSHdl4yMcn9/bxly+P8ycvnMe0HGb8HvpaQ9w51MqfvXSeZ0+l2dgR4b3bO4kFOnhxJMNTJ+axbUHQr/D1Q66UxqbOCAGvwrbuFgaSIZ45lWK+pHFqrkw04GG+pLEuGSbRkD68YyDB4akCPzi5ALjk1r/6wFY+dkcvg60h/vBHI1i2uKQr/GbBFoK7h5Ns645dluDb1BVhrlSnLepHkSVeOJchW9V577YuMhWDqXwdy4ENHRHu39DGho4ID29uRzcddvW1cGLWrWa7eqmu7OYjm9pJV+oYEzZVXUK3bMqayYnZElXd4gM7ugj5PNQNm5pu4giBEBJRv4fXx/P4FNdPYlGDVdXtRqVb0Br2cXt/gmLdolDTqRkWz59L05MIMJFXmStqVA1XH9nnkUlXdJykoCvmJ1NxvTLaogFUwy2Q/fuPbqeiWfz5y67sXLmh8TrU5vpPTOZU8lV3dHmplJRXkdne6GB3dgoyFf2Kcjavnc9xbKYEQCSgXLOp7eLUpmk7zBXr+DwSu3rjpMo6929MMpapNXybrtNAZw03BL9H4WfuGkC33BH1Qs3gfdu72NwVZVdfnFPzZUbTNc6lqjy8qYNfeeiC38xzp9P8l2fOEgt6ef+OLrb2uNrCcyWNvtYQm7piBH0KL45ksQX888c28eyZFM+fy6AaFl+4b4hfemCYg5MFpvI1MhW3WOVVJJJhtygwkq5SNyBdqfPfG+vP1p4YH7+jj7lSndOzZQ6M55GA9rCPLV0x2iJ+9k8WeGxbJ0IITsyWESwW0hRGUlXqwsZ0wOu43pO9CXeCLOr30N8a4uRcCcMUnJgroZk2dcNGMyy2dMcYTVepaCZ1w6Ez5m/Is0ookkxZNylpJkjQEvQS9rnBeXdLwC26r+Ftjce2dfC/XnHDoruH4wCXrIldLQE2dkT5wr1D+D0KY5kqTx6b52yqzKujORRZYn1HBEV2kxaPLKNZDpu7onzwCoWbu9a1NiVqLofFIkFNt3ni8CySJHEuVeHXHll/VQ0s7VE/79/RRbaqs2fw0ndEa9jHB3Z0k65oNyyJ9sZ4vumT2hp2OzYvVxjqbgkQDXhpCXoZaL3QLJOM+An5FFTDvqZu42zlQkFlobx6ocad1DEIeBWS4ZWLAbEl7zHPZU6z7bhds0hugXQ1tIS8qIZNwKvgVVbe4Xyxzqn5Mqbl8MK5DL/66IYVt7Nsdw30yNJlv9OvSOi2aHiHrByH3TaQIBH0UNYtHtrYvuI24BLsi7XA0Cr+YuDGPbIk4VFW78B1Gxfc+GqlOGR9e5R/+u6N/OcfnCFVqhPyKdiafclEjK/RgewAxborhekeq9tcN5ZVCfkUulqCBH0GyYiPqm7y6miOsmYylAyTCLk+k+1RP7LkNnDNFesIAeW6xd6hRMOXySLkc+U6FUUiW9XpiQcZbAvTEfPzzKk0QDPOA3eybpcr1sBo2m2u2NYd49nTKWYLdU7OlehLhK44Qeo4glPzZUI+pUkEeRSZnpYgs8X6JX67SzGRrVHRLHrjAVJlV/Y9dJUdmWu4OsRDPn5piVyQR3GnwnTL5pN7+vDIEv/XD85SUE3Wt0c4NVeioBoYlo3lwIHJAkPJMIokcf+GdtojAZ48Md/0+roaCOE2FlpOw4ZAglLdvK4imLZaxXkNa1jDm4rB1hCvrVIEAzf3H4iHXOWhoBfVdDg4VWBHT8uyyePNnVFquo1pO9zRH2/+/M6hViTJLYCohsWHdvWg2w47ei40Y0iSdKn6jFehLRwgHvIRD7mNSpsasd1S7kw1bM5nqgy3hS/bVLOGm4O+RJCxTG1ZnBzyefilB9bx3NkM69pCzQnlzZ0Rfv8HZ4n4FeaLGj6vQiLsY2lvXMQnEw64lgYzeRVLuNYeQsA9w62uTHTabUq1Ft9NS95RsiTx4dt6OTlfJlc1mC/W0Swbj+zKsmcqGv/uiZPc1p9ge4/L20YDHrpiAaqmRSTgpSXoozXsYyAZ4t8+cYKzCxWEEAwlw6zviHDnulbWJcN8aFcPp+bLrG8PY9mCH55Jc/e6RFO2flvPtTcYWbbDPxycaahmtPPpO/s5PFWku+XCwIBlC8azNfoTIc4uVCjXDQZag+zsibGpK8pX9k9TNx164gEGkmHes62TDQ1/plLd5NXzWTTDxrJd25rZYp0vvzHNP3v3BoI+hWjAg2ULvIpEtmrjUwRIUtPOZ6A1xJmFMuezVf7i5XEe2tTOv3z/FryNmPrpkynSFQNVtyjXTZ4+mcJ2FihpFr0tAQI+hc5YgP5EiGMzJXyKzFypzv3r3YLijl63mfqTe/o4MVfmf/xohFRZx7Qd1reHEIBqOnRG/Ty2tZNY0MczpxewHIcTc2V8HplEyMeGjhizxTqW4/DSSIaKZi1bo7Z3t1BUXVWITFXn/uEkPziRYktXhFMNa5yHN7X9/9n7zzDJsvS+D/yd68Lb9K68d+19D8ZbuMEMBgQgECQIUjSL5Wr1rLRa7WqXpHZFiY9IUaJEiQ4ESALgADPAOIyfae+7uqu6vMtKb8Lb681+ODejsqqyqqvNADNk/T90ZWdGRmTcuPfc97zv3zBXNzEdn6GsQT6lb0mc+3HDa3MNXrhcY6aU5uB4niCMBv36V+ca1/LmdZWVtoUfRIRhgU8fnWCxYfLpI+N89eQKuqpwbq3Dt06vMl5Icm61jaYITC/g3pkiO4cznFhs8cPzFQ6M51hq2qR0ha7t8dZSm5FcggPjOd5aajFb6xOGEQcn8jh+yEjW4Hvn1mWNKAQfOzRGz/aYr5tcqfYQQpDSVUZzBm4QUuv6uIE8/zeGne5tGKIhMuP5v/zkgess798O79sQLMYEcEYI8SowCBmIoujn3ufXuQ7RLSp3P4KRbJLffHKcf/bsVcIIDE1nqiQn6o4vra40RbDSsvGCkLl6n2+eWsX2AkZySR7bM8SBsRzbyxmOzRR4dFeZf/7cLLWuzWrbYqklFSufOjyO6wd869QalicXnK+dXMGLvVCfuVBhppzmO2fWCIOIF2fr2F7APTNFSrHk9h/9hXvo2T5/8uYyr8w2iIhI6gqaonBkqoDl+vxP37vEUsuka3tsG0pfF8K4URw0TBfLDZhQFRYbJpcrXV692gRkbsYH940wb/W4Wu2xfzxHx/RoWJ5sdiQ0Xp6to6sKR6cK/PUP7iaX1Flt2yR1hW+dXqVt+ryRbPJXP3CtsZ0xVPzYJmwzC/u+7SX+4RfuIYiVYO832qbHl15fIowiKh37loqJtbbNX3hwhp8+OsFwLsGLV+o8db5CreewUDcHjKZa1xlkbax1bHYNZ+javrSqNF0+dnCMStfhcqVLJqEREpFPGQxlEwjkTc3xIwQ+zb7LsxeqiEhacJqegq7G1p1C2hw6XoDp+Pz6Y9v52lurXK31B+HxQRiiqYKUrlAJwQ+gafr806dmMeKG0wacIECPbXNMx6dlulheyF95fDt/92cPM15IUenKENBHdw3Rd3yeuVhlWznNh/aPMlfvY7oBJ5ba9J6Z5b5tRR7fc7ONzYHxPAfuQJSSTWg4foAfRhyZzL8rBeBkPonpBxRSGglVIWWo3DtT4MHtZfaO5kjp6mDo2bU9vnVaDmE/c3TiHVmF3cXbwwtCvnlqlZ7j84lD4wOb1UrHodaVDeAL6132j+fYM5rlP3lkOyqSmVHp2Pz7VxfQVYVPHxnnKyeXaZkeXdujb3s8srPMbz9/lY7t4fgh+8dTZAyVf/PSAj3H4+9/8yzphM5Cw8TxA/7Fc1ex3JBPHhnjS8cXKaQ0EHDPVJGErrIza7C9nJK2sEmNjuWz0rK4WuszkU/StX3alkcmIVlLli9l+y3T5eJ6j0JK45OHxzBdn5NLbbwgImMk0VWVIG76dB2fUysdqj2XpKFgKDIrzAukX3HGUHH9AEWRtkTPXaqzZzQb2zz4VDpybU9oKm4UMZTWGc4lpT9+UudjB0f43tkK9b5D0/Ko9x2GMnf96n9S8cpsc/D1W8uy4I5uoN1Xug4HxnN889QK9b4jM4AqPa7WeoRRRBjI4GNVUTBUwWy9z2QhxYW1Lp88PL6lIuzl2frAwmwrm+Ab8fju4ThLVNA2XRqmRzZxc8bmjVhuWWQTGoWUzsG3CTB/u2HVnWLjPi2ErD9+cG6d86sd7t1WZLlpg4CfPjoxYGbOlNP85pM7EYLrmrV9x+ez906RSqjvSLFib2Kzduxb2yE2TVfmZLk+th+y9Tu/VtzfLj9zttqn2XdRhAybvlXjJ5/QWA4jDFWQSWz9njwvipViYjDQ2QrrXZta10FV5DDmVtBVBSeQFhaJW2S9vXC5Qi0OGv/j44v8/c8f2/JxTfPa8VxqW7d8zcliAjcIKKR0vAC2eqvDOQM/DPHCiOQtLD7rPYeTiy2cmE2sAzceEfeGzyUIIjIJFT+UBIz5ep9j0wUe3z1EEEUcnSqy1rF4+kIV2wtYbPbJJwsstyyGsgZJXdrSuX7I9qEMGUPlj85XcIMQXRWM5hJMl9K0LA87LTPFLE+6FAghBxHTpRQR0kVi53CGZl/mHXz9pFTsdyyfSsfm5GKLYkZnY4l45mKVuVqfx3cP3dSAfHWuwUtX6gB84cHpwdDr8w9M8+ZCk9PLbZ69WOWn9l0/xFxtW/zJm8uAzKr6jSd2kElo72vu33+MePFyjUuVHg/tKG/ZaFMEfOKwtHEtpAzman2apkcURZxbbVPvOzJHJYpwA4vVtkXP9jgyVWTvWIZK1x7k4IEcX7+dK6gfyTVPAdIJlaliirHcu9vfCfEO/Rfv4i7u4n3Bs5drt/yZAMqZBOW0DqRQhODlq3Xm6yYTxSSfOTrOfN1iWznNvvHcgPTUNj1Mz2GikMLQFPaN5Xj1aoMoAssP+PD+Uc6tdvjGW6sDwvEGvCBkrW1zpdrjzEqHRt+lHJOtG32XLx9f5Ph8i92jGep9J8498nhj/lo/yvEDKh2H8UIS/e69533FvdNF1uJeYBRFg33BrpEsPzhf4X/+/iVqPYd0QmU8l0BTFSwvYKKQJJ/UeelKfdCtFcB924rSBcl0WW7Z+CEDovnplQ75pEYxrdN3PNpWcNN9SSB44UqNhKZiaIKpYopC2qDakb3ZKBJcjvO9Xp6tEYQwlJH1YNfyqXUcHts9xBcenOb3X5nnGydXsBwfN4qodR1enWuw1DTJJTX+5of28MG45vmXz83StX1en2ty5DYuCreDF4ScW+mw2DTRFIUL6z1+8YEZDoznObHYJGtoHJjIkUtofPjAKEldpW25/KPvVXlptsFILsEbCy22DaVJaArlTILP3jfJkakip5fbHJ9vcmqpTUpXiYSglJZ7nnrP5eXZOusdi6WGTRCG6IqsuTURMZxLcHA8T9uU8Q4rLYsD4znemG/ieCGvXq3z6lyd//NH9rHcNPnBuVWafZdy1qBpyryntumiCEG1Z/PxQ+PcOyMVXF3b45/88BJeEPGtU6skdY21lkU6ofGnp1Y4t9JluWnh+4G0zLN8PnpglBOLLQxV4fhCE11T0RSFV2brRGGEoio8sqPM774wx+vzDVZaFpPFFEEk69CUofL1t1Zomx4HxnL81of38J0z67RMV4ph4j3UhpPRSM6gnNbxwpCpYooHdvz459eeX+0QRXJP2Hd9nrtY5UvHlzE0hQ8fvFan74ydmNwg5Nh0kfu2Ffn+uXXWOg47hjOcXm6jxAPQlK4SIfsS+8dz/KXHd3JpXdpQXlzr8dS5Citti7SukkxIB7zZao8zSw26VoiuQjYphUZJXWW2JucWCw0TYpVoOaPL/YGQoiVVkbEoDdNDVVQSAlw/oGX51015dEU+Z3dTFneEYHs5PehN1nsOQRQx+jZ16fvdKf677/Pz3RFu1Z5RhCzUX7jcwAtky6nRd9FVQc/xWe+YqIoabx50iqkEbyw06ViyuA9Cufn/vasNIiQD7y8/vg0iadlmeT7DWYOL6z1OL1+g0nWIIhjPJWlZHkOZBPONPl1HNlNnv3aGlbbNWM5guWWT0lVeulLn2HSB5UaflabJt8+sS2YoEXtGsjy+Z2jQ6B/NJ+WmO4g4s9rm1auNwRBstWVxbqVDpeswWUjhBiEHxnNcXO/y5eNLlDMGnh+y1rH5P565Qsv0SCdUwngjfXgiz1rHJmUolNI6PScgiO01Pnl4jO1DKaZLab50fEn6xocR59c6XK70uG9biVeuNjgwkSOhqfzmk7uu+xyGsgm6tse3T6+ST+k8tmvofbNFDKOICBny7HgBL1yu0XN8ntwzPGh+nV5u872z66iK4JcfmpHKLEcyfTuWz3LTYudwhge2lzg6VeDYdJGT8bRbUwSFtM7p2NKwmNT5Oz97iP/8j07StT1M1ydjaERRhOXLBtBEPknHcllv2yw1THRNYedQhp7j07FCNAELdRPXl/77tb7LP31mFl2N7YuQm9CuHfDSbIOe45NQBV489IrgugHY4HwnGthbCiFwPJ8vv7lMOZfgVx/ezrdPrfDKXJOxfJL/7GN7+dD+UXqOz46hNK4f8OXjSyzFw4AzK210TRlYab5THJjI8b2z6/hBSNN0GUrrrN+GLb8VVto2hbSGG0SUMgnOrXbRVJmD9+CO65UNZ5Y7zNf7sphY6/DA9nf3d9/Fzbha6/ODc+ssNExKaYMTiy0+Hmf5TBSS7BzOUOs53BtbMfmBZO0cnSmy2rJJGSpLTdnIPL3SYrKYolK26Vg+F9d7/K3fO47jyYHpIzuH+Nx90zRNh3/0vYvUei5rbZt7Z4pkDJWMIa0ILq51CCNpwVjtuSR0hWKsMrlY6TCcS1LOJgiCiLeWW1heiBDwT5++zHA2GQ/ABEEoFQzbh9KDHLP1trQCIJIWsoQhLUvFCwIUIW1CpLup9Btr9qTCs9l3URRBMaXxkQOjXKp0pQe5kPYGZ1bb2J6PH0olQRT3dhMqbCunyKd0UoZGKa3z716ap9pzcfyAf/38VU4stPgHv3hsYM1wFz9ZuLTeHXy90pLroBdc32Y33ZAXrzSwvYiVlsxRUIQgn9QxnYCErvIXH9vOQs3kcrWHoSkIIXMXtxqABWE0aGa/eKV2R0OwkVyCcsbgzYUWuir4xKHRQTZZFEXYXnhTVthrcw2ev1TD0BR+7ZHtFNLv/hwNwojnLlXpOwEfPTh6nZ/52ZUOs7UeSU2GqD+8s8zn7p8ipatoqsLTFypcXO/x1IUqR6cK5FM65+MB4AZutCo5s9Lmu2dkbfAXHpp5R0OwaJMFwUZm1lbYGJB5Iay0LUa2IANtEAng9g1oXRVcrvRQFXHdsbkR6x0HIWReT7VrM7WFemfXWJadQ2mqPZePHri1KuvCaodm30Uogqu1/i0f58XHINzCnnwD//6layYRzm3eaGHTOTZVvLXdsSIEjZ5DSlPIJLY+HmttR2YfhdF1x3kDjZ7D770yj+1f+zzvxLhZCBCKQEXeCvqOT7Xr8lefHGH/WBYvjPjaSRPLCbC8ANMJqHUdimmdqUKK2VqXhbgJcXA8yytX6xTTOooQ7BzJMpxNMF5IkUvpcR6GvN5Hcgl+9eFt9B2fpy9WaZkeSV1hvm6iCMEjO+X5HkYR3zq9ynrbJiJiPJ+k0XcJwog35uVQ/uWrjZuGYGEY4QUh83WT1642mCqmEEKgKoJzqx2apsfx+SYPbC9ddz2ZbsBsVZ6b920r3mXmvw+wPZ8vHV/C8UNM179uCGZ7Aa4f8nuvLGB7AQ/tKPPk3mF2DGf45Ydm+MqJFdqWjxOf10EY4QcB2YTGfN1kttZn72gW9Ya92B3E4l33WMcLqfccFht9JopphOAdNZ8X6rcect/FXdzFjw7t/q1dJjKGtEVr25JEqCqCbFKnY3vMz5osNEx2DGX49ulVRnMJ9k/k+fl7JvnjN5bxw4jHdpXp2D6OH7DYMLG9gN2xQuWlK3UWmybPXKxwYqGJGa9l+ZSO7QacXe1wbLrISC7Bz94zyY6hNM9crFLpOjRNl2bfIAgZqLXDTbXYH72+RLXrMFNO84sPTP9Ij99/bDi+0MR0A86tdrl/W2lAbF9pWbxwqUala9O2PLq2oNX3mCgkKaV1xrIJXplr0LGDAckrAiw3JKlr2L6DH8rvBZGsQVZbFg1NQVNAKCrRDbQkIWA0n6DSsfGDiKShIaIQQxOkErKB74cRKrDYtDBj1yRdE1R7UkGvCEHH9nljocVvvzCH4wVYQYQqYKllMV5IMluVNe+/e3mev/z4TlKGOjjf/BsYa44foApxR8Sfr51YYb7ep9Zz0RVB2lDoWB6nlts0+h6Nvsf/5aP7KG8SFfQcn/m6ien69G3Zd9gzmiUROz68PNvg4Hie339lgZbpcn6tQ9+RPYfDEzlKaZ0zqx1cP+LCWpcwCvHDENsL8QK5vyilDR7bXeaZixVUIYcSTdMjCCVBzHRDrlT6fPXNJV6crbPYsCimdfYP5+kutWnYHjLON0JTVYopg8f3DFHpODx3qRJbXMpafChr0Ld9TNvj67N15ut9LDckQtpQ7hnNkk/pjOWT+EFEpeOw2DRlvljHIYpCDF2eI185uYTtSls+hEBXBeOFBLqq8K1Ta7JvtN7l22fWSGgKR6eL9FyPk4stHt5VZt9ojmrXGdhLH5rIIwTs3pTN/eOK+7eXeOFyjR1DGbIJjYuVHn3Xp+/CdDHFf/mpA0RRxIM7ylS7Dm3Lo9qx+frJFc6tdGS+dRBxYCxH1wnYPpRm33iWMysddFXBDyPeWmpx37YSz16scmG9w0pLkqmCSNZ7XiAzlQUyozmf0hnJJWhb7sCVxHaDQT3qBD6W65PQFJxA9vBxfZZaIX1bkv50TZBQb44I8ELwnevXA10VTBXTTJfSLDZMvvzGElEEP3vPxHVioRvxvg7Boih65p3+jhBiB/AKcA5woyj6hBDivwB+HpgH/nIURbfdk27FnFWQG+S25fLqnJQz6qrcRFZ7Ln4QYnsAAa4vL+LVloXrR/J3FcHByRzTxRSX13uDrJc/eHWR86tdUobK/vEcy7ESrO/IQMi0oXFkqsCukQyvzDYwNIXxgrTfO7fWlQsx8NCOEh3LZ77R549eXyKdULlc7fPWUpswiuTGN6HhbtqYj+QSHJrMc36ti+2FvHK1wa8+sp3llsX/9xtnaVsek8Uk28sZcikVQ1V4fa5Jy/T46MFR/utPH+Q/++Kb9J3YYqUrm8deEDGUTfDQzjKfOTrBa3MNVts290wXGMsnefFKjVdmGxRTOm3LZb3j8OD2Ev/quatkExqvXW1yqdIlpavcu604CMtebJistCyOThd46Uqdc7HkdKqYYvvQ1tld7xSljMEH9g7zR68v0bE8NFWQS+oYqsKHD0j7xUZc6AWx5+toPsmesSy7hjM4fsD2cpq25ZHU1AGLfeN3/DBiKGtQShv0HZ+Dk3mShspHDozy9IVKrDKxcf0Qy5XexdWuLUPrBThBiBuEXKp2pQQ1koxiN24YyWEr9JwABcgmNfSkHNLqqsJK08ILZQPnRobmjf8vGcKCTEKh1vUJImiZHs9drPGZIxP8wWuLVHsO5bTBX/upnewczg6m5oWUQSH2aj2z0mGykOT7Z9fZM5KltEW+ytuh70i/3rWOzeVqn9V3OAADycRuWz7ZpEZKF2iqxlLTZLUtcPyQ6VJqYLPw0mydNxda7BvL3dau552g1nO4XOmxdzT7Iw+d/3HGt06v0rE8zq7InMJPH7kmBdRUhc/eNzX4/57j8+9fXaDvBHzm6Dg/c2ySxYbJV95cptJz+MG56oBV9dzFKi9cqWG6ARlDDuTThsrplTamE/Dw9jLPXZH+xRfXe9y7rYjpeFytmby13GKuYVJKGfiBlEl/9+w6mYTK989VMF2Zz7ehShDI+4QfSNWgrgpGsgmSmlQTHprMY/kBXiAZ05qq4MTPEcV+P3tGc5xeaePKCo8gttJVhCAkomNJH+OErjGSS3J6uU3GUGma8ZDMjAYmYZtvWV4gLUF+9p5J3lps8QevLdKIi/QgAkOTm8iu7d8dgv2EQteUgW/+hmPvVvz3MAyJIsilNDq2ypGpAoaq4Pgy2PfV2QZN0+PMcpt0QuPTR8Z5dNcQPzy/TrPv8YG9w5QzBieXWmQSGjuG08zVzHdUyG/c+7wgYryQ4kqljx+GXFzvstKyeXBHiQ9ssrKr9+TjXT+kY3vvaQh2fq3D7708T8f2WWyY/I0PyXBW2wv47lm5kTm/1uWe6SJ91+eXHpwB5ODdiG1JxvIJgijC0BRmSrfPi7yuNjA9RrIJ3lpuowrBkanbK5g3153BVkXoBjb9KHcLJdKdhvF4QcRYPomicFtrCLkpiVAVKKa2fk3HD3B8SWjayFvYCn54LUfXuk2O22aSTt92Gd6Cgbd7PMvrS51bPscGzlWuDY2fvXhrtvprc03cAOYbFvW+w3D25tfsO5KdGkbSIudGvHClxnrHwVDAfQcTAFVR0IQgVCCfkqHjozmDL76+wMmY/ACRvPZ9H9uX5CUv9Jir9UgZOpbXw3R8XpptUsoYPLpriE8cGkMREZWuy8mlFvdvK/ErD88wX5dB7OfXuuwYyjBVSg8+t5WWRTmTIIwiihmDjx8ao2t7vDRbxwtC1jsOo7kkw1nZFJgoJFlt2+zeIkP34Z1lTq+0aZk6c3WTq7X+wBZx10iWWq/BZDF5U/D0escmn9Jx/ZDSe1gD7kJirtbnjYUGbcul5wTXXe9nVzp89+waCtKCXVUEJxab5JIaM6UUE8UUu0YytPouCw2TtKHgBhGNvovteeiaIIrg1HLnPX9WfhSx2LT4L7/8Fg/vKJNKaHzhgZnB3uLtUL9r93wXd/Hngv6tb/sIIfsQLcvD9kM0RTCR1OQwLKFSj/tohqqw1nHwww6jucRgMPDK1QZhJPdbrh+S0rVBdsnu0ayMo+jafOf0GnXTZTyfJAgjfmrfCAlNASKOTRcH6oUdQxneWmpzbLrAY7uHeXy3dLS5uN4b2L9FMRkRoNF/5z2Hu7g9do1kma/L3J/Ndf5wNjEgLAvk4CSlq6x3HBRFqgM7dnCdnbYA5upSpdW2vOv2QxERXgjeoCALUQXXWVTnEqpUjmgqiiKJq5Yb0LB6GDJCFQFEsXW4AngRZA0N13OxvZCELlht2YwXLIjkkEcRsomvqQoHxnPYXsi+Mfmv6fqkDJVfuG+ay5Ue+8au7avm632+dmIFXVP45Ydm3pYE1OjL4UAvvr9fXO/y8myD4WyCIIy4b3tp4HaxgZ7jU0rrCIEkGk8V+MKDM/zOi3O8cLlO2pD9jPlGn5bp0ra8QU/j/FqPYlrDCyK6jodpS8WdhzyuSjzkniikeOFSnX1jOU4vdxBCcO90nowhe9TZhIrnR7w+32KlaaMIWfv7foTtyR6KIuSxt92A9a7NcsvircU2r8w2aPRdSmmdUs6QAy8Bp1c6mI4vxRdBSDapM5ZP8eCO8iCHLghDHF+KO47PN1EE2AGyzz3fom9LO9Z8SkcAWUPlGydXGc4lOLfaYSyfwHQDmqaLpsjBnqEpVLsOu65meGTnEC9dqXN2pQ1CsNKyOLnY4mfvmbwt4fDHAYcnC4PIGoBPHh5ntWWRTxkcnSowVzeJIkEUSTeZf//qAs9frrFzOMOVSo/5hknGUPnYoTE+cmCM3aMZvntmnelSirOrHVp9jy++tsCzF6v88HyFjiWPnaooBH44GIDBtUG2EHLtX23bOF5A2tBp29fvH934Gt84X4IIlNgpLYogDCIstu6VbP7eSFbnc/fP8H/6yB4MTboybfAi6j2XPbdJYnpfh2BCiEeBfwIcBAykwq0fRdHbmaV+L4qiX4ufYwT4cBRFTwoh/u/AZ4E/ut0vb2bkbiAElCjC9OTPFCCZkPZTnh/EDROB7csMpkrXIQplU1MTMFlKYagKo7kkv/HEjviGLnNiHE9eSG4QMpFPSradF2Cogr/+wd0cmijwp6dWqfddckmVxYZFKWOQ0lVKaZ1PHB7nLz66nTcWmvztP3iTvutjewGX6BJEEcWUzrHpIh85MMrRmL0dhBGrbZtfenCGZy/W6Fgey02LZt/l7EoHxwvxg5CMofE3PrSLju3xh68toiqCpZbJ6eU2ThDwa49u54UrNe6ZLvLlN5awHBlw94sPTMssKEXw+O7rbfCuVOWC+tpVKTUtpg2+LVaZr5tEERQzMi9ittbjk7FCpOf4/OsXrqIogqcvVOi7wSBM7/0OyRZCMJZPYro+LdMjl5SL4Hy9z/ahDA/uKGF5AWlDZU+8mb+w1mW9Y5MxNKZKKcoZg8Wmyf/21EV2jeT44L4RDk7kMV2fh7aXySU0Tiy2GMsnEELw+funOLXcYqFhsdwwseLgQTdWHAaRT8rQ0OMQeNMJt2RYhsib7oYjiOkGDGd1potpan2HruUPfm+jTVZIqoNipGnK4sFQZAit6fgkDZXpUkoO1oTg0GSeK9U+qiJQhMALI753dp2/+mSGPz21ynrH5qf2DnN4Ki8/x2oPTRUsNc2bWP93isliikJap9K1WWj0sdzbVNu3QRTJG2mt51JIG4ShXMTlQNNFVcQgpPT+bSX2jWUZe59sN//kjWV6js+Zlc51GQz/sSAMI751eo0zy210VSGX1BjOSMn7rbDWtunaPq4f8uKVGgLBt8+sEYQhwxnp9VvvuRTTOtPlFP6liLShYvsh/XiAdmm9x3Q5jR1ETBZSrHdtxgspmj0HXVelR/V6l0rXZSyfYDiXoGV6tEyPNxZaLDcteo5PWlfJJjVsP2KmnKLedwnDCEHEgfE8YRTRMDvoKPzJm8ukdIUn90o7uM/eM8kPLlSo9100VfDEnmEur3cppXVqPQc3ADUIubDeG2wK943n6Fg+nzw8jhARZ9e6mI5PFIGqyuyvlKHSdzw2x2AIAV3L47/+47cGakk3uHbfyiU0tpfTTN5GEXEXP9740P4Rvn5qHYB7YsXkjWOPjf+frfW4Uu3yqaPj/PqjO1AVwYtXarw21+D0ehdVSBJAQo/ww4jnL1f5Ny/OY3kBs7Uej+0a4rU5qfT4/P1TfPKwzKX0gpCvn1yhaXp88vDYLckCH9w3wsuzDSaKSSpdh++fW8cLQup92ai4UuldNwR7fM8QURRRyhjvKFPrRnz79Cr/8rmrzNd7bB/K0LJkM8PxA+brfRncHISDcOXNtsuaqvD5+6do9mWzf+9YlkpXbgJvZ8P84PYyVsxS2zua5a3lNk+dr8TPKW5r7Tic1VnryrVw18it3/fmWVXD9Ni1xWPuNEpHETIfQ1fEwNpuK/RdSYJx/QAngK0oR3LzYxGEIc9euvWg6W/81E7eXGyS1FX+8mO3vg9ungPeapb04QPjfPH1FQCGMrd+05uHirZ369ohiNfJIILgFkPB1ZY9aJ7UezcPwZaaFqYboKnKgJx0J3D8EFURjBeSpA0Vzw+xvYimabLalhY3ioBSNiHtGAP5mfh+SN8L+JVHtuH6PsfnmnhhhOW42F7AycUWfUcGdJcyBglV1rfjhRS//8oCq22L755Z47c+vIdPHB7jSrXHwYlJrlR68XmcGyhDc0mdS5UuPVvWxs9erPLxQ2P80oMz2H5wnS1oFEXM1U26lseeUZnxoimCQupavf7EnmHu21YkqakDstsGyhmD4WwCRQhG3qU13l1ItE2Pr55Yoe94pHSV/eP56+wnz622JWEyjPjUkTE6tk+95/LD8xVqXYeFpsl6x0ITgkd2lllqmszWeoRR7CQRkytVJcK5zWD7ThBGUg12ZrlN2lA5Nl1isWne8RBs+m5dcxd38WOHniPZ+PmUTtf2SekqnhegJxTW2jZTxZTMTh/J8K9fnKfRd8gndR7ZmaJjy0yd5y/VSOoq0+U0hqoM9uYf3DdCpWPz7KUqta5D35XW8Ueni+wbz/Gz90wwVUpfd3/aMZzhP/2pXQPLLJCWWI9tIqgKIfj00XHOr3UHvbO7eP9w70yR/WO5uAF+7f6fMlR+9tgki3UTLwjpOT62H9E0XSIkGXtDSbSBCKj1Per96/sJmiL7PjcOvW4sdy03YL1tSXKWF16vFolio5b46w37xu1DKSYKKTmoFYKpQpJsUuO+mRId02WhYbHY6A+UKwCP7RpirJDk4nqPb7y1ys8cm2Akl7jp/rYRZeK7ASst+22HYJ88PM4/+t4FUobGmdUuw9kESy2Z1zReSPKrD82gqgp+EDJXNxnNJ9g1LEnpqqrw0UNjpAyNP3h1njPLbRqmQ99R+OZbK3RtX+4RNRXH92QWrpCEe8sLCHxJzg+iiJGcQdvyCcOQoazBesdmopDCdHz2jmZw/ZDZmslUMcVvfWQ3z19ucHalQ9OUtuyS9JvgzGqbvhOQ0hW8MCShqozmEpxf7fInbyxLtwRXknmafRfbD5kppdlXSJLQVBn9YHrYXsBkMcXu0Sz/+oU56j2HpK6yYyjN0akCT12QilA/tiOfLqVQFUFCV/HDiHJGp2X5CKGQS2m8erWBF0iRghCCvhMgREjR9dEUfTA/+OqJJapdl47tIRAI5P762YvVW8bs/DghCCNmKz36ns/2coa/+/NH0BTB+bUuX4ltyhUhiIhYbcvR0kLDZCSnc3ZVWpI+faHKf/HJA/zw/DpPnV/nwloPxwtkLr0QRKFUggZhSBipGKpAILPJQV6zUfw6GzOLnhMQRRA4vhxKx3+vEn89sEcVICJ5zDe+6W9eMLaAAB7bVeIf//L9DGUTgzXp4ESOWt8hCCLu2ZRRuRXebzvE/xX4ZeTQ6kHg14G9d/B7HxZCPAf8MXAReDr+/veBX+VthmA3SlLh2lRxA5omQ9M6jk83zoMJw4ggklPsYkoGJPphSDFlsNqW6q5vnlnlA3tG+PXHdzBZSPF/PHOZr59cwQsi6j0XgSCMpNVWGEU8fb5C1/aodu0BE0XmgmlsK6X4Cw9t4+Bknu+eWefkYhPTlU3SUERsG8rghSEf2T/K3/jQtZDyy5Uuv//KQqyCsaUtSpwB4IchXzuxzErLZM9Ylt/6yB4W6ibfPbvOWtsGIoopg4Sm8NrVBj99bJKPHhyj0rW5XOlxcb1L23T4f3/1NMPZBPmkZHP8wv1T3L+tRBhKafBcvc+VWg/flzaQuiboWh4t2wdCzq/3GM4YPHOpxi88MM1bSy1OL3cIQzmZPzJV4GLHodl3+dIbi/z00Qkmi++PYmf/WI4rFanWe2zXEG3b44fnqry52OKD+0e4f1uJT25axKIoYrbai1kLUkVSyiS4sNal3nN48Yq0dzo2U+Bqtc8fvr5Iz/Y5MpljtW0zlDZY7zn0bJ+3FtskdYWRnMGu4QzPX6lLtVcAyTBCi7O7bttaiSChC4JAWju2TB9DUQiC6wdnG6fzVDHJUDbB2ZXuoDAwNJWe4xNFIYrQ2DaUIaWpZJIaqoCu7TJVSuH4IaM5gyuVPmtti8uVHgDH51v85hM7We84fO3kMh3LZ89YNlZTetc1Qu4EURSxfyzHcxerrLYsvHfisRJjY8EMI3hzoc1oziCd1Dik56l2bf7o9SXySY1Hdw/RNF1SusrDO+88EPFtXz8+uLdrNv6HgCiK+MH5dRo9l48dGh+om/quz8X1LjuHs1Q60g6jY3vXHY8oinj+co3X5xqUMwYPbC9he8HAfu3saoelhvTnLiQ1bC9kOGfwjZOwayTH47uH6doep5fbUhavCN5YbJLQVbIJlXxKJ4xCNCLmGhY926eQ0jEdHycOyhzLJ8gmNExP2k1trKlu4COXYCm1HskaWF7AdCnNRDHJQsPE80Oqjk21Y6OqgqNT0if5o4fGeeZilZSuEEZSifLQzjLzDRMQaEo0UA0EQYTlhfzGEzuZKaXYOZzhH33vEglVYAtBwhAEQYhQBMNZAwGYjj9o4IbAbK0f289e30xWFcm++9sf3csPz6/TcwI+vH/kriLsJwxHpot8Mx6C3butCFxbXzYQAX03xPYtFCF4dbbBVHGJX7hvmif3DnNmpTOwH3tizxDrXZcjk3l6bjB4LlVIosMGvDDimQtVhBDsHskwXzcBOLXUvuUQbCib4KePTQCSLAJSWXR4Qg6OH919/RqbT+p8+ujEuz42G/j6yVXWOjIXYChj8PP3Tg2+v9gwSRsqv/SgZFi2Le8mm7zza11myhks1+fsapdsQuPl2QZTpdR1zRSQ69Yfvr7IicUWj+8e5sm9w3Qdn2jTxecGkvl54+8O3nfKGAzBbpW7BbHaO/76RjvGDZy8A3UUwPG5JvP1/uD9HtrE/tuMZtxY8EKodWzKW+QJZgwNkJbXCe3W9i3/9pUF1jo2CoKvn1jmNz6w1RjvegTR1o11e1PDfQvu2gDTpTSXYxuae6Zv7cm/+SmS2tbH1gmuDdH86OabeS6pU0zpNN+hIkVV5JCxY3koyHyLKILX53uSGRsGlNIyX0Bhk9pOQKvv8E+eukzP9gaDCTdEslCRQ0w/kGow0w0QiuA3n9yFImQuXMt0+YPXFvjNJ3cNBrVbqT2PTBU4t9rhu2fXIZJ7kUd3D5FP6jed1y/N1mOLHpNj0wU+fWScatfl2UtV7pkuMlVKxSTCiO+dXaGQ0vmpvSODYdiB8TyltIGmiDtWzrdjW/af9OyWMIzo2B6GqvD0xSqqIvjw/tGBlf3boe/411ucCnl/sP2QXErnkZ1l7ov3Yx3bI5/SCUKpwpgsprk3n+Bbp2Qmbq0nc1qXmjYZQ5FB77cowB1PDnLTmsDyb5WufYfHIIpomh7TpRT7x25tP3MjWtadmI/exV3cxZ8lIuQgTCBVIt3Y2jCflA4ZTdNjJJekGNcWfhgxW+0P1PsAMyWZV9RzfIIoZMfQtXvUL9w3xUM7yvhhiIIkCO0YylBM67e0k7sTRcae0dxt7a/u4r1hK2J0vefwOy/Oc6XWl4IDXR2QKzb6BYYKzhZlYYRsnuuqgqrIZr4qxKCxvoEbG+IbSrHNjfXBc0YMXFdUVWYAj+WT3DNT5KMHx7iw1qVtuaiKwrZymif3DlNI6/zpiWVOLLbo2lLpUs4amF5AFEmHp6vVHsNZg58+NnnT+zg2XWSlJfPSdo28vdPVtqE0R6YKtC2P+4Ft5fSgthMCem5AIaXwxdcW+cPXFwH46IFRJgtJ7tuWggheuiyt4y9Xuzi+rOVXOw6GKvva5YzBRCGJogjSukq97+L6EU4ge9aGKlUzsuCQg8KkpnB6Rca/NPsujh/ihxGLTZPJUprDkwUurnVpmi4TxSR9Oxg47ZQzOhGClKbI4wa0LJcXLtfk8FRVSOgqluvh+jLL975tJXYMpTm/Lq0b26bHgck8czWZl+uHkbS6K6W5VOnR7LvxEFPupx7bNUTP8VltW5hOyHytR4hCIakxnkuwlk/StTzyKY36hv1rFNG2fA5P5PnZeyaYr5scn2vStX2EgJQuGMpJ0vZWUQM/jvjBuXX+9NQqta7DsekCO0eyAzvCt5baqIrgwIS0Max0HEw3ZN9YmmJSIwhDFEXWod94a4U/fG2Rq3FPCgG6opBN6ASRVH2pirQE7TnXHM0MVZJRcwkNy5O5xr1N9qeC693MNl/duiJVffJxcm91Oz6iEj8wrQnu314ml9Sv+5w0VeHD+28j/9qE93sIRhRFl4UQahRFAfCvhRAvvs2vrAL7AAf4KpAH1uOftYEtd8BCiP8U+E8BJqamuXHmviGF3VggC0mpYFho9vH8EFWRH9bRGRnMmNCkp+Wju8p4QUjL8vCDEEWRoeFtyyMMIz59ZJylhslLszJnzA9Cdg1nma31cYOIc2tdVtoWfTckk9DYXpZZUJWuLXOaghBdVejaHilDY1s5g+OHFNMaqirQVY2u7dO1paIpCCN+54U5zq52WGvbuEFIIaUzU0rz+J4hTi21JXvT8al0pJXdt0+vsdw0Gc4m+OD+UXqWDKN77mKNpabFTx+bYLqU5sP7R6l2HU4vt6n3XbKJPqYbMZ5PYLo+980U+cqJZV65Km0dswmNmutIqSIRPVeq32ZrJp4v/VqzyT5/8OoC+ZRGEEn56gNjWa5Ue5xebvPClRqj2QSLdZO/99mj7+IMuxmZhMYXYlskgNlqb+DZ290isP7bp9foOT6aopDU5QZcAE/uGeJ3XpjD0BTalse5lQ5rHZtqV+ZrXFzvEkYRX31zmfFCkuGMgarIBnm165A2VJKaMthw9pyApK6QMRT6bnjLwPsQBs1vP5LZGgutmxnLG4giwWrLwg/lkEwg2fKy9ynQVMG9M0WGs0nWOzZty+e1uSb3zpQYyiaodBwuV7p85cQKYRTx8mydctqg2nPYN5ZFINg1muFTh8f4Ny/N0bV9fmrf8DvK2Vrr2FS6Dh3Le1cDMLhW2HgygIm6KdkjQRRxpdonjKLYQgFKMevmRvk4yIZv1/Z4YEeJhHbnyrZffGCa2Vqf3cM//p7A7wWnltv8q+fniKKI5ZYdKwbhc/dPMVFIMhf7VudTOkIIHthW4vh8gyCE8UKSP3h1gbeW2pTTBgsNSypl+x5vLrS4b1sRP5SFas8JcANpbbjctBjKNRnLpRACZsppOrZkiuwaztKxPLqWy2rHpu8EjOQTCKQHeBTBZCFJtSeDTS1X2noZmpChvIbGWtsijCChhZLwEEW0rQA9LvpGckkurHXJJHR8yyUiwvUj6j2Hpy9UMZ2A4wtN1joOCU1hrWVxZlla1eaTumxSxu8LYDhrcLXWx/ED/s1L8+SSKtuHMvTdAF2BK9Uethuy2JDXbRRJpUnSULE9KQcP/OimNSKhq3xo/wheGPL1k6ukdHUQlHsXPzl4dbY2GIS8PCtzurYi4EdItp4aF5RnV7q0zDkmi0l2j2YIo4hS2qDed9g1nOGFK3X+2gd2klDlPeuRXUMUUjq5pE4moVLruZyPB1nFtMyb69j+TTlAt8L+cfm4IIw4OJF737I8t8Kx6QInFptMFJJ85tjkoLnflb7VuH7IVCmNqgjyW5Aydg5nePFyjZFckh3lFLPVPtWuzT972mbXaJbdI1l2DGd4c6HJYsPkXz1/FdMNePVqg++fXWMom2C6lOIj+0fpOB7PXqjy7IUqn3tgmqyhcXKpxbZymh2xPU/fuda8td1bqyk+dGCU5y5VGcsn2Tu69b1k6A4tyQxNSDWrEGi3+Sg2LyO36sM7fjCwXO3fRqn98pVqbMsd8dT5tTsags2udtgzenPpbtrXjpl3G5pfQr32s+Rt3ujm0qJpWxSyN7NvE8q1AxBusbMayycopHUSTUHvlq90PUT83yiMaFsethdyeqVDKSObJrqqUEhplDMJdo1kqXYtVtsOjhcMhkZrLVsSH4gZlBGxnbWKpin0LI+u42N5AT88X0GPrYeXWhaOl8QLItwg3LIxuNiQmU9HpwqcX+sO1NEfPjBCFLNbJ4uSsHF8vomqQMfycPwwdjQIcYOI0ytt1js23zi5ymg+wRcemKHWcwY5GTuGMoPrQR7LWyvALDfg+HyToaxBNqHxzVOr1HuykfKfPLL9jgdGP474kzeXWWiYCHFtuDseN93eDnO1Pl89sYKmCn7pQWkjWEjpfP6Baf7Fs1coZwxOLLb5wN4RvnJiWdpi6rKxLBBcWu8yV++TS2ocmsxRSGm0TJd8UsP2AqzbFOAhsi7Tla0tZ94OG1emqkA6oXPvdOm6vdidIAjenUvEXdzFXbw33BipsBUkoSMipcs4kQg5iD8wkafVd1ltWay2LSw3ZLJw/fo/Xkjy7MUqx+ebDOcSTBfTgwGXpirX3TvOvrXC77w4R0JT+M0nd25J8Nl8D7mdSv8u/uxguQH/4rlZLlUkKTuKpADBD8HQFIIwYjhr0LN9/CBgq0o5iKCYUMkYGi3LI4ruvGm01X1rw2HJ0OQwpGtJJdozF6rUei6ZhMavPTLDetfF8QJOLLZ4YFuJ755eoxtnaHluyKX1HocnC4ShtHsOI6hsypVtmx4nl1oUUzoty+Px3UPXndNvh5+/d5L/7pvn8IKIY1MFHt89xD99+grNvsepJUnQ++M3lrhUkXEqehz3Ml6QpKUr1R6mK3M+vUAq98Mwou/Iur7adUnqCgjBRD7JvrEcXdtnOGtQ6TosNkxURaqjgjCka0viczYpXaVsL0DXZDZgOWNguj5JXWZEBZGsXVRF0HcDskmNXFJl90iWK1Vpc7lht66qAjcIGC8kqfUc1i05IHPWe6y2bLzAR1UUimnpmNbouTy8c4jnLlVJ6gpjhSQX1jp4QYimCgxNWpHvH8+x1LKYrfZY6zix9SMIEbLSthlqWHz0wCgN06OU0vjD40toiiAIQ4Io5FKlzy8+OMPZ1S49J3bdis/fyXyKnz46cZ0C/8cZGw5MfhgNVIlnVzrUug5eEDJTypI1VFw/ZL1j0zBdzqxIN4ih2OGpnNFlvJPr03U8PD8kl1TJp5M8tLPEvtEc3z6zxkrTYq1rS9UXkuQZBLIO3LA2DQIxcByArWOrNrDZJTFC9sa2EjdtIJ1QEQgOTmT5xQem37VjGbz/QzBTCGEAJ4QQ/wA54LrtihBFkYMcgCGE+AbQATZCZvJA6xa/98+Bfw5w7N77o614tAOZHdDouTIUOv6mHoX4UcSZ5Q6IiLbpoavKINsqn9QZyhn07IDX5xocmshzYkH+KY/vHmalZbPasTA0hcWGSUIRoAj82H9/OGvwwPYyX3hwBk0R/G9PXUZTFWarPdKGysM7pdfpvTNFkrrKJw+P8tsvzHFupcPF9S7PXKzywf0jHJrMyyA704tzogSNvkvb9PDCkMd2DTGcNXC8gG3lFCcXW/HxkSxCRQg+dniM755Z5/xal7lGn47t88sPzfDClRoLDZO1to3l+piOlI82TZcPDskm60LdJKkreL7CE3uG+eG5NYIwYr1tkdI10oZKEPsA235AKa1zaqlNpWOz2DBJ6iot06OYNAjCAMcL6Dk+/ds0jd4OKy25od87mt2yKbdzOMOTe4dp9KQdZduSGUBfPr6E6QaDAeNDO8scnshzZrVDvefw+lyD7cNpghCiMOLVuQZ+IO33/NhXNwjBCqU8eaVtDWTXbTui3nevY5KHIBvlQgY3bn7LGR3CSLIvgesWi7dDrS/lwUldwYxDJOOYIhQREQYR33hrhT2jOT51eJzJQopvnVnF0GDvSJa5ap+G6fLMxQqGptJ3fGo9l3LG4PW5Bo4fMl5IsmckOxgiLjYsHth++79rtW3RseTnkk/qWK5/k9rh3UIhZvcogtlqn90jWYSApKZQzhgsNy1myqkBo71tenz5jSXqPQc3CKUdWBjxwXdwQyumDe7fdq2p5vgBlys9Jgupd5WT9uOKasfBdHwMTaHWs4kiQS6pUe26/PLD2/iDV+e5XOmx1rF5dNcQby23+fLxJRQhODxVoGt59G2fRt9BV2GikKaQ0jA0hY8fGmMku52Xr9T4+qkVVlvyxlpz5TpQ73qUMhp+CPtHM7Rsj9lqD1VIZmA3thPsez6HxvMkDQ1dhTfmW9hewMGJPCttC8cP6DsBfhjhBRFhKK8/05ODeE25xkIbyRkUU9ogD2j3cIaO7VPpOqx3LHRV5Qfn12Pbwwg3CHj5agNVEbh+iKEKimmdjBFhurJ4S+katZ7Dd8+s0XcCRvMJ/tlffIBi2uCz/9vz2F40WA9Ansej+QTT5TQLNZNsQmO51afnXlsHNAXG8wmSuspT56ustGSA/KeUH39p/l1cjwtr19rriw3ZQN5qmyeQ1nhDmQSHJvIMxU391bbNrz2yjRcu1Ti13EZXBMWMwe7hDI4XUkjr3L+9NGiIH52WDQRF9FGEQAiprnlk5xBhxC3ZbVutcRuDsBvx8myd1+caHBjP87HYBvlGmK7P1VqfmTuwQf7rH9zN/duKtC2PRzdZMn/6yARvLbXYO3bN5u3sSoenLlSo9xyKaZ3Hdg/Td3wmiikUIfjA3hH2juV4/lKNtxZbfO98BaKI0XxSqkbdAE1R8AIPTdHouQFKbMXxof2jWH7AfMMkDCPmqn2WWxbLLYsTiy3+WjwEqveuDXQWGtYt39daRyr7bC+gY3uUszcX7MYdFvFCEfLzA4R665vr5mrCu4Xk6vxqZ1APL7du/fcLcW04oet3tmVIpba+P6rKpvd5m9pgoXmNBHRmrXvLx222zCmntlYfVXvXmhbhDRsr1w9ZbztUOg7NLQhTt0LEJgeKIMIPpSX62ZU2dqyusd2AREHhc/dP8dU3V8gkJIlqKGMwXkjSdbrYjiRAZAxpHXNspoShqri+z4W1LrsSMsPh3ukCXdvHdH10RXCu2ucLD04PrqkwjLhY6VJMGZQzBl95cxk/jFhqmgxlDGnbmE+QMjSeulDlaq3PGwtNHthe4vXYOvXJPcN88vAYS02Lo1MFjk7lObnY4pIl9x69qs/XT64MmgKGpgzIR3eCZy9VObvSIQgjvCBkttojCCWzvGt7P7G5q1EUsdSU189a28bQFIazN9slbYX5ep/X5qTVvutHrHfswe9NFVPct63EbLXPaD6BENK6s9F3ObvajkPrBU9frHCl0qfRd0kbGgld4Pkya8N0/Tsabr0Xolo+oUpG9u4hPn546/vA7dA03+WL38Vd3MV7wp1cea4vVSOZhBbvezQcL6TasWnbHsPZBH4g1/RX55p85Y1lKj2bhKbyufunWGxK94Fa18H0AhzTo9qVhNuNgdippTb/yw8uxX046ZgxmpcZlpvxzMUq51Zlt28oazD6E2i76wVyuDKaT9z0/n7S8L2z63zjrRUaPYcwVuwUUzq1vksYRYxkdVKayv7JAudXO1yt9q9z6NqMRt+ja3sk4sHZrR63FTa2MyKSDfkNUrlAks81VbDedRBELJ620BTBD86tsXc0R73vUkzpfGj/CBfXu2QMlbblY6jSVaPV9yikNJlvJqAYE/BevFLjd+Ohre2F7BnNDvYHd9qUr3QcFhomjhfyx28s81sf3cPRyQKKIpivm9S6yzT7Dq4foSmCruOTT+mUMxpXql1MN0RT5FCqlNZpmt5gABkhs5KlHxg0+w5/6fEdhJHskR4Yy/I/fvcCF9Z6NEwH2w/x/BAU6fwlIoGmSrXYQzuK7BzO8WuPbuf1uSaXqz16lhcTjQVB6LNjJI2mKFxY69KN+0Hyc4xIaCpN06eUTgxUQm4grZhNN4hrlIBaz0NVBE3TZc9oll99eIZvnFwliiJMxyehq0wWkuiKtFCVeVMhC7ENpxDXbPZMx2etbaOrgj0jGc6stHG8OFtVyB6h4wb8N189PailAj8aDHJH8wk+evCd1zPvFxbqJm4QDvIOb4cTiy1mq3JNeWhHiVI6wVy9z1rHZqKYxNAU7pkp8sF9I3zv3DpLTZMgilhp2QMihBCyT5FNVOk5AcR9gpYZ4AQWyaU2Z1c6XKpIF7UNoaYQYAhix6RwIEByiK7b4gnx9vaGGxiJxRrOFouAoQrunS5STOv87Y/uZcfwtTzIy5UeKUO9pcvNVni/h2B/Ebk//y3g/wrMAJ+/3S8IIXJRFG3scp9AZor9KvAPgI8BL7/XPyoitqPZdDwTulTt2H5IFEUDGW7PkcF+2YRGP+6aDmcTrHVsHD8gCCQL5sh0AfOqDGK0PJl3JQA/m+DRXUNUug7nVjv87otXeWB7iau1Pusdm6WmyXfPrDOWT2B7IX1XqtD+2bOzvLnQkt7IQk51Tyy00IRgrJDg/FqXiUISNwix3IC+4zNb7XNsqsDf/bnD/CBu8nzpjSV6tk85Y5CMVRIrLZs3F1ost0zG8knOrLQ5tZzDDyIWGv2Bb29agW2lFDuGs9hewN//1nl8P6TWdQkJqXUiHF++vqoqFNMJSmmDX7hvii++toTjB7Qtn8nixhRXEMYnppS4q+iqTxiF79hiLooinr5Y5fJ6l/WOM9h0PbrrmjWTVIGopA2Nh3aU+eJrC5xd7XB8rsWTe4eo9WRGSLPvMpKTlk87h9OcXGpR6dhEkTzuH9g9xHfOreP5cgFXFUEhqV23oRSRZDLHqlxCrs+xAPl9L5BFD8iGjaEKQiJsDzJJBVWE9Lx3xsFs9D2SesBoNsFC0xrY6WxYB651HNK2R1KTjZWvvbXCYsNkupTiwHiOXEpjoSHPhb7jk9RlmOZQ1sDyQ1ZbskiYKCSZLqV4ebb+tvLuWs/h919ewPICPnxgFMcPOLHYZiiboJDSWGraWy5od4qUrpBOyCww1w+YKiWZKWcIgohqz0ZRZDbNV06skDFUhnMJ2jGzuWnGzYH3yDT+9uk1Zqt9krrKbz6588+NuVzp2Dx9ocpwzuDD+0ffszrjwnqHtKEOmMXVnkPH9ji/1uHNhSa6pnAwtkL7uXsm+Z0XpTJ1sWFxqdLj0GSe2WoPzw5Z6zjsGs4ymk9S7zl8+/Q6n713klr8GaR1FdPx0DWVIIxo9B3qfQcBzIbRoLGYSWhS8hzJ66pj+qx3bD64f5QL611ShswkGS8kqXYdghASmkqn61znMwxxZsWmAfTlSo8/fH0JIqnkna31paUc4AUKIIPj2WSdFYbSUlFTBUIILFeqd/eO5bC8AIG0DS2mDbq2KW0ckUVELqmha9LbeyyflJ72QlDKGlTaDnYQ4lseaV2j515rrPsx++yZCxUyCQ1VgaNTBQ5P3mVA/qRhrJBkqS2b8cV4QLDVVasqkhyR0gUN0+ULD87w1lKLiUKK+bqJF8rBq6EojOTkY37nxTmEEAxnWyR1hXxK52MHx1AVwY7hDH/p8e0IcS3bZ6vZien6WG7A85drt13jwjDih+crNPouSy0LgVSSfvjA6JaDta+eWOFqtU8hrfG3PrTnbdeqh2I7W8uV6uqRXILxQpLxwvWD39MrbSw34MxKh2PTBU4utmLGZsip1S4JVeEzR8exPJ+VtkUYRZgxC2XW9ilnDX762Di2GzBTTlPrOfzwfAVVUfjjN5bYNZzh1FKLMILDk3mG48a0pgo2hEX2pvvZwOpuC1yp9rH9EKfn0rJ8ylvsacI75AS1TQ/bl2tV746HNlvfd5VNnNzbsfS0TSfMnd5DQ3/rx+WS176v3WaI13eutedWbqOK3xiCSTX81o8Z3qQO029Qgn/nzBoX1jusxsrhdwtdgeWWPXCecH2pEl7r2PzuC3PM1voYcSZrOWMwWUhhujIMPQwFhqaSTxmM5ZNsK6VZbltUe9Li+VNHxnGDkFLa4Mp6lxevSCXpmZUOnzoibUhfuFLj9bkmihD8yiMzGJqC7wYkNJWPHSzz5kKLpKEwnk/gxLtXXVVIb2rWlDKSGLYZf/Gx7TyxZ4gvH1+m0rUppnXunSlydLpASldvsvesdG3ySX1LddrGuaMpAk2ROTE92+eB7aWfuAFYEOfqdm2Pjx4c40P7R3juUhVFCFK6ykM7ykwWU7RNDwRb2olfqfb42okVnDibbedwhr1j1y8OP3NsklrPoZjS+d7ZdZabFistE98PMWNXEUNTBix125fEHgHo6vV5hD8q+GHE4ak8Q1kZQP/47iGEENfuFabLh/eP3nIo+A5i+O7iLu7izxghst/Rc3xGcgmWmha2L5UjL8/W+dWHt7FvNMvlmlSjvnilxkQxxULD5J8/O8vBiTyKEGwfSqMIwRdfW8ALIhab+UFMxanlNkMZg7YprV7ThralRW5Sl99TFYFxC8vEzX2gH0d8/6wkpBuawl95Yud7UjH8ecILQk4vS/vm+YYpXbNc6aLVteVgY7nlkEso9Oakm9btytwISRR3g3d+QwgjOQi7sYQLQgY5wooA1w2wXA/Tl4S/KOoN3FW+c2adRs9BFYJjU3mIa7XDUwVOLrUppnT8KEKNNwBvLbURiIHoQXD9/uBOUM4atOKhsOUFfOf0OvvGc4O+7CtXu9h+SCGtkdJVsgnpHvavnp+TOV4RRGqEoWm0LU8KFoIodsKK4oFQJHsvCY1XZuvsGs3ykQMj/L1vnB24kqQMOVxq9l3mG2acpxYRINCCkDAUmK7Py7N1WvGgGiCTUFEVWVf6QUQQBKy1bRqmF9fC0trSUBWZ34a0TIQIxwvouyGbTZilE0rEWtvhh+fWqHRdCimdjuOTTai0Og7ZpLR1DMKI5aYZq5/ksC6TUCmndVY7Nl4gM6muVvvMDGUQCAopg16s9AMZPxB2HCaLMnN3pWnihbJ+b/SlevDPww5xvt7nj9+QOV4fPTjKsThHfDNOLbU5vdLm2HSBU0stNFWhmDL4woMzMgt4vYumCF68UmeqmOLTR8ZZ6zpkdGlV6fobo0eJKJKW1q/Pt8glNYQAx5OfjudLq2tVCCw3GAyoFeQ54PoBnn/t+rvxX3hntWguodE1PBzr+hUjbSh8aN8w/5+fO0opbVDrOXzxtQXGCykyhspzl2oIAV94cOamuIRb4X29S0RRNB9/aQF/9w5/7QNCiP8WqQZ7PoqiV4QQzwohngcWgH98B6/7jv5OTcBEIcH2oTRXaya6qnJgPMPlSh/iJrAioJjWaZvSSrDec8gmZABgPqkzlDYGG8gIGfinEKEI+Oz9kzx1rsoPzq1zYb03UA05XsibC032jOZYWbQopXUurPVIaArltIbjBVJJpCoIIpZblrRIVBSmSkmWmhYT+STDWYML61JRdnAyz2LTYt9Yjh+er1DpOnh+RMZQmSykGMsnefpCRTaCwojhbIJSyqDR96h1HVpxdkQUSX/41bbDvdvK/ODcOrYXkE8ZlNI6by5ItujGkG44qVFOG5xd7XJxvcdITobSpXSVR3aWCaMIXVXQFMFqx+K1eDEPIzkdnq+b7+hzq3QdTiy0aFseq22LA+N5bO/aBfLaXGMQwvprj24jl9SxY3qj6frM1fp0LI+1tsVkUSqGVts2/9P3LnC50kMRgm1DabqWx1MXq/jx4qcgKKcNJgpy4DQ45+J/bwzvvBE3NuP9MBqwLjt2QDGpwW2C3zegKfKGHkFsXxQy35TDKiP2T95o/qvIx/bcgOWmxWtzDUQkWaSXK30afQdFEZKNNZqlbro8vmsIVShMF5N84tAoByfybCtnePVqk+mS9Cpu9KVabCt0bY8TSy1sN6DRd7C9kCAMY6m2SspQcW7TKLwVNvxhU4bCZCHJxUoPy/UpZxL8ysPb+NapVU4utejYHv/quatUuw4TxRSfvW+SQkonm9D4+fumMFSFfXGD4d3e2DbONy+Q5/Gf1w3y5auNgTJh/3j+jhf7rRAB612XSleGSM7V+xyYyGO5Ad84uULTdNlWTvNrj+3g4HiedEIjn9IZziZYbdmEYUTP9tg2lObNhTaNvsvxxRa7RzLU+y5vLsjcw4yhcnG1S8/18cOIMApIGSoJQ6Fp+aR1jb7jESLP9ZSuoApwA2XQvF5p23z/3DpJTSWKpD3HD85XSGlKbDEoP4uNQFxV2frGW0obqELQtn1apofrX8ve0xTZvKx1HHaOZDm32pH2dAqM5pMD60Xb96n0Ihy/LwkEhspPDQ/LvElDpdFz+J+/f4m/+aHdfOLwOJXYdmE0l0AIQbPvsqOc5lKlghdL2CfzCQpBFFstyr+n64S8udiimNYZySXZNZz9iWsY3gXXhSQX4jV0SxuPELJJBcsL6cfK7yCMOLXcZudwhp1DGZabFkKRjQPXD9kxlOHQZJ4L6x2KKan62DuaZVecEbTx2l4Q8spsA0XAI7uGBmtX2/L4vVfmcTx5HmqKwAvCm0gdAPONPn96ahUBTBZloPGBifwt18G5Wp+TSy10VbBrOEMuafDorvItMx9ADsD+7ctz9J2Ax3YP8dCOMrWew1tLbXYMpdk7luPIZIG1ts2BiRzZhMax6SKHxnP8w++e53KlR6UjiRGqkDk7q22LUtrAdDyalo8XRJxe7lBI6RydLlBIGbwy2+BStUfjlMM90wWEEOQTMmz5U0fGuVzpMVFIDSx1N1sJ3c5lN4g39RHg3uJeb/p3dm+MkOHBQkibojtBu7911tVq59r3b/dcm3sS1h0q+IcyW3++zf61cGRxGymYoYAdv+5Y+tbblI0/LQJuJVJLbxrU3FhzWrEzQUpX6G4VWHGH8AJQ1RBNCCIEqiKf2+84vGDXsF3JUi1nDA5M5Hly9zDVrjPYePYcj7m6JMp9YN8I9Z5Dw3S4f6bEC1fqfOrwGAsNk6s1E8uT9jeTRXk/evlqnQsxOz6MpAr6owfHeOZClYPjOfaN5/hvP3uEpumybyxHGEVsK2cG4e7F+H54o41PGMqsuEOTBfaP57m43qWcMW6pgv/u6TW+/tYKY/kk/7dP7r9pEPaBvSOM5ZOU0gZJXWGpabFnNHvLnJe5Wp9LlR5HpwqMF368GP9z9f5AkXB8vsnHD42R0JVBLpemCuZqPb7y5gqKIvjc/VM3sVM36smEpvLEnqEt7cZVRTCWTzJf73NmpUMYRWQSOlfrJs2+y1g+gdmVe7LNl3CEbAq+l8HunUAAO4ZSqIqCE6vuF+omFys96QoSN0lfm2vwmVvkRib+wzFVuIu7+InCxr347RAhbVPPr3YwNBUQ9JyAxYbJHx1fYns5RUJX2T2a5eGdZWarfc6vyp7ZxfUuv/XhPVxc7/GDs+v0HJ+EpmJuYq0cnSqw1rZ4bPcQj+wcYls5TSGl37TH3riHlDMGxbQRW0MzIFe9sdDkmQvV6/pAP27YyEX1gwgvDEnxkzMEu7DWZbFhcv/2khwQTeZRBAP1j+uHOJuyJYMI2nZIy3ZQf8T3I2mDB8omC7CEKhjKGkTI7NeFvlRKbahVNAF/8ZEZFpo2l6pdKj0HP5BRL//y1x+kY/vMlNOcX+twYb1L2tC4N7Y4PjZdwHJ9immDTx0Zp9F3r9sf3AmGMgaFpIbny9yxRt9hsdlnvt6n0XPRVAVNUZgsptg7lqNn+3FPQgahCCIUIejYPklNkNBUiikFTVNYqPexvQhBhEVAEEY8e6nKQtNEVwQnllqDPE7TC+K8sGu1hILMO+87Ps9dqpFLary12KLel9FA44UkhZSBrgpalsdoXpMRLZEkC6d1hSCEjKHQ6Eti8VLT5P5tJT52cIxXrjZ4I+4rg6z5UQQCgSoiLlf78VAsRNdVEppKN5I9mw21mxpGsXpQEEQCQxGsdRxMR/Z0fBFwbr3DsZkiHzs4wnyjz0LDHLymrkhhQkbXePLwML/9/FXcUPZSwzBkoWGy8x3YW75fsDdJ8+1byPSfulCJieQuT+wZ5rmLVXYMZ8gmNE4vt/ne2XX6jnSPuFLp8cpsjZlyltm6SRDKWcVGr2wz/DCKc+Ku/Sypq+wupzm73hlcOxGxnbYdoG8xgH4n2NgthsjzYDibwPRCRORi+QG5pE45Y/CRA2P8xhM7GI1t11+erbPSsllp2QMCWRSB5fpEUXRHAoH3ZQgmhDjFbY5BFEXHbvOzbwLfvOF7/wPwP9zp69/Jwd/csPAjmK9bVDouO4Yy7BzJ8Pn7pxjLp/jfn7lCGEWsd116boCuiNiDPySb0BgvpNg3luWD+4bxopBm36Oc1vnO2TUqHSnRPLvcodpzCOKBz0Kth+OH5JIaw5oMKrx3pshrV+vSwzWKpD2gAF1T2D2Skd6mSHuNB7aVqHShnE5w37Yik8V0nJMkmK/1uVKR9kp9xycMZbPLjxj4+c/H9ktCKNw3U6Rt+1yudDm72iKVUFGE3LAndYWe43Gl2qNhuoRhRCmToB9bflmuHw+6FNK6LG5qPani6FguO4azDGcN9o7l+IX7p3nqfIU3F5qcXmlJz9n4c/CCiJShvSMFi8w5kafrwYkcM6U0D+yQmROXK11++7lZ1jsOO4fTvDLb4MMHRvnM0QlOLLZ49Wqd//WpKyR1hY8dHMP2pDrozHKbpaZFEIKiwnrHYbVlEQIzpRQfOzDKM5ekDVlSV+KmjTzbNAUMTSUMQ8IgGgRDbsbG4GrjHFXEzbYj7Ttgcyc1GbTZs32Wmta1YMEI3OBG3QsIRea/7B3J8HuvztOzPfpOwHQpTc/xsLyAlK6gq4K1ro2mKLw53+LIVEEudiNZfvdFmY12T8xAKKXlQOlWyCV1pkspFuombUsuvFfrfXq2R1XAO3Aaug4R8mZX7/uYbhcQBCF89/QKtZ7MHJur9+laHnNA3wmw/ZCxXJKHnhy67rkcP+APX1+i0XP55JExDoy/M0XNJw+Pc3KpzfZympdm65xYaHFwIs+njvzZ2tPNlFJcqfTIJWXGz3uBAHYOpXnqvPSDzvQ1jk0VMDSF/9/FKh3LQxGCFy/XORgfr88cnaCQ0kkbKnM1k2rXxfYi8imdjKGS1hRsNyCpqxRSOpWOw6VKRzJ2AmkLaPkRuaRCPqkzlkvRtD1MxyMUkNGl/agZZzLqqvSiT+oqHcujGbpkkzppQ2G949CzQtxADqQlG0ygKXJ9zBiCvhsO3uuB8SyP7homCEPWuxZOPDyG+B4R2yjiSwXrhq1AEEHLlH7YbhDiByCCgHYU4oXQcxQur3c5MlVkvbPG1VqfqzWTl6/U2DuWY7qUYrllsd51WO/YEMFqx2a6lGa9Y+MGASsduVFI6gp955qsvOcEmE7A7pHsu2LJ3cWfPzbnGiVjRcSWd7+4MM0ldfxwg5nVRI1ZiZ88Mi4H1x2LlVaDjuWy0rZYaZvsGsny9PkqpYzBrz+27aanfmupxWtzDUA+/9HpArYX8INz65xb6TBRTLF/LMdwLsG2cnpLhupqy2atbbHSsqn1Unz+gRk+fgsrRJBWissti5bp8oPzFaaKadIJlfu3lW75O42+w9Vqn4Su8KdvrfLF1xaZr/cZyyc5MJ7nN/JJ3lxscnq5zXA2wZN7ZV7lC5drNPvSoqNlekwUknTjRstwNklSV2JyTkDf9Xj1ap2RXIKFeh8nCGn0XSzXJ2sovLXUYfdolmxS4/MPTJPQVA7fkFGRUqAfX44jW2RRbWBzXZDSt6551DushdabfVpxEHXP2nq4dSM69tZrxlrn1haIm7F7VGbeCrhjFeqF9TZHtt9sPVzIaNcaJMGth06bxfG3syncPNOyXX9L8/Uzy9fM0m/cUH7y0Dj1nsNrV+u3fI07QQhoEQhVIalKtqSqSBvSruXjx2q1ri3V6b/70nxsExU3+SKp8BfC409PrrJrNIMfMMgZe2OhyVpbMtz3jmb53P1TPLhDnvMnF9v4QcjukSz7J3KMF5L8Lz+4xErLomN57B7NMl5I4gUhZ1baHJrIc2jT57h75Jr6yPYCzq918YOQ5y9X6VoBv/LIDHtGc2+bwfL0xSqVrkOl67DctNh9g42LqojrnqN4GyvFMJSW3l4QcXKxxScOj3FoIn/b4fn7DcsNOL/WYaqYYjSfJIoizq12MTTBSC5JUldx/IDpkiQh7R/L0XcCvCBk32iW/+n7l7iw1mXfWJZq17lpCHZwPE/b8rha699yyNc2PWZrkmSYNlRpUz6q8tKVKo4vSW6ljIEQAkVE1zU1vODOm9zvBgLIJBRSCZ2ZcppG3+WvHJvgT0+t4sSWR5mEGu89bk3UusWM/i7u4i5+xHina4MXgoFU86pxD6falT2gPaM5/p8/fWjw2K+dWOaFy3X2jBqcWGzx1RMrlDMGGUOjYbpcjnPij0wVODpdGFh4vzbX4IuvL9K1fDIJlaPTxUGNufkest6x+fIbS6hC8IUHZyhnDNbbUjVuewEt0/uxHIJ99OAYJxZaTBZTb2sR/uOEnuPzrdOrRBE0TJefu2eS0XySY9NFwiji+cs1Vls2LdMd2P4D1w3EfpSIiCMzkKTpfFKj3vdY79gMZZL0bBcnkC5UqgK6ohACc02LasdhoWYSRPIc61gef+frZ+Q+LIi4d6bI/dtKg7wikLE4j2+ybZ8opLC9gDcXmkwWU7fNR91AtWvLPpYT8NjOAgsNk7eWWnRt6RA2nk9SziY4PFlgx3CGpy9UiKKIhKaRT4AXRtLGMJBDjb1jWf72R/cxW+3yd752logg7j1K0rbl+lxe76ELGe2wQeJ3/ZAwjIhiC7uEJpgoplhp2YMaW1UUzq12CSLQVcGxqTSlrMHlSg/HC7H9gLbpoakKhioJMYoQNE0PN4jwwoihjMZkMcVkIYkfhKR1lZ4TDAYqE7kEXhjR7LuDiBfLD0kndGndJyJZw0fSelMIgSqgGQ9tar5Ulm2cfUEE+aTO5+6f5p8/e4XZeLC2AVWVx/ix3WWevlCVVokx3lyQ9onvBxp9l/l6nz2j2Ttak/aNZek5I3hByP3bils+ZqacYq5mMlNOs38sRxRFTJVSCCFYa9tEUcRsrUff8Zmrm5xfC0gttlGI8DficzY9n4DBAPTGS9V0fJ67UidEnhtCSKKsH/fLnPd4basqFJI6fVdGKo3kE+wdyzFX77NrJMv920s8tmvopj3DdCnNfF06L/3U3hHKGQPb9fn9VxYQQvA3P7T7bS1n3y8l2M+8T8/zI8MGmWSjIeHHXqV91+PMSocLax22DWU4MJ6XbBdVoWm6JDRV+lxGUqabT2lsG0rTdwNSuoZthHzyyAQIwZeOL1FM6fz2C1cHEltdk2qooZzKA9vL/MyxCcbySYppnf/9qcv84euLIAR+ECAJIiELDYtsUiUMpXfrzpEM2aRGJqHhBhGnllvM1y0KKQ1VUQY3nAPjOZ6/VCWTUPH8gDXbp215jOYSmG5I1lAJI7lYvrnQYr3j0Lc93EBalVheRC4pbSKPTuRZaFkIIkwnIJ/UmC6lBsPEIIyodO3B8bRjX9Z632W5aXJ8vsnZlTbjhSSOH6EoMkRcVWT+gesHOP6dLzBJXeXXH9uB5QYUbmj8X1jr0XcDan2HjuMxWUoN7BItL+CV2ToLDZN8UqOQ0vmVhye4VOnx/KUa928v07c9bD/krcUWqiLwvJDVpmTdbjCNZqs9VFXEw0f59wgBE/kUlZ4jPVQ3IVbtIwQkYluSrfxQb7V2bN68un7IUtPcMsR2q01uGEG15/LSbB1FEewop8kaIYgI2w05MJ7HUAXVnovtSYbI0akCM+UUuaTO0xcqnFuVDqX3zZT43P1T0vf1NlZIw9kEP3fPFC/P1ug7Pk9dqOL5IXdIHL8jiCgaHMOeE0r7UMeXoeCxQmmymCRrqDx/ucbPZxPX2fVUuw61ONT0wlr3HQ/BimljkCn2zdOrAJxf6/DJw2Pv2ZLwneC+bSV2jWRJ6so7Yh3dCmdW2vQdn57jU+vZXFjr8MSeER7aUeLkUpsggqu1Hl86vsRf/cBOvEBaHhwYy9O1pVJ2opDkid1DKEJIe0HHx/YDMobCfMPCC2SxtnH+KsiG6uGpAuWMwZeOL1KNqcuP7CzTsjzm6yauHzCcNWhbHqYjVWRCCFJ6gOPLtbXnxcPSCJKqEndGBQlNspM3ECGJAumEytkVGaS6ce3oqiCfVPED6MYKnA1/Y5DXWd/1sT1ZJKgCsgkNP4ywvIAgDDi+0GbfhLRRcIMI2/NxPY++K61DImROzEadlVIEj+0qc261w6X1Hm3bxwcyqojX/wjXC/HiouTiep+/9/Oj7/nzvos/e+wbz8eWxbBv7NbrjqZI+7Z8SuehHUVemW1wYbVDADy4o8Te0SxLUwXcQN4HG30XLbYhWWhYjBUSKAh6dsDQDbZ72cS1+2Y2JpR89+w6XzuxwlrHJowi/taHdt+2OT2Sk3ZqbctjvaNwcb2L7QXXqTmiSNpgLbcs7t9W4vh8E9PxWW5ajOdT5G5BpnD8gG+dWuPkYouO7WN1AjRV2pfKXD/Z6P3SG4t859TaQP18brXLA9vL5JMau0YyJHSFh3aU2TGUodp1eHhHiYWmheMFjGQTeEGXluniBSErLYtW3yUSguliCkNVCaNQKj9zCR7dPXTLInpz4X87MsvmQU2l57HFbIhzmwY1t8MLs5I5GQHfObPO3/rIvi0ft7kuODaz9cCxa95Z9/mhHSVenq2jCrj3NsPLzdgxvPXjzq9ce5/mbYKINjdMLPfWx1ZVZCCzALKJrT8ndVPdcmMjJiKia/u3VCO9EwQRpFVB3/EHdflms5cI6NoBT51bYzSXomO5cZMllBa7vsy/NF2fSsdm+1CGA+M5Zqs9Xr3aIJ/SqXRD9ozmyCZ0Epo6uKY1VdpNJTSFlZbF2dUOzb4r2c6x6v/LbywRRbDQMFluWqQMlV96cGbAJp0upfju2XWuVHrM1/tYcSPx370c8p9/Yv9tG3ayMaPQtjx2j2SYKL575ZblBszXe1xY69K2ZEaEzInw3lGm63vFt8+sMlczMTSF33xyJ+dWOzx9oQrIQPvfeGKH3BPGx0UIwQPb5Xl/ab1LJqFSyuhkEiojuQT1nnOdinvDjaHScfiTN5b5zSevZYmcXenw2lyDy5Uu5UyCYlrnLz+xg2bf5XdfmsOOsysKaZ2jk3mevVzFUKXlcogcqns3svLeZyQ0wccPjjGcS5I2NMbzSWZKabIJDcdzKWcSfP6BKWwv3NIOcgM/nqZld3EXdwFyr6apUnWSMjR2DKXZM5qja/vkkhod22ehYdLcop4opnWuVPvyntKwmCwmOTieH6yZF9a6HJm6nlx0frVDFMHZ1Tb3zpQ4v9rZkmg1W+0P9nfz9T7ljMGju4Zw/JBSxrjt4P3PE/mkPsjV/EmCpkhXBcsNyCU0vnd2nTcXmqQNadmsq4Lvn13HdP1BbacrshLdaLr/KCicunI9uTxEOiX1XRdVgOVFNEyHMISEquAEIYWEhh9F9J2Ar59YIYz/1qymoKqydju93Ga8kCKb0Lhc6cq8rTBiJGvwSw/dTDIEaa89W+2jq+K6+/mt8JUTK/ihJEYOZQzOV3pYrozkUYUkAU+XUuRTOp4vLbFXWh1Suko5o7PctPDjotYPIjw/5IuvLXCl0kNVBJoCUSgFEI4foAiB5fqcW+9KO1EhSKpCWqzHPdowHiQuNS0mCyke211mqWHx2nxzUD8LESEUwbmVTmzDqGI6AQ3TpdJxpDoT2TN0Y+KzAjh+iBAh//gHl2n2HBQFsgmVKFa0uX5EQlXQVQUvCOKBnEKjL/drSV0hpSvYfoSmyIz1niP7y54foSryeRRxLapmoWHy9791ntPLrUEOPMiZgB+G1Psuz16qSVctVWDFTUbb9/nXL1zlv/vcsffk+BSGEX/0+iKmG3B2tcN/8sj2t/2dzbXkrfDz90zRtjwKKZ2vnFhmvi5dIsYLSYhk3lpKV6n3XHRVwXR9mqYbW2XGxyBul0URsfI23NIRY3PvWovrcdu76WHvGl4ge+peGJFN6Dy2a5ifu3dqy37/Zjy8s0whqfPSbI0XLtf4xOFxvnx8iTPxPvPZixU+d//MbV/7fak/N9kg/rnAfZthStZQ5AURh5OrCmSTOq4nM2wEkjmgKAqfOTLBX35iO7/9/FWEohMEERlDI5+SDZaxXJKlhsXFta68AO2Ar7JMs++RSai0TRcvkmongeChXWXeWmwjBPylx7czsinI86FdQzx9scpq7P8fRtc2zJoQqLrg8GSBD+0b4SsnVtgxlCYCWpaHQDaDj03lmSimsbyAv//Nc1heiCBiLJ8iZUT4QcR924q4fgMhpHfvUMaIrTjC2OpL4MTBi4amyLw0XaNl+4NjW8wYHJ0qcGwqz79/bZH1jj3IFgB5kbhBgHDgnz07y9GpAleqPa7W+gxlDFwvAE3geFJxst62rmsO3Q4X17tcXO9y70yRbELjW6dWGc0nBvYhhyZzpHSVbeU0QRgRhdB3PeldGoaM5pM0+i7jxdRgmvzQjjKjuQRJTeGtpRb/7pUFGcgZRaR0Qc8NBwM+jdjK0L+mKAnDiKSu0LE9cgkdLwixNtGXU7qK5QWyqfEOVFAbzauI2NYQeVPvxOzvzdAUuXC5no8bSN9f0w1iuzmpikoZCutdF00Bqx8ynNU5PJknn9BY79qI2MLy1x/bwXOXalyu9FhpmaQNlQjIJ9WBN+1HDoxyTywF3wqP7R7isd1DzNV6rHYceo7/niyGNh+TtCHYNpQdMDPKWYOxXILX55uyGZTU+Pl7pyimdRYaJusdh/Nr3etuJOP5JDuHM9R6zkDSXu06vHq1wXQpddv3diMe2lHmjfkmR6YKf6YDsA3crqnwTtG1ZfPNDyI6lsc3T63xmaOT3DNT4tBkgUrHpu/6nFxqMVfr850za7yx0GKp2WexaaMrgvF8go8eGuODe4f5b756hpNLLVp9j1mkjaYTZ6RsCGLGCkk+enCMnivl7T07kMdRyPXtwHgONwhZbMiCcsOCMozAUMHxI45MZ5gsJDm+0MSNLRjcuDGe0uD+bSXOxxmCG6j0XJaaFtWue931VErp/PrjO+KAeQfL9Tm+0Bp0kmXmmCy2lXgANlVK0bN9+o5cy2zfJwwi8kkNgZxchZEgiCIMTSWKQvK5BF5MLlBFxOX1XpzpJ4ftYSQtEHOGoJSRmX1N0yNCqjtnynce+HkXPz7YPZpFEQoh4UC2v9WqIckoIZmEhq6qnF3tYHoBuqqQ1BVURfDEniFOL7d5ZEcJQxGYbsCO4QzHpou8erXBrtEs0+X0YG0LArkDPTJV4L5tRZYa1iCfZ4P9V0zr7B/P37Su+IG0SNwYEmwfypA2ZNakF0TcM1UkqatUujavXW2yrZxmspjkrSVpg3U2zuwaziYwHY+PHhgZ2DTeiNlqn6u1PpWuHVt5Ray13ZhBaPCBfSM8unOIL762wHyjTxDKoVzf8Ti93OIH5yuMbrJ4+xfPX2XXcIZ0QudjB3OcWmqT1FUe3zPEt06tMVeXw/p+HMxseQHbh1KkDJWpYooHtpf48IFbq9w2ly9bWUdu4MhUjreWu+SNWw+kpocMzlbMLX+2GdnEtU31bRvLmxoDfccDbh5KWHfIcqx2HbnxEUKqWO8AxVtsXHaPXBsAZ+4ws8O5TedE3ns3Nq0BWW5+3Ub32t9846fUtjyOz0uV1XuF3BiGg+aDoakEQXRdnQzynlDrO5SzCSbySe7fVuSNhRavzzdlnRmB6YQcm86zd6yAE0ScWmrJnGKCOCuizoGJHEEYUs7o2H7AP/7+RYQQPLZriD0jGdpZg8d2D6GpUgEZRdIl4uUrdS5VejJHzQs4s9JlJGfw+G6pkJYsehc3kO4XGUMjepvuVbXnkEvKLN69Y9m3zWN5c6HJatvmkZ3l6wZDfhDy+68ucH61g+sHDGWMwT4h/FF7+92AjebSxutuvsaDeE3cWBddX9pdbuTYzJTTbC9nGMokODSR50vHlwD4/P3Tg3v45UqP167WEUKhnDFk0yJumn3r9CoX17pUew6P7x4iCGW4/HLL4vWrjcG9I5/U6dg+ipCEn4QmG15BGP5IVWAAmqrw6SMTbCunefpihe3DaRQBX3hghuWWyXQpTUJT35aolbw7BbuLd4Ed/9Wf3vFj5/77n/4R/iX/YUMIOfDOJnSmihk+dniUQkqnkNL5yIEx/sG3L9C1pQ38etvizZhMvNaxma/3WWxIwoWhyf5bre+QS2hoisK9scphc/1437YSL16p8cSeYTRFcM8taqYD4zkuVbooQrAnVh2XMgafvW/qz+rQ3AQvCHn+Uo2IiCf3jLyr3PAokmqXpK78ufQWboWkrvLLD82w1LQ4MJ7jf33qMmdWOqgCjkwWeOp8lUuVHq4foSvyXpgxVNm/ih1lvCC6bhD2ftyjbsOlkrZ+kSTWJDWFfMogEedmVbs2IDO8soZG3w3YPZpFFRGVtkPX8elaHtvKKfaP53j2Ug0l7k+0TY8Xr9QYziV4aIfsQ7p+iBc7tWzs6d8Ok8UUxHv/h3cNUUgbXFzroHhSqOH6AW7c++g5Po4XMJTRJdmp7ZDQFaLY0EER0LddfnCuS0JTGcoabDPSlNMGp1fb6KrcK0ZIZU8ml8ALBPmUzqFSnrWOTcv0aJoenrcxZIq4Z7rElUofXVVwfZlDOpZPYLsBLcvDcqRj2lghIQfYyKGKpsi8qIlCkpWWTRBFhFHIC5dq1LqOHIwF0ko+Zahoihx8dSyPIJKRPoYm4zCCQPZjbS+kVEiiegFd2wdETGDW6Jk+SUNjopCg7/ksN2wpaggiXp2tIYR8bBj3isII1EiqRh0voO2HMrbF96UtnyqVglFMqn4vCKLra8n3A4oi6No+L1ypsdqSJ8Fiw6TalfaAY/kkGUNDEXLYVUjpqEJQ7Tv48XkqhLStLKV0Pn54jO+eWcOMXdtuFfXTc9//UXZGk+pSgeD+bUV+8UE5uLqT9fNCPKBumh77x3NMFpODqKrJ4tv3y97X8lMI0eXammYAOtCPouidSS7eIZTbTGk15Zq/qe0FEMnwxXbcWNywj5DZRTqj+QT/8HvzNOKsrKGs9K8vpgz6dsCbrRbrbYuhrAzxLGYMhroGbculbfr4YUhCk5ZZ612bZy/UODSRY8dwlq+dWOHebSXumS6w2DB56tw6TdMjbagYmoqmyibvzqE0LcujYXp858yqVOtEEROFFI/tLPMPvnuBas9lrJDgy2+usK2cppwx0FRBQldIagqP7iphaCofOTjGiYUm24cziPj9mE5AGMHukRydrLRn6do+hqqgCkHaUBnOJnhjvsFqx0YVQgY+Am/MN6l0bCJkI7jr+AShDGEOIxgvJJkoSA/75ZaN6frYXkAYRqR0dXBymF54R+xbPwj51qk1wiii0nEYziW4Uulxfq3LTElaNn3/bIVdI9nY9iXBq7MNfv/lBb70+jL3zhR5YFsJQ1PYXs5QzlzbcG8fyvAPvn2eFy9XWevIEPJUQqPWc4iicCAP3T2SYa5ublKNSIluf3D3vX4krgppYfZulorNyhNxg/QrQp7HG83yYlqHCEbzadk4VBTKGYW27WO7MSNUkbaHjb47aG786VurFDMGozmDpKbxq49so5g2BiyJiUKaz943TcZQ+fbpNU4sttg7lqPev7NGURjBZCHJcMag1nXesww+oQmGsgnKaYNsUmN7OR1b5AmOBRGLTZPJYopPHB4jbWj88RtLCCGYuYEJpqnKTQXy0xcqLDUtLq532TGUuS3rYDMe2lEeFD8/6XhizxBnVtp0bY8gElhewHOXqvy1n9rNySXJnvknP7iEpgj+5XNXObPaZrVtYzo+iiKl0YcnC5xYbPHi5Tq5WMWUNBRapk8moZHWpRzedAOGsga/+vA2Vts23zq9yo6hDB/cP8I3T63Sd4LYwinDt8+s4/oyJHVjMJwyFPIJnY7tcXKxKa1MAUOTtrIbfV3Tl5ZxI9kEPdvHdAPZpFIEtueTjYM/N6BrshEVDEeUMjphGHJ2rTtQeEaAoqhEfoCmytdKaCqrjj24Hvu2z9MXqyw1TUz3WkbfdCnNQr1P3/bIpogtFSNsH04utwDZNN3smd51I0KcmBUl8IOIhbrJ778yz6/eAZPoLn688MqVOm4gz4mXr9T4S4/v3PJx+aTBrtFsrFgK2TksbXBrfYcr1T5ff2uVnzk6wdVaj5OLbR7fPcTf++yRQfP1r39w9+C5nr5Q4fh8kxcu19hWTnO50kVVpBr8++fW+fXHdvDxQ2NkEpLF99ieoes23X3H5w9eXaDvBHzqyDj7x3PoquDTRyZ4Y6HJntEspawk1Dx1vsJKy+biepe/9Ph2hnMJal2HXSMZ9o3nOLPc4Yfn1/nvv32BXSMZ/qtPHeBipcdwNjHwXJ8spKh2bao9hx1DGYppg6lSiqWmyQf2jvArD28bqFA1RaWUltmAz1+u89zFGisdC9sN46wC5ECtY3P/9hJeIK2dAT5+aIxsUucPX1vk1HIL0wtRkIHqpbQBCO7bVubjh26v8N18Xwu2knnHqHRlSLQbKvRtj0T25rpHF3cWjPMXHt7G//z9SyhC8CuPbM1GhesbA33TAXI3PebodJkXrr69Am2xYVKP6+GOdWf0v75tAjeX/UO5a+8zk7izBtHt1ORefNwjQNe3fr7JTXXAjZ+mrsp6OXy7Kc8dwA8iNBUUITg6XWSpackQcQ18T9rwJFRBGIU4vmC8oPOpIxOcXGpydrV7HSms53osNCx+5tgUz1xcp235rHdsDk8W6DsBPdvn+2fXubjeww9DnjpXYallIYRs+Owbz/HIzjIfOyitmsfySaZKSV692oTY8iZCWqRWui5tS7JFf/roBH98fJnLlS6KIpgsJOPg8dsfn2LKYCTOu7zRNvRGNPruQFFlewGfu3968DMvkBkP+ZQMNzc9l8liisOTeZ7YM3yrp/yR4FNHxjmz0mG6lCKpq9y3rYSiyJD3vWPXrqfllsWfvLGEogh+6cEZhrMJkrrKLz0kN/KvXm0MPttG32WmnCaKIv79qwtcXO9hugEP7ijzb1+a57P3TTFTTvPcpSpLTYuxfIKHdpY5HGcgVjoOUWwFpCkqXculEatahQKODwkdUoZGMgpo2z+6MZjpBPwfz1zhSq0/qPnnayZ/5Ymd7Bm9eb25FZQ/O4fLu7iLu3iHCCLivFiffMrj1FKbqVKalK7y5N4Rtg+lObMiHUNenWvw5TeWubTeI6UrHJrMyyZ1SsP1pbJ4qVlnLC/7RBu5YJvrx7/6gZ0cmdr9Nn8Vse33jh/xu39nOL3c5sRiC4BCynhbNcdW+NbptdipJsenb5Gj+OeFpy9UuVqT2aW7R7Is1KXt/9/9xhnqPRc/jGI7Qkl+UFWBCiR0FaKQGznRKUPBcsMfGVlDV2TfJwhCbD/E8APG4v6kqgiCCIpJjXza4J6SFBnM1vq0HR9NEZSzBtvKGYazCWnva8j84ecv17i43oW4D2m6Pv/82VmSuspju4c4NJGXLhOmx7Hp4i2b+UEQMVNOU++5fOvUGlPlFA/uKPH8pTpuELHadpgoytzysytt1joOjb5LKS2zuDbKMgXZO7hcM/GCCFcLKWXSfP6BaYYyBt6rIcsti0xCo9qVsQuuHzKSM1AVFVVRBs43upAuF0EcrfNvX5mXvR4B5YzO/dtK1LoOp1c6gyzhEMFC3SRtKPi2tAIvpnT8KGIsnyQiYr5h0XMieo49+LwTukJCUxjNJem7PtWeVOypihxCdSxpb7+x19qw4hSIASk68kGxpeV42/awfR+BFHSEYYiIwPYlOU1XFByunYSSnxahaQp5TcX2/EEMRS6l8+uPbn/PFtyKIvj8/dPMVvscGL/zuuhO8O0zsmcWhBH3byuiq4JX5xq4fjgYQC40TLkPUQVTpRR914eYEBcRYbsB637Iv3t5frDXEvzo82Q3kNIVDoznuFjtQxThv8MX3jWcYbbaw/NDvvLmMmlD5a9+YBe5pMbRqdvvReB9HoJFUXTdJyyE+Czw8Pv5GltBVxRuxU8NQgijcCCN3Di8NzbmgwgW6yb/rz85xWpb2vylDQ1dFVytWXKDiVy0/Aj6DRtNgbQRsNK2ODyZ4/h8Cz/2Zs0ldbwgomN7vLXcotpzmCyk+OH5CrYf0Og5NE0PP4wYziQ4NpXnUqUvFQ9I1cpKy8b1Q567VOXgRIFXZhss1Pt4foihClp9j2ScBt6xPD6wd2Tgl3pqucORqQJLsSrm5GKLhCp4ZNcQbhCgqzJMsZQxCEI4NGHQtn3ShkohZbDYMKnFIZGqLoO+N9ijfhSRT2gcnixQ7TlcrfUJgpB0QnrWH57M87UTK4O8MD+ULNS+GwwSKbMJ7aaQ8q2gKoJibPtkuj4vXenRczwOTuTpOh4X1rv0HB9DUzBUQSmlc3KpzaVKFy1ueDf6HklNDjLPrXXwg5DpYgonCDmz3Caha4znZY7DSttCUQS5pDqQ2l+p9eNBn0CEkbS6uUU2T1IX+H7Ee9U/RcBWfYcQyWxRxDX5c70f+9zGFUZWl7ltUSQtMPeMZHi558qBgZCb9q7joQCP7MoxW+vxh68vcKXa4+EdQ/zMPZMcnMhzudLF0BQmiinShspIVipTMrfJBvODkN9/ZYHjC00afZeModJ5j2ow249Yath0LJ/RfJJm340DOOFTh8dJGwrLLZt/+9I8/4/PHOSv/dSuwU3w7VDOGCw1LdKGSmJTE22paaIqgonCj9ZS4ZXZOieXWhybLvLorqG3/4UfAWbKGXaPZDEdn54bYLoBT1+oMl5M8cNzFVRFNm/CKGIkl5CqACSDKIqD2k0v4EqlR6Pv0jY9/DAgjAQJTTbl0obKaCZB1/FIGxprHZvX5+Q5sta22TeWQ1MUFBGw2LT40vFlWTR7AYoiGMsmEIrgc/dN8cylKu1VT5IOomtZYJoi8DaV05YfgheS1ASOu+EZHnFyoUXb8QYDMxU5aP3huXWu1PpYbsBoNnGdX3IE2K5kyIRBhKHBXF0+duNe4oXSWjIKr91nnCBipSkVJ34Izb5LQpNMNE0RmK5kkKtCSvE3WxgZqkJENCg0bS/gq2+u8OiuoVuqae7ixxPrXWdgg7kWq2m2WhVblku1a5M1VLqWxqGpAqWMwetzTYQQzFZ7cs1YbOEGEefXu1xe7zJXN1lsmhycyPOBvdJqRVUEV6s9mqYbD7gjypkE20qpeNgDaUNlz2guVhVF/LNnriAEfPrIBH4YxWw7eGOhwTMXKpxcamG7AcdmilhuwPOXaoNN2UrLJpvQWG7aWI7PntEsD2wvIYTg4Z1lfvfFqwBcWu/xB68uSNW6gF9/bAfljEEhrTMeF+2VrsNjO8tkUzq/8cQOymmDtY7NctNi+1CavuMzFOeVztf7FFI6fTsgl5LKFcv1ODKZZ7bWxw9Cmn2XxYbJ3tEs4/kUP3fPJC9fqXFhrYOJrLnatkfbdMgmNZ65UOHIVP6mHJ9b4Xa95kpXbvpsP2S+blLO3qzKqvfeXgUGcGy6xGQxRUJV7rjR3PO2/uPutPn8wuXa4Osvv7HI3/zw3rf9nUBsTSZ5/lJl8PVa587sGG9HS9lcIrX6LoXUzcPE1dbW5J1m3+V//M4Fzq52BsO0dwtNbBDuIgxd5vpaXkA+qXK1ZqIpxJt7ueaDZOO+eLnKm/NNes71dgFJXSp7/uTNZbpWQFpXWGpa6KpsLAbxZvHieod6z0WJA75NN6Tv+pxebpPSFT6wdwRDk8fE9kKmiin8MOSxXUNkkhpztT7pqkm97+AFId94axXPD+k5Pl4QoasKax2LP3p9EVVReHLv8JbZYIam8KuPbMeN2bS3Q9pQSRnSVqmUkVbHXzu5ggB+5ugEBydytEyPe2cKnF7uYLryun43rPr3glxSv64mUxWxZZbhfL0v79FBxFLTusk+9Z6ZAh3Lo9GXCr6rtT4/c2wCb6Mxp0mrIj+MmK+bOH5ApetgezIL9AN7RggiuTZfqfRY78i8aQVJ3rHtAFVcG3zbcR6X9V6DGt4GIfDGYhs1tj7qWB6z1R4nl1q8Ptdk21CaT7wNkQCgdTcT7C7u4s8Fd6rECSK571lsmPRsn7W2TTGt89zFKtmEyrHY+efFK3WWmyYCeX8qpHS2D6dx/RAFwdVaH8uXzgZty+OPji/RsX2+fXqN1bbNfTPF98XifzPqPYeO7bNjKP0jV1aV0saAXPlu87qvVHry32rv/fqz3hf4QcjVWp8wivj/s/ffUXal53kn+tt5n3xOncoZKGSgETrnZmg2KUZRVLIoWRTtkZMmeTxzZXk8d9aau2bGvrN8xx6P48iyRjIVaFEkxRyb7BwRGhkoFCrHk8POe98/vl0HBaAKXd2NZlMePGthAVU4cYcvvO8TXp4q89juIlOlNlNrLWQpwo1rnylTQUKi1nYJEVZ/ERHtTdah7XdBVbIRcqxIiiKZIIyotj1kqYUqS6iKTHdCozut03ICTs7VSOoKbddH26Ce707rTJfbDGRN/BCOjeZ5bboCiHVPylD4o5dnmFxpULd9jgznmK+2+eKrc/RlRS7x+/duHmOQT2rYnnDbOL9cZ77aZq5ideoAfhCSNjRShkrbDWk7HlEkiELdaYOd3alYiBB1mjeaIlFMaSxULf73714kqStM9KQ5MpSLIx2E2t/2hUmhTMQb8zWalkckiXWqeB0Iw5BLyw38IGIwZ/LRwwNkDI0/e32WIHYu0xVRL12pO9Rt4bSmyhLltqg5vnJVkIA6Vorxd1ckQZwJI1it24REnciXKBIZvzep/CTxuWw3YL0E6wcRtQ0FfT+IyBgKQRjhhhGu5SHZEr1pHTe8vuEaAZYbMr3WZryYpBXnkwHs68vwThVg6+jLmtvKiNsI2wv46okFWq7Px+4aoHeT53elDFpOm76cSbXtcXy2yly5jabIvDJVYTBvMFtu4fgBri/s6De75eQbFJo/Sc+FtCHzqWND/OFLs4RRyPu2uFe2QtbUMDWFpuNTb3jMViwsL+CTRweZr1pvuod/V40Ioij6siRJv/1uvgfcWgm2rvZa//dGaAqosrAfAhHGPVuxiCIRVt2dEmF8YRgJNZl0zRszQmw6VhouhqZwZr6xwc5Q4iMH+3hxqiIUAI7HWsNlqW7HOUkRthd0pKWGJpNL6AzkApbqNo4f0LB8Mcj4QnFwfLaCIku8PFXGD0XgYD6ls7M7jReEVFoeL18t4/nCf11TxUSkKBKn5qos1iw0Weabp5copsRE7fghs2WLYtrg0mqLw0M51LhbfHZB5HIAJA1FLJbCEDeMOl6qjhfScnwSmkIzLvzOVSzq7RWWG3YnA0yRIJTiv0PQVInBXGJbCxJJkvil+0ZYqTt879xyrF6SeWC8i6+eWCQII1KGiipLfOONRWwvZK3piOOMRNMR7AJNkfGikIWn2zRtj7YX8dBEkf68Sd3yySZUfnBupROMqMriutqYCxSGQqIbRmzadNUUiaFcgkrbpdL23/FAstXyICYvULU291mUJJm0qdB2Q5KGioTE7t40b8zXUBATVD6hU0zrdGeM2CKnjBMEKHKFv/vUXgBGu1JM9KbpzZoEoVAPZK9q/MbD41vec4s1m7lKm1LDodx2UW/TolNI6n1U2WG5ZuGHkDFVZkotFqo2XrxAt73gukybmuWR0JQtCyhP7O6h3HKJoggnVieeX6rzzTeWAPj0sSHGY6XCRizVbF64ssZwIfmOFGGvXC3jBRGvTJXfsybYsZECrw1XWGu5LFXFYqTlePzrpyepWS6eHxLGGVvrheWWIxRdgznhVx0hLP+SsSWGFd83YShIA21XBMYTiWy1lZogFaznpyzVLRxfbJwSusxMqU1alwki8P2I2aqNpkj8wYvTtFyfMKJDbAgjUdC1NhQyk5qMqSrULA8niIikeMHjhbRd96YJf7Xpslgric2aJBriaVOl7QUdtVmw4fGuH2CoCllTpe1dq+L4oWiqbUSl5aGpMk78+daVJ24UiQJSrLQtpHRa1Wsji4Q4buue57Is4d0GxcId/OSxuOG8rjS2rvo5XshcWdwbhqbwzTcWkSRIagovTJbY05vmm81FETqMRFKX+faZZV6dLjPalaLlBDw80U2l7TJTauOFYWee9fyAobzJwaEcP3NIKESeu7zGH7wwzULNYiCXoGZ5FFM6A7kEP3Oon4netMjlkSRmym3OLzVI6SpnF4VCIm1oyJLEB/f1sn8gS1dK58sn5mm5AZdXmtRtn1xCo+36fPhgP3/2+hyqInF6oUZP2iSf1Nk4leQSOrIkmnelpstYMcmH9vfxJ6/OYbk+V9ZajHUlySd1Ht/Tw6m5aodxOZAzCYnoz5kUUjqW69OfM/HDiO+dW+lsWFebNqoss6MnzX07XF6dqlK3PVRJYqnhoqoK/VmD331mig/s7+XRXd3vqHiyUdC9lfq90tqeZ/KfvjrD1bUWkiRyKf/LvjdvhG1F2KlsU9ndnTao2aJJN7HNxttW5Eldufb9t3tItzviNZzNVWqKdG1e2Lgme2mqzNnFGo4vchffCYII/ODamP3adIWVhhNbx5iU2y5WnGm5nilpuQFnFxuUbljHGarEcOxyYHtBnHsg1MzLdYenDprYbsRr0xVmShbFtEZXOokbRAzFmR1RFHJmoSEa1CmxHnpwZ5HnL6+xoyfdydZqOT5rDYc/eXWGK6stxoopnCAQFo5xsWWp7qDKDUaLKV6brjCYS/D0xRVycRj1+lpQkaU3bYCBuAd+9cExKnEO2avTlU5W6z/+9nlKTZedvWk+99AY3zmzjOUFXFlp8dDOn6wSbLs4OJjjlakyizV702vaUBWePNDHX5xcYL4aMOW0WKzZHB3Jc3G5ScpQ2NufwVAVDg1lqbbdTr6X5QWcWaixfyDL1VKLV6crLDUcCEWzVRTrhBvHuqsJbG6f/m4iY6rC8tYN+NaZJUxV4exCnQd3Fm+rdfcd3MEd3D68lWkvDCPcKMIL1vPcNX50cZXPPTzOmfkaSNCTNvjg/j4mV1vs6U3zmXuGOTFb5WunFmjYPn6854miiELSIJfQ+NbpJeYrVmf+eCf5Ozei2nb5wksz+GHEAzu7eHji3Z1DxrtTfPaBMSIiejNvLxfz4V1F3pircfgtxDP8JKAqMg9NFPnia3PosSuMJkvkEiqVlouMmIMs91o9FdjgmPSThxOB44RostibyxKUWx6qDEgybSVgumzFecMwmDe5tCyaelEUEYQhQRjRmzH4i5MLAPy3XzzJf/HB3fzCvcNkExoZU2OsmODLx11qtse/e26KhCZzeaVFMWVw3y3UgClDZSBnYntC2HBlrdVR00mSaDD5wTU7fC8Q+8K+jMmx0TxIEUsNEd8QRGKPl9RVZFmm5QS4QUTN9lmpOwzkTXJxrSahK6R0hYbtEoQRNcvrZEPJiPqnJsvUbb9Tt1hrCnv9hu2z2nDEYyU692zdFqotkUF2zY75xtPfqadG0HRElIsfhHi+cEtQJLGWbG1CTJMQ11cYdfQUN41hEVxHvJeIREYYgnjsbHiGcNwShHnbD3A3vOellTpDhbefbftOcWG5ztRaC12VOb1Q4wObNME+dXSQxapNb9bgP/+j47wyVcb2AtKGTITMct0SBKvgWszOjZB4d7L6touJngzv39fHgxPd+EHIgTdxkrgRJ+aqWG7AWsPhwlIDNwiZq1j82x9P0Zc1+Zm7+tnXf4sc9nf6BTZCkqSf2/CjDNzLT6Cp6G2xyX8z9KQNghCC0BUZXlI8CEgSiiwzU7EwVQkt9lT0g+g6y6oIcfHM1xyMpsu6dahEyOmFBoO5BA3LZTmWnzpeSBRFNG0fQxUDXIhgG8xX2zi+GJy6UwYtN8BsyoBET8bAD0Nqlo9hKviRhCpLTK8J5nfa0Di/JLJvHC8gm9D41QfH2D+QZbSQ4J997xJEIgPC0IRfvBtG9KSMTl5BT9oQzSJZ4sJinStrbQxVRpYlRvIJym2PkAAvFFYqvuVzfK4KgKmKrru/rm7w/A7rNWGogBjkghACSRTLh7u2r7AxNYXRYpIDg1lemCxxeCSHrgpmx2LN4p6xAt1pnb84aQlWRSDy0rrTGvmkTkJXWarZ9GVMrqw2aTg+TccnO6/y1MF+Pv/oDn73mSt8+/QSbswocAIxeK5DRkw+dqy+2uyi1mQJWRaZaroadCaPtwqZrQes7cDQJECKrxmPqulRt4Rnt6bIdKd1JEk0Ij9+Vz//8ulJ1lpO7OMrEYSiCayrMp86KuwDf//5q4AomoRRhLzFFrsnY5BJaOiagoxEdDt34hLx/QpeEAAqNdvnA/v7eHmqhKYo/IeXZvjl+0Yopg1em67w44urZEyVX31wbNMC5FzVYq4i/HRfmirx1MF+mva1otSNDO11/PjiKvNVi6trbfb0Zjo2irNlwYw6NJSjK/XmFlf7+rO8MV9j722WSb8V5JIav3TfCPOVtlBxBSGmqmD5AaosYYURSUMhl9DwwohdvWnmqzaGqjBUSFBqudQsj5G8SdVQqFkuKw03tnG99j6yJNF0Ay4uNbiy2kKXI8JQNNQbtsjDkGWpozZdt+Bahx9EVOPFWlIX9grr96sSXW9KGgHDhQSOH8Yqtq3vpwho2cIuUZElNEVmtJhkttxGV2TsGySZEuIatDyfXFLHULjO5uHG93FDYYe1ccG2nh8yUjAptVzcIGKlIZSzEpBNqAwXU1iuz0LVRkdssA4MZO/kgv0lRHKD9ZupbT0o+hE03YCFqgWSRM7UWKrbdKcF+WOxZgMRe/ozeH7I3r6sUJOnDVw/JGOqvDBZopjWiBDM1KQmirMNx+f8UoNPHBnsWDzMlNucWxThxgtViz19WdwgFMpMReaTRwYBYS04W7boy5oEQcT+/gyfODpIww44MJDF9gOmS21ars++/gyrDYehfIKMoXJ2oc53zi5hagqff3QHJ2drBGHERE+ae8cL15EWntjTQ6npUmoKxaTlBtQtH8cXmYFdKaEI0xWZ6XKLs0t1/CAijCLuHiswkDM7Fqb3jXdxeDjH//GDS5SbDm0voOV4/JPvXCJtqNw1kuPw0A6OjlT5o5dnaNgBUSgKzy9NVTg8nOPVqxV2dKe2rQjbDPmkzlrLRVcketKbF4RzaQ1Kb563tVSzOnYR8+XW9j7AFo3z1jYV2j97ZIB/8eMpFEnio4e2Z89Trlub/v5XHxrn379wFcsN+XjciH0zbFdHvpW9or0F2/joSB4/iLC8txDaugWiDX+HIVTaHrYniB/7BjL0uSbnFmvUbPFtgkjMe64XXTcvKJJoBH9gby9TpTY9GYNjowWOz1R45tIaNcvj26eXWWsKC7ya5ZE2FY6MZHhyfz+z5TamJnO1JHJdNxYU9/Rl2HND03SpbnN8uoIXRDERzySXFNaGfhAxVkzx4M6uzj21rz/DS1MlrqyKa2+8mNqUJPRmSBsqaUNlsWaxGF/TsgQLNQvLDZlcaSLLErv7MgRh9Lb3eD8J5BIaatzsfPbSGkeG85s+bk9fhiurLRzf50uvzyHHClmAj901SE9GKMjySZ19/Rlajk/W1JhcbXHXcB5TVa5ZOgdCIb5Ys0Xw/CaLm58Um3cwb8aWluJay5gqTcfvjP93cAd38JcccW0sjMm3YeTE+cgySUNhcq3N1FoTIvjwoX52dKe4Z6yLnT1pfv/5q7GNa0hPWiepq3z4YD9JXcH2AxZrFpIsxqtjo4Xb2gRbz0gHOq4G7zbWx/G3i3vGujp59z9NuLTc4PXpCl1JlaSuEYQRCzWb3X0Z7h3r4t8+M0m9LRohb9XSbCuosoQqRdjv0FppvRGzHo0TRmIflk8KEp8fiprHzu40940VeXm6xGtXK1xabvIHL07z2QfG6EkbzFbaLFQtfnB+hd98/Jpl58cOD/IXJxaZqbRpO4JEJCzqo1teDw3bR5akTgayLEkoUoQZk0q8IKLhBPzFyQWWahaGpjDaleTAQBZVEfbq6+vMKBJrOF2VyZoaCzW7I78KEDaCfhiiyhJhJBpwhipclDaeLlmG3pzJzmKS4zM11lfgkixxabmJE4iGXcpQ8IKoQ9CS5TgLLRJr4DCuJ647fl1XC0I00LxYPWi5QcfVR5Kud8QBsbKQZeGYI0si9mLd/SeXUCm3vC1jV9aFMJoiU0jqWK7dafpkdJmhrhRBGFK1/Ouqmg07RPqJUomuYbXh8P2zK5xZrLG7N82uns3rg5oiiJ0vT5WpNEX9P4qjOtKGUAPeqgHGLX7/buE6Uqgq8dSB/ndU09rbl2FqVbjB3Leji8srTaLoWmb2m437t3uF+okN//aBq8CnbvN73IRb2eqJNtL1G2lhIyGRTeh87K4+fnRhDccXNmBXS228uMiuqRJeJHGwP0NCVzgeF28UWUaSIpH7FIHvhyQ1lYypIgO5pE7L8am0XSRJyPU0RRJFYCcgl1BBAkOR8cKIlusz0StywhRJIpfUGMwlqNsethuQNlSGC0lM1aJhBx0fZV0VmU37+jPsH8jw0pUSQaxiu3uswFA+wfRak1xCE8VVKSIIodzySZsKVcvjE4cH+M8en+B3/vwNnr64SsvxIYqIkMgYKkosa205PhFi8POCKGa+hqRNDVWRyMnC3nD9O/hRSCah0Z/RubzaEk2y2Os1a4pQVOtWYQ+b4MGdRe4dK6AqMldWmwRhwEy5zXzF4oGdXbS9gErLJWuqZBMqbUewIT90oA9TlTm/1GBypUnTFpZ+Ncvj/h2CpZHQZNEE3XhdrV8v0rVBOG8oLDdu3pBLgBSFTK02eSfOOrIE68TlpCbT9rbnl6xwbaBrOAFh5CMh2CC6KvPAzi5OzFYpJA16MzpLdYeQiB9dWiOMYHdvGhl4ZFf3pqqpDx/s59RclV296Vt65EYR/PzdQ1xdbbIggXMb5e6GKtGfFfaFSBKmpvDRuwZ4dHcPjbiI63iCLV1MG8yWBXu9YftU2x79uZubYIWkWDS4fkhf1sT2As4vNVis2Ty0s+s665/luk2l7bK7N0Nv1mC+apEx1Q772QuEJ60fRsyU2/zqg2Nv+p2ePNDH+/b2vGPf4XeKH19cY6YsZMSuH9BwfO4bL/Dd8yK7w3JDBrIKSzWbMBJK1lLLYSBvoCsy8xUrzn+LhI1fGKHKMkldQlMUUrrMasPBiUNJIz9kow7B8UQTqpDQsFwf1w8Jw4h8UoR5BqFoeHmBUGrpwuMAPxQFII9r9wuIsanUcuhJ6zRtTzCO/AhNFQynjeGe6+wjTVVIaDL5pM6e3gymJnN2odGZsOUNj9dje9X+rEHW0Ki2bRpOGDOibp5011VrCVX4kLtBROiHrDYdxrpSXFhu4AXXonTXCROfuXs4ZsI3qVgeHzrQ18l/uoO/PHj/7j6OT1eJgMdjFcZWZ1GWEMXouAFmajIJXUWVodryKKQMVEVMVpeWG3zq6BD37eii2nT4V89cwQtC7hvv4mePDuH5obCaiCJ29orm1A/Or3DXUA5Jkvjg/j7+7Y/Fc1RFZVdPit/64G76siZTa6LQvaM7xY7uFP/Vh/YgEdFyA2bLFl1Jg4ke0cD6wellzi02APjVB8f4m49nmSq1KbVcZivtmCEaMJRPdHIq7x/rYnKtxWKsQgOR8/ChA308PNHFs5fXuGeswK6+NB8O+7m41GC2ItHQZCJEzqWhyLRdHySJV6crPHWgj0rb5cBAlsf3dHfyXiNJjM+Vticy0ooJ+nJGh8FaSOgs10Uuk1Vqk0toXFpukEto/Omrs4wXU3zq6NDbKtCkTJlSC3QVFGVzpYyhbm8pvm8gG1tjwqEtiu03QtpCBb27LwdvrGz6fxux2hIms0EUUWlvz7usmNqcQVmxBOEsjGCh/uZNP4D0NncpyhbSsvGea02ajYeiP2eyuzfNct2OSTW3B7IkbNPFRlRloSqsnN3gWsNLQdjWJXSZxobnSpIEUcjl1Rb7BzJ8/pEd5JI6+/qzJHWFH15YxXIDVuoOuaRGUle5b7zI/Tu6eGx3j2DUBhEvXikJZmsg5tHVpsNSzeb0Qo265fPRQ/28NFXiyycWGMiaWH7A7t4Mx0YL7BvI8qXX5xkumJSaLgtVm998fCf9OYPZikXSkzm3WMfyAu4f7+KZS6u0XWE/8lbso+crbX732SnShkohqfEr94/yfz07xaXlBoeHc3z15CKW67O7L/OuM/jfLtbXfKfna3SnDY7cgr2/tz/DRE+Kv/0fXqdmeeiKzGcfGEVRJGqW2yGnAfyNxyf45z+8zHzV4svH53ljrkrD8bC8ILbbV2k5Pt4tyD3vNmSElc2RkQIfPdRPzQ5ouT4P7Sx27Ka2g+TtdT+7gzu4CeO//fVtPe7q//qxd/mT/OVEEK4XqImL6BGqDA9NFFmtC+vW/qxJzfb4i5MLeEHE1bU2f+v9E52Cu6nJ/OZjO2nF68DvnF0mDMU8+dSBfu4ayvHUQUGMaTk+V0tCmZx+B430wXyCJ/b2UGm5PPAeOa38p4Aoivin37/EasNBkiQ+fWwQxxfE1Z+7e5jVhs1wPsHptkdwG8OE/DB6WyoVGXG9bqbwDxE1NkWSeGhnkZYb0Jc12NWbYawrxXOTa4ShINraMXn1lekyO7oFKTWMxJ7i8koTQ5UZ6UpiqAoPTnTRPOvTldLZ05/mlasVDgxk6c9vvSaKooinL6zg+MKFqCulkdQUPnxXP6t1lxenygRByErdpmn7OH7Int4MP3dsiP/5m+eYXG1hOR6t+IvWLIv+nEGEsBqcKbc7NvyWGxIEHilDJWWq2F6A4wUEYYC6rsBShPAhrau4ARwcynJ6vk4YBpiqQqXtoSoSiiSxszvFUt2m3BKZx2EoatpIEIURhgKyImPZAaF07byoCkz0pKm0PYayBpdKbSEeiZvshiJey41rJllT4dhYgSNDOf741VnajvjMIM7RjmIaTW6xWHe3VDpFQMZQSRqKiNaJz2vTC1lpWBQSOhIRuZRGtS3o1PmUTtJ488VJte3ypdfnCaOITx8boph+Z01wEE5TkiRxbCTPPWNdjBa3bhJ94/QSyzWLlaZDQleQJIl7xgtcXG6hxbXNrZwu1hWHWzUQbxcUSbzXWHdSEMhd4Yox0Zvmgwf63tZrun7I5ZUmfVmD3/rALjw/4IWpMoeHcxwbybNcd/DDaEtS2jpudybYb9zO19suNEVhc95p/P+qhBJFuIE4GQldZqInzXgxzYcPDmB76wNR1Llj1pn6KV3h2HiRpCajKDJnFho0LRckkbsUhqIQm9KFFVghZXBwMMdMuc10qUXG1EkZEcP5BFdLbYLYxkKXZZqOsDzszegU0wYrdYdq2+PKaov7xrvoThm4piisZk0Vx9MJIhfLD4RNnyc616Wmw/6BDFlTo+161G2fZy+tokgSV0st+rIGpi7j+SHT5TZuEFJpC0bAmcV6PGmJ4nUtCIUnrBxRs1zRlV9XW0igKBIZQ6btiQagIoEqSay03ZtuJNtzCcKQpK7SsONCSkicjxO+rUBkVZGZXG3y1RMLLDdcLDcgZai4QchwISmOgRPQlxNNkOWGzXOX13h8dw8vT5VZaTr4QUgjzj/78cVVJOD751e29CcOI0gbCoYiI0vydZ3s9QE2ArbpaHQdNrKAc7pEwxWTfsZQ6M8naNmeuJnjB8mSaAbpikLdFpaLMqCrUkfK6wVCXahIIV0ZE0WWKDVdPnNsmM/cO8JMqcW3ziyJIk1sudObNblvvIuP3jXAXKXNc5fXGMwnyCU0zizUOTKc7yxQb4WvnpznzHyNmbKFH4bvOBtt43HyY/vRfFLHC0KG8qLQ9vf+9AQrDZFp8f6Mwa5ekZf0wM4ubC+I/XivTUxhGLHWdMgnRQ7N5x4ex/ICutMGU2stVhsOAzkTU7vGpK60XP7klVmCMGJ5zOGJPT0cGMiSTWidpuF6c8Z3A4y3kF/xXjfAAAxVFuOkLKHKQmX5o0trseopQlFCzi03OLtYJ22oHBrMosgSlhPw9NVVyk0HL4gwNaHm8iMxjqQNg0LS4Opa8zq7wggxdqyPGUEkPJAlwFDEMZdliZSh8hsPjfN7z19Fj895xtS5tNqASGRuBYFo7ksq3DOS442FGl4AZxbqjORNvEBYGhiaLJhJrPtdx1a6UUQUs7EcL6BqeSzVbUYKCd6Yq3U+c4hQ73al9PiYSKzUHUIgm9C5dywtLAOuVgkRk2vKUGgIWSkT3Uke2dXDnx+fxY0bXi1H5ILIsowmC+VcFIni2krd5vvnl8maOpeWG6iKzA/OrfDEnrfmmXwH7z0e39fDK7MVwjDiZw4Jde1W/ZScqQjbzqpF1fLImCo7iirFjM5CtUS97KHJMl4QsqMnzUhXkgd2Fvkn371Are3RcHyOz1R56mA/3RkDVVWIIlhrumQTGq4f0ohVBn1Zk88/Ms4XXxeBsg9MFOnLmlxYavCNNxYB+NjhAfb0ZeKxUOL75xaZWmthagp/7dEd6KpQP8O6klLimcslTs/XUGWJTx4dpGZ5ZE2NXb0Z9sbWBM9fXuOlqTKyJPErD4xSTOl84aVpTs3VyJgq//DjB8iYgs21fyArmsFrLUxN5dBgjkJK4+kLq1TbXidXb74qMnkkBEnCC0L29WdEXs2aIMCsbxRURebHF1evZYFKotGjqeL4G4pMQlPwg4jvnFmm7QZ85u7hTS3fbjWCz5dFJljTiSg1LAqpmzdJ27UMm+jO0JsxkWS2rU4rbKFIXqpuL3NiObbxhltbeW6EHWx+cX/j5EJHIX9qw9h6K2zh+nwToi1YmxtraPINa9SkoZLUFSwv6BQL3glkCVRFwtAVVhu2YATbEkZMstIVsQbOJlQSmli3bvxIqiyyc5+9vIZExFdPLvBrD41z13COjKng+hHzVQtJgoSuxo4Heqf5EgEN2+PAQJY/emWG84sNDg1mObfU4NxijcWazV1DeV6dLjNdEiShStvj40cGuHu0QD6pIUkS/+CjWdZaDl89sUA+KcLin58s8cKVNWRJoi+jI8syr89UsGIm8vmlxpZNsLrt8b2zyxiqwgf29TK11uRbp5e4vNKkJ2PQmzVJGiq/+fhO6pbHTLnND86vcLXUJox4R5bT7ybWmg5zFYtdvWm60wY/e3Twlo9XZDEu1SyPpKGwdyDDl48vcHq+zkMTRXb2pMiZGot1W5AFCwnOLjWoxvkqw/kESzWHiiX2W+vr/5Dt5/u8U+ixVbwsS0z0ZvjE4QF292VvGUtwK7RvX//5Du7gDt4C1NgmbjuIIhjtSqAqwob1wECWX7pvBFNTeGBnFxcWGzRdn+W604kgUGWJzz8yzh++OE0QgakrVCyP56+scXaxhixJfObuYY6M5OndoJj50utzrDVdCkmNzz2y4x19x81yHO/grUGKSccgamH7+7N8840lLC/gt790iqblsdqwN1Ukb+v12XruejvLsgiIJEgqEm0/6rgrqbL4LoosMZQXTjF+ENFyfM4u1Pn26SUG8wkODeYYLpgsVAW5t9Z2CQNRtO9KGdQtr2OP+HN3D5E2VGYrNn05k739Gf76oztZqFk8f3mN16YrPLl/80L/5GoT2xf2fpYboGUNskkdL4DpcpuetMFEd5KFmo2uKRBFfP3UAl8+OYcT54lvvH9DxHpOV2XuGsphKCKHz47VQG4QUVBlHpnoZq3pULcckVcdCReSROzOM1du03SElX0hqdF0hWBDlkCTEBEWNXG+s6YQQDh+GIsnFNpeIFReUUQk08nv0lWZDx3opdr2MTSxz0qoMpYrEcUr+HUhhxxbp9p+yImZKrNl0azyfJswznhz/KATFaQpEoosGnCyouCHIVIkxBdyXPep2+J9w0i8bhRBqeVjqArFtEHb83G9AMsNWaxa/NPvXeK/+8i+W15rk6stapZonF1catBwKlQtjw/u6+00xI7PVDi/1KArpccZ2qLZNt6d6sSg1CyxRk7oCo/v7mZXbxrXD9nbl6bUdDZtrp2er/Hi5BqrdZsgFI2+fMrAWXeYiLilKGM9WufdhK5AUlcJI3hyfz+SLPFzx4ZoewEDWXPTrLPt4Ltnl7m4LOwPh/MJ+nMm3Wm9c61sFWVzI263HeJO4J8CDyIO7QvAfx1F0ZXb+T43Qr5FuICqiI1uFIEUW7mlDY0ndvdi+QFfeHmWU3PV2BYwQpMlwjCiO6NzdLjAbKXFD88tM1JMMlO2qLZdgigiqcmMFJK0PZ9Ky6PpikC9h3Zl+fTdQ5yer3Fmvs4zl1cJo4i5qoWmSKQTKglNNB5ShoqmyhwaynFkOMf5xQa2F9JwbC6tNDr5YDPlFlEY0fYCFFkiCkUgMrGMV1MVRrpS7O3PUG459GYNFqpCtXJhqU6l7eEFIY4fUmqIEG1VlkmndZZqNv/sB5eIgISmkDE12o6HF4qb51rKmQjrDgE3CPHj8MSG7Xc2YzciAmqWT0/aQJZFIzKKwPMjJleb6G+z+G97Ytc0lDPJGCoRUEwZPLHbZKrUYqInzV2DWf75Dy9zeqHOWkN42QahULCYqkQuqZM1NU7O1njhSomra61OwPP6Z1+HGEwi2l6Ib3s3NcDeCdYtODUZ2r6w5BSqM5msobBStzt5dIYCuiZsZLrTOos1h7brE8YqmfW9pCGLgpCpKaiKzIWlBoossVR30DWZjxzq55NHhjgxU+GFyRJ1W+TA7OgWipT5isV8xeK5S2sossRIV1Kw6we39lW9dm5CXp0RrFXvNm1uVVk0RoIIkGCkK8lAPsGju7o5t1in3HZpx+yyoyOFjlXmQC7BL98/2nkdxw948UqZk7NVgjCkO23w2QfGBDMmrpQN5ESAZdVyr1OBrTdSxHcU1lw3Dt6KLPLr1osib4bT8zWW6zb3jne957kJHzs8wM7uJH/40jQvTJZYawp7zIypdiwDZiui+Fa3fWYrFrmUjheKJtl66G3gBmRNMeFJksjUmyk3r/MFX79vNgalrhdzgjCkFYrGu6pIuF7A/+/7F7HiIFQvCJAQjXxFkUnqMq4lLjTLDXlgosj55SZeIHyQ56s2IRJhCFYYdjzM9dhju+0GNGyfMIywIsEO0jWxCOvPJUjoCq4vms0DeRNNltjZm6bcdHGDkKbtE4UhTSfgxasVFAnScbFyrJggY2rYbsh4d5Kx7hQnZqv44bX5Km2oJDQ5Dpc1SKoyS3FDt9L28IMWCd2m6fioimDgl1vutqw27+CnBwcGc/z3H92PH0Tsjq1Pt1qcehGsNJyOPYYgpYiQ4umyRRQTb7IJjX4vYCIea+4b7+L16QoXlxv050wcL2C0K4mhCf/3x3f3ULM8xrpT19lU/eL9o4z3pFFlmXvHRcHA3jB4t26whG05PjPlFooscmt0Vebx3T30Z026Ujr5pN55fhBFZE2NX7x3pPP8dbtd2xePCSOxmYkQ2WnlliC3nJyt8dBEsUNE2Nmd4vhMlTCMODySoy9+v719GX7v+SkMVSZtqFwttWjYPn/ySsjO7hQ7utP4gbCMPL9UZ09/hk8eHuTiSpNzi3UqLRdVkQmCCFmGvrRBT9bg6GiBnT1pXr1aJowiVuo2ZxZq3LtJQf5W5d+N5KDWFkSbhr295pIT+FQsD0USDgTbQbDF41Zam2do3YiqJaxGJKC8zRwxXdl88h/Mbl8ptI7trrGULU5Ce8PXlG540KePDvK9c8udTfrbxfocFkagKzIN20OVZcIoJAgFo9hQFRwEMWKkK0EUwUypfd385/oiuwDg+ck1ulIis1VTZMa70/zWB3ex1nDRFIl/8t2LrDUdLq00OT5d4Ym9vXzx1TmW6zaFpNbJQhYq6JC1psh/mK+2+fyj4+KajyL29We4e6zAl48vUG27+GFEMWXwscP9dGd0Ts/VGSkkmFxtxixZQZADiaGCyan5Jm3X3/S+WMeJmWqn6XZ1rcVa02G20ubAYJb+nMmnjwligKkpneb1i1dKzJTbhGHEMxdX+SsPjL6jbL53A91pg6FCgtWGw8MTxTclNEmSxD/8+H6enyxx33iBmZLFlVXh1vH1Uwt0pQyKKZ1SyyVlqNh+SEJXyCY09g9kqLXF2FhpuzfvUd7Vb3oNfgiFhHAJmehJc3gk/7YbYAB3EsPu4A7eG7wV4kc+qfHRw4OYqsIPL6ywWLP53tllPnVsiL/7ob2cXajx9VOLlJoue/rTfPLoEEldZUdPmp6sieUG/Nlr8/RkdJZqDook0Z02SMf1ue+dW2F3b5rx7hR2vF+0Ynuvn7Zx/91AGMb1n5/S7/r3P7qP5y6txQ1LE0OVqVkeq3UbJIlIklGk8B05Ib1TrM+DEqIu3JU2CBo2iiyRSej0Z03yCQ1Jgp3daU7NV4X9esslZ4r5drbSZn9/lt/6wB7+6JUZnru8ytRamx3FFJYf0JMxGS0kKTXFmt32Qs4vVcgnNMIw5JFd3SR0hcmVJmtNl7Wmu2U96OhogYQmY7shhZRKX8Ykm9RwvYDm+hpSgl9/aIxvn11marVBw/E7ewoVSGgSlhd1vncYiWiFEzNVnCAkkq5fHQznE+zoTnK11OLySuu6McD2BaU/AtpVm3rbxdAVFIjddxSQwPYDapbI8EqZKvv6s5xZqJExVPb0p5lcaeEGIV1JjfmqTcsR+ztdkTi7UEeSJAxNEY1JRRYKsiiILRTFPk5YN8pU226cb2aRNlRB/o8FGGHc5Flv0D24s0jK0Dg1V6XcdEkYIgLG8UNWmy6qLPa2hirh+qIJJFSDEv0ZgyulAMsT5H0vCDv7w62IhAATPaKuE0UizujFqTIAr1yt8JFD/fhByI8urhJFonFz11CO755d5tBglsWazcHBLBlT4+RslZnYvWq8mOITRwR59A9fnMb1Qz64v5fDN6ia/vWPJ1muO1xcFi4mti/6CvNVi9WmQ8v13zOnAABNkcglNAbzCY4O5/nE0UH6sibdb1Ett14z2Ij1GsP0mjhmKw2HPX0ZwlD0W16cKjHSlXxT95bbbYf4BeD/BD4d//zLwB8BD9zm97kOW31JTZHY3ZsWuVCGzInZGkE8epTaLk3HZzCfQJKg7frxBk9kSd0/XuSu4RyXVxqUWi5TpRZE19QAAzmTTxwZJAhD/q/nruL5ISlDZXdvmulSi1NzNeYrbVEIdgL29SZBFoVv2w1J6gqqInziu9M6cxVb5DXFC4QrK02cMML14rC++IaXA6FoKCR1Wq5Pd9pgMG+yty/Dzx4b4qsnFyimhHJAkSUGc0kcr8mK7VO13NiWS0KSJBp2QMtpi8JYMW6iNR2m1lpYfojt+Z2wb00RWTktV/wOrjEL1kUv69LK9eym+J9xoyaKLZzEd6m2t1eAWben68saHZbp/v4sc2WLH15YYUd3ir6swVR8I/yNJyYYyiewvYAdPWnOLzVoxe8fRiLEcX9/lqcO9rFQs5lcaVJpeeSTOrIEqw0X1xeFPT8MkSTxvQeyBvNVu/Pd17//O8XG/K8wlgPL8TE7PlsTGXVCYYyhqRwZyWMoCmEkmppjxSQNy+PSSjO2vBTNTFHI0ERwdhjheAGLgcXXTi3y1ZOL9GVEBtx8xcJQZbrTBkld7fgEz1baVNsuKw2H6VKLT8TZYG+Gjxzq5/vnlqm3dRY9+x3LbNebr7mETsMW3sNX1locGclTabucmK0xmEtw75jJXcN5HtvdzYWlBt8+s0QhpfPhg33MVyx29qQ5s1Dj9ekKJ2arjBQSsfdwiCFfY/abmsKvPDB60+fozZp8+GA/pZbDvbfw684n9esybrZCueXy3bPLgChSfWqbx/fdgqkpaKrM2bgR74cRSUOlO2Py1IE+Ts3XROZgEGKoQqE1Wkiyrz9Dw3ZZqjmda1hCwlTFNWhqMSMHOosgP74o1hdtIOyh1lWnXhwMSxRRsTz82H4VYK11zbe5mJLpzSaoWkLRoCiCYX9oKMu5xQZRGBEQ4XvXFIleKDysd/akqFl+J4tEIvYfV0RzU1dkXp6qIEtQSGl0pw1UGbxAFMltN8CMFPIJjbU4S9GPIiotj4Su0p9TGelK8RuPjNNyA354boVnL63RsD0UGXozYrwZKSSpWB6GqqBIEh8/KggUr09XcIMQTRFh0al4o7i7L/OO7EHu4L1BpeXyRy/P4AURf+OJnfTnEmxltOB51xSBCU0in1DJJVWurrZE8ygIBQEmiHD9kOlSm+60wWO7e1ipO7w2XcHyfI6M5OnPmriByMX7zN1DJHRx7SzXbRZrNvv6M5iawmO7e677DIeGcjh+yGvTZX54foVyy+WDMZtxIGcSRZDSFa7E+YeKLF1HGnj/vl5yCY3+nHndBuIH55c5OVvj0FCOx3Z3Y6gia3Bd1fSZe4b5gxem6UrpXFyu88rVMveNd/Ho7m7ySZ2/9ugOzi7U+eOXZ+nJGPzCvcOEUdT5/EdGckyutGg6Pi9MrnF6vkbdcrG8kIGswb5+oVgYzJu8Pl2hbvlEcS6roSlkTJVixuDDB/sZzCf44P4+Hpwo8qXX5sR3v4W1yVYwVQnLF8y8rTZThW3MGSA2UZYrFLPfO7/CU9vI6GpYmzekUptkZG6G9XWcJLFlFuiNqGwhi6/a19Z9t7LNUbhmYd6/RY4aXO8vn9I3HxfvHc935p/e9PXHudQWtnTvtIkgxXYusnwtQP6Zi6u4PmhKRFJXqbU9bC/EC0Jmy+Jzt+OcXiJhs97aYBHu+CGTqy2ev7zGE3uF+rc3Y9KbMfk3P55kuW7Tcn3emK+hKzKD+QQrdZu1poPlBXzi8CAL1Tb5pM5QIYHl+ZiqwpGRPDu60+zoTnfWHYIYFDFdarFQtRkqJHhooouJ7jTfPr3E7PE2T+zpoekIBwVDlam0PZ69VCJlqNw71tWZ1zfDUCHB8ZkqqiJhx7nFfYHJo7u6uXe8q8Myny61OD1fAwRbO6krvD5TYbZiMV+1+Dsf2PUOztLth6bI1zX4t4OejNk57t86vURSV2jYficn2Quu5Xb8lftHGS+m+MLL05yYreJ4AWPFFJNr1/IAN6tjvxtNMUUS68RUXFjSVblzPt8JcuZPZ9H3Dt4bbNe68L1+7/8nWSfqihjrZElYmT13eQ0viDg+W+FTx4aotl2evbxG1fJ4bE83Hz7Yfx0hQFMkZhoOE70p2m6A4wdkTI3erMlwIck33likZnmcX6zzt9+/i08eHeSH51e4strk95+/yi/dN7qpAv8/FVxda/G1UwskdZVfum+kQ8r9aUIxZfDJDXWKX394jH/87QtM9KQotz3ShiD7LNW3JkptNS/J0rUa2DvBusOMGufgqDIUUgZRBEeG8/y/fmYfpabL108tkEmIWtdaU9imLddtDE1hue6gKU3+7TOTpAyVtKFRTAvVVTFlMJhP8Cv3j/LK1Qq6KrOnL40fiobJaDHF7rjhNVxIcnaxjqkpWxb9e9MGvRmDlhtyoD/N43t7WWu6zFZaRMB8VeSlqpLEeDHFdKkFiHqKokgUkxr5pMZa00UmIpIEMTGhKTQsn40tEEUScTRtz+ffPXcVVZZw/JuzyjeegyCCpKbScDyIm01hEBFEolEWIqIbZETG847uFOWWK4jFUcSyL/aosiTOsR+GzFYs0aBM6Uz0pDE1YY+/nqOb0GQe2FEkl9QIwpBvvLHYIZGFYUgQxqSxDQoz8f0kFqo2944nSeoqrhkyXEiQ1FXmKm3qcf1QliQSulBMrTZsiCBtalRtn1LD6Xx/XZW5ZyxP2rz1vbi+LwXhwvDiVBnbCxguiPWcqsgM5hLMVy0mYmv2nT0pJEkin9K4vNKkN2symL+2Rl53rqq0RD0aYLFmc3j4+vdWJFkIYyJJ1OtD4dqgyEJZF75Dct/bhaEI5V1XSufIcJ5//VfvfVuvE4YRXz4xz/mlOuPFFJ88OtSpfz15oI8Ts1V296W5tNwkbag8trtIqemw3LBZrFqcnq/d0qIcbn8TTIqi6A82/PyHkiT91m1+j5sQRBH9GY2lhthg96Q1HD9ktCtFzfJw/JAd3SkGswncQGQGXV5p8IF9feSTGqWGQ8P2O3kHEWIDGsSF4KuldqcIqykSw4Ukv/u5+5hcbfH/+dpZgkA0S+4b6+Iz9wzz756dYmqtRanlkNIVdEUmnxIFodWmw0pNsLwtN2S5bqOr4iYpJIVn6UDWpGl7zFTsTlbO+rgkSzBcSPDk/n6evrBCte3w/XMrnF2o053SuLjSwg8j0oZKMa2TMzQatk+p6eAEorisyhF3jwrPzErbxfFFGHw2oWGoCi03IIxCimmdMAAvDCkmNLyIOJfn+k3PusgjpUmoikJEhOMGKKpMIaFTtVwRoho3wiSgP2tui/Hy/XMrXFxuoMoSv/HoDtKGiixLJA2FvqxJ2w06hQNFlkhqCv/3C1f545dnSJsqEVGnKdSfM9ndk6Ivl2CiN8NnHxzjymqT//OHk6zUbdJGgiCCpu2TMVXGu1PMlNs0LY+VhjhOSMJSR2L7ge23gh83vYiLnkCstrs2E0mhWISqiszF5SZN24sH81hFFk8isizRnTLY059mrSkYvfW2R0JXyCiqkA97AU0nwHJ9lmo2xbROylC5e6yAFrOk79vRxe7eDE9fWMYPIvb0ZxjcRvHP8QNcP+TvfmgPv/f8Fb53ZuU6BdDbQQQ0nRDXFx65fhBRarn84NwS+wfzHI0VAb/20HjnOReWG7Rdn5NzVX58YYXdfRl6M9VO2OyO7iRDhST3j3dhqNtfWG9HCbddGKrcySLLvMkk+5NCEEZi0g3EZ8olNFqOz/fPr2B7AfmkGFd39qTww4jXpitcWm7w2B6hyFuqi/HT932ySY2y5dN0PAxFoS0Jlk9Ck1ATCm6sHJOkCNsT1omFlEqp6XUWZZoCjhehyNerKdb/WWl7+GEk7BMlGOtK8vp0lY8fHuSeMYvnJ8ssVNtochDn5MXfM4qYWmsjSZDWVVK6SsvxhPpMltndk+a5yTWhrgxCRgoJ9Jg1v9KweeVqhf/ig7voz5k8d3mNyyutTiFIwiKX0EhoCuPFFC9PVTg9X6PSdnH9gP6ciabIcVFUNJj9ENKmigRMrTZZazhoqoQsycK2TZbpyRr8zMEBPnl0cNPMvjv46cb3zy/xvXMrwqs9b/KfPT6Brt48/8kIdu66+tcPRVP4wmIDRZIZypliftcVWl7IkZE8Z+ZrnFus0XICimlBjmk5PpWWiyJLXFxu0HYC/vG3LzBeTPLY7h6+8cYiXiCyCz95ZJAwjPjO2WVWGzbv29vLSFeS+3d08dKVEpIkcXK2yp6+DEP5BAP5BKNdSSZXW3zv3DL5pHaTNV/aUDvZZxuxnht2brFO2/H59tkl7hvr4tBQDoAjI3n29GWw/YB//9xVAM4v1Xl0t8gEKjUdfu+5Keq2x+4gTanpsqM7zeHhHE1HqFHGiim+fXoJKX6f1YZDMa3HG7OQlCbzzKW12GpSoelE9GcN3CBEVxQMTeFqqU3F8vnA/j6G8gn+2mNik5PcotFyKwHIuv1fhFDBb4ZsYntNsL6MITJwJYnRW9ghJjWJdmyJsX8ov+ljhgvbs6EY6UryylRFeLrfwpt+I0xz88ZVqXmtQHIr9VXSkGk44gHdue2xBoNo85PgBxIJVdxTNxJUetIG/TmTtut37LDfTh1GioRa01QlDg6mma208UNh5yLWXSFuXHCQJbmjLJclcU4NRRZ5aX6AG4pxoCsl1s4XlxtMrbXIJDSeOtBHUleptFyiKCKKIg4P5cgmNCZXW4x3pzi7WEeRJDRVqLfPLjYopnV+56MHqFse+aTGq1fLnFmoc2w0z+HhPPsHBCv11FwVEOSz0a4kL0+VaNg+miICzn/no/tIGSonZqv8ySuz7O5NU2q5jHQleHDn1uSgiZ40x0bzXFxuMF5MYXsBHz7Yf92aaqVu87vPTnFusY4fCEZub8ZgsWbTdn3OLdVZqG4vR+4vCzKmRn8uQTahcWgwy3zV4v7xLp67vEbN8nhhcg3b8ynHxZBSy2WxZt+yWqjJMJQ3Wa7b27YSfTNIABEEYUA+meDQYBZNlSimDL52cpHPP7rjbRduP370zRv5d3AHd3D7kdaguQ0+sizJjBVT/OK9Izx7udTJZn4iXuPNlNu0HBEpkE/q1zXApkstam1h6z2QE/b0M6U2S3WbB3eKvJu0KTLaU4Yq5sSsKcjrukql7bFYE0TWnzT8IGSxZtOTMTpEjXcDl1aaeEFEzfI4PV/l0kqLfFLjIzc0E98L2F7QiYhY/yxBGPGHL80wV2lje6Ke2JPW+NqppS1fJ6VLGKpKyw1i561rkEFYtQeCJGS/AzlZFIm1pSxFzFdtVFkmm1DRFAldkfnTV2Z4dbqCKksMF8R+Zq1h40jC+aZu+9Qtj9emK/RlTYopnf/mQ3t4aapM0/HxAhFR89DEtYy5g4M5RrqSscOMuE4ODGYZ7kpc97sbIUkSfpy3Z2gqw4UkfhAxlO+m1FxkuS7UPC9dLXfs2Q1VKJsMVeXoSI7T8zWU2N69L5tgtWlTbbtISDheSFqXMeQIPxLWhSt1h5rtk9QEmSVryti+j+9vyPuTwA1AlkJWGjZBGMVuGYKYq8sKth+iStCX1enNmszHazNTU9jZnWK+2qbtCl8DXZVJ6Ap1ayMJLmS23KInY+B4AS3bR1eFQOPKWoNyy4uVYRIpXRH5uZaHvC4IkSRSuhTbMEJCk7G8gDMLNX71/mG+eHyepZrdUalrikQxZeIGEV1JnbbjicY+sNp0mOhJXpf/3pMxuWe0sGUGe6Xl8q0zS5iazM8cGsCMndQ+9/A4bhCS3bAH+vjhAa6sttjdm6LthWQTGg3b44XJEk9fWEWWJD738Dh/7bEdqPI169HRriRHR/PULY8HdlxbX794pcSFpQZPHehjsW4RhQGvztSIEDUDSRL7TonriYLvBBKQMUQNtu1f+92Nd6oqwaeODlJMib3Vgxvuk3XMVy0ypnrdMdoMa02Hb76xyOXVpnCUk6SOu1fGUNnZnaIrpfPY7h5MTabS8jA1mROzVU7PSzy6682zhG939fWHkiT9NvDHiGPzS8DXJUnqAoiiqHyb3w8g9g2NT3g8ga41HRYqbQJEw2WuYlFIakyXHUxFZrFm8fjubrozBm/M1yCKWa6yFEs2a8xX24ShaK5EgZDj9WYMxopJTs7W+I+vzaEqElEEe/vTHBnNk9RV9vRlWKk7aGoGXVa4sNKk5QZU2h4HB7LsKAY0HZ9zi3VsL2B3b5pdvYJNYKjCKuXAQJanL6zwpePzEEXULFHYUmWJAwNCyfTK1TJTa03CCKbWWrQcg7bjI8kSlhdQt0QhzA+j2FpJdMv3D+QYzCeYLreJEAWr/qzJWDHFTEkwDIMwIqmquFKE64Qs1B2SukJPxqDUdIgi4ULf3GDv0/IiUlKAhMhAMHUxGE6uRbRcp9Pc8YKApW2GogdxZ0iopCJWGw6vXC2TNhQKSQ1dVfjU0QGW6w7ZhIaiSPzHV2dZqFo4fkghZkroisze/gxjxRSn5mvYbsDr0xU+dKCPX3twjD97bY6luiUYB5rMcCFJShd5EYYis1C1UWUxMRia3LFIdOOQ9xsHGjm+FjdaRRqK+PlGC4L1H6MNz11X/sX/RFEUYYnpezRjafF6Y8B3Q1K6xNGRAv05kzCKmFxp0ZsxyBeF96wXhB0W9lDexI8iUrrKjp4U9+8o8uT+XtwgpOUEjMeFruGuBC9MloiAw8O5Nz1Xf/TSDK9NVyimDaptP5YFvnPEpB5UWSJjqjSdgLodMFNus28ge91iBODIcI6Xp0qoskTTEQ3grpTOXcM5cnGGV3/u7fnQvl3YXoAeh46CCAr+7AOjrDVddm7Dt/YngZrlkdRVgigipSnXLP8coW4ydYUQscB0/RDbD6iUXWZfnOkwsCKErafshhBFtN2QZhQIRaMk2ISD+SQLsWWkEytZIiJ0WSFthrTdgDCEMJKJJOGXbaqgyAopXabSFiyj9SDVfEqjkNAppHQKSYOq5TFXsfCDkL6sSbklbKAsPyQKIYqkTsNZIsLzhZ2ouFwlTs9XMVQF2/NQZIm64zOU0JmJ7Zy6UhovXinTmzUxNJHNlzYUTs/X8cOw06ifr1posoTtCaVmMaXzG0eGaDge3zq9RISw+OzNGBSSohm9Guc2LTVs+nMGTUeQEzRZ5pNHB38qGYJ38OZwvJCm43csC4BO1uZGCF9zCTcIkWNL28G8SbnlYWgRQ4Uk/+pX72Gm3ObUXI1SbE/3lRMLyJLEk/t7RdZXxujYMUQRLDdsGpbH2YU6ZxbqZEyNtKESxFSx5YbNucU6AK9NVxjpEnPAXcM5vnJigVpsv3V0JM8H9/fRcnxhtRCJx29sgn35+Byn5+t8+tgQB4eunzd6MgbPX17jg/t7+fPX52m5Ad85u8wv33+N6ZvQFRK6wrHRPBeWGtw9Vug8/9RcjYSusFSzSRkqPRkDRZY6KjWArKnx5IE+HD9E1xTRvI+P/+RqUyhs1iz29GfoyZiAQ9JQ8S3BRJxea7FQEQqaX31ghIypb9n8WsetZrqN0/1spc1EX+amx6SM7RU60oYmlKuSUEhvhdGuJFOlNmld3dIpQZaubcxv9flbrt9ZlLTc7VXVwy0oiOPFa3PdrbgfLefa86dLWyf+bnwXy/WBmxtm+wayRHHjqe8GC+PdfWmODOfpTms8d7m86T25HQTxh3F8WKg51NoekiQRSXTyQTMJjcAPMA2VMIzImCq6qvDB/b3U2h4XlxtMS200RWSp9GSEItnyQs4s1Fms2cyW2/zGI+M0nYC2G5BP6FQtjx09ae4azsX5wKKxFIRRR23nx/uXQkoniiKevbxGFMGPL66xfyCLrso8daAvZviH9KSNeO704sw0Yc/75eMLfObuIeqWz71jBVqOz6N7enj/3lvnVIZhxOszFZFRELb5m09M3HwMI0E6KTUdbC/k2GienT1pTsxUmK/a5BMaI11vXYn5XqHW9njhyhrFtHFTptlK3eaFK2JtnTVVntjTTTFlUG65fO2NRV6ZKjNbaRNGES9cKaHIkgi5DwSrOmko1OzNaXheGDfepc3LH2+nKBIhrnEphNmyxe6eFFdWbexixM6eNGH09u4bgNeu1t/2c+/gDu7g7SNtKjTfRMmpxs2BTxwe4MvHF3h5qsxgPkF3xsBQFb51epHDw3l6swZ+IOx1NyIIhZ1hte3xg3MrWF7IxeU6uiJzZqHOxw4HfPLIIHMVkYHkBqIOdtdwjvmqRdZUGSq8N+P+N04vMbnSpJDU+KsPjb8j29fNcGm5wcXlJv05g2xCI2OqLNcdVhviz8FBix3vUX3A9gI0WeJPXpml3HLZ2ZPiU0eHmC23OTFbpdwSjRaJEDcIeW2meh15ex0S0J0WWaOuF97UAANBBq9YXiezK59QqVv+tuYpGUFCW+dbr+ccrVt4h1FIw/a5uNzkv/3iScpxTdT2AnIJDVWR2dubZrZiYXsBE91prpRa1G2PMIroyZjs7c8y3p3i3/z4CtW2y3OXSx1iHoi5/vnJNboz18/12ynyG6og2I52JfjmG0ssNyyGC0l+87EdPBOTYa6utmi7oqaW0lXGigZrTQdVpvN9utM6q00HVZYxNRU3tvHSNYXxbqHAXKrZVC3RXOpO6/RkTGbKLbwwIlJC4QqVMcknVc4tNGi7IZJ07Zx2ZwwODGbpThqcXqgRAj9/bJjvnl1mJb5uh3ImaUOlK6XTdm0USViA+0GEFjsBJXQFCWG17gQhXihI/kiiNlazBPFHUySypkrbCzEUBUsOGCualJouEtB0faIQVFXCD0W2W1JXOLvUJIgjJUDsqx0voGF59OYSlNpuHL8RoamCXNqVMskmbGxfxA6NdiUwbrHvOzVfY6km6tiTq00ODuaIoojjM1Vqlscju4pkTI0oivjia7Os1B0ux45tIAh56yXSCFGjzxnXXy+yLN20tvaDkBcmS4Cow10ttTi31OzUi8PoeuKlKvO2FWHrTS5Fgr6scJs5PlNhvtLGDaPrIm9kxDzxxJ4iA/kkQ4XEpi4JL14p8cJkCV2V+bWHxra8R2wv4I9fmYl7Gz7FlNHpByzVbP79c1PUbZ/+nMlAzuTkXJWFisUb8zUsL2Awa3B2qc59O25uwm3E7a6o/VL899+44fefRxzLnbf5/QBxIfth1LGVi6KIlhPE3p8KWVPD1ORYUimz3HYI7Yj/5osneWhnkZ6MwQf29fLMpVUsL8QPBWtTkSS6MzpeEGKqCp+5e4hQkkhqMpdWmiKnSVXY0ZPiyEieiZip8sTeHvJJna6UzmvTZaq2x8nZKisNhyPDOT7/yA6+cXqJtKFyaCjHp44O8sZcDUUWBbBjowWRnRVEHBrM4QYh8+U2q02XXEI0NU5MV0kbSscjNQwjupIabTdAV2XuHStQs3zajs9S3SZlKFhehKkJ9cnUWkuoiBSZDx/qpz9nslxzeHx3N5dXRN5Hue2iyjK2J/J4ZFnm8d3dnF9ucHmlief6guka33yKhPBZjUSGgWcHnJyr0bwhUyQC2s72dFRP7u+lN2MwkDPJmhp/enqW+Yooinz+0R2dLKWdPVrnWuhKGaLBF0HK0EjFhaMIiRAopnSev1KiK6kThBEXl+ucWawTBDHrwFCp2x7llksYRQwXkhQzJpeX67QckXnUkxEqtErbEcd//eLbgIQuiyZhZzK+vgG2zmiA64mdhiYzmDOZr1pECOVcV1JjtenGjQQxNG1wzsEL4HwcfF5uCXl32/XY2ZMhpQtFnKEp3D/exV3DOWZKbRRF4hfvHbleqr1h/bp/IHudxdWtEEURZxbqsX1iG12V6ckYtEvtd2TLktJFCK8kSwzlTHb3ZrgQhyGuNR2ajncTu3usmOJvvW8Xf/76HG034PBwrpNXMbpNJvvtxKtXyzxzaY2ejMEv3zfSYVNt1zrxdsELQk7NVcmYGns2KcSuNBxMTWax5rPWEKouRYaErnJkOMda02UqzvMYKZgs14XStdxyMDW1k+UhbDMkEppKFAV4QSiaZxE07YCzC3VUWeb8UoPRriSmJphN6w22wWyCquVheSG6IpNLaARRFOdvmBSSeodA0HQC2o6PHzjIikR/zmSt4VBuudQsj6GCIBQ8e3mNpB/ScoPOYkxTZNxALIZVRUKJJfqHhjLMVWy8OPOr5QTMlFqkTZWmE9GbNWm5orn65IE+MqbGM5dWSekKkaSwpy/DoaEcr06XWarZXF5pxQqfiFdnKlhuwHzVpjutM5RPcGyswG8+toN/+aMrnJitMlRIsLM3RSGhs9Z0cfyAx3b33GmA/SXGcCEpCAphxHiXWCdsdjolImRZRpcUIKKY0lFl0bRftxfUVZndfRl2x/fwv3tuiqWajRoXuU1N5Qfnlym1XA4NZfn44QHOLdb58aU1nJpFIalzz1iBbELjrrhJ5fgBNUuohjduunVFpi9rsFC1Ot75IOwS35ivUbO86x6/ULX441dmiSIot13+7of2MF+xODSUQ1NkFqs2Y8UU5ZbHgcEcr1wtM9Gb2rSh8769vbzvhg3AWDEpxoF8gl++b3TLBk9CUwQLbWcXKUOlYXn8b9+50FHjtF2frqROPqEx3p2i0nKYK1v4oWi6Z0wVUwv48+MLtN2Ae8YKNynbdBnWOUAJfeuG1Mai82hxc/KFvk1F8tSqsEkhgovLzS0f5/gxIzaCMAjYLHlnY0MhcYuhRZZEU0ZC2vZc3pfc/HgMbChmZW8x9yU0uaMiH9gmYUXbRFkJ8KMLy4LJKkucXWpc939126eYNpguteLm8zvz4/HCiNW6jazIDOQNam2/o/jWFZnR/iyHhrJU2x6lpst4d5KupM5cxdi/nY4AAQAASURBVGKkK4WqSFxabmEkVHoyOg/v6mGsmODMQo103Dx7fbpCUhd5Ci03oJjS+cSRAXozJgNZM2bJwoGBLD0Zg8mVFnv6rrHoJUliR3eKU7M11loO/+bHV/iFe4bpzZrcO16gK6VzcDCLJEm03ID7dxS5sCxsfZqOzzOX17iyKshyP3f3EGPFNy/SybJ4zyurrQ7p59Jyg7rtcXg4L6zWnYDRYpKZSptqWxBQnjrYTy6h0XR8Pnyw/y0p999rPDe5xoWlBtAQjPPYzr3advmfvnaWlYaN44fcN97F85MlcgmNK6stTs9XKbeF/ZDjh5hqRLXtUUxp1C2flKHQsAOCIMAJ6Fjnrl+5EkJxudXYGPLW7RI1+ZpdexRFPHelzJ7eNNW2y+6+NJk3KfbdCsutrZvcd/CfBt5Li8M72BqDuRRLja2b0FlD5M3/zkf30583+eqJBfIpDRmJkUKCl6au8do/+8DYpq+xsyfNUwf7ePbSGq2Y/K3IMrYv7MoMVThedKcN/viVWVw/5JNHBxkrpjo2Y+8VyrFyfd06X7+NTbAgjPjm6SWCMGKpbne+64WlBlNrbVKGQm/mrWXn3C4cn6nw9IVVCkmNcsuj5fi8Nl3hfXt6+c7ZZZZqFjlT5eBgjprt0ZcxqDSdTsb9RkiSiHxQZBnLvbnupykiBmFdwZU1VRK6guOFWNsIrUsZSqyo1jm70MSLLQYyuoIkS51rq2Z5NGwXP4QDgxkGckl60kbHJaLc9tjdl2G5brOjO0XbCSi3XXZ0p0gZCk4QdPbgpRuycZ+9vMbr0xWqlkvO1NjTf3N9ZTOI2qyKF4R8/9wy5bbfsSRcbbo8ub+PLx9f4OBQjpevltnfnyUII5YbghR0YqaG4wkllOuH3L+jQLnt0ZfReeVqGctzabkBCxWLVEKjmBb1bJH3rglHMk/YJ4aKhKbKItfcUONjJ86frsqkdRVVlhnOJRktJrm02qTUdPnG6UVmK0IJGkWRyKXSFQZzSdpOgBdGOH7ISDHJat0hFzuOLdas2NVEJZfUMTWF9+/tQZLgX/1ospMrv7s3Qzkm8j+yq5uutM7p+TpX11qYqoIUuy3IsiRqTSEcG83z8lSZIBKK1fXabxiI9bkZX1+DeZOhfIKfv3eEuuVxeblBRRLH4e6RPEdvyODaiPFikpOzVUHsjtd2s2WLF6+IBpUswVMH+wkjeOFKmUrLZaFm0Z8z2dmTojdj8r69vRSSOj0Z45a5YxuhKjJjxSTTpTYrDZsfXljBugWRYTtmXFpsLbl+627821BAUxX6cia5hMpQIcl4dxpVknh2UozpKV3hA/t7+Uc/f4S1pstMqc3Boc1rx+W4huD6or62VRPM8UL8IGKsmML1Ax7f08vH7xoE4Hvnlrm82hQudy2Hsws1ptZaVNui7ucGEVdKbV6+UubJ/f0M3cLJ7LZW1aIoek9mLFWRySR12q7Vacr4YYSmyBTTOrv70lyOcyL2D2RpOhVqlsd0SUgxDwzk+M0nJjgykudbZ5aotkTh8VceGOOx3T1858wSkiTx6WNDaKrM6fkai2eWGO1K8p9/cBd7+zJIktxhMhuqwv2xdPHKapPutEHKUOlNGyQ0ha60wW8+vhNFlriy2uJ//IuzEMGe3hSfe3iMbELnT16ZoWZ5DBeS1CyvE+retAPcIOS755fF/3clqbZdcSFJMh/c10s2ofHwRDdTpRaXlhud8GvHD1AUiVNz9bhBKFNMGTwyUeS+8SK2H2B7ISfiPLOmE9CwfbxAsFaTuoKuKrSdgLbjYce9LVUWNkFeIArMqiJjahKeH2H7m7M5om1uwZK6yoM7RSfX9oTdnh+E5JLapoUzWYL/6kO7+Rc/vMxs2UKRJe4byxNG8PJ0BUWG12eq1G2PSsul5fqs1EVwpipLJA2Nuu3SdIR1UTah0Z3SGS2mODaSi1mpDn4YCqZIGIlNqSXsCaUoDluUwPPDzvUYcf1gZCiCFb1Yt65jPSsS7O0VobK/+9wUUQTDeZPFuo0fB63lEzp9GZ3lhmDMisKphBT7AZuaQtsVjctK2+PBHUVkWRSTxoopHt8jJhoJ6bZZq0mSxJMHevm9564SRhEZQ2VHd4J7xvL82esL236dG1mqOVM0QFRZpuUIa4K0oWJ7IVlTIgxhrmJd18irtT1WGzZJTSFtqjw00d1plr4XmFwVxcrVhmiYdm1zsrvdeGGyxGvTFQBS96nXTQzzVYvZUju+38PO3anIEt0pHUWWuLTSxHJFUa87Y7ISs3H6siaLNYtiSqMrZaDF+Vb5pMbF5TqTq62OLN6Oi4xhKGT1lZZDMW0wU2pR8UK8IGAmbnKndBlNVTk8nKU/l+C3P7IPVZFFkU+GxYrFv/jRZb5+ahE3CHG9kF9/eJTnJ8tMl1okdYWPHhrgwwf7WGu5zJRaBFGEmVRQZAlDkZgqWagydCd1/uHHD3BqvsbVUpu7hrLs7E7x7KU16nETP2NqjHQleXJfL0/HdmrD+QQjhSR7+tJ84aVZAH7lgVFkWeJqqcVi1aYnrVNue/RmDO4ayvHVEwu4fshcxWKiRyEMI164Uo7DelPs6U3zSJyXNJhPYPvBmypR7uCnGzt70jyxp4coitg3IDZIsnTz2KvIEqYqk0/pRGFEJqGJUGdT49HdPewopvjDl2aQEAv9FyZLXFpqcHg4RwQ8uqsHRYLFmoWmSHzlxAIjhSSP7enm7rEC3zu7zHAhwRN7ezs2D14Q8vVTS2RMlZ60cZ2HdiGlY6gKO3tS7B/MdFhppqbwVx8ax/XDzrqn1HQotxxSukrTEU2mP399Hj+MmK9a/OzRIbIJlWrbo5DS+asPjVFqORQS+rbDwHf2pDtrp402FTOlNt85u0RPxuDx3d38o2+dp9b2uGs4x2cfHKOYNjg2mme23KZqebh+yPmlOr9wzwiVtsuFIKQno9NwfBxfkKCqlseZ+RpdaZ3Xpis3NcESuoIbqzFuZWlr6rJgVIIIlt4EQxuUdMotDsWOnhTPTpaQpIgDA1tvtKuWixdEIo91i2ObSVybM1Vl6+bC/TsKvHSlhKJIt8zD3Agr2Hy+XawJZmgUccsMqSMjOZ6/Iuaq9++72VZzM4Rb+CveNy7Wj34YMZy/vqG2szvF/oEsP7q4wttdCt24ZnGCiC5DJmfqNG3hxtCTMTg2WuBvv28Xc1VB0Lp3rIuvvbHAD8+v0HIDDvRlmK2Arkposszu3gy/dM8wMxWLv/O+CZ65vEZvxmSkkOSkXmP/QJa0odKXM7HcgOlSi7FiiqMb7t/1DLFa2+MPXpxGluATRwb55JFBCkk9tkWssVK3+bWHxvjkkUEs79p885FD/ZxdEHaky3VRePnRxVUmV1scHMy+KdN5Iza+9kJV5NMCtJyAff0Z/uLkApYX0J0yODpS4JFd3dw1lGN/f6aTL/rTjrrtsVJ3GC8mOzl/uipfR2CZq1hxjgOAIN9MrjTxwgjPD6jbPst1m66kzr6BNLNlm9GuBEEINauJ5QmHi1xCZbbcwvevqfBVSUKSIkG2u4Vl4o3/szGD70ZoiiiKeX7Yabh1p2JyqKZwbrHO3v5MhwT6VtGbem8KvXdwB/9PR8rYekxVJfjsA6N8/MgQ2YTGUD7BfeNd7B/Ics9YHl2R+cOXZnD98E0zTQ8O5hgrpnj20ipNx6dmeciyxP7+bGftt1C1acdNkqm11rbIFduF7QXMVSyG8om3lC325IE+js9U2dWbvu029LKEiGNpunSlrs2jwrEoGWdUvzdWiJOrLfww5LnLJfpyBks1m5FCkq+9sUAhqfGNUwsYmsJdg1kMTWQD92YMptZauBFoEiBJSDK4foTlCS2xrog4kThZBFkCU5U7ESuqLNGf1UmaGnXLfdPPqccZrAM5QeBZaXhU24K8HiLmtcGcyQf29XJ8tsrUWot8QuXvvG83D+ws0nZ9EprC8ZkKz1xaZalm88kjA6QTGt85s8STvX18+tggsxUrtpLvZrnu8PAG96GptRbPXV7l1ekKxZTOM5dXt90Ee3iiyHfPLuN4ouEWEaHJMmlDpeX4/O4zU7yxUCOhiZrFG3NVWm6AqcokDRUkkQ0WRhG5hBBBHBrKcKA/hx9EXFiu03YC9g5k2dOX4efvGeaLr86S1BRySZ2vnJgnQohIcglVREIoMvv6Mqw2HSotj8GcycHBHE4QslCx+NaZJQopjaWqTQSstRwSmljjaLIg9PVmTEa6EkSEsQV+hO0E/IOP7uf5KyVh6SwJVdNQPsH/8MkD9KRNTE1hteHwpdfnCcMIXZVZajhCtWdqnFus4wYRji+IyyNdKXrSBpdXWlQtl76MiakrQk2qyfRlBGk6m9A4OVcliiK64j1txhSuR8W0wY8vrPL6TEXksSqC8Ick31L5OVZM3bQXzZhqp6m7XueLooisqdKyfS4vN/jnP7jEcCHJ//Jzd2FqCg/E9e3VhsPXTy2Q0BU+uK+Pb5xe5PXpCrt60/zivSPoqkyp5bKjmKKY0vnRhVW+fWZJWKu/A+5e1pB5aFc3xaRG0wl5aarESkM4v2iSIME/uKPIxw8PcGm1xeHhPB/c38uu7jT/7IeX+MH5FUa6kvz8vSMYqsJQPnHLptMjE0JBWUzpt4zZySU1PrC/j119aWwvoNr2uFpqcSSZp+n4NGxfZJH3Zfn22SXWmg66KmNoMmEYkNAULE/si35iTTBJkjTgbwGPx796GvjXURRtw3X47SMCejI6q3WxuRjIGpiqAhL8lftGma20OToirHNGCkmurDaxvYAwiqi03birHzG52hSqm7SwPHxwZxFTUyi1XRwv5OmLq3zoQJ/IF8sncPyQpy+skUvonF6okzVVHt/dgyxLvHpV2FncP94lLNgUmbrtcWy0QCGpdSb+FyZLWG5Ay/HZ2ZNitmLxzMuzXFxuUGm5PLizyH1jec4sNnhyfy8n54QEc7rUJpfQGC+mSJsKOVNjb3+WepwX1Z81OTSU5U9eEQzvtabLrt40M6UWbpx31nJ9MqbGct3BC0McL+Dv/elJLi436E4b6IqM7fqgyvRnTY6O5gmjiKtrrU4DTIr/uEFAEIhwb12V6UrphKHI0NmMXduw37pZ/VdOzLNSt9EUmc8+MLYpK/SFKyVeulJmrJgipSucmK3yzTPLgGAXL1RtsqZKzlSF0ioI8UOxGAxjxVYUCjWYbMBwV5KutMHJOSH/Xqha7O5Nxx7OIU4QdTxp5QgKqWvnVpKi2Lbm5uLM/TuKXC21URWFwbyBrkrMlNp4IUyXm/yzH1wkjEQOgyInkKKoozbzgoDZioWuyAxkTfpzBrNViwP9Wfb0pTkxV2c19vHtzRioqsSevgyqLHHPWOFdKyakdI2JnjSvTpUpWw6mLhO8hdFZl4UvdNP2kSTxfRuOGOisKCSvSKw1HfIJjX39GSZ6UnSlDRq2x58fn+Ohnd1kEyr/4eVprqy0cIOAHd1pLi03OkqwzXBmocaFpQZHR/Lviu/4feNdPHNpjaF8gkLyvWvGyRuKoTfO7W/MVUGS6EqqrDZlZEkousaKKZKGymLNxvWDjlUSUUQURiiKzIMTRV6eKrNYs6jbAXcN5zE1idWmI9hBXF90kRFqx2JKp9RyaXsii8cNfLxAPFaKP+9QIUFfNkHN8nlhqsRqQywCbD/gj1+eEQoYRRYZKIrM7z8/TUpXqFo+2YTGYt3C8kKSmnJNEamIcPdziw0UWbBcHt3dw1OHBtg7kOUPXpgmZaiEOOSSGiERg7kEn3t4Bw9MdDG11mK8mGKm3OLfv3AVTREMt/0DGR6e6OaumD3UldR54UqJcsulJ23wyK4iX3xlFtsLsOOw2FLLoRqTHJq2z1zVouUKu9gghM8/Nk5f9i+PBdQdbI6+rJDsu0HYsQ6U5es3uKYqMxz7yqcMlVxSYyhvMrnSIiLi+EyFxaqF5QbIssQ331gUVqG6gqrKmJpMy/HY2ZPm2GiByZUmFTyajs/LU2XaboDlXsul2whJEvfbjXPD/oEsXSkdVZYopg1sL+BbpxcBiffv6+kUFKptly+8NIPtB0z0pEibKr987wh/+tocji8YgrIs8VfuH2Wl7jCYN2OG5vZtaYMwomn75OIx9AsvzXBmocan7x7i6fMrXF5pMtKVZDCXoNR0aLkBP764iqbIfORgX8eGo+UGIt+v7vDKdJnBnMmO7hR1y8OL/dQ1SSjhj89W0FSFB3cUubDUYO+GzW0xqVOzRcN+XeWxGXRFpo3IEUhsYXs4V7lmD32rcPCL60qmCE7Nb83gdv2wwyittV26Nik0r7Wuvee6RedmSBkaA7lEx852O+jNbV4U+/D+fv7nr5/F9iLuHy9s+hiIfe0R12XL3p6Xh8Tmn22t5XTU8zezlAVZYyifYKFq4fsu1jbDXtfXvjedrijC8gLWmi5NO8API9wg5GcODTBYSHBxpUEURXz9jQUuLjXoSet4NYe9/WlmqxZOnM9792iBvzi1wEzZ4vxSnWrLpe74PLGnh88/soOICNeP8IOILx9fIIwiHtvdvela59xSnbWGYC9fWm5yz1iBY6N5Li03cP2QpK7y+nSVXb0ZJCTark9SV5noSV/X3Hh+co2krjJWTHLfeKHDwt1KdXTjsV5vrl2/FpEot10uLDdIagpPHujj2Gihs0FWFZm/DAIwxw/4wkszWK4YA0UxSOdDB/qvaxbu6k3z6C5RTHvqYB/VtsePL60iS0JJKwMt20OTJUa7UowXhW30PeMF/vCF6Y7KXRRbxPUn7I00JnpSnF1s4NgBbyVW5cY7bON1HQTQHecxeH6I7Yd8cH9vR60ngu/fvkIi9xN0Q7iDO7iDayjeogEdRvCzx4b50utzyLJwF1qq25iawjOX1jg0mGWkIFw7EprCF16a5q6hPHdtEZ2QNlQ+cmiAiZ40X3hpBlNXSGwgB+zsSTFWTGJ7IYdvocB4O/jzOB+oO61flx/+ZhguJG/Ku71dkCThxLNSdxi4gZzzXhM+7hsvcHWthaHJFGKHqWxCi91SNCqWh9R2Ect/maulVhx5ICFLogHVndbImRqXV1ud2pokyWgKHOjN0HK82M1nA1k8jJir2nhBu2Pptg5ZAl2W0FWJMAppu+I5XhAykBP7iSgmkoRIuFGIrkikDY0nD/QzWkwxXWrzySMD6KrM//S1s2QMlV99aJTfe+4q85U2theyqy/Nvv4M+YRQUx2fKeMHEfftKPK33jdxE2Hv+EyFrpROxtDY1Sucl7aLfFJnT1+atuNj+wG5hE4uoUAUcXahxsWVBook1sO9Kb2zhoskUc/cP5jj9EKNUsPFCyNKLYf2rM9LV8qEUURXyuS+HSkKCY1Hd3WzsyfNX39sJ7/77BSvnV9hvtKmbvnoMohWFViuTSFlMNaVpjvl8f69vTx5sI+sqfH3/+wUKSPO9pLoOBwcHMwx1pXk2GiBhZpNMaVzYDDLn702x0LVpm67WF7A7z1/FRBN6V+6d5gra22ShsoLl0u4QUhCFeq9TxwZ5PdfuCpqyHUbU5WZszyCKMLxAiQ5tjBMG5xbahCGEYYq03TFuueVqQqeLxRvY8UU/TmTPX1p6pZHhCB9V9oeQ1mTuXJbELy9ADlWDQ4Xkh0hy61w432aT2qMdqVYrIm4D4iJrZqCLEPLDUkaghQahhHKBsbj2cU6lbZHpe3x3GXhIrBYs5EkiVenK6LB7IfU2g6vTleZLrext6GU3AwiXkac75Sh4foRf/N9exjMm/zXf3qCFyZLtB2ffFLjg/v6+Hsf3oMfQi22m9zbn8FQFX77Z/bzN5+YoO0Gt2xobUQuqfHRu7aXA3t0JM/+gQz/4oeTALxytcyRkTyGKrOzO0UuoZFPaSIjT5EFadwLubLaiNfEBgcHN5+P1nG76eX/EuG78i/in38t/t1fv83vcx2iOAPJDkCNRBPrdz52kFxC409fncX2QvJJnXLL45nLM4wVU1heSMpQeWSim4bj8+OLa1huwEhXUigI7hqgNysYlE4s4WnYHlNrLb56YoFLKw0SusJsqc3F5QYjhQQJXWWsmKIrqfPMpTVADBJuIDrtSV3lkV3dnUF0uW5zYblB0/HYUUwx0Z3iX/1okqbt03YD0QDb0cViVdhmrDVd/uqD41xebRKEQiqoqzL7B7IdpuFsuc0//8Elfv/5KYbySZ7Y24OmyOztT3NgIIvjBaT0Jkt1v5Nr1XR8fu/ZKb59ZokzC3XCKKLacpnoSeOHgsl413COv/uhvfwPXzlNe4P00lCEJZDniQlLlSN0RWK54SDFm/TNsJFtvl3ULR8plqomt2Dz1OMkaGGjpgsLprqDBHGXWOEX7x3h8nIDyws6wYk7utMkdYWVhkN32qAva7B/MMv79vbSsH3+5OVZzi3WcTyhRkrqCpbrd7zw1wv960xXy/VJmRqaHCETXrfJNFS4uFynZgeEwl+EliNYP14YUrE2KMNkuLzSJJKEakuLM+j8MMILfLrSOmEk0ZcRNjiP7enlo4cH+dbpJWq2S18mwaGhHN89u8z5pTovXinx957ay0rDoW553H0bm2J124sbgyHVmoeCzORq482fiBiQZVmm4fiYmhxnc0R4QSQKwgmNR3Z14wYhDctnpmIxWkzy4M4u/uNr8wB4/ipPHezD8ULySY2lekBCVzqMsqbjc3ymQn/W7FiJBWHE986uEEYR5ZZLI7737hkr3Dbm186e9HsS6nsjHpookk2oZEztpqLt7r4MJ2arJA2NnrSBococG8mjqQp7+9OcXWxQbrlMl9q03ICrsc3lUs3muUtrLNYsLC8Q0u/JNSwvZCBrIElgxU1gGUjG9pZIEisNB8sLkd0AU1c6Vq1hJJjNe/qzPL6nh1OzVfJJjf/3V85gagrdaYMDA1masRRaliRMXaFmefzus1OkdIXRriSyJDGYS6DFBIRSSyzEXN9FkhB5f5HC/v4sv/7wOAAjhST7BrIcn6lQtzyypmhq51M6fhRRaop8sZ60ztMXVvCCkHxCI4hERs+5xToDOZPzSw1296V5ZFc3F5Ya7OnLEIQR//H4PNW2RxRFSPHi6OOHBzg2mufkXJV8UueNuSonZyu0XZHj9zs/s79T+L+Dv5x4fnKNvzi5SEREIanzqaNDN+Um/a0nJtg7kOGNuRqqIub1D+7v5V8+PcmV1SYzsc1sEK8lVusOcxWL+3d2CTsISeIH51eZ6M1weDgn8sUUiZbjs6M71VGB1m8goGiKzC/cM8Jspc3eTWxSN+YonZ6vxcw+ke91T5zX1XJFsX+tIdTVE3qa12erBLEKLJfQsb0AU1O2ZUl7cbnBSt3h2GieIBIWcKfmqixUbUa6EnzsrgG+emKeCPhXT08ShBHTpTaOH/JffiAjVHJXyox1JfHDkN9/YZorq02SukpCE01oVZEwFJn52OqxYfs4Xkg9ZpiJ/LaQbELYVdTt67lc5Q1M1ZVbZJxmTQ3LDdA1mWiLPUtv+loh+FZKsJANtt+3SEzY05fi1FydQlJjZIs8jfk44xBgE5eaDmRi5f6bFLo3Fs6blk/vJnuP12cruIH4DqcXt14brDMwo4htNVgAgi24dqWmjR1bxixvcp4kwHJFPkQQRviW96YWIopE7B4Abe/aGldGHEvPCkASmZqaIlFqeXzr9DzPXl4VeR9NJ24+KXQlDYIw4j+8NEPF8rC9kCAM+TfPTBKEQsEvbD9cbD/kwlKDthswHtsKXl1rddahW5HLdnaneH2mgixJnczXjKnx6w+PkzJUluo2e/szLFQt/uy1OQB+7p7hmxiUO7vTnJit0q+brDVdfu+5qwzlE/zifTd7/98K/TmTTx8bom57HBzM8bVTC/RlDGw/5MhIftsb6p8meLG1MghLq3UW/0y5Te+GMdTUFH4+zkoIwogXr6xh+yFJVSYCLq22cGKioqHKXFxpUmm5DBcSfOaeYZ67vMpwPslspc1M2UKKRIVRliTWWi51O3hLVoeGIhFE0XVW7RufHyLWNrt6M7xytYIsS5yerxGEEeeXGvRlzQ459O2g2n5XObJ3cAfvCt6KxePV//Vj7+IneQe45VoD/uFXTrNYs4UT0WItJug5/Myhfs4s1EnHdaf/44eXqFs+3zq9xD//7N23VAjv7svwVx4YxQtCDmyIWzA1hZ+7e7jzs+2J3PZsQuPQ0K0LmW+GuiXGmBvXvrcbnexL4O7RwpuuXba7Hv5JQ0RKTPAnr8zScnx+9YExIoRK7fefnyJjqMyWRX6pJEnIkoSmSHRnTRqWSxCJcb3S9kkbKo4nIkM8PwRV4tJyo+M4kzZU2m5AFHfKHD8U9ogbPo+EaPocHMyxVLeptV1CBAPEcgNena5wfKYSK1jEusyPwNBU7h7NU267zFUsQSacrfLqdIXLyw1WGw5XSy0ajkfLFWS9sws1wjDixGxVRNFULKIoYqZi8f59vTdFhOzpyzBbtnjqUB9Hh/M35SDfCn4QEUUSu/syGJqwol9tOMyU2+hqwERPmtWGIA16QUQxLerYfRmDzz4wxsMTRf63717kUtRAVWUSmgIIQrCwPBTZ7jlTw42dEv7Rt87zwmQJCeLIF3GskoaK64d4QchrMxWG80lenW7z/fMrneZ3PiVyxETzC2YrFv1ZE00W1tnfOrPEp44OMtqV5GunFoUTRRQRhGB5IfNVi4ypUkwZNBxRl/fDkG+dWeKNuRqWF/KBfT3MV2xUCdZsHz8IaDrEyh7xHaRACAyIa9V+BKNdCY4M50mbKnMVi5WGQ8S6pb/J2cU6NUvE3BRTOsWUweszFVRZoun4+HEufMP2MDV522q+jTi3WOdPX53BCyIqLZdHdndzeDhPT1rkvquyxHLd4b6xHpR4fWh7Aa9NVzrKN0OVOTaWZ6bcZqFq0RNHMl1eadKyXV6dropjsc185s2QNVUGciYtNyBjahRSemcc+u8/doBvviHUfg/tLF63dt3M8lbEurztj/KmMFSFid40kyvNzr3neAFX1lqMdiU5NVdjutwiDMVY0JU2GMgnKKYM7o1FSLfC7W6C3RdF0ZENP/9AkqSTt/k9bkIU0cmdEgGBosh9crbKpZUml1caBCHs6k2hSBJDhSQfPTTAAxNFnr6wwpn5OlNrLXJJnYmeFPfv6CJjalxda/HN00uxhVGWhyeKnJ6vxzlRCepxHkaEeP9cUqcrqZPQFbIJjXLT4cxCnZbjk0to2F7Iv33mCvfv6OLBnUUWqha9GYPutE4UwavTFU7NiuD3dZsWVZKYXG3iByFfO7XISt3mE0eHNpX3+UHIV07M8+zlEk3Ho+0E5JMaI4Ukq02R1XRyroYbXNskrTQdVFliaq3NWlOoh6IIFE1mrmYTIlisz15cI2teZr7SRgZUBUxNhSjE3mDn5/gRYeR1AvM224zpinRTeOp28NHDA5yZr7G3PyPC7VebDOeT1xWId/el+f65ZaqWy3gxRU/GxPEjmo6wQFqpO3zp9TksN2C20sYLIka7kjx5oIfTcw2W6zYJXSWX0Hl8Vw+KJLFad8inNLrTBms4pA2FCMGA9Nrr/qYRkQRtN8TyXJGJlTaYKd+cieX6sNzwOkWjmiUs8jYLDA1CqNk+haTG4aEchwazOH7At88u43o+MhKllkPd9pgpt/nh+WVGiynCCHKmzs/dPcTr02XOzNdEt1xVODlb5fSCYJHPVizKLZd8UuPTx4beUUPssd3dHJ+uCDXabI1y26WxRXj3jQhjRk8UiSbhum1WEISdAFNTk5kuiYmhLysWBWIQV2nYPn2xwmHdyuq33j/Bnr5sp6D2g/MrTK40kST4XMYgnxQ2f90ZnZW603kMiObww7u6t/y8fxmhyNKWDLuJnjTv29PLt04vUmm7pHQFTZX5xXuHySU0Dg/l0SVYrdtIRCzWbdqOj+UKWzEvFIVBTZFo2D5RBHNVm9wGmzBJAkNTsL1AeMKvVxolKCQ0LC8QY48Ew8UEu/pS/PnxeQxV4rVpB9sX/x+GIh9s/2CWXFIVMvmlBtPldryojEgYCh85OMjDE0X+/PgccxULJxA5j+ue4YYi89FD/fzOR/djxuytuYrFasOhafukTZWeyEC3JPb2pVEkie+eFarSpbq4b6IoYv9Ahqypx57UEV85MU/TCTg9X6PUtHH8iN9//mqcf6bQlYIo0jgwkGGkK8WBgRxBGBGEETOlFroq03JFiOszl1b5x7LE5x4e7zRu7+AvH2qWx0JNbKYqsSe2f4N928tXy+zqTbOnP0O55dKdFpYH1bYrrAozBllT4zN3D/OFV2aYq1qMdSd5eKKbyytNlus2fXF+0ldPLNB0fBK6wm+9fxeqItOdNpirWJ3G1Ub0ZAx6tpE/0JsxO6z/jXkFCU2JVeg+fVmhGjg+U42b5j5Nx+PFKyWOjRbedFFaajp8441FokgQKyw34Mpqk+curyFJEpeWm0JVm9JFeLIss9qwsFyfatvjf/nmOSIk7hsvcGpO5JaVWi7LsQXHY7uK7OvPMF2xuLzSpOkEdKd0cqbKWktk6fRlDFYbDl1Jncd2FblnrHCdzRwIG7d1VG5RyO3LGizWhT3vVla46YTeWQ+kjK2PT28mgSJVkYD+zNaNgqrloykSQRhRtQK6Mzcv9V+cXNny+dcjipUn8k0K4usfdQ1b2YgIEkG87rnFMSumjI4ieCtV2Y2Q5M3XLsW0QUJX8PyQnuz1jOu67fHClRLdaZ35ShuiaFsh0kEEQSByWdfPmxLbYQeID15v++iqJIgeEnzrzAq5eJ6TJYn+rEkpXnutNGzqlofjh1hxMcb2IiZ6U6QMlb9x9xBffGWWk3M1wogOCSyMVWb7BzIs1mxOzgqr708cHrzuHPRmTf7m4xPA9edGVWR++f7Rjprr1atlWq5P3fK5utq8aZ/Rn7v2Ov/uuSlAsGrXs0DfCsY3NE36syb5pE5SV7i61uLLx+fZ3Zfhwwf739JrvpcQSod+ZkptBnImPzi/CrDpuPqdM0tcXG6gyhIzZYuulM7u/gwvXy2T0mXSusGuvgzzFYsXJkv4QcR8xeLR3d3s78/xC/eO8N/92QnBoEdcgxXLo9R231IDTOzlJPAitiqpSMB0qQ1IhEHAStOj3HQIoghdERY906X2Ld0WboXMrQIJ7+AO7uBdw2Jta/IOwNmFOhlTZa3pCBcNVSGhyTh+wI6eFJPLQi1EJGG5AZoi5pD37em9bp65stoUBIx4zN8sk/pGvDBZ4sRsFRAKi3eiyPrY4QHOLtTZ17+9jPO3izML9Q4BXlfkt0X2/mlBylD5jUfGBSlVlpivWvyHF6dpuYJcrMgSuqrghyHdaZ2q5TPSlSAIDKbW2iK6JAyx4sBKP173OX7USZeNgJbjk9ZlWp4ghSQ0GTe4vm6kyGLNM1NuUW172BvI9UEEaw0n5mhJQmGjisbH3v4Mv3T/KG03YL7S5rnJEkldZK213QBFkdFVibSuUYz3Ew3b5/JKk6ypUWo5JHUFxxcEvs2ylw4N5dg/kEWRJRq2iNnZ0Z3aVoSBqcmkDIUra01+4Z5h3re3lxenSvz+81cxNYWBfIKMqcZxIKIOWIqz2f+/375AV1rH9kI8X9R0Mz1pDgymGetKc2WtRdP2eH6yxGrTQVclmrbH8ZkKpZaDFIEkg4pEIanxd94/wZ+8MkfLEfl3r06XubDUICLi4nKDgXyCatvlyf299GUSPDu5RhDBTNmiZnks1csEYUi55caKKp035mt4gRg31DizvSspGmn3jReQZUnYa8dxRZIkcX6pgSZLcaSLWFc6sZgkocpxHUdcPWcX6thBiCpJjHYleXR3D64fMN6V5NWrZRRZZq7a4vOPjeOHIc9fLhEEEUEE79/XS9sNmFxtYmgyfnzNeUFE3fZ4earEvWNdFNPbt2sOQuFg5QchbyzUMTSFStvj8b09vDJVjjNeZZ67UuKvtRwKKYNnLq1xer4GwC/eO9JxSfmtD+wiDCNWmy5/9PIM1bbLa9PiNWq2RzGlU2m6eG9lwQf0Z3V+8d5RJElEANl+yM/dPdT5/76syeceGX9rL/oOMLnaRJPlTckAURTxjTeW+MG5ZRK62hEmJA2V+3d0IUsS55fqqLKEG0YiziAMkSKJhKbw+J7iTa95I2736jOQJGkiiqJJAEmSdrK11fhtgySJQTKIN6R9WYOVhs14MYnnhx0bHMsN+fl7hrlnrEBvRmyGjwznmY+taA4MZDkwmO0Uec4siOwsSZI4OJgln9Q5PJLj0kqDSysO944XhB2RpnDPqAiaX1dkffaBUY7PVHhhskQ+oTFcSDBTbhOEEafmqjy4s8j+gSwz5XaHxfnqVeFla6gyEz0pzi3W4xBRoRLKJVRem6lSt31+45FxfnRxjSiK+PDBPmbKFqfmapRbLiNdCWZKEcNdYgCVYtbq8dkqDdsjoalI+ESIjfxXT8yz1vIot3w0GVRVoT+rUW4Ji0PRbHD43eemkRHHOozA8fybGMQRXFcY2Oz+dIOIL70+x9//6P43PbcnZqucX6xzbLTA3v4MQ/kEDdvjf/zqGeqWyPz4zccnOoybdb/91bqDEp+3f/jR/fzrZ69wfqHOcsNhpe6wVLfww/i6CSP29+doOSENx+PkXI21psOrV8ukTZXpUgspVmKNF1OU2i4tWzDeJUR22PqXj4jzLvyQiZ4Uw3mTpy+tYm8YqaIb/g4iEYJZSKhUrOu3omlDZAZV2h6mZtNwEwzmEjyyq5vnLq9xpdRCliQSmlDHXV5pdfJFdFXha6cW+cqJeVYbDkldJW2qXFoRDJiejMFizSKKYKkWsFC13pFiabrUwtQkdEUim1BZqdu34Kpfj40WUI4XoMiCXRRIwlposWbz9VNLuHFTrO36fORgPwlNoZDU0VWZe8fyTMdqiaF8gsW6w76BawtxIx5AN3ptn12o4wcRO7qFlPtLrwtVmbFJ3tx/6vj66UUsN8D2hG3aV04scHml2ZksZ0otWm5Ape2hq1KHAb9eNAwiUKNIWBfFakXb9ZBjqwPiRidAGIksIUUShbjx7hRnF2pIkijKJFSVvzixSMsJYtWWsIjzg4iUrnJpuUFf1uCX7hvly8cXODycZ1dvmtPzdfwwpGEF/Nlrszx7eZXj02WRo5HSKSR1crYIhM2aGpoq8y9/dIV9/RmePNDXyUeZrbRFbpgqc2S4wN6+DPfv6OL755dpWB6WJ+zNkrpKWteotB2mSxYXFqsYusahwRyzlTZTay1mym3yCY39A1n29KbxwohPHR5ire0wUhBN/MWa1WnkLlZtetMGrick3q4fcHqhxkA+geuH71mm3B28fRRTOhlDFSrCrFhURzcoay4s1fntP3+DvKEQyRIf2t/PSsPp5BE8MlEUGyJF2H5kTRUJODiY5dhoPm6cidc2NJlKO0QLro11Ez1prqy2ePrCCk8e6LuOrdt2fSw3oJg2+NGFFS4uN3nqQB9jN7D7R4tJfv3hMSSk68gnl5YbZE2NrCls3I6M5PjS6/P4QWzR4QpW78XlBn/90Z3XFUimSy1emCwxVkzx0ESxY2/qR1G8/orDgLuTvD5dJYwivn1mmX/wsX3ULZ+1pssXXhI2YW1H2F0s1S3sksg0HSkkWKqJTWJXUscL+f+z999xcl7nfTf8vev0tr03YNELAaKQFJtESqKo3osly7Ed24+duCRO4jy2k/h1HNt5EidxEtuKHVfJsiSrU50Ui9hAAkTvwPa+0/vd3z/O7GAX2F0sQLBI2p8+kgDstJ2Z+5zrXNevcGm+xJMXk/VBpKaIA6LjuMT8CtO5KrGAiiRJ/D/3Dy6rxFw8LHFWyKNaeG8sR6hI54sG3Q3Xlt13bmgi7BOH7N3dKzNJNUWqk7d1beWJVLZs1QhJNivJz9ZqSX18IldT4cO5mQJ3bLg+OWQ5C2yAXV2Renh6Z2JlK8wXhtOAqJGePJ/k/7l/07K3W6w+C2nLDw+3tEYI6wp512Nvz9IBsCqLQeGl+RLTeQPDdpY+6BrgIbInfKqE7Xg1SyAxbLIdYevoesIVIlsykGSZHR0xKpaD7cKhoTSeB2G/SkCT60Hkt/XE2dIW5U1bWzg0lFpk+yKYqy2IgOgvHB7Hpyns6IziAUPzJfJVi/hVNnML15zresJWulY3wRW13bb2KJ9+fpSK5XA5WeLODU3X3Hbhce7d1MwPLiTJlE0ePTPLg9tab3gQtoCDA430N4fQZGFTVDJFbszOztgPlSpsS1uULW1RjoymifhVbuuO150ISrW8wVNTWT734nhdMS5JwgZ8V1eUSo0g1Brxs6k1wrdPTdfVZQXD5sRElkPDaT5zaIShZLleNzseODfif1iDC3U796uxOM+4WHWYKxj4VQVFtvDwanW+sMh67OwsA00h9ixDsLgehmZzN3yfdaxjHS8f4euccyuWOA8GfAq39ybY1BahOxFkX2+C09N5ZrJVZvMGTSGdfFUM4I+OZQloKnfWcpPOzeT51skZAN65u52NLWsj8y2c1xf2w5eDV9LWcDEW9w1utofguB6Pnp0lX7F4YGvra3besx2XR8/OUjQcHtzawrnpPGXTZjJTYXNLBKPWl9FVmVTRwLBdZnOCSFQwrrgfuY5XcxO4gsV/tl3IV906maNsOPW9ZwF+VUGVRY9rNn9tVpgkixomoCkUqja2IxwdDNvl1GSOh3e20xDWCWgyqaKJT5X59TdvZjRdQpElZvJCnd8U9uHXFKGOCWoMtoVpi/g4O1OkKazx2UNjvDic5qfe0LckjmWhfvr84QnyFYvWqJ+PHey57nsselsVjo5mePpikp+7t5+3bG9noCnMZLbMfL7KxbkiuaqFrkiYtnDucj1wPZvJjCMyvRxxNshWTM5MFXjf3m7es6eTX/v8MVRFYjZX4cJskUxZiCMUWQwL/YqKpsoc6G8gVRTON2XTIV3Ld3Zq9vCm7ZAtm1RMh6cuJGmP+xlNlbEcYYU8nasK+0HEOdb1JBQZwrpCdyKA6bjcMdDE+/Z00tUQpGjYnJ7McXo6z3y+yt6eOE9dTCJ5Li1hnYHmEN87M0ciqJEsWQQ1GV1VKZs2sgSu55Eqmag1x45oUKM16uf0VI4LswXOzxRwXI9EQMFx4b997yIApuPieCImZntHFJ8m8w8vjOPLS8x4YuBp2i7FqsNjZ+e4NFfip9/Qf90cQcN2ePTMHBXT5t27O0jXrMtBKO1fHE5TqNoUDbvuVvb5wxP87D0D+GvrhCyJbLevHptCkSXu39zMo2dnmc1VyZZNzs/kKRpOvebLlE1kWUJ2VvMEueo6Ae4ebOYX7t8gzhC1OYjluMzlheJ3tRy0W42TEzkePSuI5e/d01knSUxmKkxky2zviHFqMstIqkRQUzg2lmV/XwNv2NjEC8Oixp4vVBmaL6FoYhhadYSb1HzB4KnzST60f/Xr8FYPwf4V8LgkSUO1v/cB/+QWP8e18JYuqpfnCnzm+TEifpX37O3ksTNz2K7LA1taeeMWMWmfzFaYyxucmyng02TeuLkZxxWMfV2V+diBHrZ1RBlJlTAshzNTeeE/GdRpCvtESFuyzJb2CEFdJRHS6yoa23E5Mpqhajk0hHQqlstdG5tITBc4N51nW42N4tcU3n2bmMBajktHPIDtCBuMC7MF8lWHgeYQ2zqivHdPJ//pG2eZyxuUTZtvnZzh9HSekWSJczN5/JqKKgt561u2trK1I8LzQxnOTufxqQr3bWrGsB3GUmVMx8Wvy0g1C4xkySRdMsUC4EhsaA5TrFqUTAPrqgvM5Urzx6tdKz4FfLqKzBU7whq5cEVky1ZdvbcSXNfjifNzeB7kzs/V8ziOj+eYzVdr7I4Krueh1FpDm1rC/Hm6TNgnGKWKJHNursC2dhEUGfaLQOlM2cA1XWwHxtMlfuNLJ/jF+zeSLJiYtkuyYOB6YpMqmQ66Itf9s4OaQtmwKdYUL4vfn4X+iSxLDCdLtMX8OGscA5dMm/aYj8aQLnLbPAioMudmi7iex1i6wmyuyub2KG/d3soLQ2mxIbguElItwyHE/ZtbSJdMkkWDb52cwTDFRtUS9WE7LoYtE/YpvHV7KwFd4VunZogFtJfVbKhaDv/jsUucmcpRNoWtVPl6nkIrwHKoWRrqVEwbv6bgAV2JAOdn8xi2Q74K3zw1zTdPTdcUTjFOTeZpCOnMFQxifvUateGbtrTQlQjQHPHVbRyeOD/HiyNpKpb4jD9wexcVy2Gw5bW3L3w1MZOrUjJsfLUAVgmv7sesyBLZslkf0Eo1VtdyMBwIajL9zUGGUxXMmnoLqAWOgiILqf7mtjC39cQpGTanp8QGr0gSiizsVycywq5rIYxdliT29MY4N12garn84MI8o6kyG5rDBHSFOzc0sqk1wuPn5ylUrZodg0mmbOF6EA14/MqDmzg+nuGRE9PkqxYXa/mHIGwrt3VEOTyarnk7B8lXbTRFhG1WLIfmsJC0+0ybQlWhZNq8OJomX7VJlwxUWaY54mOgKUQioDMul+pJNeemc+SrNts7oyTCGm/e0Vp/34K6wlS2wrmZAlG/iu26xAIqiaBOazRAVzzI3zw7gmm7PLSj7RpLhnW8viEh0RASim+ZBau3pRtksmShyGDZDpoiM5EtIyExV6jSGNb5/W+dQ1NkfvPhrfTXvvNv2tJSJ94sti18YEsLn3pqCNfzODWZY0dnjAuzBS7MCgu64+NZ7hlsxnU9ClWLz7wwhmG57OmJ8/kXxxlKlnjy/Bz/96f247vG9/zaQ/nGljAna2y2XV0x4kGdD+zrYixVpq8pxJdfmuD4RJbx4Qq7u+L1MGCAH1xMMpevMp2rsqMzSiyg8eH93Tx+Xih3w36Vezc18d5wJ//6H48zlalwbCzL51+c4KMHe9jSFuWpC/MEa/mtrdEAXQ1BLs8VmcymOTlh0hz1sbElIuxX/CrDyaJgqjpimL1gk1G1HMxaOHSx6qCpLhOZMrHg6hYnziq+QtmaGtr2YC5XobvhWtuwZNGAmq1MeRWbi1gt5Fmoalcu3xe+W563csZYW0OAS+nrh4/H/BqqIgY7q9kcLcZKJNjnhtL11zOSqqx4//IidpXI7F0ei3+1gmkS51rW5qHhNMXa4z13ObXkZ0Fd5Z27OrhYuzYc17upkGkHqFgefk3k527riHJyIsdMvlqzHReEK5+m4NdU+puDTGQqjKctbEdkV2iKhCwpRPwSOzujvGV7GxtawhwZTfPY2TmKVQvb9SgYV/z3T06KPYWqTbZkMVuocrC/cdXP6TunZzg3U6Ap4uPjB3uWZFz4NYXB1oiwJXY9vntmhrPT4rY/caAHuXatHB5J0xr1M9Ac4ti4xbmZAgPN4SWZeavhpbEMubLFgf4EZ6YLlAybOwZE7p4sS2RKFiUjz+deHF8x5+z1CsMWjSIQJL69vQkyJZO/f2GMQtUiXxEK3Ylshd6GIKPpMqbl4LiwpyeBXXNE0BUZWZLQFVETJ4IaJcMmXxHWTatlB94IlqvlFr6z9XmwBMWqTX9nlIppUzJd9vc18vDONj53eJxUyeTzh8dvaghWXPnyXsc6fiSwVuvEV9s2sTW+eiar41FbfzwmMhXevqsdPEiXTSzbZb5giGgQTWVza6SmepaWZIxWzMV/XntP4I6BRhrCOlG/Vm/Wvt6xqTWCepvYT9dKKC5ULV4YTtMS8bOzK8ZIqsTpyRzj6RITmTL/7E2DN00uuRm4rlfvXy1Yn780lmFzW0Ts2xWL9pifWECnbDrkKxaFqoXjcU2OV/0xl/k3ufZfJFjEIxf7zVUPU7EcbM/DduxrOEoSQgBhOR6OYwOC+Fc2bFIFg++fm2N3d5w3bWnlxeEMFUv0WJ+8OF9X+dzemyBVMvA8jwe2tuJTZEbTFd6wsZHNbVFc1+Nf/eNxJjIVpnMV7tzQeI2rjuddsUNeTjG2HAKaQqZoMJOv4nnwqSeHCC4oXjwYSpbIVSwifgVFlnG9BVcxh7BPxa9JTGaNmvjAYyxVphBy+P++fY5//85tdf6bh0SyaNIZD2C6LmatNxcPyCSCggxv2jaj6RLtsQDpkkksoJEqCRLz9o4oPlVlNC1ej+N5OI5HQFXIVcVgSlEkUUt4ULVsMUzxPCYyZXyayqGhFCFd5T17OilULX7vG2dJl0z8msxtPQm2tEYYSpU4MZnj0nwJVZaYL1q4roflSugItwLJkwjqNXWY7SFLHvGAxkBzSPTFp3LYjrhtT0MQG+HEMl8wONifYK6g0B4LYLseb9/ZgabIfPq5UfyaQsinUjFFz7dYtbEcoWYUNLeVcXG2WD9b7+9r4MMHevjBxXkuzRW5rSfBpfkSAA9saWU0VSIS0GrRHx539DfSFPYRD2qMJAVxGoRLxTdOTOO4Hjs7omiKvKTmcxxw5bUPwGSgKaKzqytOUFfrSkXP8/j84XHm8gabWiNijV8Bbm0oenUu3s1iyT5Ru2aG5ot8/C8OkauYdET9RII6k5kKAV2pn40Xsoq/9NIEmbJFRzxAoWIR8CnkKyaZsk3RcMhVrm+1fauHYM8AnwIeqP39U8Bzt/g5roHlukvs9569LMLTehtD7O9t4N7BZj5/eJwXRtKcmcohyxJSbeoqS8LWrmq5nJ8VFnGG5fD8cIrNrRE+frCXv3p2mHMzIkPqfXu76G4IcmlONFFOTebrvrj3bWoGxMF0gcl6/+Zm9tTYp12JIPOFKv/7ics8cnKaf//O7fUJs6bIHOxvpDGk88JwmrF0maolmNlv29HOVLbCGwabyFctLswWaYn4KRk2ao1tWnJtRpIlzkznmciU6YgHOD9bIFexuDhXYHtHVAxKfAqOIyMjYblCYhr1q1iOR7Zs0h7z85ZtrfztcyPYjjgFqTWLl6u3NwnhLdoc9hEOaIDHuak8pnP9RkJAl68rF5Zlic54gIlMhe6GKyyejrhgSSaLBh+4vXtJgaCrMrGQzvB8iartMpou8czFeboaRC5TT2OQXV0xfJrCkxfmKRsOpgPpkmCQ7+9voDGsc2g4hVH7XuzvTVC1XXZ1xeiMB/mbZ4eZz1eFXY8soS5qOMmI4Z/jeswVDLJlEVi5FnhI9DUE8ZAoeDZxn0I0oDJbMEgVBcuq6niMpcv845FxMiUDFwnHhaLhoKkWuapY7BvDOt87M0vEr3JgoIGArggLqHSZqumSKpl8+vkx3ri5mV+8f2P9NZQMW2TcNQTrw4G1oFg7nM8VDPG9uUks2LO4nlggOxIBmsI+PrSvm2zZoq8pxFePTWLaLuem80QDGi7Q0xCkIx7gO6dnaIn40FXRjFoMrRbguRjt8QDlWh7IbMHg4YbXnz/3q4FvnZqmNeIn6tfY0x3n6HiWgCZTMhzx2VZtlNqaGQ1qqBKULRfDcups4QV4HswXLRQ8ym4tEBfxP61RP2XToVyzI53KVshWLBby3yRgU1OQ//ju7UxlKhwaTqNIojnXFhUqKcf1BFvHFNk9Q8ki+3oTfOa5UZIlg1hAHJz6GkPMF6okiyYdMR+b26Pcs7GJfMUi4lOZzVc5O11AkYv05aq8fUc7vY0hfuvt2zg2nqViCfZTqmiyvzfBl45OcmG2SDSgcc9gM2dnCsh4HBvPYVgOYV3FASI+lZlcle6GIIosEwtqFKo2xyeE0q1qO+ztaaBiOpybydOZCPDYmbmatZvIEDFsh6hfI+BTGGwNEwsIv24QA8v1IdgPFza2hjnQ34DrUV+D/Oq1hbVey4nrTATpbQihKhKXZoscHcti2Q5NET+j6RIfuL2LH1yc5zunZxlJla8JmjVsl0RtWCWGSzHiQY1kUSiCO+MBpnMVvvTSJKWq8G331ViUmbJJoSrseo+MZrhrYxOpovCpH2yN1AkEi9EY9vGz9wws+beo/0qWw1u2t/H5wxPIEvzZk5fZ39eAXFPhjKRKnJzIsbsrVq8JGsM+jo9nuTxfoq8xxPv2dtEY0tncEmE6WyWgy8zmDeYLBu2xAPv6EpydFiqlD+3v5vJcgd8dEuw7CYlc2eKhHe38wn0bePZSki8cmaBYFSoyvyqjSoJRqMoyUb9K2KeSLJo4jssXX5qgKxG8Rg2mq7Ag3I741mYjPJEpcnv/tUqq0WSxrsy6OLNyVtZHD3QzkiyhKhLv39O54u2cWt6C53k4KyjBhJ3i9VUYPU1Bwj4VVZboWKVpJnOl2eFfYUCnyvKi269cJ7RGVIZSoqjf0rK2rCHJW/7xGoK+mjWPJxgcV2FTW4SPHujhxHgGc43NCxB72kITp1Yqo6sKe3sTbGwJc3m+REBXMCwbwxa3KVQdAj6V7R0xHBeSRZOKqZCt2OSNKu1RDdtVKBk2T5yf5ytHJ+ltDFE2bVRFhMpvbA6h1tiaD2xpZTJbqdmaOOiKYEyvxuacqeWipYoGpuMuYTTLssS7dndweb7I9o4Y3zgxVb/tbKHKTK7KqckcpyaFTdZDO9rqTP2Wq2z/TNvl7HSepohvia3iRKbMk+fn639OFsUgVpaETXpfY5BEUKurxq9n2fV6g67ItMX89RoAIFUS5DpxVhSH+H19CcI+lb95doS2mJ9cxeInDvYyma2wsTnEs5dTtXrBQ60Rh1wkFEWhYr5yOVoL35zFTh66ItTMM3kD0/FIhDSiAZXtnVEazupkyxab22/OrnmZbXAd61jHqwB9FSLNAjRF9GpkPP7oexcIaQqKIgullwQ7O2PYrse2jhiyBE0RH3cuIjnt6oqLs12tmX41LswWcD2Pza0RJElaci5asC+0HZcz03kSQX1JL+j1iBt103nywjwXZ4tAjtaYj6awj2PjGZ4fSuNTZdpjAT5y4PqqopuF63qcnckLuz9TKGBaoz4e3NaCr5bT3RkXSrp//qZBPv38KIUamVORIa0rWK5HrmyuWUSvK8JZqTGkkS1bFGo5lsqigdhiOB7onke2cm0tu3ifErMdjwZdIRb0k61YnJ3JYzkudww08ocf2MX//P4lUkWjroi3HY+KadMZD5Itm5yYyArHGZ/GkdEsm9tEpMbGljCTmQqJkH5NbwnEYOA9ezq5OFtYknW3Gi7PF5FkGV2VRS/F9fj+uTnefVsHrufRGQ9wYa4IwEBziIaQznS2wpu2tnJhtsAPLiaxXZjNi2x0VZHJVyxGUmV+5+tnmS8aOI7Hrq4o8ZAPF4+SIfKbFVmiYLgUzAoqMDwv0ZkIYNlOzYJRYndXHEmC3oYQ49ky0YBGS9TPVLaC5boEdZWoX6FkgKZKhH2KcO+xHDxXZAnPFUzAZAKhzhmaL2LYDuPpMqYjnM9MyyUaUClUTSqmW7NeV0SPHqG0i/hVJENYhb95WyvNET//WDvHFQ2by3Ml4kENXZFxPWE5jiyxuSnMXEHEaVycK9IRC7C/r4F82eKPH7tIpmzSFvPTHg8QUCWeH04T0RV2d8V4YFsbkTUQ/1qjfnRVxnY8OhMBMiWTrx+fEkM+VebewSZeGEkT9mnka5lj776tk0tzRb57epaGsHAP8jyv5oIFzWGdiuVgOS6JsI7/KjWsW/+f68MnQ2PEx10bm/jQ7V1Lfma7HvMFwUSaWSXbejxd5mvHp/CpMh/e372m9+V62NMdx3E9tEURSU+enxN9ZNdjKFWm0bCJ+DWCusKR0QzfPjVNa9RPa9RXc06Aimlje8IlKupTqVgl/JrMCkfCJbjVQ7C/BfLA79b+/lHg74AP3uLnWQJZkpYsvjs6RcbKXRsaSZUMHnlumlOTOdEQkUTDvDMe5L5NzQwnS5QMmycvzGPYgmFZNm3OTuV5YTjNe27rrC1QguEyma2wtT3CmakcmZLJ6ek8ZUMotkAMEUqGzWy+wkzOqNuszeSqPHp2ln84NEquanNxrkBzxMfP37eBsE9lrlBFkSQ2tkTobwrzxSMTeMDDO4Ul0tePT+N6HrbjsbMziu16/JuHtvDc5SQvjmaI+VUuzBYoGxbDSY9sxWRbW5TvnZ2hYsKhoRQlw8avKsyWq7RFdRRZZFSEfAqqIrxp4wGdjc0hFFlGVyRs12NTe4SgKnNhOkdu0dmruyFYs540cFyXsVRZeKu6DrIEq5F+ZEleU+D5+/Z2ka9YxBc1oAaaw/zzBwZRJOkamerFuSK27aKrEqqsUjIdHE9ioCnIbMHg/s0tbGwJc//mFn77Kyf51skZLMejLebj4R1tPDuU5ux0DgkJw3KJ+CUyFZt/+/AWtrVHOTOVR5LEEFWTwa+LjCPTFg38sF8hX11gg9iUFq0pPkUMLK9us8iSKAoSIZ2CIcaNI+kyjuPiU2Usx12y1lVNm9GKYGjIiCwyy4VMyeLSXIlHz87yth1tKLJEyKdyx0Aj+/sS/PH3L1GsWgR0hclMGa921bx5Ue7CIyemmMqKEMx/ek9/3UrremgK+9jVFeVCTbK71sHf1fBrgv3q02RCusKm1gg9DUEePTdHpmhi2G5dKacoYijTGvXziTt76W4QzbpC1SakK1yeL/Hs5SQ9DUHu39yy7PO9e3cHTWGdmVyV/T9EbONbjbBPJata9DaG6GsKYTguhy6nyFWFRWosIGTysizzlm0tyJJg8o+mymRLBsaiIFtFlvA8j7LtLlmXbccjW7FoiwXwGTbFqhjaOq67xFbVc1z+9RdPkqmILCRhb+nHrOV9xYMaWzsixP06mbLJxpYIw8kSxydzWI7LhmaZd+7uQFckHjs3x6bWMN2JILf3xoWqI6CJ7BXLpWoKW9ixZJG/fm6E//Cu7Ri2Q9ivYjkO52cKjKUqvDicRlFE8OxUtsLXjk8RD2g0RXzs6owyE9GZyFQZbBUMFZGX5vDmba2cnsxzYbbAbN7A8VxaIn56G4M8cmKKiUwF0xFr53xB2A90NwSwbQ/DceltCHJsLMvWtigbmkMgSdzed+Ns63W8tmiN+vnpu/txPepDJHuZCq0p7GOgJUxPQ5DdXXG+f26O87MFYgGVqge7OmO8sbaWnZ7MMZQs8tJohnhA484NjUiSxFRWZMzc1h0nX7U4UFvXXhxOkymZTGTK2K7L5bkqpu2iKhINIT+JkMY9g01E/Qp//ewokgR//ewI3z8/V7PBEn7tH13mQD6Xr6IpMomrrFtc12MyW6EhpNHXGGSuYBDxa/UmfaFqEdKFbVhXIlCvCfIVi5BPJR7UCPvVusrtY3f0IskwliqzqTXC5tYIE5kyb9jYJBQwAQ3DdpgvGnTE/FhOhEtzRZDg1ESWv3x6CMf12N4RoTsR4PRUnnMzBcqWQ0CTaQzpdWXpycl8XVH9N8+O8MsPDi753TobglyaE2rV/ua1NYAbQsurrRcGASAILSuhLSoGfn5NIRpY2SZnwWLb9UCSlt/DN7fH4KiwKVqtEisbgnWqSKu/tsU1Srpk0LZMWvK+/it7bFNo5eOHvCjfy13h9V8NSVq+m65pMg1BjYrl0rVCgvNga4StHXEeP7fWnDSh7Fq4liuWS3NIZW9PI/PFKsfHc2gKbG2LMJIukyoYLAjjy4bNM5dS7OiM0RL18+iZGSqWCCSvWB4NYZkjY9laloJQhNoORPwq+YrNsbEsf/f8KA0hnXzV5r5NzYynSjx2bg5dVfBpMh/Y17Xi637j5haOjGbY2BJeMgADcR2HfWq9XnrjlhYOj2QYaA7xtWNTlE2H54aSGJaLrsr83L0D/Mzd/WiKfE2e7BPn5zg9lUeWRKblwhA5qKsotQF4Y9hHumTheh5hv0pLbZ10XI/nLqc4M5Vn2zKN09czJEnig7d3Uaja9XNLf1OI3d0xClWbuzc2IUtSfa20XY+LswXytbyOhpDOo2fncD2PtqifyUwVWRGWtZIk4VMlQj6ZonHFxlAG/JokmPg1d4qbpaItdz/TFg0SVZaIBzUs22V7h7B+/KMP7iZVMm+6Od1+HTXKOtaxjlcGyevIMCXgtq44qipxYbZIrmIhIdHXFOSZi0l2dsUI+VRu645xaDiNrihINSLXAhRZ4kD/8mfr8zMFvnlyGhDnwx2dMb51aroea/Cz9/TjUxWevpTk6FgWSYKP39F7QwTd1xMsx+WbJ6cpGjZv2da2xJVGkUVmal9jiIl0BdPxMB2HL740zof3d98y9cXVeGksU88x82syrucxnavieRI//YZ+TMetK8t1RQzlXLfMW7Z38P1zM/zpE8OUalaYmiJqItPxsG0Hw7lWtaVK0BHzk69Y5Co2VcvBr8sEVIWALjOTM5YdhFVtb017moSwF/6Jg708dXGe3oYgM7kqA81hNrVG+Ddv3czj5+cIagrDqRLPDaXAExmlR8eyhHzCQu/BrS3kqxZ/8+wIgy1hfu7eDbxzVweJkLZibm9nPHBNjupqODaWZSZXZUOT2DsnMmUuzRXJlS1+8s4+/vj7F4gFNLobgnzsYDetUfHYpyZy/KfDZzEdl854gO0dsXofMl02kSUYThap2qJvfVtPgu2dcb57SiiLPCDkU4j4NAqGXct3k5kvVKlaLoNtYTzPYypboWw5XJoTFoeaIoQJ7TE/mgQzBRPDE4PySEClOxFgNF2hMSzyXR3X4/J8EdMRWVmZssV3Ts+gKjJGjSwvSZCtmLRGfSi16B7X9XBcl4AqUbE8ZEnYt1csl3hQYzxVoTEscmTLpoPlumxqDTGdq9DXHMJzXSI+nXhQY39/gg3NET7zwijHx7OYjst8sUqqdubKli16arVLrmxiOR6WCm3xABvX6AgV8as0hnSqtlvLbTN49nIKy3ZJFw2+d3aOqE+lZNlsaYtSNGyawjpHzqRxPY+jo1lGkiXCPo137G6nMx5gMlPBcz0s22Vovkhujfb1V0MGBlrDvHdPFz95Z981dbqmyDywRQxV9/TEV3ycS/NC+GPaLhOZClvbVx+CGbbDXN6gLeZfUcmqKjJ3DDRSMR3+9rkRTMejK+6r51mrNQK8sAJ16W4I8I9HJoj6BUm1K+5nrmAgS0K8NJ4ui3mGLFSW18sfh1s/BNvsed7uRX9/XJKk4zfzQJIk/TdgH/CS53m/cp3bLlkcz80U+L337mBza5T/9M0z5CoWxaqFIstsbg2zpyfBvv4EjSEfe3sTPHF+jlTJxKcqPLi1lZFUic+9OM5UtoImy/zUG3qZLxj84GKS4WSJjpif2bxRn9z3NgqP06rl8OnnR4VEuGrT3xxiNFXB8zyOjGa4MFMgW7VIlyxCusLQfJG/fmaYtpif8XQFWZJ4/+2dTGYqTGYr2K7Ld0/PiuBiBGPGsFyG5kt8/I4+miM+3runi/miSbZsEvargEc0oLOlLcpoehY8iId0ZgsGEZ9oPoV8Kn1NEdpiAS7PF8hVLUqGQ0BT6YgH8OsqsYBGpmwS9sk0BHVcz8O4aqiVr1hULQfX8+oNXtuBkF8FJDTHobTCJMxy3GvsoJaDIktLGmtHRjPM5avs7o7THlt6ePI8sWBUbYd4UKcnEUBTxQV0fDJHSFeZr2Ws+FSF33vPToK6yvGJLIMtER49OyfsRqo2sgxIIu/LcV0OD6fRZIn//fgl0iWTgK4Q8ankqja27YmJc03u4lMlqpZgXEhIKLJEWJe5vS/B4+eSS16zJsObt7XieZAtm3Q1BDk5kcOyXSzHWyIXXYBpCwmsU7PYWfjyW67HaErIiGVJWAT2N4XobwqRLBq8NJrGsFz6moJ0JoLM5qtsvioodiHaxPXWVnAsxh0DTTx/Oc1QsoR1dVjcGlGxxMG+ZDqYjosMNIR0vn9uHtMW7I77NonipDXmp1S1aQyLxiXAe/Z0cnYqz1imzD+8MEbIp5IqmuztTSyxCKqYjhi4yRL3DDbf1Gt9NTCXr/LiSIbexmBdVfFK4F23dTCWKjOSLDGeqbClNcrTF+ZxPTFg7Yj7Ceoak5kyXzk2TUATQ2zTcpAQOSWKLBOuFQOTmQqaLFGtDUMXclHSJYt7Bpu5e0MjQ8kif/3cWC1HxbvCQFYkEXSLWCcSIZ2miJ9KLSj14myRiunQEnXY2BwmoImhriR5BDSFN25p5r17O/mv370gGok1hcs/Hpngv373AtGARkNIZ6ApyOX5ElXLIRrQsV2X+UKVLx2d5FCNhWfYNuPpKuAR9qk4nkeuYlOoWoR9qmjUB7Q6g6YhpHPPYBNPXkxSNmwSAZ2P7O/m2ESW89MFLs4VmMlV+dSTl8lVLGHR5ro1OzS4Y6CBiuWiKcIT+m+eHWUmV+GJC3NsaYty/6YWcmVrzbZk63j9QFOWMpO8ZYgC6bKJMS1YmYdH0+SqolDPV2x6m0J0JgL1gnJTW4QnL8yTr9j85TPD2K6HX1N45lISXZX5+B29S4rAdFlkUqmyzIsjGTrjAaayFQZbI3xwX1fdVvG+za0Mtkb548cuMpwUKq3WqI/+pjDOotd8eCRdVx0/cymFLEl8eH83bYv25UfPznJ6Ko9flfnNh7dwaiq/JJcpFtDY0hZhPFNm/6JGSTwossWaIz7u29TCWKrMyckcm1rDNIZ8Ih/AJ/O/H7/MRKbMQHOYn767D0WW+PRzY3zt+BTzBYPBtgj//E2DvDCSJlkw+IsfDOG40NUQ4D+8cxu6IuO4HrmKSa5sYbsuh8cybGwOs7EljGG5zOSEmvThufYlh6KBxlB9CLZ1FRs4hSvBuJ2J5VVNgcUHk1V6HZ8/PMr/efIysizREQvw8ArWFZIsA4KMtFKZlSxcYeistte7nstwslTLSFxbIyZdXJ5R+MXDY/U/j2ZWsWK8hQ2fppAPWZHxLJeGZbLdQNSVEmsmVtZRtURNoslgI3FqOs94pozneTRHfPz6W7eQLBj81++dJ1kwhZ2449IR8/HRA90UqjblqslnX5xAV2R6GgMkSxapkonnilwR1xNnjHTJxnJdClWLpy8mMR2XnZ0xDqXLDDSF8GmCNNTfuLpyrq8pVPfeX4yz03m+fWqmfh3HgxoXZ4s0hnW2t0d5bihF1XLI1/a/iF/j0XOzfOxALwCnJnN88+Q0XYlAncnseR7D6TKPn5vjoZ1t+DVBvPvogR4KVYv+phD7ekVm4MJr8qkK2bLJ05eSnJ8pMJmt8K8f2kJz5PXZ+Dw9lWMkWeb23kR97ZstGBwby7KxRVhEKrLEm7a0Lnv//X0NOI7HDy7OkyoKa/r2mJ+RVIlL8yUUCUK6yE2tWi6X54ri/LToMSQJ/LpKW1RlriiyOxYMGZazj7rR2t5F2E3ZjicU64rC987MsrU9Sq5i0xbz3/QQrDPxw5P5to51/Cihb4V6ZDFOTObQVBmfIiN54Hge+YqFIskUDZv7N7cwkSlzfDxH2KfQtcbrWTTtr+y4C7WlXft/1/XqtcvCzzxP3O/752aRkLh7sOmGrAKrtdiDVzP3ZjFGkiWGatZox8ezondYtTnQ38BUtsK3T80Q9au4i17ebK5Kpmy9Ytlg9qKafmt7hIuzJdrjfhpDOvJVA825glG3fXvyQpIvHJkiW4sbcGpOSLoiEdJVUiUXn+ThumJ/Mh3x/7IirM+Kho3pivs0R3R0Vaq7IQQ1MCyWEMbr2eLXga5CNCCINnf0N+LTFHRV5hsnptnVFSOoK2TLFknXZDpXYSJdIRIQhLu2mA/b8bBdj1hA49x0HsMRfYG9vQm6brEKMVM2OTomas/uxiCyrJCvWhwaTvPevV3s7UkwkhT55GGfhuN6WI7Li6NpSqbNXL5KoWLz4f0NfGBfN90NQZ44N8f3zs4wNFfk/FyJkKYwk6/SETdJ1vLQAprMm7e2MpYuI8syt/fEeezcPGOpIpbjMTIv3CZSJWFHSK3X6NdVKqZb63dI6IoQIuTzYpgebFX5N2/dwonJLGGfyrnpPJfmisgS9axn03VrLmxCwBIP6rTF/JyezGHY4lzs12SKhkPFEiohVZaoWA6qIlMybDIVk6lsBVmC1oiPZMnkr58dJVu28Kky8ZBOi0/l/HSBCzNF7tnUyImxLJPZCm0xPyfGxZlWV2XevaeDjliARFDl9795nnzVwrJdLswU8DxvTcPni7NFJrMVPA9OTORoDGsYlkPFEoTMTMWmatoEfSpjqRKSJPGLnyky2BqhYjmEfDK6olAxbf7u2RESIR8bm4K1TEYRF6Iu42KxEnQZ7qhlMvpUhZ+5Z4A7Fqlzr8bOrhg7u1bvL27viHJptkBQV+m7zhkD4B8PTzCVrdDXFOKD+7pXve3Tl+b51skZHNcl5FNpDOvISLTF/HTFAxybyFI0bI6OZZnKVSnUbA712pB0ATLUiPsSQd3jhZE0t/clVs2hvNVDsKOSJN3hed7zAJIkHURYJN4QJEnaC4Q8z7tHkqQ/lSRpv+d5L650++pVGQpj6RL/+/uXmC1UmcxUUGSJvT0JfvXBQSwX+hqD/OORCUzbZXtnlJAuQjwbQjod8QA+VYQnGpaLYTtoikJL1I+1MLmWxYUv5N1CdTbQFKZSs/kCaA77KJsOftXmuUsiPPrSfJGoXyPiE1YfVcshU7Y4MZFDlSW6GoI8eWFe+LpWLcbTFYaTJfobQ9y1UQRU58omMwWDb5yY5MkLcwzUhhylqg9Zkjg3k+fhHe3oqoJpCU/MTNnktp4479nTwZnpvLD36kugKDLPDyXJlC26EwF+7t4NNEd8+DWZvb1xxtJlSpbDiYkcinxlA5IRm1muYgnG4dX+vaaNIstYVylBFqNsuTfMbEkWDZ66MM9oqsRXj03y4LY23r+3E0mSOD9T4M+evMSR4TSaqrClPcLbdrSha0Ke+9TFeYbmi1RNm97GAMNJYSk4na2SCOgUKxa/+8hp8lVbTKBlGRlwXJfz03kyJYsnL8wzna2QLpp4EpiWgydJqIqEYwsLyHzFrgd82q5QaklAqerw/OX0Ne+F7cJMtsLZ2SKm7XFsPIsicU2Q6GIsLgwcF9SaD5FUe49iflUMBB2vLs2vmMIe69JcEdcTbCoP2L3I1zhXsWiJ+ogFNPb2xm/YhzpfEbZakuTd1EGbRffxENZBP7iUwgWKVYuK5XD/5ib6m4JsbosyXzT43IvjDCdL/H/fOc8/eUM/s/kqzw+nqJgO6ZKJ63kMtkYILbLefOzsLCcmcgw0h+qZfK9XfP/cHNO5KhfnCvQ1hZa1IrsV8KkKfk3msXNzFA2boKagqwqYLrIEPQ0hmsI6L41lMB0P45ogCQ8ZB9N2qBhCoqzKMoos0nJcF2Eb5Xp874x4/3d0RIXa1BHyb1WW0FWF6UyFyXSViiX8vW3HFaHylsOZGUEEiLouudq1GvKrKLJMSNcI+oQd1KNnZlEkiaawTrpkMpkrM5qqUDFFYeIB772ti93dCTw8OuIBPM/jr54ZYSJTIVMWqsOgptAS9TFZU2xlyyKXZaEYtRwXRfLq+YYzuSptsQDposHFuSJDyRLb26Ncmi8xnCwwna1SsRzOz+RpDPsoGzYhv4pPleluEAMO2xUD9Nl8lUzZZDhZwkOwBC3HJVM2+IVFFqbreP1jLl/hd75+Btt1+X/fvo3ehhCKcu3+VzJdHFccgmI+Fdv1MB2RXaXLErmKje166LXh/YXZIo+fm0ORJQ6PpOtDGtN2yVcsxlJlPIStxvmZApmSSXssQMSncHQsS0c8QFNYrw/AFtARD3DnhkYmsxXCPpUP7+9BliR6GwMcGkqhqzI/uJgkXTIpGRZtUT8X5or4VImfv29DfW9PlYS9yExOKMV2dMWWKOAkSeJtO68d5Fz97//nqcuUDIdLc+IAHvFrHBnJMpOvcGYqz9GxDPcONtEc9fHV41NcnC0Q0FUs26VkOaRLFnM1a1TTEVbFP/mXL3DHQAMTmTKSJNRLhaqDA+QrGba0x/iZu/v4q2dGsF2Hpy7MLxmCnZm+YiX44ujSrKnFWLxfV80KcC278HLyigXiagf9v3x6hHxNjfXnP7i84hBMqb3/kryy7aDnra3++uLhcUq1uvZLL01yz6blVdWL0btCsyBXvmIlsFp9YBqLBmSr3HBxnRFegfWXLhtUTadmUb384K0zHmA8U1zlFV0L2xUNJBlBSiqaBnCFWW87Yl8J+1XetqOdrx2bpFC1cSSJ75ya4YkLSe7b1MRzQ+m6dYciyfUgeQuwbHEobIsG6IgFGEuXMW2XkVRJqImCwnK0WLXZ3RVnsDXCm7aIz8e0XU5MZEmXTRpDPnZ3xVAVmVOTOSqWg+t6NEV8dQLRAjPW9TwyZVPYlNZy/prCPt6/t4vnL6eo2g6HRzL4VIkvvzRJZyzAwYFG/v7QKKen8uQrFqem8vzzN24kW7bIViyGUyWOjmWFhRbQHPHVh1otUX89R1mWxEByJletZ4IWDZtcxXxdDsEqpsP3zszieSIQ/r7NzezqivO90zNkyhaX5ooMNIeuqaVF3vE8M/kKiaDGPx6Z4OJsASSJloiPZy4JcoPtCLt2qWYXlS6ZYj+4qvxKBDRCfo3tHVEqYxlKqyg2X45CzEMw8g3b5vxska+fmKZYtUgWTT60r5v3376yAnElPHchc5OvaB3rWMfLwVMX5lf9uYdQfyuWI2zJFBnPc5kvmli2h+06pAoGl5NFKpZQDL1l6/LD/sU4Pp7lfz9+iZBP4YO3dxH0aeyskTwf2NrCI8en6W8K1Qcwdw82EfFrNIQ0ZvNCaQ2CLLVnEalqNRwbz/L4uTmawjof3t8jcpdeZbTG/IR8ChVTqBq+dWpG5M4bdo08WuZbkzkKNWtBWYa2mJ+I/5U59wPs603UlNwiLuL+zUt/PleoMjRfYnNrhERIIxZQOTySQVflurOQaTs4NXL2TMHCp1gsbEGqJPYnxxPn5qLhkC5bdWW8C0xlq2hqzSnJA9sS1oiLNytFFjlI10MsoHF2usCpidP0NoX4rx/czacPjdEQ1HlhJM3B/gSj6TIz2QpnpnNYLtiuy6GhNLIMnfEgmZLJDy4mMR0H2/HQFZlz03m2d8Q4OZXDryq3RKF+dipPtUb8LpSt2p89zkzl+KW/P0JnPEDZcOhqCPKdUzOcn80T0FWKVZuy6dRywlxeGsvy8M52/ug75zk7nSdftUjV7NwdVeY7p2d57nKK+aJBxbTxawovDqdIV2x0RaavMVTrixbwJPG258pWvecNos+oKRIl08awXNFH8dyaAEDCQyFVNBlKFtnUGuHkRJaTk/l6zIWievg0mYCu0BzWMR2vZrvv8cylJEVDvNc+VcKnKlRsl6AknA0CqoyHgyJLGJZw6DkzXUCRJFoiOlXLwbJdCoaN7cioikS6ZDKdr1IxHZJFg4hfKINmshWSBYOxjM4/uauP/uYwf/7UEBfnCkxkKjiuqH9PTmYZS5fpvc7Ax/M8JrJl/s9Tl/Fcjx+cD1Oxxe9muR5+UyLok8iUTVIlE0kCRZaZzlaZLRhkigZzBRNNlQhqIg9eliVkRDay5Yjrai2O+0FVoiGsc9/mVv7fh7dwbqZYv65fLsqGQ8VycT0b03avcWG7+j15/Pwck5kKG1rC1x2C+VUF14NL8yVsR7gl6arMvt44h0ayzOQMHNcR3+lFa8LV0TtXbFE9ZvIGJycynJ8prDoEk9aixlkrJEk6C2wGFuiePcBZau4MnuftWuPj/BIw73ne5yVJej/Q4Xne/1zp9oPbdnnWu35/1cdMBBR8mooqiaD5xQIlWYKwTyHsU2uNc7H5KLKE7El4klcP9NRUGV2WMB0HSZKJ+BTCAZ17B5s4MZHj5GROXPCSh09TsR0XFwm/JpOo5RflyiZ2bdAy2BrGcYXfuoewUzwzlcPxxPTdqUmMdnfFGMuUmcpUcREKorBfIxHUaQzrXJwtYtoOiaBOQFcoGoKtaTlejZEpspY2NIX58IFujoxmeOpiEsOyUSQZWYb2eJDWiI+JTInRVOWmAsJvBE/96kHe946H+IsvfY/f+sopVFnmjz68e4mnsu24/MG3zzE8X6Q7EeToeJaRVBlVluiM+3lgaysbW8IcGkrxt8+PXfMcmgJdcT+Zsk2hFuDouDfO+P1RglpjZaiKRFBXaI8HaA77mM5WyZYN8oYt2Ly7u9jfl+ClsSytUR+ZGsvi3bd11hfAffv28W8/9WX+4FtnmC/enFz35UCRhMJIloSUP+QT11y1Zl/65q0tbGmPsqElwhs2NvHVY5M8dm6OjpifsbRQH8iSREhXsByPl8YybG2P8LEDvddYe12NI6NpXhrNsrU9yt2D1+a8LMaZqTzPXErS1xTiwa0tSwbAL46kOTaWZXtnlLs2LH2cv3x6mMfPzdEa9fN7792BT1vDTngD2LdvH+/8d3/NP7w4Doh1q2i+whf+qwQJaAqJcNflrvfFNbYig1ZjBy5I9xVJFH0Lysur7yMh1perRY+Ls3Guvs9qt9MV6Ij4GMsZK4bexwMqd21o4k8+fjv79u0j+eDvLPn5qx2svY61YdNvfIPF7feRP3g7vvZB2j/532/ocWRgS3uY9liAqVyVgKrQGvNxdrpQV2c0hXU8hFXsfF4otSJ+lVOTOaFyliAR1NEUkb8Q8Wv0NAY4NZXHcaAtKoro27pjDM+X8GkyT1xIMpOrENAUZEkiVTIJaDKWK8KgF/IzZeDAQAO//75ddMQDfO3YFL/9lZPkawzPprCG60E8oNHfHGIubxIJqHTG/Dx1MYlTGzB3JgL82cdv52+fG+GRE8IuJ+pXyZaFoj9ZrGJcZY9y9fV0KxDxyZRNcUgN+1Q+cWcf//LNgxw4cGDN117fb3yj/uffetsmfva+wWtu89bf/QbnSzf2WCpwaQ23e/Y33kjHMjaA7/kf3+DY9CvznJ/72QMc3Hitwvpjf/xtnp26smCu5TnXervH/8V99C9jX/Krn32GrxzPLnmsffv28dt/8VX+6HvnSRdNioZz08OBVxoK1NWBuioCwRf2h6hf4V8/tIWApvC141OMJEtkKxZ+VebhXR1kyybfOjWD43rs6Ijx8Tt6+NMnLjOXr6IoMhG/xscPdHMpWWI6W+HMdJ6K6RDUFcJ+je5EgN09cT6yv4euRBDP83js7Bx/+K1zjKSKaKpCb0OQf/XWzfzlMyNcmM2Tr9joqiwUAR74dAXbdikaNmG/xrtv6+Cn7uqrW22/NJbhfz52kaH5In5NYbA1Uh/MlU2Hvb1x3rqtrc7e37dvH888f4ivH58mX7F428422mNrVxM9dWGe8zMF9vUlVm2gpooG3zg5jabIvGt3xxKiQKFq8bXjU/XGS7pkMpuvMtgSoSPu54nz81yeK6KpMndtaCAR8rG1LcpktsIT5+bIVS3OzeSpmk6dRf/DDF2R6G0M8qsPbuZtO9qWKC3+5IlLHBnJ8OC2Vj56oGe9bvkhwnLr8L59+zh8+PA1P1vHq4ubuWb27du3pN9ybCJ7y1+XKgnyDTWSTUfcR0s0IDJd26K0RH18+rlRLs4VAIm9PXF2dET55skZclWLnoYALVGxd3zyrl4e3NZGsmjwV08PM5Iqsbs7TsmwyVYswjVr3ZBPZXd3nMaQzpMX5umMB2p5lVfWoS8emWAsLYgVP3FHD5dmi5yeyrOnJ86+ZaIQJrMVvnNqhnhQ4x27OlYcmp2YyHJoSBDQbu9L8JnnRzk1mWdrW5SL8wUmMxX29sR5x+6OWj6ai+MKq+Pf+8YZvnB4nELVWbV2/ZU3DvBrb93Kvn37+OB//DTfOz3L3t44//kDu1e51/Xx+Lk5Ls0VOTjQwK5FhGjDdvjasSkKVZtkscrl+RKTmQoDzSEODaWYXYFM9HpGzC8a7YtV0orMNYSSqxHWZaRaVnBvQ5CCYRP1a/zTewfqttFfemmC3/n6acqGQ19TkDdtaRWON4v6Qvv27ePrj/6Aj/3FIUqGzb98yyB//8Iox8dXzgBex2uHxqDG13/5Hjpq9pb79u3jv3/2W/zuI2cYTZeJ+VUMyyFXfX2cHVTg0G89QFDX0NW1xQ3dCB4/P8exsSwAD+1oWzWX/onzc/zml08iIdHdEOCzP3fnNbeZK1T55olpJCRs1+Xx83OcnMxSMV0UWaj/NFWmbNhUl/NHXSPeuKmJv/rpg0iSdMTzvH1X//xW0wseukWPEwcu1/6cA7avduNU0eB6M/lsxSHsikPV1QcO1xOqk5Jx5WdyLWBRU2o+6wu3tVwMRFNTwsWwXEzH44XhNJfnizi1qa0EmM6ioYDnkUOiJepjxhRyUEsWg7COuJ+ehiAFw+LQ5TQVy0WWhWrCrQUYnpspUDavbJS2K6TdliP8QiuWg+24ZCqCeenUlEAg5Mge4NoeQ8kS56YLHB/PCss92wPVw3MkpjIVkoUqJcN+VQ5l/+3rRwD4wpFxMmWxqX7p6CS//pYrVJSRlLBjMiyHqVwVPJAlIVfOli1mclXKpsNQsrTsc1gOTGSFv/GPwmHzVsD2wLFdqjYYlkvJcCgbNnMFA8t2MRyXmZzB80NJ8lULTZE5fS5Xy2yRGUoWlzALvnx0ikzl1R+AwZXP0/GgarkYtlW7ZoWK55mhNK3xACcnc8SCGtO5Ko0hnelclYaQzoWZApoi1/yQDeF5LglroLs2rj7YenEkQ8V0ODya5q4NjataLBwZy1A0bE5N5rhjoGFJqOQLw2lM2+XF4Qx3DjQuKdx1RWZDS5igrlC13Vs+BLMcl++dmcOw3TWFSP4wwQOSJWvFAmXxvztuzX5j8b95Ys30VriPx7UDMLi2Eb/S8199O9OBqfzKAzAQ3wfT+XEe4f9w4lYdGV1gNF1mMltFkyU8JII+YR9mOR4Vq4qEUGqnSoJNWrFsBlvClGoNV+HNbhLQxKEwX7U4Ni4stFwPprIuR0bTGLZDyKdyaCTNpTkRZuzWLNoMyyXq95OvmLh4GJZg8UkSjNasCzviAUZSRZxF1rrpkiXsq12PmYJBzC9sl89M5bEdl6LhoCkSI6kyjxyf4umLSfIVcR/TcrBdKJlCzbXce3OrUVjkAV02bF4YTjGbv/mQ8t/71oVlh2Dnly9fVsVad9x/8feH+YdfvPeaf188ALvVz/krf/cCz//OtU26xQOwW41/8dmn+fKvXHsEWTwAW4wvH50kXbJqOayvXzhQ30QWWMMLMCyXrx6b4i3b2siVLeYLJqbtYCgSz1xKEtIVYTnliRD2756eIV+1hM227SJJ8MipGQKasGcvVm0sVyi9LcejpyHIfZta6EqIIaokCXtvqybtthwXy/W4MFtgd1eMbNmgZIhzyXimTNSvEZehZAhXinzV5tBQirdub6vb5x0aSjGVrZAumcQCIm+qKeLjrdtaaVkmgB5gPF1hvNbQPDGRW/MQzKopzgAOj2RWHYKdnS7U1XFD86UldjEX54rM1SyAbuuOE/GrdVXF5bkimiLem4CucHgky7aOKKmiwVzeYLZQZTZvUDYcPO9Hg5Bnux65ssWF2QIH+hvqqj3TdnnyvHhfvndmZtk8yXWsYx2vHhb3W14J2B5LNq2JTJWqJXKmdFXm+HiWiuXUohc8RlLCkj5Zc24ZTVcomw4d8SAnJ/M8uK2tnt1aNGxGkiV+6g39PHc5Rbpk8sJwim3tMV4cTtMS9VGo2pybKXBwoHGJheD+vgaKhrBubQrp/P1IGs8T5/jlhmAnxrPkKha5ilW39VoOh0fE2f7YeBZdlTg7XRCuRZfmKBkO2bLJyUmJtliAXV3CYWfhGO96opd1vT3gL54Z4dfeuhWA750W6rFnLiWpmM6qiozVULUcjo1n67/D4iHYWKrMRKYCeIylK8zkqhQMmxdHMmRKP3wDMICC4aBILMkbc9ew+VYsF0kSri+yfOU+Z6bz9SHYFw6PU6jYuMDwfImLiQIBXbmmL/S5F8frNuR/++wYJeO16Zut4/pIl636AGwB3z41w3imgmm7zBfMujr+9YCa98dNrwfXw67OGFNZQYQdaF5ZHWfaLkfHsjSGfBRNe8UYl9OTeTJli8lsBZ8qEwtohHQNTRF9BkWSKBjWErvWm8Ezl1d2aYFbNASTJOk/A/8RmAK+DewGftXzvE/f5ENmoT7Xitb+fvVz/hzwcwCdXatbMEhAW9RHxXKJ+ITvrHPVz/2qsOIqGTYeENQVgppC1RHyv4VoJk2RkCQhw5NlCb8qE9BVNrYKO8SxdBlNEiqCoF8jqCmULZeOmJ83bGyiXGNZDs2X0FWZ3d0xHtrejgv0Nwb5K98w3hmPkmET1FVyFZFT0Rz2UTFdxjIlXI+aTZef23riVEyxOZm2S0fcjyzJTGXLBDShcDEsuz6kaArpdCcC7O9r4JnLKYIxH2FdZb5kIgPxoM5cvopdNnHcRUoJSbwnVUt8QV9O8PIC/u0H7+YHn4IHt7byzKWU8M3fvNRqpysepCshbGD6m0KUTSEV9TyP3sYQ0YDGwYEG7hho4Nh49prgdqXGeldkWTTsPNE4+FE4eN4sBKFJEt97TaYxrBMLaEQDGsmCIRhWfpXB1gj7+8T7urs7TtkUftoLDZEF3L2xieMTGQpr0arfYvhV0ZSxHY+QT0VXZXyKRK5q4yFy0XRFpqchyGBzmGNjWfSGIB872MMzl1LkKhayJK6neFCr5d/4l6gRV8KWtghHx7Jsao1c12N8S1uEpwsG3Q3BJdaMIHy4j4/n2NwWucYidGtHhPmiQVciQOQVsEJUZZnd3XFm81UkWfgrT2arPxLXhwy0RHVm8+Y1a5VcUxAuQOwBMkhiE3e9mvxflanUlCCaItb7haapIkFQk6k6Hj5F2AQtxypTpNoTuKAoYjCvyBD1a6QX2YNpNeuL6ZyBtejFSbXX2xLx0RTx8YG9r28Lz3W8cpCAREAXNp9lC11VGGgSGZenp3KEfSptsQCm7RDyaVQsm45YgF2dUdIli8lsGcf1iNcU45Xamh72Kwwny7ieCJXuawqxpS3KXKHKbd1x0iVh5dAe8xPUVeYLVdrjAfb0Jjg+nhWDtZKJ43lsbY8yWFPk7OqKs7c7xrNDouHQENJrqnTojvopVMWgrb8pxPGJLEFdAQ8agjr3bWnh0lyBqVyViF/4kI+kSmiqTK5s1oOVAbRaXsACAclDXL/XY3leD2FNwnCF5XPYpzDQHKb5ZYSyf+Zdyzfd37ghxOOXrz8JC6pQrp2b+xuWHxBcjT94ePnG8wMbwzx26cYsAMNrjKX4X+9c3hLp7Zsb+Mb59A0951pNi5YbgAG8dTDOdy5mr/n3ezY2cXoyh6kuJbq9HqAi+oiyDAFVomx5SB5Egyplw8GsWcxE/Bpv2NjEO3e3M1prJo5lKqiyxDt2ttMe8zOaOkfRsNnQHOK9e7uYzRuosjAwTgQ1HtjSwpnpPO1xP7brUTZtNEXke+7ojLHtKsbn9o4oXYkAFdOhOeLj3zy0hURI59Gzs9y7qQXbnaNQsQjqKh4eW9qilAybk5M5NEVmsDWyxNpwe0esvob0Ngb5ybv6eMN1CEgdcT+xgEbJsOtrzVqgKTIbW8JcmiuypX1lixSAgWaxJmmKYLMuRm9DkICu4Hoe2zqitEb9NIZ9FKoWrgtfOzFJZyKILAnrx6hfZVNblIlAmdl8ld7GILoiUahYSHLtTPr6+gquGRJCpbuxNUJbzE9iUe6ersrs6IxxajK3JAtyHetYx8vDjSjxFqvGFvdbEn6JTPXWLTzqoiHBgno5Xstbigc1GkM+NjRHaI36xNkb2NMdJ6ArjKTKVEyHrrif3d0JQj6Vg7Wc2A3NIdpq7i2b2qJsaA5jOS6PnpljQ3OYgK6wuS1CS9TPdK5Ke8xP9CoLwZ7GIJ+8q6/+982tEc7NFNiyQp7rYGuEi3NFon6V1hXIGABb2iMcGkoz0BxisCVCe8xPpmyysSXE0FwJ2/HoigeXfZ43bGzm6YspLs+LmIqVPok3L7KY3N0d5/mhFJvboi+r4e1TZQaaQwzNl67ZCzviAaIBjbJh81N39fGtUzOcmymAJ6zZ54s/fIOwLW0hMmWbZEEQTRVFoj3qI1u2yVftFd/7RFA4eEX9mjhHlW26GwK8YZFrz72DzRytRUU0Rny0RHzL9oUe3tnG378whmE7vGVbK4bj8CdPDL1yv/Q6bhp7uq+V1twx0Mj3z80x57j4VQXbsam+TuaYdww20fgyzqbXQ2PYx08c7L3u7XRVEPerlkNrzM/79yw/n9nYEub0VI6ueABqdXJjWMcwXabzVcbSJTRVomKJA/jNCi3u6L+W4LAYt8QOUZKkY57n3SZJ0nuB9wC/Bjzued5NaXVrmWA/73nez0uS9CfAX3ue98JKt29qavL6+vooGrZQMbliQJUI6viWkTDnKhaWI/yLVUXCsNwV5YPlWraQYQvWXsin1FRgkmiKagpBXUWWxG0Ny8GvK0JRY7s4njishnwqhaothkiehyxJ6KpMSFeJBlQkxHCtbNr1XKoFG0OnFnifCGqkSiZl0yEWUAExDPKpCqbj4ldlZEl4j1Ytp65wcTwPx/FQa76/qiKkvWXDIVuxUGUJnyaTCOr1nLKFg3BzxIdSe60V0yFbMZEliahfW3EDLlRFNlTIp6JeZzgwMjJCX1/fqrf5UYDoaYvPfSUUDZtU0cC0BaO+Yl0ZKkkIe86aS6YIbEQwc51ayGRIV/HrCp7nochy/bvv15Rlr4NbgdU+v9FUqW6DtQBNEQGfqixRrSkLNEX8DoFaaLqmyCI4tSpsdWIrZH0sYEHxeKMZZuu4sevPtF1yVQsJsSY5noeM8IiumEISrkiSUJ2usq8okkTIpxDyqYR8KoEaLc5xPXK19SgS0Fh95bg+8hUL03GJ+LVX7Pv/SsCpqX+vh5GREQralcZSe9RHU2RtjfF1vLpIFg2mc4IB2BTWaY8FuDw0TNl3pUDbuQJjah2vP4yMjBBr7hCfqQTdicASde9iXJgpYDgiH3UlVpznwWRW5D01hnzEgqvvebcCjutxca6I43okgto1rMcFzOSrJAtC9dKVCBAPLj8Jy9dY0wFdoWmFw5iHsAO3HI9oYOV1OVu2mMkLVWNPY7C+R1yN2XyVTMkk5FPryqLlfs9zMwVcT/yeXYngDe17niccCcqmjecJlaUiScg1yw6r5tiwwGaMB3WGkyUsxyXiF3tcvmJh1FRcIZ/IJqhYDqosgr4txxWMcE8Qk2xH1HRhvwZ4mLZ47ZIkkSwaKLJEW9Rf3ydEVqQgVMQD2svKO1lt/xGfn4XjukQD2mtSc/0onRk8D5IlA8MStMLcQq4uS22XVUVm4awuScLq1nW9Wm6MRMSv4dXyh2MBHcsR589EUMOvCXJnxRIEzKC+PJlq4dx8a010rsXIyAhVX0Od6LOhObTia1rHa4vzM/m66lqWxMD66rqlPSYGwLmySbJoYrtuPeNDliAR0gnX8k11ReYGo8Br14N0w/dbx7X4UVo7fxxxqz+/BSvzoK5cdy9fqFH8qsJ0rkLJcFAVQULWVVnsWbV+ZdGwa/XMlbVDkWUUSfRCW6J+1Fo/q2gIi/aQT639Xbi3BLRrX9NCj7Vs2oLQbrtoikxnPICqSBQNG8MWgzrLcVFksd5oikxDUK+vIW7NKUuv2a0VDZtMra6RkPCpIlojqCtEr9N/WoDtelg1t57lyqdX69pbbr0smTZlQxAefZpcqz1F3eC4HukagTHsUwn7VEqGzXzBwHLcJWRhWRLDkERQJ1e1wINorRddqFqUTQdZEpaTluMR0GXhUFLrD+mKTMin4NeUWr9bZPVqilz7XMX9NbWWkStLOLUX0BAS2dVVy6n3lh1POILZjqitZUmiIaijLpO3/XKx2udnOi6jyRKO69EY1lEVUcNna9nykiRef9FwqC7q6+7oiFI07BoxTaKnMVjvEZdNG9eFsF/FcYVidGi+iO16xPwqrbHATe2ntwIL34lb7Li4IopVm6rtENLVmx78HzlyxPM875pF7lZVngurxMPAZz3PS1+taLgReJ73kiRJVUmSfgAcX20ABtDX18fhw4f5n49dZCxd5ulL88iSxJa2KH/y8b34VKFgGk+XkWX47KExioZYRIuGTWvER7FqgywRD2i8a3cnO7tiFKoWf/L4Zb58dIJs2cTzoCniw3Y8DMcBT2KwNcwn7+rjoe1t/K/HL+F5kC2bxIM645kyiiSJcGyfyvmZAi+NZciWTRzXIxbQODDQSMyvEQmo7O6O8Znnxzg7nUeWJZpCPjIlA1mWsRyX23riPHFuHsN20FWZjxzo4cJsgQszBZojfu4dbCIe1PjWqRlm89XawEQsQCAmrd2JIDu74mxui3B+Js8Lw2kaQj52dcX4+fs28KWXJnjkxBTnZwo0hoTyYGdnjM6En1MTec7PFhhsCfPQjva6323VcuoBpqencnzpyCRnpvN0JgL8ygODdDeIoMlDwynaYgFu647XP7sFf/EfVbiuCE382rEpXA/eu6dz2WbN6akc//fpYY6OZpjNV6lYLvGrbrNwRa02tu6O+4gFfRwcaGAkWWZHZwxdlfmlN268Rb/RUqz0+Z2ayPCO//Usy4lmuxN+NEWmbDr4VIVCVSjP9vYk+NjBHnZ1xfnCkYl64+1n7+lfscE4kizxlWOTeB68Y1c7puMylipze1+ClvWBwHWx1usvUzL53UfOcKKeeQgFQwzKJzLlG1Zc+FWJre1R7t/cwq88uAmA3/vGWU7U1CD/8i2bV2wYrwXpksnfPDsCCNb4h/f3kKtYPHc5RXNE5/be1dkhN4LHz89xciLHnp449wyKHBzPE5ZS/hu0r3zkxBQXZ4v0NQV57woMmgUsl61xeD1b43WJwX/7DdoXLdyHl8kE++8/c4C7B6/NUVrH6w/79u2j85P/DWcyjwS8YXMTf/lPDi572yWZYB/awXv2Xsume2EoyT/9uyO4rkd/c5iv/bO7X6mXXsdnDo3yH756Gg+PRFDnxd9687K3u+v3H0XNib14d0+ML/7i8q/tJ/78eUZTJcJ+lS/8/F1ElmkeTGTK/NrnjpGrWLx1eyv/8i1bln2sD/3Zs7w0lgEk3rO/i9977/JxwoO/+Q2aHHEYe+Q33khb7Nra6l987iUyR4X3oyLB4d9/+5r2vReH0zx5YY5nLyXJTuaJXGXLoSuCPGbaIuMj5FO5b1Mz56fy5JMlQQqRJXRFQnG8unorpMtEA7ogyHkeZcvFtBwMx6tlUwryWa5qsbk1QtV2CWgKHXGRq3JoOEW2bPH+vZ38yoObkCSJl8Yyddu5N2xs4sB12I8rYSE3ZXNbhId3tl/z8+Fkia8cnQSEuv1ty9zmViFVNPjCkQkUSeIDt3fVM1p/lM4M8wWDTz15iW+fmqVQtfCvQitWZZa4cyyGghiGeXh0NgTxqaJ5t6srxm++fRu//NmjzBWq9DWG+Nl7+rkwW2R3d5zO2uD7heE0z1xKEg9qfOxgDz71lbHUgWvrlo4mP4/++gOv2POt4+Zxtdro8B+8nVDnIO2f+O/1f9MViZ+8fwPJksnnXhyvk3d9qowsS9y9sYn2eICoX6OnIcj7b1+9rl2M4WSJrx2bQlUkPry/e0VyxWoYS5V55OQUUb/GB27vuuGa/EcJP0pr548jbuXnZ9gOf/rE5bpDw2KV3NWYLxh85tAol+aK2I7LSLJErhaV0REPMNgSoWzY2J7HpdkCl+dLVK9qCshSbYgS8vHJN/Txi/dv5KkL8/zJ4xeZKxjs6oozkioxni6jyDLv2NXOHQONPH5+jh2dMQ70NfD141P87XOjSIYlsoVliaBP5WMHevjkXX185tAYJyezXJwtIssSvQ1BuhuCNIV9vOu2DjY0h3Fdj79+doRcxaKvKchUtsr3Ts9wYjJXb+4HNYnGsJ8NzWF+593b6W1c2f4NwHZc/uLpYaFkTAT44L7ua26z0mfn1gYcL4e4tIBzM3m+fWoGv6bw0QM9dQL5p568zFCyxDOXkqiSRDykEQ/o/Ou3bQZP4ksvTXBsPEtXIsC7b+skXTL4H49dJF26YpMvSRDxqww0hfmtd2zjqQvzQq2jiEHiiyMZwo5LW8yH7YghTnvMz/nZIoVaXaNIEAlobGwOMZmp1m1ZI36VbNkkXPvKBDUZt7aHeLWfb2mLYtouBcNiU2uE//yB3fyv71/kSy9N4teE+migKcy9m5q5vffWq85Xu/Z+4e8Okz89C0Dcr9AeD1C1HGbzFcpWLZ8+opMqmkuGir/5wR3832fG8GYLSBL8+ju287E7evnSkQl+6ysnkYD33NFDPKDzwnCKwsUr1n4//cDgDe+ntwJT2QpfPDIBwPtv71qRPLkabmRPNmyHP3lcpGNF/Co/e8/Airc1bZEnthyJT5Kkl5a7z60agn1dkqRzQAX4RUmSmoHqy3lAz/N+5Ubvs6PmWVk2RHbWeLpMsWrjCyt86aVJZvNVDMvmmcspZnJVgrpCc9jHdK6K57roqsKsrvDnP7jM3RubuH9LCxG/SrRmu6HIYqotS8JSz6cp5CsWiiShKjLtMT9T2SobmsPMFw2awz50VWJTa4RdnTFsxyVZrCJLQi0V8qv1HB7Pg++emiVZNEXeRkDDclw0VUyU40GN5pAPubZOBjSFaI1hGg/qZMsmjWGduzc2MVGzQ5EkiVzFAq4M3VprDIyNzWFGUiU2tkRoifp4aEcbALu6hHXFVLZKQJdprdmWzOVNEiERlN3dGGRfn1hkvnFimguzBaJ+leaon864n5Ip2Iw+VWYqWyEe1PjSS5M8N5TEpyr8+3duW9Hr/0cJpu3yuRfHODqWRZEl4kGNLxwZ5/7NLUusQUqGzffOzBLxqzWV4PKPpyqgShKm461onZIsGBi2R7Fqs7FmExPUFdway/PVQn4V6artQnNER5VtSqZQe8lAX1OIC7NFnrmUIhHSkCWJvqYg4VVsAKdzFSzbRVVkpvNVXhrN4HlC7fmR9fyBWwbLFQHwFVN8rp7nUbVcqjhosnTDvr1KzQKoc9EGupAcZNou8ZephIj6VdpifmZyVUzb5ZETU5QNh8lshbPT0BkP0ha7NWvQifEcrudxYiLHPYPNuK7HF1+aYCJT4WB/w3Wz5RaQq1gMzQtLtLFURag9b4BMElknU79uYS1zeehXnXmOjmXXh2A/RCjXyEUeUF0uHHAZtIaXX3OCuoLjXslxfTVwoD+BqkiYDvSsoKICYVsxXRuCLc6NuBrpkkmuKhjAK5UaqZLJTK6KYTtcnl/Z/jHkE0oCCY94aGUPRs8TmhnPW9k2cWdnjC/VhmBrVQRPZir87jfOkC4YzBYNFgp1CVBr/rR+TcanKjX/eo+mkA9FlshUrHrWk4KHYXtL8jZlWaJsXnGs0BSJqil2P9eFcFDFpyk0KTJNYR9VW+QVb2qN0J0I8NTFecFgNh2yZYtESGdbe5SJjNgzdnReLyF5pffSYzwjcrbGanlbV6MtKmwIi4ZNyKfwteNTDLaEVw3Jvh6qloNZc+ZYjGcuJXni/ByaLLO5LcK9m3701sbmiI981cGwHRzPXaIAuxorDcCgZk+/oCDzPEzbYa7gIBGvDWlF5qvtuHzz5AyO6zGTq/LTd/dj2i5np/OAUGDmKzbNkVdvUNCTWL3BuI7XF65W5ZqOR6ps1GtXCQldlZAl8d+wX60TOEU/Yu2YzFRwPaGEferCPKoic6Cv4YZq9zPTeQzLZd4ymMxW2LAGq/sfB9ysneI6fjSgykK5ni1bS7LTloPtujiOx3zBoDGkC5crF5ojGg9ta6Mp4uORE1NkajlKc/kqluMu6VPJiHO/pkj1SIhLcwUuzBYpGsIla0ENb1sOZcPhcy+OUzRsZnJVdnfFhcrLvZKLatdU672NISJ+jaCuUKramLaLLEFPwk9nIkAiqNd7DY4nlGogVO07OmM8fm4WTRa9NTGsk1AkUBWJ6Wz1ukMwD7G3ZkomBcOiZNiE1hBfUTZt/uGFcQpVm7ftbGNT6+oWzavBsB2+fmyKsXSZ3sYQyaKBpkjoirAkfmEkjWW7FG2HgmHja1GYyxvs6Iwymi6TKhp0xAPkKhab2yJ0J4KUDKG8c7xarAPCjlNXJM5O5xnLlDnYm+DEeAlJEio0v6Lg8wtHqs1tUeYLBqWa3aSqyKiyxHSuSqpkiM9PEmqvhdQIENbzVdsjFhRuA7ois7U9yvNDSeYLBrbj8eT5OR45MU2yaAh1YdhHd0OQrdexuX4lMJa+cpYpmQ6X58t4eARUBUVykGruafmKtcR6/b6NTfz9C5M1dwlZxAEAXz02QdkSE8HvnprhvXu7l+x5C8eY87MF/v7QGNs6okvEJQsoVC1UWb6lOWGjqTIXZgv1P9/MEOzszNr3ZJ+q0N8UYjhZYvMK1rUgBBFfPz6FX1P40P7u6zqILeCWtM08z/sNSZL+EMh7nudIklQC3n0rHvtG8MYtLfQ1BkmXTEZSJXZ2xuvWLUVDFF+pskVDUCddNCjVJLvb2qMYtlClTGQqpIsmuiLTGPbx03f3s7+vgXMzOaqWy0SmwnimjGm5hAMaB/saeKDm1/uB27vJVSwMy+HTh0YZS4svyNB8kYMDDfg0hd3dcT5wezctER9hv7BweepCknTJoC3qx68phHSF27pj2K44tCdCOhubw9iex8GBBv7i6SGifp0HtrXSkQjwrZMz7OiM8sm7+lFkid959w48z8NxPYaTRcbTFaIBjZaIn4awXrdn7EwEKNd8/RewsSXCv3vndsyaZPPsTIGZfJXtHVG+cWKa/f0NvHdPF7oq7DkuzRWxXZfHzs2xv6+BTMnkn79pI989M0umZDKdq/LcUIrnh1KYNUZrqmT+WAzBMmWTM9N5xtNlbNdjoDlEi+znyfPz9DeG6sxWTRG2mJ4H797TyXdPz1Co2FQdUQg4rkc8oPKzdw8Q8Ck8dSHJ4+fnrlHf+GVojvppjQW4b1MzD25r42vHphhJFfn84XE+tK/7FR2EOa4nwmEVmfb48p/vhuYgv/nwNiazFXoag/zgQpLRVImNrWF+/t4N/NmTYuKPB7/8wMZVhwCX5go8dznFXMHg3k1N3N6T4Py0CM9dybJpHTeHloif9+/tREIUwsmiSWtUp1AVloO+WoqYZYuQX1mC/sYAFcslWTDwJGgO6YR8ooGWCOns7Izxzt0d9ef45J19PHMpyZa2yDW5cwBnp/Ncni+ytydR33i92vDJ8Txu64rXv9+qIvOR/d2Mp8t88aVJkkWzPlTSVZmg79YVBbu7BXFgoQip2k4tVBguzhXXNAQ7NZnje2dmyVctuhNBbu9N3NAADOCjd1zfr3kdrw0iukTBFMXvwmEidtUatbt73Q7xhwn2olRtw1lZCtsY0kiVLDRZYlP78p9xU9TP3p4EyaLBg1uWz9OCpXvsjs7oDa8Ri9ESDvCe2zpIFc1VFT3vv72bk5M5VFnm3bd1rHi7XV0xNEVkjCor2JE0BDX8moyHR8Mqe/S+vgbOTRdRZNjZsfJ18c5dbXz//DybWiI0R5c/jH30YB9fOzbFRLbCb79j+4qPtRgvjWVwXY+KLWxjDNdDleDODY3s60uwoyPGV45PMZoUjOeQrvLz9w3guB5npvIEdRX/ItuZkE/YeMQCKrs64xwZzdTYzzHaYwGevZxkLFXGp8p8YH83925q5qkL83TGgzywtYVU0aS3UeyJ45ky3z83x3zRrB+a/ZrCu3av/NmsBZIkcd+mZs5OF5Y9UAMEdIWfuqsPx/P4u+dGyVUshudLbGwJo8oSJydz2K7H7q74mix9MyWTz744hmm7PLyznU2tEc7N5MlXhEWkXrNDeqXCvl8pZGu1f19j6LpNgq5EgM1tIp9mW1sICY+SJYbEnueiShKqKobkZdOpNxZloCmkUXXEuapqubTHAvzcvf08O5Siark0R33oqsy7b+vk7HSeOzc0cmZKBJInQhqm7fKZ2llVkSTuHmyiaa3Bfy8De7sjvDQuGin/7t07XvHnW8etQ/iqrCVdAdsROUIfuj2EC7x7dwenpvKcm87TFPFz94YmCoa1KoliMZJFgwuzBTrifnoagrh4XJ4v1u1jP3oDBMftHVFGUiWifm0J6W4d6/hxhiJLfGR/D/MFg44V+jULaI8FePvudlxP1J/xoMY9g000hH189I4eZnMGF+eKeJ7HYGuEt+1o448evcBURuSL+xSJB7e1EPXr2J5LR9zP3x8arVkiikGW68GDW9sYSZXoiPn5xJ29fOGlcS7MFIn4VcZSJba2R/iJgz18/9wckgQbm8M0Rfy8//YuFFniJ+/sw3JcKqdnSJctNFXlI/t76r02EP22h3e2cWlOqKHbYwE2NIf40ycuMVqrwUT9I6EqEhvWkDmqKTJv2trCXzw1TLPu4/vn5pb0NlbCXN6oEwMuzxVf1hDs5EQO03Hrtse5ssXXjk0RD2p89EAPm1rD/OzfHMa0XQxH2A4Oz5fY0BxmW3uUxpBOLKBx/+ZmQj6VD+3v5onz85wcz1CyXLrifu7b3MxP3tnPDy4m2dgSxqfKaKrCRw9288ylFCGfyi8/sJHPHhrHsB2GkiUe2tFOQJdJBHSm81VGkiUuzRXwqQpBRfSW7tnYxKHhFKmiyTt2tdOVCHB6Ms99m5u5b0sr+bLJl45OEvaptMf87OyKUTIdon6NcsCmqyHIr7x50zVEqlcLb9/Rztnpi4BwSBhNC/LGxtYwB/obmclVuW9TM4+dm+XJ8/NYjsNHD/bSGAvx/3v3dv7zt8/R1RDkbbvEOay0yDLRdj3u3dRMqmiwuzPB4+dn+dm7+8lWbU5M5JjNV5kvGOzuii05D16aK/DIiWm0Wi/sZvLCKqbD8YksLREfA7VBlet5mLXz7mqxJ6thW3uU4eTqe/Ll+WLt94rznj2dmLa7qlpyOFnCrlmxTucqr+4QTJKkDwLfrg3AfgvYC/xHYOZWPP6NoL85zK88OMhMrsqdGxrrB7F37OrgzFSet+9s59nLSbJlCxDZS90NQTpiAe7f3MSXj05xajKH4Xh0JYL4NYX9/Q3sr9mLFKoWFdO5ZoiTq1goskRDSOfwSBpVFp6m+YpF1K+RKpq1xU7CBQ4MNNbv+/baF99xPSYyZRpr3qfPXk4xla1w92AT7THxRamYDmdnCngeHBvP8hMHe/nA7ddKbyVJLOCDrVEGW5dnaS5k8iwHvcb22t0dZzfw9eNTlE2HqiUWWV2VkSSJOzc0cnIiW2eCNoZ1OhNBNrdGODSc5onzc8QCGv2NIUqmw4aWEF2JH49CtDnsI+JXCfpU+hqDbOuIMpWtEvIpSw71uirzsYM9JIsGsgTHx3PEAw7zRYOeuMp80eCdu9oJ+jViAZXB1gipkslcvlr38Dcdl4aAjqbKbG2P8OC2NsEWtoSCcTpXpWo7r6j3/vOXUzx1cR6/pqDKEpoM1qLeYGtE569+aj89jWIxrVoOl+ZKhHwq925qJqAr7O1NcHmuyIH+xus2+CYyFaSa3ejGlgghn1p/H5cboqzj5eGhHe2EfCrPXEySq1hULIdC1eLERK42FIdYTCNfMblrYxNv3t5GSFN56tI89w02Ew1qfPHIBLmKRXPYx/bOGL5FrNLuhuCK6j3DdvjO6Rk8TygOfvLOPgDOThf4/rk5QLCI9ixSWEqSRCKk49NkDMvlzg2NdCWCRP3aLS2W7t/cwv2bW+p/D+oqe3riDM2X1mxLtTA0i/o13rSlhb6mtbGjg7pM2RQXWSL82hSA67g+dnbFeXYoA1BnPemqzOLRyb2bWpa55zper3hoezt/+cwwSPCOVQ68iRpzVleVFRXcLWE/HzvYy3SusmQtuRrHxjM8dSEJgE+TX9ah2cPDp6lEg6y6105nq2yq1ZAjqQq3rdB//KU3DvLM5SQ7OqL4teXrjLBP48GtbVQshwP9K1uWvG1HO7P5qqi/+1ZeQ//rh/aQLBm1vIflf4dM2eTezWKwuNYjW29jkHsGm5grGJQNm+eGUtiuR6Zssbs7IXz9PeGNrykyd21s5J5B0Tw42N/IaLrE5tYIZ6byjKbLDLZGuK07Tr5qEdZVzs7kuThbZE9PHJ+qIMkS7fESW9ujvG9vJ01hHzs74/XXs9gOOhHUuXNA1EcVy1myh75c7OlJLNlDl4MsS8hINIZ1chUxTFFlifOzBR47O1e/3d7rPA7AfHEhD0uoPoK6wrdOimPjhuYwb97eRlBT2NX1w0UQeOTENPMFg6NjWX7+3gHUFfJWiobNvZsESSbsU/EQmW7RgEbEr7G9I0rEr5MsVnn6UpJc2aplBUvcM9jILz+wib97boTTkzlkWebeTc3s7W2gbLnMF4z6+vCW7W28Zbtw+9jZGWc2X6UzEaBQtcmWrXozYrW151YiEvDTFhX50mPpMn1N6+qc1yM6ojpT+ZplVU267leVJTY/9wy2kAjqXJ4v0tgU4pN39dEeC6BpSj0TWlNlHhpcu3XqV45OCrccn8LP3bsBy3H5m2dHKFRtGq+jWrka3Q1BfuG+DWu+fapoEParr6gl6DrW8XpAQFfoaVxbr2RLWxR3lyCY5isWuirz4NZWfKpCR9zPxpYw6ZLJ3l5RHw00hSgZNoblsqElzL96aCvfOTVD2XT41JNDKDLoqhAGVCyHLW1RfucqQkRzxMdQssRMrsL52SIAHzvYy799eBuffn6U+YJBb2Ow3ucN6AoHBxq5OFckXjLRVZnzs3nuGFhKRN3YEmFjy5XauSsR5Pfeu4v5goFPk4n6tSUZnGtBT0OI/qYQtrv2fPrORICB5hC5isVtPfE13WclNIZ9hHwqOzpjvGNXR81OXKi7M2WT9liA33/fLk5N5Tg7lSPi18hXbTrjfg70N5Aumdwz2FQnkL/7tk7etbuDCzMFLs0XOTmZw3LgyGiGnoYgF2YL7OqK87GDPYR8Kp+8q7/+WgZbw5ydzhP1i0zS27rj9driiy9NkKvYBHSNh3e28dN39fPpF8YITeUJ+TTu3dzCXz09TMl0+PKxKR7c3sZ03sByPHZ1xWkI6WxoCXOwv5GoX+XyfJGHdrTdVE/HtF3yVeumbHYX467BZt40nsVyXD5xZz8nxjNcnCvy62/dTEc8wHzBoDMeYDonBlauBzG/jmm7bOuI8dc/vdRKv7chyJGRLAAdscASe8efuPMK2dn14PxMga5E4Jrv6WRWRCKZtstcwbipIdjj5+c4PyOsGn/qrj7iNUXlQr//ZkklC3tyrmwtO0jLlEy+fnyq3u97eGf7de1Cd3TGmMhWCGoKfddRbi7GreqI/7bneV+QJOlu4K3AfwH+FFg+JOEVxraOGNuuYo92xAN1Rt6mtgi7u+N859QMPk3mQH8DOzrixIIabzFd9vbE2duboHmZTKGIX0OVZT734hgV0+HhXe2UDIevHZtCluDD+7vZUptytkR9dMQC9DeF6GkIsrU9SrJosG8Fv9IFWe8C3rCMgkBTJMI+lULVXpVJe6uh1jaZBV/fBRzob+BAfwNVyyFZNOrDuoVNqS3mpynsoyMe4I6BBkK+H5/iUpYlfv7eDXz/3BzxoM6bNjczUzDqYdWLsXgg+Yfv38Voqsif/2CYQtWmtynExtYIQ8kS42mP2UKVzniAX37TRvb2NvC3z41waa7IfNFgT3eCjxzori8Ydw408vxQiv6m8Cs6ACtULb5zZobzMwX6m0Ls7Y0z2BJhNl9BlqWaVWcL3Q1Xvt9+TeETd/RStQWjY75gMDxfJKgL+ev1sKcnQbpkEtCUuvXjaoPddbx87O9rIFk0MG2X+za18B8fOVMPj93THadqu7RG/CiyxOW5Erf3Jvidd10pbHd0CFtYx72WUboaVFkUprnKUusGbZHiYLnCM+LX+MQdvRSq9k3Jtm8WYjC29tvv70tQqApr29Wsya7G9vYYR8YyaLLEXRvWhyivV/yzNw5yelpkPv2zN4mGTMSvkav9PKiup77/sOFX37yJ1pgfnyrzof0rM9Pv39zC85dTtEX9KyqUZVmqW1KvBkWWF/355X1n5BppKxa4th5ZjHfsbmc4VcSvKjywZeU1pqcxSE/j6gz9aECjMawzmirRv0rj2/XEwExTpCUe+sv9DtfL/myN+NnWIWxZ9q0yUFuMXV1x+ppC+FWFfMXkX3z+OPmKxd2DTVycLTKeLiNJEhtbw9y/qWXJIa0pIrJ0QZDdFhPeFg7q2ztibF90RvnZuwfw8Fat0U5O5HhuKEnEr9Ic8dHVEHxNFe9v39nOTL5KU9gnSHeLvo/qGr+bA00htrZHKBkOe3sSVCwHSRLuk01hnXetojx8PWOhLlFqtvTLYSZX5QuHx3E9uHuj+I44rsfurhiTNfun+zc3c3Q8y+GRDO/b08VdGxr47plZQj6VhpCP54dS7OlJEKzVvIoslO4f2d9NyXCILWMrHdCVOsmmIaRzoL+BiUyZuzY2XnPbVwp3DjQKtq5fY1vbzVtpruOVxccO9PBfHr0EiH0AIOhTaUn4mMkbbGiO8JbtbUxlK2xui9IY1vn68SnuGGh8WRatC+vHwn6nKTI/cbCXVMmgI/bK1fHPXkpyaDhNNKDx8Tte2Wy8dazjhw0bWkIMzIWomA4P7Wir1x+qIl+jfPrVBzfzwkiK7niQ+7c0E/KJOJbhpMiNrZgOiiTx1h1tSFCPWDk3k+cHF5L0NAZ5y7ZWWqJ+joxmGE6W0RSpXkN9cF8X8wXhoLUY+/saaI36+O6pWY5NZHn6YpKwT1tTxvhiV6wbdVkI19RTi8kn14OmCJX2rUB/U4iP39GLhBiIKYpE0bBpjvhordXI2zqibOuIcm4mxrExIV6QZbneaz46luHFkXE2t0W5b1MzkiSxuT1KY8TH0LxQ2jSEdHZ2xehtCuJXlWWHE+/b20WxKhQ5+aq9xFng7TvbCekKIV3l7sEmJEliU2uY4fkwqiIz0BQSEUQ1pZcmy2xpizCcLOF5Hm/b2V6PSLl7sPmmIwQsx+XvD42SKVvs7U1w38uw297aHuUduzswbZcDfQ28edtSN4/eRvF6793UzFCyhATEgtqKdfKvv2ULY8kKVcfh371zefeKZy8nGU+X2N0d5/5lXvtt3XFSRWNJf/RGodT7/lfq2L6mEJ+ouQ7dzGBtARdmC3zz5PJKNVkWVsqO5635LNEc8dVf143gVnWLF7R7bwf+1PO8r0qS9B9u0WPfclQth52dMbobhNJrcebQWgL1hpMlprKCC3V6Ko9PkXE94WU7mzfY2eVfNhhxLU2O60GtFYPJmn/rq4UHtrbSEQ/QGvUvYaUuwK8pS9Q3+/saCPtVQrq6ZlXDjyIaw74l34W1TM7bYn7aYn4640GeHUpx50ADJdNhLF1BlkS+xEBzmItzJe7f0sovvXEjl+aK+DWZqF9fcvAdbI0w+DLY4mtFumQSD2hsaA6zqTXMB/Z2s6EpTNV22NvTUP++Xl1Y6Kpc30TPTAubFrAYShaXNImWQyyg8b69r24o5I87/JrCe/eI97xk2PQ3BQn6FNpjfn7tzZuZK1RxHI9/eHEcECGaV9+fm2CuK7LERw/0XLPuDbZGeOdukZexqXX5jT7i15Zds15PuHqdWCtEqKjIjlmOtLGO1wdCfo0P3d6Di0dz5Mr3d0triGzFZucaDmjreH3Bpyn81Bv6r3u7f/PWLZyazDHQHF6Vzea4nrCMXsX6bXdXDL8mo8ryy842ifq1eiNhyyqN6K5EkD98/+6X9VwLmC8YgsAV8nFuJr9iltR0rlInNcwVqkuaEzcKWZZ46/Ybr70Xmi1NET+f+sQ+kkWDgK7wN8+OEPGr9DeFeN/tXWu23VgNa7H7OzyapmSIfLBfuG/Da24RqCrykpp/Y0uEd+6WsF2XzWusOVVF5qEdVxQiMTTet6eLfNV6WTljrzXesauDi3NFuhOBFYfVs/lqPUvVcj0+cUcvhu1ek3d0z2Azm1sjaIrIcLm9r5HhZImvHJ0ExJnit9++jTPTeSJ+tV4fxYJrY6MvR7Z8pfEz9/Rz18ZGmsI+mn4MrPF/WNEaDzLYEsJ1PQaaxTUtSxJf+aV7OD9b4EBfA4oic36mgOW4fO/MLCDUAru64jdt0fq+27sYmi/Rv4gUHNAVuvRX1uFjsnZeyVesep78OtaxDgGfqqx5aLO3N8Heq/qp79zdwXzB4BN39nJoKEVLxM++vqXW/0dGMxQNmzNTeQ72N6CrMnt74rTH/IR0td7f8qnKio4/PQ0h3rS1hUIt+2sqW1nTEOzlojXqp/U13M8WK5o64wE+vsJQYEtbdNma//BIhpLhcGgoxR39DXWXgaawj0/c2UvFcupCh9WUV4osEQtqy5Jw/JqypOYDuGtDE4mgIOR1JoL8vw9v5eRkjn29Dcg1O/EP3H5re31l06n1G6/tU90oFvfFVsOOzhh/8L6dTOfEmWaleJr2eIBPffJ2TMelbQWb9xeHM7iex9npPG9ahpx4K/qjb9zcQnvMT3PEt+Sc83KGXwuYylbqSrVk0VzymLGAxgdu7yJZXP1seitwq4Zgk5IkfQp4EPhDSZJ8rJxT/ZriwmyBb52cIeRT+MiBniUDsLWiqyGA53kkiwbd8QDt8QDzRQNdkVcNbrtVCOgK3TegFrgV0FWZ3SvkBCwHqRYuWbXXFhi/jmvR1RDkQ7XP2XZctnVEqZgOPQ1BJjIVWqI+vntmhnPTBQzLYXN79GXnQtwsuhNBbuuJky1b3L+5Bdv1ODOdJ1k0kSSJsulwYbbAXRuaVmzebGgOcWoyh0+V1+0MfwjgV2VmCwajqTKba3ZZC6z83sYgo6nSDbGLy6bNuZkCXfHAspmBK617i20NftywpT3K0fEsnfHAy5b0r+OVQ1NE59J8Ecv1+Mh+UUyqskzYrzFfNNdsSbKOHz5oqsye65CrTNvlcy+OkSya3Le5eUUrOUmSbumhoD0WqB9qXy6Khs35mQI9DcEVh1YNIZ2WqI9kwVyVLXtbd5x0ycSnvjzLxwWMp8skiwbbO2LXtdVYDgt7T8V0yJZNZvIG+/sbbnoAdr29bjlsaYvWVP0h/NqtP17ZjsvpqTzxoHbdIPiVcLOM08X4UVgLQz51xVy1BWxpjzCZrWC7Hru6YsuqAIfmi2Lwado8dzlFc8THR/Z30xb1kwgKO6PB1giyLF23yXdxtoBhu2zveHlZgrcCnieG/s5qMs91vObY3hEVn5PnsWMRKfGvnxnh9HSObMnkbbs62NwWwfNEbtfQfOll71FRv3bd6+eVwN2DTTx9MUlnPHBLGn3rWMc6rkCRpTrJ4+27lvaqxtNlUiWTjc3hun3cUxfmuTwvbKJXEhFM5ypM56psa48ucTToawyxszNGvmqtaqm9jivY0h7hyy9NUrEcvnx0kg/u666TeOJBnfgq981VLC7NFelvCi1x61kOl+YKVC2Xbe1RZFlCuap+aYn6eeAVHibGAhp3bWhkNF3mzoFbq4Jf+C43hXTmigZb26L1vqeqyNft36dLJp97cQLbcXnPns5lb7+lXditb3kFZw66Kq85x/NGsbc3QbZsEdAVNjRfe95Y7N73SuJWDcE+BDwE/BfP87KSJLUD/+oWPfYtxdB8CdfzKFRt5vJVwmtk016eL6LXvryqLKEqgn1/ZqbAxtbILZO0/qjg9FS+zgoDXvFp7o86VEVewmbOV0z+4gfDvDiSIVUSBUOuavH2HW0oa/QjvpWQZYk3bbkiAZ4vGExlq+QqFp9/cZzZvIEkicV9JcVLV0L4xMrSjUvR1/Hqo2qLIPbWqB9tkZ3beLrMaKoMSExnq/Q0rK2h9s2TM4ynyygy3LephZ6G4JJA23Vci9l8lZaID9cTjVVdXX+/Xo94aTRLumTiefD8cJrB1ii26zKdqyJLEkfHsq/1S1zHa4hsxWQsXaZkOFycLa4pT+n1hkeOTzGdEzle//Se/mVzkHRVOBk4rreqnWPEr92ymjpbNvnSS5O4nkeyaF5jVXIjmC8YNIR8NIR8lIybJ3h96+QMY+kyuirzM3f3r2pHuYA7NzSyvy+xYr7UWrH4LLMYT19KcnQsiyTBTxzsfVnqu3VcHz5V4eGdK+ckTWTKfPXYFCD29qCu1pWUiZDOJ+/qw/WuWNakSyYzuSobW65VnF6eL/LIiWlA2ABdL/ftlcb3z83xg4vzhHwKv3j/xtfU1nMdK+PyfKlOrrqULHLnxiYsx+WLRycwbZdM2eJttWa2JEm8+7ZObMd92WvUa4X2WOCmHBnWsY513Bwc1+PFkRSPnZ0jqKvs7o7xz964EUWW+OPHhBXrULK47H3Lps0/Hp7Adj0mMpUlJHBZlnjwZdR6P26oWg6NIR+bWsNULHE2LZv2ml10vnpsklTR5Mhomn96z8CKPbyRZImvH5+uP+daLcpfCRwcaOTgLR6ApUvivGHaDlO5Cj0NIcbT5Rs6z0xmKiJ3GBhNla+p1XMVi65EgLsGGoncAieK1wJRv8Z79rz2c5NbMgTzPK8sSdIccDdwEbBr//+6w96eOMmiQTSgrTl75eREjkfPioHOe/d01g+HkiTVwxNvBE9emOfUZI69PQnu3HBrL8DvnZnlwmyBOwYa12TtuBYYtsNXjk6SLVu8bUf7mpiai9+WH1e231yhyteOTeFTZd67t+u6qsPTUzmevDBPdyLI23e2ryiVBeGV7noi3D7qVxmaLzFfMPjUU0P84hs33upf5YYxkSnzzOUkFdPB9YSFY3NEvyYE0XJcvnpsimTR4C3bWhl4mRZP63j1EPKp3N6bYDhZ4o5FhcTiz3i5S/+F4TQvjqTZ2h7hTVtaefpikuMTWbJlk6Cucn5GMJbDPo2fvrvvNfXln8pW+MaJaUI+lfft7VxTs/LVxBPn5/nmyWlCPoX37Wlfbya9TqHIUKja19QL80UTy3aRWB/6/zgjoCnMFwyyFYvtHT+chKHhVImTEzla1zA8ebl5Zgs4Mprm+aE0m1sjKzY8TMfl9FSOkmGTuIH18fxMge+fm6Mj7ucduzpQZInORIBNrRHSZZO9vfGbft0Le+TV60GqaPCVY1OossR79nReozR7uc3lq88yi63Kr7yma1/XrYTjejxyYoqpbJU3bWl5Vdwzfhix+CPY3CZy07obAsRrFkOSJKFI4jx5bCzDVK5KW9TPUDLMOxax7B89M8szl5MUa7moJcPm754fxbAc3rW7Y81KxFuJk5NZLs0VkSWJbMVar1tep3A9jzPTBTzP4y3brpAwC1Ubw3YoVO1r7nO9NapQtfjy0Uksx+NduztelWF7vmrx5ZcmsV2Pd9/Wse6asI51vAwcH8/wZ08OoSsyv/zAIBuWUYAniwZfrdUy793buaJ93lMX53nmYpLTU3l2d8Vw3StryBs2NnJqMsdtK5A2PA+8+p9/PPuMtwqPnJhmPF2mbIo6ob8pdEMxErbjcm4mT9VyuXewmS0r2Fkv7g/lKxZ/9cwwAO+5rYNnL6cZTZe4d7D5VbGvfCXgeR7iP+C64t+u7nteD4OtYS7MFiibNhdmC5yeyvHwzna6G4J4nsfnXxynaNh0xgN8aP/1SRsLe65pu7z7NjHDcF2Pb5ycZjxT5r5NzdeNn/lRxS0ZgkmS9O+BfcBm4K8ADfg08IZb8fi3Ei1R/4o+qSthsaVf1XYI+VTeu6eTqWyFnV039sXxPI+jYxk8D46OZ27pEMywHU5N5gA4Np69ZUOwqWx1UQZabk1DsB2dUTw8JCS2LVoMC1WLdMmkOxFcdcjzo4DzMwUKVZsCMDxfuu535cREDsNyuTRXJFexVlXBWI7LPYNNbGoJ4SLx2RfGADg7k8fzvNdcSXV8PEvUr1ExHRpDOo1hHwf6Erx9VweG7TCdrdIW85MsGoynywCcrOWmrOOHB/duaubeq0I5m8I+dnfHCPs09vbEr7nPsfEMpu1yfDzHvYPNHB3LYLsefk3mrg2NhHSFkulgOW69iHitcGYqT9GwKRo24+nyq5KvdyMYmi8gScJO7dxMke7G9evn9YjehhAHBxpwXer2BY7roUogqRLrM7DXDpPZCj5Vfk0bY47r0R73EwtoBH2vr0H7WhH1a7TH/MQDOrbr8WpwF46OZTFtl5OTOe7d1Lys1aHteLTH/JRNh9ANvLcLxIzZfJW7NjTSHPGjyBJv37WyemeteGhHG2em8nTVcokXcH62QL4icgqG5ou3XLFz9VlmMe7e2EzUrxEP6q/oYCRdMhmaLwHiPV4fgi2P7oYgD+9sp2jY7O6KLTtc8DyPY2NZDNtlIl2hLeqnYl75XC1HXBtRv4YiSdy3qYlk0WQyXcanKZydKbwmQ7BNrRFm8wZBXbmpSIJ1vDq4OFvAp0h4SAylhBpDQqI97idfsehvunHr0uFkiVTRBEQ8xasxBBuaL5EuXXnO9SHYOtZx83j6Yop0ycS0XR49O7vsEOzCzOJaprSivalhiZ7qYEuYvX3/f/b+O0yu877zRD/nnMo5dFfniEZORCIBkCBFSZQoKlhZsmzZCtZ4PJ68M3t3du/uzHp3594dz3N3nomesWccxrKCgwIpikokRYkBOefOuSvnOqdOun+c6kI30N3oBhpAg+iPHz8UiUL16apz3vf3/sL3G+bIphselfu7I0tOCt1NLnad+cxOHgVcdn7tia4Vy4Y/synGxck8HREH5yZyixbBeht9fHB7M7KmU9UMsjVfrjPjOa7NFAArLrzbIth0TkYUb1h03C+iPicf291KqlQl4rWTLFRX/Lu47BKf2tfOYKJYVwOwPlsPhmnl+jXdYDxTRtH02zaKL7TnzspXgpV7Xi+C3R2fAPYApwBM05wUBOFdc7LZ0xFCN0zsklA3fO6IeO7Il0sQBHa0Brk4mZ+nsb0aOG0Sm5v9XJ8prmo3cUvQRYPfSb6iLrqw3YwgCLdoiSqazl8cHaVc1dneGuADd2BW/jCxMebn4mQeuyQuq3C4vTVAoqDQHnYv6TWRq6j8+TsjqLrJwd4ohzZEycsqZ0azvG9r7IEXwMAygBzPVOgIuwm47bRHPHxmXzsuu8S3j48xka3Q4Hfyuf0dVjGsoMwrlq7zcKLpBt84NkpB1tjU5F8wcbOjNcjx4Qybm60/39Ee5NxYjsc6IzzRG2Vzs5+z4zk6wu5F/ePuF5ub/VydKeBz2mgL33t94pWyIebn0lQBl11ie9v687NW2doS4NP72lF1kz0dVmLbZZfoaQsylCzxwe3rsh0PggsTOX5yaQZREPjcgY66X8H9xmmTqGomuYqK4yGVktrfFUbTTTY2+e7bxOyOtiBHB9NsarpVAm6WRr+TrS1WbLUSffvOsIfvnZ7A45C4PlOkcRUP036XfUEZlr6Yj/PjOSRRoKfhzny5lmKhs8wsDpt4X6Rpwh477WF33cdjncW5XYFQEAR2tAW4MJHno4+10BJ089ice9wuiWxp9nNtpsj7tjZRquqcHs1wLV5kV3uQTU0Ppmnm/VubiHgdNPqd6wWJNczujhDfODaGaZrsqiXyrIlYD1Bh0x0UsLuiXvwuG5phroqH4HLoiXo54bKhGyZ9642W66xzVxzcEOGtwSTpksZ4usyV6fwtlid9MR/nJ2qxzBIeo09vasTrtNHgs+K0lXKnudh15vOhHc1WI3rD4rH0UnQ3eDnYG11WXLetlp9OFRXOj1uDGztaA+TKKiOp8l0XZK7PFHjp3BSCAJ/c037ffWZ7G3301nrDNzQu/dqlaA25afA5yMtavXlWEi3Z4T/8xSBOm8h3T0/wuQOdS75PV9RLwG1H1Y36nht02+mKehjPVB5a9ZHVYLWKYFXTNE1BEEwAQRBW//T2ALFJ4jy5r7vl/dua7lmx4oWdLZg7VncSyGWX+OLBrrueMFI0g3KtSzFb6xB5N9McdPG3n9mw7Nfvag+xsy1428+4qGioujVem6tY1f3fONTNFw8++AmwWfZ3R9jXFa5Lhs69rkzZuuZ8RcUuCfzq451rYnptnbtH1U2KiiWRkq3dmzdzuK+BQxui9e/72c0x3rOpsf7vIY+DZzbdReSwinREPPyd92xYs/fmwd4oUa8dQRCxiQ9n8vxRQBQF9nXdmmD+y799GF3XkaSHc/rnYWd2LzJMk7ysPrAiWEXV8Tlt+Jw2qvoDHn+9Q57ojfJ4T+S+rpUHe6M8cZufaZdEPn8HMUZ7xM3+7jAgkF9A9uteEPO7+O0VxIwrZbXPMnd6DZ/Z37Ee860S79vaxHu3LH6e/NDOFp6vnQlfPDuJwyaxsy3IFx7vfCBTYGB18B/ZuDZivHUWpzngrivn9DZaSTgTk51tQXa0BmgOrrwxLOi281tHelf1Om/7Mz33/2eus867lX1dEf7Zh7bwk0szgFCf5plLLLC8WMbjWN8L1gJRn5P3bI7d8d+XRGHFcV3U5+RrT99Ylz++p21V4sLZ/LJpWnmoTh7OIqnLLvHFQ923fCYdEQ9NAVfdl/N2BN12vvpUz7z/JooCn9zb/sjH4atVBPu2IAj/GQgJgvA14CvAH67Se78ruZc33b1677t934DLznPbmhjPlB+oGeJaZjmfcVvIzZGNDaRK1XlymmttIZu9npuv64WdLVyojUsv9pp1Hk7cDokPbm9mOFlaUo715u97LX//a/nant7YiF0SiQWcDyyhtc7dsV4Ae3Ac6I5Q1QxcdumBdohHvA7euyXGVK7CEz0PtkhxNzyItXK5P3Ol19Ye9vDUxkbSpSqHV9m7d521va8+bNzus5z98/V4YZ2VsLXFT6ZcRTdMdndY3fmiIPCBbc2MpErs615dudZ11lnn4WBrS5BMWUXVDfYsYHuwzqPJ3cZ1qxEX7m4PUZQ1JFF4V6gNLPSZvLCzhStT+buemnvU4/BVKYKZpvmvBUF4Dshj+YL9b6Zp/mQ13nuddxc72oIPreHhWuJhLiKuj6+/u9naErgjWYN1Vk7QY+f5He9uWdl11rlXuOwS79u6NqQod3eE2L2Ib8I6D4YDD3Gctc46N7MeL6yzEmySeIvnL1hyVtseYQmlddZ51JFEYX2Ca501icMm8uyWO59qexjoafDeE8n0R41Vc6StFb3WC19AplTl8lSenkYvLXcgF/CwMZOX+eH5KbxOGx97rPW2Jn3vRl67EmcgUeRgb/S+FfnyssqF8dyaLyrphsmfvT3MWLrMR3a1sHcBWbB13h3kKioXJ27ck6pu8INzU6RLVT6wvYn28Nq9Tx9Grk4X+PN3RuiMePjKUz1I4qPd1fOwMZYuM5Yus6M9SMC1uA/kOveGREHh5fNTuO0SH93d+sA9CB9msuUqlybzdDV4aQvdn7j37FiW48NpNjX5F0zWrjaGYXJmPIsAPNYRemS6KK/NFHjjWoKOiIcPbGt6ZH7vB4lhmHz92ChXp/J8Zn/HeoF8nftOQVb5g9cHqOomv/1Mb92/7X7ELQOJIq9didMacvP89mbE9dh2nXUeCipVnTNjWWIBJxsesAff1ekCv7ieoDPi4bn12OWuuNOc4y+uJ7g6XWB/d4TH1uOYZXNhIkdF1XmsI4T9IfWKvles1plkVT5VQRA+KQjCdUEQcoIg5AVBKAiCkF+N934YeencJEeH0vzNqQl0w3zQl3PPOT+eI1NWGc9UGE2VH/Tl3HdmN/yCrHF8OH3ffu6PLkxzdCjNd05PUKl5ra1FTo5keOXCNBcn8/zg/PSDvpx17iGvXJji6FCa756eQNF0prIyQ8kSuYrK2bHcg768dx3fPD7KtZkCP708w5WpR3bLfSgxTfju6QmODqV55cL6uvgguDiZI12qMpGtMJQsPejLeaj5wfkba796n3zNjg+nKcgaJ0cyVLV7/zPPT+T4+dUEr19NcHHy0VlvTwxnKMgalybz5B4BP9+1wFSuwsvnJrkeL/Lf3xl50JezziPIzy7HOTGS4dx4lpfOTQH3L245PWqdqa9OF0iWlHv2c9ZZZ53V5bWrcd4ZTPHi2UkypYW9we8XJ0es2OXiZJ585f54u75bmc05fvf0BLK6vJyjqhv1+PH40P3Ljz7sDCdL/OTSDL+8nlz/3BZg9rm+2zPJapUW/xXwMdM0g6ZpBkzT9Jum+cjOyttqFVubKPAo9Bz0xXzYRAG/y0bLIh3AY+ky/fECpvlwFAUVTefiZG5ZG7jLLtLdYHVFbG723+tLqzPbGSCJAmuhuSVXUbk4mbulIOe2S0S9DgA2NK6P776bsYm1e1ISEBCIBZyEPXZEQWBj0/3tCNN0g8tTeeIF+b7+3PtJW9BNuapbPh/+dY+Ph43Z7mbHepfXA2FDow+7JOBz2mgL34hdMqUqFydzKNrabS5Za9jFG/GIeJ8Cktl4q7fRi8O2+DMUz8tcnsqj3WVxzibd+L0epc7M2c+5LeTGf5eTHyuJrR9lIl5HfcqmLbSyvX0kVWIgUbwXl7Uq1GOz/Ls3Nns30BFxY5MEJFGga07n//2IWzY1+RAEaAq4CHsc9+znPGhU3eDSZJ5kcb3Qt867A1ttfRAF4Z5PcCaLCpcm84s2Xm1utvIObSE3PteqiZ89UmTL1nloFnEFOUe7JLIhZn0H9zM/+rAz96xhe4TOGstlU5N1L7WGXLecSQYTxWU3ta7WijBjmublVXqvh56P7W6lP16kM+J5JEb4uxu8/M57NtSKMbf+vqOpMn99ahyAZ7fEHopx2FcuTDOYKOG0i/zWU71LJlgEQeATe9pRdeO+Jkae39HMtZkCLUE3LvuDlXEyTZNvHx+jqGi0BHN8/vHO+p/taAvwD96/CdM02bLuFfWu5oWdLVybKdAWdtefmd883I1umPd9I3/taoILEzlsosCXnuy+6+TdWqQz6mFbix+/y4bDvh4oPUwIAnx2fweT2cr64eAB0RHx8Lef2TDvsF7VDL55fAxZ1emPF/mVx9oe8FU+HHxkdwvXZ4p0RDz3TZb1yMZGDvZGl4y7chWVbx0fQzNMpjqCvHfLnXvAbW8NYpdERAH6Yo/OM7uvK8yu9uCqxLezsbXLLvHVp3qWjK0fZdwOG//XJ3YwkiqzdQX+S4OJIt87MwnAc9ua1qQH8xvXE5wds2Kz3zjcTdD97ovN3g3s64rwzz+6HU032dpirXf3K27Z1R5ia0vAaiZeC12e94ifXprhynQBh03ky09243GsJ+rXebh5dkuMlqCbBr/jnq7t5arGt46PUdUMRtN+nt/Rcstr9nVF2NW+Lid3p2i6dR6qVHVaQy7et9X6bldie/Ox3a33PT/6sNMe9vDJvW2UFJ0t6/mBW1jsTHJlOs8Pa4pjH9nVwsampT+71dptTwiC8C3gu0C9ncU0zb9Zpfd/qPA6bWtOv324Jkm2vTVwT5LRS73n3G7q5Y7QPmhmr1PTzWVLWt6vBT5XUemPF+iOetnVHrovP/N2GCZUa504N3/HgiDcs8OSoulcmszT4HOuaV+0RwW3Q7pl7RMEYV5Xy/1i9j7UTZOr0wVcdoltLYF3VWOC9TsK6Ab3TYJsndXDME00w8R4SCak343cHLsYpll/lh6WeGUt4HGsXtxrGCaXpvI4beJtDzG3i7tU3UCrxXCyevdr5KbbXM/NaLrBxck8fpeN3gfsj3E3rFZ8O/tMqbqxvu7dhga/i4Y5E96yqnNxMk9L0EXrIqobc+/xtbp+zV6jZpjrccsaxzS55Tm9X3HLo5A0lbUb66H2CNhnrPPuxy6J7Gy/s+aL/niRSlVnW2vgts1Uc/ePpWK7h2kdqWoGFydzayanpZsmak1qXDe445zjw/QdrBW6ogsrZyWLCiOpEhub/I+0l/hC99T8+Pf2seVqFcECQBn4wJz/ZgKPZBFsrTGTl/numQlM0yqg3A8D8bn0xXw8s7kRRTXY1xW+rz/7Tvng9mbOjufojHhwOx7slNXNfP/MBMlilZPODF870rsmuuQkUeBXHmtlIFFi232c9nr9aoJLk3lEQeBLh7sJeh7dDWGd+bx3S4yQx46qG/ziehIARXt41qDlIAgCVV3HYQhIa2AdWGf5mCb81clxqprBSKrEJ/e2P+hLWgdw2SU+truVkXSZ3Xd4kF/n7jg9luGNa9aa/fE9Ij0Ndy6j3OBz8qGdzSQKygNZ+98ZTNe9Yj//eActwYWLF48Ks7F1V8TzwBUMHjZ+cmmG/ngRmyjwlad68DpvPcJvbfFTUXU03Vizqhvv2dyI32Wj0e+kwed80JezziJcnynw8nnLC0w3THZ3hNbjllXmfVubODOapTXkfqQTmuusM5Yu8+JZa4q5XNV4oje65OsDLjsf2dXKZLbCns7QfbjCe8/Pr1kKNqIg8BuHugh7H6wUrNMm8bHHWhlOldm1BqfKHzUMw+SvTo5TqepcmS7wa090PehLWlPsbAui6gYCsH0ZCgqrUgQzTfPLq/E+69wbTNP6f7i1o2s1MGodYQOJEsOpEns7wzT6bxxsBEFgb+fDlXgOeRw8cw+KhXczEqzqBm8PpLgeLxJ021lrTWPtYQ/NAde87p2xdJmLk3m2tQTojK5+V8usx5xZ+7917j2KpvPWQAqnTeRgT3TVJ6tU3VgVCRSv08aRjY30x4ucHbP0rB8WT8LlouoGVc1Ata3f/Q8j8YJCoiATWi/erym6G7x030Xh5V5R1QzeGkjikESe6I3eN9nB+83c2OZ2MetyYqotzQG2NK/Gld2gvg9KIgd7F98H567MdxuzvRskZe5VbP2w0x8v0h8v8lhHiObgwh5gRj3epX5X3XxPCIKw5ht9PA4bh97F69e7BVU3GUuX0U2Tqnajq3o2ji5VNX5yaYYGn4M9d3HGX62Y/2Ek4LLf98bkddZZa5imSXWOatRyYqXRVJn+eJHtrYF3jd2BMS+nde+ZVbpaai/uinoXnUp6EJimyTuDaWRV59CG6CPXTDV7j8x9Rt4NZ4PVwDBNKlUdQbD+t8jSMcVdFcEEQfgfTdP8V4Ig/Du49Xk1TfPv3837rxbZcpWxdIUNMe8jqbfcHHTx0d0t5CrqqsvnFWTLbyFfUSnIGgG3nXSpyq/O8YRax+KVC1Ncniqwqz3I+7au3Jfi/ESOkyMZXHaJ5qCLD2xrvm+HhnJVYyBeoiPiJrSISfHlqTw/vjhD2Gvns/s7cNklfnB+ikpVZyBR5Hef7bvtz5nMVsiUq2xpvv0oPMB7NseI+pw0+pyLXtc6q8vJkQxnRrOAZd6+pXn1Jv9Oj2b4+bUEzQEXn97XvirSrX0xHx/c3kxVN9i5RCdTSdEYTJTojHgemonCyUyZoWQJv8tOuaoRecBdY+sszmCiiG6YdXk3E5Or03lmcjLR9bVrnWVwejTD6draG/TY2d767uzM3NsZxi6JOG0iG5aQEPzF9QQnhjP0NnqX9G6bzskkiwpbmv2rJgc+dx8Mex1sXWQC/mBvFI/DRsBlo20RCbvbYZom3z0zwXCyzBO9EQ5vaLjTy74ts154zUHX+pTOfULVDV4+P4VumMzkZX7zcPeCr3tuWxMXJiw5RK9D4junx5d1TxiGydWZAj6nbU1ILJ0bz/LNY6O0hT381pGeFfmLrHP/0A0Dl11CN030WuJNEOCTe9sZz1QYz5S5MGE1mLWG3DQFFi7eLsWp0Qw/v5qgNeTi0/s6VqUwutJz5DrrrPPgkFWdbx0fI1tW2RjzIWs63Q2336dePDdZn0j97Wc23Icrvfc8s6mRqNdBg895z8/zyaLCX54Yx8Tk03vbid3B+n03DCaKGKa5Yn/d/niRdwZTANgkgSMbH50mAlEU+PTedoaSpXru7dhQmjf7k3REPHxyT9uasfwoKhpDiRKdUc99832dzZMD+F3226oh3G1F6HLtnydW+hcFQfh/gP3AKdM0/8Gc//4vgE8AGeD7pmn+/+7mAg3D5FvHxyhXdS5NufjcgUezOHOvTLwnshUKsoZhWl1hAbd9faR/AUzT5Op0EYAr04U7KoLNfq5uu8Sh3ui8abt7zYtnJ5nMyngcEl870rvgInttpoBhmqSKVZJFhfawh4DLTqWqL2sBTJeq/OWJcQzTJFFQeM/m2G3/jssucaA7cke/0zp3xux9KAisevfVtZkCpglTOZm8vHpFnW3LGIv+7pkJ4nkFv8vGV5/qeSi6UotVHb/LjigKVKpr0/9jHSton5X5eG6bwY62ILphMpWT0XSD64niA77CdR4GAu4ba++7Oc6SRGFZUm5XpwsADCZKVDUDh+3WAleurPLtE2P1AsOdxF4LEXTP3QcXP0rZJfGuJ3Nk1WA4WQas3/leFsF+dHGawUQJh03kq0/1PHJdtg8CSRDwOm3kKyoB9+L3ksdh4/EeK96tVPVl3xPvDKU4OphGEOBXH++8o2LFavLi2UkGEiUGkyXetzW2qo1U66weQbeDWMCJaTJvWr015KY15K4loMvYJeGObQOu1dbwyaxMvqLetfzXnZwj11lnnQdHoqCQLlUBqyjud9n5m1MTfOXJniXXlYDbTrKg1OPidwMuu8T++5TTGkmV6r6hQ8nSfS2C9ccLvHjWktqdPRMvF7/LjigIGKb5rj4HLUYs4Jr3XV2dzgOW8lapqq2ZqcjvnBonWawScNv56lM99+Vnzr0fAkucy2a5qyKYaZov1v75pyv5e4Ig7AW8pmkeEQThPwmCcMA0zeNzXvI/mKb507u5tllmDVzBmgibylXuqya/bpgcH04jAPu7I++6rqTuqJe2sJtKVeeT+9rAhM4FOg0NwyRZVAh5HAsmKtYisqqTr6irsjEIgsDjPREuTubuWKe/L+bj8493ICDU5VKuzxQYz1bY2xG+q+kV0zSZyFYIeRz4FvAZqOrWMzRrhrzQiOnezjDJYhWHJBCqBSWf3NvGRLayaAf01ekCU7kKe7vCaHOM0kuKxli6TEvQtWqd2+usDjvagoQ8dhySSCzgIldWAVZlempfV5iCnKA97Ca8itNYw8kSQ8kSO9uDi3a3z8q95CoqU7kKraEH3zF9Oz5/oANZNeht8NK7xMTEOg8WRbOmYQ3D5Mk+K1lpE0XaQy6GUxW2Nd+bJpV17h2abvDalTg2SeSZTY33pftua0uAgNuOXRTu64E1npexSeKamzQ90B3h+HCaTU3+ReNKzbgRV8yV9LpTchWVoqKxvTVI0H1jH1wphmFycjSDqhsc6I4sKWXidkg81hliIF5ccdPPbBzb6Hcuq7FDrcV6ei3WW+feIqs6eVnlVx/vYCon0xFeXtzhdkg81hFiIHH7e2L2OzXNlT0DJUUjXarSHnZT1Q2OD2XwOKW7lrdvD7k5O5bF77ITWZ+CXrO0h910RTwomkHfnPhS0XRyZZXDGyK0h92EPHfe/LqvK8zPryVoD3tWRRZ67jlyufd6UdHI1O7zlTS/lasax4czRL2OFSVx11nn3UyqqKCbJo0+J4lakWqpZpqWoIveRi+pYhWfy0ZR1tD0G9OnpmlyeixLWdE50BOuTw5/Zl/7kvmlR41EQcHntC27IWFTk5+r09Y01nIaUUZTZQYSRba3BYj57+78ocxZm6u6QaWqkywqtIbct82TNwdd/OoTHSiqsSYm2+8niqaTLavE5sTz+7sjvNmfpDvqXTMFMLjxHav64vtwPC8jCDCcKqPqBo93R+4q57tQnnwpVkUbUBCETcA/Abrnvqdpmu9d5K8cAmaLXD8FDgJzi2D/tyAIGeCfmKZ55m6uzSaJfHxPG2dGs1yczPHNY2O8d0uM3ffJMPjceJa3B6yxTbdDWnU5wgeNyy7x2f0dt33dTy7PcGkyT9Tn4Nef6Foz45qLoWg6f/7OCAVZY19XeFU0uw9tiHJow9JGn7djbgE3L6v84PwUpgmZUvWuDIpfv5bgzGgWt0PiS4e7bwlYPryzhUuTeXoavYsuUB0RD1tb/BwdTPMXx0b5jUPW+ywmZ5Qrq/zwgnX9uYrKrzzWxgs7W0gWZS5PFbg2M35bmaN1HgzttUTNWLrM35yaAOATe9ru2vetL+Zf9anVqmbw/bOT6IZV6P31gwsbiX50dyvHBtOcGc/wrePjPLsltmaN5WeZySsE3XYqqo6i6Y+k3O/DwEyuwlCyhGmajGfKPN4TwTBNpnIKsqpzbiL/oC9xnRXy8vkpvn50FEGwpoHuV8f5/T7wX5nO88Pz04iCwGf2t9O6hhIOuztCt43loz4nH97ZQqKg3JVvDVhxyp+/M0JVM3iyr6E+lXMnXJ0p8MvrScAqiN/uvZ7dHOPZFd5jqm7wF0dHyVVUdncEee+W20/BfWB7E+fGcnRE3Ov7yT1GVm+cMw50R3hq48om/J7dEuPZLbe/Jw72RnBIIgH38uUQZ6+tXNV5rCOETRI4MWzJzITc9rtquumIeGkPewh77HgWaLpbZ23wxvUE3zoxhmmCxyHxscfaMIFvHB0lU1bZ2Rbk/dvubrJ2Y5O/LhG9GsQCLl7Y2UKqqLB3GRO4sqrz9dn7vDO0ojX2jWtJLk9ZsVuj3/nAJyzXWedBM5Yu89enxjFNq1gxnZPxu2x88VDXorK3Nkms53kKssrZsRxtYXe9IXswWeLnVxP118/uk0vllx41jg+n+eX1JG6HxBcPduFdxr7qd9n5whPLU0fTDZPvn51A1U1G0+VFJZuXy7aWAIpmYBgm21sC/PnRUfIVlS3Nfj60s+W2f/9ui3API7ph8s1jY6RLVba1BvjgdsvoeGtLYFE59gfJrzzWxtXpAn2xhZ/RazMFfnBuilSxisMm4HdZTYV3Owm5kkGn1Yo+/xL4A+CPgOVoMoWAgdr/zgHb5/zZvzVN818IgrAR+G/AkYXeQBCEvwX8LYDOzqUf4raQG1nVuTZjjd3Pjt3eD+YeIj13KBdwM3lZrctnPCzM5GUArkwVeOncJIf7Gta030ClqlOQNQCma9e+FlB1g1/2JxGwJq9M06Sqm3d9b6WL1jNRqeqUq/otRbCI17GsA3o8rwBQUqzu1pvfR9UN3uxPYgJbmvzouokoCrhrr9vc7GeD7uXEcBaAVPH+PavrrJx4Qal3XcYLMp1RD4OJIlenC2xvDd51UWw1EAVw2UVKir7kc9Lgc7K5xc/V+j6h3PKadKmK1ymtGQ+LoWSJ/ngRr1MiX9HWk5ZrFFW3ZGxNTNQ5HXC6YWKXBCqqjmmaD4UE58OOrOq82Z/EVZMVvtOGnHJNftQ0qUuK3A2KplNS9FWZtprOyZwezdDb6GPzXU4ZzsbLhmmSKVfXVBFsudxJolXRdN7qTyGJAoc3RLFJIgVZrU8XpIq37g8rYe5etFpng5uRVZ1cxZrUns4t73oDLjs724IPjWLDw0xJ0VbtnKEbJm8NJOsF2rmxt9MmragBL1dRKSlqfY1Llar01DxaBIE7lr6bpVjV6sW4kqItqD6xzoOnJGukigqmaeUdwJrKuDZTJFep4raLd10EuxdYe97y1vvZMy/cOAcvl9l1WxIFTNMkW66ue1Ov80iTKVeZHSAfSZVw2iQKskZZ0dENE1U3l7TH8Lvst+Sa3HYJQbBi7dm9R1Z13hpIYpdEDm9oeNepbK2U6ZwVP1SqVu5ttfPDVh5FQtW1u97/wVLH6o568TolDMMqfoIVa6wWl6fyDCdL7OsK33e/sztlbo70yQ0N8+LwqmbUz2PxNZSXXoxGv3OebU+qqFiFrtrvNJvflUSoqJa1x2rcWythtZ4SzTTN/7SC12eB2bJloPbvAJimma798/pSCSHTNP8L8F8A9u/ff1vNjt4GLwe6IxQVbVndm6Zp8vNrCaZzMgG3nYlMhR1twRVP8mxu9uOyi4iCsCpjm0PJEt8/M4kkwmf3dzw0D/azm2O8cd36PAcSJWTNWNYE2YMi5HHwZF8DE9kyh3rnb8jHhtKcHcve0f2wFJWqzo8vTWOaVjfuQgntc+PZuhm7ohlUNZNyVVuW59FSPLO5kaODaVpCrrtKwh3ui2Ji0hRwLdipcXEyz/HhNFenC5SrOhtjPg70RHjvnG5WmyTy/I5mrs0U1uwkzonhNKdHs2xvDXC47975c6x1trcGSBRkTNOSSTRNkx9emKaqGYymywua1cbzMi+fn8LjsPGxx1rvueeITRL53IFOpnIVehq8S762t8HL4z0RCrLKEz3zn+2jgyneGkjhd9n49YNdq3bdb/YnGU2XObwhSld06eu7mcFEkRPDaQJuO4Zx91Jf69wbtrcFiHodqIbJY50hwEqcdETcXJspcKA7cscFsJ9dnmEwUeLQhui6JM8yODGc4dx4DqgVvu+wSPQrj7Uhazp2SVxywmYgUeToYJoNjV6e6F04XpBVna/XOiEP9t79xPiPL02TKla5NlOku8GzYNHeMExevjDFdE7mvVtii0527O0MU5Q1HDbxkfDumc7J/PDCFImCgiBYU1phj4Od7UHawx4ObYiSKVVXvO/Lqs6PLk5jmCYf2NZMV9TLZ/a3o+rmbfelO8XvsvP0pgZGUuVF772buTKd55UL09glkS883nnXHj3rLE7U5+TQhihTuQpPrsDn7aeXZhhKljjcF2V7q7XmX50u1Ce13A7pjn3j+uNFXjo3iV0SeawjRKmqcbA3StTrIOh24HVKtAStxtIfX5pB0w0+sL15RYWsI30N2ERhfXpmjaNoBtNZGQMoK1r9v0/mKsTz8kPZEDFLPC/zg/NTeJ02Dm2IkipWeaJ3ZR3oT/U10Bx04ZBEvndmknJVfygUJNZZ516xrSVAqlRF1002Nfk5OZqmLeRBN03++M1hVN3gI7taVqT40hpy89n9HVRUnd5arHRqNMPZMSuOj3qdbGsNMJYu8+NLM0S8dj6yq3WexHSurPKTyzO47RIf2N60pPz0/aIgq3z/7CSGYfLR3a13VUA/vCGKbpg0+Jw03+Wemioq/OxynIDbznPbmpBEAUEQ+NyBDiayFbpXmKdYiLf6kxwdsnIXv36wk/dvbWI4VWJ/1+r4oVWqVrxtmpAuV/m1JxZWAFprXJzMc7qW4w247PP8hN0OiWe3xBhchgT2WuHMWJbjQ2mquk5VMwl57Pz6wS7sksiezhBFRcMuCXRHPZgIKz4LxfMyr12NE/U6ee+W2IqbWu+qCCYIwuy38KIgCH8H+A5QbzecLWgtwNvAbwPfBt4P/Mmc9wyYppkXBKFhpddXVDTGM2W6o17G0mUmczJ7O0P4XXYEQViR1ESiqNRvxJ9fS7Cpyc/x4fQdJSdWmthciqlsBcM0MXRLCmutFMF+fHGa/kSRQ73RBSVnOiIePr2vnaKsUa7qdc+otYxVLL11oTk+nKaqGYveD9dmCrx6JU5L0MVHdrUu2aGSLCpkSlV6G31cmsozmCgB1kK40CI3u0kKgmUsOZ2v0Bp0kyxW6Yzc+X3W4HPy4V23H0G+HTG/i0/sWVyWMeS2kylViRcUMCEvazgkkYuTeS5P5TmysYG2sIfNzf677mC/lxwbTqOoBsdq98C9muC4MJHjF9eTdEU9fGhH85qbFHHZJZ7fMf++mTWrDS8S0F2YzJEpq2TKKiOp8n35noNuO0G3nfFMmR+enybgtvErj7XdUsgSBIEn+xqoVHVG0iU6wp56R9VkrgJAQdbIV26dclwOubLKmfEsHWE3vY0+chWVY0PWNvlmf2rFe8X5iRwVVaeqGwwkS7Qu009knftLoqAgSQII1v/e3AyabpIpq3gcNiaylTt635Ki1Qs6J0cyyy6CGYbJi+cmmcrJPLs5tqbX2tVm1ndEFIQlO1JvhyUdfHuz359fjTOYKDGaLrGrPbRgp9vsmgIweYf3wlxCHkfdX8EmLnzYTxYVrs8UATg9ml20COayS3ygJrvxMKLpBn/wxgBjqQpfPNR122fkp5dnODOWxSGJuOwSUZ9jnlfNwWUWk25mbnx3YSLHE73RuqzwvWRfV4TOiJdsuYphmLc9JE5l5bp3VLKoLLsINnsGOLyhYT0JvAJWej8VFY3zEzfW/NkiWNBjr3fLLxZ7gRWDfPfMBIZp8vHH2urfb7pUJVlUmMpW6t9/LOBke6vVoGaaJrlKlUTB8nq5Ol1gIG6tH+fGsysquiWLCqdGMnREPOzpCK37/q5Rzoxl0GpjHedq95xpgq6b+F12irLlGfe9MxOIgsDHH2tbFW/g+8H5iRzZskq2rLK7PXTLcziVq1CuWkn3xc5doiiwqcnPWLrMSKpERdUZTpbW1791HllskjhPUnRWDebyVL4+RT+ZlVdsezC34D6ZrfDqlThDiRJbW/z1NefceI58RSVfUZnKyvOUaE6PZRhLl2vX5KYgazhtEns7Qws+37KqM5wq0RZy3zOfpf54sa6edHmqcFfNb1Gfk4/vWR3rkBMjGSayFSayFTY3++lp8FKuapwZyxL1OpeV+zBNk+PDGd4aSBL1OfnEnrZ5jTKzZ958RaUoa+xoC65qE6dNEvA5bRRkbcl4aC2RKir89NIMFydzbG72L+iR+VhH6KHaX04MpykqmvU7NfkZSBQZS5fpbfThsks8t8QkeX+8wERWZk9naFHP0aNDaSazMpNZmS0t/hWfqe52EuwkYAKzK8g/nfNnJtC70F8yTfOUIAiyIAi/AM6apnlMEIR/Z5rm3wN+XxCEHYAI/E8ruZhvHx8jV1EJuu3kZRXThGy5umJPoTeuJTg3ka2/1+6OEJWqviYSRbs7QiSKCnZJXBPXA9Zm8eqVODN5mVSxeksRrKoZXJrKE/U6+PCuFi5P5Tnc+/BOz2xp9nNuPLfo5//alTjHBtP4XTYO9UYXLVTmZZVvHB1Fq00HbGn2Y6slKFoWMfSbnVTJlBUuTRaoVA1U3WDbMvRgs+Uq45kKfTHfopvYmbEs7wym2Bjz8b6tdyZzMZIqkauobGsJzDvcJgoKparGrz7eyUvnppjKyWxp9tMWdvMHrw8QLyi8PZhif3cERdX50M6WNWt4urU5wJmxLFua/fe0MPWzKzOcHc1xbabAk30Nd5W0vVNmn98Gn2NZG8xn9rUznZNpCS18D/c1+rk0mcdll2itvUY3TK5OF4h4Hcsys1wp12cKvHY1zrWZAqlilbDHwf7uyKJ64n9zepx4XiHssfOlJ61E9+ENDWh6guag646bD350aZqJTIUzo1m+9nQPXodEg89RK2KvPCEa8dqpagZuu0jM93AEeo8ig8kix4cymJjs7Qrx1MZGEGAiXaaiLi3TuRQeh0RX1LOsYrKi6VyfKdISdGGY1BPyZ8ezbGry8bPLceIFhfdsbnyoO7xvx462IBGvA4dNvC+SzNM5hevxImGPA2mRrSLqdaDpJsOpEgdX2I2+EC/saGY8UyEWcC7ahBP2OnA5RMbSlXmT2A8TRUXj2kyBzohn0e/y8lSe75+ZRNUMDNPk9z+ze9H3k1WdgYSVmHA7RD61t53HOkO0hW5dm2f3lJagmw/vbLltcak16MYuCRgmt32+TNOkP17EaZPuWlI4W67yjWOj6IbJ1hY/hdpU3we3Ny8YB+7tCpOtVPE4bMvuyqxUdS5OWt44p0czD9Uh/WHDY5fojHgYTZfZXJP47I8XkFWDX328E8M053kipEtVJrM34v5zExl+2Z9EFKCv0ceRTY2UFI1vHBulqhlsaPTR2+jFaRPZNEdC9OpMgTeuWR52oggD8SJnxrJ0RT20L/B8LMUfvznM2wNJHDaRg70RNj8CE6YPI9vbAnzzuGnJ1zdbsbIkCjT6HVydKbKlxc/1mQLZstXA0Z8osr01QH+8SHvYvaalAftiPi5PWeeQtvD89Xg6J/Ot45YX2tObGti3xHRCrqzy3dMTnJ+wzkiavq7IsM6jTaZUZShVYkOjr56z6Iv52NoSQFb1uhrGYsQLMi+dnULVDfZ3h9nVHpo3uXVxMk+holFRNdrDnnqeaFOTj4FEkaDbTiwwPx5sD3s4O5bDJglMZmUu1eKVgMu2oFT2989MMpGt4HfZ+OpTPfckz9MV9eJxpNFNk97Ge6MGcCe0h91cnsrjtkv1Ne33f3SV6zNFehu9/N1n++o5EFU3uDZTIOZ3zZO+OzaU5hvHRpnOyWxtDfCnbw0T8zv5wPZmgm47T/Y18GZ/ktaQm+hNsXtJ0bg6U6Aj7Jn3nivBLon86uOdJArKqqiwrZR4QSZRUNjU5F/21OHpsQxXZwqYJuxuD83LT01mK8QLCltb/GvGjmM5bGkOcHw4zVN9liJFparz8vkpvvRkT70oWpBVvndmEk03+OjuVqI+J3lZ5aVzU9YkX0lZdLiiI+KhP17E57TdkYrZXRXBTNO8fRvs4n/3H9z073+v9s/fvsP3o6JamrNFRcMwrMDNvcJufcMwOTWawTQtPctfP9hF0G1H04276laTVZ23B1I47SIHe+7ch8LrtK24qHevcdpESlWNSlWnOEcyYZafX0twYSKHgDXBZJjWwexzB5ZnyLjWeN/WJp7Z1Ljo/VBRdcqqhihS90taCEU10Azrz8uKTkvQzW8d6cXEXNTb5+JknmNDaWTV0v3d2OTj8Z7IbTszNN3gm8fHmM5ZXb5feaqbmN+FTRLmLdAnRzJUqjrnxnO3+Aosh5m8zHdOT2Calq/AkY2N1u9X1fj2iTGqmsGWZj/v3RpjJidzZGMj8YJMtXZwqFQ1xtNlXHaJCxO5NVsEe3ZLjCMbG+55B6tc1SlXNew2AdO4rerrPeH1q3EuTuYRBYEvHe6+baenyy7RvUTyrDPq4Xfe04coUA8s37ie4MxoFkkU+I1DXatyeM6VVY4OpWgKuLg2U6Ck6IylK+i1vSG4RHdXWbE8AspzvH6aAi4+U5NwLVetCcaFvv9qLdm60LMz+9/sNgFJFLDVArWSot9RB226pCGJAgaQqSUi1ll7xHMKummAecM3UTdMjNozPesLs1IEQeCTe9uXFZ+8cmGawUQJp13kS4e7aQ+7mcrJbGsJMJNX6tMFx4bSfHxPG6ZpUqrqeB3SmptAvVvuZ5Gvu8Fr+ejYJRZLjyVLCjZJoC/mYzxz95NgNklccg0GKybVNJOo11H3bF1LyKqOKAhLelP9+TvDnB7N0h728D+/sHXBgp8oCmi65UVhrfyLIwqCFReJAmPpMlemC0xkK3RGvOzpDM2Tbjs9lqWk6PTHi6TL1dsWVJuDLr761NLx3Sxnx3O8diUOwCf3ttEV9d7x86hoBnptnbkyVah/Atdniuxsv7XzNui2LznNvxAuu0hfzMdgolSfTFrn3iCKAp/ad2PNH0qWePHsFHBrwr6qGXzr+BiyqnM9XuATe9qpVA3kqo6JWb8vVN1qpgMwMeedMeN5mWPDaWyiYKmQGCaqZjKTV9jRGiAWcK24UJstV8lVVJx2Cbl6936K69wbhpOl+vlwOGXtEZphMpmTcdlEzo3neGFnK2fGsoiCJWX00rkpxtJl3A6J33qqZ81O+XVFvbecQ2YpV7W6r1H5Nvfn1ZkCBUWrNbQ5aQq6KCoaHrtUz/MstXanS1WOD6dpC7nX5azXeVfw16fGKcga58dz/ObhbsAqSjy/oxlZ1bld+HJpMk+ioHBmLMtAosh0TubIpkbeGUjR4HeyKebjT94cwiFJ82LXjU1+eht9Cz7TfTEfXz3Sg00UuDJdqBfBFstxlarWmUxWdQyTRRvY7oaI18HXjlizIneSEz45kiFdqnKwN7KsabWSouGesy4txvbWIJ0RDw6biNMmMZWrkClVUXWDREGZlzP82eUZLk8VsEsCX36yp66cU1Ytf+NEQaGs6BRslp/uufEsRzZajZafWcQS56Vzk0xmZZx2kb91pPeO9xCHTaQp4LrvfnFFRePbx8dQdZPxTIUPLlNJQ63Z24iCgM9144yQl1X+6uQ4umEynavcor60lnlqYwMHeyPYJJHvn51kIF6kXMtrzhbBBhIlEgUrL3J1usDhPid2UcQmCpSrOq4lin6PdYTobfTiskk4bCKqbvDWQAoB6l7OS7EqnmCCIPwu8HXTNLO1fw8Dv2qa5n9cjfdf5jXwvi0x/tubQ5QUlVTJSgi+Z1PjLa81DJPXrsZJl6q8Z3NsXqVZFAW2NAe4PJVnR1uw3sWwWLJTECBbVlE0fckpiZMj1liorOpEPA7awm6KijavY+9+cmEixxvXE3RHvXcss5YtV6nqBjG/iw9sa6Y/XmDDAiPOswctAxNdM7FJIor2cHRL/fTSDNfiBZ7oic7TZl3qwXqyrwHTNAl7HES88xMjY+kyhmnSFfXS6Hfyge1NJAoK+7sj5Moq3zk9jgnzZErmMltUy1UsGYdUQSHmc9LT4J13/8ULMqpu1otIhmmNHV+czOF32vmTt4bxOmwEXDa+cLCrvhhtawlwdCjFhsbFp8WWwjDN+uFBn1O00QyTqmaQLVc5NpTm6kwBhyTwN6fGKFUNTKA14OLx3gij6QqGYczrQr0flKsa3zk9QaWq85FdrbedSLofh7unNjbisIk0+l3zNsX7yew9Z2IuWdRdCbNBSUFWSRarVGoHTd0w6wXRm9F0g++fnSReUHhuWxMbGn2Ypsnr1xKMJEsc6ImwrSVQm6yx8fo1S4bMkhYNM5mV2d4awOuQaAl5luwa+cjuFk4Op2lbYE0/O5bl1StxQh47v/p457znxOq6H0OtdbSIAvP8IJ/f3kx/ozWNM9vNY5NEgp7599JrV+JcnrYkUZfSfk4VFUpVHVEA03w41tRHkc6IB1GwkoizeuqiYE1nVQ3Q9btLBC5nLZrdczXdREDgM/s7ME0TQRCQVZ2g206uotYTmt88Pkr/TIldHcE7arz5xfUE5ydyPNYRumN/mrXOZLaCTRSWnAzta/RydCjFoZ7oontqxOOgNeRiOqewdRlT3auBohlWR62sEnDf/d6iGyZTuQoNvqXlUixzdGPJ14ykSnzvjOVL9LkDHYuu1T+9NMNYpkJ/vMg//eBmJPHW9+yKeNjY5GMmL/P0xlvPA3O5PJVH0TT8DhtNARenRzNM5WT2dYX58aVpNjX5eW5bExGPg6aAk6msTHPQuWx576VMn2cleNvDHpQ5zRezz+3L56e5NlNgY5OPj+xqXdbPA6t547ltTSSLCs0BFz++NIMkCotOat8JgiDw0d2t9fVktahqBt89PUGmXOVDO1rueiru3cTsmq8bVuJE1QyOD2V4sz9FX8zHh3Y0Y5hmvbilqAYFWWUsUybosbMx5qt7CYc8Dp7f0VxvipiVzTw+nOZ//e4FKlWdjU1emv0uREkk7LXTHnYzka3c0dRfXraKYA5V5yFqan7kCLkdVHUd04RgbY8Qaw0dclUn5LHT6Hfyt57urT/3imatXdbk7a3vWZCtyamqbvKx3a3L6vSf9RoeTpV4emNjvViULlUpytodrQu5sspPL8/gdUq8f2vTvBiqt9HH05saKVdv7yHf0+DFZRPZ3hbkA9uaKKs6f/jGIK0hF5/Z14EoCnz3zAQD8RJRn4NP7Gmb1+T36pU4Y+kylybzdIQ9CzbDabrVMHuv/ZPXWWc1mM396DctABPZCt85NY6iGTy/o3lew8zlqTyvX03QHnazMealomr1yfzZJqahpKVe8YUnOvn0vnaGkiXr3FJW68+NJFrnGVutyXQus3muxzpC+Jw2nDaRjoiHdKnKd09PIIkCv/JYK6fHshiGSWfUzYGu6G2LKJpuMJAo0eh3rnga5U4HIqZyFd64lqj//A/tXLow8ovrCU4MZ2gJuvjs/o7b/tzZopqi6bx6ZQZZNWgNufmVx1rn5aLq50rDrDf1AxzqjXJpMs9jHRIf3t3Ca1cS6IZJxzLUhGbfxjSZ17amGyYvnrVk/N+/NVaf4JvKVSgpGi67RMjjqMkgqnzj2CiVqsGHdjYvmE+cbcbpjHjq+9dktkLAbV+Rx+nNzK7XwIpy3TvagjzRY91vTX4XiYJCo9+JaTAnr3r795nIVnj53BR+l42P77nV9mMpTo5kODqUoq/Bx8ZmP1GfY1EpwuUy+xxubfbz00vTFGWNP397hKc2NtAe9tAd9eBz2lANgw0xX+3vWM9vtizfVgFr7vWdG89xvGYxEnDbbxufrlZW9Wumaf6H2X8xTTMjCMLXgPtWBPvJpRne7E+i6SZFRSddrBL2Ojg5mmFfLYk4k5et8Vanre6jcWwoPc8LaSxdptHvYCpnpyCr6Ia54AI4u5gXFQ3DtILC57Y1LdrJIwkCFyZymKbVQfrq1TiKanB4Q3TZhtXLQdGsabjbdZqeGcuiqAZXp+9MZm0mb8kF6IbJ8zua+ciuFgpKI/6bFo4LEzlG0yX8Lhvv3RLDMC25lCMr8Gd7UCiazutX4wwkSlyazLOrPbissdYD3RG2NPtx2yVsksjrNU+Qzoib8xNW98nzO5rZ2hJge2sQ3TB55cI0bw0kUVSdtrCb6/HivOB7OiczmauwtdmPacL3zk5wdTrPZE7GZhNx2EU+d6ATTTcYTBR5+YJlCPmB7U1sbw2SKinIqkFVN4h47UxkK+TKKh6HxDNzPGEObYjyRE/kjjdm6/nTEGDe4nNyJMP58Swj6RJWrt7ywzEFk5DbiSBYE4Uvnp2iIKs0B1w8v+P+TraMpMpz9Jnz90SWb6U82dfAzvYgXoftvnezzPKezTEiXieNfueS/iDxgjVluFyjc0XT+Yujo5SrOhsarYnGqM9BzL/w308UFUZSlqb3+fEcGxp9zOQV3rye5MJkjncGU+xoC6LqJrs7ggRqa5rDJrKnM8zhDQ2IokBeVvE6bIiigGmaFBQNX+3fZ3HZJIZTZa7HraB7VuJ1IFHkT98epqoZ9DZ4yZSr8xoZpnKyNWFhGPzNyXGGkkXyssavHezig9ubcdhEtrUG+NnlGS5O5tnXFebJvhtrYbKoMJwscWwojcMmcno0s2QRbChpeXIYJrxxLcmhvodT1uzdTrqiUKl1FyeL1hqjagbVWkA7na/e82v44LZmzo5n6Yx46sn42cDfZZf44qEuFM3A57QxkCjy0tkpNMOaFvjY7tYVJ7dPjWQxTJPToyvzi7mZkqKRLCq0hz2rvgbqhskPL0yRLCi8f1vTivTEr04XePn8FIIAn9zTvmgi7lsnrAnsl85P8uFdLfgXiLVsksiHdraQvkNZ1Duhqum1Zpoqhcrik4imaXJpKo9DEheUjZnl+2cneHsgRU+Dl99+esOCMYSi6Xzz2BiZcpVnN8fYvcgB5Z2BFC+dm8QuiuzuCHB4w8LFK1U30XUTzTAWnZTOyxobY356G3wLJmVnMQyTbxwb5cJEjoKssrM9SLpYRdEsuZfmoJtKVeeX15McH06TLCp8am87H9/TxvGhNDZJ5LHO0C0x4pXpPG/1p+ht9PKezYuvz987M8FEpoLHIfG1p3sxsWKijbVD4exaP1xLBC2HXEUlnpfZ3Oxnh2SdTbqi1mTiShOqb/UnuTJdqMsTLcRqT4xO1nwpwPISXS+C3UrAbaNc1RlKljg3kbOSCbpRP9f9ymOtjKTK7GoP8tqVOD+/msAmijzeE8FpkxhLl2kPu9nSHCBXVvn6OyPECwotQTcT2TKyqjOZqzCTr9Dgd/L0xkbOjuX4whOdy/KYW4iLkwV0EyqqwYmhLNvbbvWRXufB0z9TYLYef33aOrsKgsCmJh/Hh9JMZGR+fHF6nmdkT4OXS5N59naGF5ziHUqWSBateOfaTOGWIpimG1RUfd5kQ17WuDpdAKzcxY62IOlSla+/M4JmmDzZ13DbYtXNvHp1hhfPTeKQRNrDnltyN2GP3VJ7WMRTE6w949Jknoqq43NKNAddvH7VSkxPZmUUzcBhExlJlRlIFDkzpiGrBl95qrveBBd02xnDapBw2m/9WQVZ5ZvHxihXdT68q3nFXkrrrHO/+eTedgYSxXrsAlaT8Z+9Ncyp0QwFWWMqW+FLT/bUn7uzY1lkVefSVJ5jQyn640VsErSFPMQCTsRas15VN3BIAl1RL69esSwOiorGl5/ssRSEJnP8/GoCl13k8493LprA75tzbddmCuRqnrzHhtNcrOXpGvzOZcUcP7sS59JkHodN5MtPdt82/7oaeBw27JKAqpvLyt/Oxo1TOZmKqtcntm7HRKZCPF9lc7OfmN/JhYkcL52bYjon0x318A/fv5GI10FL0FW/jpm8zHimQlWzptUvTxb46lM9mObSjWCzvLDTss3pinrIVVRU3aAl6CZVVBhKlkiXFP79q/18dHcr21r9fPvEOCOpMqZpsqnZz5cOdzOTVyjVFH2GkyU2Nfm5Ol24IQuuaHz9qCUBfaA7wlMbG3irP8nRoTQuu8RvHOpa9md0MyGPg4/samEqJ99iDzSLYZiMZcpEvI76XtcR8fC1I73MFCp87/QUhmny4V0tbGry8/E9rUzn5EVj77lcnMhRVDSKila3wJFVfVmf/+nRDIpq8P1zk3RPePG5bHzpcPeqNGCcn8ih6paKwFBqku+cnqAv5uN/++g2futIDwNxa+rzp5dnGEyUMAyDRr+TsUz5tu89ka3w/TOTxAuW1KkkCjyzwBDUzazWkyoKgiCYplWrFARBAu6rGPSFiRx+l42RVInuiIdkQWEkVWIkVUZRdS5O5Xjp7BR+l53WkAunTWQqJxPx3lg8Lk/leeXCNGfGsrjtIj0NPh7rCC2YGBlJlVB1k4KsoRkmbrtUX0QXorfRy5bmgCVdZZgoqpX9SpXmJ78qVSuBOjcAVDSdgXiJlqBrySR0ulTlP77Wz7V4gWc2NfKlwz2LJo22twZ441qSzqj7lsLVckiXqvUuj1SxiiAIC242R4fSpEtVrseLOG0iRweSDKbKXJrK888/un3FP/d+4rRJSJKVKHfaRFLF6rILI7PfX0nROD2aBeDN/jLlqk7IY+PSZA67JDCYKHF+PMd0XmY4VSJfUXHYLJ+XbxwbZShR5ImeKCdG01yfKdLod/K/fHgbB7ojnKt1qwwnSzy7OYaqG3zj2CinRzOMZyp0hKxN483+JNdmCrgdIk/2RmkOujg/kWMmW8E0TXRz/hTC3EPt9ZkCx4czbGrysX+JZPwsV6cL9Q6KeEEh5HFQVDTOjGaZzstM5RQ0XUczANMyE1Q1GYddpKoZNPqczORlCrLGd89Msr0ttKzPezXoiHgIeexUVJ2NTQt7RT0I7rYL425x2aXbHjBHU2X+5vQ4pgkf3d0y76B2ejTD8aE0fredD2xrqus/VzXrsAsgazpP9jVYQfBknrawG5/Txi+uJ5BVg6c3NdDgc9IStLpjtrYEiOflmhSCNX3oc9rojxfpinp541qS/V1hWkMudrQGEQR4cyBJX8w3r2j1k0tWMao9PH803wq8rPVt9sAO8NPLMyiqJfvaGfXQdFPBrqioTOcqpEtVnHaJcxM5mgMuTgyn+eD2ZoaTJX5yaZqTo1k2xXx12VGwDgH/7tXrBFw2VMOkNei+7eeuzukKylfufSFlnTvj/FiOUq3idWbU6lKa2zV3P2b4gh47Ty8SFJarGj84N4VumHxoZ0u9O24qL7O5xbdocrs/XqA/XmR3R+iWqfYdbQEuTOTvSuJH1Q3+4ugoRUVjS7N/0W7HeKFmjNvsrwfrhmHyy/4kJUXj6U2NCx5opnIVrs9YxYVTNVm95TKZrXBhIocowFN9DYselkuKxnCqRIPXsWg8VqnqfP2d0bpfwrOLFEsUTeevT43jtkt8bHfbou+XKSm8fi3J7vYgvYv4HmKC1ylhYse+hOTgO4Npvn50BEkQ+Lvv7Vu0EPaHbwzWO3N/81A3ngU+70xJJV2LeQeTxUWLYGPZCoqqo4oGk5nFpRr3doXRDZOeBg+2RX6HiNdBsqgwlZM50L3wgXQqZ8nkuuwSak3hoazoeF02/G47fpcNr0PirYEkYY+dyayMKAi82Z+kUtX5wfkpXHaR3zjUfYuX6rGhNLmKyunRLAe6I4serPOyxtlxy4u4O+rhQzdNez21sZFz41magy7OjWfZ2hK4peBWqeq8NZDE67SxpyPEN4+NMpWTyVVUntnUyEd2tSwrCXEzmm5wtNZdeXQwfctBfDJrdSU3BV28Z1PjguvFZLbCzy7PEPU5+eD25mUVtJuDLhr8TnLlKlvWiAfyWqMoazT4nExmK0iiQFU3aA976ue6tpCbiqoTz8t889gY/YkCYY+DS5M5/ugXQ3gcEi1BFyYCiqoxni0zmZGZ8JfJVlScNhFME1MQyJRU3rie5PJ0AUkU+NyBheWMbodp3NjxBOnByHyvc3tO1s6uYDWegbWv/uWJcbIVlZjfKrC/d0us3u19dbpAg8/JaNoqoN6cPOuKePG7bGiGOS8RDdTPsKlidV6DsN9p+RP2x4t4HBJ5WaWkaPUYaqHcS66iMpGpWFJJdon+eAHNMNncZPk4F2TLwqEqGnUlCrCaPn5yaYY/fXuYXFllS7Of33q6ly03+dbJqsY3jo5xZixDvKCwuz1EqlTl0IYoRwdT9Db66mvtk30NDCdL+IIuRlJFrkwV6nvf+7bE6Iv5iPocCyYaZ/JK3WZiKFleL4KtsyYZz1jP+4ZGH41+Z724XVI0BhJFRlIlrkzluTxVwDQtH+tErSEQYEtLgDcHkjXJeJnxbAWbJLC1JcjezjCbm3x878w4NlHkr06NM5NXqKg6BdlK9mdKVf7i2CjX4wV8TjudEQ/TObmePzk3nmU4VeZAd7h+VtENk+vxAgGXDY/Dkv17/UocWTPoCHtoDy9PqWt2/VB1A1Uz70v2O+i282tPdJGX1QUb52Z9Zb1OG60hN4c2RGtNar5bYtDBRJFMWWVnW/CWxoXWkJsGn4O8rOF12ogXFK5M5zFrig6TNVsTRdP5zz8f4PRoFptkrfPl2vovazrlqr7sKbmg287B3ii/vJ7gRxdniHgdfHB7M5uafHgdEkeHivREvZyfyNHgc6BqBieG0xRljcmszKf2ttMV9dAX81GQNfZ0hvmrk+P86ZtD2G0iX3mqhwPdEaq1Ka28bO0fiaLCVK5CQdYYTTWytfXOVTlOjmS4Hi/SGnLjW+AM9trVOOfGc7gd0rwik9shUZT1uupSsmj5inVFvQwkinz7xBhPbWyo+4WVFI3r8SIdYTdBt53+RJFGnxOHTcTvstEWcpMsKvWhlY8/1rZkYXdHW5Cjg2nLw7o2ValoSyt33MzNe69pmmTLKg0+JzZRQNZ0K/dsmCQKCv/ptQGysoqi6jT4HFyZKuJz2Yj5nbSG3DQHXKi6seQQyqmRNCeGU8zkFRq8DjbE/CzRv1JntYpgPwK+LQjCH2BNL/5t4JVVeu9lsanJxzePjTGUKjGaKqMZBqIgcG2mwCsXprk6U+DyVIHNzX46Ix6agy7yFZXzEzmcNpHvn50C08QmCWTKVVKGiSSJnBqxCgoHb5rW2tIc4Ifnp1F1g6f6ovhdjnlyeTcTC7j41L52kkWFA90Rzk/k6oHeLLM3qqabfGR3S/0mn/XycNklvvpUz6IeCVen89Y0kWZwZjRLapeyqEzPns4wj3WEVty5OZGtcHEiR1/Mx57OELJqsLcrBFiL7mi6TMBlrxfr+mI+Lk/msYkCx4bSvHE9iYlAQZ7hn3xg04p+9oPgiwe7+NHFaZoC1kawUtw1092JTIWqbqAbBmOZCopq1KcRfU4b6VIVURDY2xnmcJ+1Wf3xm0PkyiovX5jC57TXvOlMvnt6gg9ub2Ik2cz5ySzNATebm/387PIM3z8ziaxqZMoqV6bynJvIcaA7QoPfiWGYTGQrnBzNUFJ04gWFngYvb/Wn2dYSWvD637ieJF9RmclbHQhL+XMAbG0NMJCwNt6OsIeJbIVfXEtwZSrPRKZCparPG28WsMaFFc1ANAUMw6DB58Quibdx71h9fE4bX36yZ9Ulfd4NxPMymmEu6qWTrVTr49o3e1O9NZDi1EiGkqKRq6h87Ugvkijgd9l5blsTY+lKPTn5/bOTnBvPUlQ0Pra7lbNj1jPidUoc2djI5x/vxDRNchWVP3t7BN0wOdATYW9nhGLNTHUkVcJlF3n5gmWqOZ1TyJxQuFwr0P6TD25mLF1mW2ugPlk2nqnUPTYmslY3/oHuCHlZ5WCvVYjKyypHB1OcH8/RGnLxkZ0t9Wmyl89PM5wqMpmVaQ66SZdVuiMeZvIyjX4nmm7yvTMTaLpBUdFxSCKyZnBwg1UgODmS4ZvHRinIVudOc8CFN2Zj2wqk0eb6l62ztjg6mK7/79l1X12GroFumBwdTKEaJod6o7ddf++Uq9OFuhfVpck8+7vDFGStrqu9EKpu8PL5aXTD6uya1f6f5X1bm3jvlthdraVVzahr82cXaTKSVZ2/PDFOVTMYSZXq0o2DySInRzIAuBzSgoWlBp+TsMdOtqKyYYXG1KZpUK5qSKK49ISRCU5JRKwlqBc6flRUnaFksZbQXjzO+PN3Rvjzd0YQEHDaRF7YubAs3v/3lasMJ0t874zEH/zaXlwLdKbGAi4+tKOF6XyF57Ytrll/ZSpf12vvTxQXLYINJ0vWtLmmkC1XFyyCxfxOq4GhILO/a/ECf2fYTbmqY5OEJQ3Dy4pGvqKSkzWkRe6zVFEhWVQoKWpdTmcuI6kSf3NqAtM0CbgkbJJAVbfOAU6bhCiYJAsKlyZzlKo6IbcdmySiGSaiIDCUst5zrvcW3PBSyparlKsam5osdYBZqdtdbUHiBQVNN/ngjmae2dTATy9PIwB/c2YCt9OGacLB3ihuh8RjHSF6ol7+5K1hLk7kmclbssBzOTqUqq8vAZcNWTWYzsuomsFQssR0Xl5RoXcWmyTS2+hlMFG6JXEN8M5giqmczFROZntLYMFzx8mRDMlilWSxys624LLMyl12iS8e7FqPyZagp8HLoQ1R2sNuBEFgc5OPnXOKlC+fn+ZHF63O7YKiUVZ0DKPKN4+PE3DZSBZNLkxaTaSDiRKabuBz2cnLGgGXjaKs4rRZiayQWyJdqpItV/nBuUme3958R16mcyWChPse6a+zXKZyNzqw83KtYU3VkcsqJpAoWM/yXNmxBp+DkyMZtrUErALqTQQ9dsv7eoFnuiBrpGpNZyOpcr0IJooCH9/Txl8cHWEkVebbx8f46lM9PLWxgVxZ5VAtRqlUdX5yeQbDMHnjWpzpvMKezhCf2NNW982raga72kMc2djITF7G67SxueXGnnZqNMsPzk8xGC9imFZD66mR7C1FsN978TJvXItjs4lsb/azIeZjR6uVRL5ZeutAd4SCrPKHbwwBJt86PspktkJT0MWFiRy720N0Rz0cHUxRVnUO9d6QTu6Keuht9FKQNXZ3rHuGrbP2GM+U+Tc/uca1mSLPbm3kH71/MwA/uTTNv/npNWZyCi67FScLmHicNkxgd82TNFFQ+MmlGQoVla0tAXTTJFWyms6f2dzI+7Y08cdvDjGZlclWqvQniuxqDyIKArs7Qjy/vZmTIxlOjmTQDAObaMUrs9LzJUXj1StxTNNqGvnCE50AvHJhilcuTBNw2/mnH9zM7710iYnaOegfvHcjXQ1eEgUFWdVpCrgYz5RpDrpumfR6dkuM4GiG1qD7jvbDWWTVUhqQJIEjfbf3nA97HYsORhwfzvBmfxJBgM8f6KQv5p9XQB9Ll7k8lSfmd/L6tQSmCblKlYO9UaZzVpzosIk1lZDuumrOD89PsaHBy0RWpi3kpq+Wp74+U+TtgRTpchVF1emMeDnS18BgskQ8r/CXJ8b42pHe206OJ4sK3zszSaqokCgoDKdKOCSRoqLx6X3tlFWdtpCbqbxMU9DFzvYQ/YkiiqpTqmpcnMwxk6vQFHDx0d03zkc/uzzDSLqMrBr8wesDdHzCwzObG0kWFA7W9o8NjT7+2y+HcNkkzo5n77gI1h8v8DenJgCoVIf4vz6x85bXzObJKlX9lmaRLc1+EgWFqm6wtzZJliur9XzYsaF0vT4w65/mdki0BFz89PIMAbed//H5zQTd1r1xPV6oF/zGMuUli2AHey01sExZrXtVGobJX50cx++y8f6tTQs2sBmGyQ/OW36g6VIVr9NGW9jNZ/d38PrVBGfGstbvpBmE3HacDhFDt+IBVTeYzlnnlEypSlZWEQQIN/lQDZNTo1kKirakDPxkVubUaBZVN0gWZVTT5G9Hexf/kmqsVhHs/wX8NvA7WHntHwN/tErvfVtMrDG785OWxJ/bLhH1OazFUBL4ZX+SclVnc5OP3e1B9nWF+Q+v9aPqlpTDn741wmSuQtTr4PGeCFuadRp91gTLQKLEQKJE1OvgfE3O8PkdzeQqar2q7bTbeHaLlWCZzFaYyctsbQncUjmd2xF9sDfKhYmcJRvQFcZltwweZ2/UiUylfpPP7TJYypMnL6uEPA6mczItIfeSU2OwuHSJqhsILOwz8vK5KRJFmW+fGOP57c08v7MFj8OawHvjWoJ4XsFpF/nioW4UVUcAPvt4O69etqreNlGgWNXxuzw4HgIx+Js3DrBGfU+OZOhp8LIx5iNbUXlnMEXAZefIxoZ5n2tVN3jflhhep40/fWuYctXSOL44lUfA6mSWRIHntjVht4l4HTaCbhu/9+IlxtJldMMg6nVRkFUafVZH8/GhNOWqhiCYhFx2mgNOnDaRl89bUoKlqtUZo2gGyaLCQKJELOAi4nVwYTxHqmQld4IuO81BF2Lteq/PFHj1SpzWkJsP1xL8nREPFyaspL99Gc6gbSE3v/3Mhvq///efDfPalTgT2QoOSUAU52vamsDseTgvq3SKHjY1WIHE88s0k1xtHtVkiyX/aUl5vGdzY12uYyxd5q9PWVNeH9rZXD8MXpnOc24sx/a2ANtaAmTKKoZhsvumLvENjT5ODKfxuWw1w2kTa5uwisQeh1RfaypVnf6ZIoIgcGY0i26YXJsp4pBEDnRHcNklEgWFdwZT5CrVWuJb4vCGBn58cRqXXaQl6EIzTAqyjsNm/Zx0LeAoVzW+d2YCp01iOFXiyMZGTo5k2NLsxyaJXJzM8eOLMwgCdEc9nBixptg+ta+d9rCbqWwFw7QmgEfSZTY3B8hXNK5O57keLzKeqbC7Pch7NzfS6HfxyX3tXI8XuTSZZzBRYnOzHwE40BPhQ9ubCHscDCVKfP/MBOWqlXSKeB10RawC8g/OT/GhHc316bmluFtfqXXuHRX1htxcVbuhlz93hx1MFG+Z2rk8la9PYLjtEhGvg2szhWUnkZdLe9iD0y5iGCZdUQ92SbytlIAkCPicNnKVxT2l7nYt9TptPLetidFUmX2LTPGYphWAA/XpTbAkKWyiwFRO5up0npmcTFPAxXs2N86TgfyNQ92ohlFf75ZLUdYYS5et6Qtt8WcvXVJIlhQ008S+yAHQrInfGzdp4N9MIqfUY8S5huA3M52rMJouEXQ70BaptUqiQNhrR9Z0PEtMB/U2ehnLlLGLIn2xxQtSPpeNqm5NjrgWkHUCK5n5/I7b7+uZ0g2d/umcsujrToxkyFZUrkwVKCsavgVkYVKlKufHc8iaTmwkw1ePzP/zgmw9m9P5CseHM4iCYHW4ZmU8DomuiIeqZHmqVlSDsqIR9joJeezYJEtyozPiweOQ6G7w1DsWX7sa5+RIhpFUmcc6gjyzqRGTmhR5rWuWmrRYW9jNk30N7O+KcGU6j99l563+FG6HZE3IB5y0hdy15iCTZFHhrYEkG2M+uhtufCezcjSiINDgc/LhXc2EPHYmsxUafI5l+e9M5Sq8diVBo9/J+7bE6kmLj+1uXbQjtDPiYSRVJui212WIb6a30epkDbjsC16HXJuw9rtstzyLaz0mm506zcsqT29qvGfT+4Zhki5X64VYsD6bg73RWxo1Z/np5WkGEkUmMxW0mmev024VeS2ZIRdOu0i6VnywSyJ+hw2XXSRRUtB1s74m5Soqhmn5Qo2ky1yLW3uR0yau6DuqaDdWueNDab54aMMSr17nQeG0CfXvanbrmp8XMLk+U6A94q6fC7Jlla6otQ5W9cX31YXuF6ddcFKQAAEAAElEQVRNZFOTdaZ+vCdiyQ1OWU20vY2+evF0Nqltk0Tes7mRyazMTy7NoOoG45kKqm5wdaaIyybyzmCKXe1BDNNqWpidHutp8PKZfR14nbZ5z6tWeyaaa+eIvpi3bhcwl7cGk+QqKqIg8PSmGDvbb52imMtkVqYl6OLKVJ7Xria4NJmnNexmY8zPL/uTeJ0Sbw2krM9YFDhS86+0S+KSnqzvDFrScU/0RJaUK15nndWgpGj8/FoCRy0WyVc0uhu8nB3PUa5q/PjiDLvagrzVn+L0aJaBeBHNMLFXRbY2B2gOuoh4HHxgRxOpYpW/PDFOslhlJFWwmo3MPJ9/vAPP/g5kzeBwr6WU0hxw4XdbOYSg207I7eA9m0P1Z2MqJ9MacpOrVPntp3t5bI4MncMm4nfauDCZJ16Q+eF5O3s6w5wYsaY44wWFeF7BJgrM5GWaAy4CbjvTOZn/8sYgdknA45AwTAh57HzpcPe89cs6AxhkytW7atg5M5bl/IRV6GjwOtnZfudF71mVHcMweXsgic9l58m+aL2A9/2zk1yZyqPqBn0xP5IoIADfOj5GtmzF35/a115/D1G01L4iXifOmjrQV568ofjQHHTR6HdSlFViYTcbYz4O9zUwka1QwIor//cXL+GyW/HKjrbQgnHgtekC+YqlGCGr1oSfKMIOMcjp0Yy1r2gGhbLKtekC12cKPLetmf/6yyHyilYfajk7niNZrPLxPW30NHg50B3m6GAKh02koupcjxf5dO33A6uJ769OWEMo2O+8qfjCRI6JTBmnTUTRDJoXGUR5dnMjv7ieIC9rzOQVBAR+dHEal0Pig9ub6jWFWbxOiaaAi5m8zIZGH9dmCvzs8gynRjKEPHYcNomBeKF+P8/klHoRbFOTn6GkNYmZKlpnSIdNxDTNBWN6QRDq03eZUpX/8Ho/6WKVjoibvpivXpuYS66i0h8vYhjWMMzGJp81/KEZjNfkDLNl67sURYGeqJeo14XHKZItq6TLKqqug2nl3qbyMk67xOXJPL2Nvvo5bZZZ6VS/08ZAosSb/QmU2tSabpiMJMu8cn6aLx7qXvL7WpUimGmahiAIfwK8aprm1dV4z5VdgFXlrSgamgExv4PntzfTHvJQrGpkKyrTOZkXdrXQGfHyL1++RP9MEadd5Km+KKfHLKm2gNvOp/Z1UKnqTGTLlBSdE8NpBEFgPFuuTw2cG8+SrahM5WSaa4fTs2NZTo5kGEwUifqcTOVkXtjZwkCiyI8uTtPgdfKJvW31cb6JbIWfXJoBLCmw925pYmPMb8k3apYkziwf3G55eXRFvUuOJG5o9PNEj9Ut/oUnOpflX3UzFyZz/OjCFB6Hnc/ub78l+eqyixwdTJOtqATdKToiHnoavHzn9ATXZwrYJZGuqLcur1SQa2aFbge9DR6uTOcJuu0E3TZsD8jj6G75yaUZEgWFs2NZfC5Lgi3icRBwWyPYs0kJWdX51z+6wrnxPI/3hPm1g10MJUt4HBJDiRKSKPBUXxSbKPJ2bVLgk3vb+NHF6fqYuNdhw+MUaQt5CLntyJrV2RsvyqiayUxtQsftsNXk5Qw0zQTT8rJz2238+sFO9nVH+E+v9zOWtWR/PrSjmQ0NfpqCLhRV50/eGiJf0dANa4Q6Xa7S4HPy/q0xtrUEsEnCbTd20zQpVXW8Dqn+2tlDiaLpKKrVEV82Fs7K6SZcjxcpVjX6Yv5bAvpZU8yJbIVnN8fqpt7rrA6zRXmwJiRmJ1tzFbU+5ZWbM+X16hXL13AmL7O9Nbho0vz5Hc3E/A6+fnSUSlVnKifTEfFQVDRePGvpHicKCp/a127JWkkCLUE3vY0+PA4JpXaYvjZTYFd7iO+fnaQgW8GRYVpTXH/29jCabpKXVbqiXj69tw1JFCnIKrGAyzLiPDrCYx0hZFUnWazid9nZ2hJga0sAVTf4wbkpfnxpmslshaDbzrWZAhfGcyi6wXSuwj97YStBj4NUScVhEzkzmiXodhDzOwl77UxmKvQ1etnY5OdzBzooqwbeWnL56nQBh03EW+uAOzmc5nunJ+iMeNjWGuBabT/68uFu9nWF+dnlOG8OJEkUFF6/mqgHo0sxlr69bvI6D4aWoJN40Xp2Qp6aH9dNr/nemQl++5kN87oMAy47ggDxvMJL5yZJFhT6Yj5OjmTY1R7kQHdk0enMldDod/K1I72YJsueNhNFgc8/3sF07Xm+V2xvDc4z0L4Zt0Pi43vaGMuU2Tmn0aihJrv27RNjnBvPIQlWIq0v5pt3vaIo4BRX3pDz6pU48dqE1M+vxnlq48Lr33CyRKVqoGmWLJ13gQS5XRLJVtS6/v1ifO6JDq7GCzjt4pJdcSICkigiCSzaOGXFMNaB++hgmvZ9C3+Hr1y0jIwFAX56Kc7G2ML77v/8wla+fWKMQxsaiPjuzk/T45K4Hi8iiQJR3+IFhaDbTq6i4nPZEBaTmlQ0KjWfxnT5VsnYrS0B8hWV//h6mnxFpaTo2ESroKrqNmRN5/HuMNdnChimgWFaUliqLtWLxU9vbORP3hrmpbNT+Fw2Pru/g7DHgVy1ZD8EBIqKRizgYltrgJfPTZGraKTLVUqKxhce7wLgd5/t4+RIBpskcHwog2GaXJzKoYxa98Tfe28fH97Zwn95Y5CQ285PL8/wW0dudDvu6QzT4HPidkg0+JzEAi76Yn50w+TqtKWKsbczvOTzemwozUxNanh7a6C+vgiCsOj5Y393hE01H9zFzh3bW4NsaPRhl8RbOkkLssqfvDlc7zz9ylM9D1VCdzhVujF1apN4/00TeqvFDy9Mc22mQEvQxecf77zt60dSJQSshFi15m/ttAkomok8J8nT5HfRHHDVE31bmvxcmclTrhromo5qHSlw1BIYLoclcfP7r1xhV3uQDTE/n93fcUeejVHv7Quz6zwYFPXG3jFbtzRN01ofa9vUXxwbpaRoRJ60/HwDbjvJotUJvpSf1s3MKuGouqUG8p3TE0iiQElRuTRZoC/m48O7WigqGtmyyndOTyAKllTi2fEs2bJKUVHxO+2Ypsn+rhCnRnOEPXb+8I1BNjUFeG5bjNZaUvLsWJZXr8SRanFMzO9iLF3merxIg8/Jv/jYDjY3+7GJwoINwTGfk7Ki47aJjKTLTOYsT+StN6k3xAsy6VKVvZ1hsuUqU7kKsqZbUxa1WKunwYvPaUcUBAzTnGeHsRSyqvPS2UkyZZVUUeEfPERr5joPJ6dGM1ydLtSaUE0a/U68TokdbQEuTxVoC7r5i6NjDCVL5CpVDNPEIQmEPA5CHjt7OkP81pFe3A4b//Zn1xhLlRlOlRjNVMhXNEzg9GiWv/e+jfhddqqawbeOjzKWrhDzWaoqclUnXarSMWeq/YmeKINJyzZmVmp0Oiej6gYdEQ9Pb2xkPFPherzAS+emGE2X6Yl6uTiRoz3spj3ipqfBi6LpBJx2fC4bPzszwcXJHKIg0B520xpyU5Q1DBPm9oS/XVO7EQRoDbrv2Ls0WhtcEAQIe++ukeZgbwSbKJAtV7k2M+sdbpAoVCkqGlO5CtN5a8060G1H1U08dqlebMjLak1lY4xMWeWFnc10R7388MIUExnL8qFcvXFWafA5+T8+voM/fGOQK9N5ftmf5IWdLXxkVytHh5L80S+Gmc5V0AyT6bzl7fXCzlbCXvu8Rom+mI9zEzl6GzwcH8lgk0SMmvpPVTcYSpS4PF2gpKjMFGT+5K1h/sH7N/IvP76D//MHV/A4rdjktauJuvrQP3thC19+sofWkIs/fmsEj11iNFWiUtVx12KZrx8dYSxTxu0Q6Y56eWoRBZSlGM+U+a+/HEJRdZ7b3sTmJj/7FvEEi/qcOGwSqWKZH16YYkOjr+5/O9DouyW/aZNEPn+gA0UzcDsk/v2r13l7MIWmW1KDO9uDlGSNWMBJ1OukdY6Up8su0RF2883jY5wazVKu6nxmfwffrvlVH9nYsKjdzduDKcqKzkS2QizgpGGRhuzZ/PdEtsJn9nfwi+sJJAH+3avX2dUW4PRolsc6QmQrKrKaJ1vWCLkNKlX46K5WPrFH4K9PjnNpKo8gCHRFfJQUnV3tQbqiXvbepLT3X385yC/7UyhVnc6om1MjWTTNGoISRQETc1lqO6tSBBME4WPA72MpofYIgvAY8HumaX5sNd7/9j/fMthVDXBI1jTNn709gtsu8XhvhM6Ih8N9UfZ3RWo3jUFOVonanKTKKlua/LSHXDzZ11gr0Njr3k+T2QrDqRLDiTJ2yfLzKsgaV6YKNPqsybHtrQH+7c/6qagag8kSUZ+zLotyYSKHohpM1CbEZqVIHJJYD3hmFwCHTWRPZwiB+f5aYa9jSUPteF5G1nR8Thu//YwlNbacAphpmkxkKgiCQGvIxeWpAv/tF0NM5WR2tAUYy1RuKYI9uyXGmbEs45kKJUWnPeLBxDogdUY82G0ST29qpCXoxmkTKWB1d9kkgYDbgV0SsYnCPD+Uh42wx0GioKAZBlXV6vodSBbZ0hwgNGcUOluu8mZ/irys8ovrOp/c287hDQ3E8wqtIRfjmQo/uRSvj7uapkmmZMlLxPxOpk2TBp+D7S1B2kJu+pNFKrUumK0tAc6M5TBN6zA7nilb3ZqmiYHViRL12XlhRwsf3tVKqqjgtludBJIg8PkDXbSF3bzZn+RfvnwZgN6Yl40xy/zyl9eTdSPMvzk1jmaYPLetaUl/l++fnWQwUWJri5/nd1jeLZ/e286LZyfRdINqzcB+Ln6HSKlqYDDbBW9tkAVZ4//58VX+0XObCXqsjpxZyahcReXoUGq9CLbKNPicCAIICDTOee63tgTIllU0w5hn8tkWcjOYKC0rCW+Y1iZpl0Rm8lbS3DpcClQ1E6ddpFLVOTWaZXdHCKdN4sO7WupSqoqmkyjIVKp6fV1pDlqd8RXVCoiTRQVF1Yn5Xbx2LcFXn+qpr62vXJiiweekoup8ak87U3l5nt73YKLEtZkCqZKCJAh4HTYa/A6ODqYwTcjKGqph8ERPFK9DYjRd4cRIhqpu8MVD3YQ9DhoDTpLFKrvag7x0fppz41k2Nvo40BPhy092c3o0wx/+YrA2ap9BEoVaV5uN7a1+DNPyFpIkka0tfk6MZtANk7DXjqYbVqfWEoXo8mIjH+s8cPwuJ2AdRPxO69nSMecFYJJ4a3K4M+rh8wc6+e7pcSqqwWi6XDe79Tlt5CvqbTudlsudNM14HLbFPafuIx0RTz2xf2wozfHhNNtaAuxqD+J32fErGopqHXhuNyG/XMqqUW8OqKiLP3uaUeuiF6x1bCFkTac97MbjkOqemgtRqRpsaw3UTMIX/5ltETeZcpWI11lPtN1M0GMn5LGTLat0Nyx+aM+X1XpXaVnRFn3d+7Y20RZy09Ww+LSYqun8f354hfFMhd883MWTfQsXDn9xLYlctQpvP7+W5IlaN/DNfPnJbn50cYY9HeFFvbYcdusQresLT+JJosDWlgAlxZL/FAUTu01CEEwqVa3mTSFit4mIAtgloX7OaAtZEnSaYXU7Hh+2CleqbvAbB7uYzFY4NpxGru1f8YLM+7bEaAm6+Lc/u47HIbG7PUh7xNqLvE5b3bdvY8xPuarxwwvT/PTSJPmKil0S+Xvv62N3R4jxTHnB6fyFCly6YfLjS9OYpuXn++Une255Ta6iWtNsUUv2MOC2L9vDAZbnXbpYES1TUq39W7POZgNLyG6uRcIeBw5bzdd2GdN2d8pkLUkynZcpVy3puJagq56kn5WViQWcOG0SDptIT6MPh03kF9eTqLpBLOCiO+rl1EimLiE9mCzVJrokDm6IEPE6ee1aHEXV0U2QsCZUFd0k6rURC9R8tbMVehu8ltRiTYlkpeTlxdeUdR4swhzpjtl6liQKOGwSWlVHEMBus9ZGR+0efGFnCyMpSzZsbjxjmiaJokLQbV9wOmxWKgmsiQgBuDSVx+OQ0HSDvKySLau8f1sTf31ynOFkCUEQSBQUYn4X2bJKe9jD+7c08q3jE0xmZRw2wXpWFA1RsM4bZ8ZyHOyNEC8oKJrOULLEN4+Z/Mahbt4eTNWlf9vDblx262cvxJcO9/D9sxN0Rrz1c8h4psyWZn89Ts9VVP7z6wMUFI33b21ie1sQRTU4M5ZhQ8zHP35uE6Io1htHf/WJDuSqsYIkuslMQSZf0Va0Vq+zzp0yu7/5nHaobXWtITe//6ndnJ/MEfLY+U+vDzCYtBRdtrQE6G3wsqkpwC/7k/zk0kx90uiVCzOkS1VCbhsBpw1VMzCxzuPTORm/y85MXmY8U2E8U2YiW8EwTMayFRJFBbdDqifHz01ka8owZQYSJZw2sa5g84HtTbQE3UR9DgaT1lSX0yZSrmpsbvLjcki4bBJ9MT+yatAetnILXocl6abpBp/c20auorGxyUemXOWt/iR7OkN0RKym/zNjWSRB4MjGEk1B54qVJQA2Nvn5tSfsteavu4sjnDaJJ/saiOdlrs8UMbFUSGbXty3NfoYSJaq6wZsDSbY2B3jl4gzP72giU9bY1R4knlfqnuhXpy2/9Y6wB1UzaA3dKPZly1W+c9qS/5vOV5jMykgiDCSKNAVcvNmfJlWyvA09ThsOSWQgUeIbx0aJ+hz8+hNddcWBgNvOh3e20OhzMJ1XKMoaTrvE33nPBl48N4XDJhL22JFVnapm8M5gipFvldjRFuR//chWfC47ZUXj37/WjyQKBN1Wc4EgCDy/oxVFMxlMlLCJAsPJIkGPnZKikypWa3ldk2xF4etHR/nKUz10RZcvk58oKPUYLV2s8vjBpQtps3LBkiDQFfUwlCxhk4R6/eFmRFFAEKxiW9TnwO+yWzkijx2/y07YY+f925ppDrgsKwG0+rmoVNXriikFWaUgW8NBYA0fPNYRwiaJ6IbJZLZCo9/KB6ZLVRw2kYO9Eb54sKuuNnHLtQkQdNsoKXY2NHq5Op3nRxenyVVUfnE9yTObGnnjerLWrG1yeEMDBVmjJeSiM+rh2HCKnKyyuclPc8DFtXgRVbdqDB9YQBXs7FiWsXQZ0zRJlRRLTUUUaAm52N0WxO2wLWoXMJfVkkP858DjwOsApmmeEQShe5Xe+7aYJlQ1HUmw/FnGshUKsk5O1jgxnObDu1p4bmszoiiwpdnPzrYQBUVnc5Ofrc0BmvxOEkWFJ3pvrYTma3roOVmlPeRmKFUiU66i6Qbj2QqZsoogCHRG3fz44gx2ScTntHQzwep+HM9YUiQx/40bu9Hv5DP723ntSpxz41kcNpGQ285L5yzd6k/saatPFJmmydGaufaTfQ3zkiQXJnK8eHaSCxM5trYG+NCOliW9yebywwvTfPv4GAjwhcc7cdhEYn4n2YqK32VnU9Otya32sIdP7m1nJFXi8IYG2moJ8I/ubiFbVuf5Rn1ibzvDyRJdUUvW5udXExQqKrKms6M9uOYlThbjua0xdrQF8DltvHolTrKk0BXxIAInR9JcmizQEnLzwdrGW1Ass+n/93fO848/sJnHeyJcnMwh1LrYmgIuIj4Hl2syCYIA/+i5jfzyWhJRFAm47Xx6Xxu/9+IlBMHq8P7dZzfyowvTfOvEKP3xEqmap5jXabPGeAVrmqYj6uV7ZyYYSZXpinjY2OSnr9FLW9iNrOp8+8QYBdm6hzXdxGUX+WV/kmzZ6kjvCHu4PJ3HaRORRBYtgimqzotnJylXdUqKVi+CtUc8fHR3K399YgxljlybKFhF322tAc6O55BrbYZuu0jU60Sqdcb3J4qIArx+NYEkWpJEV6etkdtcRV10QV5n5XRFvfxmLaE+N1EsiQJPbbw1CfmRXa1kylXCt0l8lBSN6ZzMTM4ab95YW1dcdonPHehgJi+zMeZHFKxEWq6isqnJx3imwqtXLR1vRdU5N25JCm6M+dneGmRjk4/RdJmqZpAqVXn53BTnJ3JcnsoT8dqZW2+dyVuBX7pURZKswOjP3h5GFAQ+va+dpoATl12iLejB7RB5vCdKR8jFz68l6r4zf/7OKAe6I6RLCrJqBV8T2TKJgszFqQIht532Vg99jT7+/J0RxtJlXr8SZyxTJuJ18tZAsja9Zo3IFxWtLn9mmtYaLEki6VKVly9M43VINVNaJ//+tX5rz9jXseikTmz9ELxmkbUbib5ZaUTpplmwj+5qWfDg1Bx0cWRTI69difPCjhb2dIZ4/WqCoqIt2pX1IJiVzHjQnBnLUNUMzoxleXpTI5890E62rNIUcOJx2BZNxJcUjfMTOdpC7mVNtm2K+Xj1ygwCwpIygVta/JwayRDx2uvx0s04JIETIxkypeqirwHr8DLbXT9r5rwQezstT7cNjd5FfQWcNstvSdaMJQtv21oDHB1KI4iwqXnxxpNvHB3l1GiGtpCbf/bC1gV/7uXpAq9ejlOqarjs4qJFsKlcmdkm01RhcdnHj+5u48M7W5e872TVwGmXLM+wBV52ZSrP//CXZ639ySbhckgIpjU9Y5gwk5OZzsr4XTZifhcHukLIuuU5PFuEsksijX4nomg915NZmf/65hAXJ/K0hT2kigq//6NrOGwiv3m4m72dYfoafWTLKp/Y277gc28lmywPtZ9dmsFhE0gUZLJllQ/taOYPfzFIqljl2FCax3sW91cDS14r7HGQLlkT/oqmo+kmbrvED85P8c5gCkGwpIu/8EQnG2I+KlVtSfn11aQ97OapjQ1ohkl72M1jHcs7w6wVwl4Hv3Goi0qtCede8eyWRk6NZtnS7Odbx8eIFxQ2N/n5+B5LEurFs5OMpMqEPVajXCzg4tP7rPWvO+olWfOhbgm5ePHsFBcnc1yaylOoqLxxLUHIY6erwcNIsoRcu/8FAGG2cRNyskZRKeF12qjqBu8Mpfn1JZIjtyNTWlzudJ0HS3vIxbWEpTAQdtUm2AVLEaaqG7SH3PzvH9nGppZAvQBql8QFfQNfvWJZIoQ9dn79YNct+0NfzMfWlgCKprO7I8hfn5xgU8xnTQ7krGkqW229dTtE7JJYuxaJpzY2EHTbeP1agn/2nYt1KUYRAbmq47RLuOwi/TMFRFFgKl8h5LIznCzjdUlousm58RydYQ8TmQphjx2Pw8a3T4wxma1wZGPjLXmVsqrRFnIT8zvY2hLghxemuTCRw+e01z3KEgWZd4bSVGuSw8/vaGE0U6Y17OF3n91IoCZXNZmt8P2zk7hsIp/e37Hs78cuSTzeHSVdUtiygH9wuapxZbpAW8hN0yKyXOussxK2NAfqvu1Om4is6vVnf09nGN0wOdgTpSVoSRNKosiRjQ1UNYNf9ieZzMq8eiVOR9hNqqhYzUeCSXPATVvETaGicWEyx+98/ST/+Yv7aA97KCka8YJCo8+JohtImQqSKJCuSV2PZ8q47CK6YWCXpJrX5Q2f8v54kVcvx5E1ve4TpuoGJ0eyFBUVl13iu2cm+MSeNp7ojeBz2DAMkyf7ooiiJQ13YM6kzD/61hkmsxVeOjfFf/i1vTQFXPTFvFyfKfKtY2NcnS7yxUNdd9RYuJCf6p1QkFXeHkhxZjyLrps80RvhUG8D2YpKUdZ4ZlOMfEXj3ESWfEXj4mSeqm7Q3eDhcwc6cdklVN2gM+IhU7aae+2SyK8+3slwqkR3g5dTNR+0sUy5Jl+o0+h1omhZ3A6JfEXljetJrkzlsUsCG5v8fOXJbtrDHt4eTFFSrAZmRdNx1z7zbx0f49JUngsTOUJuB0/2NfDCzhY6o5b3qShYAxcDiSJv9SdJl6qIWHF+QVb5Xz68Db/Lx//xKzsYrzXpzP0edreHOD+eI1GocHEyR7mq88ymRrobvCQKMvmKyjuDaTx2ibys8n9/avey1VF6Grw81hGiqGg82bdw495cnqkNjDT4HMQCLisPJrJoAXU4WeK/vTmEz2ljS7Off/jejQS9Ntx2G1enC7RHPLSF3FyYyPGTSzM4bCK/9kQnIY+DQ71RRtNl8hWVzx7oIOCys7MtyFjGaqz9d6/2s787TKasMhAvEvE6aPDZSRQU7JLAJ/a0E54ztV+p6nz3zATlqs4Htzfxw/NT/PRynN5GLw6byAs7W/jhhWnCHge5SpWjgylGM2V03aSqGzjsAgGXDd0wOTaU4o/fHCFbrhJ02zk7bk2rbWkOzPNZ1g2TdKlKxOugO+plIlMh6nXidUn87NIMJgIdYQ9PbWqkp8G3aDFxLqtVBNNM08w9qKKGIFiJWhNrkqSszE22i7w9kOLcWI4NMS+f3NvB7zzbx3u3xJjKyRzsCfO9s1PkKxrXZ4q0BOcnIA5vaOD0aIaNMR9vD6axiSL5isaGRh+yatAfLzKSKvHhHS1cnbJkakxM3DUZrL6Yj75Y34LX3Rxw1eV0To5kODDH82JugmM0Xebtmla0KAi8f+sNs/lUbeHRDGsiKFVc/oFiIluud/hOZCt8el87RUXj8d4Iz2yKLSpt8WRfwy0P+Kxv1rWZAm/1J+lu8PKezbF60eTn1+L8lzf6GUqWcNlvdLveL9Ra0uJO5Drmcnw4zZv9SbqjXn7lsVY+ubcdSRQYSBQ5P5HjynSBqM+Bqhv86OI0PY0eJBGm8wq6aX3PFyfzdV+vkMdBuapxdjzHlek8TX4nV2eK6LrJro4QZdUg5LbxysUZhlJlFFUn6nMS9jo40BPmL46NYmLWD8Obmn1outXpUKnqbIx5OTmSBSBbUfm7c6YGTo9msYsCIY+dlpCb3W0hqprJVLaCJAhM5a1R8kJFwxVwzluMbiZRVAh7HGiGQmhOMl6ofeYFeX4HvGFa2utTecUKpDTLP84u2djfE+HCRJ5yzYR+1sxeN6C7wYvfZUcQhLo29MOAoukMxK1R/dWaRLgX3O7aTNPkrYEU2bLKUxsbFkzCT+dkvndmArdDYk9HiFevJLg6nacj4rES0OaNZ7DBN3+8+gtPdJIqVWkJuDg9lsE0a3rbukFF1Tk+lOLYUIbDfVH8LhszedmSdwp7+Iujo9hrXTS72kP1NRjgvVtinBixzERddonTo1lKtX1iMFlib2eYLz/ZjWaY9YTwH/1ikKDbTr6iUlY0rtR8/LY0W1MDozWT1TcHUuztDFOsTRL8w2+dIV9RcdlFnDaJ6ZxcM5m3pi7sko2wx0FB1ihWNTJlFUXV+cH5aZ5RdBp8Na9Jm0Sj30l/vIhpmkxlZTLl6qKHWXl9EmzNMpW9kcjPVKy9vaobzH163hxIEgu4eONaAo/TxpG+hnpy/2ZJwI6Ip/6crAVOjWZ441rCapLZ03ZfimEXagXvPZ0h+mJ+DMNEN012tAY5PpxhS4ulc98SdN8S1y3ETy/PMFiTKf7KUz1LFoYArsbzzFZVrk0XF32dwybQFHDhddrIKxoN9lvfdzxdIVmwPGEvTuUXfa89nWEUzfK63bpEQaqoaHRHvRimdZ+5FpF7tEkivtsc1Le3BdnTGcIuiXQv0aH+g/OWxIzPaeMfP7dpwSJYpqQwnimjm3CuJsW4EF6HDbFWs3IuIQF+fiLLKxemebw7wjOLqCV0RNwEXTYKssamBaaLjg6lKcgqdkkgFnCyqy3E1ZkCQ8kimm7UZb/KqsGn97fQ2+DlW8fHEASBiqrzb356Dbso0Bn1cLAnyli6TKpYZSxdrvnrCbRHPMQLCrphUpAt7XynXaIpKJEpW/I0c+83WdX5q5PjFBWN57Y18fE9rVycKnCkr4GY38lkrWAHLCvmF0WBzx3oIFlU8Dhs/PGbw8iqzuENUfrjReIFq5My6nVSkDXieYUfXZyed4i+l4iiwHPbmnlu24PxgV0N/C77smXM7pRZj+KCrPKvf3wVRTVQNaNeBEvVurZPjGRIFRVkzeBvPd3L9tYAo+kSmmHS3eAhXqjS2+CjKehiKieT1GUqqmVKPhAvWv69goAkWlNgTpuE12VJJekGGFiKKKJgrTVvXLeaMn7nPRtW3AHvWAONE+sszPQc38lc7Qyn6ya5koqJJfV3ZAmVmrlM1brOM2XVary4aX+wS+I8v8iNMT+vX0sgYKndCIJQT2q3hTzs7w4jINAUdCKJ1sRXtlStyykG3XbSJYWeRi8zuQouu8R4sULM72IiXWHEsHxbtoQtP+CJTJnpvEJfzMuB7gipksJExurqvzpduKUIdnQwzWi6zEi6zHPbmuqTG7nKjdyNYVg5G1EQwLTW9YjHgU2y5HFnp2quTReYyJSxiSKjqTLbWgNMZiv8/FqC5jk+pjf7DUmiwBee6CReUOYpW8zyyoVpRlJlHDaRrz516/TvOuvcCXPP7Dc3lV2YyHE9XuCdwTSNfgf/5ANb2NTsp6Jo/OjiNOcnclRLVdrCbkIeS7pUqqliBV0ORlMVSopGuarzey9e4qO7WzmysRGPw4ZpWlYe3zg2xnRe5oVdzXzz+CjZShXTgKagi/dtiRILuGjwOesSenJVQzNM4nkFh00kW65ybDhNS8BFslhlY8zyWLo4maO30cdUXua7pydw2sR6wWAulaq1FsqajmlahZWXzk0iqwYzRaUmFagTdK+8CDbLcnOW5aqGQxJvibd/fi3BmVHLY2xnW5BsWcXtsBrfZtnWGuDKdJ4Gr4OKprOxKcBbAynSJSu/c6A7cosVQ1PASXPQxXdPTzCULGGXBD7+WCsnhtMkCgoHuiMc7mtAEixFsuszBSqqjstu43/60Bb2dVnFxKDbwTtDKS5N5vjt/36Spzc18OtPdJMpVTk1kmYiKxPxVGvTdta5Y29nmM6Ih3PjWcpVjc6Ih3JVx++2E/Y4CLgdTGZlNjfbaQq6aJpTBMmUqvzwwjRXZ/KMpsoMJku47BJhj9V4/cVDXThsAi+dncKoSUdXNcP6fG2Lx7+6YXJ8OI1hmjzeHeF339tHWdEZTBT565PjPLWxYdGcjU0S5ylazeasNN3g1Stx3h5I0dXg4SO7WvE4JP761DhXpwtUNZ03riXY0hzgPVsa+ciuVp6Y4wk7O+E12yAe8jiwSSK/9kTXvJ///m1NqLrBv3+1H7D2udn77cp03np+NMsj81vHx4j6HHz+8U58ThsXJnP0xy3fzWODabJlS0kiVazS2+ijt9GadP7Z5Rk0w8QmWH57hmjS2+hle0uIiWwFVTe5Hi+h1tSO5np3TmQr8zzVXjpnqY11RDx8ZHcrPped9rCbazMFon4nuYp17jo2lOH0aJZ4Qb7tmWK1imAXBEH4AiAJgrAR+PvAW6v03rfFME1CbjupooJhgE0E0RRq+ueWh1PAZefEiJ1NsQCtYTc/uDDFTE7mz94ZBtOq4P7VyXFU3eDZzbE5yacAM3mZ6/EiHWE3mbLK/u4wmmEyki4jCgIehw2HXeJwX4MVLC1i4H4zYk2G5cp0vibdE6Ko6IgCbJvT1eN32bGJArKqc2woxdXpPB/a2cKGRh8HusOUFY2moIvOsIeDy9Qx1Q2TTbEA01kZb21yze+yL+kzsRyODqbIlFVmBlM0+BxsaQ5weizDf3i1n4F4iYqqo2gmXz86ykd3L272upqMpsp878wELrvEZw903FXh5NJkHtOEoWSJbFnl+2cniRdk/E47vQ0+VN3ySBpNlXnx7CQtIRcHexuI5WVUzcBpE/nLE2OM1MY4zdEMVU2nM+Kl0eck4HbQFfUgigJtIQ+qYXB2zDIc9Tslol47PVEvhmEVvnwuiURBZ3Ozn95GH0/0RJjIVnh7IIVmmPyrV65yqDdCqWqNc4PVsf/WQJLr8QLNQTdNQRef3d/BVE7m7YEkW1oCnBrJ4LaLlBQduySwocHLEz2L31tNARdNASepkkJTLbDPlKr8+dERfnBuioVEoDQD4rkKdptUkykyaQ7YmaxJqwRcNi5N5XnP5kZU3TJvvD6TZzRd5v3bmpaV2FwrvHJhmsFECaddnCfT97Axlq5wbMjyr7NJAh9cYEz5yrRVwCzX5A0N06Q15CbiteRjgx5L3u8X/Uk03eTIxoZ6IO2yS7SFrCnF4VSZkqKxpzPE9rYgA/EiZ0az5GWVM6PZuldZqmhNT3RFPciqTmvIzaENUX55PcnFyRwf2NZET+N8H6BNTT5OjWYYSZVIFq0E4M3BfNBlp1LVkVWDgMvawGdyMm8NpPitp7qoVHWSpSo2UWAiW+FXdrfy398ZparpmMDTm2K1SbEq6XIZn8NGxGtpbzttIrgtqYWCrBLxWt35f/TLQfpiPra3BIj4HOxoCzKaKvPy+SlsosBktrJoQLWUJNs6D5aeBg8TOStZHfPPFjnnH1pODKeJeBz84Py0VcwNONm8SKFj9jlZbRIFhTf7k8T8Tg4vo5NtlstT1r44li5TkDWCnnubDDYMk59djmOYJplylfawh28eGyVX0Xh+RzN//31983wpy4p+22sSa6+3JPFufw0htwPTEiEmskSRIOxxMmBaXqDuRdZ9h91qrlJqTSeL4bCJy2oget/WJk6NZOhtXNpHVjdMqjWN+cWIeB1UVAPdNJdsksiWq1Sq1tq3WD2+JOuWpIdp1j+7hXi8N8KZsSyiaJloL8Z//vlg3dvsiZ4orgV+j0LF6iJWVIORWkPNLJpukCgoBGreE9tag9hs/3/23jtMrus88/zdULmqc05oRAIEIwhmURJFKtiKtmzJluzx2DMOO56xJ+w+s7se78zserwzY0+wPR7bclrbsmRJVqISSVHMJAgSOXaj0TlVV44333v2j1Nd6Aa6AZAEKVLC+zyU0FW3bt264ZzvfN/7va9CriaJC55Yy0KU3pAV00XXVIqGzeOnV1AVRfq7hDTevaubquU2PMhU2uJhPnxLPxXLIxXRCYdUPnLLAFXba7JQn5/I8fJ0kY/dPtCUXpkvGE3ZmrHlKiFNY3dfiru2dqAoCoNtMe7Z1kmh7nDf9qt7TqMhjaH2OOcz1WYS5+hciVzNpjsZpiMRYd+WdlpjIV48nwPkIjpXcy4pguVqNk+OZWiPh3lod89bogP0hwmLRROEXPt2JsN8+fACsbDGg7u7ObNcpTUW4uB0nrLp8o3jy/zY7YOMNwr13zyZZmypzEzeYKAtxs/eu4U/euo8VVt2fpVNl20NstCqxGNIU/ECwdbuJKW6Q7Zm4/lSukpVPIp1mwOTeW4fbtu0GL0Z7NfmP38dbwISEY2KLQfzVe6G1ZAsA6g7Vx9z3re9k2+fXOamwdYrEkxAEn1+9p4tBIHghckcddvjzkbH6y1DraiKQs1yiYU0vnJkgW+fXMbxpJTZLUNtfOz2QfI1mz9/fpr5oonheHQmpH9vazzEUtGiNRbiH9w7SjKq86fPTgFwaKbIZLaOCgy0Rala3obqOgNtMQp1h6rlcXKxwjt2dlEy3GYXGMBAe4y7t3VQNlzedUMPqahOS0OeK7FmrnKDgJmcgaJK3x6Al6bypMsW6bLFjf0pDkwVmM0bvGNn17rjSUR0tm5yPld5q+JN6ui9jh8enF2u8ML5HFu7Ejy054IHZiKiM5Wrk6laeEHAU+MZdvYm+cxzU5yYKzWlSauWjNWncwZl0yGiqyQiGtu7ZeeX5frUbI+DUwU+fdcIJxfLjY6UQd53Ux+m41G3fF6eLhDSFFxfSv2lyybtiTB7B1qbz2KmYrFUtuhIhAmE4MBkjq5khJOLZdpiISqW7H555NgyW7sTdCXC1G0Px1OZLxiXeBL/2kM7eHI8w/3bu5pdQrcOtRHWVNIVi/t3dL6uPOPanOUn77q0CAcyNnt5psAr0wXa4iF++q6RdbF+MqITD0sibXs8xG0Nn7S1SIR1FoompiuV0QZaY9iN4P18prau+w3kGvWPnp6kJRZib38Lx+eL5OsOqaiO5ws6kxFWqhY/f8tWAgG3DLfx/PmctGdJhLl16MIxjHTGOblY4plzOUzHa5y3bu7c2s4z5zKEVIWy6fLk2AphTeHXHt7F6aUy//Op86xUbHb1JulKRRlqj/Hz943y1LksYU1lqC3KS1N5TNfn3m2dzXNycrHMSsXCbEgf9rdGaY+H2NXbQiyk8fR4lrtHOynVXfpaImiqysf3DV2RAHZmqdJsUomGNPaNtON4AQcbebLnJ3LcPNTKeLrKbcNtV6UyMpau8sy5LOcz0v5lS0eCe7Z1EtFVtnYmOJuu4PpS7SQe0S7J2+8fbWcyK70tt15BzjGkqezb0s7pxTJ9LVF296c4s1wFBB0Jaf0z3B6n7vgUDYevHFkgGdE5uVDi6XNZSRS3XKayBvGIyi/cv7WpTPHQnl4e2tPLsfkSf/T0eUa7ElQt2fyRLpsMtcdoi4e5c7S9+czfNtzG2eUqk9kqWzoTzBWMpl/ZqmfaUslk30gbbTEdTVPI12wqlofjQclyWSwZzBdMzq1UG/vfXCnjWhXB/hnwG4ANfA54DPita7Tvq0LJdHBWg+kAklGNLZ1xyqaUXSmZLjf0pTixUOLEQpED5/OMrVRRgZaYjq6pdCXDnFgos6s31bxRC3WHY/Nyobi9O8mn7xnhe2dXGmxPG1WVEiXdqQjv3NW9YYLC8WSFc6OK/gdu6uN9N/byykyBP3tuioHW2CVeRx2JMD977xbG01VenMzj+oKx5Srbu5PEwzo/crOUnjufqfLXL87QlYzw4/uGLtvC+exEliMzRVaqNnd0xC+bBHk10DWFmVwdy/N5/PQKT45lealRGEtEdGwvQFOkPMsbFZi9PF1gJlfnnm2djHTGmczV8AJBzfZYKplXnJw2knUqG1Kab3t3gnMrVbpT0l9oIlPFDwSjnQl29SZ5ejzDrUOSiW57ARMrciD6Fw/fwF8dmOabJ5aZbRgyBkiZtpaoyfaeFO/d28f+Le2SZYy8Lx89lZZtvrbHzt4UbbEw27oTuH7AC+dzVEyPgbYoH9jbw/hKnRMLZW7oTTLUHufMcgVVgVOLFXpaonz75CITK1UqpssTZzOUTJfuZIR/eP8o4+kqx+eLHJktci5TpyWq05GIkIjo3DzYyu0j7ZdNioY0Kdt482AbC0WTpZLJ144u8ty5LKU1cicqsHbZFDSk7kAmIXN1D1WRTJq67XNsvsgHb+7nR27uZypb46WpHApwYqHESEecmwffHrKadqNA4fmC4G1cq2iNhZqJkYu7wCqWy8RKjZ5UhFhYIxbSeGh3Dy9O5olHNN6/t4+QJuUTzqWrHJsrAZCK6pckOs8uS7ZOIqLTmYww2plgtDPBk2dXODhdoD0eRldl4JuI6Ix0xoloKh3xMPdt78Ryff7n0+cxHCmJ+48e2MZNg634geDLhxeoWFISIBrSeOLMCgcnCwy2xxhsi9LXFmNnT5JoWBYaIrpKNKRyaqGC6fukwjpTWYP/5cEdfP3YIpOZOmFN5YmzK+gqlByfW4fb6EiEmMoFDLbHODhVwIkGZKo27fEQAvjx2wc5MluESAhdUwhEQCqqs9CQePyRm/qZydX5T98Z4/RSma5khJem8ut82daiZmwuG3Yd318oyoW5ONoohAjWq7PJbsBlZvIGLVGdknGBUWw4Ht89s4Kuqjx8Y88bVkR/cTLHdK7OdK7O9p7kZSV06rbHcxNZCnWXgdYox+flmJyKvr5jWy6btERDm3o8gSQQ9bVGWCpZ9LXGyFRsio3zNZGpckOf7PhxvIDPHZylaLjcs61zXYLqYtyxpY2xdIWdPS1oisKpxTK9LdFNPX6S0RB6Q2s+fpnfHG/IiqjK5jIXZcNF0xRCQsEXr3+CeHkqzzdPLHPzUCs39rdsOEfWbZcP/f7zZGo2v3j/Nv75+3ZtuK+jcyVKhoOiKIwtV5u+thfDdKRGv9ogtGyEe7Z3Mtgeo1h3+NFG3LrxvgLiYR1VVahexoesZrmcWSoz1BZjs4a2Fyez1G1ZnDs6X1r3XtFwUZCLtbrjYTqSaJYuy668tc3vibDGUlnG+qmoTqFuk65YzfhlsD3G3x6cZd+WNmbyBh+6pZ8fu22Az7+ygOMF7OlvoTUW4nceHyekqXzwln7qts8jxxYJ6z4vnM+Rrdo8empZShWGdVaqFr0tkaac7+mlSnONsdG97PkB4ytVOhORTaVA+lqihDQVXwjyNSmP2N8W5afuHMHzAz738lzTK3ikI0a2YjHYFlu3RnhlusBi0WSxaLKrN3lF34TJbI3DM0V29ia5faSdsbSUNr59pO1tRWZ6q2C+YDQ9VjVF4ZWZAhFdZVt3go/cOoDjBcwVpF9rzfZIhDXaEyEKNYeTCyVePJ/H8QVT2RqnF8usljVURSqrPLC9E9PxmS0YmLZN1XPRVCjXVUxPeiH6DalETVWwXMFA2+XH7M2gqtcT9G9VFGtrY5DGPy5at//2t07zoVsH0VSlEbMIDs+W2NGTXDfGH18oky5beIH0AzkyV2Q8XaE9EeGerR2byoCpqsIDO7t5biLL144uct/2TrZ1Jxlsj/HZlzL40wVemsoTBIKC4fDL79zGA7t6eHm6wPhKtVHElR6aIU3l/Xt76WuJNaR747TFQ+iayu1b2ji1WMEPdF6ezpOvOty9vZN//I5tzBcM2mJ6g/SmckNfig/c1Mf5TJXWeIyJTI1bh9suSbbFQ5qUnCoY7OpNoqoKrh/QEl0vy5yI6Nw40MLppQp/f3iRRCTESEec2bxBayyEpqpNRZQzy5Wrtrz4wE19nF4sM7SqwnEd13GNcGimQNXyOLFQ5u5tnaTLFjO5OreNtPHTdw3zP550CGkqe/pbmMzWODJXZKVm4QvwhaBsOHi+4BN3DtHXEuXIXJHTi2VsN2CwXXrXL5YsSoZDumKyXLJoi4f4t18/xULJ5Ia+FJGQRjKikas5VC2XlbJJ0YzwlcML7O5racxNPicWyuzoSXLf9i7ZbRIIvt4gqUd0TY5dpsvJxTK6CnP5OmfTVfZvaacnFeFbJ5Y5NJPHF/CBvX3ct6OLGy8qjH3wln529Mjc26v1BQ0CwfhKlZaYlEyfzK7mLF0eP52mOxXl7q0dzWfYcn0++9Isr8wUEA0yzLauxDoCyjt3djPUHkdVZJzbmVh/TLbn88y5DNGGH3tYV/nRW/o4OldioWheMpYFgeCR40vMFwxiYY3OZAjHE9ieVL0yXZ9ISOVdu/p5YOeFPPhwR1zmThvStq7v4wYBn3lmkufPywKY27BiWSjUGelM8LHbh/jumRWmsjVUReGl6QL/NAg4Pl9iOldnuWyRrdrsG2kjHtY4PF8iGZEFvf/5zCRVy0VF4Vy6QmciwkN7eshULI7MFdnVKyW/z61UWCxaLBaNpl981XJ5biKL6QX884d28p41xd3NsDYuXpXn3N6dINVQn+hpifDFV+bJ1WwmszX++cMbr7PWojMZpiUqveEWSyYvnM+xrTvBT+4fZqkk86t//MzUujXP516a5a9emmG0M8HP3TOK4ficWCyxqzfJzWuKjyDX2MW6rIloqsK7dnUzl68zkalRsz1+6q4RxtNVHjm+iOn6jK1UaI2GSERDLBRMTiyUqDdIJZ2JUMNLLUBVNGYK9UuacXb3pfi5e0d5+lyWk4tlEmGdfN1mKl+nvyXGfds7+YX7R/ndx8/xvbMZfvGd2zgyG2W2IL3eVipWs+7Sk4rw0J5enjmX4ZnxHJPZmsyn+35TsjtdtqjZLi2uzpmlyhtfBBNCGMBvKIry20KI+hU/cI3h+4LlstP82xMyQdMeD9MaC9Mel62R27tTzOXrFA0X0/VQENQdKSXYmwpTMFy6khFaojp1WxrKtcRCnF2uMJs3sF1ZeHh6PMtUtka6YtOTiqAq8Km7pRfYwEXs7OlcnW8cXyIaUvmpu0ZoiYbIVC0eObbEeLoqg7m2KH9/eKE5YN+xpZ1bhtrWmcG1xcPcPtLObMGgZDjcvIE30+mlCq4v5ABRsy/LFDcdn5LpNo38js6VeO+N6x/4iuXy3LkcsZDGzt4EJxbK1G2fh2/sbZqwrg7GlhvwwZv7SJdteloiLBZNpnJ1FooG3ckIVlTnji1tfP3oIl4gUOENKV5ULZcXGizW585n+XTnFm4ebGWhYBANaWy9jGm75fp86dA8xYbnwlpj7q8eXaBouBiO9GERQiYMK6ZH1XKZLxh85cgihbrdkD4Q2J7faPeGJ8dWGE9Xmc7VZVFUU1ADgeFIY+r33dTHu3Z1872zcrvZfJ1vnVqmYsoE44duGcAJAh47lealqRwnFoqcS1c5l66gKLLI0h4PUTBclsomWzvjTTmfI/MlVAReIBesQ+2xptllVFd5aizD+UyNmXy96QVmuh73bu9k3xYpObH/Krobd/WmODonFz8vTxcwHZ+pXB3bu7Bouji9t5ZIqCAoGZJl6ngBbXEF2w04uVjm1uE2UlGdp8ayLJZNUhGdmuWh3zN6SdH4rYj37e3l+EKZkWtYcH4jkKlYJKM68fDGU0NrPMTP3rsFw/YvSbI9cmyJ5bLJ+UyNW4fauG24jRcmc5LFpMBvfPUkIU0lHtaaLeQqCrcOXzqW9bfGCGkKgaA5jrkNScRISGWpbPKBm3q5caCVrQ3N5y2dCUK6yrH5En0tEYJAyO6tis0jxxYZS1eIhzRens4zkzdQkEX7eFjjlsFWvnsmTWciTNX2uX9HJ0XD4cSClOzSNQXbD/B82XF1YCpPwXAZS1dwvICpXI2eVJSbh1r5+B0ysfd3L88T0VViIZX2uE7RcFgpW9Qsjwd2dbGtK8lnnp2iUHcYao/xv77/Br57ZoVTuQpj6Spj6QqTmRpzBRMBFAyHI7NFslV7wyB7pnydUv1WxXpteDke2q7P2idISiMrzBUMtnUlODxX5Nh8iQ/dOsB8wWAqK0OrwfbYhqy+14OTC2VOLJaaRblERNuQfbiKZ89leXIsw1LJZE9/qmmke3y+zO8+fo6fuWfLJbHQ1eDFyRwHpwrEwhr/4N4tm45DAB/fN0TBcOhKROQisDtBse5w+0g7y2WTqK4hoFkcmy8Yly2C/flzM5xaKnN6scJ80cRy5cLwF+7fuuGYXTachkSwoHyZ7q3HTi9TNDxKdYeVqslg+6UxSEcijOX6uL7A819/Eeyx02lqtseByTz/8L7RDdmMf3tghum89Hv5o2fPb1oEmy/UmcxUURSF3GX8uaq2JPbYro/jbTwWVS0PIWTsV7U39zTTVTAcH01ViIc2J3O9sEoKy8iFUGiDIuNwx4XzvZYYdm6lyrdPLmN5Pnv6Uzw/keO7p1dkF9cGefm641OzXHqSEYbbY5xeKlOsOySjOpFGklUIwflMDcsNeH4iR93xODlfbpKqJrM1lksmNdvnyGyR0c4EB2dk0e3Gvhb622Lk6zaBWC1IKHz39Ar7R9sRwLbujePXbNXmWyeWmM7XSTR8737u3tENux+fPpfFbdxjqZiG50N3g9ByNl3lxEKZ3lSEzmSEbNVhpWJTMFw+eItMaJdNF8PxKRkOA22xdQbuQggeP7PCbL7OO3Z0N2Ozp8ezVEwZm+7oSfLYqRUCIcjVbP7BGonuH3ZYrk/ZdOlJRS67PupMRdjenWQ8XeFLh+YpGK6UNW+N8tRYhoLh4PiCHd1x9g608v9+5yz5mkNvS4Szy1UcX/ZhuoFM3ICsbQjAsDyeHM+gKtKD11zt/PFhriSLsatHFgCuL2iL63z67pENCTq/+9g4x+aLvGd3L7+wgSRbeCOjvut4S8C6iqnorw5IkklrLEwiIiXKe1uijKervGd3T5NE/Nz4CtN5k1hI48O3GByYzPHSVB5VUVgoGPyTBy/YRpRNl6lsjW1dSVrjkml+aKYIwIGpPNu6k9RtrynRP9AW49hckbrj8YdPTdKRjDTzAF4g8APZGXHnaDtTWYOzyzXaE2HGV6rM5OpEwiq5ms0tg204vmTxZ2s2h2eLnFg4QkSXpD65VpEyoacWy6iKwrG5Eo7rE9tgnlqpWs247dBskURYeqA8d14qsbxndy8jnXGOz5eoWg6aCpOZKn/5/DTv2dPDT9wxSF9rDF1V2NOfYjpncPuriP2SEX2dTNZ1XMe1wq7eFLlanpZYiL96YZpDs0V296VYqVp8+u4tCAFfOrTAU2MZRrvi0gJjDatormjy589P8YVD87TFw+zpS8mxoGRJlSSkWkah7lIxXLyGH5DhuDgeLBVN9gy2kilblEynIYcOczmDL1cXODCV5yf3SwnoubwsdDw9lpHeTzWb7d0JVio20ZCGimCwLYYXCNriIXI1h70DLXQmw3z96BLfObXMdE6SSjxfbEgIj4f1TQmqV8KBqTwvTxdQFPj03Vu4abCVhaJBxXKZztaZL0iLklVv9pIhc7eqojCVq7GzVzZ4rC2C+UKwtSvBX74wTdl0+eqRBfpaowSB4PYt7VRN6Rk2VzSI6tKheipbZ7IxXrVE5drLdHy+8MocVcujbLhYno/jB1RNl2zVJF1xmsUJ21Vpi4WaUo5nlsr83SvzLJdMlkoWSyVTyvn5AWeWylRNj5GOGB3JCNmqzWeem+bebZ184KY+4mGNb51cYqFg0BYPMZmpY7uBJLQFUrr50GyR7mREKrPl5TGcWCyzWJQqbe3xEKDw5cMLCOT94fqCT945zG996wy5uk2ublOou2zpjJMuW5QacrZPjmX4yG1XVivb0ZPkJ+4YYqlk8uJknhetHHv6W3hgZxfzRZOxdJlvnliiNRbi4pBuYqXK3x+e5+xyle5khPft7WuqXP3jB7by1wdmODZXYrFo8KfPTvPPHtrB7SPt3D7SjuPLNUa6bPH0eIYvH12gZnnSJiBdkUXpfJ2vHFmkIxlp5tGKdYcvvrJAIASZqsW7b+hBCEHFkmvYVSumrmSYqUydw7MFLC9gW3eSX31wO4+fXsENAmw3wA8E79ktpUqfOZelbLocOJ9nS0eiudZ+ajzDsbkSo11xtnYl8IOAs8tVclUb2/OZitXZ1ZskFtI4n5FqBY+eWiakqUR1jS82POKkCptgZ0+SvtYY/+PJ89QsD1/I+V2OLAFu4KAKga5KJY4Hdl5eKeOaFMEURbkP+DMgCYwoinIr8MtCiH9yLfZ/JWxk3iyQLODf++nbaYuHJfMxEPzZc1OgIGWGFIWlokzezBRM9jaYmn/3yjzpsoWmKvS2RlGRHRCOH9CRCKMqCrqmEtYU9Ab76StHFshVHX7pXVvZ1XshKT+dq+EHgrrts1yyaOkLcXpJSrrNFaRW82y+Lo8hV6czKdsw686lSZWwrvKJNaapU9kap5cq7B1oYVt3kpsGW1kqWdJkb02StGQ42F6wjtX9rl3dKIo8d2FdpTWm89cHZojoKh++dYB4WOfgVIGzyxUOzRboTITRVJWtXQmOzEpPnlhI43tjGR45toTt+Tiuh480KMzXbBxfMNwhOzR+5OZ+/ubANGYju3A+W31N17pme3zj+BJeIPjwLf2XJHdiIY3OZJh8zWkm4eJhjS2dCToS4U3ZUF5DxnC1OPTkeIYzyxV2dCfY0pnAb7AyVsoWdccHIUiGNXpbZKtxpiIf6Lrto2sKO3uSxCM6huNzbqXKXEH6eVmujy8ECopkhjeSPI+dXKY3FeHIXImTiyWWyxZhTcENBFs74zx3PkemYnF0roSmysnKdP0mG3N8pUJXIkJvS5RMxUZRoCcVJVez0VUFw/bwhbxfq5ZLMqLiC9jSmaA9EcYLRDNBpCoKPakIv/7wrldlpvvuG3q4b3snh2aKHJzOs1w2SYQ1SgabEcPXQVGkf4nnC1QFVBRm8gaPnlomFtawG+bC8ZCGL2QB+7V4vOVqNicXy2zrSlyRwXyt0BYP865NZKwOzRQ4Nl9a175/OZQMhxcn83QlI82249cDr9FWfW6lykrFJh7W+NlGAtp05P26Vr6kJRqiJRri3IqcyHpbo2ztTGA6HuPLFXI1F6vX59snl6WEpV1jOldjoSiLObv7Wsg2fExUVSanQXa7FGoO/W0xUlGdn79/FIHS/O4nxzLUHZ+lkkVEV3n2XI4P3TKArql4fkDJdJhYqWI4Pomwxv07O8kfs/ECOcG/PFVA0xQWiyb5ukMiJFnN92ztpGS5DLXHKRkOIU2hbvucWigDAs8XyB5GCKkKA21RFGBipUK2aqMpCnsHWwlr0qduR0+Sz788z6mlMrGQyq1aW0MeMiAe1uhMhBlsi3N8sUimalEypKzjF16eY0tXgp09CR4/s8Jy2ZTvNc67qihMZWvMNeaL63j7YDp/wTNqudHVIe+rC1gqWfhCENVVDNenZnmENJWDU3l2dCdRFYWS6TCVrTHaGV83953PVMlWbXb1puhIhDdNoBbrDpPZGiFNxhg3D7aSioZ45lwG1xeENIVP3zNCKhK6bLH+fKZGPKzJOSiA0a44J+bLVCypIX5ysfyaimCrEnCmI3//ZKZOyXS4c7SDiK5iOHIOUBoxWE9Kzk8qCh9tLFhOLJT43tkMmqrwU3cNs3+0ncWiucas3uY7p5ZRFSlpONwRY+9AK7bnk6/bKChMZqoy9vMV/E061i3XZ3VVY7mbF6BLhifj0UDGLxthfKUi7wdBMwbZDLbno6BcttO/rzXKoZkiu/uTm3a+r/Xautwsuly2CFBQBE2PlI0Q1xVsVxIGNtvfVLZGvmbj+YKTl/EEO7ko5T68AE4uVPjwbRtv5zaeISEgXTFp2aDYt1Ixm2Oo6Vy4TkslEyFk8mImW+fR02ksJ7iEqLMKVYGFopRTqdiSvaooCkEQkIhLo/i2uE6+5uIGAVO5OnXbIxDQFg9JIpauUbGkOoUXCJbLBpmKJQt5K2USUU16Y8TCshgWgBZV+JGb+tnSldg03jmzXKFouOSqNm5M0J1ScTdpOV/NQ2mqwifuGMbxAwYb0l7fO7vSJI88tKeH58/nQYCmyjjhxckcXzq0wKmlMomIzl2jHRydk96dqzLxZ5akp93huWKzCDbYFqNiuvSkosRCGqmoTtl0m2OY6wccnSuRiGhN6SHHC5qSmbYXXLYo/4MAxwv47EuzVC0pAb1/tIMTCyUGWmOMNsh75QZJzXJ8HtjZxemlMl4gsD2PqB7h5RnZJX98oUx7PIRhe6xULJ4cy1CzfVJRXa75NAW78ez4ojmMoSgKddfn7HKVkuUigo1FS1cjIkWRvhYd8Qi3Drdfcn86XsArMw1ZoPPZDYtgh+Y390C8jrceTNdflzhyPElo29adZO9AKy0xnRMLJXb2JlmpWE2pqKWKjeF4hHSFVINol63Y6JrKmYt8ML96RJJOj8yV+OSdw6hIv8aloonrBTx6apmRjgQP7OyiWHf45J1D/OFTk5xtjIMvTxca6+IqXYkwH751gLLhcP/Oriax7fRiif7WGBMrFWbyBmXT5dGTae7d3klLVJcSt7pK2XQxVZ+qqlKzPTRVZS5vcmxesuHDulxTfOa5aX7h/q3ryIGSiC09Z0Y64o35Xc5/c3mTJ85miIe1BrFWwfcDxtI1zi5XObtc4f039fGPH9gGwAdu2rxz+jqu441CEAi+cyrNctnkPbt72NadJFOR0oK/+uB2XpqSknwVy+XMcoWBthiHZgp87uAcmYrstJkv1InoKqmIju06+ELGbK4vKNYdapZLxXAI6QqmE9CdDNOWCFMyPRTTwWl463l+QCNX3yBtBHhCNAvdmqoQj0ilmmLd4c+em+KWoTapLOT4bOmIk6s5LBZNcnWHzkSYkY649CVTZY745Zki09kaXakogZAEQdP1m0Hy6ly8WDI5tVjmht5U87XXCtvzMR2PU0tlHNfnnz60k5+9d5S5Qp3//sQEuqoQD1+I91tjOpPZGrma3ejKCjO4RqFhNl/nM89MYbg+3akwhbpLumxyPltjS0cCVS1hu1IWUBECPwhYLltMZmssFk2KhoPl+uzb0k53IsxKw0stGtJ4x44uhJDdSl0tUTRNJVeVyk0F3+GPnpkkW7PY3dvCK7NFJrM1EILlsskrMwXyNblvGcsIcnUXGr6JyyUTLxCcXqowXzBYqdjYvmChaPBfnziH7wfEQwppNyARkXLNgx0x4mGd7d1JslWZN9VU6R+ZqTpEQ7L7NhFSiUdDIAS/89g44+kqC0WTtkb33dnlCoPtsQYhMbikKeRyGO6IIxrNN2eWZF7opck8rTGdp8azhDQ5d6iK7E7b2ZtCURROLZU5MldiMlsjrKlomixCCcD3A544s0KmZpMIazx4Q4yD0wU+cquUPrxztIO/PjCL7wf8zYEZhtpinF+p0ZGM8LHbBvjSkQVQoCUm48BVuEHQrJmsSl8qisKP3tzHkdlSs+Hh8dNppnK1xpynUGkUTW8aaiEIApbKFjcOtHBDXwu3Dbfx7ht6+IsXpmmLhZjN17l3eyffOL7Inzw7RVcizNhyhURERyAQAlqiGmNpk5LpcmS2yAdv6actLu1CdvakmMjUcAPBfNEgCKQ3G8BMvs7jp9OAlPNfG58qgOdDpibtdG4bamVbd/Ky1+5aySH+N+D9wCMAQojjiqK88xrt+4rYKOEjhJQ++ZW/OcwXf+U+QC60PrF/iCOzRcbCVUqGA40iguv5WJ5P0XR5ZbrQkJvQuXdbJ90tURLREO/Y0ckdWzoYaY8zmauTrVpYboDtBfzZc5LRP180+L2fvp3nzmV4aizbNGof6ogx2iUHqR3dSY7Pl2hrmPndNtzGXKHOh27pp78txlLJ5I6RS5Pbjhc0ZbGGO+I8ejqN7QbMFQx+9cEdbO9O8uFbVQ7NFDmzVOHW4TYyVYu/e3kePxC898Zebmp0kEnZCsFktoamyESz1ZBsm8zUiIV1dJXGJGZie7LTSFGkWe6fPDPFUHusMcA6CASH5ors6WtlfLlC2XQoWdL49afvGqFkuJxcs9jJVhx8/9V3LkysVJumf2eWK5f4Ieiayk/fNULFdGlvLLCfPZfjbCPI7k5FLinsPHcuy0vTeeqWR7pq0xrVSUR0Xp4qsFy22NoVJxLSWCoYeEKQLsvWz4lsnVREY7QzAQoMtcW4oS9Jf2sMy/EpmR4vnM+yXJZJjva4TiysNaQQBWEVFFVFUVRcX/DXB2bpSITobYlSdzyWihaKAq/MFBhoi1G1fAQBpss6mR4BhBSFiuWRiLhoqkKmatGZDLNvpJ0XJrI4nkpIkT4zWzvjnF2Rg+57b5Rydfm67Bx88IYeJjM1qZ0cbLT8vTwWiybfPrXM6cUKqipN4HVVWccA2hRCdnX6Qi6wPT+gULd59lwWIQTvuqGXB/f0cGyuyI7uJB+6dbApe/Vq8J1TaXJVm1MLZX75Xdsvm0x8M3BwuiD1nacL3LOt44odks+fzzGxUmOcKsMdsdctJ3RotsiByTxj6UojqRymannUbZ8vHprH8wX3bu9gqWShKrJYVbd85ooGE5ka/S1R7t3RiaYqFAyXfN1mJl+jryXGK9N53ECwWDBxgoDuVIQtHTEG2qKMpassNQLJvz88z7H5EmPLVdmZNdTGzt4kH71tEMcLyNZsarbH7r4WJlZqREMaSyWTiUyVkuFheT6FmkOhLv1dprIyeZ6KhuhMhrlnWwfLJYuy6RIJaXTGQ9QdHwWwfZ++1gS/9M5tnM/UWCiZbOmIY7s+r8wU8YKA1mhI+vF1J3nH9i4cX/DcRBbPD/CRPmhRXeOmgRb+9d+fpGg6VA2HtkSYQ7MFQprUO29vMPMf2NHJ37w0ixfIRKrv+zw1noFxRco86NJgdO1j4weCqu3x5aOL3HGZ9u7reOuhvqZTaDURH9LWP+f5mt0s8Ay1RelriXBkvsRC0WChaPLwnh6+fVIanT9+ZqVJiMnVbB45tsSZ5QqaKtmCP3P3lkvGEccL+LePnCJXdfCF4J6GhMmP7xtipDPBZKbGcEe8WVhaC9PxSVcsBtuipMs2Nw60cHa5wj96x1buHO0gEdHpSUXQNIXWWIidPesDz40khi/GfMGgtyWKAPpbojh+wBNnV5rHbrkB51ak1OHlpPRWOxv8QFAx3XXSHEEgOL1UJl9zeOF8FtOVMoX7t3SQiobob4myUrVwfCmd9OFb+zf1L/EDufhWGvvdDGtLEdMrNW7ou7TztSseIWh0YriX6QSbydX4n09NEtJV/sXDO+na4FqB9MEt1B2OzJYo1m06kpdud9vIhePoTmxeYOhrjUpSiqLQs4nEHoBQFQJABIJkdONz1tsawfGFZIpqm98PQSBoNNmxeVkKQgq4jVM/sMk8uHYBuLZDbd+WdsqmSzSk8cJElkBc2qm+Fq4vky5LFatJYoqHpByd4wtCuqBoerTGdWbzdWq2z1KjaNiZDPPeG3vRNYWH98juCEk4iaCqCl4Q4LtQMFwe3t3LzUOtfPdsmrGlKh2JMAtFg5HOOBeXKyuWS6HmsK0rwanFMjt7U/S3RrltuL0pV1yzPb70yjwzjYXpw7t76GuJ0n+RcbgCjaKdwPEFr8wU+dGb+5o+xX/41CQTmSrZqkWmYhMNufzhU+dJxULcNNiC6frsG25jpWJhOB7377hA6Hn/3l7uHJV+Y6sxeqZqNdmpB6cKvDJTwPZ8KqbLaFeCrxxZxPEk21RTlXXrlx9EmI5PtZHhm8jUONeQLl8u29w4kKI9FuJsusrL0wVGO+Ps6Emyf6SN85kqYU2nrzXK3sFW8jWHiuVSNV2mc3U0BXJVB01TKBkOYQ1UVSWqgOvJBfDq2OMFAsPxqVhXXpsJ5P0/0Bpl/2jHhsX2sK5yZ6NQev8m3nWJyPVOsLcTwrp6yThZNl3OpasMt8XoaYnIdet0oenhMdqRYEdPkorp0hqTspkfvrWfJ8dWpBTwRbGKFwi8IODkYomlkklHIszH9w3x6KllXp4uULU99o208am7tjCVrfOFVxbob4ny7LksgRBMZWoYrk80pFKxPeIRlaLhcny+zM7eJGXT5c7RDh47vUy2alMyXFYqFpqi8MjxJW4aaKUrGUZRBC1RHcsLaI/rHJkr4rqC5ZJJTyqC4fh4vmDJsDg+V+LvI3P8g/u3Ngv20ZDsaLe9gIPTeb56eJGTS2WiIY2upJR0LxsOmqqwrTtJPKIxWzBxfZlX8l/lGtxwPB49lSYQUgrxarzXruM6Lodc3ebciiStH5kr4fgBv/XNswRC8Km7R9jRnUQgiDdIVU+cXeHLRxaYWKnhBwHRsCT+VG0P1wtoi+t4AZiOx2qoK4Bc3SEV0dA1lVzdoWx6mK5HzfaJ6AoRTaWyxkBSAONLVVrjYTRlVV5eyMJzPMx0tk48onFioUx7QvqQv1g0uGO0gz39LdhewGLJYCZXJ6yrfPiWAb58dIGD01JdoGJ57OlP0dsSwbQ9tnUn+IX7t/GBhkLXd04uU7U8Jlaq/JN373hdvqj3be/ixfM5cjWHV2aLPHk201AAMemIh/GCgJbYBYLXC+fzBI0u7u5khERYaxZHQHapns9K4qXrSTnIquXR3xbFFwFt8RB//vwCCyUTBcFgW5TxlSqm44GiNLvunhqT66+ORIQb+1N0JEJULY9t3UnOZaq0RkMoyIJMumRydKFMrmbz7VNpjs2V0TTwPKksJQLB8fkSQSA9sltjYUzXIx7WiOoqigoDbSk+fOsAi0WDv3s5x3LJRFcVVFVhvmCgqQq5uouqKlhe0PCQS9IS1RlojxPRFD738pyUM/cDkhGVTM1BVTw64iE0XWMmX6dme+RrDt1JSUieytYp1B3ydZtP3T3Cvdu61imBrYUQgslsnZaYvm6tPNIZ5127uikZDoW6w8vLFTxPNip0JSOUTZejcwV++bMl3r+3V3b8DUgSalhTm/72L03lWSiaaApkazYqCrGQ7NTb0rBpKhsuf/rsNJmKzGktVyw64yF29CS5c2sHJcvjU3dt4fhCiWhIY8ea9XhPKsqP3NxHoeawb42s7rH5Egen87wwmeMT+4ebSi+uF9DbIXP9JxfLzObrTfUlIeDgdJ6/e2WeWEilMxGmJSbvid974hzfOrmM5wecLFm0x0OUTalQkAjrmK5HSFPQdZWK5ZKMhvi/P3oTluuzpTPBoZkCY8sVOuIhjswW0VQZr2qq0pAwlVLJCNk04QUXei0CIdc9h+dKnF4qX+LptxbXbIYUQsxflHR507SZNsoZ+0J2JB2dK/Gu//wkvakIRVPq/1dsD8P26UqGGe6I4/oy8J8vGrTFQswXDbI1i7Kp0RKrcOeWDtriIbwAnh7PND2Zdve1MJmt06bK6mpIU1gqmTx1NsOz5zI8f1564URDGr/64A4M1yOia/S3RhnuiJEIa7xndy+H54pULI+ORITdfS3s7ttY3u1bJ6SEYiSk8ZN3DNGZCLNUsgDB986ucPNgK0+NZcjVHGbydbZ0xjmzVMH2fHRVJV+/wDAu1B2+fGiRubxBVFd5cTKPrircONDCctni9JJMqO3qTWF5PrYX8GO3D7K9O8m3Ty5TqNv4geB9N/by4O5u6raH6QbYvs90vk7V8rC8gINTOUbaY9i+z1oOtCsu+CS9GmzpTBALF/ADwbaujSu8QshCR77m8L69vcTDGnONY1opW+uKYC9N5fnrA9OMpWs4XsCdW9upNdiT4+kavhCoiqBm+8RDGoYri6VV08UTkFElE64tHsJwfAIRENbKbOtJkKk4ZKuyIw5o+tOt/mongLiqsHcgxblMnSAQVAwHw/UJApkI8oGC4VGxqjL9IS5lbUc0KJguqqJQNBx0RRCLhoiFdT65f4gzSyU8JFOmJxWl7vjkqzYoCv/hW2dRVYX2eJhYSOODN/fz2Jk0SyWLR44vcseWDg5Oy07ASEgjHtZ4z+6ei+S9LuD0UpnvnVkhU7VRoDk4XQ0CLhT3AgEly8PJ1VERVC05ObQlIuzf0sGDu3uaA1vNcvnWiWWmcnU6EmFCmsLegdZNZSBWg7VISH1NnWTXGrv7UtLLrS95VRKhnYkIE9SIhNRrssgJadKfLxUN0ZOKcMdoO70tUU4tlnEaF++x01K+6MXzORwvoGzK4qauqcznDRZLJh2NRGpHIsxkxuD0YpmqLTtFFAJ6UlE+sX+Yf3j/VoSQfhRfPrzI6eUyf/z0JCsVCwFoikJLLMSh2TwHJvMMtkXxAog09H4H2iPUTI9szeaf/90xWqI6hutTMaWxph8IYmGN7d0JVKVRmD2xTGcyRCoSZk9/ioWiyWSmhhCCA+fzvCByPHoqzb98704Qgr7WKLcNt8qJ1wfL8+lMycAtGQvx7l09TOdqVCyPuYKU2FUVGYRrmorrBTh+QMX0qFkeARDWVG4bbiNfd/iDp84TarCVbC8g7wcojUTz6cUSsYZsigzspTyYH0DN8iibl+8UuY63HqJrCu2rxS/LC1jbz+cEEDh+0zfKcHwcV3r8BELgi26SUR3L9YmFNIJA8NJUvtnZurpQLZsuWzuTTemMVSyVZGeh05AVBUkaAfjQzf1ULY/UBsULIQR/98oc59JVcjWbofY4XakIH7t9gCCQndaLJZMjcyVSEZ137Oxax76aytb41onlZiElEtL48X2D6zrZ0mWLLx9ZQAjpdXT3tk5yNSn3EQj5PK92mExlL3TV1W2PmXy94UUWIl022d6dwPECSobL2LI0GG6J6pRMlxPzZcKaStV2yVQswrpKxfQ4PFvA9gJUZMJ4IWJyQ2+Kbd1JKS+xLElFu9YsjNJlmeATQLp8dSrgm/XWnVgsNQP4tV5wF+NLhxZ44uwKiqJw40CKT989uuF2iyVJFDLcgGzZ2rAI9vRYrvnv5ermY0ogAhw3ABXCl5kvC3V53E4gu8e2dl+aFJ8vmk0WYrG++XeWDbt5Pmr25kuJZCxEyXCJ6Aqb9Z+1xS48ZWvn+5ZoiA/c1EdE1/D9gC+8Mrfp98BqgVI0/wprCiFdwfEE+ZpN0ZDqEItegOkGzePXVSkrF9YUxtI1Ti2WqdkeEV2lJabTm4piOgZBIJjM1AhrCq3xEIlwiBv6UvgBHJ4r0dIgzK3i2FyRP39+hs6klPz4mbtH+OzBWZZKFqOdF87td8+k+dzLc1gNJYK7tnZs2EE+latJc/mazY39LbKjOqKzoyfVkAl3aIuFqFmuHMMEdKbCuL70hYiFNA7NFmUhWwj6WmSBq2y4TGSqJCJ6U0Y91lBnWIWuSZb3yYUyluMRj+iAQs3yMF2fgbYY8wXjLVUEy1Qt6rbPaGf8mki7t8ZDje4uyYI+Ol+kYrqya6RQb8qlphsd4pGQxqfvHmE6b8hurGSIHV0Jvns6Tc10ZFIgEHiNAlfQkECUfIyAkAq6ruB5F9i0shB2dccrAF2ViZDPvzzLV48u8r69Pfzk/pF1Uvz/6/tvuOx+8pcZB67jrQfHC9YljgRQNTxsN+B8rs7h+RIzuToKUoq4NxXhod293D7SxrH5Em2xMDXL46tHF2WXcSAuUb752O2DfPbALLYrib+3DbeRLptULLeRr/E4MisTqo4vn4vvjWXIVKTn2GNn0rKzww+aKiItsXCTiPbeG3t57MwKRcNloaEM4foCV/LUSZdNdE1F12QeyfEDxldqIKR6Rdly6WuJsrUrjoqMQ+YKdV6eUYmFpY3Gtu4kXckw6bKMM54ay/DiVB7XD9jZk+Qjtw5wbL5EZ3uMVCzML75zG9mqxVB7nFOLZcK6uk4q3nA8clWHwfbYpuvWs8tVZhsSx6cXy9y1tYOi4ZKK6puu2a/jOi6H9niYnhYpV3dDb4rJTK1J1Do6W+Qbx5dYKUkPHssLCOkq8wVD5rAA2/MoG57MB6lyftEVWUyP6LJLR1cVPF9QtX10VcpKr00Pmq7A2EBtwQlk4SCkyu9SkevpiKZKVSEzIBnRKdQCDMdnuCOOrir86M39HJjKcS5dQVUV0hWL//H0eUp1R8paBwJL9Tk8W+ShPT10JMJUTJeorjaLXS0xWRBKRnTydYcDU/kmIeTV4nxGdn9WTKkKo6qyyLZYNomHNVRVbypznF4q8+TYCq7vU7M9PF/a9ByZK5GMaGztTIIi10yrXmOrZIRwFTKVCC+czzdVNxRFQaDgej5n01XiYZ2h9ihz+Tqm5xPVNRIRnUzNpj0epi0ewheCiukwnZWE5O6WCHdsaWe2YFI0XEQQkKlZ1EwX05FKGFXHJ6KrqCoMtcf4l+/bxR88cZ7pQo2y6SAEdKek0pfW8ALWNZVkRGO5LIs9nYkwdUfmeFRVIVOxeWU6T8XyuG97F8fmJWmiZDpYzoWciqJAyfQIhMVKOSBb91AV6PLC7OptoT0eYipXJ1+3+eOnp3hqLMuP3tzPT901csm1OjCZ5+C0zEH3tUaw3ID7dnRyY38ru/ta+K/Zc0xkqg0VJWiJqFiulJBMl2VX1TPjWcKayo/dPkhPKswZQFME6bJFpiq77gY64viBlNQtGi7fPLlEtm7zjh1dPHJ8iYl0lXrDy831ArJVm1zNBQHT2Tq3jrTxY7cPNmQY188XF9cYfD/gfEauTfJ1h4lMlelsHcP20VRJYlE0hfmCSdlwObFQRgiZ07P8gMAX6LrKQGsMVVWYcnwWiibT2TpuIIiFpNpc1ZLKGGFNJRUJkYxq+IHCbcPtBEL+/psHWzEcj5em8nz3zAqaInMaQiiIhjLT+UxF7kdVMFxxCSlHU2SjT1hT1ql/bIRrVQSbb0giCkVRwsCvAWev0b6vCHsT/4EGkZSFksViySLauFkEIBRYqdjcNNDCZM7AcDwMx+VwzaHSYG3ruqBqujw5lsEXgqrl0ZUMo6kKKpCtOezpb6G3JcLdWzo4MJWnMxnm+EIJkANZSJNyKb/414coGjbv39vPj97cz9mlKlXbIxLKMZOro6sKY2mZaLn4t0kZrDpPjmXIVm10TcF0pGfTXaMd/MXz05xbqTGxUmNrd4JcTS5Wv31ymXTZotoovlRMB8cLCOtqc2E5lq5QNF30ssXDN/ayt/9C0DWbr2M6PsfmiyiqSrpkYrhyMhlsi3Ln1g5aYiFuG27j5GKZd+9q57MH5xDIBB9A2ZKeYZHQpYymsfSrl8HoSIT5pQe2yWT5JoFgrmaTrdoIIfjKkQXchjxTPKLxX797jg/fOsAHb+knGtLIVm1cT1Csy2LVd06mSUZ0tnXFURCoCCK6TiysM5Wp0Z2KENJCVEwHP5CJ6XTZIF1RqK8xuDq5JBOSa49QcKH9dBUl0+P4fAFQsb2AdDlA4dIK8kYLU1WRmsmqAsILmsU2H4gJCGnwS589TNlwmx4XxXoBTZUSTyqCbNUiEArFukM8ovH140vULJdISG3ISuRxPJls7UlFiIV1htvjG/pw2Z7PY2dWqNq+NM4GFHFVSoibwmhEQrWiLVubdYPlksmx+SK/9bGbaU+E+T+/eoKjc1LiwnID9vSnKJsud22VXVVH54pULY+7GsaiH7ylv6nv/FYogj20p5d37uq+6kXKvds7GemM0xLVSV0DiaB9I+2cWixTMiXD5taGiebO3iQzeelhF9FVXprKo6sqyzUTTwhaoyFSUY2K6XIuI4u0W7viLFYsqpYMzgIhC0MAKDbPnMvwwmROei6GdbZ2J8nXLOYLJm4g7/2+1ijFusN8weTYXAldU/nIrf2cz9RJl238ICBfd0hFNSw3YAkFVRH4QgGknKbj+WSrIbqSYSZWqowt+4Q0WUS33AAvCKSPjxDNe8zyTH7z66cYaItzYCqPYTvNZ9r2Aizb4/B0nkzFJFOxKJketicX4KseLmXLo781htEIgGq2R6xRbO1LRTifqVEyXAzHJRBKs8joC/mseEgWfsV2mmOHQHp3yKKysmGX8HW8tbGqsw1gNO6pYIOOHy8AxZMdiGeWqqiK9CI6s1RhR3eSIIAvHppntCPGs+cyPDeRIxHRiYZUBttiUibX8fj8y3MykG6Ncmi2iO353L+ji/u2dzCdM3j/3j66UpGGrr/N0bkSWzrjtMYvZb/5DVbgZLZOoW6zUDLZ3dfC3xyYJaJr3LW1g55UpOn1lK3ZzBcMhtpjKIrCuRVp8jxfqEv/1ZYok9k6d2y5UARz/YBV1cHVObIrGeGTdw5TtVy2dyeJhjROLpS5ZehCjPLVo4tkq3ajw0ThcwfnaImF+D8+cANnlitMZWvNhepy2eR8to6uQF9LBNsXZGsWuip92ORiTUVRBCFVaSbzv3c2QyAE+bqzrgh2duWCpPPh2c2l/dbCcjcucC2WjAvn+zIT5ni6TMGQZK7J9NVJSqdLBjcMtl3yur5m6ttEOQ+Ap85mZTwSwLdOLvPJu7dc8Tvr1sayj2Fdk34PQkpYboax9IWi4pNnl4BbN/6exgLb8cWm8n8za6RIDfvCNk+NZzg6W8QNAp6fyHOFtdIlcHxBxZTf7wegKD7GRfl8tfGerwheni4wnTeaRT3LDZgvmER1temBkYjoLBYtDk7naYmG2NPfQq5ms1Ix+fKReQ5M5uhtiWI6Pk+cTTOdk/dNoW5zYDLPdK7Gzp4Uh2eLDHXEGWyLUTXlwjtoEE/++sVZPnhL/yVM12zVbjBSBU+OZehKhtnSGaMlGuJ7Z1dIly32jbbzrht6GO1MULM97tnWydnlCls649y7rZOzaelnmYjopCsmZ5bLvDCR41ymxq7eJD+5f5hbLjLpBrhrtKMhX2Px2JkMjufTFg+ztSvOu3f1ENY17rwG0s/XCtmqzecPzhMIwTt2dl3WePvVYP9oB53JCF87uoiuSlnylYokHA60xpjK1tA1lUAIziyV+V+/dBy94a9XtRuegp6/zmt3FUrjv9W33LWss9cIxw9YrljYnpQmH0/HGVuuXNaP+mJcpv5+HW9BVC2Xtc43KuABgRdg2C7pkvTjNF0fTZHR/9+9PM8fPnme/vYo27uSHJzKc3RerstiIY183eaR40t86OZ+VFWhKxlhZ2+Kmu1SNVxOzBd5YSKHLwRhTSaiz2cqjKUrGI6H1ejo9kWDBW46CKSncK7moChQMaRv0NnlCl8+PE8kpLFQNKmYDpZ7oRBseYKKJRPe+bpDIqxRtXzqjixIN6Ucaxbpxr3vB4KQplKoOzw5nmFvfyuPHJNe8GfTFeJhHd8PcH1JChzpiPOBm/o5uVjm6HyZPf1yPd2divLBm/uZyddJRXRemS5y99ZOvEDw7x85zXLZ4l03dPOP3rFtw2sz1B4j3JhPhjriPH0uy7G5El3JMJ+6inn7Oq5jFWXDxXSl9/en7hrBa9zjI51xzixXKdalx+TB6QIz+TqeH6Crsvi0WgCDC/kfwYU40xPguQEaoGrQFtGoOXL9rwhxyfx1uVkqAFbDOjeApbLNUrlhtwCYjgOKJCPNF0xCmsqvfPawnLMUKZ/meL4kbisADbsbXcX3BV8/ukQ0pNHfFmUqV+c+V851H71tgIWiyUBrjO+cWmY2bzCZqbG1K7HOJ/VycP2Ab55Y4lsnlrFcn5ZoiLZ4iOWyRcX0qNse27sTvPOGHgbbYvyn75zhcwfniYSkNLzt+BQFZMo2mgaqovLC+TzD7XHet7eXj942yM/++cHmmqJmuRydKxLRVXpbIiyVLOJhnZsGW3h6PIflSnWcyWydmuWhqgoRXeXEQpmjcyUiuspIR4JEWOPUUrmppDGdq3HHaAepqOzqKhgepm3hBrKYKYCQKnC9AJBddl94ZYG5okHN8pvHV7U8njiTZktngkJDJrNmObi+vAnyVZvWZJhC1SekKTLXW5GEubl8HdcPcDxxQdVBQEiTf4Q0uY5dzZOiQtFwODRbIBHWaY3q0vfX9shWbV6ZKWxYBFuVtF8sGcwW6mQqNlPZOj9zzwjLZQs/EPK/1XNuB0RCAcPtcWZzdfxA5tYfOb5E0XA4PFukZDgoikIopFGqS9LCr7xzO4EQ/PHTk4xV5H6fO5fl1EKJhaI8t6sxXVs8hOUFeH7AmXSFREE233ymMkUiovMTdwzS0xLlK0cWqVgu6ZKF6fp89HbpN/7d02nSFZvJjLRvWj2nq8/suWyN/VvaGemMk6lYVE0X2xdUrDqaqqArEAuHsJyaJJcjC1duI750fUkw1RRZ9DZdn70DUrXi/TcN0NsS5U+fnaJgODy8u4f33NhDumKSLkt5TNeXqiuy0cMlfxmiaOOy4/oBXckIu6+gFnatimC/AvweMAgsAo8Bv3qN9n1FXE3LuGTABete8BoyW7GQAkKTDLs1MhCWF7BYNKm7PiqK1PH3A+ymr5OUqotoKjf0JdE1pdnGaDg+u3uT3DbcQbpqcmAyRyAEhh0QUhVOLpRAgaVinYWihScEPxEZIluVFe+K6fL1Y0scmMqzp6+F9+7tJayraJpCVNcIaSoLRZN9I+0cnS9RNl3yNZsP3tqPHwgOzxSYzNXZ0Z0kX3dYLhm8PJ1vtlsWDZeQKtv1Y41K+5nlCh+/Y4juZFhKxAnBE2clW8rxArINlpUQsrPj1LzKj/7es5QMl4G2GCsVm9aYTjKskVtz7i1fsJG6xrau+KUvXgU2azueWKkyk6+zUjY5u1yhOxXG8QJOLJQpGA5FQz7QcwWDiUYrb1cyjO37gILjrxbuPMYzNTmRi4Cq5WE0Bvu64xEP6+sSJnV3dbi4FGtfDcTGa868EXB5IZ6NEdYU+lsjCJRmMgRk8alQdzk8U7pE4scXUnJQUSCkguODoghiYZVMxSZXtQGlOYD8b++/gVdmCtzQl5KMOC+gYrpNiZrm7xSCP3t2irNLFVTlwo98fUvs9bA8geV51J0a6YrFv/7yCbqSEV6eLlCsuwRCENI1zi6XGemM8/VjSxyfl/5qu3qT+ELw4A09RENac9HxaiAa2tNvBKPu1e7z1SQZrgRFkYtFx5NeEy9O5nC9gNuH2xjpiPHCRI6JlSrzRZP5fI1KI0K1HBvDlYFkpcHw0PIGvpBMDF+BuK7ieD6WD7may1PjOcK6guvJFuYHhZDt04o8r7GQ9Hzb0hbhwGRe3ruez0uTBbpbIlQth7IlWTxlUxAPa0R0WWRSgELNa4w1gulsFcuNUm4MPrYvg7uoruAL2cG59tkIAoHt+iwWDXJVWWxbhR9IMkUAZOpljs2X5aL7ohbsTMVujJNrFgFCduKOr1Rl55e/uuBe/3Rc/Kxs9HckpLKt+83xsbuOa4fSmuT7KsPR3mTIdwNwbekvKZALuUrE4/mJHL//1AQlQ2pou0FAxXK5f1sX79/bzzPnMrREdU4ulglpKr/97TNSUscX3Lejg0dPpqnaHvu3tJGI6M357okzKywWTU4vlRlqj+H6gq8dXcR2/aZEVl8qQt3xJGtTU5jKVgmrCl0tEQp1h3u2djDaFcfzBWPLVU4vVrhrawc7ehIslUxs10dRpJ73ZLbOzYMt3D7chi8EmqIw3BHn4T091GyfO9ZINPS1RpseG/tG2tnXMJ5eLBooikKhbpOv2Ziux3MTOeYLBrGQyteOLzKTM1gsmqyULdxASgupCqAoWHmPmiNQAVeVCwk/kNJ7ugJzBZO67VGxPPpaIiyVLfovkgJcS14vmBsXfS5GsEmhxtikaHQxphrzvGB9Ee5yMDaRna7YFxYSl4s+1hZwi3X7qr4zXzVhXapUQl/TGV6zNs9+rz3ifG3zo3Ma7J5AQNGwaEtcmnxYKF3wMVu734kV6QlwdK7IXMF4TbHK6rOssHFst3rkti84u1xtkpFgtbs3IFdzmwvmQsMP7vlzGe7e3kWmYlOzXF6czFM2XHRNob81hpAVZ7xAGoWPLVc5tVghrKtULY/RrgR/8L0Jfvmd25jIVPH9gKH2GK3REEtlk888O0lfS4yOZJiH9/QwX5T3ux/ICc2wPUqqwt8cmKUnFWWmIFUyulNRdvYkeWW6QG9rlJCukIyGyNdlt5euqjy0u6fZ2Wm7QTNpsMrgtT2frx+VCYB37+rGF9JT8N7tnTx7LkPFlLGc69uEVKjaHv/LvaOv4eq8cTAcr9nRWFvz7Aohmde6qjSVKjZbrzx2Os25dJVULMSevhR3jnagqgpbu6R0XLZmIQLZoe94Ab2tESZWqliulIxcLsnvj+iSDXul+/fVrzCuDNOVXY8AqiLlz2/oS7FSsWiNhTb1YL6OHxxciHOllyMoKIrght4UlhNwaqGI6cn15kzB4PRCmcH2GEsl2QWmKoLtXUmOzeZpCWskYzqDbXFm83VOLZQbDP310uCr8merMp5A0x8bwPBgXQQt5GuTWUmuSISk3/ZmTca5moumyGfLDwJqltcc60Oaiuf71Gy/2QEb0lTiYQ0/CKhbLt88sUQspFG1HPI1l7CuNMYBhbCu8OsP7+DXPn+UI3MFOuJhBtui/Na3zkhZMEVhuWSRURXeuasbRVEo1m1mGh1exy/y0sw1SEe7elP0tkT5Rw3fvWhI46mxTGMbp9n9fx3XcSXkazafOziHFwjes7uH3f2ppkKFosAHb+7jO6fSLJYsLFcqazXonITVq59rfMD3YaUq51DB5uui14LmrsRqjCYYWy5juBfGhrVk09X/kR5jAfm6S1iFRDTEtq4EL08XODCZJ6Sp/LOHdjTViFpiOrO5GoGQ6lL7trRflU3FdK7Oc+eyTOfqgMD1JRHq5ekCfS1RXp4uMF+ss7U7wZmlMl8+sojh+NQd6S+1+jM8ZDEPAkKaLNA8dnqFiuGsy2NomorpSDWrkc448ZBGumwxtlQhFlIIAqg3r6XMFXq+aM7xXuCjadLDeFXtQJJ9Aw7PFBEoOK6H3ej2Q7kwCrurVSngzFIZ3w+oXxS3+ALOZepMZesXVKHWvO8EkKnIGNm7qFJa3kTCORCyy8r0YC3v1A9ARXYfpaIhhAjwfdlMUDZsklGdbNW+xH/9nm0dLJctOhNhTi9VEFicS1f4d4+cZv9oB1s64hQNm8WizBfFwyr3bOts+uAul0x8AVXT4ZXpAkslkyAQRDSYzcu1iun6fPvEMuGQynShJrsTAWwPw/GbxSXR2FYxFTzfw/JWXwt4+lyGSGM+eXEyyx0j7ZxcKJOpyTxvLKTytaMLTRlBhc3ztemyxXPnsngNqfugsa3jCxRfEAspuL5Hoe6vW+OsQgSwWDYxGzesYfscmMoTBArHF6v86N5eHju9jOEEvDKd5y9fnMb1ZMe37Uk7EkPIwuLVDA++kGTjuVyN00uVTVXB4BoVwYQQOeDT12JfrwWG7fFa+iE84OWZEioQC6uXyPPZPri+HBB8BHogL4rpBA0pCMlaNlWFI3MlTEfeAMW6QzSk0hINYft5MhWr2W0wvlLlPz06RjKq0d8a41TOwPYC4iGNx8+kGU+XmM1bVG2XlbKNoirkqhY122EyU6die0Q0lXTZ4j17enj+fI5YWKVsCA7NFPjxP3yO9niEkuFQMj1OzJcIhE/ZlJXY08tn8P0LN1JMpyE5BAfOZ/mHf/kS8ZD095hYqZFeQ9ML/AsD1kLJZrF0QbJmuSLl76I6V82odTZqb9poO9enYDj0tkTxAsHESpUtnQkSETlInc9UOblQ5mvHFqVcSMkgpKn0tMRwfJ9i3cH2gkbHhsGB81m+c3KJhZKBBui6hndRoshYM8CuJgt9Ab4nsLzLV6HfLFieYCq3sVG9gA0Ho+b7gmZhUkdKNa4ai9Ysj7AmpdrGV6oMd8TZ2ZMiGdb40uEFDkzlMV2fB3f3NPf3/70ww58/P0XRuBDMvFFwA3m8z5/Loag0WUcK4Dk+QSB46uwKR2aKhHQV2/Vpj4dIhDce7s4sVajZHjt7Eri+oKchl7lQNBhbrrJnoIXORJgvvDJPyXB5/029m0qWFusOC0WTHT3JZvv65eB4ASsVKdH5RnuTWa7PoZkiLTF9HRv7M89O8idPT2I4XlOCL6wpKKpCfU1EevE1DZDXYS0yNRddvZDo9P1LJ8XVxKUv4Imx7Jp3BIEfUDJdJrLr5cXm8gbZqkndEWtkMwW+6WFqDT3giyZIy4fpvLVuP75YLVpfClmgkh5h1YtWxxeXuX2xcceGu0Em1A3YtEvh1SKqSy+063j740pjZLO4ipSX+6XPHiasKXQmwuTqdsM3SUoD7OpN0hYLMZ6uUrN9pnMGmgq261O2fKZzNZJRKUdwYqHI46fT9LXG6EpFOLdSxbClrILtetzY38pSycR0feq2x1B7nNmCwd3bOji1WObMYgU3ECwVTW7f0sHdox08OZ7hxLyUeZvKVvGF9N/824OznEtXpR67ppKvyW70P3tumqfHs5Qtj9uH2+hKhHlpusBIR4zJXJV4SGdXb5LxdJWQpvLu3T20REPkqja/+/gYL0xkMV2fquWjKoItXQlmc3VMTybbP/viHFpjMX5pmCGw15zbix9NT4DpufzhUxP81YszhHSV9rgk1PS15C8bUF8JC1Vrw9dfOJ++qs+n13SMrf335bBBEz4AXz86e1WfX53TATLlq/vO00t53nXjwCWvf+aZiQv7ql9d4e9qU3cLuQpbu1sveX06s3Gx8K6tnZxYKEs/rtcZsFzNxy+eB30hlQDWYvVWrDmC753N8uy5LGtzlwqStRwISIR1OpJhNEUhW7WoOb6ctxvKEV2pML/3xDlenMxTNB1mCwY9qQhtiTC9KSmJEwtrHJopoKJQslySEZ10xabu+kRDGpGQylSu1pDuFeQqFsf8gJZYiDNLFXJVm9Z4iL6WKGeWK0ys1DgwlUcI0VCd0LhvWzvtiSjbexKMdsZZKlnMFuq8PF3g8y/P8UBDPvXurZ2MdiZoi+tUDCmjM5Xz+cLL83zktsF1xB8/kBLwFcvjod09tCfCvBFYqZiENY32RBghpGF7RFfZ2Zvi9pFWKpbshlsoGByeLZCtOZxdrpCM6E21jZ+8Y5jB9hhVyyVdthhu+I1+5fBCs4ivqKr0tWiNcstQK3/+/AyG4zHYFiVXtTFdH/8cOOLSe83bJJ55sxEImC8afPf0CqWG99O+kTYqlsedox1XFQ9fx1sf9iYLS0mYWf0XnFpaP+46jfeKpkfRvPBe2fL4+yOLAPzFi3OoXBpvX4zN1rZXG1PVrvDMrK6fPVdQd9eP0dnahZyIAs0EMVVZXBMo6+RwQcroRhQQikLd9vh/vnGa8RUpN2U6ku2++nzsHWglGlKZzUtJ+d9/YoJbhlu4Z1sHL07KfNLXji7ysdsH8fyALx6ax3YDJjI1Pr5Pet4HQiZrH9jZxcGpAqNdidclnT/6v3/rqrab+Y8ffM3fcR3fHwghOJ+RsnbDDc+hkuk2fdwfPZXmybEMtwy1cs+2Tv7oyfNMZKq8PF2Unfji0kLFqz6Ga/A7rgS5tr805tzouwUXCE5OAL7p8tiZNGFNIRbWGe2M83tPTPChWwaYyFQ5Nlfg9FKFiuVzdL7InaMdvG9vH7Gwzl1r5r61ccv9OzqpmVJarlCTczxCMF8wkKr00ptrOltlfKmCpikUag4NG090beOz5vmAkOPBRKa27r3Kaj7Hl8X01bg3W988p5lf814g4Mxi5ZLxN4B1fm3QGKM3ubCbFazWfXYDvJb7xA82X0OsFuYKdWfdvpcqDl85PE8irPOv3ndDk/A/lq7wR09NUrFcRjriLBYNxpcreAHS6qZBlNcUBV2V9057XGe0M4bn+bKzqfFFJdOjZteaRAxnTe7I8QVfPb50yfE6a+bX5u8Tkih2Mdbm5lYqNkfm1pMnLr5elzu3vrhA9Nzoc8YmcqXNz0OzAAarMqny02eWKuQqZlN1qe4ETGbXrzMvd39uBgEcmCnxrtniG18EUxRlG7IT7J7V7wb+hRBi6lrs/0qomi6vR4wigHVSdhe/twrzoiLZ6p9uILDWSDL6Qu6v7tgsV9YzZwWSFWrXPfL1C4FgxfY4vVTl9EWBI77AcgO+N5Zb9/JyxebUcoW4DpZ34Titmke2duHmL6xpG1xlXayFeRFjar5gAzbjK5d6XFz8kGz091USogGYylxZQujEQolf/dsjuH5AKqJLT4kgQNNUopqkcKciOumqdVHxLaBgXpr8KBoeL8+W1r/ovIqD/gGEJ8DzBLYnZZYSEQ3DDRCGw18fmKU1pqOrKg/e0NOkzVzMKntyLE3R8N6UYGYVqxJNq1j9btsLWCzbLJYlk7gjEWnoOSt8+s9eAiH4yTuGMNyAM0tlvnF8CT8QjHYlGWiL0ZYIcVN/K3N5g0RUZzJb40dv7mehaJAuW8TOqQy3xzm+UCIR0rlpqFVKTAaCLxyax3R8zqYrfGL/MNBg+0xkGWyL8Z7dPU193kMzBb5yZIFERGd7d3LD1utriQNTeY7NlQCp8z3cEcfxAv7b42OXPLeymPParubapPPlCrEbYbO1qQdUnUvf3GhMe614I5jS1xqm61G6WHPrOn5o4PjikpiiZNY4tXxu3Wum46+T1XWD9cWMhZJMmh+ZKzY7IlUkmSGkayQiGr0tYapWIA2mwyqnl6s4rtcsIme9gMVind9/8hxj6RqW6xPWNSK61Pf/s+cmqRguJcvjfOPRXWWbFeoOZ5YqCAHPn8uiN5L3XoOsEtIgHtbl3ORLmZSOZIhM2d6QKbpWPo/G795AbfKqUTJ8wCdTuxA/jS2XsVyPva/Dl+jI5CI8dOMlry9Urm6gXHMJmS5cXVfWU+NLPHzr8CWvp2sbbLwB1h7ZinF1J/Xbr8zxTx6++ZLXn5ssXd2XvgY8c2KBB/Zc+jtPpTcu3HXEQzw7vnIhMfAm42oKbxevKwVQtVcXiw75htTX6tq47ouGR41PyXSYzRtNFqmqCMqmS832mExXJFtXVVgqmmgatMUj5Gs2tidljB3HY7EkY5VEROf+7iQzeYPvnk2zUrFwPWiL6wx1xLnt3q3M5Gp859QyFdMlFdExXdk1Wqy7PLi7lz95doo/eHKCT901zEyuzlS2hu0FfPfMCn6Q5vefmKA7FUZFoTMVYaVsSVKh4fAbXz3Je2/s5eP7hgDZUXq64RH4ykyB9zXM6q8Gk1kpHX/LUCsDl+mo/9rRRT7/8hzt8TC/+eE9rFRsnhmXpJ27t9kcn68QiIBDM2f4xvFlWSgEEmGNuuNjez6WK/j7QwvctbWduYKB7fmUDY9czVrHRl/F0fky3zq10vx7PHN1Ree3CtJli68cXUBTFPpao2SqFhFdw3L9V3WNruOtizd6jfd2iMNXcfG52EwVZrWgthqRfW88T1i7kChe9fBUgJaozHPkqw4nF8uENemjuq0jQaZmYboB/+6RU9iez8duG8BftUEIBKeXyhycLgCyIK0Ad2xpv0T69jquYxVH50vNee2jtw1Qsz0qpstS2WC+YFC3PLpTUcbSZX7zqydZrthvap7nrQC/8Zx6gcBwXcKaQd32+Y/fOSv9puoO9UZCeLFoEdJKHJopMNKZ4NBMgX/x8C5gfdzyR08V+dqReSob5DXW5mVdYKa4njwnYEN1rdX33KsYRF8r8evV5nTeDtjoJ1XtgP/vhWl6W6L83H2jAHz39ApH5orkag5HZouYrofry8/XHZ98vXTJfuZLDn/w1KWlEKnKdU1/xtsWa9fZ1xp/8cI0v/Lgjk3fv1ZyiJ8D/hD4scbfPwV8Hrh7sw8oivLfgP3AESHEr695fQD4LBAF/i8hxBNX+vKreeB/UGG8jes32dLl5XyCQPC7j46zUrEQyGq2uPBmsyhZfDWVt+u4LAQyCPcDpLyDLzuVuhIRTNfn/u1d2H7A/jWSVQD9bXEEhe/PQV+EdQy8QBbs8obDZ56b5uRCGdv1WSpb9LXGmMpUqVhSqmuuYKBrCuPpCifmy+iqwr4t7XSnpHZtxfKknm7Z4lsnlnlqPEPRcPjgLQP87D1bJAukkXl112RgV2VI8zWH20fa6UiEydVsnpvIMZM3SEV02uJvDJN5LWKhC3IGkZDsOtM1her1x+dtg9Z4mLB2nVF9HZfHFUMiIYjoGo7nNLcNANMTmJ5HzfYoGVISaDpbJwDCupQ1WIvpvIGmKNiuL4vfro/tSonVlYpNIMQ6GaO13W2rHmCrSRw3CJrb+j5YF83r9eLVFX3eKJQsn++NZfiX773hNe/je1NvfgH7b4/k+A+feHO/89TVWaRdU/zZ0QL/5pNXv/2jp9LftwLYtUJD+XcdVn+RF0j5zVU/sLCu0hoLUTZdzFX2qS/QVIGOykrZWve8Wmt2rrs+k9ka2apDzfZwGrIrRcPD8eu8NJnl2Hy5uY+2mJQaLxoOp5YrJM+sMJauUrNc/tt3J3hoTy+qqpCM6pKA5fvYboBXDkjGQvieLwMVIbC9gLHlCr0tUe7eKhmdXckI0ZCG7fkMtl+9NLTnB3zrxDJ+IFgum/z8/Vs33fb4fAmQRbilorlO1rBQk2Nb2XR5eiyD4UjTCl1VCWlSWt1w/KbP2YGpPKYT4Ad+s4j5gwrbC+iIh0lEpHeSHwjim6gwXMd1/LBiLWlXrPn/4/PlC4lmccEG4MxKVUp2BVK954svzzGdq+MHgl29Kd63t498TcZIq56BHYkIz5zLXi+CXcemsNYwbZ4Zz1IyXcbSFemVmzcxHY/5oonrB5s2C/ywwfIEI/Ewhivn+LUKMDIucqhaHvm6S0s0xExekvTWxi2uLzYsgF3HWwemG3BwOt8sgkVCKl4QSJURIVAUhSsLUV/H9xNXuj7XKjJVhBB/s+bvzyqK8k833VhR9gEJIcQDiqL8kaIodwohXmm8/b8D/wY4AXwTuGIRLBne3GD7Ot66uH+P7HypWR7/+svHCesav/Pxm9B1eVuqqkJ3Ktzw4AqI6rLavjapdjXSCddxeaSiGq4b4ApBf0uUf/LgDs6tVLHdgJWqRUssRE9KyrTcva2j2cm0irmGKWpUV7C+zzSRrZ0xshWrKXehKwqtMZ0P3NRH2XB4Zjwrky9hnZCq0pGMULVlS//d2zrQFBXHFYR1hZHOOPds6+TBG3rQNZV37OjifKZGPKw1vTcUYKUsNX1DmsrHbh9kJmewd+CCXOK27iRLJYuuVISU7HMnEdaJhzV29CRJReTxvdG4e2sHnYkwyahOT0pKPqqKwr7hVg7Pfx+yltdx1VCBrV1xulti7O6/vqB9u6E9qlK05AIy9CaEK4oCiti8GPbOXd3sGWjli4fmWVnTWbbaqaUgNd1X/esUZAEsFQvhBwLD8lA1hW1dCcqmR7HuELg+yahOazRExZa+fRFNJV2x1x2HguzCiYU0inUXFOhKRSjV7SvKZHw/EdIUWmIh7KuUcd4Ivd+HXPAbK7L71sHdr1Kl8qbBVuld+QMSPKo0nntFSnyqKrQnwiQjOr2pCFs6k0R0lWfOZTAcE1WRJJiQpqIqKtGwSsXwMBtegGvHgrZ4iBv7Wzmv11gsmXgN+Ri94YUT0lRCuiwAaZrOu3b3ENE1XpzMsbsvxU2DLXxvLEMkpKHrGrGwzsN7eklFdAzH4+B0kaLhMNAWpSMeYbFk0J2KUjYc3ADCuoamwFCj4NUaC/Hz949Kv4DY1Yvha6pCMiK9GVIRncOzRQIh2DfSvs7jFuDDtw5Qtlz6W6PcNtyGpqqoikJYV9nZkyISylKzXWbydWyvSjSkcstQKzXbx/UCxleqmK5PRFfpTkaw3ADTcTEd+weSTa0pMsl3x0g7A+0x9o20s6MnSdl02dGd/H4f3nVcx9sCqqasa7fQlVXCkCARkUXlsKZKb1NXjn+JiE5rLERrLMQn7hxGCMEL53MslazmmHkdPxh4/Eyazx6Y5YM39/PJa6Aec+doB6qiEA1pzBcMSqZLdyqC4wXEwnLe1XWVsuFiOMH1XBsw0h7no7cN0BYPEQ/p/PZ3zjKdreMFgrZ4iJaojoKCokBvS4TOhldtayzEfKHOYsnkV9+9g8+/Mv99/iXXcTnoGrz/xgu5uR+5qZ+pbJ2jcyU6kyECXxK48jWH+aJ1/dl4C+LdN/Rc9v1rtSR/SlGU/x34O+S66ZPAtxRF6QAQQlzcInIvF4pbTyBlFFeLYLcAvy6EEIqiVBVFSQkhLtsytKW7hdzlNniNUBv/+TQWlldxh681l2v4AhIAERV29adYLplNrc7LdbDpXPA5UtWGtM8Gx6AAXQkd1w8oNZJsCqAhJcTequjQoSMlg7P/86snefacbMf+DzGdf/uRm5rb/ZsP7eWdu7Js7YrTmYxycCpHxXJ5YTJPZzzMrcOteJ7g68eXWKmYZKs2miJZrEJAMgLRcJiq6eB6F87pWzfVdu0Q06WJbyysc9NACxOZGoYbsL0rjun6dCcjvGd3D1u6EoRDGqW6yzt2djVZm0EgcPzgiomG3/rmGU4vV2iP6ezb0sGxuTzLFe8Nk7XQgFRE5aO3D/NTdw3zXx8/x0Smwjt2drOnX0pVlQ2H+aJBWyzMh24d4MaBFhRFmsoX6jb7tnQw0BrDdHxemMwx1BHj4T19OF7AUsnglZkCwx0J7mqYlQN84KY+ZvN1elqihDWZEFmpWNyzrbO5zVB7nKH2+LrjvXO0g70DLUR1rbldLKzxM/dsoWzKJMvFhcU3AoqiXMIIdLyAd+zqYbA9huP5pCsW07kaKlLD9y2ck37bQFc2lhBIRRSGWqN4AYR0FU1TsJyAuu2zozfBaGeS/rYoH7ltEBFIf77+1ig3Drx2Obbr+P7gdz9xG7/y2SMI4N99WMrh9cYv/xkV2NWbwLB9qraD7QoUIYiENRw/oOYIQqpM5t+7rYN0xeLscpWelij/4N5hXjxfpGQ41GyfquVhuD6+7/OL79zO/Tu6aIuHuWu0gyfOpjkyVyIZlgnqTMVC11TevbOLUEjlC6/Mg1B4eE8Pv/SubYwtV6nZHkIIpvMGP3JTH4mIxnMTeTRFYd+WNh49lSYW0rhlqIWD00W+dzZNxfLpS0UY6YpzQ18LD97Qw2LJJKIpbO1OcXi2wG994wyZmpzDU1GdofYE23ri1E2f+ZJJ2XRoj4fxPCnLGASCuu01WXmxho9RyXBIRnS2diWYytZYKjuXFOJC2gU2dggpO3IxUhGVzkSYtniYwfY479/bR9dFRsmvBi/++x/Z8PV/895Bfuu7i1f8/AOjcZ6bkRJp/+o9o1f1ned/e+Pv/MwndvNLXxy74uf3D6U4tCBD8H/x4FV+52+9f8PX/+RTN/PLnzt5VftYRf9Vnu6/+vWNv/O7v34f7/29Fy95/b4dXXzmZ+/gdx49w1jmremzqClw63Ard452MJ2tc2imgO37OJ6QPgS6QjIWYndvC47voyoKn7prmNNLFWwv4L17+xhuj3NsvsQNfSl29aaYydX5wqFZjs6WuGd7J1s6EqxULOIRnVzV4sBUAQXBPds7eOpsjo5EmH/7kb0APD2eYbAtxkhnjHPpGp4v6G+LsquvBcP2+O9PTNDbEuHXHtpFLKxxZE6OQXdv7aS3JcZjp9Ps6k2xsyfJtu5k03S81DBwb4mFWSqZPDue5eyK9BJ0/YDBtjgfvnWAaOhCF3Q0pK37+2qgKAo/ddcw6bJFxfJ4aiwjz7OqsG9kvbrBvi3t7LtI8eD2Ndu898ZeAB7Y2c1ktsb27iTJiE6+ZvPi+RwTmRpeIPjgzf1omkpPKoztCZ4eW2E6J83u2yMaJ5aqtMZDLBRNMmWLeExnMW+yVDJIxXTKpkfV8kiEVWIRneXyW0sOOawpvHNnF7sHWriht4X37+1b52/b2/DY3Qw/+saqgF/HNcaungQbJWRUGrkH9dX7AsV06RHyg9JnogGJqEpIgby5/lepyHMU0SGk61i2hwdEdBm7DLbG6EyGODZXZldvkr2DrczkDPKGQ3ssTE9LhJsHW7l5sJXpfJ1i3eXW4bbm/le9E3/ijmHKpkt7/OpJAtfx5uG1+qz95tdOYdgeJxbLfPSWAaLR15fGDWkq9zQ8c3b1JulKRuhrjbK1K8GZpTILRZOIrrBUthhfrmC5Prm6zdRKjZWKRTikUjTfXk+uAnQmNMK6huX4mI70RE5FNLJVF1vI57SvNcy+kXY64mEOzZVIl032DLTwbz90E7v6LuRStnTG+IOnzpOtOHzktn66EhGeHM+yuy/FR28bIBmVz+BfvTjFNxpeT//9exM8/s8f4AP//bkfmHHvrQqVVz+3JEMqf/xz+3nHju7ma8Mdcf7jx2+hZrlEQhpCgKpAse7w5NgKqqLg+gHzRQPPD/jumTRDHXF+7LZBDEd6bD9/Ps9Mro6H4L6tnaxULA5MF2XtQEBIV/jQTb3k6y4vT+fXWZVEGvZHP8hYW0N5vRjtiPLvG2uXTb9PiNf/dYqiTK/5c20NCEAIIbZdtP1vAIeFEI8qivIwcJ8Q4v9uvPecEOKBxr8/C/yfQoi5Db7zl4BfAhgZGbljdna2aRQvpT8uLI7KhoOuSl1lTZXeE44nF4zjK1UePZXG8QI+vm+QHT2pdbIXqwgC0WBZbvye4wdEQxqW66EoCpHG97ueT9Fw6UxGmkxDzw9QFaX5Pa7no2tqc9++H2D7QbMYIRoJnlV4fkDN9tBUhVT08gHO4dkCz57LIYTgJ/cPMdyRAKBme4RVBcsLiITU5vGuwg8ECnKhHdZVXD9AaxzzqkeH4fokI/q6Y/ubl2bJVW28IEBX5ULonbu6ueOixeQq9u/fzwd+4y/5+jGZAPrFd27j1x7addnf9P2A25A3ubgYJITA9UVz0RcEAtcP0DV1HbPUcn10VcFxPVBUfCGIaApFw0VTFWK6Ss3x8Xxf3qeaRms0JOUPhGSfyrZ1QTSk4/sBauNeDgJZ2lMb5uVvRkFlFfv37+f+f/UZDs0W0VSV3/2JW7jrIhPCF8/npE65ELx7dxf9LTGS0RDZqoWqKPi+SyIUQtF1EhGNiuGRiuok1gR3b+Zv+mHCrbffwc//zuebnXD3be96VZ8/PFtsFrB/4o6hprEuyGfD9uS4GAQCPwhwfMlmfHYiw/PncmiqwodvHWBP/4XOuUDQfHaWSybdyTAoCrqmNve7aj7qBwGGE+AHUqKpry2G13j+VuH78ntXzWlXJSvrtk9IV1CA2Bq5HtvzJdMSed+tzpGr//7TZ6eo2R79bTF++lUw8YQQCCFQ1WvTm7F//37u/Zef4ZsnlmmLwN/+0ju48XX4FV3HG4fJbI1HjsnFz3tv7OWmwVb23XEHoz/3O5xbMvnYPSP81scu9VC6ljAcj1hIu+JYKoTAD0TzGXL9ACFYl9h8oxEEYsM4bCPYno+CcsXjsz0fEcBfvjiD5fr0tkTI1xy8QHDTYGszqX012L9/P4cOHWK5VCOkanS1XJ5tXao7JKP6unFpLWq2xx8/OcFyxeS9eweuSWdw3XaJh/XLXm8/ENQsh9b45StNluOhquplz7EQgtlcjeHO5CVdNasomy5/+fwUddvj7m1dPHyZc14zHXRdJRraPMnzv33pOLP5OomIzp/+7H70yxzf2ntq9fqtwvEC/vz5aQzHY6A1wo/vG8K0PSqmx/HFEuMrNXRV5cO3DdAWC5GM6KDIxGUQCHI1m65kuDm2r8Zhvh9Qs11S0RCqqmK7PlXLpSu1vjDwvbEVTsyXUYB/cO8W2hNhDMcnHr70eTUcD9Px+YsXptFVhdtH2q/Idnw1CBpMu6t9/t5sXHztXivOZ2rNhNTqmHytcHSuyNMNn5WP7xtipPMKjIeL8OJkjoNTBRQFPnXXCD1XKCStIggEbhA078uK6dIS07E9Qdl0KNYseluitCaiWI0uNdPxcTyPaEjnL16YxvUFA61RHtzdQ1hTUFSVlmgIVZVrDVVVcb0AVblwj7ya+Hz//v186rf/lucnsoRDGr/z8VsZfpXn5zreHDw9nuFf/+0r2C78u0/cxsduH+S2fXfQ+tO/g+P6bO9p4X9+eh/xsHbJ3PZq1qI1W8Ymm80bl2xvuURDmlw/CqnCUbM9FAFhXUFTFVxfkK/ZdCTCRNbEPavHNV806E6EiV4k1bl2npBrGJ9oSMfxAil16gVYrk+iQRpyG7kkRdl8DS6EwHT9dTmdIBBoa9Y0dcdHa8wpF4+9tufz589PY7sB27oTfPS2was6Txdj7dh5tUWY7zcuLgL9oOC1FMH2799P7Cf/MyXDIaxrHPw/HmwqJ30/4QdyzbB623qBIBrSmmsOy/UxHB/HkwZKlhuQimoIFLpSkebz4ro+mqY2nyPfD9B1bd0ztXY9vorVnIDbyK2ukmM8P2iOKUIIKpZHRNeauYA3E/v37+ff/OnX+L++fhohBHdt7eDP/+Fdr2ofluvjBULGn5eBH8jxJhnRqRoO4ZAkTiYjOqbrE1Jl577j+pieL89Xw/MMpAfs2vVixVwdb2X3v+F4RHVJe1BVmU8XQr5Xs71mntTxAnSVTXMeq9fV9nwijesMl48nLh5fX808s9G2FdMlrKtEQxfus422u1Zx50Z4aSrPgck8gRD81J0jV5T4Xnt8Xzw0z2LRJB7W+McPbGve76bjN5UeVueboCHtoCnrr4kQAtPxQeES6WrfD5rzlOX6qArr6iurn6/bPsslg2QsRHcysi4eqFnSizgR0kjGQiiKQtVyCWnKuvXdanx5MVw/aP4ORVGoWS6JRu3BDwQHp/IcnJbx8p2jHbw4mUNB4SO3DbCrQfxXFOWwEGL/xfu+VkWwTwCPCiEqiqL8JrAP+H+EEEc22f5XgawQ4ouKovw4MCSE+P3Ge08LId7d+PcjwM8IISqX+/6uri4xOjr6un/HWw2OF6AokqlxJXiBwHZlAUW/QiAphAw6FYUrDqZVy2sEb9oVt30tmJmZ4Y26dl4gMGyPkK4S1lSKhmRQtsfDVx1sv14YjvSbil3EWPUaQUPkTUwsvhG43PUzXSkLo6kKhuM3BjyNQMhOqFXmg+35hC4qGl7Hm4M38vl7vVgdexJhjURELkJdPyAW1tnsVnm7PVeBENRsD12VslKvBjMzM3T3D5GuSPP5wfYY15+gtw9mZmZo6xmgbHq0xt4cX8C3CvxAUHde233/VsBbedy81vACQclwUBSF9ngIdZMFpxAyZg3pyqbbfL9QNl3pVZQIo6vKptfPaRAkwhcndJFsz0AIOhLhN+z3BUJQNFyEELTFw1eM5X8Y8cP07L0RKBkOri+IhFR0VSEW0ptJymRUf8Njp+vX7+0DLxAsFA2EgKG2GCFdfUtcv+acBLRdtJ43HR9fCHRVQVNVTMcjrGtEQ2+PNcEbiY2unetLEodo+EaGdZVkRH/LzeHXcX3sfDvj7XLtbC/Adn1iDZnr7+dx6KpcSxQNBz8QtMZChHUV05XF1DezmPl2uX5vBARgOh6aohK5aB7dLOe2We3g9eS8Xg8OHz4shBCX3NDXqgh2Qghxi6Io7wB+G/gvyA6uuy/a7m7gvwFRQG985kUgDpwG/mHjs3ngR4CdwNYrFcH2798vDh06dEkHwMXwA8GXjyywVDJ59w093Dbchh8IMlWLzkTkTWU6Xwlj6QrfOZkG4MduH2S0K3HZ7Ve7E1JRnX/8wLZNt3P9gK8dXWQqW0dVYHd/ivu2d9GZvJQJLITg9793nkDIBdM/efeO1/ejgINTecZXqtyxpZ29A63XrLoeBNK7ZG0w/KVD8xyaKTJbqHPTYCuxBnPsHTu7uHO044r7PJ+pcmAyT3cqwq7eFFs6E6+qULPahQeCmwbb2NGTZGtXgqrl8lcvzuD6gttH2i5h8TpeQL5u05OKvuULQ5tdv7Lp8pcvTFM1pWfCls4E5zM1XD9guENK29zQm+I/fPss+ZrDHVva+NUHd657Bi/uSLiOa49r9fwZjsc3ji9RNl0+sX/4dSf0g0Dwe9+bAGSg86m7R/jL52cIhGBnb5IP3TJwyWfKpstfvziDFwj2j7bzwM7uS7a5VsjXbKqWx5bOOIqiYLk+X3hlnorp8iM39zPcIeWielsil2VxP3Y6zZklOb194s5hBttijS7cKzPx9+/fT+IT/5n5ookK/N5P38YHb3ltDNHreONRNlz8RhId4PZ9d8DH/l8Mx6e/NcKj//xdG8p75Ws2j59ZIR7W+JGb+t9SccprxTdPLDGxUgPg0/eMND0K3y5YHTcLdQdNUWi9BpJDb/Z85/oBf394gUzF5qE9PZt2wjw3keXQTBGAh/f0cvPQxtv9jycnODRbZKgtzr//6N5NY5eS4VA0XLZ0xDcd44QQjK9UiegaW68Q+14J51Yq/ObXTgNwy1Arv/HBGzec99Z2Bn341n529FyQu/ny4QU+9/IsCgoDbVHeuaunIQN6dcQwPxCMpSu0xkKXyCUfny/x1HiGgdYYu3pTPDUuJfr2jbTxwM7uK84Dq51wXRvE8D+IeCMZuW8HeH5AtmbTlYy86iRVpmLxp89NUTZccnUHTVXoSUWYzddxfcFIR5z/9PFbLnvPHZ4t8uipZToSET6+b5CelmizC+BqGNn79+/nv3zuO/zVizP0t0b5zQ/eSPRtSIT4YcBvfeMMnz04A8AHburnv//U7ezfv5//+NffYjxd4X17+y6RWN8Mnh8wWzDoSUWuqGBzJRyYzPPSVB6Ad9/Q3ZQpPbVY5mtHF/je2QzJqM72niRbOhKoisIvv2tbM76yXJ+JlRp9rdGmJOurxZXyTW9FbDR2/vrnj/LUeEZ6tSbDbOmIc/+OLh7a0/uqcx6bYWKliqIo7Oi57g24Ea52TP9hn/veznijr50QYp2KztViLF3h8dMrhDSFiK5yZLbE1u4EHYkwP3//1jfoaC9FoRGPtMZCfPfMCqcWy4R1lXfv6ubxMysA7B1oYbgjzqOnZG78Pbt71knB5ms2NdtjS+frWzPMFwyqlsfuvtSm6hFvJCzX5ytHFrBcn4/vG74m68uVioXrB5esP64Ga9eAq3kqgGzV5q9fnOHkUpmeVJR//MBWdvWmEELm74RgXe1ASkSuMJauAoI7tnSwpTP+uq/X1WCzTrBr1dqz6hzzQeCPhRBfVxTl322w3SzwHiGEpSjKmKIox4FWIcSooigvAB8D/itwDDgL/DHwy8DvXOkAPndwlldmCiQiGkPtCR7e03vJhFs2XRaLUvt/bLnCbcNtfObZSQ7NFNnVm+KfPbSDs8sVBtvi9LVem6SM4Xh89egilhtw+3AbigI39rcwXzSIhrRNb8jaGuHPVf+N00sVAiG4ebD1ksXG6p9XGgAfPZXmyGxR6vyGZEV9oWixd6CF4wslIrrK/tEO9o20oygKNw+1cGqxws2NBEnd9ji7XKEjEeb4QglVUXjfjX1XrMjbns+fPDPJ3x9aIB7WmM7V2XuNvG3yNZsvHV4gEIKP7xtqatC3xELkajaaqiAaZrKxsMa2rgRPjWcYW65y52g7+xsFseWyyZ88M4mCQrXxO0c745QMl1uG29g30s57b+xlqWTyNy/NoCoKd4y005mMsL0neUmn3Oo1SpctikaWU4tlbh1qJRxSpfdU2QJgZ0+KdMVktDPBY6fT/MULM0R1lZ+8c4ifu/fNm4SuJSK6ynze4KnxDIEQvNSQdkEEnFwsc2qxzP07Ojm1WCZbtVkoGMRCKvm6y0dvG2Bnb4ovHlqgUHN474293DjQcsXvvI43Bqbjc26lykBbbNMF43MTOf7yhRmEEJzP1PiFd2xld5+8ZodmCpxbqXHnaHtzwewHgm+eWCJdtnhog7FaVRVuHmzlzHKFobYYf/PiDMcXilhOwEtTeToTYe5dI90YNFqip/N1BttizfFzsWTywkSOofYYewdaGUtX2NqVIBnVmc7VGe6I07JmQZ6pWswXDG7oa9m087VYd/jcwTm8QHDv9k7u2dZJumxRqMtO04mVKudWqowtVygZDj+2b2idl8jx+RIvTubZ0ZNsfreuKiTCGstlk68cWURXFe7Z1onh+Nwy1LppsnWuYCKQetenFkrXi2BvUUxla/zO4+MEgeCfvmcnNw+24ng+dUM6Uc3kTU4vlTe8747Nl0g35orDswUEsLuvpVlMu1qUDKdJ6ti/AQnkfKbK4VkZC91+kT/OtcbqfR/W1Uu6pK81/EBwdrlCSzR0WVmyiZUqz5zLMtQe5/17e6+Y0D25WOZ/PDmBpqr8b+/fxdaujRM8pxbLfOPEErcPt/GBm/o33Mb1A/78uWlmC3V+4o7hTeWjF4sGf/DkecK6yr98767XRTYo1p3mfTWerm5aBNvVm+LZczliIZUtXZufv9NLFUzH53y2iuF4GyY6y6bLb379FGXD5YO39PPJOzeWk/3sSzP8l8cn0FX4w0/t4+5NZHoXigZPns1wx2j7pvFkLKRJOQ7H53a17ZL3hRA8dnqFx88sc2qxQjysYbseTsOL6raRNl6czLFcsrC9gNl8nXMrVc6tVPi1h3YRD2k8OZYhX7d58IaeDUkPBybzvDLTkLe7+0LRNwgET5xdoVh3pMRWRCWkKRiuz0tTBcZXqnx83xATmRqqorB/SzuqqvDKTIFDM0V0FWq2j6YqfOrukR+aQtgPAxxPJgws1+fhG3ubEkNfPbrIZKZGSFf5xXduWxe/rGI6V+eRY4sowMduH+Sp8SyBENy7rZPZvMFMrk7QkHI/uVBCUxX6WqJkazZH5orkag7H5ovs6JGEI8cPmFipslKx+PzBeaZzNeIRnURY4527uvnG8SXiEZ1P3jl8VYohj51aJl02yddsxlYq3Db8xs431/Ha8PJUDqthaHtwSsp7+oHgX33pGHXL4zunlvnmr73zqvb12OkVzq1USUQ0fv7+rZck+x0v4PEzaSw34M7RdtJli+09yQ3HtG1dCb5zahldVRjtjHN0rsjB6QJRXaVYd1mpWGRrcv5WUQiE4MxSpenx9/iZFSYzNcK6yj96x9YNyUczuTp1x2NPX8u6orAQgq8cWWSuYHDf9k7uvkj+fzMYjsfZ5SqDbbFrll+6Fji5WKJiedK/XgQslywOThd5cTLHJ+8c4QM39VO1XM6tVBnuiL8qwtLRuSLfOrFMvu4w3B5jtCtBX0uU/aPtjKWreIHgtqG2S4ruddtjLF1huD1+1VKwb2c8cnyJ2bxBf2uUn7prhINTeaZyde7e2sG27uuFw+u4PKqWyxdemcd0fD5y2wCtsRAzeYPt3QlS0RBnlirUHY/bhtsuGXfH01X8QDCertCTilCxXCqmy+iawsRC0WClYrN3oAUvEMzm6yiKwvH5Els64ty5tYPvnlmhbnvMFwxOLJZ5x44ufuH+raiqguF4nFmqMNS+cW79fKbKN08soyoKn9g/TM2W62LXD+hMRuhKRVgumRxfKHF6qdK021EVKU/7nVPLLBQNjs2VaIuH+cSdw1fV6HByocxcweDOre30pKIYjsdfvTjLY6eXGW6P81N3DXP/js3J1Lbn8/xEDlVVeGBH1zpSxHMTWZbLFg/s7KK/9fLyhhfjuXNZ/vIFSfrWVIWfu28rQggeP7PCfMHgnbu6mzJ/a7FcNnlmPEtvS5R339BNoe7wyPElqpaH1ZBiv2NLBx++dYCFosH/z95/h8l15ved6OekyqGrOkc0GjkRAMEchjNDTtREaYIkK9uSJadde9feu8/e9T7XtnwdduXrlbwreSTLQWtpomY0geQwZxJERgON0DlVznWqTj73j7e6CBDdIEhpNJoxvs8zQ7BZqK74nvf9fVO+YXJoNElIU3j5apHzazWOTvR0OwJBiOy+dy5DsWmydzhxXQpT23JpmCKe3bAdLmcb7B6MI0kSd4wlr+MOTi1XeHI6y7nVKoOJIEFV5Zun14gGVX7tfVPXVam8EwzbZa7QZLQnjCJJfPPsGhPpCI/sfvex8H9RJNiaJEm/BzwG/EtJkoKILrrr4Pt+9pp/fQM4Dmx80/4e8LPAReC/+r7/tyRJ6gX+/Tv9cs+H5y8XKDRMKi2Ljx8KcH6tesNgNRXR2DMUZ7XS6g553lwokWtYFJsmk30R1qsGmiLxNx6eelely6YjDq1hTeHuyVR3gLJQ1MnXTdq2y39+bZFtvVGOL5RpdRrZD40muJhpMJGO8KnDI93NwOHxHgxbRMntG04wk2nwVIcNB7hjrOe63/9Td44xX9TZ+Q4XzLphM5AIEQ4o9MYCWI7o6jm5VGG53CJba6ObovtqR3+MD+4d5IN73+pteHw6y0q51XHPBVBkmYuZ+pZDmw28fLXIMzM5cg2ToCpzObtZte57w1K5JfJMEa/3Bgn22L5BVFniwnqdXQMxPnpwqJshema5Cogv5l2TaTzP5189cYnjC+VupFgspHE112Q8HUGTRS4uwH98ZYE3FysUGqIAe6I3yp0TKX7xgUlAbOZfny+hKhKP7Rvgar7JUqlFsWny3OU86WgQtZMt3rIc/t1zV+mPh3jSzvL8pTzLpZboTbpc4OBID/uHEz+UDOM/DzzfR5YkfEC33K5TT/IByWW92ubpi3mKuoXrejRMm999YR6QeOlqkX/3145SbJgAXM03bpNgP0Q8Pp1hqdQioMr8jYe339AfCLBa1tFNB9N2uZJt8Pj5LKosMZGO8tLVIgAvXi12SbBi02S+oANwbvXGtRrgsf2DPLZ/kOcv57Fcn75YkJNLFdKRAH9yfOU6EuxyrsGF9ToBRUR5PLxbbFxeuVpkqazz9VMrNA2HAyNJJvujJEMa+YZ5nXPWdj2+emIVy/GYy+t84e7xTV+Ppul0s7M31oSRnjAT6QiVlsWhsSQnlyrkGyaLRZ3vX8gSCajs6RTpnl6uYNgu02s1/ub7phjpCREPafREAlycLWLaLvPVNmdXquwajFNomnzq8I3ON7i+QPR759f5nz5+8xLQ2/jh4NRyhXJTkKTHF8ocGk129wAb+O65DLP55g3EwLbeKNNrdYKqxGvz4vp0Jdvgl95Bped5Pt8+Jw7X79/Tz1KpxWy+yaWs2G+8fbjw/OUCDcMhUzM4NJr8gaqcH97Vx0Q6Qk9E+3OrwjfguB4X1uvEQ+p1g4PX50viui7Bz9wz0d0fvB0nlyo0DCF+uXd7mtQ7kIzHF8pUOyTmyaXKliTYl16aJ1szOL9a4/6pvk1VfavlFi9cyeP58K0za1vup743nWWhKNbN5y7l+eydYzd9jDfDhngnVzM4MtGz5e1ydaMbW1HRrU2H7gA7+2N8v5Bl700EBKuVFpczDdq2y4nF8pYk2NdOrtGyhJDhT06sbEmC/esnL5OtGTxzKc+XfuGuTV2SliM6XrROn+3boVsuM5k68wWd9UobSZKYzzcwXYgGFY5NpNg/kmT/iM1CUafasig0Lepth6u5Bv3xIOfXagA8cSHLwdEk+4cT150f7M7v9X1w3LdW7dMrVSq6xWKpRTykElBEHFVYlVmptAmoMs9ezrNaFuK9SEDh4GiSU0viGrJQ1JnsjeB6YnB4mwT78cFcocmVnDgnnVmp8khnT5NvmFzM1LE9n75Ta91zx7U4tVTh+EIZx/PJ1gwMx0O3HN5cKFFr2yTCGp7vsVoR592hRIixVISBRJBvnVknW29zKdMgrCmUmqLPMFM1eHWuSFW3KOkWtufz5lKZeEjF6fSPZartW3IGRa6539uf2b+6OJ9565yeqYtrXctyMNtibb6Ubd7yfdWNjb/vdjs+NrBWbfP7L86zUNTZP5Lg1FKF/niQc6s1fvV9NybbrNfapDoCkGzd5NRylbbl0rZcjk708NJssXMGhWrbRjcdnr2Uoz8eZDwdwXbEerzRZfR2rFZa/MHLC9iux6cPj3D/zreuPy3LZbncAsS541ZJsCcvZFkstt7VfMlyPN5YKKHKMvduT/9AehrrbbEv9YGm6dGpjeHsao1dg1U+enCY757LkKkZBDWZX3t46pb3hscXyjRNh/Vqm7AmU2iKhJuVSov1qtG93Z1vE11973yG1c7171cfnvqxSD+4GfKdWUehYaKbNq/OCZfjy7PF/6ZIsPfSk3YbsF41aHSEv7P5JvMFnabpcH4tyPt29fHkBTF6txyPB3dev5c+Mt5DoWGyfySJabvcN9V7HclSN2y+cWpNpKbVDQpNk1LTYq7QZEd/jGxnXbicbdA0HU4ulQmqCscXyvzknWOkowEeP59lubz12pevm/g+uL6IZv3gnkFOhMoMJ4Vg4Ofv28YzMznOrYp99qHRHibSEfYNx/nKiRW+cWqN1UqLSEAhbTjk6wabIVszOL9WY+dAjMVik997cZ7eaICmafPFuyc4tVThhct5cnWDtuWyUGzx4E0C0M6u1LqPqTca6M7lCw2z65x6ZbbE5469u3Narm50Ih99cp3nUmvb3dSgDePO2/H6fIlMzSBTM9g/kmCu0KTasik0TGptm3xdPP8XrxRIRjQsx+OZmRy/9vAUJ5cqeL7PyaXKdSTY+bUaffEgPnD/VO91hN5Eb4SPHRxCUyTSkQCHr+El3s4dXMk2OL5YJlcTn9V7p9JMr4mz7HK5dQMJtlJuUWgK4vXtM8fHpzMsFluEAwq1lsWp5SqSBMOJELuH3t2s+C+KBPsC8FHgf/d9vypJ0jDwD7e6sSRJdwB9QJW3XGQ1IAX0APW3/Wyz+/g14NcAJiYm8PFZLrcIaTKO6xENqpxZrtA0XSb7IoylRGzVxw9dr8QdT0dZKrfpjwWptZ3NftUt4cRihVNL4kOfimjdg8BEOkIirOF6PumY2LSZ9lvDrwvrDTzfZ6Go0zCc7oBEU2Qe2vXWYnVtV9xmWc2paIBjt6AM/9D+QU4vV9neF2UwHmJ6vcZEOsLVfINMrU1/PLhph9XbEQuqKLJQrY70vLNSJx0NEA2qRAIKqYjGfdtvbeN4K9g1EONSpoHr++wdemthUGSJR/cN8ui+68vXBbEY51K20VUP+53/CwdUTNshFtRQZInP3jXGPZNpMjWDuyfTwsFVNSg0DDxAkWU8T7hfzq5WyNct6m27u0n+6MEhPnV4hNMrVdarbeYL4tAw1R/D9cDxPCxHvLmqJApBNUVGliAe0njxSoGVcovPHL11h0e+YZCvm+wejP/QNo8hVeHwRJKr+QaLRZ225eDLEvjCIed4YLoeIVWi6YrXvdG28fFoGg71ls2OgRiFhsmRa+zOt/GXj42hnef5bJWee2C0hwd3NlmrtpnoXMx8HzRFYjgZIlMzuj8HsR4MJ0PkG2bXMbYVdg/GuZips2sgTq1tU2vZTA1cb5/eWK8GEyEe3NnXHcKOpsKcW62S62yyLmbqTA3EMDprsOl4m5agetc80XOrVV6fL7GjP8aj+wYZT0d43+4+qi27u1kIqDI/dc1GpycSoN4W3S6Vlt0d6IJw8Xz15AqDiRCqIl1nBd83nODZS3mWSjr5hnCx7hm6tbiZqb8ES/ltvDfcP9XLV0+sYLs+D+8Qn5lwQKF1zW3CAWXT79fOgRh/85EpZAn+46uL6KZ7S0OIhuF0iebptTrbOi6ooCYT2YSkGEuFmck0GEqEfuAxP5IkvWPE87vF6/Nl3lwsA/DT94x3N+sbhLV/TfHzZtg9FCdbNxhOhkiE35mYe9/OPs4sV1BkiftvMghLRwJkawax4NZ9Oz3RAJGASlm3ulETm+HAcILnL+VRZZm9NxGG5BsGZ1dqbO+LbhlBpMjSluT6tWhfQ9Ya9o0k0gbCAYX9I0nSEQ3T8TYd8qmyTFm3MB2Xxk322/dNpZnJ1JEkiUf3ba3uk7uSpa3fV0WWOntP9YZCZ4BoQGGqP8qJRVV8Jy0X1/PwfUGatW2Pqb4ouwZinFiqcG61iqZIjKaE8CHcybwv6yaXMg1KTeGwu/as8cDOXiotC1kS8XNvwac3FqQ3FmQ23+D4QpmeqMZ4KkK+bjLZG2Vnf6xLgm28pgdGkpxYKvPovgFiQZVEWPtLiRS5jb88DMRFRL/j+tetCR85MMiljIjWtDchdUGciZAkIgEZWYFCxaTYNNk1EGMgEaTViQwaTZnMFXQGEkE+dWSEc6s1FMlFN4VyOBnWuJxroBsOsZCKpkg4vk9IU+gJa4Q1mXhYJRXRiAbVW1bzKopMbyxAUFW6hMRt/NVDRANdcFfdlTaoKriy1OloufUR0mP7Bjm1XGGyN0okcP3fu5JtoCkylutRN2xSUXH93cqMrXYGIplam5NLFXb0RzmzIsR0j+zu5/hShVLDZPdgjLrh0LYccnWTy1mRaPHhA4OcX60xmgrfkLJQaJj8/ovzvHy1QG8syIX1+nUkWDSocsdYkoWifp1YZb3aptqy2TMUvy6RZ2OYZ9lvCSFutYXk9HKlO0xNhrUfiBh0PB2l0q6D77Ohz5CAoXiII+PXzEfoPHZEIsGJxQr7hhO8b/fWTok9Q3F000FTZCT8LvF5rUhGk2/cE228Pr7v49/k2v7jgsf2DTK9VmPfcIKwpjKQCJKvm4y/h+iy2/hvD9t6I4ymwrRMh4MjCa50ouYd17tuLdqsY3Zbb7QrBG6ZDs9dzvPqXBFNkdkzFL9uvfJ8urOTje9wXyzARDpCUJPxfZUDI0nOrlRJhFRalkgxWyjqHeHD5teLoxMpam27+zs1Rb5hbrt7UMxsIwGFh3f1XbNui+cUDar0RgPsGIhtuSY9Pp2h2rK5lKmjKhKaLFNsWsRDGp7n8+ZimWrbwnI8RlNh7tt+czdZ+prrVOqaVI5EWOzJ622bsdS7c4EBPLpvkOOLFWzX45OHxew3HtIY7QmzVm1vOROaSEdYLLZIhLWukeXsSo3J3gjRoMqzl/LUDRvbFY7fSsuiLxbgmUt5DowkmF6vceBt15i9QwkWCqJS6NjkjXTMvVObu6GXSy2OL5RQVZn7tvdy57YU3zojnF/xkMpEKsyJxQpBVaY3GuBSto7jij1FtmbyymwRH0GQfvTg0HX3vXEOtRyPaz/R70Uk8hdCgvm+3wK+cc2/Z4DMZreVJCkN/A6CODsGbEz3EwhSrNr587U/2+x3/ns6LrG77rrLz9QMDEfEgsRDKhfW6vzJWpXRngiDiSB/85Edm2btfvjAICFNIajKPLK7j7rhMNoTflcuMHhrQZAkrttUxUMaf/0hYWWcyTSYXq/x8K5eZjqH5fFUhJPLFSbSEeKhrd+OjUGx6/nsH37vG6GBeIiPHHjrA7WhChhPR3j/7n7mi4JNH+kJ0zSFRT4aVLtZqx85MMilbIOxVJhkWENC6rqUDNvFf1tZYdN0eH2uRCqi8T99dC/lpkk6FuTQaM97fg5vRzyk8bP3CkWx7/s8fTFHvmHygb39W9pQP3pwmI8cGOoOvxVZ4r//0G6eu5RHksQXWLdcHuvkYh/qzLcXijoTvREkYDwdYu9wkkuZBobj8m+fnmX3YIym4dAT0VA7rpRi06KsW+wfTrCjP4bn+xwcSbI62sbrlNGuVdvsG4oznAqxWNDZP5zk7FoV3/cxHIfptRrj6Ug3EmUr6KbDV94Uw9aVcouPHdo8fukHDVmW+Om7J+iLBvnDVxdoGjZ1w0FVZAbjQab6ohR1m5NLFcZ6Qgz1RNAUiaWSzmRvlOevFPmVB7f/hWTh3safDx89NCQ+f6nIluvifVO97BtKoMjw4lVhx94QAnzijhEqLfO66FdNkfnpeyY2JaA2sF5tc36txrZ0hId29NET1fjCsVFKLbGxuJprENIUxtMRJvuifO7YGLbrXaece3BnH9t6IxSbJpWWzd6hBJ87NtaNR9nVsW5vPKbPHRtjudy6jkw/uVRBN13OrdZ4YEcf4YDCsW033xzFgipfvGuc2UITy/GYzTe77uNYSGW0J4wkSZxbrV0XTRcOKEjASrmNj0+m1r4pCRwLQMdgxEdvRyH+lcWlbAPPEwKW6Uyd3cMJpGu2bwrwyO4B9g5vvrnd+N59/tg4S2URc/FOiIdUdg7EWC63uGMsyYGRBBPpCMmItqlT5yMHhrh7Mv2O15i/qrh2WHIt13X/VC9hTSERVm9KMN05keLQaJJszeDpmRz7hhI3jU/cORjjbzw81SFEtr7dP/jwbt5crLBrMLpl942myGzrFc644ZtEJT2ws4+p/iiqIt/UQfHEdJbVcpsLazV+4wM7NnXv3ip2DsZ47lKeUEBhIr3161fRTeYKTaxUZNPDNoDjisLtgCrDTc4rD+7sZ7HYJBzQmOzdWgn9iw9O8pU3V3j/nr4tBT+TfVH+wYd2s1DU+Yk7btwPSZLEp4+M8ujeAX73+Tlm801atkvTtGlZLsmwykuzBe6b6uN/+PBuCg2TassWCsXO9/IXH5hkuazzjVNrtG33OhEFQKlpsVQSlPcbC+XuvvvoeApNkakbNq/MFtFNBx/oCTscGE3whbvH6YsFSUUCyJLU/Tw+tKuPB3f2vmNkp+/7HF8oo1sOD+zoe9fnmtv44aE3FuSvP7Qdx/OvW693DsT5Xz+5n9lck91bDEPuGO/hf/2JvZR0i0hA5RunVrFdF02VuXNbig/uGWC12qbYMDk+X6LteDiuxycPj3A1LwSF0aBGIqiQrRkMJkJEAip3bUvx/JUiA/Ege4fiBFSF86t1PnpwiH3v4lxq2A5l3SIaVG+pR+w2fjh4aNcAT14UHYWHx8Q6HFBlfvmDUzw1necjB4aYLzTf0a2yMYz98P7NY4b3DseZzTf50P5BPnHHMJoiczXfQJNlai37hnPgwdEEJd2kPGOxXG5h2R6//r4pQgGV2XyTv/fBnUz1RWnZHhfXa8wXdK7mm5xfqwnB8LYUD+zc3F18MVMHSQgneiIaezbZk719QFtqmnz1hKhkKDbN7hC2olt849Qanu+zcyDGgzv7GE2FbznZJRZ6a650KzGj7wX/++eP8M+/c5GFcpOVkohX39EfZf9ogovrde6f6uMn7hjmUqbBtt4ImiJzYrFCy3I5uVThwZ19W9ZwvH+P2NP+z18/T8ty6Y8H+Gv3bWOqP8aevIhD3LOJo+Fjh4aYyTQYT4f/XHuXHxXsHIhdJ1b64l3jNE3nz92tfRv/bSCkKXzhrreSa37yzlHm8k32DMXpjQX57NFRdMthz0Cc+UKT3mhw09ma5XpcyTXxfZ+XrhbYORAjGdb4yTtHydUNDo4mBYmUrbNnKE5EU4kGFVRF5lce3C7IlZrBb37nInXD4UsvzjOcDFFoGOTqJndvT7NSbt3gFi80THYNxq7r4X07xtMR/tb7d9xw/fjJO0cJaTKqLHH3ZBrTcXmpU4Hx9sS0WFCl2rKJBFXuGE1g2B6DiRAfPTCEjxBX9IQDJMMaR8ZT7HwHV/vOgTh/7V4NWZauO48FVYWfu2+ClulumihSN2yiAXXLdXO4J8y//Kk7cH2fS5k6z8zkuG+qly/cPX6Di/paHNuWZudAnLAmzliW6/GL92+j2rYAicPjPXzvfIZ4SOOO0SSPX8jQE9aIh1Qe2z/Io/sGbnh9dw7E+Dsf3HnDzzd6ZDcTWZabJl96aZ75gohxz9YMfv2RHfz7n7+Lx6ez7BiIUtXFPE5VJBZLOjMZ4STUTYdkWKPUtBhNhdlM4PjRA0Oc68wG++MBvvzmCpmawdVck8ne6LsS8f5grqpbQJIkFfgj4B/6vp+VJOlN4G8B/woRpfg6cAU4KEmScs3P3hHrVRHj53XKSh3PQ5YkXK9TXtqJmVks6nxw71vl3pN9UZ6ZyRMNqmzrjd7SIbFh2CiydJ2a6fB4Dz0RjZCmbBq3I0kSZ1aq5OoG3z2XJaDKlJoWtbbN3/7ATl6bL/Lfffk0Q/EQf//Du6+774pu8Z1z6yiyzKeOjLynQ0OhYfKdc+sEVYVPHxnZtGNGlmXalstrc0X64kGu5ppIiFiypy/mcDz/hgzspunw7bPrFOoGL88VCWsqv/7IFE3TZVtvhHOrNabXqvjAz967jYCq8MZ8iXBA3dTO+W7hd3LtNwYg2Y7dE4QV/9NHxGC4YdhczTfZlo7Q21ms3v46buuN8ksPbueZmRxPTGeptx3+t29d4O7JFHduS/PUhSwvXMljuj4hVeZSrk7L9lgo6OQaJtGAQrFh0RsL8PCufhqmw2AixJdemqPUtPiDlxZIRTV+6s4x7hjrYaI3guv5fOPUKtWWRX8syM/fN8lMpsa3z2ZQZIm+eBDDEt0A8ZDKX39o+03ff9f3cVzRgTKbbzDRG/kL6157t6i1bU4slVmttDFtBx8J17PJVA0uZho4nocmwXrVZr1mENYUfOCS3aBluXzu2BjJiMaJxTKnlivsH05e5468jb8cJEIag4kQtbbNqOdfp7bwPJFTXNJNPrh3gBOLFWbzTdYqBofHeqi2RVa1bjq8b1c/p5YrrFfbfPTgEA/t6sd0PCoti6HOmjm9Vsf2PA6P9fDEdJZa2+bPzohorIVii92djVI6EqBhCifB546NYbkez10S6/hwMozleDw9kyMaVHhs3yD/+vOHydUNJtLR7loxsCeE5/mcW6kQDQnVDIgooQtrNX7q2BjxkMauwRjH58vsGIgR0m5+cV2ttCg2BeGNJCFLEivlFp4vImtlWUKVJc6v1bAcj8PjSQzb7V53zq5UmSvqGI5LQJEZiIeIBra+TG8QYACzufqWt7uNHy4qukWuYYAvBuIgrl0bcIHD40lKTeu6zfF8oYluuuwfSaDIEqlogFQ0wAtXCswXmty/o3dLJ6UsS3zybU6fmyn1ZzINlkpC3fzD7GHwfZ+nLuZYLOk8uLNv0+tXy3I4t1pjOBnqOmD2DydYLbfZPRS7juwKqDL33ETRt9EZFguqTPZF+c65TDdzfKPQdzN8+c1l/sXjl5El+NefP3zDYGwDi8UWV3Mid388tTl56bgexaZFw7Ap6damt9nA0C3ky19Yr/H6XInRVJi/zebPwfN8/vn3ZpgrNPmNR3ZwzxZutotrdeqGg265zHUUgZthvqhTqJt4nYipzWZXQ4kQkYBCSbdu6nBdq7a5mGmiyFK3H2AzfPPUCpezdeqGzQf2Dm55OLxney/3vEP6gOl4VFsWr86X0BSJ3QMRyraISmzbHplqi2+fWSUZCbC9L0a2bvDgzj7Rf1pu8Wdn1zmzUqU/HiQeEr9rpdziO+cyOK5LvW0zX2wym29wOSv2Pz3hAB85METTFGeKRFhDQuxnQ5rSPVhv5pp8+z7QcjxkiesOgPNFvRutpMhyN1LvZpheq7FSbnHXZHrLDtB3i6s5MfDcOxS/TXrcAsq6xWJJv6439FoMxEM37eZ5ba7IN06tEQkojKXDvD5fQjcdyi2bA8MJ/uZ/OYHleuwaiHF+Tax9nuejSBIvXSkwl9cBn9m8Rdt2uJyt88F9g1zJtRlKBOmPB5nqj/FnZ9aRZYmhZOhdkWBvLlTI1U1U2SRbbf+Fu4Jv4y8G1+4pN0h81/M5sVCl0DT43nQGH/i7j+66aR/5b35vhqu5BvdN9fF3PiiuR5bjoZs2mqowlAjdEHvYMBzOrtR4db7ELz0wSSSgcmq5wsnFCnuH4wQVWXSlr9UoJgy+Ny2cUt89l+GNhRLJkMbf/9Aejm1LU9KtbhTulWydc6tVdg/GKekW0YDC+/cMdB9/fyzI5WydSFDhr907QTyo8l9eW2RHf4xqW6zTH9gz0D1HGLaL6Xhd4YN5jbPR9jym12vopkM6qnFsW4qvn1zlSr7RFeRtFc8MwvGbCGmoivSue2VuBYWGwc986TUKDas7apQRQ9pXZ0vEQyoD8RD37+jt/DmI5XgMxIPMF3T2dVwDL1zK893pDOlIgJ88NnbdbEfqdLKBSIjZ3vmu7+iP8Z1zGZ66kOOhXX3X9dDGQ9pN92w/7lAV+TYBdhPcamwi/HhHJ7qez5+eXmU2r/OR/QPMF1uUmiZHJ3q4d6oXpdPH9dLVArrlcmG9zlqlTVCT+cQdw5xaqtIXC3Al1yBbN/nIgSGqbYunL+YIBxQM2+PvfHAn4+lI9+w4lFQ27fWSJYlYUMVyPBRFxjYdLmUbzGRqlHVxrol10sCuJcGWSy2+fmoVgA/udTl8E9GvJEm0LZeQJl8nXt6Y8wL83gtzfOfsOobj8Y8+soeHd/d3Z0yfOjLCMxdzmI6H4/lYjstiqUnDsElGAnzu2Bj5hkkkoFyXXLQVfN+npFuobyPBQBBhvi/cykOJUPfxPnspx9mVGiM9Ib5w1/iW++FwQGGl3OrWifi+mMUrkkTTdG4QRVzK1vmT48vU2w6P7R9gZ3+c701nqBs2iiT4ik8eHuF//PAeXN9HlSVyDYMruUb3ub79sRQaBl87ucaO/igfvsY8s1DU+fpJ8Z49um+AxZLOfEFn/3CC9+/p56snV5nNN1mtiHqimXVB5BWbwt16bJsgQy/lGgRVWdwmI87Ituvx6lwR1/O5YyzJ+/cMcH61xtV8gzsnUkz2RUmGte5ZZqmkczEj+mqn12rMZOr8zUd2bMpxbIa/VBIM+DxwN6I3DOB/Bl6UJOllYBn4//m+b0uS9CXgJaCC6Am7KTzPp9HpZjEcnyOjPWiazFR/lK+8ucJ8UWf/UJznLuXJ1AzWqgb/6nN3cDnb4I9eX6RtecRDGsvlFrsH4xQaJvOFJrsH410Wt9kpf2sYNt8+m0FVRIHfxiHRcjyGEyGkm2wETeetCC4J4dqptW1M2+X7F3LkagbZmsHp5Uq3jM/zfP7s7DoXM3WGEkFm8833FA83k6l3+itEr8FWg4yXZgu0TIdnL+UZS4VJhDW+fXadlXKLvliAunF9hM2pJTH0PrFYpqQLG+m/fOIyx7b1cGpZYTwV7uZ17h2M838+e5WW5fLkxRz/8ZfvftfP41p4ns/XT61yfq3G9t4oP3PvBKlIoGtDvXYR+90X5jrFjGH+4Uf24nr+lp0fIqZDxnJdFks6IU1hqSwK2OuGjSxLJEMqPhIX1+sUmya1lk1ZkeiJBEhEVB6fzhINKjx+PsN8oUmpadKyPbZ5Eb56YoVMrc1APESxafCt0+v0xoKkowG+cmKFl64WUCSJu7enCagyV3NNogGlE90mVGF1w+aN+TL98eB1n4dESOOh3X0slVsMJUJcWKv/0EiwkKawUhZqU8u9PtTA6HwH2oAiCfLOsD2CioisKusWz8zk+KUHt/P0TA7PhxNL5S3Vz7W2jSSxZV/Jbbx3zOYb/Nb3r+D5Pj9777brrObrtTbnV6vYrsebC2XKLTHAbVkujueTr5tczTVYq7Y5vVShZYuonfVam0RI5fii6OE5NJrEdj3eWCiTDGv4PiTCGrW2DQgliel4nFutEVBksjWDvniAYsPiwlpN9GSs11mrtik0TPYOxbuRpNv7YuwZit/QPeT7Pl8+vszvvTQPwD/51AEkWaJlubQsl/mCTiKscXqpSiyk8ui+G1WstutxbrVKIqTRHw/y9ZNC9ZmvG3z4wBBDiRAV3RLKFl2oVl+dLdA2HWRF5vHzWV6ZLdEfD/KRA0OsVduUdZOgIgZLh8eTt+yG/PKby/wvnzz0Xt/m2/gBYsdAjL1DcRzXZ8+QIFsbps21PMGfHF+mrIsY2E8dHmGt2uZbZ9a7t32g04vUspxu9PIb8+V3jBO9FvOFJtmaweHxnus2iS3L4fsXs/g+VFp211n9w0DTdLjQyT4/tVzd9Pr19EyeubxQmf3yQ5MkQhrfOZehrFvolsOxbWlalsOTF7J4Hnzk4NCWSurjC2VenxdEwRfuHicZ1jBs9x2vJd84vdbtBPz6yZUtSbDvnFvnzcUyw8kQD+7svSEKCsB2fQzboWHYmDeJHATI1w0UWeqKeTbDyUXRSdg0HZqGRSp246H11FKZJ6az+Pj89rOz/JctSLCm6TBfFK/1xh52MyyXWzRMG9f3adlO1yV1La4WmmRqBrbr8fpcGT60+X1dWKtSaJjIMszldO6b2lz88vp8mdVqm7VqG8fZWiF5ZkXc3z3bN3c6zuYbPDWT49RKFc/3qbYcTizW8CTAB1kSr3ssqJCOBdnWG+2SWSFNRGJfXK9RaBgMJUKsVlosFnUurte78THJsEZYUzizXOVKvklfNMA923s5vlhiNi/6FQYTQRRZwnZF7tSp5QoX1+tMpCM3RLx4ns+rcyVMx2UiHeGJaSGu++Ld490BWjyoIktiCHkrToKGYfP0TA7fF0PorXox3w2u5kTpOYjr5dvVubdxPXzf52snV9BNMbT6+fu2vePfydTafOv0Opoq87P3jPPi1QKLJZ1szSCgShQaFpIEbdvj/3p+lqbpYLs+ubpJOqJR0Q2+O63z/YtZBhIhtvVGWK+2qbdtmqZNfyzI8cUyYVWm2LS5dyrNa3NFCk2TZFijaWxNVG+GuUITH7A9eH2hyH1buHJu44eLudJb3SqVtrgueb7PmZUqLcul3na4km9QaprIsoRhuyyVWhwYSXTXIMNyul0mZ5bFvsWwXX7zuzOcXamSCmuMpsN85ODwdSR9vROX2zJdmoZDJKDy5kKZumHzBy/PIyGhKRJty2Gt6jG9VkeWJeYLTdYqbfSIy9dPrfKBPQNcyjSQJIn7tqd4Y7GC78PXT4r+34AqM54Kd7tEXpktdnvCTNvj9YUybcvhldkS23rDhDSV4WSIO8Z6uLBe46mLOZJhjd0DUXINi3u2v0XmOK7PSDJEy3KJBlQurtdZqbSYydQpNy12DsSuS+bZDLcaMfp2WI5HWbfojwe3JCi/dWb9OgIMwAOydYugCo4b4HvT6xxfECJAyxGkXr5usr0/ysO7+vjtZ6/yxHSGsi66Bkd6wteRYIOJEH/nAzs5v1bnwwfEGer8ao35YpNnZvK0LAfX968jwW4G1/NvSrjexl8tvBvC6jbEHszzuKVz/2qlxbfPCtHe9GqVyb4oV/NNlistZFnqkA1tih3h5eVGnZYpkgqev5xnodjijXnRE9ofC5KptUlFNCTAsj1OLJUxOjObluUyno5Q1i2evZQnGdZ4dO8AsixxcqnMi1eKDCdD/NSdY/z1h7bz5HQGfJ9sw2C9ahAPqmTqRjeWfwMt22G53MLt9Ipei7lCk5lMnWPbUgwnwzx5IcvF9Tq7B+P8xB3DFBpivrRzMMZAPITleFzO1snWDVzf5w9eXuDl2SKRgMJdk2lSUY3feW5WnJ8iAc6v17Fcj4Vii9/+maMMJUP8Tx/bS7bWZiL9zsKc6bU6T8/kAPjEHbBrMI7n+d3Y/T96fYmG4XDHWLJ7PlwsirnUetXAcr0bnK75hoEiifNdNCgEsa7nix5Xz+erJ1dYrxocGe/hwGiC3mgQ3XL4P5+5yvRaDQmJREjjUrZBuSm6WxVJIqgq/OmpVRaKOtt6ozy2f5ClUougqnB2tcb+kSQr5RbTazX2DMWZ6o/xuy/MMb1W54UrsHMgiuX6hDWFbK3N6eUKng8DiSDr1TZnVqrM5pt4ndoBw3YJqDK26zOcDPHHx5fZN5xgrdJm/0iC8XSE33hkB5IkyDdVlig2TS5l6lxcrxMLqSyWdGRJ4plL4kyyETf89MUcHj6fPSqSm4KqzFJRp9yyyNQMjowniQRUwgGVQ6PJm8Yk/qWSYL7v/zHwx2/78WvAv3zb7f4L8F9u+X4Rm+mNP//zJ2b4iTuGWS62WCzp+D784auLnaGPLxRM59f51pn1bvb5rsEYmizxm9+9yEymwd4hkT/6iw9MUm1Z/D9vLGM5Hr2xAJ7vYzkeZ1eq1A2bsytVLq7X8fF5cGc/P3vv5uXrn7hjhIuZOjsHYjiux28/M0syrPHc5QIHRkQXTFCRuzFJnufz1EyW2VyT5ZJOJKDQHwtiOu67tojvHIhxfq1GQJGu21QZtku2ZjDSEyagymzvjfL4dIam4XBhrc7e4QRhTRadZabNB/cNYtgur82VmF6vsVTUWSm3sB2PtuVgOi6LRZdoQOHgaIJC3cC0RUzlHx9fZr1q4HoekYBQHr5bzOYbPHkhx0A8yGP7BriaE4OI5XKLbN0gGhSFyzPrda7kGvz9D+1m92CcuXwT3XR4c7HC//ub53E9uHsy1XGnyWRqbZ6czlBp2eQbJgFF7paNn1kRlv+gJuMbYnNZb9sENIXhnhC1toVuucSCKvW2RaWpsl4z0E2HYtPEdDxkQFUk8Thrba7mGgz3hJnJ1DEdj6FkiI8fGuLZSzkahkMkoLBQ0LmSa9IXCxALRrhnMg34uB68eKXAlWyDluWwWNRxXI+dg3GOjPdwdDzFalkMhjYcjz8MlHWLy7kGprv5+7zxU6fzB9cH04WAJoYlq1WR956pGuQbBp89OsoT01mWyi0e3vWWQ2CppPPN0+tIEvzUsbGbRl7dxrvHbL5Jrm5Qbdu8sVDifbv7qbYsnp7J8cT5DNOdC9ZatU0ipFFuWRwe6+GV2SJ7BmM0TVt8Rj1RVN22hOX5Sy8t0LYc8g2LU8tlhhNhlsot9g3HUWWJTx4eZrXSJhpQ+D+fucoTF7I4rsf51Rq/8YGdPDGdodi0mM03SUc1cUHXFKG6jASQJKESUmWJb55eYyAe7EagiEHTKv/1+BIl3URG4oUrBf7mIzu4lGmwWNJ5fDqDLImOPsd0Ny19f22uxMkOIfGRA4MUmgaFhtnNin5wZ1/Hch+kqlv8H09eotKyqLfFd1w3bYq6TVRTWK+2uW8qzZ0TqW7v48X1Ok9OZ9g1GGcwEbqpuqV9cwPJbfwQEQ0oXM42cTyPUOfa7Xn+DSTYjoEYqvLW9X8DK+UWT7QzHB7vIaQq9MeDFBrmln1Pm6HWFgIez/cpNEXO9rfPZmgYNh/aN0g0oNI0HVLvIYI2WzN4Y6HERDpywzBjpdzi8ekMybDGQzv7+P7FHJoi85mjo5sO5qMBlYl0hOVyi31buIU24vYkCTKVNqToDq42/jmTabBYbGE5LtqMxCfuGEGWJbyOm7XWtvmTN5Z5/kqBnojKzgFxgPnJO0dZq7bf8TriOS4bdJUsbU1cff9ChqVSm8sBGdNyNyXBHM9judyiottkau0t7+uJ6Qz/9NsXUWSJf/szRzg6sblaekOEYNoeW9QGMZQM4+PTstxuX+1m6I8HOTaRAombRmVWW3anT8tH20LdqBsOTdPB8xHOyC1wfrWG0VHUn1+tAJsTAdW23e0s2+odyDcMnpjOYNgehu3e4I4sNk2+cy5DRbcIKILQcv1OWfE1exOAmuHiegaPn8+QCGtdJehEOsxcoYXjeZxaLrNa0Tm5WGU8LaLVXR+Cqozj+YSDKhFVJqDKKJ0O2BevFFirtElGAjyyuw/dEq/T6WerDCbEd/3wWA/JiEbLEiSxbjqcXq4CcKXjtHIsl7VquzuAHkiE+Kljo3zj5CqvzBaJh0QCwzMzOS6s17lzIkVPRGOt2uaeyTSRoIIiSxQb5pbRrE4nbeNW4V7reH0Pe/7/1uD7PsWGheN5lHSLJ6YzDCfD7B9JoCkirePpmRxKJ/7n3z59hecu5zFt0WNhOy7zeb1bVO/7ENZkFAV8T8J0PQzHR0Ksn1P9MebyDdqmhQ40TDF4MG1XkGWOT7lpEtRUCo6L68OLV/J4nk88rNGyXGptm9fmSty/49a6nq/9HHi3K8F+pOC4PnpnzbVdn0RI5XdfmAOEGyAaVFkqtfjZeye4nBWd5w/v6uP0SpUP7RvE83y+eXqVNxdL5OoG80WfTN2gabpYjqggkCSJB3b2CufXUoVL2Tr/+JP72TUY4+snVyk2rE6fSZBkWCUdDbJS1nn5ap6ybuN4Pp5v0hcL4HhiNvHmYpl83eDoRA+rlTa6YXN6tYqmyHz2zlF2d7iowWQQH5Ge8+U3l8X+3/cpNkzyDYMHdvQRCSj82Zk1nrqYwwf6oxqvzYqhZkk3+dWHp+iJBOiPBzkwmhTd1hM9BFWFp2dyuJ5P23Y6Ir8fDL5yYoVCw+yKqjbDvuHEpo1bPmA4YOkWVsZDkZvUDZtcvU3DcBmIB1gpw+88e5UzKzVsRxQH+b5PotMTt1TSObNSZddAnLu393J3x4ld1sXZ0XJclko6kYBK275RXNM0HZZKYmC7sU+8nG3w5IUsqWiAL9w19mMZlXhyqcJ8oclgIoTjeRwZT5HeQrB9Gz8+cFyPP3x1kecu5QCJsVQYWZI4MJLg83eNX5dStlTSefJiluFYCN20MR2P0Z4wmbpB23KJaAqyJOpF5vIN6m2LnmiAO7elefx8RlTv+BIV3UKSJBzXZ6mk058IUtF9+uJBsZ9Ihvitp66wUGiydzjBI7v7hZi3pCNJEjsHYqSjAV6bK+H7PpmawfOXC5xeqbBSaXM528D1PEKaTDyk8ujeAfYOxvnd52dJRgLcNZHiieksDcMmoMi8dLVAbyzA/pEkjuvxvz95mbJu8dpcid/87CFenyuRrRucWCzz/OU8luOxrTfC9FqNX33fFK/MFnE8n6bhoMji+Z1YrDCQEMK1NxfLNAwx87ddD9NxUWWJ+XyD//v5OfrjATxfxCIOJkJbRqx337NrNi+O59OyHP74+ApzeVGRk62JM3qm9tZZ58GdvSIefyB2w/o1m2/w7bMZbNdlLq+jyBJ/99GdLJVaNE2bkm6yXjXwfJ+vnljhzYUIwYBCqzOfMmyPaEChaphIEswWmty1LUVfLMhKucWp5Qor5TaLJZ1622K6I075uY7Q6nvnMywUdb785gr3bE/xwpUibUv0x746W2Kl0iakKewfjjOaCuN5PqPJEG3LRQIabbG2f/boCN+/kCWkKlR0i4bpMJaKkK8bzBXE/vLTR0Z44kKWQsPkrm0pzq1WObdaY7IvSm9MEHvhgMJLV/PkGwa+D9v7Ilxcr7NY0qm2bbK1NkfHU0iI85UkCSLtNx+/hCrBfdt78d5BYPGX7QT7geDt5cAzmTr1lk3NsLEcF0VWqOg2X7xLKOSqbZvffX6OuuEQVGXu2d7Lrz68nX/7zCxnlivMFXTyDYPHOsxtWbfQTYdczcB0XCRJYrXc4kquyUgyxGvzJUzLpaBb5BsmQ4kQP7OJkro/HuSRuFA61Vo2Y+kwvi9yWAcTIQ4MxQgHNeaLTaotm+WyzmKpxbnVKmFNIahI/NZTl3E8n//xQ3tIxQLYjsdzl/OsVtp8YM/AlqRHMqwRVmVenityJdfgH35kLwOJEF89uUqxYTKaCvOFu8b56MEham2b//rGErrl4nkey2WTuuGwvS/KS1eL/O7zczRNB9fzu5tFEDnvluPjuOLwJg7dCm3bQ1MkdNOlbXv4wFAi8J76CabX6liOx6Vsnflik0LTQpUkBmIB1qptqi2LS5k6uuUQC2r86ycu8SsPb+ex/YP88fFlJMRQXzcd5vINLmXFIrCRcd22O0McWepGHMSCCufXavTHAtTbNpbrYbs+sZBEo+2gWw6y5CPLwol4MVOn1hYb8VLTQkIM7RQZTMfvMN+Qb5o4ri9KJ32f0ZSIccvVja7y2PV8RnoiFBoGxabJd8+vk4oEUBWJl2eLzBeafG86y3gqQjSocHAkyWeOjvKZoz/cfiDb9fhHXz/LaqX1rv6e6wtXgm65PH0hS7bapmW5xIMKkYDCpWwDEMruDRIsWxMXBXzxmt0mwd49Lq7XKekmd21Ld/Pqqy2LuYLOjv4YpaZJtm7ytRMr3D+V5sWrJS5n61zKNmgaNi3LoWE44nMYUPj6yRUGkiFkJFbKOpWWUCLLSHg+1A2H2XyTgXiQhmGzVm1xcb1BLKiQimgsl3Valsv5tSoPTPVxz/ZeHj+/TsNwsV2TliU2fnXDRjcdTCdIKqyBLAlV/UCMjx0cwvd9fuupy0yv1RlOhhhOhtjeHyPfMPnWmXVqhotuuQRliYuZOrrl8qvvm+LfPTeL5XgsFnWSEY0DI0nG02F00+G75zK0LIePHxruRu7qnfXQ9XziIY2mKQ51B0eT7B9OIMsSX35zmUu5BoblEgooOL5HtW3TMBzqMjx10RFugqZJJKBSb1lcyTV49nKBoUSQx/YN8j98eM+WA8gf3HH6Nv68+L0X51nqOBN/57lZ/vNUL6bjci2lMJNtkqublJsWj+zqZ7gnjO16OJ7HUklHUxThhOwMzz9/bIyxt6mEp9dqPHspz2hPmM8cHeVKrsGVXIMj4z30xoIoMnguBBQR4bbSeUwz2QY/e+8EhYb5npTHz18WLvv5gs6Ot0V4iYG9UIif7Tg5k2GN+UJzU1eILEs8vEt0PG0VCfPovgFGe8IsFHW+N51lpaIT01QGkyEe2zcAwGhPiAvrNS6s17iSaxBQ5W6f08cODXN2pcrXTq2Qb5jgw+7BRPe577im46SsW8xk6mzvizJyzbXlck7v/vnkUm3L12ahJEgt3fJYqTZIbeLgWq+0mcs3cT14ebaw5X39h5cXxIFKgv/06uJNSDAb2/XxPJeAsjkhpSkiKqVpum81X2+CoxMpGoZDWJNvmtlvWILcsl1PiII2uQy3DLvb11a9Sexjrv7WoXHje7MZqi0b14e25WLZHtFNzHG24/Odc+s0DQev03u0gZNLFV64XGCp1Oz0xjSwnJsTNU3LY6God135qiLRaAsCMKBKWLaH5fiUdXGN+p8/tof/5/gyF9ZaVFs2/TGNZDjAf/fYLgbiIf7N05c5vVzFcjxWKm1Wyjp7BuPYns9APIRuOvSNBIkGxXX5qYs55gs61ZaIYYmFNA6P97BQEKkFO97WzyPOGD6y5HM52+hE4NXwfXhzsfzW8zIcdg5EubBWE3vzTV6G4wtlXpktMpGO8Nmjo7dURL1nMI7t+OimuNbNZOrvKjrvRwmO63FyqYKqSBwdT93S62PYLi/PFsnUDI5NpKgbNp7vcznXYDQR5g9fWWQ8FWa4J8wX7x5nrdLm7EoVRZZYKDQ5tVxB7/TXhZsST1/MMVto0jCc7lvYsj2whaPx2vfV7SiRHc/rksiu5zNfEHszzxPnNcvxsVy7K1jbCASxXItYUOG75zPk6yaTfZFbim279is2s1be+oa38VcOhv1WGoyHiN4NayogMdIjBvdz+QZhTWaxE6H4of2D/K3370SWJc6uVHnucoGGIVIe4iEFy/VoGDbnVmts74uycyDOiYUyl7N1MtU2bcvh/35uDsv1qOoW8ZDa7dkaSYZYrrQpNk3KLVu4kFWFiKawUNRZKbd57nIey3EJazInlyoEVZmzazXalosSknnlapHX5kokQiofPTDET989wZ+dXeP8eh3HcWmaLqoiEQ6oHB1L8sT5rJj7uB5rlTaNtoXr+URDGivlNvm6ya+/fwc7+mPXdfUA/Mw948KlWTV46UqBqb4od02m8TzhsDNsl7sm0+84gN3AUklnoahzaDTZdYc7rteN3c7XtxabuO/AQHsdR3A4oIgI6hXhdkaWGE4Ih5ssSxyZ6MHxPBzXZ60qBvHfv5CjaTosdmLsN84twY4ApKxb9EaD7BqMsW8owZePL2M4Ho/tH2S0J8w3Tq1SalqkowF+8YFJAC53YqWLDZNC4/qe6R8HGLbLt06vsVgWIoawKnNkIsW/+eKR2zHCP+Yo6Rbz+aYgNGoGlzJ1AqrMTKbOVH+s2yML8I+/Oc2FTB0ZuGMiiYKM4/pcyTVoGDa9MY0Pe4P8w6+dZanYYrgnxJ6hBMcmUgwlQqxV20SDol7lXzw+w1JJx7BcTi2JqNmpvihLpRbLlRajPRHqhoPdcZYuFHVemy8xlAgT0mT+nzeWyNYM2raLIkm8eEUIcvJN4WiqtCwkJDI1k/54me9fzLJeaXfW7zi7BmPdLqgzK1Wensnzq+/bTiygUm/b5OoGLdPhj99Y4s3FMm3bJd8wuJpvEgso5Opt1qttXpotMtITZCZTR1EkLMej0DQ4MJIkGQnw/j0DvHS1gKpI1Oo2nucRVmXiYY0jHZLk9HKVoUQIVZGv63HfCgdHkmIm6ftcXK/yzEyOXN1kJtNguSzInlLTRJUlXp0rYtoef3ZmDdeHyb4ItbbN8YUy9ZbN1UKDF64UCCgyIVVmvqijKTL/nz+7QDyksb0viml73LM9zddOrLBc1rmca9C2HAzbE9HXPUHi4QBXczrFZlnEqgcU+qMBfCSahkPTcrArHqosrmfxkIrj+Xz/QpbnrxRYKuoENZlTyxUSYZWQpvDgzl5OLVdZrbSIBlTWyi2CAYV4REOSZX7+/m1UWzbPX8kzmo6wXjX40P5Bvn12nZ6IxpVsg88cHeW75zOd/swVXp0vEtEU1qsGr80VWCy1uwLVn757gvNrNU4tVfizM+u4nk8koFCsGxybTJOKBsjVDM6u1Di5WGEgEWKoJ0S7I9zKVlqYLhi2xyN7Bm76Hv5YkGBvdxQ5HqxW24LRVSR6wjLllihqi4ZU5nJN6obDYCLI9r4o902leXOxwsnFMpdzIvZlqi/KWCrMmZUqL10tcGq5SrVlEa+oqLLEUDJMtt5CUyR29kc5tVzB69g55wvNGx7jhu1+A7GQ+HDNF5q8f0+/OATVLeqGiLCQZcjXTWIhUeQ3OBRirqB3Yt8k/vT0KnJHsTlf1ElHAvTHgluSYE/P5HjiYo65fKPjcrrEP/vMQWotsXlbLumYtsvVfJM7xpN85YRMJIBYaIIKB4bjuL7PK1fyzBbE8Kc3FiCgKqidCDHXEwMQzwenY80zHLcbx3JNVDanlrceGm2F08sVzqxUKesWA/EAiiQzkY7wycMjpMIqXzu1ysnFMi3bw3J96obDiSURCxQPqRTqBj4Sw8kQuukSCapcWG/QaFsUmqYYGvk+qizjykLl5vs+lbaP4QgLvmG7+NAd5D93uSAGIbIk3EsVHUWS8KCrbpI6cX/WxtnBB6XzuQ1rCp7vc2ishzMrNTLVdvd1slzx96/km5SbBtWWQ1AVJIIsdchZy8WwhdMsqCq0LZeBeOgdi4p/ULAcj2+eXmO+2GRmvX7de36rcF3QVIlyy+bEUgXT8Zjqi3J+rcaO/jjnVqtYrsebi2Xunkxzx1gPxaaFLMH+keuHK77v3948vgPydYMnL2QB4SDYiOf42slVGoZwhgQDCq7nk29Y/PofnWTvYBLLdfB8H9Px8X2PluXiez798SD5hkmmboDnEwupuJ74Hti+jyKJz6/n+8TCGgFVxvXB81zatlhLvnV6jXLLpta2eXWuxD2TKXRLfPeszqBJliQiAYVYQKUnqtG2XPJ1k1zdQJXhqQs5WrZDRReq6mLT5JmZHHcbDo7rEQsqNA2bgCwjySIG7jtn1/n19+/g7sl0V22digQIKDL/5NszXMnVSYY1Do4mmV6vsWswxu+9WKXaspnN62iKxGgqTCqi8cKVAqM9oe7gWJFFR5gkgef6NG0X2/FAAg+Fdkfh7/ugKRam47IhkFyyXV6fL2G7m3ft3MZfbZxaKnX/fKHTWelssji2bYdcw+TfPHOFh3f2d52MbdtF60TFmobNTKZBtSX6RDdUomXd4uunVrudTKuVFv/mKRFjulpu8bc/uIsv3DVOrm6yZyiO7Xokwhot02HnQIxoUN3UaXjtGjpfaPKN02vsHojxqSOjXVd6XyxIpmYQD6mE3yZu2TsU52q+QabW7jq8HtjRy7Yt4iZOLQtiIqDK/Ny9266LBWlZDk9dFPETj+4d5EquQaFp8PTFPD4wkgwR1BR2DAgSId8waBoO02t1BpNF+jtDojcWSpxeqlDWbXRTZMy/fLXAvVNp5gs6DcPh44eG2NYb5bvn1ik2Lc6sVPn1R3Z0o3g2HEgAtVuMA5vPN7lj7Mboryv5RjfNYKN7ZTO4bsd95t+Ut6LeFo/N9WG91iKxCTv0zVOrVFpiU/K96Qz/dov7euFKjv/vdy+hKhK/9cWjWxIYprPhxNv6sZ1de2vf17SczW+EGJRt4GbuM0UWHSaytClnA8AbC3nWKgY+8P1LOf4Jb0XGnlqqIEkQ6US1mI6/5f1ci6653QcVSVybfB/TgXhIommIa9euwTh/8MoiL1zOs1Jpo8rimhVQZP7+n5zhvh1pXr5a6pIQEuLg1jAcPIRz+u98YBc7BmIoskS+YXBqqUJZNyk0LLb1RhjuCXFisczp5Sp3b9KjUm1bzBYa+D588rDoFD483sPF9ToHRhLMZBoYtktQlXnyQpZKy0ZTXBrGje/PhmhsudyiZbu3FLEoSRKHxpLdKBuA3mjgpr2D+YYYpI6nIjxzKU+lZfHBvQM39C78VcPZ1Vq3gy2kKe8YRW7YLv/p1UWevZRnKBHi5asFIp349XzdRPLF67dUbmE6Hr/3whyW43N+rUrLdju9SILkdD3I1E3yDeuG+PFrIXWIMB9oWR7PXsrRflsEq+X6HXGjhI+PA5t+wezO783WDE4uV7rRn+8Gz16pvOu/cxs/PDQMh2uph9mczoHRJCM9QT59ZJT/+Oo8LdPjD19ZZKAT7/rgzl5kWWK10uI/v7bI+dUaiZDGUFLFcX1Kuti3p6MBogGV5y7n+c75LIbtiZ5rz2el0mK+oGN2Zgr3T6W5azLNS1cLovrAB91y0RQZTZFwfXh1rkRQlbAcEXGeq5tsS0e5khdiNMvxCKkSry+UWCq1kCX42sk1PnHHEK7nd1xvHSLY9YlJ4ndMZ4rU2jYNQ/yvaYl4f7/jQDi/VuW75zL82vumbhD7aorC3kGx/9JUQRQOJUP84SuLXMk1ODAi3FkP3kJEqOV4/NmZdRzPZ7XS7ir6VUXmsf0DHQHU1oPcmbV3nsO4viDLVyttam0b1/MJaQrZuoEiywRVmZ+7d4K5os4LVwpMr9X4D68sML1WIx0NsHc40e1jUxWZaFDlc8fG+N3n59g3LCpHDNvh8ekchu1S1k3+u0d3U2paXFyvEQ9r3QjEw2NJ8nWD3lig2yP944TlUovji2XWKi0aHSFltmHyyOk1Pnvn2A/50d3GDxKpsEalQzJ5vuiFrbYsbFdEFx6d6CESUFmttFivdRK2FAnfk7A6rvFCw8T3fabX6jw+nWEur6ObDk3TRgIWR5PU2sJFe2al0jUStC0Xz4da22G1bFBuWuQaJq7nU+pEKb++UGK20KTUFOKrQsPgf/nT8yyX2jiex1AySFhTWSq3aLSFwURVRGStbgnn+fGFMpoqyBgfIdosNk0+c3SUk0sVyrpFy3J44XKBPUMJkuEA80WdoOry3fMZ8XiaFobtYdkmTUPuJEpItKw6+UaAliUSH1wPWqaDIkn87ffv6PaW7h6IU2gYtCyXoKYylorw2L4BMjWTHQP9rFbayJLU7Zq+Gc6v18jWDNarLS5lG6iKzP6hOIosSLi27VJt2STDASbSEU4sVXjpSgHD8ZgrNPnk4WG+dy5LvpOK0bKEaPHYthRBVcH2PCRJomE4PDOT5/RKlb/7wV1M9Ea5mKmzUm5huT6qJP6uIku0bZ+KbuIjzkZz2QZrAZV7t6cY741QNWzRTa5bRG0P1/N5Y77IqaUqpu1iuB75hriO1Vo+9+9Isr0vSqEu5uQFXzi7BhPBbiJe07A5vVyholtczjb4mbsnOLnsipSJSpvtfTGeu5wXKTQNk4AqoRsOq+UWDcPF8TxsRzzXasvmnu1pLmaE4aVlubi+T6NTH7VaNfi7j+4U35WSjul41No2uZrG7sEYLdtlNq8jS16XZ7kZfixIsEhQ5dqxgQxdtanbydavtW0c12fAC4IEqahGIqzxKw9u55W5EicWKxSaJmMpoWI7ti3F4bEevns+w6VsA9/3RU+U7REMa8wXGvTHgqLIPqSyZyjR/fLsH7leLfutM2vMF3Tunkzz0C6xsSnpJm3LZTgZZjbfJB5USUcD9ETEBb9luwzEg5R1i229UTI1g48cGOJSto4sSQwmgqzXTHINsxMpoJOOaV0m9e3YYJdblosUlLAch7lik48dHOJLLy0Q1hT+zVNXCHZstD9xaJg3FsrYrkdIU+gJa4ymQpxYKGG5PpoioakKO/vFlzEV0fB9j5ohvvy6JUq6FUliIBFkrXK9Gum98BLnVmskwxrJsMZP3TnG0zM5gprMvdvTeL5PXyzErsEYs3kdVQ4gSYKYalsOC0Whsg5pMtv6ooymwuimOMSfXCojyxKS4wmVkiLj+CB7LpYHEVXGdj1UWQwvAqoCCJKtY+JCQqivTEcQaYmQhu+JhV9VJFEO2xl6yhIdlbvGeDrCYDzE7sE451ZrW0b6VA2HcEso4Jqmw2RvhJblEgkoqJLEfVNpik1Bip1fq/HS1QIP73rnEnQQTr5zq1Wm+mPd0tr3ikyt08/hicjQ9wJZEq+lhIfu+3i++L5czjaJhzTWa20mVZmXrxbZ1R8jElR5aGcfDdO+zl58arnCS1eKTPSG+fThW1Mt/7cITZG7ucPXXjA2Bpm25/PhfUP8XmFOZEU7Hi3bYTQVpjcW4mqnVFXCF2Sv2yGSXY9wQMZHDP4sx+3GgsbDGrsGYxi2S18sQMtyaFkSfbEAmZrBYFwM1WVJEOuaIhMLalRbNr4P51eqbOuLsS0dJdZRhTquGP6XWzaZuog0BYgFFDRZotyy+E+vLvHVk6v0xYJUWqKrLqDKJEMqd4wmCAcUFEninu1pxtNh/vWTl0ScgGF1SCgXxxW/a6XU4snpLIWGBb5PvmnwwT2D7B2KY3sep5YqnF6GX3koRCKk8eCOPralI9TbNuWWhaIq2J21NBJQMGwXRQLD9VAVhaCm4LhuZ/bk0zQdCg2Tid4fL/XjfwtwromE3RgIbDakjAYFidQXDdK2RVTDWtXgzokeDo/30BcL8gcvL5COBnA6PXwfOShI6ycvZDFtEav3maNJ8g3RvdSy3G5Z+0Ai1B0+B1SZX3lwEs9n044Fw3b5yokV6m2bn7hjhKFEiN95bpbVcosTC0KRt141GE+H6Y0GuGMsyYM7+27oZZrsi/J3PrCTP3p9iWLT4pN39Nz0QL/hLLccj2rbuo4Eu7heZ76g43gez1zMUTdswppCWFM6a4jbzWOvt2yquuioigZV7hhLosoyFd0iFdGYK+jEgiqe56IqCpWWxbfPrDNX0OmPBxlIBNjWG+0+H1XeCKoWSERUyh0SaSC+9UDmWvPF4dHNB1IXrxlG3eyy2RsPAXUkRBb7VlAVCcv1OzERm2/zm9ZbxJ1/k9/5H15aZK4ohE9//MYS/+Qzm/cOetd8ov0tdjJ3TfTw+68sAZAIbX38MJy3CJha29zydndPpjmzUmW0J0Jsi/tbLRvdR9ZsX0/sHBhJ8MZCiXhIJaIplNmaTNsK6aiGIkNFd1BlQdoJd7LHWrVNMqyhyFInDUD0fZmOUG9+/0Ie3bQ7ZLePqsgkQiqu75GOBpnsixLSlO7384XLBYKqzJWcjtpxL284IAKKzMX1Ovn69deIhWKLPYOCuNxweX9gzwAf6Cgkj06kePlqgcvZBqsVg8neCNGgyoM7e3nqYg5VkXh4Zx+qInNsW4pXZ0ts74veEgF2LTaIzY0IyK2Qbxj88RsreL7P7sE4V3LC/f/mQpmPHRp+V7/zLxshTb7mz++sVqkbwsGVCGsUGia9sQCRoEKubpAMawQ1hV+4e4zX58uosszzV/JCZOf7eK5Hy/VJxwL0hDWKbof8kgQBpgCS3LmtL87FybBGo/XW997u9FdsGonmi9SKgALWFtyWpkikogEc1+fAcFJ0BfW9OwFe6Lao50cKb98rOL5PRTfoj2kUmybrVZOW6RANKqQicdqWy+Vcg6MTKVEb0fk8up2ewnzdxLQ9So5QzDdN0SG2vTdCtWUxkY4QUMTnuGE4tCwHVZZ4c7HCWs0gGlBZrbT5iUND/OrD23lxtsCl9Tonl6tIQK5moSgSPRGNh3b1kQirvL5gYXb21huiId8Xz8V0XF64UqBuOEz1R6i0RNqEhMT+kQQjqTCG43XqKTQurDeQcFFkEdeUDAfQVIlsvc3lbJ1aW+zbD44mWCq1GEtFeHTfID1RjZ5IgHu3pztdKn6nasG55ZQcWYKG6XS7fK7FgZHkO5LwAe3W3GaG4xNxxEAZWcx1RntE1G9YU3i2I1ryPNHxfWqpjCQJ0fChkQS/++I8kYDC546NMZMR6/lAIohuumJ+ZTrk6gYhTSYcUJAkGOkJsVTSSYUDLJdbbO+Lsq03yt94eOqWHvOPIkodl+O1wl3X87uOytv48UTbclkoNsk2jI5o2KcnrBELqtiuz6nlCqeWKzy0s5+gqvDgjl6eu1IgHlD44N4ByrpFtW2Rq7dpWy7paIBLGRFFqCmSEBp7Ijb73GqNpunQMl0OjCRoGg6aLOH4PkFVYntfBN10Wa0YnUhmkUxjtW1sxyOoKazX2/ieMEKUdZNIQMFxfaSA6J8KqELsO9UXxfU9LqyL77zn+UQCKrbj4Xgi9cPzfab6Y9y7Pc3vPDdHUJVIRTWu5BoEVZlkSCOoduLvEeuz19mz+L64H6kzJ2rZDhFVIaBIGJ6Pj4Tt+cwWmoynI4ynwxSbJvgSAU0mEVZZr7VZrRrcOZFCNx0e2ztISFNuaV64MWPaICBVWSa5Pc2/+vwh/sYfnmCp3EJVYK3a5u7tab55Zo2G6SAhBJ2ZqkG746z2fbHnCgU0PnN0jF97n4hBXyy3uJoTSU0S8O2z63zkwBB/cnypO1fwfAhqYna9XG6hyRKDSTF30jtiw9m8Tq7eRpVkLM+lNxpAU2TunkzzxIVMNwlNlsUcwnV9jkz08C9/8g4CmsxMpsGugTi5ukGls05tiNJKusVKpUWpKQjWp2eyhDS10wkmnOH7R5J4nk9QE/PGoWSIwUSIbF0QkoWGiabK/OTRUQYSIX7uvm1YtofpeMRDCoWmTdOwqRsO3zy9Tn88SH8sSLbeFhyPYXN2rc5QIkg0ION4MofGku+YOvFjQYJtDJU2IJQ/Pi6gycKN5Lgehg3j6RTRoMJsXiceUlko6TRNm7phMxALUGm7vG9XH+lokDcWSpxarnTcNUF29kfQLfGmJEIqvu9zalkUaQvmWGxuPnN0rKuIsxyP1+bEIftStt4lwXqjQUZ6wqxWWhwcTTKejrCtN8qppQqyLCFLEAuqBDWFZ2Zy7B6M4Xo+//QzB/F9SEcDPDMj1M9NQ0TCBFRlU3XmakX0ZQU1hY8dGGKp0kKSZJ6ZyfOZoyNEgyrr1Tam43JotAfX80hHw93+sW19UR7bN8Dj57O4vkRQFRuV7ekwby6VMWyfSMCjJ6zx6L5BrE40ZLlpcudkmrFUmN9/cYFq28YHQqrELz+w/V07dA6NJXnlapGp/hjj6TC/8tD27n/zfZ+p/igV3WIwGWY4EeLYZIoXLhd4bV7kxDqu6OaptyzG01EG4hIboxvL9ghoCvGgwu7BOLYnShk3Fv1UROXgWA8V3cZ0hO339HJZKK4liIZU5M6g2ke4xFRZDKMUSaghNFlGVmSCqsjgbRouMhLr1RbT63UUCWJBDc+3RX9EJ7sfOgfYkEpAU0hFAlzNNwlpEiFV5YEdfcRDGi3bIxrSqLUt/vTUGjv6Y9fFN22gZTm8MV8mEdY4ti3FExeyFBsmF9br/PojO245huFamI7LV95codCwUGQx4DowmuDEYvVdDZVUGcKaQtN0MR3RtTKejrJ7MEao01kTDapddcUfvLzAXKGJ4XjsGojx6L5B7umooS+u1/F8n8Vii6blXBfRdRtvIRUN8MW7x6m0LHZdE3f12TtHmc03mcs3qWJxcDTBWrVNWFPYP5wgFdGotBz0HoeGaXeKqmUOjSZZKDYxbKHE2DMYJxnWyDXavD5XwfU99g+LA+FAPIgiy+wfTmK5HkOJIOfWasTDKkMJQYRFAyrb+6J88vAw3z2fxfd8TE+4YnpjgizwPJ9L2Tq24zGSFH2Bz14ukgipTPbFyFbb6JZLoWlSN4V6UwzMPcKawqePjPCpo2MMJ0Os19q8eLnA85fzvLlUIaTJHB5N0jQdLMfl/bv7kSWJ3395gUrLIqTKRIKqEC20TO6aFFZuEASjJovv03BPmEf3DfBf31jpHrwjAQVVFhuFjeHpcDJIKhokHFBZKbdomS66Jdxrv/XUZf7ZZw+96wHkbfxwMZYOs1IVw/zBpCBMQm/rhgqrMNYT4VNHR7Ecj/ft6sd2hVJ/vqjT3xFL/OrDU/zhq4tcWKtxtlOGvGcoTlhTSEU1xtO9fPrIKBXd4uhED7rp8oW7RSTPRtzuRt65JElskZZHpmZ0I3Vm1us8eynPWqVNWbcYS0dYKbdRZIkXLheY7IsiSxIT6QhvLlbwfJ9PHh7pungkSeILd4+Tr5sMJ2+u4L1vqhfb9ejpqOeuxXBPGFUW0corlTYBVSYe0viZeyZ4YnqdZCTYZe9fmSuR6DhNP3pwkJ84NEy8cw1YKOqoCsRCCraniuEOor+sYYherpAm89DOfj55eITZfJOJdOS6g1F/LNAlwcZuEsEbCcjoG0pxefNr62jq1lTNvgeaLIF0PbH6doylQywW28QCCkNbPLaPHBjmt59bELe/ye+vdyIMJURE7lYIqjKO5QmnL5s/z+2DCWJB4VjfLApzA77/1usssfVAcLgnzPR6nXRUQ9vig3zfVFoI44Chnuuf5wM7+xhMBPnqyVViQQVVButdaHdkCWotC00Vg7tkJIDvg+F4DCVC7OyP8tCuNKeXykQDCgPxIMlIgHzdYL0mhgyT6TBIEmOpCDsHYswXdTI1g6AiM54OM55+6/3riwe5uF6nLxYgGlTJN0zGUxEcr4Xv++wbTjCYCDKbF/GfE+koR8d7KDdNemPBTaPqkp1eJ6lzhvnYwSH2DCV4c7HMdOc61h8LcnA0eUuD1a3w8K5+BhMhUpEAqZt0nOid4nbDdinpBuGA+Lz8KERfHRhJEu6QlreiJB6Ih4TgJhVm33CC0ysVSk2LO8Z6qLYsop20it2DcQYTQVYqLfJ1Q3wfJeHKUSTxGX/2UoFQp5enZXpInX349r4ofdEALcej2DBFD9E1S8dWq4jtif24+rYMxY14d8fziQYUfvLOUUpN4VzP1g2m12ocGEnc8vmuL3G77+ZHCbGgen30tg/FpoWmtPjayRX6YgFKkogCT0cDnCpVOLNcZTgRYu9QgtfnS2zviwiRS8ui0DDQFIVIUDjKE2GNOydSnFmpcnishzfmi5iOy3AnfstHwXLEHCZTNdjZL/Y/B0YSZOsmZd3m3EqVWtsmpIn+VMfzO9FLbV6+2qRlOqKKAIma4XBgNMn+oQTzJZ2GYVNt2eJa53n83H2T3Lejl/F0hHhQxXE9/oevnqHYNEmGVCFG8X0SEY1tfRE+dmCYUqca4xun1mgYQpx5fKHEUDLMxUydX314iod3vyVSlSR4+mKOnf1RfvqecVLRAE9dzLFnML6p6M2wXdFf6YvvYiKkvWvxBsBqZev+0bcjqKnEQzKe77NvOMldk6Jr5vnLBVzPZ6EgiLyW5VBp2VR0i6n+KL/7wnynvy1AXyzYdbofGe+hpJssFnVmMi0m0mF6IgG+cNcEkiRxcDRJpmYQ0hR6O52lnufz9EyOkm7xgT0DDL3DXvJHDUcnerhvqhfDdrmUqYMPQ4kQX7x7/J3/8m38SMLzfP74+HJ3vdr4366BGEsl0TO7fzjBuZUaR8ZT9MeD7B9JcinXwOsQPL/y4Ham12q0TJfFks62dATb8zuCK08kFiiyiDf2fdLRAHdNpmhZLtt6I6RCKrIqerDu2Z7i4GgP//ib09QNm0RYI6QJkSBAT1ijadhk6yalpoHSEVEfHE3yuTvHeGYmy4tXS7iez1AyTG8sQCoS4kq+QaAjBIv2qCSDKtmGSUCW+MbJVVJRjaMTSXqjQZ6/nOdStk6gMzMdjIRIhAPU22bXFap1hH4ePiFF7Es8H5AkdvQLsiYYULBdj0uZBrWWxUQ6iqoIMUM0qOIjjDIvXinw0pU8jguKAg9M9fGZo6MMv0O1ysHRJAFVZtdglJYpqnQOT6SIBwM8um+Q75xbx/V9vnjXGAdGkpR1i7AmuoE/d3SU9+8dxHY9DNvj3u0pZjJ1YqEA902luZJrEgkq/Ny9EzQMm3/++CXyddE7eX6tJrqlJQt80FSZfUMxLmYamI6L03HN/sQdI3zj9BoLRR29E5sY0mR6Y2FS0QBBVUGRfKZ6Y1zNNxjuCaHIsqiRkiTet6ufRESj1rb5qTvHeOJClvVqG8/zaNseiixRahqcXCxSbdvYng8e/P5LC/z3j+2h0XZo2x6W45Krt0Xvti/EU587Nka1ZXMp22A4GWa51GQmW+fsWo2vn1wBH15fKAqRejjA+3YP8P0LOXINg4Wizv1TvXz8jmGmV2ucW63StFxMWwh+Y0EhMPnJo+M3PWvAjwsJ9rY4xLYjCueVjuNLt0RGv+d5/OrDUyyUdf79C/NUWzaFhslsvonr+STCAY5ui3E132S50uJqronne4QDCvVOLvJsXmfvUJz+eJCL67WOZVUsXomwhixLZOsGXz+5CkAirGHY4nDw4U7MmLD4OdTaFoos4fsQUmVWKqK4LqTJtGyPeybT/MTufmJBhW+cWqNu1KjoFnuGBLP50YNDfPTgEK/OFjm3WmXfSLI7HDVsh+cuFbA9j6cu5qi3bUZ6wvSEAwwkQ93htihO95gvNAmqMqWmsJZezjXYMxgXpYmOxz//7gyeL6KNLNfj4V19LBRF9J/vi4VVU2USIY09k2k+dXiEpVKLiXSEL700z2BSOPD6Y0F+6cHJG3KybwV3TqS4c4uMVkmS+PSRUT51eIRMzeC5y3nalsfnj41zNdcUajNJHNzmijr5pkVvVGNmvUFRN7E9n4gioSgyiYjoK1su6yRCGgFVXJRiQY3PHh3lP766yIW1OqloAFUR+eO1toVhvaWFdjoDbsP2uqRhve1Q7yiRFVkcKy+u15BkiZCqEA9rJMIqmiIJ8k2RAdE1FFRlCk2LuydTIjrHh3LTIhHWeGm2yFgqIoiJqMYrsyXqhsNapbUpCfbaXIlzq28NN2JBhWKD7uH9vaDQMCk2hW16e78o4u2NBDi1VOUms7oboMki7q7bT+CLwZXp+jy2s49vnl6nbTt8/tg4ibDK85cLrFfbHVWhQvmanpEj4z28dLXIZK84vNzG1hhMCFXGteiLBemLBTm5VGEu36Q3FuJ3fvbOLkn5jVNrqIrCxlxXUWTu254mGdb4zNFR7pzo6fRJeN1h9dmVCr/5vRmyNYMDIwl2DMRZLbfI1NrYrs+VfJOwKpynrieK9OE31QABAABJREFUtpumw/R6ndm8TqpzQVZlkTWd1IV69NxajWanY0CSJX7vxUX64wF6IwEWCjozmZqIlOvElrYst0M0iw3hWG+U3YNxqi2Lf//CPK/MFVkp6zgutFWJQtNEUySiwQA7BuK8dLVArtbG8sSBtGUJ23ut7fBHbyzzDz60u+MikZher5HsKHJOLVUotyxMW8S2DEQCtB2XtuFiOB6qJLFWNXE8iX1DARHv6QslkarI79ldeRs/XEQCbxHwkU63j+NcL6+3XeF47Y0E+Pgdw5R1i1NLFU4sVlittnnlaolMrc1P3z3Bh/YNdl1JG0ovUQRsM9lxLw0kQvz6Izvx8bsO2W+eXmOt2mY4GeKn75nAcjxm800GE8Fun8QGRnpCjPaEqbVtdg/FuJJvcNdkiopu8Qv3T2I4HicWyxwaTaJ3ohhWq22ytTZX800urtf5hfu3IUkS0aDCWCpyS31jybDGJ+7YvMi93XF6jaeitC2P9VqbRFgoznYMxCk2Lc6t1biUreO4nui18eH+Hf1cWK9z50SKgCqzvS/KAzv6OLtSpdISJE8koPLInn6emcnTMJyu83IwEeLweM8NjyVbf+tac7MIw2vJqoC6+fX12EQaVRYusInU1gevh3b1Mb1eR5bh3qnN+8AA1itiUF43XWotk3Dgxuvf9Opb7rNsY2tya89QnOk1EWN3cHRrAmSjm9fxr48zvBYLBR3L8ZAkWC5vPYC7dn4uSVtvIB4/l6FhOry5WKHctOiN3+iOs1wRyWu7Hr1bdMy9PFtkqdy+qQvvWqiyiH2k42jwHQ9VEUXcSELEFg2q1No2Xz6+im57JMMBSi0bVZFRZVEUXmvb5BvCkbxSaTNX1Dky1kMsqLJjMMb7dg10iss9ruSa7B+Ks2sgxnOX8iyWdD55eJhXZkscGInz4QPDHBnv4Y35Ev/hZSE6+/n7tvGJwyP80oPbb/p87tmepm0XGE4KMkaSpG7MqiwJt8/GMPdakVRFt3jqYo5wQOEjB4ZuKqBSZOmWusB6wmrH7VZHVSTunkxz57bUj4yI6d1GkW/Enl3ONvCRuG+ql19+aDu66fD1k6vYrk9Jt/ipY2PU2g7fPreOKoGmhujpnFWWijqTfVF29EcoNCzOrVTwfCFKOjzew3hPmN99cZ5807xpjOq18KET0ep3SeSNn28ko3iI2GnTFc6Y5XKbu7albvm9BjFUu40fHQRU5ToSLB5SUBWZStumJxoARB/evuE4d00KMmsmU6fSsvjvH9vN3dvT6KbDYrFJpmaSjIgEnH/y6YMMJUL0xoJif69bZOtt6obTqYFokY4GUGWZcEAMEhVJwpckvnl6jT96bYnD4z2slXVWaiaaDJ4s0e44B2IhlUzNoNKysRwPTVXEZ9jzOb1SxfeEml43XRqm6NR0PI/jCyU+emi4u/60LI9CwxbdPVURAT3UE+4ILts8M5Pn00dHWa8aTK/XydWEuyMZ1ogFNQYSwRucsEulVnf/FdIUHj+fpWk6XMk1+Fvv33EdoTy9VuPpmRw9YY3P3zVOKiIU/T2Rd/89GruJm/xaqDIkwgH2DsUZiAeRO3OrxVILz/c5t1IlElTZ3hdhvqhz17YUz17KY9ge2VoD1xf7g+29omuo0DD51pk1JEmcPWMhjf5YgB0Dse51R/QwR0SKUccZt15rc6ETqfvGfIn9IwnS0cANe9cfVYQ0hc8fG6NpOoynwoQ0lV94YHLTOc5t/HjA9jyWyzpLJeF2/N8+eYDVcpvp9RoT6TC9sSDPXS5wdqXG1VyD/9fH9zGWFiaF1WqbesvmxGKZMytVkOCe7b0c6ZxXzq9VwZfI1No0O/2/o6kIg4kgP3l0jAuZOqbtUmvbZGoGEU3hal6IsGxXJFr9o4/s5XKuwamlCm3HY8dAjJVKm2hAweyYLsKaQm80wL944hJzBZ0DI4nOPNmiZljgCxOA6/nYrsdAIoThetw31cv5tRoz2TqW67OjP4reOXeVmhau75MIKigSjKcj5Bs2saBwykWCaqcPy0Wi41CWJBIhld5YANf32dEXpdy2ydbavHilQK0t9uejPWE+fGCQ+YLOy7NFNEWm1rKptISYZ7rzmP7pZw7dNI4dYPdgnN2DcQ6OJGnbHvuGExi2y0AixGeOjnJkvIePHBzu3DbG1U4lz99+dDcA/+wzh7riymLD4OmZPL//8iInl8pIwM/eu41PHh7h//j8EYpNgy+/uUq21qZhOoQ04b7dPRgjEQ4SUlvopouExIf3D/K+3f0sV1pIiBmS60NIU/npu8c5uVyhqlscX6xQaVmEAyLa9r6pXs4sVzm6LUXTdHlltsC3z2ZIRTT+3mO7ubhe4ytvrjCbb2LYb7ny4iGVlinc1Y7n86WX5kWVg+VgezC93qBhOoz2RNg/Eue3n53F9Xwe3TtIfyzAc5dbFBoWTbNO07BZKrXINwwcT+yNz3YSP1KRALrpsFZts3cw1k25iWgidaretmlbLuWWxdmVStcUsRX+XJNhSZIGgbs7/3rc9/38n+f+3ive7gQDsWGXfDBdYSd2fZB9n3/23YuM9oQ79nrI1dosFFs4rkskoNIfDxLv9HAZjmAWw5qCpki8uVDG9TzOOy77R5MMJkNYrs9w0qM/HsDzfFqmw+nlSncDpZsu23qjTMkSPWGNr51cZS7fxPFE1ERYU1goNklFNEpNi3BAodoS7DuInM9Do0nOr9YJabKINhkSGcu1tk0qEuCBnX08cE1+tO/7/OZ3L3F+VeTG7x9OYNoeqUiA33j/Dp67lCdXF8PjsCaGU+FAlVrL5sxKjQd39lFpCXec74veBNsTJMP79wxw/1QflZbBuZUqmqIQVH3Cqsy2dITPHh1jMBEkpCnsHU6wWmkxk23QNBz64kEme6OsVtp8bzrLpw5vPuj680CSJE4vV8nXTfJ1kz2DIuLvar6BJEndvpJESOVKtknNsFElGU0TnVrxkMZqpc2BkQSDiTCO6xHUZEBieq3G8U52uGG79IQ1TMenaZq07etPlgFZ9JNUWzYt20Pv5IZ3P7OdPxq2SyykitcaoVbrjQZQJIhHAiyVdHTDwXKFrbmoW8zlm7QtByQJw3LRVJmFooh22tE/QF80QL5h8uZihWPb0jfYejeIUkWWiAQVPn5omMVOeWa2LjpUdg3E3lV84FAixPa+KMWmyf6hBN88vca3z2U63U+3HjHUvqZ8YCPWdGa9QX88yJ+eXqPWFi65tWqbR/ZMsFxuUzMcNEXi0GiSB3b2du/r4GjypkO727g1TPVFObNSpT8WZL7Q4qFdfaSi8Av3b6Nu2HznXIZIQKEnEuDX3rejq9z2Edb3umHTMBxiQZV//+I8CwVBLu8bifOL929nrdLmD15Z4I35EquVNmFNJhUNsr0vLMqBNZlCw8DzfQbjIdLRIIoMmarR2VCFabSFTTqgyPi+j+0JdaqEjueLbOZUJEDb9oiGhPqnNxYkEVLpiwW4km1wNdegNxZEkukoRcV1xPV8kuEALdslpCqMpyOUdatb7i6+yx6W42FYLoW6wYW1GhcyNV64XKBtuYQ0FVmGtaqB0ek28ztxT9PrNXx8XNdH7axPybDGyWVBIOumiH/Z1hvh3qnhjjL7Nn6UcM/2NC9dKeADRzsdDW8XB2x0tDx5MUs4oHAxU+eNhRKZqkGhYVBtWXzvfIbPHB1l/0gC3RKdfHd01rjlcov+TozoBjaG0obt8tTFHC/NFphIRSh1xAJPz+S4nBWukb/+0PbrYniCqtJ1kAF85IDPfEHnzm09XUfJkfEefN9nrqCTCKvIksSppQq1ts1oT5hvnVnvOM7gi3ePb+pEue418H3qbYd4SN30+nMxU2e10uLCWpXD4ylSUY2m4XTVXxuxCt8+s84DO3s5u1pFkSSevJAlFQlg2C7v78TA/cb7d/L0xSxPXshR0k1+/v5JPnZwWLhPgypBVWHPUBzf97mYEYOX/cPXOhzeup7L0tbsietvBJpCTbcZ20THM9Er3BrVtsOxyZ4t7+sTh0e4WmgSUmQe3rV14a/lvPXhKjZNhnpudKVsxMyB6KHaCp4vOjolpJu6z66NTMvV2vRsMpgaTATxfb8TTb31OmZc8/jrN+lba9uO6JN0RPz2ZogFte7hO7jJ75wvttiWjpCvtWltlfv2Njie2J+EAjIRTUaWRTdTy3KQEcIP13M5vSwy6z3fJxwQ8bfFpsVAIkChKeKHTdfv5t671TbxoIqmygQVmcenM/yNh6d47rLoWlFliZ+/fxtN0yUW1JjLN7vilVxdfO9rbZtqW7xml3MNPnELz2dbb5RfuD/6tp9F+OLdYwRVheVyi99/UUSQ/NKDk0KFCpxZqbJWFWTm7kGdPUPxG+57M1RbFmvVNjv6Y9etObbr8QcvL1LWTaptEUGmm+6PDAH258Ers6JnqNgwOTLRQyIU5v4dfZxaKvPwLtEPuXMgRjoi4sEm0hE+c2SUoCrzT78zgyJJXFxvCMGDJHcc+3Ee2zfIy1cLlHXrlgmwa+F6N+7fPSAeVGg7HitlHUVRqMkSOwZiSJIgTm8V9nt4TLfxw4P9tnlLSFW4b6qXki4cjEfGe9gzHKcvFqTastk1GOPkUgVNkfl3z86yVm1TbdscHElQ1EXE1nAifJ3D9Df+6CSrlRaKLDOaCne7QQ6NJNgznOSXH9jGV06uUmuZfP3UOqsVIUJ5ZiaHLAvHtOWD6zmonfU3HlRROut0QBHC1GhQpdI0yNWFkCikySiS1Pn8+rQtj4uZOv/y8Rn+wYf2MNkXBXxcz6PUspD8t9JfKp1+dUUWa/GBkQQtU1wPyh0XhY/Pz9w7QbFpYjle5/7odrFu9FPKEqyUdRIRjULTvC5uea7QxPdFh3G1bfPFe8bJ1gy2vYeY9N9/dfEdbyMh5iq5usEv37+NV+dL5Bomn7tzlKbpUNKFoLhte7iecPyOJMMkwxpt2+X1uRJ1wxZdrYMx0rEA3zmX4cUrBQAOj/fws/dM8Ken1yg1LS6s17qfhbev+71RMZ9rGA4l3eQ75zJoisQvPjDZdfn/RcJxPTI1g/548JYjKv+8CGkKybBGIqRx/463CI3b+PHExtxxI9Z9pCfM9r4oAU0mElA4NJLg7EqNtuUKh2nd5P6pXuq6zR+fWCESVPjtZ2fpjwcJqDI/decYhYaJ4Qi36NnVGuvVNh/cO8DJ5QqmLSpunr2cx/V8DMcl3zBoGA5L5RZ98RAnF8vCSaXJnFurCQNFJIBRM+iPBflHH93Nf35tkcWiTNt2CagKxxcrzGTrNNoO51arDCfDFDq9YhuRjJbt4ksSjufRMGxmC02qbRtNFvP5pmFTa9nIkoSHiHP3gHBA5aWrJQzbJRpQMRzRPx8NCMIrVzcIawo9oQCqKrFUahHRFK4UdAbjAS5n68x2BHgDsQBHxns4OJLk1FJV9BvWDAKKjCyJs5PjOszlm1zK1Ll3qved3kIAJq+JgZYlqSuUu7b79re+cJQzKxUOXTOXvPacu0FALhV1Gm2HWEgVwjrEWX6kJ8JDO3v50ksLxDvk43gqzB3jPYRVwSUYjseOvii7h5NMr9d54ny2k2yidKs3cnWDtarBSlnH9XzalksqGqDebvFf3xCz5JFUhM8eHeWpi1kWi00uWi6r1RbnV8VZeFs6zFqljW45pCIB6MRpup7oEK+1baJBpTvn8BFEnG64rJR1Ki0Ly4WTy2UOjSWIh0QneUgT1+h2p6fYbDs4nk/bNmnbLlP9MRLBEFXd5I1Fi/mC3q2OmOyLsFIRZN9mvNBmeM8kmCRJXwD+NfA84jr525Ik/UPf97/2Xu/zz/FYbvjZxr5alSVSSdFJJcuwVNQp6xaTvVFCAYXVmoGPyKhWFeHi+vjBQcZSUb704hxX8jotyxVxNZKIuZNlmXzd5L6pNL/4wHYm0xH+j6eu8NJsntcXyuwbjvPAVB/zBZ3hZIi9g3HCIZn/9OoiTdOh0rI4NJokWzPEB9B2ulnZvdEg798zICIFmiZBVealq0Vc36cvHuTIeA/PXcrxlRMr9EaD3DGWZKo/xq6BOJIMq+U29bbN9FqNQtOkJxJgMBFke1+UzxwZJR7SmOyLMlHQiQZF70xvLCDUOEEVVZapti0+enCIWsvi+GKZkm4hS3DHeJKPHxpmLt/k6Ut5ruabaIpE2xYFsyeXKvyHl+cYT0fZP5zg2GSagCpjdBQIhaZJy7CZ6oswX2jiv5cT2TtgpSyUSSCY6cFkiE8dGabSEjF9EU0lGRFEl9VRikcDKgOJENWWxWyhSU9YYzId6USPOKRjGgFFId9xDVqOhyqD6Yp/tq0bn4ftwVyxxc7+GH3y1kpxSRYXBtP2AQfddCg3TQxHuL0Cqogf8BFdCetVg3BAKIkn+4Tq03SEGiMeUmmYNnuG4wwlw1TbNn92dp2J3sh1Drp7tqcZ6LzfG5mue4aEffirJ1bwfbh/Ry/33eLiD8JqvXc4TrUV4nK+ziuzxY66QKFpuLdMgm1go+ze9YUK1nQ98g0T1/OIhzQWSzpnV6v8ykPbhf3XFaSydwu/yO6U/A4mgkQCItbUsL1uX8YGLmXrXFirc2gsye7BWxvu/Dhi/0iCb55ZYzbf4HvnfQpNg10DIqZjW2+Un7lnglzdYOdADE2RWSrp/ONvTtMwHf7uB3dyfKFCrm6weyjGpUwD0/HQbYeDIz0ijk2BtUqLpVKre8Ae7gnx8K4B6m2HUsuiogsFUE9YY7w3yjdOraCbLpma6M5AkgiqYqM1mAh1HYGm41LWbSzXQ2rbKBJUWw6yJDEQD4oi2GobTZExHI9//In9/Px921BliT85vtLZwIlhn+16pKMa/+7ZK1zONgHxORW9AuL64fk+mVqbv/cnp8nWDBRJIqjJ7OiP0RPRiIdUemOa6FpUZWRJdBEkQgFURSiE2o6H5YotoOW43QH1XEFnpdzmjYUyj+y+tb6/2/irgWPb0mzvj+J4Po/sFuTFZk0sTdPharbBXKFBrm6Qr5s4riivjQZkbNcnVxPRxrGgylR/FLWjKr5/Ry9nV6rXbbA3cGFdqAhjnQH7Rzs9YobtopsOs3mD86tVRlIRXpsrIksS79vd370+AOwbTmyq7pckiZ0Dbx0A/u4Hd/Gnp9fI1gwh7ukMX03b4/hCmbMrVQ6OJrl/x43Xl8ens1zONtjWG+EnO71hoptG7PG2pcNkawaSBKdXKuwfTlA3HJKRAJ+/a5TX5srXuCZ99g4laJoOxaZJqhNDd261ysGRJCFNYTQVIVs3KOsW8/kmT13MMpwM0RcLcni8B02RubBe4/sXct3HuDGgaV8jaqmbW2+4e8IaJd1GVSQGEpuTgBcy9a4b6+mLuU1vA3Ap28CwXGzZY6Gobyny6I1qFHSbgCIxlt7cmTJ1Tf/nFgY1gO71FcnH9m7tYLFVFFq2YXSOtj666Wx6GwDPvTUySpbFSVOWILBFHOJqVUfvkFuXOuv2BtarbeYLTVRZEo6uW/qtApJEVxQRUCWu5nQUCUxHJCNcyjaRJR/JlzA9H88U7plEUGXXQJygqnbKoIXCvdZ26I0GKekWrueJHskOaWx2XKOu73cOmeIxpGJBxlPCrXnPpFA8HtuW4itvrlA3bO6e3Dw54Z0wm2/yzdNrxEIqf+3eCR6fznIxUyeQl/nYoaFu79N4OsLxhTKe7zMQv7VYO8f1+PKbK7Qsl/F0g88de6sf8NlLIgZHNx229UY5MJK4TuD34wTf9zm7WsP1PI6MpxhLhzh+skw4oPDEdJZqS8SymrbHV0+uMhgPMpgMMZwMEdIUPrR/gLCm8H89P0u1ZWK6Pq7rMd/U8X2fVCTQVeSuVVooyoaz691hs7/i+bBvJE6uIzZUZNg7GOXuqV4e2z94y2QogHmTdeA2/uohqMpc6xvuiwcZS0eIhlRGUmEe3t2PJMH5tRo9YY1PHR7FdsV51rDcrgsqGlB5cEcfPnS70JfLLdodIUvbcmlZFqmI2Bvrps1qtc2nj4zy4tUiV7INXrpaIFsz8Ly3Pqcblw4ZMWA0HQ9VlrBcD9nzkSQf2/HRPFlEHkp+10kQVBSm+iIsV9p4vo3n+ZR1izMrVX7/5Tn+waN7+F//bJrVapuoJgvHmOWKLitNJMLUWjavzBb5zc8eQlFkxtIRnpjOir5iXfz3r3WSgh7bN8ihsSRHxnvoCWsENZnhZBjX9ynrwp3x5eMr/NKDguRZr7Zpmk4nkjDBUCKE0olDfC/YiLveCioQDUnUDB/fsPkvry9RM8RQ8qmLeX7pwUneWCizUmnTExbrzSfuGCYdDfK+3f2sVloYtsdMpk40oLDSeX/v257m1FKFkKawoy+GJAlRuixJzBf0LSN3wwGFX3xgEtPxeP5ynlq72Y18+0Gc0L83nWUuL0Tqv3D/5F9Ir3jTdDi3UmWkJ9wlQa/FQCf+8MyycFB6vs8DO348r4G3IbBrIEaxaTLZK7pWFVm67oz/6SMjfPd8lr1DMSZ7I+QbBhezdWzX49xaDccTZ8TRnjCRgMKppTKW65OtG6yUW4Q1laFkiIPDSbJ1A9fzuJprEA+pHcOFELn5PiTCKrbjE1AkLMfjzHKZsysyubrBg7t6eXh3P4WGQSSg0RNxGQsqGLbDlWydRttGliWiAZWdvRFM26HUNGk4YOlihZ7ojeD64uw5X9A7fYtiftK0HDRF7sT0ScgyjPaEiIdUdNOhNyqEzI7r07ZtEiENVZLwPGgaLq5nMpaO0rY9BpMh5os6i6UWmZrRdSwZjsfrc4JQq7UtHMcjFdFIRwLopt0V07VtlzfmyxwcTXZFCreKatui2hbpcd87n+H0cpW+WJDp9RrZWpvvX8zx8YPDPLCzj7JuEQmItLGxVBhFltg1GGNqIIoqyzyyp5/5QpNkWENVZPaPJBlKBrmaF+fkHf0xZEni1fkSO/pjJMMaj+zuRzcdnr6YE4YbpK7pxUeILueLOsWG6OPSFJlK06Rle/g+VNs2JxZLXMrUcDwxg621LC5lhZkkGVZZrxropo3j+diuKyqoPDGzDqgKluti2aIrU/bFjExCombY1I23xKGW43F2rUqxaTHSE/7/s/ffUZKk53kv+Asf6bO8b2+mp3u8BTAzwMCSBEGIICnRiRQpSpQ9e3SXOldH2nO1umuupOVKV5falSFF0YgWAEEQhBu4MRhvu6e9K+8rvQkf3/7xRWZXVVd1V5sZANx5zpnp7qrMjMzIiM+872P45N0jvDZVIWWoXFhpYmkKSw2fOJaioHo7oOYGDOVtlCgmjGMMXcFQFNp+hB9GqAoM51Ndwuu1cCtKsH8BPNRRfymKMgB8E3jXm2DbxCxIWV4Ug9DQNWnr1/JDDF3FjyKcVsSx0TxhKLi40qDhSruqucRGbqEic7J0TZX5TYqCZWj4QUTO0jB02ak/v9JgpeEytdomFnBitsbRsTxRLDi1UGOu4jBetHl1qoyuSSlm1jKwjYATc1UurDQppA1q7YB9A2mePbfK6SUpCexJm9w1WmCl5XFwMMsLl9b4j9++wErDpz9rMF91uHu8yMl5ebE23JCWH/Lg7iJvz9c4NlZg/2CW+YrLF48v8Ivv38Pdid3KmzMVvnFqidWmz1gxxcn5Go0wRNMU5qsOGvDyZJlKyydv65TqLv+XPz/JYtVhtemBgLSpEcUQIgjdgOculnhgl7RX/L2Xpqi3A3ozhmxMCcFaw+OPX5nlU/eM3HAm2PWwUHW6i8u9/WlqTsDvvTBF2tISdqLKX39wgi8eX8ANIgZyFilD41c/uI+T83WePb/abQwdGy+yWPdYbfis1n36siallt8NmVYE+EGIs83+TQBBJLiw0iBtats2/PwwJlTkAt4JZDFHrFNORcmudf2zW36MrsaUml6SdReTtQXHZ6tEseDT944ytdZireXzxkyFz78xxw8fG+GnE1Z/1QkYydtcXG0SxdLCsZAy8MO4yxTtZNrtFIs1h6++vQTA5FqDZ8+v0fJConjrTfT1EEP3PGsqknHnykaIimTsnV6ocf+uHoppk2pbNvBiAY8f7MfUVQ4N5bYMYP/K24tcXm2RTxn8rfft5gtvLTBbbnPfruKGQfObp5dl0bnh/v9NE2xyrcV0qcU948Wul+7T51apJuHQpxbqvHBpDTeI2TeQ4Td+5j5enqxwaqHOR48MkjZ1fuPb5zm1UCMG/sM3zhEKmCm1+eopQZw0K9OWxrfOrHBhucHn3pjj5Hxd2mQBVkrB1lV+76Up5sptTE1lvuYQhjGxUJjoTWFoKmNFE0tXOTQk5fkXV2Qxc7Emx20hoB2EeKGQGVyRfH0veQ+Tay16E7ZqEMacMmq8PFnixYtlJnrT/OvP3MXvvzjJ5TWHWuJ33PQipsuSca8pMli6w/jRVYX+nEWtLeX8fiQAgapKlc5osY+HdvfwWsrg7fka1XbAsxfWKKRM0pZOIaUzkLNRFdl0C6OInrRc/EUCgjDmxFyFT9498r26PN7DTeI7Z5c5v9wC4C+Pz/GhOwYJN80dQoCGYK3p8aXji5SaPk4QMVywsFyNjCVtQn/j2xeoOdIKAeCH7xrhR+8e3dYu+OR8tdt88qKYe8aL7E8suz565xAn5mr0ZU2ev1QiZ9d4ZbLMUs1lcrXJ3/vQge4GwE38treyh3CDiG+dXUZXVT56ZIi/8dCEVGRGgtemy2QtnT39Gb789iJ+GPPqVHnLJthMud390/FDPvf6HDUn4EfuGmEwb2PpGk/eMUi56XFuucm55SY//eA4j+zvp9SUeTczZclkOzaeo+YENL2QT987ynLd45XLJb5+apmjo3n+wZMHeGu2Sqnp4QYRT51e5vJqi/6cxU8+MM7BZMxfP3Wv//v67Kh6e/tCbsbWKbcDTF3pfmeb8UcvTnb/3rhGQ+316RJfObmIoig8sq932yZYZ4MRCyEzxLaAuq5pdK2l2EypRTKUMbPDgPaO5edmBKFs4gig4W6/xvDWKcFqzvZKsI49bCRkMHImdXUj5sLilcZXbVOm2TfPLDNTbnNxuUm5dWPF+EhAuR1QbktbSV2VhVQFmUccdj+DtJPzYoEfRkwGLfrzNo/s7UXXFFYbHl4YMV5MEcaiq+S0DZVP3yvdEp48PEgxJQltmqqwUGmjKFKN3Ze1qLsBXzq+QCzg4ECWo8l1cbNr7OcvrvFasl95dF9vYputkzZlJm0HAzkLQ5dFiGfPr9H0Q0YKNk8eHtz22LG48r1tXmd6YcxIwabSCvjVD+7rNtv+KuLZ86v82Zvz9GctlCTHYm9/mrWmx//xzfPYprT9AUGp6XN0tNC1vn3fvj56Mia/8a0LvDJdoeH4CCRxLIwlK3W20mah2u66TtxOzmFah+FCmvNLTcIoppg2WWuFzJbbpI2NZYVvn13hxUtrfOLoMA/uudqaJgpv4xt7D+84qk6wIaXx4kqTmhPy4J4eHk6Ir985t8JbM1WiOMbUVGbLMp9ytGgz3iMVAvdMFImF4DtnVzgxG/CVtxexDZWH9vTy0N5evn5qCU1TmFxrEUUhXiSthT/3xhyGpvLWTJW6E3TJCxuT6zrjjCBtKnihSEhpctwWAmrtIKkLQCGl05O20JO1essLUYRIXBcUam2fr55YYnqtzeszFeJY5sD7kVQ/+ZFHylCJYlhueLw1W+V/++oZhvI2u3rSPHFogKrjs38g272H4YqVddMLmehNd+MIFqoOc9U2tq4RCcF0qY2qKLx4aa3rePGJo8M3HV/QwfXI8qoCDVee1SCW6vHBfIqGG3J6sc7vvDCFqsBCtc1A1qKYNlASo25TV9k3kOXjR4fIWhq9Sc6ZEHBwKMu/+OQRGm7YzQ88NJSj1PJ4YHcPk2tStXFoKHvVPGJoKoam8sFDAwmB2dpA1rqdKDdljm8tUSOYt6EJ9s3Ty0yutVAVhV9+bA+zZYfvXlwlbxs8uq+XlKkzV3F44dIa55eafPfCGkdHChRuwu7yPXz/483pCi9eLpNL8gVrTkBvxqTa9jk+WyNlajxxaIAH9/Tyf3zzHD/zmy8SxuD4IZqqJHmushb7Dz+0nz9+dZYvvDmPm2Q2RbFAURWePb/KoaEs5ZbH2SWPAwMZgjDmE8eGabohx+dqHBnOybXGeIFXLq/hBBGvTlaIhCBlaHzu1VlOzNYQQuAEMUEYgyJYqrq0fKkIG8ya9GZMvnNhjXYQ4gdiQw1wZq3FPRNFVurQdMMr5IVQJMTQGF2V7k6xEFSdkIVaHT+MQEjCQoRUTA7lra5Vs4Ks80ytydiMpaTxVXECDFUhTMiUfhTT9AKeu7CGgpDuUprK2YZHM3HpUUA6h2yKLHCDiLfna/RnpbCkg5YX8l+euYwThPydJ/YxkLU4Oipz72uOz8WVJp99fZaUISNbhvI2L6VLoMBTJ5c4uVDn/ft7yVgGb8/LOu4dQzlGe21+7bPHWarJ/GsFhdGixfG5OqamsFxTUBSYrzgoiqzDFmz52b90fJ7Lq00ajo/jy717T8bgE0eGODyS47XpCnv7MzS9kDMLdRrrN7QCptbaZBOhTBBGeKH8djQkmW8ob0k7XGCtGVypWfuCvK2Tt20Wqu3uHFNMG7R9Ge+TS+m0fUkWnFxrUXUC8om95VuzVeYqDk03oNTypesZkDJkhvl8zSGM4q5zXs7WaftRcq0EKIpC2lTZ1Z+m7l5/T3crTTB1k/1hCbZJw36HoSnbH7bphvJGSxoLoR8TCY8gihkupJirtjkxX6HhRBia9LueLrU5t9QgY8kcAU1RaCbh4NJ2VOHSWotYSF/i3oyZfEGAkDdkGMTdnJvVhsephRoZU2OsmOFjdw7x2MF+fvq/vMRy3UVTZdcyimOeO7+GQC6KELKR8tylVaJYWog03ZCVhpyYG67CeE+KuUqb1YbGYM5kutRGUxVytk7dDXl5ssyLl8vcPS4Dm9teyErd4defOsfJ+TqaqnDvRJG2F7LW9AkSm8WBrEXW1Gi4IX4kqLQCXrhcxlAVGp4cdHO2DIntXvwxeEFEEMVkLIO3Zqt4QXyVHV7kR3zt1Ar/6tO3N99mpe5yYaWBoarUHJ+ZcpvzS01sU+XoaIEoFvzrr51lremTs2XXXVdUXp2qkLcNRgo25baPrilM9KU4MJTlmfMrXF5toWvSjsxPBgI3ZkfdnTCG+jWKPYKN6qWtlExbbRHDGOaqXvffbtlBVWC16XFqoc5HDg/gRjKzJYgF3zi9hBCC88sNef0I6MuatP2QobxNytS5Z7zIvRMFLF3jgRtkEGuqQhzHrDY93p6r0XRCbge/UyD9ZWtOmFxz0PACvnJiEdPQ+PbZFTKmntjLQU/a4NxSnQODOWbLTlfxAJJ5O191WKnL89Z0Q9pBxKtTZUpNWYj60OFBXrpcotoOKKQM1po+w/mrw3dfn67w5kyFo6NbKxp+EOEGEX/x1jxTpTZ/8dYC79/fxx0jecotn6yl03Bl2PFywyOOY+puyL/7xnlmSm0urDR56tQSu3pTXd/9KNlo6ppKEMYbbpe1usdXTy4yWrCYL7e7vr6ykKPw6lSZkwt1wkhssNRUkKx5VVFYqrnYhsryqx4IgaFIC0ToLIrAj6WXj0BaIHY2ykLIUPl6YqWpKgorDY9/+9WzBLGcxN+3r4/jc9KrurMPW38v6prKj941xIuXKpTaPvsGsmRtnaG8xaW1ZvdYfhjjBj5Pn18hiGIWqg71tt+1/NK8gLSpoasKa00P1wtYrXvEQLkddrOfOna4K3WX9/CDhS+8Md+9dr52aplfh6vGR8lSEwRRyLklydJLGSp1J8RQlUQVVmMgZ7NUl/dAIWXy9ZMyrPaxAwMcGcl1iwYn5qpcXm3yW89NEsYxCgrv29fHbOVKI6Oz8T6zKFViA1mLiytNgjCWocyJl0HdDfjDl2dYbXj0pHWOjRX5wIH+LsngL08s8LnX5iT5I4z50XtGURQFU1c2sFgPD+V4e762pVKg1va5uNJgruLwY/eMslT3mK86LFZdvmkso6LQcEN296Z5//4+lLcXeXuuJgvJOYtWkvMXRIIzi3X+67OTfPKuUe4YymGbGr/7/CR/9tY8QSAzWV+8tMbrUyVKLR9TU+lJG1xYaTBVavHYwX6Oz1XJ2QZRFLOrL83hoRxHR7fOubkWZWS+7BALaHny3j+8RaNmttTY4plX44WLJRxfqoe+e7HEZ+7fOlu1nDTlwhhOLZR5eN/QVY85v1Tv/v1aCpH58pXrZf1zroW25wFXNzDqSbEeoOVt39xa/3auJT5b7864XYHKNq/sD9YLzJpeyMuXS7w5U8ULwxtWq29GGF+dT6wgN0Wdwwqkve5qw6XS9pkptXnhcokoEpAUMhQEpn7FbvDNmSqFtMHPP7IbU1f5x3/0Bi9dKmFoKnePF/mJByZ46VKJr7y9iBAwPZIjiGGkYDOYtXH8CFNXubzaJGvrDOdtSi2fQsq4iiQ0W25zYq5GM8lANnWZE/Dp+0YZKdpM9KQprmuCLdddaeOrqbw+U6EnbXJ8tspq3eMTx4Y3PLYDU1f59L1jTJZaXdWqEIK5isNI3qLhhhTTxgal5fczXp8uS4ui/X1bft6tIITg2QurXFppcm6xwfv39XFoKEdvRmawVtoBzYpL1tZQkXk8HWJAtR3w5kyV335+EgSEQhBuYVmIuHqOuV0IY/j22WWiSGCbUl2cMqUK/8JKg12JNZsfxvzWc5eJYlnI36oJNlO/thrlPXx/IYyiDU2wdhCz2nApN6Vd0YnZKr/7/CRTpRb9WYtdvWkm11o03IAoFowWU9w7UeDlyTKlhsv5hICsqip5W+drJ5cwdQ1Tk5m97SDsFtKaXtiNI1isO4ThFfWuqoKmKATRlZ8JoLXOqSVWNtlQC/lvW1f52Ucm+ONXZ1hrXSnoaQg0NcIDNCXmrZkKjh/LQpci9wVyPyEwNBUvlD+rtgOeOrVMEMbYhiRkPn5oAEtXOLNQZ/9Aht6Mxb3jRV6ZLPOVtxdZrDq870AfP/XARNdFIowFR4az/Pbzk3hB3FVE7OnPbGv/eyO4nhXpZpMbVZVEnpzQ6ctIZf18pU3Vkbmcn753jJcmS7S9iI8dlWuOh/f0cu9EkSCM+Z0XplhpeGRtbUPuqx/G7O5LoyjwnbMrzCfuHG1/gPu2yYGPY2mvtVx32Z0oaG43PnrnEG/OVDkwmL1m3uWNQE/IR1pCmnl9psJi1eVbiytcXm3iJIuxb55ewY9iDgxmma20KaS3Jjy9hx9cnFus8b988SRz1TbDeZvjs1XempEqwVenSpxZbHLHcI6spfFbz17mSycWCGJZh06b0t6ulUQ31J2A//78JHVP2sO7oQytTRkaIha8NlXh+FwVx4uouQEXV5oM5y3ShsZAxmSsYOH4IX4k1+ZREivRWRnXPbmKPTFXlfVlR1p4p5PmhBtEmLpC048IYlkD2rp2Kdd68aYO/PrhLI7BiQWaAmsNb+v9iZAuP003QAhBHCcEhzim3PSoagE5S1r0a7raJQx4YcxCzSWO46Rmr1KLPaIYIuSArijSdvbISI5zy40uufTpc6ucWawnBLQ93fzCZ86v8vJkCYAvHV/gbz+2j48fHUYIwWdfn+Ozr86iJueoP2sykLPY1Zdhpe7y3IUVpssupxJS/1rTo9z2eXuuhpbUhOJYzm+GKslNUSwINJUgki5ZlZaProEXCCotnyCOsDSVCystuSdJxBvLdYczC3W0b57D0jV6MiYjhRRuQkDfNDXihRFOGLGeq2ZoCj969wivTJY25MR2vzug3ApIm/GGdWnNCdBVSZirtaXYJoqT7y0SlNs+mqvgR4KMpSEQtNwAP5ZOJZomc5SXa253Dm8lyi9Tl426IL7yvp85t8qP3TXKA7uvXcu+lVnja4qifB34o+TffwP4yi283k3DD7cvQWwmmXUUOm4Q05cxObPYoOFExMj8MEsXtLw4YaqGDOct1poeLT9KvJFlATWIBPW2j1AURgs2fTmL4bxN05NyzpMLDVp+JC/IKCJn6QSRSrXlM19xePlySVrWNFxSSV5MJGTnO20ZuIEMgBdCoKkaiJjJtTZxHBMmCpkgEtTdAAXZ9ApjGa5dsHXOLTVYqsvMnL6MxTdPL2NoCtNrLSpOwPnlBl4gVW7Ta03mKg6Vtmw0ZCyNqVKLAwNZlI55jSKP15mgFblnZ7RoU3auMG3TpmwunZir0t5iE6tAVz55O5VgbhDxBy9Pc36pTtOT/qZ+EKEogpxtMJAz8cOYclslY2nsH8wymLU5tVhDVKDUrHYtz5ZrHv/zZ0/QlzFZqLSTVS6sNrxbLpRshWu95k6PFyWL+cCLiKI2f/DKDEN5i6YXSQmpE4AQXEqyw5brHgcGs3hBRDFlcn65SrnlEUaCf/SRAzJX4AZQTJlMrbX4zvlVWt6N2x9eD0k+N24Yoyey13YSymhoajfQOGvr9GcshvIBL19ekwy/jMmu3jSvTVV4fbpCGMccGsxxZDRP2pSN3CAShJFgttzmxUtyMrtjOMcnjg5vGbr78mQJL4h5ebLEo/t6b7uq8XsBVVFYqDmcX24QRTFuGPHaVJmWH5GxNB7YXeS582t0jNzShoqKwlSpSbnpUWv7OF7AatPvTlKRgCiZYDuTrJL8fK7i4IdRl6ncwUrDxwul5F2wcdOqqZIN6oURfiSVWeWWbLitD28nOY6RZD8GW2TZdOaGKBTYhnztUtOjHUSUWirnlxp46wyNdZUN7zVnarLg1/QQCC6XmmiKwsuXI4KkGKpwpcDccGUu0/q3oiA3gDOlNtOlrfvq3aKxH+OGPv/9halu0Op7+MFAp/EObMiGXI/O96wodIvTQSQQIqLhRcRCZsq1/EgWsFVpAbpUd3EmI2bLDgM5i6G8xbHRAv/6q2dZbbisNiRjaqRgM11uM5SXqvQHd/dwZrHB3v4sR0by9GctXry0RsbUifSYg0O5Lvv0S28t8My5le6C/Olza5xfbvDxO4e79jyde3urew3g8mqTuuvz+MH+q4qhk2st/tPTF6Ua3Q159vwaR0by1NoBM+U2izWHfMrA0lUWqg41N+D1qQrTpRZCUfiP377Ip+4Z5fRinYsrTTRVZng+f2GNg4M5fuKBMf7Ls5dpONK+4fhshb88Ps/b83VSukp/zubiSpOluoumKvzPnz2OUBS8UFr35FMmD++5uXF+/Rp0ulTn8MjVxYzRvgxn165fDHaCTp4guP7OStz+Nh2u61khdWCZOjhyjZ3Zoe3S61MlDo1eTQ45u66J5l2jc7h+nF2oeds/cB1OLVb4YOHqXJQ3pstXXnfdz9caHrahEUQyu/edQLJ03IBQyILF2aWG3OCvm2OanrTyMDTJaH3m3Cpnl+o4foTjh/z4feNMrraou0GXCAJyYy8Jci55W+fwcJ5Dgzm+cnIR25AK0i+/vYiiSBWRF8YM5i1+9uFdG67pL761gOOHRELw4TuGKLU8vnZymcPDuQ1Fy6YXcny2yvMX1yg1PR7a28u+/gx/8PI05aTBlr6wxqeS3N8XL5X4vZemyJg6/+jJ/WQsg/ft68NNQsiX6y4n5mpUHZ+RQgpTVzcoJr5fsVJ3efb8GiD3NZ/alHPsBtJqplOAma86rDU8jozkGcxJVV/a1JittHnSGCRnyyxCOfwLmYFh6RwZyfHEoQF+67nLrDZlwcb1O3uoG7PxvB3wY8n+VaBr82xoGnMVh599ZFf3cboqf19q+vRltm4Q/mC0Ot9DB9EWTM12EPPshTXOLb/Krt4055Ya1JyQqZLDa9PVbo6tpausNT2eOb+K68u1f5AQaW1N6RIPm64skpmagoihnVwkQSjviUo76BJSISEaxPJOuNa9sF2k5VrT55XJMqa6cd8bAyoKqiIdJDr7gQjQkPNUZx1m6ipjaUPem0FE3Q1x/IimH+HO1ZgstRjvSaMqknhczJgyY7zc4uRcnUgIJvrSPHthlXrSMFRV+NaZVWYScnPdDRhOcjVjId0o3k3I9aggCCPOrzR5bH8vl1eb+JF0AvrfvnqG4ZyFaeicmKuStXXytsFPPzRBIW1y52ie+eoy1XbAxZUGBwYlGeqp00u8eKnE5FqLPX1p2n7E7r7MtmtJkPmwqwkh/MJyY9tm2c4/W0y1HdCXMbu2h+M9acZ7bjxrrYOmF3aVsh187M4hdvWmGc7bpE2dI8M5zi3Vu6SUmhtSbUkytqqqFNMGE703/x7ew/cvvn56malSCy8UMiIG6cJ173gPl9daLNYclusOqgpvTFe7tYQ4WSuuR8uP+YNXZqS1dxLkqSgQxRFRDOVWhArdRgGKYLHu8fsvz6Cq0skmbxukTI1q26PuJrVeNq5h/UhmV3dqHOv3s24g8ANf5jJu85nDWJIEOhm9TtKJV1TQkjpmJ9exU9fcCl4km2lwpfYTJLVHTQUtlEq1/qxFytRYqDrd2mQUh+ssdON1DTjRFSa0vIhqO2Cu4nSbYB3iQWIeybmlBpauUkwZqICiKgzlpTODlhCrH9/fy7dOL6O0fXb1Zfg3n7mLN2ervDpVpidtstr0CWNBGAuW6w5VJ8QPZVxGFIvuXiiOkyxiRVpV9mVNJnrTnJqvJ+o2gezTq1TaIXUnkCKU9SctOZdhBF4U0fAkQXP9d2zpEAsFXVFkbXTT+XdDwV+8tXBNtzAvEohNNteRgDj5MoWQThkqoOuSsNeXs5hca7Gc9C3KLb/72UMBahhRbsVXXQ9BDMEWWc6RgH/79bP8tXV261vhpptgQoh/qijKZ4DHkOfwvwohvnCzr3crqDkBNyKG7p7YMCaON0o128lFoymQs3QmelJS+ZCceFORbBglsbCLIpnNcHmtJRVYia3VdFkG8ynI4nIYywVg1tZ46vQS/RmruzEYLqSSxpMMgkUIhgtygjQ1FdvQuLjSRCUiFLIrKhTZ/HvxUpm9fRlsQ0VBsqnLTQ/bkPaPiiIzuxquXDQu1VaThlncZW1Pl9rU3ShZ8MlG1lzFYbYsrTRMXSFnGfLGRi4AY2SgY6W9kc270vA5MVfrZvJsRuf6bbhhN+fgduDZ86s8d2GNWtKYHMrZaKZCXlPpy5roqoptaxwbzWPqMjD6mfOrjBRStP0IL/GZlWzeiOculja8viYErR1IK78f4IQCBcFkyUFXJBPaDyNmKg79WYtYCMZ7UuRtHUdTWW54jBdTzFVkMPznX5/jV5/Y382a2QnqbsDbC/WrJubbDVVRMHQFxZezUSFlMJS3aXghBdtA1xSGCxbVts9sxeE751Z5//5+jozmySYWTbqq8tjB/m5z6+G9vSxUXQ4P55LNvGQT9uesDaGW63F4KMeJuRqHhnIbikhuIP3sR4upW7aqABIGbaub4fZO4sxCjVcny5RbAXlb49JKg6WaR9pUKaQtvCQ/SEGhJ60zXkxzea3FUk0ydZRYyCy7LTbJnQL5+kZVGIstC5wCsHWBp9O1G5XjKORMlbSpM+95ckEirqgnNzfAVFUyTETSIFM2s0DXIaUpxLEgjGVDVFdEwqSS0DZ32ICKE0jFW3K8yI1QVaW7OOx8lvXYfHzBznM6BJLpei17sPfw/QlDp2t/eC16gUA2wBRVwQ/kfB/F8hruXCZtL6SY0kmZBj1pA0VRqDuBXDgbajcjsu2FtL0QTRGkDJWff2Q304mqp5Nz8e0zy6iqtF0LI8FUqc2RkRzVdoAXxvz+S9P88NFhluoulq7R8iL8KKbuBpxKLD2lIqXAj983BsAP3zW85Wf7xuklXpuustbw+IkHxvnZh3d1iw1fPblI3QkkI1xRKKYNZkptRntSXF5rEUQxi1Wnq9I8u9QABNkkJD1t6pxZrMv3F0R4UYyIpbLFDaIr/u9JYz2IBN88s4ofhoSxQtsPu7leYSxYqMvxxdJVnru4Rs6SQeX//JNHbuk6mCtvbSfYaO/snp7oSXE8CSY+MHB1nsRWWNmm2bXa3JmidH3fz94hGzoSW899ymbGww6w02fo24zti5Wtz/lEb5qxnlSXmPVOwFS3Ht9LLQ8/irc8rixwBFRaGi9eWsMNI0pNn0tPN/n863PcMZKj0vbpTZuMJ8Wxo6MyWFpgyUapkMcAuSa51PK6eZtvzVbZ1ZtmpQ5+YqetKHB5tcXbc1UanrSo+qFjQ3zp+CI1J+DcUoMP3zGIbWg4fsRvPXuJb55eodTymehN8eP3jxNGgmOjBRmO7sqwbCEEb85W+dzrs5QaHmXF5/denCZnG/RlJTGt4YYs1VyGCzYF2+DO0Tw52+DeieI78p3cLgRRjKokge9hvMEm0g8lQeq1qQrFtMHPPLwLL4j53GtzuEHEH748zVDe5thonkLaZCBn8++/eZ6/PL5AFAssTU3YzQoDWZPDQzksXeVDhwaot33K7UCSMd+h63anWE+GumtM2prlE7tcIQQvXCrzxMEBiimDxw6+l2P6VwFBtPWIHAlJWFhrJrEB634XxgJdgSCK0FQdxw1wQrq1FltXefJQH7/4vj38k8+eYMUNyWo6h4ZyXFxt0A7l/BgB06UW5qYia7zpzxtFGEuVdcvfSOBMmyppS7+qnqEqci8KAttQKFgGTT8iY+rcNVEgZ2l8+9wqQULyawcRQghmhUPaVDmzWGO57iX5j9LGyzJULE3h7bkau/sytP2Iw0N58imdvf0Z4iQSYKbsdKMT2r5stG1F1HwnEAlZwHbDCEvXeHO21v2ddNeQzTtNUai2fdKWhqpIBf8vfWAPfVmLkSTncv1l5PgRtqEhhNzTC+TabT3BPYolSbUva5KzDfb2Z3hjpoLjRyzXXFYaLoO5rffrIK3Cnj2/ynAhdVWmshCCz742x3Ld5Y7hHD98162TDFcaLn/66ixhLPjkXSNde21L17h7vNh93IOJUu7rp5ZQFIW7xws8c26FiytNUODvPr53Swvy9/CDjSgWzFcc3CBat0YULNU8Bo6YlFoGCFn0d/wQy1CuIuJuRph4vYaxXLfHApxgHcGSK7UYQVIfodNgEfhN6dSwfs2/eYWhwjXtGeLk13rHenbT7zUkaUtTNxIqpBIrOcYWz+tgfcOm8+fmqmPntcJYqpRtU7q6Xak9bXy8QGYKR7Ho1mhiIbtDj+69Qth84uAAbhCxpy/DZKnN02dXaHjSbW6oYPOhQwPMlR3+83cu8ep0iYsrLQopg9GiTcbSKDU9fuM7Fzm/1MANpKNaMWXQ9KTIJpso1xw/oidr0vJCVjft3+KkJpCzDcJkz99ww24tSVEEtZaHH11/PhQklq/rvLK9ECxNyBiRbZ631vK5Xnl4K66vuqkGJwBD1djdl6GYMTEUODFfo9QMN3xHUqQk69o3gnL7+kTPW62qvsCVnsirt/haNw39JorNNTfkpckSmqZiawqKohDGcffEqwr8tftGeX2m2rUzkRJ4BU1T0BJrniiSF4pIniOE9A92gyhhOsnXDHRZYJ0ut9FVlcm1Jn4oyFkaB4ZyeGFMyw0II8Fo0SQWMFpMyYDBwQwXVpugyO5zzjIwjc7Gy0AgmFxtsVz3WGpIm6TBrIWuy5WiiOOu9RZAwwtJGSoh8kZ3ko6uQiKx1TXabkjDC7vWApYWYWoJIyt5qUrbvypLQgDnVxpbFsLXQ1ql3T4bjLQlGZRZW8fUNTKWTiGt8/Z8nXLbo+mGPLK3jx+5a4inTi3xL//iFHUnIGPpvH9/HyjSc5QNE9IVKKqC/wPkXd95p6GAthdj6jC12iJlgmXoCGTQcNOL6M+Y/MzDd/CVt5c4v9zgmXNrfOzIMIeGc5xZrPOdcyuMFVN86u5RZitt1poex8YKG9RibU8uxt9ptL0AEWsYmgx3PDZa4B9/5CCqAt8+vcKfvTVPtR3g+CELNRc3iGh68t8/cmwYQytJ1kGyaVhteGRMnQd393BsvMCfvTFPLAQfvmOAeya2Z5Z95MgQjx8c2GCREMeCP35lhko74OBQtsucjmPBbKVNb0Yu3m8Ev/ncZZ4+t8Jgzubf/sTd2OaNKfR2itenK/yTP36D2YqLrkJvxkBTVbnJCqCayJfdIEJLLFHPLMnQ3m7mBHKDtN1dshUrfjssNzZuRjvqh1YgiAnRVdksSBmS9dJB1+6QLRaL1zh4xY2puLLwratQceIND4+FZMisz3GKRaI0W6dYi67BXLwV6AqkDIWRngw/du/o9Z/wHr6vkLV0nOTiuV4fwQ3jbmO3czX1pnS8pGBtaAqaonBxtcGlNYUDA1naXkjZCXh7vkrWMphNci3cMMbQVHrTJkfH8lxea/L6dJXxnhS/+8IUpxbqjBVs7t9V5Leem6TU9JitOuzqTaEogrMLdc4u1MmndA4OZclYGm/NVokFTJXapExp/7lS91hpeCgKrDU9qYicLDGYk77hdTfE8yPmK23afsRTp5Y4MJgljATLdRdDVdg/mGWkkMIJIoopg/PLDS6tSnVWFMX0Zi2KaZ3ZcpvVpo9tKEkeR8yphRofONDHl44v4EbSYkFN1OthFPP6dAXXj6+o1WK5Buyc5cDbuhkRRjG6quEGEVOl1i1fB3v6ts6WnN2mObYZ59YpqY7PVXf0nNH81gqMHntny/9S48o67fxy8xqPvAJtm03yq7OVHT3/ZlBtba0Y07e54S6sNJhea1Fzg2sWFm4F2zn6+ZG0DNlutohiWEjsfgEcX27gm14bBRjO2xTTBruSJthEb5oPHR6U7M8wxo8iFmsOo0WbgZzFHcM5fu+FaSptWeSYLrc5Nprn//nlM1xabXFkOEdPxuDAYJZzyw1cP+KPX5nlngmZLXxgMIttaMSx4DvnVvjcG/NUk4zcTEsnpSucXGlyYbXJvoEMP//oHu4YllYyz5xbBeReY7SQImXINcxq3UVLdtLjvSkODGQZyFk8uKeXatvnf7w0jRDw0SODHJ+rkU8ZPH6gf/Op+p6g4Qb80SszOH7ME4f66c9ajPfI4m4cC/7k1Rmev1hCU+HAYI61ppfYdotuTuGwovDE4UGOjuaZLTs8c24FL4ho+CEiTiyg4xg/FFxarvNbz09Kok4ksz6+X/YjS3UvyeTzGcjaLNc99vbLXJtXp6QKs5AyyO5wvHkP398Ir3Pd+Ynt+GZIqyq6BTvgirsO8MyFEgs1j4ypYegKThAyU2nR2MQoD+LrZ1ndKBQFGlvsX4Mo7mYJr8dwzqTpRygosnllqiw3fYLIIYhidvdnug1ywjhZjwjqbY9KW9rIdqwNgyjG1FVGsyl+6sEJvnJyiQvLTfK2gQL0ZizuGitw764iXzmxyKW1FtWWzzdOL3FpVZJ8nrxj8F0jDXSIz34Yk7EkKUJB1uEKKRNdlaXKid4US3WP8aKNpio8f3GNV6bKxLFgMGdRd66sKx7c3cuFlSYfPzrEUM7if7w8QxQLnj2/1m2ef+vMMqcW6ggEtq5iaBo/9eA4f/7mPGeWGsxWHP7OE/u2fd8vXCyxUHVZqLocGcltaJiFsWClIUlBC7XbYze/1vC7Sralutttgm2Ft+drnF+WDgZ3juT4/OtzTK210DX4/BsLPLDnr0bkwnu4gpWGS83xu9ENnb0JSDKiravEQgEFTszXcX1pC7sFH7cLWYNI/rHFML2+ebRVqaJrb7epUbEelq50bfKvhe2miQgQCbFzu8dca4q5kVVPjBQFhHG4pYJ5PVQ22r/2pA2iWLBQc7tk+BcnS1xYbvLKVJmJnjSvTVcot3w0BbK2wWLd4dR8nfmqw5lFGaXhhzGuH+EEEQqC16cr0p4QeZ69QLq8GKqsRy7UpOOYtCTfeu8SxDC52iSIxFWNxjDavnm1WdUHslG4+XxfT8sQxtduxm513LytXRUNJJCEv6fPrTBUsHn8YD+vz1S78SgbHnuNxuh2KNrXr5fe9KpUUZRfAf4X4NvIz/gbiqL8r0KI377Z17xZhHF8TXb1dvCTlrWhQsZQUKIrLH5pYSHzODoLLlVVsHRVMv86WTXrJJzyeQotP0zkoKKrfgjjmLYviJNgvyDxjvYigRtGnFtq0Eg8M9ea0k7kjekyQQyXVtP0pmXXV3azBeMFm31DOc4tNVhrenihlA8GkUBFSiujSBBswTbVFLAMDUWJaHoCL5I3YDFt0JexpBRU+Bu8tetehK5uzKyKYrFlhlUcC7KWjhtem93s7VQCsQM8dqCfX/v4IZ4+vyK9TtMWpZZcUJuJHUnO1smnDF6aLFN3AtwwJox8nj6/ysHBLPfv7kFRFF64sMrmbPogFFsOID8IiIFOva/pQzOxmSm3AjRFhrv/u2+cJ28b1N2Q5brL3/7dV/iXnzpKqeUzW5aMh++cXSaKYU9fhrWmzyeOXmH8L9ZcbEPr5je9U/ASGS/AqYUGZxcafOvsMrt6M3zq7lHZhF1u4IdyYzGYtbhjON+1NVxv6QPw9LmVrqRaWaeyuZ490oXlBs+cX2W8J8Unjg4nTXQZzAjSaqmDb59d4e15GXD6t96/B9vY+Wh1bqmOEHLTVG77jJqpHT/3RnB8tspKYvcZxjCYkxuXlKlLxooqc7Nylo6iKjTaAYGQY8mGCfg2ffdbvUyc/KLpRURCjqmqomCoVyT+t3r4WMgC5VY/37QXTxhUVx/R2KQGu1UYqsyqvGdXgV/94AEe3ffehugHDeuvk+s56m3eXyjAaE+KvG3Q8kJsQ2Wq5OAGMbqqUGn79GdM1lo+bT+i5UV8/dQyOVvHNjRsQ2OkmKLqBLx0uYTrR/ynpy8SRgJDU3DCiFemKlxabTK51sI2VE7OBSxXXdphTNrQSJsqR8cK/PIH9vKb373MasPDD2PaXshqQ3pzL1Zd9vZn+IOXZ3jpUolCSsfQVEotX5JSUgYDOYvFmst4T5qlmsPkmmz+TPSkODSU409fm+WVyRKGrjFWsFmqe7hBxFhPit29ae4aL/DlE4ss1RxqAd1g+9Wmz8XVphxbRSdeWf5upe5Je4ab+N6EgGLaJIhiDg5lCaL4qhylG8G3Ts3z4aNXN7HDawVfrUN1XcN/dRu1/WZMrzk8evDqn780Vb76h1tAVa6cOcvY2Wdf2kZ9FrxT3SYkSWErzG7TvPyDl2Y4u9T4vmkmrEdnDGj7sundLU4gWZgtX9pc/9dnLvH+A1LV/sTBAWxT5fOvzzFbcRgtpOjNmJRbkly3fzDLC5fWmC618cOYWtuX1sextOJ5eG8vlqHihhELNQddU5gpt3hoTy9DeYt//41z+FHMheUmsRB4UUxv2mTfQIbx3gzfPrfG/bt6KKYNjozkAbpEqfGeNL/wvt0cHS0wudbi//v0JVKGzAZzw5gDAxkG83b33rq40qTU9FmqOZxbatCbMTF1lYmed2b9c6NYrnvdNeJqw9tgxRXEMaWWT9bWWao5HEya+5qq8GP3jDJXaTO51iaMBfdOFLm82uQ/fPMCay1pi7O/P8tq0yNsxhiqQl/O5ORSk4YTriuUff/sRSIhbaTzKYMwFlxcbrC3P0MhbWAZKl4grTffw18NbM6J2gqbH9IhCG/lhKCrCrqq4IUxqw2PUtPHSeaJxZq3peXf7Z5Ftqvp+pGcczcfrx1IQpJ0j1Bx/VDGPPiCoOqwWJe5yUFStDZ1hSCWn1EAPgJDixEJkU5BYbyY4qlTS5ycq/FWQhZZrDkM5i0urbbYN5Dlo3cOMfv8FH1ZixculdFUyFoGSzUHJooIITg5L8mJd40Vukr724mOY1AQQy2xSRZIkkPTCxktSnX1RG+an354V1ep/+UT88yUHaZKLYZyFq/PVPm7j8c8fmiAP3xlmlcmy9iGyt7+DEaiytjVl2a61GKl4bHalHvqxapLX9bE0qUyTM4ZUdd5JYoF1bZPT9rc8PknetPMlNvkU1LVvx6GpvLk4UHOLze4/zoZMjvFwaEss5U8Xhhf06oximWOT+fv/++nznNirkaEbGisNt7LgP6riL6MRX/W3NDQVxQwVJXluitdwEy5n/GDiJp75V77XkIRW9d9d4r1BP13C9erx2gqbGY6NL2A/qzNK5OlLsGg7UXMVtos1lxWGx69GZOUoeGGEXnbwDY0Xp4s4wRRtwFuaMl8pchIDEhEM8h83E4TVFWkQ0vnndbckOY1SujhpiZipzl6rblxq7PgRTuz1b1W8/V6vxdAK9g6Jqflx0SRn2QkyxxRVVFQFIGtKzR3suDYBnUvZrrUYnff9q4pt0LN+qfAfUKIEoCiKH1IZdi73gS71TieIIaGG2+QVPpRzJ+8Nrsh30hPJPCmqkjFkWbiBwI/lPY7CiqFlLRALLcCNFXKQmXnO/EpVVRSpkZ/zqLhBqRNg+m1JjUnIIplaGbO1mn7YXfxdWmlQV/W6spMG27ISssn3/QwdVVacEUxmiL9s4UC1baPpqoEsWQhdRo4qgIpU4ZjT61eYfUqioKpabT8iCAKt7SzuUpCKjZKa1XkZ0ybGtYObHN6szsLkd4pPnXvGD0Zi1enyjTcgIf39HB4KEsM/NQD4+Rsg1jAHUnzMIxjNFXFUGWTbLQnxd6+NK9PlRFJJpGhyQK4rauEQsrmvfDd9+B/p9DJbHpjpia/P01BBepOyD//wtv8/Q/tZ7bUJowE02VHWtIlDLX1ODycY6I3RcP1u/Ltd0EYRoTMJmh7dSotj2LaImPqmLosEO8dzOKFEV98a4EfuWuEA4PZDc/vzZjMVRzSpsahoSwXVmRR6FqsLZDKqYYbcmaxwSN7++hJijQfv3OYi6tN7t9V7D620xhzEtvN9U0wkWwcspa+Zd7MZ+4fTyyQ8owUtrd6uBWsNjyW6w6WoeFHIamk6L2rL4MXykyL+Wqb+bKLUOhaooK8NzKmKn3w1w0Qhion1lBcnzHSqSnH8fUXeOEm+1qF7dn218LNNLQ3H0Zl64Xc7bYoSpk6tqFydqnJ51+b40BSVHsPPzhorhsMb8YxtukGKIosDASuzAdSFbn2eXB3D9mUgR8LptdaeGFMLARZS+PO0QITSf5Aw5FWOnU3YLxok7V1VFXhwd1F3EA2V/JJkzuMYo6O5VmsuVTbARdWWrT9mIYb8XOP7OZ3X5ik7oSsNT0W6y5ZSyeVkCDenq9JC2YvYFdvmrxt4AQRtqGyf6CH3kybfEona+rMlFukDKkye2Omyon5GjUnRFMj0qZG2tCI4hgviGj6IfeMF3n2/BpKoooXQo5FBVvn4d29fP2kzD4lIa24mz3RubH7PpcyeOJgP5V2wHSpzW9/d5JfeXx7tvH1sN1iPGNqrDnXvzCGijarLTmf7OvPXufREilzG2vCHT2bDaHIDXdnjbf8Nsd0o3duUWBZWxfaDd0Art5N7upN8/zF1e/JWs7SdjYOdM6ipqxnQoquSwMK1E4ucWQ4LwPVe2xen67IRkvG5OlzKwjgpUtrjPWku03pOI5ZrEXSlkaRzP3+nMn55SZ9GXkew1jw8uUyn3ttjp6MtGwppsyEeKIymLPY15/hn37iMH1Zi30DGU4v1rln/Ipaa29/hs/cP0YQie7aS9fUroKt3PK5f3cPn3t9DpDr9MG8zURvmu+cW2Gu3Ga0mGJXX5q7x4vdIHKApZpL0wvYP5B91zNZ9/SlOTiUpeGGVxU4LV3jrrECpxfq7B/I0p9kfwHsG8iybyDL/kGH//bcZf73b5xnoleqX9teiK6p3Dma59RCnZoTkLF1cqaOY0ZdR5Lvx71HFEPa0BgrpngosQ/K2wa/8L49tL1wW1vx9/CDh63utK1H2CuFMVWRbiqbM54sXebQaJqC6kXUnKDbAOvgHTJX2DE2rx90Bepu2C0Eh5s2IB1y9frn65oqM15E3J1Pw1hg6ZJsbeoKJ+ZqTJXbFG3ZTNYS4qECaKrCXKVNww15ZG8vl1ZbWLrKvoEMbhDzyF5JjDu9WOebZ5YBuTZcb7t3O7GelKHQKeJKImil5aEqKjnL4LED0i3lO+dWWKp5rDY8NFVhqe7hh4KXJ0s8sKeH+YrDWtOj5UcM5mz6szY/98gE+way/M7zUwhgrGhzZCTPo3t7ObvcQAH2D2Q5MJhjcq3F3n65tvqzN+aYqzgcGMxuyGh8eG8vh4ayMmZki/rUPRNF7rmNajpDUzcQhbfCmcU6T51aJmNrHBrO0pu2mC23ZPMuIan9jQcmbtt7eg/fe6xftzxxaJA/fGWuO5bYukKMYKXu8dCeHtp+KON4tqgpqBvWhO8e2u9CXe9WcaP1nSi+OusyCEkcUK7UAj94eIALKw1SpnQby1o6fRmLXb0pTF1jvtKi7cvIAJAWi3eNFag4IQsVB0tXcQJJhNA1hb6sRRTHNL2QQspkreF0j9WpPXfW/sa6PYPC1a5D6/91M/Wt6zW5YjbW/rb6/bWwXfqRAnQEYjU3wgnaid0wt3xxt4OY//uXT/Obv/DQto+5lSbYHNBY9+8GMHsLr3fT6M+mqF//YduiM5hsgGBDAwxIisQxdVcWoAopI/EvVhgqpIhjQcbUZRG0LS1WNBUMRUlUWQLbVMnaOh/Y34+tqyzWPd5MgrtlILaKqckwzMWqZIDEKOiaguOHCeMGFqoO5ZbHcM4mYxuYmsL5ZrPLgA6FIGvqDORNSk0fP5SsIz+UN9xcuZ10D5Nuta7KRUwUo6oqUby9VUsHnQ52x0Yxa2lYuoauKpTb3nVvqqZ7+7NtHtjdw0LV4bsXm3zx+AJDeZufe2QXUSwbfZoCfVmLB/f0sFz36E0bNNyAPX0Zmm7Id86u4oUxUSQwdehJW9TcEE1VyJo6aUtjsdqmvTkt8AcYnasgBpRIIFT5s5Yb8HsvzJAxVWxTpz9nMVqwef+Bfh4/uNGW5vmLJXb1pHGDmEPDWf701XdnKOhsyNwwZq3pc3g4z6P7ejm71EBVBGEk+PqpZQ4OZjg/mOXNmQprTZ+PHx1i/0CWJw8PcmgoR2/GJGPp/NIH9m57rFenypSaHu/b38+h4RxLdZeRgt3NQAC4czTPnaP5Dc978vAAL0+WSBn6VUz6L7+9yIXl5lUL9g4ePzjA4+9glkIkBH/48jSvTJUZLVjoPSl0TWWp7vHqVAVDUxktptBVWeAOxcZCjEBa9mxGLBKbWkH30aoivZ43J+t1JP47uaM2H2lzPsFO5s2cJceoinN1xt9O513jOt7cN4Otjl1M6ezpS3N+uUUupbPccKk7ISOF23vs9/DOwjJUvORavVEdkQCmyi5ZKyCOBaoq57HejImmSivnT909ygf29fOHL0/x6nSFrKnRn7X55Q/s5eXJMqam8oU351GAQkpnV0+G9x/s528+upulust/eeYSWUvjycPjjBVTTJVaLNZcejIm+wez6EkQadMN+H/85WlWmh69aZOejFSCrDZ87hzN88m7R6g5AbGQxIiffXiCE7M1Wn5IJJAh6kmexB++MoOpa9Qch0rL442ZMioKpq6QMTSG8zaVlk8hZWIbKmlD57efnwIhsAyNSETkLQ1T1/hXnz6KH0mbnWLawA9lNmPTi4iF2KBq3wq9aY3ypt2dpSuYmgyq9hJSTKXl81MP3nxRwt8mK6u2w53lcvUKK3g9ielayFhbW/DmLY2ye/3j5myNctKgm9hhSLy7DXtvKGsxX3tnslW3yyt7YLzIl8+uXvXzX35sL14Y8utPXXhH3s+1ECZ2ndfjSwhgvGhLBbQfkbM1BnIpGm5AKVGEjRU1UKQN+cmFGjPlFoWUiRDSmlTmbgXcHURYhsYdwzlOztfoSZv0ZxVGCik+eucQl1ebDOYsFqou9+/qoT9r8l+fvSSbX22TXb0pUqbGzz+6iz99dZa35qooyHwHx4+kG4Cu0djU3dvc+B0t2owVU1Qdn2NjBWbKUpkGMFNuM5i3sXSVlKGRSxkEUcwThwb49L1j3VzUlYbLn7w6SywE79vfd0Pq6JlSm0urTY6O5a+ZIXMt6Jq6wVWg5YXMVx129aaxDY2Dgzn29mdkTsMW3m3PnV/l1ILctQ5kLXrTJueWGmiRPI+9GZPluk4YCs4s1smnjfXbtY3vRZVrqO/ljkRV4PGD/fyDJw+SWmfZnU0KRe/hrw62EgOr21THOtekgswZEQkpzlQhbWmSWOOF3Wu4fRvdYd4pqOr2BT1dufL7jjNFZ8b3whgNBV2XWaOhgP6sRc42qLQ9luoudcfHHMxxbCxP24v40btH+NS9Y3hBxJ++JokCAzmLn3l4F1n76ntrfQ61+i4QA1QFMpZGHMU4oUBXFfIpE0tXubjS5Ntnl3loTy9nFxs8tLeX3XWXlhdyYaVJ2tTpyZjYusYThwZYaUj1XBjHvG93H0dGCvzOC5O8MllmvCdFueXz6L4+7t1V5H2bbHE7Sg0hBAvJGmm+6mx+uxTTt5d4vRM8c36VC8sNHt3Xx7GxjRu388sNYiFoOCE/fKyHy6tNvDBmIGcRx4JH9/fx2OH3shT/qmD9uuXRfb28MV0lbWq4foSmKQxkLZYbHiA4s1RPiNORzFRUZW55Z0ztrB+VHawj3y2sr/kqgL0u1511P38n326nJn2rxxDAr3xgLz3r8hazls7f/9B+js/W6Ekb3QZZ0wv5k1dm+OrbMtO1kz0dh4LFutwrq4rSbYCBdIdpuCE/+/AYb802aHgBhZTOXNUBIdeNbT+WijFN9hKESGyy2VpVvf7vlspVjmbbNbGipF4n4ndf4CGg6+YEiZ1nZ+rqkF1v4fWbzrX7DLeyOp0HXlYU5YvIz/Fp4BVFUf4nACHEv7uF1353ISBlqvihtBEUyGKvguzCyoKuZO4EUdy9ACvtgLYXgKISxvK5tu6jawpaMmB1FB51J0BD+nW6fsyZhTp3TRRZbXiM96ZJmRpNLyRjGqRMnbtG82Qtg7YfMlZIcbnUYrHmgYi76grHj3HDmImMwUI1wtQV3EAuNBGgIGh7MX6U3JRJ6J+iSHvD9SxTW1dxwoggjHCC+CrG1rUGlZ60wUDWpOIE1JNg1JYXXbczvF14+s0ijuXEkTJV+jImy4mV0u+/NM1YMc0Du3t44tAAa02PuhNiqApNL6LmhpxdalBu+di6gqapqKogZ+m0AzkJuUJ+57GIrmqAKcguvaYqON9nzbGdTAaqKi3cOvaWQsiJLIgEThCST9kM521+9J4R9g9kt1RJOUFEIW2iAI12eMOF3huFpkDG0hnMWQRRRKnlo6sKxbTBw3v7MHWNs0t16k5AEMWsNv1uoaHth3z+9Tl+/tHdjBZTTPRev7C3UHX47oU1QI4HP3LXCHePFdB3YI3Vl7UwNJmlM7nW4hfet7v7vKm11oY/320IAeeWGizXPIIoZjhvS9VfSXrNRyLCUCWDUddViASqIjao/Npb1DQjIb2Y10PZogHWwXpf7BuBdw02zHbww4it02M2bto3v1Zn838jfsi2puBuQ2XVoJsnaeuQNnXK605m58paaXikTJWMqXPPRJGDgztTgLyH7x8UbIO6K6+6jLXz0VFT1lujRZiaSkpXCcIrc/RsuU255XNxpUHLjzA1jf6cZM1eWGny8uUSpaaPpkm2WzFt8I8/coAjowVJ7Aljzi1Ji7PXZyqstXwGcxYpU2fA0lEU+Gc/dIS352uUGh7nlhoEYYyhq3zyrmEODxcYL9pU2gGmrvF/+ughqm2fPX0ZVFXBCwVfO7nEuaUGOVvHC2Oabkil7bPW8okiGaQuBBwYzHJEzeKEnfwzlUrbx49UTi/UmehNM1+TyjNTk3P1/oEM+way/K9/eZpS2yelqwzkLASQTwnSplTfn5qv44dX+5/D1k2oIBLU3ZDXpiqMFFNkLI09xUw30+hm0J/ZugjT2iEfyFjnW2HsxMMCts2RbO1wrWIZGiRNMEPf2ZZB2e4Uqe9cQTxlbX3QufrWzUJNVcinjNtuX7sTJCIuSSAz5LpxqylFUyUJri9r0q8oNLyQQtrg0b1F/vJtaXl6cDDLwcEcX317gWo7wNBU9vVnOTZW4M2ZKmtNFy+UecSWrvLQnl76MhaCmMNDeQZyFrqmMlKwOTFXYyhnc2xU5hQbuooVCfqzJj9x/zhhLLi82kLXJLFvvuby+Tfm+EdPHuhmwpaa282uEmtNn4ylsViL+IvjCzx5eIDRoo2Cwh0jeUpNj7Yf8bEjQ7xwaZXd/Rn6M+YGBYoXSLUr0M003tF5jwV/cXyeIBJMl1r8rWuQnm4En31tlko7YLhg8zMP70JRZGEkiOItFfz7BzIUUgZeGHPPriLZlM6bs1VAMJQ3ydsmb81WcfyQSluwVN/+nH4v2OBbvYespW9ogL2Hv5rYaqjc7hbsPDSIIQqu1Lb8GEInqRHcRqnX+vXSO4WtPqsCFFMaD+7p4/hclSAStLwATVFQFOReKpbKgF19GT52xyCX1lpkTEmMfOp0iygWmKbOEwf7aPkxlq5iGTr9WYswiunLmqzUpZKqkDK2vNf29mfI2TqxEOwf2N4C6nZABe4czvHxY8P8jxemCJLcnZyl4UfSYvfP35zntSmpTK45Ab/0gb3EAk4v1NA0hZ95aAJVVfjph3dx13iBL7wxz0LN4YtvLfDshTX6MyaHh3OU2z6GrvL7L05xYq7K3/vgfnq2WEspisKH7xjkzGK9q+o6vyxrO/dOFDe4sHgJUWponQ3v7YYbRLwxXQHglckyx8YKnFms0/RC7p0ocm9SAxzIWRRsndemKpRbAUM5i0La5H/62OEbik94D9/fWL9uccNYWtbrKkIIDg9lcUMBTZ+aE9IOImxdJYhEYvsuSNsqcSxzFxFCkhOR7jO3OyfxRqGwhehhE3PHStRN67kO6xsgtwMd8sHtwB+/Osvff/LAhp9ZusbDidq9g8urMidsteF1ewSd9+L4ERNjaU7M165qVPlhxO+8MA2K7BncM15g30COStvjjemK7DWQNIYiWTNKmSpeJK6bP7+5AQZJfIDYWpzSabJd62W3I2LdKNa/jMoG4TSKIvesmiLzNg0loLJFZvdO8cFD1yYR3MqO9FLyXwdfTP68to/YO4Bb7V2qSUG9kFIpt3y8MO5mTfRlTOpuSBDECCEDiTsZWwIpT7T0GC+MCKIIL1TpTRvs7UtTTJv8m5+4m5lSm//bV05TanhJUF7EStPn7GKdejtA1WQxN23qVNo+OUvaEv6t9+/myGiBqbUm/+ovTiPY6MXaCW6fKrURAixdJ4gDQNqVCGShxNIU2p64wkoSsO4PYiELbClDw00aYFcVgLWts3IUReZZrDQ8Gp60COh0qq+HWykmbYUT81WeObcCKBwazpGxDExdoZxUmDrZTx+9cwhVUSikdfxQMF9xOLVQwzZU+tIGuq7R8kKqbdlAURU5ELmBzFDbCnHMVY3DtK7Q/h7nTXQUNteaYwxV4aE9vaw0PebKbdq+DAJWVIWetEksO6qcWWxwaVXaDmxu/nzsyBBNN2CkYBMLwXDBZqZye72sTQUsUyGKpWXoaDFNb8bgxFyNIIL9/Wn+xkO7ODZWoCdjcvdYga+dWsI2ND5+dIi7xwp888wyr0yVOTqS5wtvzvPI3l6+fXaFo6N5Pnn3KMdnq7T9iAd292ywTMja0kLBD2N6EjbZThpgHXRCd2tJcH3nuY8fHODEXJW73iHbiutBVxXu3VXkwkqDuiNYaXqoivSwj2O1myl4YCjL7t4MPWmDV6fKnF9q0LzBlctW++T1k+HtvlM6RcbN73LzIgzk5llLGsGR2GZBIK40rTrQla0tERXkgsWPxLaK2GOjOSZLLbxQSFvWTddTjGSYq4pceO0byPBrHz/8jvj8v4d3Fk5wpbkZ3sBu5f6JAm8vNgjDmJSp0puxEAJKoY+lKfRnTQ4O5QjjmKYfsas3w/7BDA/s7uVjR4Z46XKZMBZkbJ0wirBNjcG8TdoyupvrN2eqKIr0ercNjUsrTeYrDjnboCdtcM9Ekft29XDfrh4uLDc4u9ygN2vwY3eP8aP3jpK3DV6bKvMXxyUL7h8+uZ99A1mWam6X6Xp6sU6p4WFoKY6M5Pnk3cMsVGXzTigwkLepOwHHRvPU2gEvT5aJhKAnbRADBwayWLqCQMHQ1MTKWKE3Y7LW8PiNb11kte6RNTUabkhlpUUQxzy6tw9T03j6/DJRsvlUkWs7LVE8B9HVY5OuSjuvWAhMXaOQMvjYnUN87M6hWyr09m+jPElbULt27wCQ9ozUpSVhT3pnOTvbZa8WbIPV9vUPqqxrP+yw74aib/3APUWTN94hkfhmBVL3vVyj8XZgIIupqwTvhnfzJnQIdm54tcWvZcjwcU1VqbQ9gjCSGYCaihOErDY8Vhoea02v29Dp7E00TToz/NNPHMYNYp45v8JnX5tjsebQ8iKWay7zNZehnM3evjRvzNYAaQ/5kSOD/Ma3L/LCpRINVyo6B3MmP/vILsZ60jx/cS3Z6wh0TSVjaViaStsPCRIK5xObXAI6mC61sHSNr5xYZLbS5sJKk4d29zBbcfihoyN87dQiv/61M6w2AoaLFrV2wHAxhePHnF5soCgKH0/spSZ603z4jkHqbsBDe3q3PN5WUADb0AiikPRtUigJIWgl108rCQ5dbXr0JwziavvqDvdDe/s4NJyTOau2wV3jBd6aqTJdbiOEwlzFYW9fipML9W6Ty0oaj5vxvbaLA0CBp84s8+j+Pu6Z6Olm8r6Hv3rQt1h/dnKirlWAjNc1/q+1J1WQ86+uKUSdgu8O8U7eC6Z6NQt//efxw5jXpiuSAC1ktt/R0TxzVYdXpyuJckPQmzbxY8HfeWIfAzmLX//6OQayNlEs97BTJUdaoZoyR1UIOdb+9EO7+KNXplmsOvzJqzP84vv3XGUDe2qhTiMJAD+5UL+hsfGGocCjB/r4a/eN8bnXZokd6VRwbLxAzjL4zrkVzi41eGtWKoYNXeXsUoNfeN9uTsxWOb/S4I9emeVnH9lNyw+pOQGTpRbVts9qwyOMYspNj7vHi/zYvaP8xVsL6Jp0LFqqu1s2wQDuGi9w13gBkFnaXz6xSBjHXFhu8JMPTHTXb597fY6Vuseu3jQ/8cD4O3KKqm2frK3RdCMODeWYLbf52sklQNaTHj840LXXFkKwqzfNa1MlTi40sA2V33zuMv/rp4+9I+/tPbz7WL9uuWe8wFOnlhjO26w1PSIBTTckSHIDDQEZU5IG3SDGj0EIGfNhagppU2cwn2Kl4dJwQwKS6BsFNEXp7nfWj4mqAmayTtwqT2ozbqTnsdXj1uftqkinM28Tg9jUVUI/vu31n/XHvZkemwDemCkRRvs21PqiWKrzCymjS6CvOz4n5qqUmwGqsnF+GCum2DeYxdY1abkoBClTEgVUJVn/x4KcrfML79vD/bt7+fWvneW4Ur36vSsyqukGeF8bEIlrONHsIOutIw661sOuZZnYPdSmf2dtjXriSpK1NAYLNnv7MpxbqlMJVDSiq2pvO4EG+Nf5UDe9CxBC/Kubfe73Ate6ESxDZShvy2KRpTNfaeEGshhad0OcpIgQBtIib8PrKhDGCqoiiFGxE3uiPf1ZHt3Xy9sLNX7/hWlqbZ+0oZIyVXrSksVzbKzAS5fL1BwfN4hYcyWT5tRig9WWz6XVJoM5G4Es0Cqx6Fo3KkB/1mC8N00YxVScgN6sQbsSdv1jh/I2OUtnse7S9KIuo6CY0mn7kWQdkOTqhLH0HmVdswy5UbcMleG8xVrDp7ap0BALuoGNNwIFbhtrUAjBt86s8JUTi5TaHhlT4zvnXMZ7Uvzaxw+zXPeYKbd43z65OX/sQD97+jJMrrV4ZbLEnv4MIHjxcolqOyBtqggU0qZKLCRTXldlUOFWt5Ng60L490Ny2PW+GQ3Z4AljwYO7e7A0lQsrTWxdY6Ro8/E7B4mEwvHZKmEUkza1LfMXCmkDASwldgeapt522fNA3qTuxURxhBcKBnJWUsxU6M0YTPSluWe8iKoqDOdtDgxm+dAdg0Sx9NY+t9wgY0lmnRvGmJrKn785z4WVJm/MVCikDF6dkqwtIQTvX2e5kLcNfv7R3dSdYEfKsc148vAgr06V2d2XIbOu+HIzPuRhFHN+uUlvxmT4NuSE/cpj++hJm3z77AqnFmqUWz4FWydnGZTbPqYOLTfklckSh4ZytP0ILxLYhoq/RebOTqEp0nLMj0RXWdWZoAWdkFgwdA1DVag5VwdUXwsCeX0rbLwPorij7E3eB9CXNTFURaptkeP6HSN5Ti/Wu4/bSjihSZe4LpNFU0BVFYSQn2k7ZZmmwEzVwY/kwiOM463VKDFJgVFs2Xx+Dz8YCNZNEDvtHectjU/cPcp4b425apuMqdOfNZkpOzhBRN7SOTJc4K/dO8p3zq7QcEMODmX5zP3jrDU9ak7I44cGWGv5eEFE1tL57sVVxgppVhseh4dzyfuJuXM0jxtEPHagnxcvl8iYOkN5m19+bC9OEDG11mKiN83BoRz/4afv4+25Gi9dLvGNU0v8xAMTTJfanFuS7tivT1cZLab5wpvznF2qM11qk7U0+rImQRQzV2nz+dfnWWl49KRNBgs2f/3BCXb1pJivOvzFWwtkLB2B4NP3jTNWtFmoujy8t5fejEmp5WPrKueXm7x0uUS55ZOzNWIR44eCvK0zWWqjqgqzlRa6qqIpkqQSr9ucpC0DFRmAvD6qytIUspbGWE+a4bzFeG+KeyZ6+LF7Rm85eyi9jTXhvr40by60r/t827gyd6TtnS3fR4vbMMJ3+FnW27m1d7j7Gt8ms7B2MwGOO0R2m3N7x2CWt+YaW/5uojfDLz66i//87ORNz2Prcb1CsIqcexRFksoEVz9YU6Uzg2JIQl2p5dNM8kT9KEBVFGIBvWmDlabH+eUGl9eaHB7KEQsYLabYN5BFCLnGfmB3L2/P1UiZKrqqMl1uU2r5CCG4XGpjGxpuEFFIGdTaAdWWz2rTpemGZCydPf059vSlGcrbaKqCpqg03JCMpWEb8j55bbqCocn1/FZ7zhNzVb51ZgVFkcrCnK0zmLWkpZep84evTPON08tJ812n3LYot3wylk7ONhgtpsjZG7/fm8lvUVWFv/7QBAtVhz3XCMu+ESiKwo/dM8r55UbXCvvoaJ7VhocQXGWB1UEhJYu4qw2PUwt1/tkPH+bzb8wzW3F45sKq3LMK6dSgKtI+LnKjd121uBOYukrdCfjuxRKLNZcziw3uGivw0TuHvtdv7T3cZmynmslZGu0wRkU2bVK6Qrm90RFGsNG+U1n3c5BKgf6cTa3to6gqKpHMrY4hpUsSyErj6qbyO2WxZevyHuzJWHh+RCRkDaVTsFs/1rcDgRsG6JpCxtQptXxema4kRe+Qcssnb+scGMxyYq6GF0glSBQL0qbGo/v6KKYNZsptspbO7r40P3RshLmKg6GpDBfsbqxDJ5NsMyllMMkfFEL+/XZh/fntkDcUAd88s0ytHRILSeIupg16MxYP7enl0mqTC8sN2l6EEwhsoWEbKk+dWuIrJxcptXxm1qSqeK3hc2K+xnDeJghiMv06jh8xlLfJWDqHh3L82scP8dz5NbIpg/0DO3PDkHbhcHaxwXxCgv6b79uDEIJyU5KJSq0dsI9uAG4Q8dLlEm0v4vxyAwE8caifB3b3srDOolFX5X3khzGnFmrkbYOhvJXMGwIvjLm0sjPL63cbe/7Zl7/Xb+EHFp11y2dfm2W61Gam4qCrCn4YYxnyetUBRVETVzEVXY2JIrl3lHmB0J/V0DUSsr6sNuqKbDaP5E0Wai4JJyfJFZRjRySk6KO+rp6ZNRVCoWywo9UUadfacIMNP99qrN1MBlaRa1zTUHGSNb+qgheKq/a/LT/ujimdPzeTwm5kbO+8RlfkgawjxZtJzesgm4oq1XW5zCrS1n2zrex3L67xxnQFRYGfe2Q3AzmL47M1qu0AgcDQVAQyfiifMhguSFv/oyM5VhoexYxBGEnlXqnpkY0i1loBxbTBI3v7KKRN/vFHD3JuucGJudqGDy/E9la810LnHApAUUFLJt/1fNydZBR3XOME21sXC26s8ZhJagNt30lqYYJyy6fhhPgJCd82VWkNqVzb+lNPGpCdh5iGcl1XsptugimK8iDwL4Dd619HCHH3zb7mTWOHd0jagPWkPB1QNQVT1/CCiHYgFTCmrqEoid3Qptf21/l5KcCuHpsgTm5gVXJmq07A8bkqtqFyYq5G3Qlwg4h0ziKMBS0/pOoE3D+hcmgow+vTAUanUCM6EsqQt+drxKKGqans6UthJ3ljQRiRtXWEopAyNIyUzmrDZ7ntSdtDIWWWTS8EBOWmDFZUkJYVg3mb+YpDEEUIITMfnEBeYClDB8JksSXzQ4ayFrMVF3eHBZCdDFqyyH17FA3H52r82RtzTJfaCAQLUUylHTBbbvPvnjrHp+8bo+mFPH1+haOjBe4eL/DUyUX+0zOXiYSgN21wdDSfqHSusMVztk5vxmSkYKGgkm46zFTlgsnW5YB0rYFji8ihdxVbfQ+SCat085qylkEYxyzXXXRV4fBwjo8fHebgUJa7x4q8NVvlvzxzCTfpBPzUgxMbfMfXYyBrYWgqa02fhuPf9k1JzQnxwlgqeSKpvpwrOwRRjKaqFFMGXz+1xNPnVmn5IYM5i598cII7R2RhopAyUBWFO4ZzHBrK8eThQX73xUkurDTpXecVHkQxr0yVqToBHzkyiKVr3ecXUlsX2q6H0WKKT987dusnAXjuwhpvzVbRVIVfeN/uW/Y598KYfMrg0/eOsNJwqTuBDGr3fdxQWpsu1300VWG+5qIiWURhIDBVubi50Wu9o0j1AkHaBEXRklyQK82jKLm/ojjCSt/ceQ+5OmAzBpR1M3SEZHCnTG3DxL1Yd9ki7mwD1kvOFZKF1iYlrQb0ZE0cP8RQ1W4zvdYOyVoqtq3jJkz/9W9UQ2YtyPklZrrU5k9fneXH7x97x+w73sM7A38d+20nQrCcqTLak+K/PTdJGMXs7kuzfyhL0TYZzKfwwhgvjDm9WOdffukU8xUHTVV5375e7tvVw4uXSoDg4b29+EFEzpZFBSFgpelx765i91gfvmOQIBJEccwDe3r5oWMjTJdaSdFF8Ecvz9D0Qu4YzvHDd41webXF7784zfnlOlFSaN/dl5YKV1VaGLS8EEtXWaw6lJsuk6sBqaSxlrN1TE0jn5Ke6hM9Ke6dKPL51+d4bbrMxZUG94wXefzgAB88PAhIy8fjs1XGelIM56Vt20LN4ZN3D3PncI5//bWz1JwAQ1PI2mnGiikE0J+xuLzWkhu+dTdlJKDuBBsYeyCL5ClDIUIhiGJ6siY/ft8Ek6UWy3XvlkkHpdbW6mh3h9aE1XXKrVpzZ0rrStvf8ud5e2ckpMa67NbajgtGW28tCptZZLcRhW2Y4bHY+ty+Pl3hf//GeSbXmtJ28DZ0wa73EgJpBXYthDHUnIiUIWh4CrahoiR5vSlFbkCH8xagsNr0ieMYTVf5yB1DfPq+Ud5K8gqmy2329KUpt3x0TWX/QA5TU2i4AbMVh1o74NBQlmNjRZ45t0LDDfji2RUaXoCpqRwbKxAmxLnvXizxqXtG+eXH9vK7z0+xUncpJ5ana02Pg4O9TK21ydk6OVvH9SN+87nLeFHM335sL81EnSAEPH6gXzbPiinWmh6fe32OydUWTS/E1FXSpsZATtofrjQ8dvenuG9XkUf33R5VQ942yA/f3HpiO0z0pjeQoyxd42NHhroB6ZvhBhH/7buXeWO6QsMNWam76JrKp+8d5cJyAz+Iurlxlq6Ss2V+TtP7/iqK6grs789gWzrjPWl29aY5tyTf47nlxntNsL+K2Gbb7oWRLBgKmW2jKFB1HXTkGrYzCodxp5imkDJ1Wn5EEMVEic34WtMjiqXtuhACkdxCbgi9qsp40WKuemUe6hR4b3dGb+eYqgLVloeqqnjrMl2UdX92lGuS6C9o+6HMR9cU3pqpEIUROUsjjAQvXS7RkzGouz4vXFojiuX+tSdjMl1qc2gwy+HhHLv6MlxebfDZ1+fRVIVf+/ghPnFsmBOzVQ4O5bbch4/3pPlbH9iDiCUx9Xah02zTVAXb0Gj5cj21XPP41pklWRAVgmOjfdw7UeTRfX2UWx5feVvhwnKdsOFjqCqn5qvMVV28ICKKBaV2wAsXSxwezmFoCj1pgyfvGOBjdw7zrTPLnFqoyWK6rjKYs/nZR2+MuNCftfjJB8aptQOySeEfZO3ph44Nc2ZJNutvJ16dKic2xB6qIt0KOmr80WKKz9w/RsMNOTKSp+2H/Omrs6w2PRYqrpyby23ZbBWwuy9N3Q3I27d3vnoP33vUnIBiSsc2NAxNYaGW1FiFrFsYCGqudILRNenK06kQCCFYrnvM17yuA5WuysbqUM7iyEiemYq7wWVHjo/SmcYNQlT1yl607gvUTRU7FTg4lOHMQv26WY2GrmIhurbeuibVZr4fd5VBUSwtHbdCRz21WUygcYUscS1y2XpEAh7YVeD1mdqV11cVirZBpeVffYxkjaUoygY7XUVViJHf03rVacfJxfEjvvjWfFJPb3cVfANZkzCOKbVCWl7ImYU68TDMVh00FCqtAF1VyKUMfvmxvfznZy6BIte6v/p7r3F0rMCxsTyXVpob9qe6IvcXmxt5+g3OfQow2pNipeER3eCmR1Egn9LZ3Zvm9ZnqloTeG52G236E54fEcfL5opisYbHU9BCx3H90MtY2b+XWl/ZUrjTAOj8fyFo8uOfaecG3siP9A+CfAm9zc2rD24atgoc3I2ZjAwySAmksFyyXVoOuJZahq6jI5kjK1FmuO1flQAFkTI3BQoqqE+AHMXeM5HhlsoypKTh+xBszVUpNrxtcWGv7aJpC3ZU33lNnliimDQxNIWUaOEGIF8lBUE8kX2EEYRRRagU8sreXUwt13EDFDWPytmRwepFCzQkIkgYByJu+7vjMlMPuINnp4jbckJyp0vYjUGTgtq5KRUbOUgApTRQCGk5Iw41uyJJgp4/0/B0GYWyBOBb83otTXFxtcmAgy1DBTiwNpcw0jgWKojBTbvNnr891/fYPD+fZ1ZviS8cXqTph0u0P5UJ83egob8aQ3nQGw9C4vNpipXFl4e1+jxtcO0GHnSGQ371cZJrcO16k1PKZrzo0vZCWH1JuByzWXO6dKJC3dU4vxpxdaqACDS+kN22wVJeB3dthKG8ldnLiuoWem4Ebxt3BPowFF5abBFGMG0SM91icXKjT8CLenpOWhrqmEsWCn390NweHcowUUvzsI7vwo5ixomSq/70PHuDYaJF8SueB3T3s7svw0uUSs2WpbBgtprqhu5sRxYLVhidVRO9iU6IjJ49icZUF583gz9+a4w9fnpEMtFh0/aY7DeEOs6PDQNaSGUYgm0DaTXzXgivqrKYPYz06tZaPG8prdv3ZDAVUWsFN5YYpbM1K2fwaLT/eINMPI6g2/R1NbOvfk6EpV+WUySZcR4WSnFORWKkkeZKHBrOcWmx0Vzi6AvfuKnJ+uYHjx10ffUWBR/b1svs2sdjfw7uDlK7gdObhHTz+0HCOuhviBnIevrjSpOYE7B/M8v79/Xzo8ABTay1enZJ2h5JVrFJqed2G27mlBm/P1bBNjYODObwwoj9rMVtp89z5VX7o2DBtP+Lpc6t868wyu3vTfOn4An/vg/uvBP66AZfXmsSxYChvEUQx3zi9TNMPWKy79GctXpmq8MNHhzkyksMLYp6/sMap+TqP7O3lmXMrlFo+XigIY1mIODqaZyBn84ED/RwZyTHeI4vHK3WX5y+uEcWCo6Oi2wAD+OrJRdaaPn/w8jSHBmVm2GDO5uunlnnp0hoLNRcQZEwdFRLFvYmuaQznbebK7avu+fW3aWfhHMeChidIGQpVJ2C14fK1k4vomkrDDfi5R3bf1PffQXEbEoXj72xBMVu+0vh6bd0m71qwja1HzPYOKYXrhf4rzZ2t2RrO1g06/R3Mt7i41GBXX/6qn2/XYDy9UOPMUp2G49/WTIJrYbu5S1OSQkBM104riAWVdsCdwzkylk7DDbm01sTSZH7wBw8N0vIjZkot9g9k+dQ9o+Rsg2+cXuLccoN7x4v8+P3j7OpNs1x3GciZPLJvkDdmqlJFDzx9bpVyK+DSaovpUouzSw2WapKtPlxI8VCSfSAErDVkxu7F1SZeGJO1DCZ6U4wWbR7d389oMc2X317kN5+7TMbS+e5FmaE6kLX46YcnJKPT0Dg6mu8S4CRhL8Y2VB4/2I+lqbxwucR0SaofNFXB8QUXV5p8aN148P2MqbUW//35SeYqDilDZTBvM1JI8eAeaSkL8O2zy/zxK7PSJltIdU0+bfDltxeptIIuEUgI6M9Z5FM6re/DTUcoYKrc5pF9vTx+sJ9P3jXCK1NlTs7Xtl03v4cfbGxn5+xGMofcSmoMIJsNPWmTlKkyVbqigomEzKR0o4D+JHJCVUTXLkrEEGzyUhHA/BaewQJZLxFCXNMOUQfJfr+a23xNxB2y67rPLa29QAgFP5bKtwODWZpeRKXt0fIiHD8kZaicmK/LXHkFbEOVhM20Tt0JaXohbT9EV2VDcDBnsac/Q9sPeflyiVenytKlR1X4Hy/NMJCzePxgPweukQu8vmHihzGTay2G8/YtNcVCIeMIgkiQsSSJtuPCUmmH3RpD0wu5tNrgm6eX2duf4ehonpnEqrfth7x0ucJo0Wa4kKIvK/MSR4o2o8UUd40VaPoyR/EvTyxQaftM9KTZM5BhcBsb6Z1gvCfN3358L6cX6twxfGV9cHAot2W++a0imzi99GdNDg/nSZsaD+zp6f6+s3cTQvAvv3iKN2er5Gydff0ZWn4orcqF4MBAhoGcTbX1XhPsryJ+6NgwuiqJTLPlNilDo+5cUWd5QYwfxhTSJqNFm6WaS7Uddhsh7qZuTsqQ7hkxMJCzyFo61S3YyTHShcDSZfzD+p+vRyDglcnKVTWmrcbOKBbd+lDO0mTDbtMDO8TmrbDd+nv9DsVMHDpq7fC6DldvzdY21H2EELhBtGWTLWVoBGFE09v42bKWRtrSNjg3ATx2sJ+MpXN5tZm4jJW5tCadR3RVYW9/lpWmy2ojIARmK20m+tLEAuquT9MLsQ2Nw5bOzz48wR+8Mk2p5eME0k73jbkqQzlL1ucTpE2FIBRXEfWU5P37kbjKZnI91n+uIIalmnNTlooKUGn5KCiJjfytb5wiAfP1K/tKP5Y15/UuU3rHYmMTNCBeV4Bb3/Tt/C1/HeHCrTTBVoUQf3ELz79tuJWMlFjQLfZGApRYEMTy6hgqGPiR4OhYkblym0o7AAR+4uHvBBEnk7A7S9c4s1BPivLSD73clLLmjGlg6DJ7wg3Crk9qTxpmym0MVWGiN021LRmUpqGST5koqkrd8YmFVCq8PFVONoUhShKSHUQx4z3SqmS54SYMKtkk8MMIsa51qiiSrVV1gg1NLUOR6gXb1Gj6EVF8he3kJ+yBdwLbWQPtBKcWanzt5JJk1gYRj+zvp+GEzJRbjFk6h0dyHJ+tkrdNjs9VqLZ9oljwwqUSb81oVzaUCcui5gRXTQKtAN6crZFb51f6gwJN2ZhfpADFtCnt+FI6p5caNLwQJ4hQkIvcOBZMrrUJI4gR1J2AcisgjGNUReGX7rg2qzOM4cE9PTS9gLYXdrPzbhfW770UpIfuWsNFURTJdlcsbF1F11QURdodemG8ITh9YJNFhKmrfPjIleLKRG+aWAgWqi6qIht72+EvTyxwebXVDUN/t/DBQwPkbGnruPnz3AwabkSp6VNzAnQVRLKp22CBkeTnhLEcJ01N6Y4hm++MjhR+p/05AcxVNm5uN9+LnX93lIyqohJG0XUl3IKr2UXKptfvfM71a4iYq1kn1zpG58+tyAIpS6PhBvgROOtqyArQcEN0TaHUDnjfvl6+c26ty3harkkmoUCgJWN6GAmG8rdugfke3l3U/SvXxU7aCOeWGmRtaaUwnLV5c67CTLlNuRXw0K4ip+br1NyArG2QNjRcv4nrR+iawj0TBWxDpdT00TWF43NVejMmP/fwLj77+jy7ejOcXWrwwJ4e3piu8uUTi8yUWkyttbh7vECl5XeZbzNlBwWFhhfIjBsh6MkYHE5sUYtpk4f39LK3P8NEb1p60yc30mrTY7iYIrWo44U+cayQtXT+5qMy63QzHt3Xx1++vSjtS5N78Zunl7m02qTlhdSdgLNLDU4t1Bkr2nzkyDBuEDFVaoOQ656UqTFbcVAUqbT824/t5c/fmt9wb2dNjRiBH8TdsWH9WCeEtM9IGyojhRQtP6KQUunL3PpYG20zJzajnTWX1m/szB0GdDnb5JL6WwvErn18sbNNz3y1teXPy21ny5/fDmTNrc+HF289SXzw8AC//d1JHD+S5LPbiM02X9dDJOR/miILuqauUHdjVOR9dMdIgZWGy0y5TSwECgq6ppK1dH707lEODmXZ3Z/h33/jHMdnq/hhzEzZoeGG/MdvX2ByrcVcxeHnHtnN33hogm+fXWG14WEbGk03wAskEc4NIpwgRgjB2cU6P3RsiNFCmkgIKm2f339pipWaS9MLeOJAP7/28cPkE1u/cttnqeZwbqlB2tSIhUBTFMaKKSxd49BQjkurTcotn74kL2tXXxpDV0CRzbKJ3jRfPbmEG0b0ZUzGe9KkE9XYDwpem65wea3FWnJ+K+2gSzY7NlbA0KSqoeWF3QwPU5f5jqAQxl53PEqZKqN5m9OLDZxgazv27zW8SPDqZJmcZfLTD+/i0X19PLrv2uzb9/ADjGssjCXhV9DwQgxVIW2o7B/IcGlt6/kgimGtIXOThnvSBFFEuS3n+hu51t1QbCdQ6yIEENsK2TZ+Dq49dsdI0kKH2OQGMbOVNlEsaHqSuKSpct3UmfJDQeK4E7NY8xjIpbANDS/Jz6u0POYrbcptj8NDeZxAWuB6YcS+wWzXMu34XI27d5gh/bVTS1xaaZIyNX75A3t39Jzt0FnCltsB/RmDA0NZLq40aSabsEjAy5dLvHRZEsEtQ+PgUI5IyGtCVRS8MGK24vDRI0Pct6uIG0QcGsqzuy/Nb3zrAm/OVvGCiFjAwaEsUSy4e7yIAjyw+2ol8JszFY7PVrlrvLDl7zsY70l3yVbvNO7b1UNvxiRlyPzd7eCHMRdWGrQ9SXb7v/7YUeJY8IU35ri81qbS8njuwio/dvfwu/K+38O7i/GeNKOFFGlDI22oCEXZMOaEiRjCDSOW6x5s+r26qcbS8EKypoYTRJxZbGBpGgpbrxkyloalKwThtRtKm+sZ242L6x+3XTbvrSIWAj+Mr9sAg6trT34E/hZr/N6cQY9tMlNuXfW5Rgs2//yH77wq29TSpXXtUN7mS8cXEAj6syY528A2VD5z/xg1J+Bff+2s7BUISSYdztucdwKiGFpexPnlOs9dXMP1ow1zBKG0au1s2wwFUrqOENJ2NmLjFKwpChO9NhdXtp5jt8LNRiCHsaxfLDc8bEPZUf7XjSISMqKgs9PUFEgbWve62nAPJFLBbba4LNd9vntxtWtTvhVupQn2LxVF+S3gW0C3gimE+LNbeM2bwmbPzlt7LXmBRQLKLY+spZOzpHXPRG+aO0fzPHt+hck1h0hAO+mEpgwNN5Sy9pSpkDE1HD+k6cuSpqZo1DxfsiF1KRVdrjvoiY/+St1DTbr4fiSouwG2rvLo7h4mqy6OF0p2YNJxV4CCLj35J3rT0u9fV6g7AWEkaLk+uqZj6WAIWTwd70mhayqXNt0sPWkLIQQxgnaQWBpsMdR18gxul8rnZvJtLiw3OLlQo5gyu/kgMfDlE4u4fshIwaIva/Mjx0YZyUvJp+OHiZ2RtDcL4hjLVFAjgaFCJERiRSbRubE7xejGD1gDDDpZdfLvmgIkRfSa6zMcWSjITCeZzWByudTG1FT6sxZ7BzLMlNu4QYyhKRRSkn32I3ePbHu8IIoxdYXJUgsniDk4kOL4ws4H5Z3A0JSuPc9IIcUdwzlOxpI9GEaC+8YLHBjKsn8gy3zVwQ1injw8wNGk4NpwA751ZgVLV/nIkaFtg7t392X4pcf2oCpKl9W1FZbrku2+2pB2ozfajA8i2aC7UZZXytT4wLq8sp2i2vZ5+twq+ZTOhw4Ndt/vQ7uL/OFLCoam0PYjohgsBKau4IcCTZMe0i0v7DIgs6ZKydn6vnin+uaGApqmEsUxYRxhmyqxiLssopShYKjSNmC7wi9IW9zWuppz3pbNUj9kw8R7Iz1cBXnPZUyVhneFRKApEIZRd9GxgZ207vm+HzFTdjA0pXstuWGIqigUUiZ7BzKMFW3+wQcPYL+Daor38M7gGpfjlnDDmCxgqApOJO2CglDQEj5fPL7ESsMla+sM5SyCOE5yM2Lmyi4vXy5z93iRu8bzLNVcDg/l6MtYzFddfuzeUZ4+t0Jf1qInbSabIRXbUMnaBrv7ZIPsfftlEVPXFAaSnIlnzq8yXWrzmfvHqLR9fv7R3QSRYHdfmoYX8jcf3Y2ta3zn3AprTZ+H9/YihOD0grRn602bPLq/nztGtl6Q3ruryBMHB3h7vkrW0njq1BJvzlQxEzuw/QMZvnJyEdePmK+6HBrK8sU3F4hjwUDeYiBroSoKU6WWDBq2DL57cRVdk00FLymUpS2VMJL3oqaqICLq3pUvSFMVTEPDiwTnl5v8m5+4m1LTZ7LU4vXp8jWLLdfDVGnr3C93h72hu3bleXOmDsCH7tiZMmY7o4TDQ2kuV65vqWipV2xf89dQgq/HeM82DOvo9q3Vr8bWr73d59/Vm+H/9VP38NSpBf7rc9O39Z1slQ22eVW9OUcBEkuYWJA1dIQbgyLVFFlbo9KW7Mtq22e14aEq8KHDA2QtnYf2yryRcivA1DU0TeHDdwzwgQN9fPvMMnXHJ58ycIOY1abHPRNFhnK2LNLGHfawzUfuGORzr891iUO6qvDRO4cIo5hf+d3XqLR9Lqw0SRkqr0xXmK043J00h/cPZFAUWfzsz1r0Zk2OjRX56J1DCCH4szfn8IKY88sNfvF9e3j6/Ap1JyRt6owUUsTAnaM5srZGFp3HDw7w1x8cJ2Ppt6UBfaOYrzj8zguT9GUtfv7R3RvWgn4Y8/S5FWIh+NDhwQ1z8oHBLKPFFIamsqsnBQqkTZ3hvN11DHhwTy8/fv8Yf3likaYb0J+1+blHdjFfdfnCG/M02wG+kMc5sSDzg26D6P8dgx8Jjs9VeO7CKo8fHPhev5338A5C22LfrifNe0OFMHE9aAUCNYDLK3XK7e1VjIoqbQSbfkjbC2i6Eeome1ojUVE1/XjbrcVObw+VWy/caQrdvB2Qa3o3uFLMVBRZK8lbOmEsic9GUjuJhbTYWmu4CGLylkY2peOFgpoT4ngRA1mLUku6CPVmTO4aLXBhpYmmKhzbVNC7tNpkcrXF3ROFqxRTHYW5F8TbEnBuFkEoMFUVy5D7RENTZNabEDjJsWpOgKWr3DGcZ63pkzJUYiHQVYWFqsvHjw7xF8fnee58iZWGg6IoBJGgmNJZrDld1VSltTVJ6IVLJfww5vmLpe66bKXhkreN7+k+aSdOHZahce9EkZcul9k/kKHa9jE1actWa3ucW24gBPzd33+Db/3ah975N/0e3nWstlxenioRhlKxYmtXnBdsXUb1mIaCF8h4noyp4gYxuiZrU+XWRvK+E0SkTJW5ikPN9buNsqQEiKVDzjII4hhTVXY8Zpoq2IZG/TY0uFRFzhdpU6Hq3sCYFNMVkOwE1yMy6KpCf8bmJx8Y43+8NMN8tb2hOfRj946xd+Dq+ziMYs4sNiimDX7l8b0IIfjjV2ZZrLkUUgYRsH8gy0DWZrHmEESC0wsNRoo2GVOj6Uo1nxfKHkCU1PPXv9doHdlQkOQ/KxCJkGjdORBIgQxbRx5fF+YO6/kaoGtSyNNR9LV9QTGtUW1Ht73c50dXejG9SZa4rkh1IlzZX6mqQniNKIGUqXG9suytNMF+CbgDMNhY13vXm2A7sSLTuMLe2WozoULXj77uBihCdrQNTePccpPBnM2HDg/y9z+0n2+dGeCffu4taokM3NKlDNJMfFstQ0cAhq6REgrDhRSxEFSdgDgp0Cp0VGihVE1EcfdmUBWkVF6V73UwJ23mGk2POJbNAEvXUBCMFW1qTsA94z1oCzVcPyIIQ/JpEzeI6c9a1JyQsaLF4aEsYRwxXWrjR5I5PVaUn+vVyTKNZFUnZZhXnyRdBU1XscIYP771OrfYqdRiHZ46vYzjR5xdWiRr63z4jn7mKi6XV8vMV+Qi6vBQlpYXMrnWxAli9vSl2d2bwdAUZssuXhCTt3VMDWpuSLyJ3bx5mF+vQvk+3od2YSQjhKnJ66c/a0nLCEVhseoSRoLBvE0kBE8eGuTjR4c4v9Lk8mqLjxwZYL7islx3Ge9J892Lq1i6xi99YM81j/nlE4t84c05Ti/UcPyImdts0K4h75eUqZG1dHb1pru2hrv60lxebZG1Db5zbpUwEgxkTf7OE/skiyxpkr81W2UyYSTu6kt3m2Mn52vUnIC8rRPGgrvGCjtqTH3kyBAn5qrcMZy/4QaYF0b84cszVNsBjx3s56E9tyfv4lp4darS/fx7+jLsS8KFv3h8kZ6MScuPcP2IEFmE73yiIIL6Ogm6H7EhQPSdgkKyudal7YhcxCk0/cQyMZS+6dJWUI7hoRBc707dvJ9SFJWetMFS/YoaTVNBFVI6bmnS53mhdrU9oprYjBqaykDW4kfvHuYrJ5eYLcvFTTFtyAlbkefr6FiBIGEAmoldp21o+EJQqTmy8ZrSKaQN7hrNI1C4a7zAY/v7KWTMHyhG/Hu4eaiKXGxbhoahqoz3pJkutzE1hZrjYxsalq7RkzY5s1Tv2tBauspa0+NPX50hEjBSsAGFuhtwcqHGp+4Z5e99cD+mpqKqCveOF8nZOilTZvnYhsa+dQv/Q0M5lLvhS8cXmK86VNo+pxfqvJlkEv7UA+NcWm3xlycWuir0tKnxybtHyVg6k2ttPnzHIClDp+2HvDFd4f/znYv8ow8fBGRjHqDlS+VHIW1wZCTPGzNVak5AGAtplTNeZKRgU7BkthnAH78yK9XvQmAq8vM03ZC9/RnytomiwFzFoe6G5FMGjh/hhzHlVoBI1i+GJjYopkEqolVFYVdviof2SOvRFy6VWG14zFccDg9v3cTbCY6MbN0cOjiS5c256+f9rN8E7nhDuM0669zyznZO/Tmra0O1d4c2rFlr62bZSE8aKO/oNTrYaeJlT35rpve+vis/3zxL3z1e5KnTS5jazbMjt8Lml0rrkrzRaSZmDJW9AxlWGx5rTX/TnkQgItGdVwZzFqfm6xwYzGDq0k6r5Ye8PVfjrvEif/eJ3dQdn5cul8nZOk8eHuChvX187M4hgijm8lqLxZqLpqrMlFqsJPPc0dE8Hz4yyO+/OEXKkLnIP/ngOGM9Nn/y2hx526CQtvj6qSUurzZp+SGaKosvelIU6VvXFM3ZBv/kowf59afO89ZchSPDeSotv7u2MlQVD0ms+uNXZ/jG6WV292W4a6zASMHG1FV+67kp9vRlKaYNfvy+Mfb0b2/79U7jD16e5sRcDU1VeHhPL/fvvmJpdXqxzqkF2YzuSRwWzi03ODyU496JIncM57pjrBDS1jJvy+12GMXMVRz+yUcPsVJ3eXWqwmLN4b9/d5LlunQgkGnOcv1xOyxn3knoCmST/OTvnF1hpGDz3Qtr7O7L8OQOG/Xv4QcHW+WIFFIaoOIEIaqq4SdN9BhYaoZbhtN3rMpB5piXE0uo5EfdVbytyzG83I5o+DvNpNwaKpBL6aiKjJDYqhakIMk/gzmLclNm7vTnDBpuRCu5F5Xkf52Im7vHcrihYLnuUrQVQgE9aQOBwuGRAn0Zk6+eXOxahilCukAs132EgLQX8sTBAaK4zkDe5iceGOO5C2vU3ZA4Fqw0PAZzFrv60htsRr0w4ssnFoliwWLd5W8+unvDZ9k/kO0qpVLm7WsKtfyISttnrDeFuxKRNuCusQKVdkClHUjr7YzMJnpoTw+6Kq1tX5uucGGlwdvzNVKmxuWVBs9fWqPmhOiqymDe4v6JPEN5m30DGQ4O5Wh6IY/u78PxZXO0k9EtP1+GM4uN7pr1uQurvDZVIZ8y+PlHd2147M1gqeaStrQdE1VbXshXTy4hhOCH7xq5JokW4B8+eZA9fQs8d2GVf/a5t2n7Mvdc4Ur0w6W1Fs+eX+WJQ++RC/6qoeGE+EmOVssP0HUNNYqk01gocMIQw5N1PBXQLFn/0lSpPt08fEWCxLEsJIqv2MkKZI1EoFJ1pUtTRVy94O2QdDdXUPwY/NvQAMtZWtdZquVdqTF1IoO672MLErJUQG2/58mZKkIIWoFAV6TabaRg0/QjLEOj3vKpuvK8aJrCeDHFJ44O8Yvv38tizeWpU0ss1lzCGHK2xn3r1nvr8fylEm9MV1AU+LlHdjOQs/jph3dhmxrVts/r02VevlyW7mPJ2236ETPldtehi85nEdIGV7DRlkNZ9w2EQjqybIdAsKXt5XbQlStOTdcq03YcnXpSuswpdhMSvHol47PuRGQtFdeLd+RwAxuvrU5zdv+AjalqnFttESU9jlgIBnOmtLBVFF6drhC6IR3tgmVoMqZFibovuPm6zVoaH9h/bcHArTTB7hFC3HULz79tUBSwtshiAchbGqYugzzDxKdUX3fndW6qlKEy1pPG0lWmSzInDEAg6E1b7O6Txcenz61wfLZKFInuYKGpKk1PTl6WrjHRk8INQi4st4jimJWGy0/cP85Tp5ZZbrgIIbN8OgxMRUAQRgwX0pRaPm0/JIhBEzL/5+G9vbw6VWGt4QEC29Ap2jp+LH2Wg0jw1KllFqptGl6EqUHWMsinDPoyFm4Q0fACXpuucHQ0z4HBLEt1F11V0FUVU1NZa/mEkbRQDLehHPox6MnA+71qBuVsnbOLdWZKbUxd5dxigyOjOZxALhoUBGeXGsyUHVRVntvVhseu3jS6oqKrklnb9MJEpr/zY/8gNMA0JVmgJ5/zwECWz9w3ShjLHILlukfDCelJm+zrz/Ijd4+wbyCLqqos1Vym1hx++Nhwt6mz001szQlQFQUniGkH8Y6t5HYCS5PsQ8eX+V+7+9MU01K1oCgKHzo8gK4pvHSpxEuXZejkmcUG3z67QhAJHkwaTCOFFIpS6drRAMxV2nzj9DI1J6DS8tnTn8EJIt5/nYET5AZj/8DNFWlqTkA1CSmcKbXflSbYSMHm5HwNy9ho7WXrKhdWZL7a+u9tAzOFjT9/N7SRKmAZKi0/RlUku9QP5QJRRYZldt6HEHLRqLIxF8DSFA4MZHDDmEtrUoWhQTcbAKDlhxu8uEE2/jobdz+CcjskZardTbB8beTkA4wVU3zmgXF+9Yn9PLy3n9/49gXqTkDK1NBVheWGtDN4eE8vP37fGH/8ygyX11rs7UsTxLIRe2GlgWEoPLC7h70DGe6dKJK1dM4sNmgFEXe+1wD7gcWNEih0VRZhwigmUBQ+emSQ47M13CCi5obcPV7g4FCWjKnjhjFNNyRrG4wWbWZKbZaTOS9lavz1h8b5zWcv8/TZZb7wxhz/548fwjZ0ZisOEz0p5iptlmou5abLBw8ObLDb9MKISAjafkS55ZOxdESS3RHFgsWay1LNpe2FnJiv0XRDdvdl2NOf5cN3DFJMG0yvtXmzVOXyapOhnM1zF9b4/7H3lnGWpdd573/zPkzFXNXd1cw0DBrNaCSNyAILLLAtW06cxImTXDu5Tm7wJrm/mzjo2I5juAYZJNmWLcliGA0zNFNVF+Nh2Hw/vKdOV3VXdVfTdM/oPF+mpw7ts88L613rWc/zc/dtYGSxwl+/Osm5uTKtMYPOZIjDA2meG13E1BTOzJXpTJgc7E9xfKrAD0/PsbE9hq4p6IrETLFGsebi+cIQWnjwKOxri/GBfd08N5Llyy+PU6wJ35GEqXB2rrpi7XLqncUrfisZOhImj+3q4sEtbSiyRFfSZK5okY7omGt0EK8HE7nVk3jhdb7n2dkLhauXxrPrek1IW/29K+tMrpeXUd7nS+vTUJwtrN4FHjFvHju7VF392uRlJLmL+XIBwju2LWYynrtyV9y1our6Kw5+VUewSVVFWhGDLvkSFy2PuKliajJzRYt4SOOJ0wsNmS1DlXGDgI1tUaqOx7/72nFGFyq0xgz+zoMbsVyf//m9M7TFDMYWKyiyiHlTUR1NEVKKc0WLL74wzpaOOC+PZZkp1PjKa9Msli1CmlCZePzkHIWqQ9n22NebZHNnnG2dcV6fyLGvP033MompIAh4fjTLQtliMCMKfHt6U0QNFUmS+PCBHkYXKiTDGp+vE4Amcwt0J0O8d3cn//nbpzg9WyJiqDy4pa3h1zKdr5GvOmxqi16X9P3VIhXWxRlJkehKrdx7W6J6Q6o4Zmr83lPnUGWZ41MFPnf/hhVdCJIkNbx050sW/+YrR5krWNyzqYU7NmR4faJAxXYZqZMTG8dTbv8zh65IDGTCtEQNwobKXRszPHNusZ4Mz7GvP0XiCp4MTby5YK2Sb1uoeLREZJBklmhoy3HxTqPW4+9AgoQp1gdNolEEU6ULjPOaC6fmKpjXWMSRgUxUo2y5SLI4+2XrXTeWSBqsWIMDhOLOHQNpXp8qkK3YuL7werJc8W9Fpl7gFt5YWzrijCyUQTKRkEiGNSzHx1BlNrXHcD0fTVGoOG79fgRs7ogxXbRwPZ9MxOBtW9sxNJG4PTpVJCBgoCXChpYIM4UaT59bpFBzSUdmeXibsCZQZZmQJjwiY6sUXI5NF2mNmUznLYq1a/dgvxiW6zNbtNjVk2A6b6HIEvsH0vzk3YO8eD7Ha2M5vnNiltOzJWzX5+HtHbx7Zyf7B1L82XPjfPfELCemi5yWReeXKkuEDYW3b23nn7xrK7bnE9aUxnp/br7MX70yiapIfPRgX2M9fcf2Du4bbiVUX2+PThZ46XyWkKbwnl2dtMWvPd54YXSRH5ycR1dlfuJw/7o81Y5PFxhbFOfMY1OFK57rW2MGO3sS/OEz58lWbBxP+L9drMb03WPTzSLYWxCpsIYsC/UXQfQNLtnzlxpdfESDQhBc8DBeLT5w15Di8QMaXl2X66ZdIhVfLocnIYgvNcdb4RkmAcmQQr7mXZJbXeoW9gMZ2xP+XEufd/FzV8vLLu0Hq0GRhZz+8ZkCdsHC8YTPu+MHdCfD9Q7aBGOLZeZKNoOZMAcGMhwaTJGv2kQMjS2dCebLDoHro8oy3hoSEqWaw+nZkiCOuR6eHzBXtDg0kOa7x2f47rE5FkrWJSoQrhewzBUBSYIvvjghrFwueu61NIisF4rMFW1E4IKi00JlqRZSL0Quuy1LaniGJuMt8/BaDl0BzwNNlYXkdxAwWbAIAqGcFAvp7OvL4AaQrYlcXEhX8P1A5Mw2ZPjI/h7+/p+8wktj2XrhTML2fJwgIGGqVB0Pxw8uKeq1xk2y1cvve9dTBHtakqRtQRAcvY73uEGQiIU0rIsO6JosPH7+9gMbeG50ka8fmRGmbpJEMqQhScL8XAK2d8cIaZow40yHWSzbyLJEfzpESFOQkHjizDyzxRpHJgr49UEqJmZA3FCxPXEo3dub5KmzC9j1SbRQtnnqzAIfOdjLS+ezLJZtjk8XcJWAar29X5Vl9vaneHE0i+V6woNHEl5hbfEQH9of4T9/6xS267G3N0nZ9kTRYqEiBoTrN1pVbQ90VaEvFcb1fXZ0Jzkymac9YaIrMo9sb+dbR2dE4qts8f2Ts/SlQixWHBQ0RrOV+l2l8R2XcLWyTpeDvwqjbDWMzJc5MplntmDxg5Nz2K5LriJ+n4FMmN5UmAc3K3z5lUlczyMIxIHfD+pdc74ojCmSqBAFgTi8XWwseaNxMw+xFzMlZESX1FJXYVhXiIZ0htujTOZrxEwNLxDyWrIuU7E9EiGV6XyNodYoL57PUqy5FGtFDg2mr9pr6pHt7RybymOoMrbrX2KmeT2IGQq5eo94EIiONtFBI7O3L81c0eLsfJnvHp+l6ni0RnU2tCWhPi+WsLEtyk/dMygCbl0sfboqUx8WKHWPFWkNWSXH8xldKNMWN6/bqLY1arCnL8l0vsYdG94Y/4Qd3Qm6kiFMTW58f6CRTHd8n1LNeWMqXOtAgAhkloIfwdAULBRdEYen5RNsKbhb+pMqw+bOOAf6kzx1ZvHCfKwnGsOqjOV4DRP6JQhigyigVV3BUrU9XyQGVSHJaWoykiRTcwQ70QsCOhMiUXZwMM3BgTTfODqN5fr0tcf44L4ezi1U0BQZ1/fpb4kQC2k8MNzGsekCsgSHhlLcu7GVU7MlchWHk9MlvLqW/vMj2TekUNrEzUF3Qmc8L+KTuHH5RK4ii7EcNVQWKg6ZiMxk3uKe4VaeOD1Pf0sECerm64Ik0xE3CekKxZqLoSls74qzozvBrp4EYV2lZDkcnRIFlN96/Bzbu+JUHR/P8+hKhTg9W8L1Jb740gS7+1Lsr7Pg/vzFCc4vVji/WGFXT7Ie36SYL9ooskj2fPPoDCPzYmxnojpVx2NLRwxNkfn44T5+9RsnserekwXL5fBAmmPTRbIVwYIuWi5hQ6FQddjUEWNvf4pUWOflMeFl9uzIIo4X8MJolgMDKXqSIWIhjSOTBYZahPfZRK5Ksepguz7zJZvfe3KUZFhFVUU3Rr7qiMNm/R5LiPXB8y89WHk+TBcsdnXHeeLUPPmay10b0uzoTpAM6dck47wEVV495snX1sfkW3428tfZbV1agzyfCmtMl9ex2C8bruvd1e01YruTU1fudrsY6jq3WlNb/TizXCLqYh81Q1X4icP9vD6eZ75Y40YpXy8pTyxn4rLs30H9H95FMahej590RcSwVVuqxygilklFdAxN5oHhNvb1J8lEdGbytYaJtusLWZ1vHJmm5ng8e26RwdYI5+bL7O9PUqy5PLari0RI5Td+cFb4zHg+h4cylCyPY1MFcvV52RLVmS7UyFdsNEWhIxninTs6CelKQ9K05nj81SuT1ByP7d0JvvLqJMemCkQNlV98ZJj7N12QXS5ZLi+ez5IIabQnTJJhITFfslwWKw4RQ2UgE0FRJO4fbsXxfL5/co7vHp+lJWpwcCDNPZuuXgb6WvGRA70Mt0fpz0TouMjbpScV5jN3DWB7Hn/58iTHJoUP2rauOBO56pod2y+fz/HM2QXKlkfJcvm3H9jBQEuETFQTie/6eAgbIglQucgxfjWG9K2ADMRNhVhIQ5FlPnFHHw9t7cDUFJ45u8BswaIzYV6xE6KJNx/WqkMXai7psEbRcomFVBQEQ301T96elMlcSfidVx2fzrjBVN4SJFVE7sMPLsT3js/6MndrXK+qKCiK8Ikey1bwfZEMDhsKjuc3fOGX4AFlx61LjtlUai5OvYMhZgipFUkSZ8eYqfKdE7Pkqy5xQ2F3X5o7h9L4wJ0bMoRUhV/5i9cF4aJxEyQ2tEapOR4np0vs6UmwpSPGN45Mc2yqyES2SkciREhXeOfODv7shXE8P0BXZWaLF8gaiizx0UO9TOdrq0rwbWiNMF+06EqaRPSrn4sXS/YuMfeDQCgwaYrCxrYoxZpLEATMFCzuH26lans8fnqefNWiUHM5M1tiKl+lJxlma1ecx0/NoasyqiyRCms4XsDungSfurMfXZUvsSo4v1hZRryqNopgkiStOMtGDKFmEKsnRq8HS4Qf2/XJV511FcF6UmF0VXSk9KTWR1psiRp1aw8Lx5VJhFThS56/ELj1ptfXgd/EmwshXWnIlNpegKbIhDT5kn1/CRKr2ymsF1dKywUIItaVnhfVZVJhFcdVmCqsPGAULY9wXbp26ZolRBFEVxV8PGy3LmdXj2dWy5VenH+WpfrZ2BcWSLoiYdXJZV0Jk4l8lfHsheKTHwQslGz60hFmixa5qk1XIoShqbTGTZ44M8/fHJlmc7uQr35xNNvwI7Qcj5OzZe7aeGnhOUD8bq7n83tPjhAEAVN5i9NzRSzbYaFkNdZMVa538CkypqqsKMioksRErkplGatElYQ8cCqsMVW8BtPmK0BCELyvBhf/LhePTKO+3q11GnV96G8Rdh4HB9J89bUpgvraZmoKybBGAGTLNqamsqE1Rtl2mSlYbGqNkokYpKMm6YhOJmKgKhJV28P1fSo1j+HOOIsli7HFCu5FwbEUwNYrKLdcT4R6D/BpSZLOITzB6gXMYNd1vOc1QZbg8ECKr7w+s+LvEUOlNWby9aMzxAyNREgjFdJojZv89N2DVB2Pvzkyje8HxMM6bTGDsiXaJSOGSrZsk47oBEF9QpVtQpoiilaKjISPIkF/JsTBgQxhXeHQQIYnz8zTFjNpjxnMlyxURWzq6YjOz96/gafOLPCePV3M5qv81g/PYbsBhq6SMFUUWUigKLJExFA5OJCiNxXinTs72dIZY2SuxJNnFzk3n8P2fExNYb4k/AGWFg1NEX36x6aLRAyFA/0hDg9m0FSZ3T1xxrM14fujKXXPGQ0/gL5UGD/wqXk+FdujJaozmavheN66pGKW+92sB+5aZg3LYDke//arR5kv2liuh6EqnJop4vg+YV3l8FAaxwsoWQ5v29JKb9LkT1+YIFsWxrpBILS4VVWmWHXwAwlFri+eFwV3S4v/rTxjLmmdLt/sWqM6WzvjQsqmaCHLElIgZDVdvx7ky0KGKm6q5KoOluMT8X1aowYxU2O2WCMT0UmFNKYKNaqOMNvc0ZMAYEtHjMlclfa4SWodwd7FSIV1pvNWg/FwI++hrqmott9Y4M7XmVaDrVFeGF2sa+4WCIKAlqjBZ+4eoCsZomJ7jWTuEpaKVzXH4zvHZwF4354u7LpEadXx2NGdWPU6/ub1aU7PlgjrCj91z+C6ZFjXgiRJPLj5jZeKSa/i6XJmtkTYUMhXxHqymoHozYDKBe+95VDqherlBS1ZgmRIxVAVggBiIY18xWKuJOb58rVn6VfpSITY1hnn2FSJ8Wyl8V5hXUFX5Lp+toJXD3oE+0mEY33pMP/w4U388XPjvDZRoOZ6jcJESFPoSJqML1ZR6rJQHznQyzt3CANjqV5ki5katucTM1TSUZ35ss3Gtiib2mJsbo8Lb0JVYVdPorGWg0gW5ioOLTGDTETn+HRxTRm1Jt4c2NwRZzw/D8Bg6+V/y8AHTZMp2aLNf75kEzWFDOBAJlKPScQaO1OoMZgJ8+iODuIhjal8lXPzFd6zu5P2uDiEH58uMJ6t4gdBw3NhrmRTrLn0psP8q/fu4F/+1RGOTxfpTJiMLVYa6+ZC2UZTZDa2RXlgcytbO+OYmsKP7esB4LW6XNjWrjgtUR1TU9jfn2okZAxVYV9/ilcn8gy1RvmHD2/ieycX+NaxGTa2RtjUHqUzYWJoMkMt0UbS9LFdXXQmQqQjOlP5Kq+O59neFSdqaDy8rYMNrRHGshWmcjW2dsb5v/7ydREEBz4DLWGOThVwPI+YoSHHhYTbEkMXxLoSMdRVZSQCYCZf4+98/mVaowbxkIbn+fzs/RuuZwgAQuZ6NfSno7w+vbpf2HL0ZSKcrHu67updXa7jYmRLq3c4DbTHODZ35e6nnV0JHj8jJAwf2Ly+IsSW9tWvreSsr9jXElaZrzMQd3cn1/UaZY3sbEv0wp63miRUbzrMnRsyvDC6yI2I/mREzFZ1fWxXxC2GJlG1/YaszVJ8tzzOi+kSpqaQdX08JMy6J6fnB6QjOrMFC0OVeGBzBx/c18PXj0xzerZMS1Tnk3f08+cvTRALiY6H7d0Jnjg9z3BHjM6EyYH+NJoi8czZRVRZ4kB/imNTRTzfZ0d3gi0dcSayVUbmy0RSJiPzVVRZpi8VphIx2D+Q5McP9F3SiXV2rsx4Vki1fOvYDK9PCGnW4fYYvakwX3ppglzF5h3bO3h5LEeuIjrgP7C3m83tMZ45t0hb3ODoVB7b8dnTl+SxXZ3ETI0nT8/z5Ol5Ts+WhEH8dSY1rxaJsMb9l4nREmGNqi2TrzpEDMEKLlkuf/rcGI/u6GDrRd6H0/kari9+dU0RiYP/+M2TTOSqbGmPUXN8IVfu+6j1jM/yZJgiQUiVKF3GA+FmQpOFHLUky0R1le5UGF2V6IiHODVb5sEt4roOD2XY3ZvEqBdvm3hrwdRW/01tT8h+yrJExXLJRE06dZXxXO0SiaKWmImiCH+bmKkyX7TrHdmi+JUKa3i+T77iNtZHVZXRJYmqc2mXwRIUSRA93YBGclmWJeaKFooUYNYlyINA+IQOt8co1VzOzZVYMa0CUdTrSoYYr8cVAdAeM/jQ3m7+6rVpooZCIIGMxOm5Ut2jRGZXT4LP3idihel8lV/64quMZStkIgaG6lK1PToTJu/Z08U3js5g+z6n5soECAUfx/NZrNiMZasMtkYYz1aZL9oEQcBr4znuu4gIEDM1YmuQMu/a0MK+vtQ1z0U3WOnFvXQOqzkBcVMloivs3dbON49OM1+y+cqrU3zu/iHevrWNiu1yZq6EhEQmqtMSNZBliXft7KQzYfKHT4+SqzgslG2y9e/79aMz/Oy9kUv2mT09SWbyNQxNxKJr4fBgmsWyLYgWFxEXrhZ3DGVwPTEWe9PrK2i1x00+e+8gwLqlGPszEf7V+7bz+WfPU3MEgXlrR4x/97XjFGoOcVO7JI/RxFsD3z8xu2JttByPgZYICyWLku0S0S4QwAGihkT+Ih8tVV4paychyFSe519100JUF92xa8nECvsHMHQFVZaZq9Ya/ulLLxEEBkiHRWNISBNEg1REJ6KrtMR0Fko2CyWLfNVpkIzlOvFB4gIBQlHADySkICBkqHTEDCzPp+p4bGiNMp6tYLs+nQmTUzNllDqxcam7zA8CbNdHVWTipkoyrPNzD/Ty/EiWl8fyVG2XuZKQ7K65Lst4F7w4sshn7hq45D60Rg26kyHGs8Ly4vxChZOzRWYLFm7gX/CFrF9DxFSIGRphQ0WVJebLorjl+EJxrt6MTIA4CyhBIGSFubp8+hLkZfmzJaiArEhCdtIPuJijqCt1D07pAsnBZyXhanl9QZbEGHNdH4LL53sloC8d4nd/8hCSJPFXL09A/ftWbY/Fkk3Zcjk1V6JUdWiL6/SmBAHEI2B7V4IgCBis5z5Cuoxl+/zwzALdCeG7u6SYUXWXFRRl2NGTJHUFH+vrKYI9eh2vveH4zD2DfOfEXKOdvjNu8L693eQqDiemi/RnJB7Z1iESKG1CqiNRZ7GZmsLBgRSaIjNbtPiLl8epWKII9Kk7B/GCgFfGc3SnQswWa9w/3MpQS5inzi6QCuv8zL1DvGdPNwB/8/qUCEo6NDZ3RHl1LE/NdTkwmOEdOzqImxqbWqOMLFTo2N7BqdkK5+ZLbOuKs7kzzpGpIkgSm1oj2L6Q2tjUHuP0bImnTi9yZDLH+cUqmahOzfEI6yq6KtOfDjO2WMX2PKKGRtXxKNYsNEUiCOC/fGwvp2YK/Nr3zjJbqLGzO04yojObt5jMV7Edj3hIJWKqBJJoz33H9g6+9NI4U7kakiTRkTCIaConpgsULDF5VVlMOkmSSIU0FisOdn0FjekKjuetya5dKF7ZDf7MbImR+UojsRzSRPt/4NSNDaMm5+bLzBVtkmGNcwvVFcmQoE438LwASZYwFZFYWOoIU2UJmYCwrtSZWjKuH+B4fuN7rMZQMFRhAG65ohBaW8W4OkDo1BZt/xJWA0BLRFthbLm0mYiNRiYT0QkQBaq+dJjhjhgtEZ2NbVH+7udfahSFdEWmNabTHjdxvQDXDwhrAYoss1hx+OSd/WQrDt89Pkux5uL4AW0xg8ODmUZRaFdPkm2d8Wtmuc8WaswWa5RtUUxQuDKbZD3QFYnWqMl8SZh8ypIkJMAcj1LNobU1ykLJ5tBgClNXWCjatEQNdnQlLiudc2Qyz4lp0RnRHjcaprqXQ6nO2Kg5Pq4XcAt9d28YAhCdR2ULzxcdpLK09iHzRkECkhGVXNWrtz1DWFPoTpmoiszoQgUpCKh5AUEQsL0zzrt2deEFAc+cXWAyV0PXFDJRSJgauiIxWbBQJAnH8+lKhkiGhQ9QzRHSUpbroykynakQYU2hWHUxNRkvYJn0hkjgfWh/L/v6U+wbyPBr3zvD0Yk8pi4KcHduyDCQCXNsugSBMHHuTIYa3cESEqausKE1Sr7qEDNVXp8oIEkS27sSjTlmyGIAybKEKV8YTI9s62BfvRtGU2Tesb3jDZWBauLGY0tXgsdPLxIQsKVdJEcjaySTQASa+arDhtYovakwnUkTxwsYbo8y2Brl2bMLlC3BKqs4HtMFi509Sb53Yg7PD3jpfJ5Hd4iD+8h8hd5UhJH5ClFT5WfvG2IyX6Vq+2zuiJEM6/yL927nyy9PAhKHh9IEQcDXXp8mX3Voieo8vK2bwZZL2aibO2JM5Ko4ns9DW9tWsHKX8Mj2DrZ1xomaap1QJIqBiiLzrp2dq37/kK40uj62dcW5Y0iQjCRJJMO/9OIE+arDu3d20pUM8fHDffzuk6N0Jw26kmIf7Eya3DGUYXSxwpdfEjHdEmTA89dOqvvA+GIFQ5EZWSgTNhTGFiv0pi/Iv4VUWKpptUfXF0pvaFu9ALpe1nB7wuR0vQi2vLhzOXQnV+/qXupcvRJSUaPB0I/o6yPItK+RNLpjMM2zI/krvr41bjJfEV1jbfH1XedaCiL5mruMabr6nPvowV6+fWxWFGPcayPx6IqI30xVoex6DGYiPLytjdmixTeOzuJ6ljB7kiAV0djaEcf1A14+n0VXZfrSEXzfx/FFl17cVJkv23QnQgSSGM8HB1L8vYc2YaoKmiLjeB6aInNwIM3TZxfxg4DvHJ/lc/dv4EB/CkmSROdAAI+fmuf8YgVZlpgtWuzojmM5Pts64+iqTEhX6E2HOTNXYntXnERIo2R7DLZGuGtDy6p7UHcqVJcJ84joOgcGUpyZKzd8a5YKz69N5NnYFuXsXJlkWKMjYTLQEmH/QAoC+LXvnQGgVHMbCV1VkYmZGkOtEfb0Jd/QLrDVUKg5fOPIDJoi8eiODgxVuXDPZktEDZV8xaEtrpBfxvjNVxz+6LlRnjg1jyxJbGqLEDE0kiGN07NFqpbLbKnG27d1cGQiz5Nn5ilanvCpVoRE0pIhuY+EJgesQRS/aUiFVT60r4fP3jvEN44JFRFNkWmPG0znLcK6soIUZl5FcBy+di5ZE7cAXrD6GiojEnuBF9SVGjw2dMaZL9tYdRuFJZ/DmuPTmwqLMR0ElCyPmusRliVSEY2+dITB1gjfOTbTkBCO6oJ8ZjkBuaqNIknMlyycehJxqCXMHUMteEHAE6fnmC/ZuHWJ96UCm+MHQp5Tgq5kiI8e7OOhrW38t2+f4sRMkVMzRWr1jHLV8WmPm3Snw5glhVzVYVtXnM/cO0QgS5ycKfGunZ1ossSvfuskJcvl/uFWPnP3YOOeLFZsao6QO8xEdf7ZY9sI6TIRXdhVtMVMZFmiNWbQFjPpy4RxPJ94WfjKx0MaHXETQxXFuy2dcc5nr5w3WY7LzcX2qMZMaW25KAlxNnIUQegwVZmOZJi+VIjeVIT2pMlMwUJXFabywkf8idPzLJRs7htu5cf29eB4oqi/vAi3vSvB7r4UZ2eLLNblwC4nm5oIa3zkYO8Vv+um9piwd6jnpK4HiZDGu3etHp8ux7PnFnnqzAIb26I8uqODbx0VZPxHd3SuScy5GJs74uzsTnJ0qoCpKbxvbw+vTeT52uvTxEyVqXyV3TQLYW81lC7qbvUD4ZO8JFtYqHmN2FWRRPzt+C5WPd+oSKITR3J9fF8UjVIRg4P9KcayNRbLNSZztUZRYwmGIhE1VSq2g+sKgkEqrJEIqWQrHhXLoep4gvSrKzie8C5XZLEuBkFAyXKJ6AqaIqFIEr7vUXGFtGk8pGGoQnEqrKu0xQwihkIyrNMWN1A6JJ45t0hvOoxUvw9V22U8K6S7e9MRijUXta7c4PkBvakQ9w63Ydke3z05x1i2SkhTSYQkZEkmHdXxCehLCXWB81khL63IEhtaI5iawrt2drK/P81c0WZ7Z4yJbI137uzg6ESeqKEh4aGrEu1xk+1rkOEPD2XoSoY4N1fid58axXJFfmmuaKECgSKhKVKDcKpIQlK7NxUSzTqvTVOoCfJ2zFAgCPADCS8IRP42EJ3PiiwIsUvFsKVcuxdIl3Q8yYCuir/HDAVDU9EUSeQqXZ9AEgXWqKlhqjKzJUs0KwTiczIRg/5MhOlCjb50mJ5UiBdGs9iuyC1osoSuKhiazD2bWkiGNCq2xzNnF1AUicWSDWWbmn9BTnNp5UtFNDZ3xBvr8XBHnIWKaNToSwtVF7mudOH6ULF8Uh0Gc0WbgTZBdt3WFefduzs5NlVkV0+C7mSIM3MlvvTiBC+P5bBdH02V0WRRQFVkiZ50eM38wnJccxEsCIJRSZLuATYFQfA7kiS1ArfMxfjgQIY//bk7+Zd/eYRC3WT0Fx/ezH/65gn296coWy4/tk8YLX/pxXFGFyqkIzqfurN/xWbZkTBpj5uMzFcIkNBUiYSusa8vxW//8Bw1x+P0bJFkWOcfv2MLBwbSdC2TvtjXl2KuZJErOyTDOjt6EkiSxPv3dhM3NWqOxy998VUWyjb7+1P894/vZXSxQnfSRFcU2uMmZdslEzHY0BohHTFQZImvvjbFRL7KXMlmsWJTsmU+fccAu3sTjC1WMTSFodYwf/zsGJbrU7YEC8dy/YZu/3i2RncyhCJJPLiljXfu7CRfcfjtJ87x/ZNzooPIC9jfl+Kjh/roSoZ4eFs7x6YKDLeLg/IfP3ceRZE5N1ciYqpEDJWuuEHNC+hPh/iLl8ZZrIiF3fED9HpnyWpntpB5ZabOkakCfekwY4sVMmEhtdSTCqGpMg9tbefhbe386fPjbOmIsVC2mS3U0FWFeEil5vioikRIEx0ksUB0XvhBwOh8GV8SRbBkWGdTe5SkqYliWlQkz1+fyFOyhDSlt6SlG4jgSpFkVEmiJRkiV7ZJhHRsz6diOVScABkI6zJtiRARy6VieyLRoMlkK8K36oHNbZyYKTCRrZEK60RNlel8tV5gEZJ/iZDG9q44L5zPUbU99vQm2dgWI26q2K4IHttiGrt7kxRrYmxmosLDri0W4qGtbYxlq/SnI3zyzgFc30eRJM4vVtjcsTIhdz0yT/GQVveqUC7o2XrBVRXCxKFfLKDJsEFIk2iLhUnHdGYKVcq2hyJLVG2nwQb58YO9jC1W6UqajGerfOXVKR4/NY8kSZdlT7XFTGRJMCOWyyVdDo9sa+el8zkGWsI31GT4VmJJekRsrD4tIZVizWn4KxqqKIjLkmAbref3vLgrS7SPy6TDOhIwW6qRMHVipkrZrmEHovP2Qwe6+YWHhnlxNMvTdWPR1ybyRA2VwZYIHz7QS65ik4kYjC2Weel8jkLN5ccP9vD2rR08c3aBmWKNnqTJ+cUqQ61RYqbK+YUK3zk+y/nFMhvaovzY3h4UWWJ0Qci8dcRN3ra1jcl8jbAms60r0Tg4diRCfOrOAZ44PU8QBBwcTLO9SwRH794V8OSZeZ46s8jUaJbuZIi9fSl0VeYjB3qZyFYZaonw+mSBp88uABfYqZe9f7K0Ykw2C2BvfrxjWztffXUSzwt4bHcXADFzZRFjSUJN12RCmkpYU5grWnzicB+7epOcmyuztTPOd0/MIkliXwvrQmwiGdJEd1h9ePnLKgL7+1NkKzbDHUKqeXev+P+ZQo1N9aJMIqTzyTsHGq/Jlm2eG1kUZCFTXbUABoIN9mi9A3IJr4zlOD5dYG9fiuG6r0/PsuLRY7u6mC3W2Lusk2mxbDOerbCpLbbq2hrWFRbLNvGQxmSuykxBdDAdncrTlwnTm75gGL+5Pc4n7xho7GcdcZOvvTpFW8LECXwsx2/4oYZUj9oaRQ8fWKxYtMdDBAGMZ6srimAxU6NaTyAlw+vbQ1rCaxSklhXB9Mtsw3t6Uzx7Losswd7LyKMuX4PTa+xv793Vze88cZ4A6FmjUAY0pPZAFFzXwpJhMgiJn9UgutfOAYKotha2dsY5PVcWUuU9a8tZLP/MtYpl8dCFeWauwc5uiZn8788c4Dd/cJaXzmd55lx2zc+88F4S/ekIYUNldLGM6/rIsjjMitIFvDpe4OXxHAoSkiSja4JJHzPFITJmaqL4MZkX8qS+T0/KZF9fiq5kiFfG8oQNhRdHszheQNn2cP2AJ88scHgwLXxf615ZHQmDyVyNzvp5ZOlcs7SXvGtnJydminQnQwQEWK5PJqrTUz8fLB0e+9JhtLp6xYcP9DKwxtwHkSj86XsGG0oZT5ye5z27u7lzQ4aa45GJ6uQrDps7YmxojbKxLboiIbrElt/QFuXMbGlFTHqgP4XvB4QNhV09ySv+Hjcbr43nG0W9k9MldtZVFHb3JBmdL3NsusB4rkbRcnloaxtBIGTYT0wXmc4J70RdlRluj/EPHh4mCAJ+5S9ep+b69S6wCnMlSxQMAsHcjZkq5ZqLhOjE0BQJQxUksLXWLRlQFalB4lsNLRGFbMVrxHNhTWaoNUImqpOruowvCoZ1IqyxsTXCB/f38tiuLiRJePIcmSyQDuvCg3JReNFdqzJCd6bpdfpmwsWSsnFT4YN7u3ni7AJji+L8qioSe/rSfPrOPpLmOC+MLgpCWEijPxPGdn1OzZZJhbU6uTCgPW6gSBIdiRDv3tVZ9wD2eX4ky1S+RshQiZsaB7Zk6udkn28cnUHzYbg9wocP9vGJw/3M5Gu0xw0+/+x5NFmiYnuENIWIqdKXDhMP6Xiez2BrlIlcFdv1uXe4lV29SbqSJn/0zHnKlluflx5/722bGF0sM9QS4cBAhpCu8PffPkzN8RuxylInw1Jst4SWiME9m1rIlm0+cUc/Qxd5SP/8gxt58uw8925sIR3R+am7B3F8n5PTRV4ey7G9K0HU1PjcfUO0xAwmslU2t984VYj/451b+Yd/9uqaj0cNhf5MhK6EwUtjeVqjOoYqM1u0QZL49N39/ODkPH4gyIPbOuN8+ZVJAJ46O88H9vasui5MF6p87/gstutz/6YW7t7Uih8EDLZcv+/jegtPNwqvT+Txg4CTM0Ucz+fzz54HhArRY7u7r/j6fMXh1YkcEUN4u0kEvDqe49h0kbLlir21cuP83Jq4fdB7EfnNVERO0nZ94Zu4JA+L6L6yvIDhthgdSbNOvNGwXY9sxcH1Az58oKfeeRWwrz/FaxN5Xh3LMVOwhJxoIAj/gy0RHtnaxn//3hk8fOQgEMWqeIh7NsXIVx1aowa7euPcs6GVybzo5j07V+L3nxrl2FRBnBtSIbqTIaKmytnZEqOLFQxVpjVuCtKc4bNYspjK+wy2hFkoWfh+wM/cP0TF9rE8l1PTZTZ3xDg3XyZX7wxz6tKQnh+wvz+FLNc9tVyPQIKS5dASNQgCn7LlY2g++/tSRAyVh7a28evfP8ti2SakKzy6o4MP7OtZQQZ4ZFs7e/uSJMMahqpwfqHC/v40G9oiGKrCdL7GwcG1z1e96TDn5svsrBfKEiGF335ihIrlsb8vyX2b2+hJhvilL72K7fpEdJWQrlK0PKqO1/D23Vcn34c0hRMzRU7OlJAkiaihUQxs/HqXlVAqk8jEDGqOx2Jd6WwJsgSDLVFaIhrtiRBFy+H8YgXLsYmYCrYbYDkejufTnQqxsV0Q0mYKNSKGhq4qHB7KsKM7zsPbxHn+2XOLPHF6nplCjULVYWShwo7uOJ+5a5CNbVFOz5Y4M1fG8Xw2tEQbObVzCyVSIQ1TV2mN6qQjOj99zwViyL/9wA5+64fnUGVE7jui8/49XWS/doKK7fLZewa5a2MLv/PEOUDkHwE2tsXYuIxEurkjTmtsnqipUqy57OtJ8sJYDk2ReWhzGx+7o49tXasXMpfjmotgkiT9X8ABYDPwO4AG/AFw97W+5/ViZ3eSL/ztu5kt1nhlLM/IQpkd3QlOzZTY0hlnoEUEINn6hpKvOvj1avpyPLKtg9cn8nQlQw1mc0hTiIe0ujm8Rk8qLApAF2m/t8VNdvck+faxWeaKFgOZCDt6Eo0kUrZsk6uzBMezVVRFZsOywOiBNeQ3dnYneHE0SyaqI0sw1BLF9n1Oz5WZztcYaAkz3B6np14F70yYPLy9g4rt8s4dohq6pzfJXNFiS2eMt9eNVRNhjUxUZ19fkolclY2tUZS62SpAdyrcKKLN180lSpZDS0xnQ2uUff0p5oo24brP1NauJM+eFQbeyZBG1FRxfdE2erHutq5eOVhJR3RRFIzqzJWsemUf3r6hnR8/2EsyrPOJw31UbI+/eX2a84sVJEliIJPB9sThsjNh8MpYgYWyxc7uBJmYwZGJPLNFi4rtsak1yi8+sokXRnNkKw6DLRGihsJv/uAs82WLiK7ieoJ5MZWtUnN9AnziIQO/Ls3m+QHb2+JUHY+5oiUkHSI6//mje/iTZ8c5NVskExF+IkcnC2iqRGcyxGBLFE2RuHtTCyPzZY5PFxnPVjg1U2K+ZKEpMqOLVWRJmKgmwzp3b8jw2O4uvnV0Fk2R6EyazBVtZosWTt0r6317unlgczt/9vwYU/kaL5/P8TP3DTU2grbrlAq4GMmwzvt2d/P4qTnsurnr0ckCi+sI3uKmSHIkQjqO52NqMps74vh+UGegyOzpSaKpMmdmSjxxdgHLccmWHQpVtyGPsDz2vVIg3JsO85P3DNQ/f33s9kzUaMybGwnfD1is2KTC+hsewAO8d08X08UqE9kaZcsTjE1ZJFxURaHmeEQMhbBeZ7soElXnQtu3JosOMkWCmuujKRIV269LBcq4HiiyTHtcdGY8N5ple1eciuUyV7Q4NlXkwECK1miIREjnwS3t7OlNUbJc/tfjZ1ko2aQiYjNNR3SGWqPMFmukwpOEdIX37+0mrKu8b+/qB447N8B7d3fxreNCeuCODZnGuu54fuOQdvEBdQkb26KrSnBIkkRPKsyJ6VFKlkNvOszePpHYb4kajUTwwQFRGAvryiUJxULNQZGE9G0Tb12cmaugKjKKDKfnitw73HqJgfwDW1o4MV1CU2UGWyIslGzMuixiZyLU6Nw5PJSh5vh0JAwO9KfIVhx6U2FkWeJ9e7oahuVLaI0ZfOxQ34rrWT4+V0M8pDFXtBod80FdSvFK8PyA756YJQggX51tFMGW4+L55Ho+f/LcGDXH48R0kQ8fuJTx+90Ts7wylicT1fngvh7a4gb5qtOQHFt+wAnpygpCx5m5ElFTxGp3bUgzka0xU6xxoC+Frkl88cUJilW3wQCP6EpDOjJTl0Psz4QbSe8l7OlL8a2jQlL30NDahIsLXUhQsFbfD+/c2IoqH8f1YaB17aJDxFDoSYZEQlxaO+l8aCjNq2M5WqIG3enV1zWl3slhOT7DHWsn1ja2Rnnm7AKyJK1ZDAXY3p1gZL5MzNSIGKuPLc8L6ubYAZq69vV/9GA/+apT74Rdm80XNzVyVUf4i1wcyNcx1BIhGdawHI+tXWsX1NIRg3/0yGaOTOb5Z3/xOq9OFNZ8blhX+MShXh7b3c13js3yxBmJsC4IX+WaR7Yq5KvOzpWwXR/fD0jVyVaaIgsJQQnhD5kJN2LGtrhJIqQRNTWm8jU2tkeRJJjK1/A8n21dcb51dIbRhQqyJPHT9w429o4P7ushW3HIrCH/EdKVRqEYuIRZf8/GVmKmRiqs0Z+J1H1XVy8alurJubgpjN1lBHt2SSYVxJz81J0DgkRTj2vWKpS8d3fXir0YYCxb4elzC0hIpML6igL0rYBgxwo59c7khfh5c0eMe4ZbKNQcyjOie/G1iTyW6/PDU/OULAdDUxjuiAMBWzvjHJkocG6hzANbWnG8gFzF5uhkkfFclYgh/Gza4ya7e+Kcna8wlasKtY2ITqS+vp2YLmK7XqMTRgIMTaY1qlNzAyQCclVX+G74AbYn/EU7kwbv2tHJfLHGD07NC4+mdIR37erg44f6eXbkgmSmoQr5/+VxqabIK8bRWnHTenHXZdbOJm4/GBetCYmQzi8+vJnEkyP85UuTRE2FvX1J/tlj29EUmaihcT5boSVmECByCtP5Gu1RcOpriCILeeKwrtCXDvP8SJauZIh0xOC+za187/gcmagu1qiQxn3DrXQkTFpiJi/WO2m/8Pw4rhfwti1tgERXMkzVdnl4e4dYy3SFlohO1fFpiRrMFS1MVebPnh/DR5BzNrZF2d6V4NvHZlFluG+4jfgqHUqSJDUKYCemi5yZE93Zp2aKbKrHPGOLFb744jhBAB8/3L8iz7OE/QMp0Q1bR0hXCKFwYCDNgWUkF0URxLqL18jrxbt3dq1aBFMk6EqaPLari6ip8ek7+5kv2bxwfpGvvjZNqeaSLdtM5Gp89FBf47pqjkesnpRcIlesBsv2MVQZx/PJxMwV3/XNhj19yUYn2HIPcmedcipfPzrNRLbKVL5KS9Tg5EyR//3Dc5ybLxMxhEXKQ1veeOuEJm4+BlojDSKXJoOiqpQsj1hIx1SFf7iqCHK57fq0J0we3tbBw1vb6UmF8PyA//3EOV6fyDOQjqDUlTLuH25DVSRyFQdFkpkvWWzrilOoOYQ0heH2GKdni0QMlQAXRRJS3HduyPBz92/Edj1++4kRjk6WqDkB76srnYU0BaOuGpAMa0Q0lc0dcdpiBr2pCN8+PoPr+fSlw/z4/l7+4uUJnjm3SCaiU7FFzsgLbBZKNr/w9k380TOjFCou6YjO9q44X3xhnKipcag/xViuiixJ/JN3beHMbJm/fnUSzxcS/fdtamUsWyEV1mmLmeiq6AYDIS/6f757C7/6zVNEDJW3b2u/JI6VZWmFXGpfJkxf5sJ6tfkKPlIgyE8zhRqGptCbCvFozuLoVIFk1OCBzcILtz8dYTxXFd6XtihChTQFAoiHVDZ3xPj4oX5encizY7HMyZkSvh+QiRh84cUxnIojunF1laipsKs7gQS8OlFgIlttWIZETJVkWONzD2xkoWzzhRfGmS3YIneu6kQMBbcuq96VMNnUHudz923g179/humCxQf3dfOxw/0rPFwPDabZ0R3nmbOLPH5qjrLlsaUzzlBrBE2R2doZ59+8fwdfPzLF6xNF2uImqYhOa8wkFhKqCCXLpSVqrrjXqYjBI9s6+M7xWQZbo3zicB/JsM5/+vHdeH7QyHO8f28PcxflMi7GO3d2EtZVbM9jKldlS3ecn7x7kERofSopcH1yiB8A9gIvAgRBMClJ0m1hXPKdY7NM5WscnSzw0/cMcPeGlhWBzDu2t/PqeJ7h9uiqSeeIoXJ4KLPib7oq84nDfSyWbY5Oig6hA2tIqC2ZekqSxPbuxIpEUEfC5LFdnRyZLKw4MF4Jvekwv/LYNk7PFvn2sRkqtk9vKsS5ecFMnC1YKLLERw72MpmrMtgSuWTipyL6qi3ljidkF3d06zy4uZVM1FhVR7MlavDOHR28OpYT7GBJ4oP7epgvCe+0L704TiqsN2RUdE2mPxNmoWxjqhILJZu6VyKtESFFeSXs6U2yrSNO2FDIVmzOzJZZKNscnyqyULJIhnUyUYMM8MH9PRydKhDRFQxNtG7eP9zKdL5GzNQ5NVPE0BQKVYe2qIHt+rxjewc/d/8QEUNjU3ucmUKNrmQITZG5YyjDRE74kQy0hDk1U+Lpswu8NJoVjINtbcwVbc7MlYjoYkEzNIUHNreRDGukQjrpqM4vPjLMnzx3nmzFoVh1uG+4leGOKBFdFWz89hjbu8Q42dAmkiT/6q+OULJcYmGV/kyYREglFdZ5aGsbIUPlnz22nV959zY+/+x5JnJVXj6fozNusli12T+Q5r5NrSiy1BiLat1n7mbip+8d5IP7eyjbLtmKzS98/mUqtovtBavK60mIDqFffHgz79/bTURXqTgep2dKvD6VY1d3kl09yRXX/fTZBebLFotlm339KWLmhSVsY1uMd+8ShY1tnVfexNZb/LrZ+KtXJzk7V6Y3HeZD+9e/JtwoPLari7s2ZPidJ87x3LkswbxIemzvjHFytsR8yadkufUgJiCia3xobwfPjS5SrLkkIjqfvLMPTVZ4YWSR75+aJ2b4SJJILO7ojrOhLhXxylieB7e0CQJBwiRfdSnbDucXqyt+s1REJxXROTSY5tRM6ZLka1vM5KfvHVr3dwwZKu+5iKUJayfl1ov+TIQtnTE8P6C2hkaRqsirdiWOzJf5y5cnkSWRkLxeDfvD/Vce803cGlRsp+5TGTR8oWKmSnnZc37+wU18+ZUpdFXm8GCabxydwVTlS7pXuuvyf0tY3uky0BK5bOfGeqHIEvdsbGEyVyUTNdYtLaPIEl2JEBO56mWTIMvhB+DVRcqdNboXJnKi82uhblb+icP9Kx7vSYX58IEeao7fKLBVbY9c1ebps4t0JkIcGEjzkQO9fOvoDN85Pks8rLOtK06xJrq+y5aHokjcu6GFiKkwnbfoSolu+C2rHIr+w4d28S/+8giGKvPL79y65vcTDF8PRYKWNea4HwT0psJYrs9gy9pJ5R1dSX6YXECRJbZcxifw1z6+j++dnGNXT4LQKhKVIKQV22IG2YrD5va1Dxo7uhMMZARZZy05R4Bf/cge/vylCe7e2ELEXP0zezJhooY40A9k1h6nh4bS9GV2oSmiELkWNrZHOT1XIlOXjl0NrTGTTW1RSjWXfVfw1lAVmXhIZ2d3ghMzooBVV9QmCCCkyXSnQty9oYVffGQLIV1hIBOhK2UymatxYCDFXNHim0dncFzh7/HC+SzJsM5DW1p5YEs7UV3l7FyJr74+zYa2KD9z7yCzBYsfnp6nLWYw1CqSGd88NkPZ8tjUHuVdOzpZKFscGszwjSMz9WsVMjTLr701tva9uhJ0VcgqLmEtFa2ZQo0/fW4MPxAEmssVRmH9ncwX/35zRavubRAwV7JueRGsPxPhs/cOItcTRsuxpyfFiakic0WblqjOlo44Vr1rMmpovGdXJ4OtUSxXyBv9+vfPAmCoKr/0zi384MQsZ+fLWPWOkn19SUKagibLlG3hpxEzND60r5uN7VG+8uoUpZrLQtlCBoqWi6YqtESFLLrnC2Z3SBdei987Ic7EIU3hX79vJw9uaSNftfmVP3+d0cUKBwZSfPKOAUxNeUO8apd3qrpryOs1cesx1BLi7LyQ30uHxJhPhnSKy55zaDBNLKzzd9+2iaghCiBLiTKA3b1J3rWjg/PZCookk4roJEyNXb2Jul1FAdsNGGoNc2K6xGSuxqb2aP3M4fLYri4+d98QpZrHhovIaH/3oU1M5ir88788glpXzHnnjg6ihsp9m1q4a2MLxZrL6xNCgveRbR11LzuZQs1hZK7Mt+ve0FP5KhvbosRMjfevQahbDdVl3dHL/52t2I3O/MW6D8z14kYWwABMXaE9qjNTunB9cVOhMxHibVvaeWxXJ53JEFFTEDMGWiIoksyfvzRBzfH4wck5kiGtUfhbIj5UbY/EZbzFe9Jh7tiQoVgTqk1vZuzrS7GvTn50PR/H9fEJeM+uS8+bq8Go52h6U2GGO6JM5WtM5oRSlabIfOJQHx3rlK5u4s2FQwMZhlqjzBRrpMIquYroEooYCj933xA/PLMgpN5kMHVVdPtEDb78yiQdCZN37eikJxViuD1GSFN4YTSLIgl51UxU59XxPFFT5b0dnYwuVtlsxqg5HkOtEe7ckOHolOg2/MDeboZaoxyudz8tdeGCOEctoTcd5tGdnQ3FsrZ6vNkaM3j/3m4e3d4uvM9bI7QnQhwcSvO/fnCW84sVIrrKiZmiaBAI6ZiajO36GJqCH8Cn7hzgwwd6ReeUoXJ2rkx3MkQirAlyV/0csK0zRq7i8NDWdhJ1ZZDDQxkhgYrUWHd+81MHbupvlwhrDcJmzfE4v1hhuCPGI1vbSUZ0fD/goa1tfOW1aTa1RelvCXN6tsThoQyjC2W2dSWQJZmnzy1yeraE4/ns6knSlQyRieiMLlbIV216U2Ha4waDrRGSYZ1nzy0y0Brlu8fnmC3UqLkehirkeo9MFfjpuweZKdQ4N1/GDwLSYY29/Wm2dcZpj5scGEhRdTzaYib7B9JUrLXX6rCuct9wK21xg1RYv6TpB2C2aDNfspAleGR7O//g4VYMVeY3vn+WmusTX+UsOFsUDTW265OtCNW8ixW5BlsiVzxbLOVCXp/I89f5SRRJpmp7GKq3bknu6ymC2UEQBJIkBQCSJF1/5uUGIWqqkBddCLqqEDVXBg49qfC6EzTLYWoKXcnQqgNhObZ0xBvBysXsH0mS+PhFCZyrwca2GEMtUYo1l3hILCrH6zqZIORJLqetvBres6uTo1MFNrXH6L7Cd9vUFuPBLW28PlmgYrn84TPn+cThfkK6wkcP9XHHUIYjE3lURcbxAqKGkEyMGAqDLVEqtkuh5vK2Le1rJmeW43sn5nB80Rr7f757G8enivzN69PoqsxcyWbDsvNaOqJzx2CaM7MlFss2WzvibO9K0JsOU6y59KXDGKrMRK5KxfYoWoLN9PipBR7d0YGpidb/JURNjc0dWoMVsK8vzXB7rJ6kCkT7bGuEL78yxWyhRiZq8IG93Zd0WWXLNnPFuj45cM+mDAcHMvzW42cp1lym8jV2difQFLmRbPuFtw9zfqHM4aEMmYhBzfUuKdpIksT79nTzwmiWeF1eJ6wr/NQ9g43x966dnZyeLTUKezcThZrLsyOLtMYM9vWl+Ik7+vmT585juT4xQ8HxYLFSo2L7bGiNcm/9kHLXhgteDwlV5g+fGeHkTIlvHZ3lv31sL8nwhSTvUEuE7V0JqrbH27deyvBYrfPgdsdEThwyJ3PVdXdc3GhM5WvMFW00Veaz9w4x2BJmd0+Sf/inr7BQsslEDUo1F1MT/ld/9+FhNEXmlbEcrVGDxYqN5Xr8s/ds51cC+P7JWb51dIZESOOeTa08WGey9aVXbhOJ+m+7tXP1JOy7d3ZS2OiuKHbebnjP7i6OThbYsYaG9FqYzFfxA1EgninUrqkIFlKg6i1dxxtfQG1ifchEDbpTQlavIyF+Z0WR0RRwPYibKvv60w15BBB+O7MF65pNsYs1h6fOLJCO6NfEtH3/3m7Gs9UrxgQX44P7e8jVO1vXA12Vef/ebkYXKmxfo1Pn/k2tPH1ugcGWyJpdk8tjuvMLFf7i5QkCAmRZmP521RMJmiqKBZ4v4pPFso3rBWzpjLGvL8XevhS7e5N4dRnYtdbjZEjnc/dvRFUkIsbaMdem9ihHJoqkQiqZNWQTB1ui3L+5jelCjffvWTt5cs+mFvozQq5uaRythnTUWBfJakNbjFLNpe0y0oQDLREe3NIqJPcus0YNtkb5xUc2X/bzWmMm925qJVd1ePvWyyfbL/f9lnBoMN3wtjPXiCcDAnb2JKna3mWvfwmdCYNc1cFUZSQgaiqUai4SEn1Jk0/fPcBdG1sbnQCJsMaPH+zD9YQBd9ly6UiYdCZCJEMav//0KJ4fcMdQppEsG+6I8Y4dHY2xNdCiXlK8/ljMYKZgMZAJr+hsfHhbO/2ZMO1x85bIMs8Uag1Pgql89YoH1WvFju4EC2VbSGJepoPvjcRqnocgOjg+c/cgn75rAM8P6ucfMR7CusLGely69PpkWOP0bIk7BtNs7Yjz3LlFNEXmM3cN8MH9PZycLvGtYzN4vs+hwTQEYl1dOlvs6E7yfF0ZxHF9RhcrmJrMe3d1oakyr47n6c+ECesqn713kHfu6OSHp+fY25fijjrB0/NFF9dQa5TuVOiqfLyuFxFDoVj3Q9ncfnv8tk1cil98+2b+0RdewQ/g77xtGBBxy2AmzFS+KjoA0uHG2vfRQ31M52v0L2PVS5JExFSRJZmhtghlSyRhH93e2Vi/jk8V+MNnzrNQthlsiRAPacRMjXzV4dlzi3WC6KVxSNRQGW6Pc2ggzTPnFulJhWiJ6nz6roHGmTlfdeq+LaKIs7Tmxk2NrV1xJvNVLNdf0d14NdjZnWgkjHcsk1/a2hlnoWzjeQG7e6/ubPBGYndfkm/UO9ojuswH9vTgA50Jk7FsBUWRSC8jRb9/bzdbOmN87bVpQJxfNy07d+uq3CDfroWQLoplt+q8e7OgKjI/dpVE1nds7+D0bInOhEkmatCXDvM/v3eG4fY4BwfTvHcV8mYTbw0Md8T50P5u/vi5cYo1B02RiJk6n7qjn3ft6qLi+Diej4RE1fG4Z1MLz55bBGC+aPHcyAIj9UaId+5o5+6NLSsUZz5918CKz/udJ86RqzhM5mr8rQc28Ps/fXjV6zI1hffs7mJ0ocyWzhjfPTGLKkvctaGFD+ztZl9fio6EINvMl4TimSJLbO6Ms/wEYKgKf+dtmwBBavr+yVnaYia7+5KNYldfOsxwe0x4wC6Lc7cti/mG22OoeyT8gEtUeXZf47p9I2FqSqNbbgmyLPFzD2zkJ+4caOyJtutzbl744p5fEB7TY9kKp2dFl92j2ztIRXSCIOBjh3r52uvTtEYNHtvdyca2GEEgSLRn58r86/dv5+kzC3z5lUnG6v7VpaqL5fp86s4BBjIRbNfD1FTaEwY7u5ONa1vy3dUUmcQVTFkVWWpYgFyMTMSgNWbQmwqzqT3KfZvaGvWHh7a2c3SqwO5VpMwPDaYv7MmZ6ye3TeSqGKrCQtniN75/lpaYwUcO9K6LFHg9mcU/lSTpN4CkJEk/A/wU8L+u4/1uGN6xvYMtHRXa4sYVN+ObhdVa328UZPlCtXtLR3xVlvLVoC1urlseT5YlfvxgHzx/nrmCRbHmslix6dZDVB2PfNXh3k0tvHQ+z6b2KN1Jk0LNYSJbI2yo6JrC/Zvb6VxHgsP3A8ayghFjakKObXt3nOlCrV41v3RiqorMxw71ka86DeP4+EXMrrLl8t3js4wulElH9IbO//LHj00V6EmFVyRiFFniwECa/f0pLNfH1BT+os6Iioc0PrS/Z1XWsgjoVV4YzRLRFZ4+s8jWzgQ9qTDHpgq0x03Ui9iyy9lFwJrjOGKISv2dGzKMLogxf7FB9dUm568VPzw1z8kZwRGMGgq7ehLs6t5JMqLx7WOzFGsumiI8LB5apYAFMJ6tcG6+QrYi9Hxni9aKIthkXiRgNFVmtmhdwgx8M+JtW9p4dSzPtq74LTsQjC1WaY+btMYM5oo1ypZLtuLwi48M86vfPInnB+ztS6KrMu/c3tGQUrtvuJWjk4VGYGZqCndtaOGBzW0cmxJjYXShvObn5isOp2aLDLZEVp07kiRdllF4O2C4PXZNxdfdPUKeVlPkS/z51otoSKdaZ3Fej6dfEzcXD25pY6FsYzs+j9UZoposs3MgzehClfuHWy55jdjb137PfNXh1EyRgZbIqtKGT5yeb8zBzmToqotZpqasKgN6JSjy5bt3VsOViEkXy1VcCePZSsN/795NLSvu0d6+JNmyjakp7O5J8HR7jI6EycnpEtmKQ9lyG9/jcnh1PM936ixyaRcrEkHLoUoyrTHB6rVcf1XjXFNT+OV3bqnLR1z+3q2nI6ZYczgxXaQvHV4ztoubwm+0WHMv2zm9oztBIqRdsfC2HrTFTD555wAzhRp3bchc+QVXQCKkc++mFpS6j8JqcVJH3OS+4Vbmihb3bLx0nl2MYs0jCAI6kyEqtsu9G1t46uwCVdvFDmBPb3oFWWoJS+tvxFBXEHs+friPYs295LB3pb0+ZmqNwyoItumRyTxtMfMNi+lWw+aOGOPZKo7nr3rAvVEwNYV3bL/MAngbQqqboINIMBxaxVdiZL5MriI8LXRNJluxqdgePakwUVN4VOzsEXPulfEcp2eFxGKu6jTm8lLB3vMDxnMVWuMmrVGDT945QCKs8YOTc7w6LuRjQ5p4v+VyrlXb49x8iQ2tESzX5+51zIsbiZ09CVH4U2V23QZJrCZWx2zZEt4rQLYq4kxZgl29Qp4+HdbpTJiNtS9qqGxsi+J4Pi+ezwoZ01SIuaJQi3HcgJ9/cOMlnzNVqAn1lLDGeLZKIqShyjKyJHzxrkSC+/tvH2YiV6U9biDLMrp84cycCGmNmOtiaIrMozvWlttdDxRZWnWea4r8hnRVXi/evqWdx0/N4delqAxNIaQrzBRrQnVnukh/OrKCcLGxNcrWzjg1x7tid/Xl8FYqgF0rLs7RbO1M8G8/sJOZgrWimNzEtWHgl7+y7ueO/Pt338QrWR2ZqMne3hRPnZ0HRPz4wf29RE2Vz9bVboScscg5JkMar03k2dYZx/ECXp8s1GPzEFs6L0887EmFyVXyIjd+hXzBUifOM2cXePl8DoBUWGdHd2LFuXC9TRetMYMP7b+gRKarMh873Mdsneh1JVyv7PKtwtKeCGJPWJrrS+fdnpSwOoibakOBTZIkWmNmY+8dW6yysS2GJEm8Z3cXc0WL0YUyrTETVZZJR3RiYZX7N7c2SKKPbO/glbEc3zk+y2sTosi28TJKHteCRFjjM3cNYDn+JepxO7oTa55TLrcnXwsODaQpWy4TWQnH87Fdn+l87aYXwVqBLwAFhC/YPwfefh3vd8OgKfI1JW+aWB90VebhrR1898QsLVGDzvrB7K9emWS2YNGZDPHzb9uEIkv84dPn2dGVIKwJWT8kocW6PEmwFmRZ4t5NrRybKjQKQoaq8K6dlw9adfXysjARQ+Wx3V10JkOcmC6yrz+54vElbzFNkfjsvUOXFGu8Zdp+Swl6Q5PXZOWamsJP3NFPSBNFHT8Qpqnv2N7OocE0cVO97mDwdhjzS5uhrsp859gsVccnaqj8zH1D9KTCWI7fuF+262PV23iXIwiEh9KJmSI7u5OXsIy3dMQYXSjjegE7ut8aDNIbUci+XhwYSFGoOoQNhXPz4v76fsDevhT/70d243gBXQlz1XGaCGtIEjh1A1CgoS99Zq7UaLFfDX/5ygQLJZsXRrP87H1DP1KHooihXsIeuloMt8fIVxfQFIWtl5FHa+LWwlCVSyT8JAl+45MHODdfuaa17MuvTDJftHh+NMvnVpk7S7rYmiIRXUfX9VsJO3sSTOZraIrEju7Eij38YlLMvZtaefrsAn0Zweb2guCS91sNy593ude8Y0c73zsxR38mctmCvqkpN6wb46uvTTEyXyFiKHzu/g2rdoGbmsIn7+ynansriCar4UZK0a2WMLxW3LupledGFtncEVuTKCRJEvcPr19yqSWqs7MnheUGDLVE+MQd/aSjBq/UPdaulrBwJf+99eI7x2c5MV1EkSU+c/fALZNzXk8MvoSq7aGrN1+K+82EFeuGLzoudvUkmCtaK2KlvkyYfNXh9GwJWZJW/N7tcZOfvGcQzxd+Yj88PU9fOkxL/dzz0NZ29vYJufDVyDHfODrN2bkyqix85ZY61GqOhyJLN101YkOrKKSaqrKi0NvE7YX7NrbyxOl5PC/gbVuEH7IkSezoSjCQCdOdDPPBVTpfvn1shqOTBWRZ4uOH+rhvuKXh/bsa9vYmmS+KpP/YolDGGGqNcM/GFqKmesk58WLIsnTL5VLfrMhEDXpSERbLNtu6Yrxndyd9mUiD1Bo1VLSL/DZVRebRHW8ugsKbCRcTYJp46+LwUIZSzWV0scxCySasyTw7stBYb0Gsb6Ys1sCl7u0ldCXNuuf4lc94b9/axv7+FHFTXbdM9dLZQJLWLngJ2fDgiuv0xYib2m1jS3KrIK3htTzUGmFDa5SS5bC3L9n4u+8HfOGFcWqOR2vU4KOHehldqNCeMFc0TsClsebNQFhXWafoy01DKqLzY/t6KNQcvl5XitvUvr58+PVkRh4OguCXgG8u/UGSpP8I/NJ1vOdti7NzJTRFbgZadXQkTD52qG+NRyVaogaKLPG+PV2cni0hSRIly+Xjh/uuqhq9vz91zXJQN+O9y5bL5589T8lyeXRHB/dvaq0br+uX3YRMTeED+7p5bTxPZyLUCHDSa5iY3whUbJfResttdA0JqRuJuzdm6E2HSIZ0vvTSOFVHbIxzReHhtVSkmy9Z/OnzY3hewPv3dq+YU73pMB/c30vJctjdk7zkAL9a23ET14+WqNHwC5zKVxldqDTa0S/W6r0Y3ckQ9w+38tXXpnjyzAK96bCQJh3KcMdQhnzV4dhUYVWfwiauD4cH05zPVkiaGu1N3fg3Hb7wwjinZks8VGzjbVvbr/yC5bhCseaOoTTdyRDxkHrbd1PeaMRMbd3+iktxwMmZIsWaw651drfs6UkiSxKqLLH5Mp2gHzvUx0Amyvau+BvWrXliusiRyUJDWmMtGKpy1QfX2wmbO2LX3EW7FiRJ4ufuH2JsZyfxkEoyrPOpOwc4s7HEprboupMHl0MQBMJL1lAbRtBXfs3K/97uWGKhpsIaHz3U19z769jQGuWR7e1YruikkySJh1ZZ+ws1B1URZ6h4SLukkLoU0ydC2qqdies9WyyNp9EF4VGqKTIfPdi7qi/0jcLhwTRVxyOiK6Qj118gbuLmIBHW6YyHcP2gQSyVgHft7OD4dJG7NrRcUuD+/sk5vvb6NGXLbciY7u9Ps38ND3UQidYlf5XzCxWm8lV29iTWldht4vqgKBLv3NHB8Zkiiizz7EiWjW0x3rG9nW1dcdpiRlNl4hbg7FwJXZWvybqliWvDervGbmTHWHcyxKfuGuCOoTS/+fg5UmHtqmK8KxHYlkOSpKvOOW7uiBEPqSiStKqqxGyxxp89P04QBHxgX89VK44sYTpfo2Q5bGiNvqXI0PmKw2S+ylBr5KrOWhXLY6ou1btQtlf/nSX46ME+xrNLXdAr79vyM+rwOotCb2bEzQs+bevFVUcYkiT9LeBvA0OSJL267KEY8MTVvt+bAa9P5PnmUWFG/WP7ulc9cDQBj+3q4uRMkf5MuBEYD7REKFkur01IxEyNyVzthrdk3mg8uqODo1MFelbRyZ8rCglIELImWzri6x4PYV3l8ND1SwCtF196cYK5okUqrPGZuwdv+udJktS4F+/f083puRKtUZ0/fvY8rh+wpzfJg1vamMxVsRxBSxhbrFxSWL7RSa0mrg6didC6E3NLKFkuYV2l5nhM5qqNQMvzA/70uTFKlktvOnxJYvq9u7s4NVticJlWfxPrR77mEjNUVEWiUHPpuH2tB5q4CJ4f8M2jM7h+QM31r7oI9t7d3ZycLTKQWX3uSJJ0VRKCP+q4WklTWZbW5SPyzaOznJsvc2autMKv82aiLWZQTIdJhDT8N0nR5HbCxXOnNWasS1pjvXhuJMsTp+eRJFEkXY8f5ENb22iPG7THzTcFe/bcvJBBzlYcchWHjkSzCLaEtTwWlhAEIm4q1ly6k6EGQelG4ZFtHRyZzNOZDDXkc0YWhISs53tM5qs3tQj28PZ2OpNC7udmfk4T14fnRhY5VZfj/MHJOT5+uJ8ggC+/MkXN8Sjb3iWeRWfnSvSlw8wUajy6vWPdVgtLuFrp4yauD3dvbCEe0kiGNfJVl0LVYb5k0ZsO3zS/xyYuj1fHc3z7mJDa/tD+nib5/kcAwx1xfv7BjSyWbXbeQrnr1XC5fNBEttrwRBxbrFxTEWy2UOOPnztPEMBdGzJvaJ70ZsL1fP74ufNUbI+BljAf2Lt+v8DpQo2KLXxTzy9UGhZLsizxwf3CQ3u4PYamyGuu0+s9o/4o41poNn8EfA34d8AvL/t7MQiCxRtyVbcZlgbixf9uYiUSIY2DA5eyvTa2RTk1W8RyVvfxut0QMdRVvwcI/dbh9hjZin1J6+nthmp9rFadm9QHexmkIjoHI2nmilbDRL3qiOvZ1Bbj1EwJ1/fZfptt9k1cG3Z2J5jIVjG0lbKcfhBQq//uVdu95HXJsL7mXGviyhjIhDk7ZxLW1XVrczdxe0CSJDoSIRZKFn2pqz84JMKr77dN3F5Yihkt18fzA96IhpgHtrQRNhbZ0BptduDchliKhYKAxv54JZiawoE30Xw/MJCiWBM+Vm03sID4owB/2biorBI3XS9C+qVjaVd3gslcFVOTb6qnNYgO1Mt1BjVxe6A9bpAIaXhB0EhuBtBIeq4W09+5IcOz5xa5cyjD1isUe5u49dAUmX19KToTJt86NksmotN1jd0cTdwYNHOOP5pY8uF6M2FzR4wzc2V8P2ioB10tao7f6H6rrDMefjPACwKs+l55tfN4sCXCUGuEsuVdkjdvi5lXVGhqYn246iJYEAR5IA987MZfzu2JvX1JXN9HV2S2NLtUrhqmplxVBfx2hqrIvHvX9RnpvlF4z+4ujk0XrprhfiPRGjN4x/YO5koWB+rSkyFdWVVHvok3L5JhnY+uIo+qKTLv3dPF2fnybcdueivgx/b10JeJ0Bo11tVN0MTtA1mCn39wA6OLFfasU4KviTcfHt3RwSvjOQYyb5wc7O3gM9nE2jg8mEaRJKKm+pZVluhJhfnknQO3+jLelBBS8kJNYfs1JpauFqmIfhmJ+yZ+FLG3N8XP3DeE6wUcrPt5yRK8Z3fnmnFLc+95c6IzEeKTd/Rf+YlN3HTs70/h+wGGJv9IyJg18eZFWFfXLT2/FvoyYd62pY1CzXlLETsNVeG9u7s4t1Bm91We8XVVblq/vAFoCi6vA5oic9eGllt9GU00cVXoSJh0JG59Yvxa2SFNvDXQn4m8ZRN9txoRQ+X+4dZbfRlNXCMuNjlu4q2HdETnwc1tt/oymriNYGoK92xqnimaWBu96XBTBquJWwpZllZNSjbjliaauHnQFJm7NjbjgyZ+dLD7LSrbN9ASYeBN1t33o4Sm22UTTTTRRBNNNNFEE0000UQTTTTRRBNNNNFEE0000UQTbzk0i2BNNNFEE0000UQTTTTRRBNNNNFEE0000UQTTTTRRBNNvOXQLII10UQTTTTRRBNNNNFEE0000UQTTTTRRBNNNNFEE0008ZbDbVsEkyTpVyVJelySpP9yq6+liSaaaKKJJppoookmmmiiiSaaaKKJJppoookmmmiiiTcXbssimCRJ+4BIEAT3ArokSQdv5ucVag7FmnMzP+KWIlexKVvuG/JZnh8wV7RwPZ+y5ZKvrO++PjuywCvnszf56pq4GfD9gJfPZ5nMVdZ8TrZsU7HfmDHYxNWhYrtky/Y1vz5fca5pfXmzjgnX85krWvh+cKsvBYDnzy0wna/e6sto4goo1hzy1ZX7YanmcnyqgO/7t+iqfvRgu2L+BkFAzfFYKFm3+pIAqDke87fJtdxM3Mh77ro+x6cKN2QfWT4uLsZ8yaLmeNf9GZfDYtm+qs+o2h6L17FvN7H6mnyjkK84lK7j3HUr4qPLzYEbjdMzRXKV5vi93TGVqzKWXXm2y5Zsnjo9j+fd3DWxiQu4kXOzmW9poolbg5PTBX5wcvZWX0YTtxmuNd7z6zl3x/vRziEsv3+FmkNhnTUd9WZe1HXgUeDtkiTVgE8CdwDP3YwPGl0o8xcvTSJJ8MH9PXQnQzfjY24ZTkwX+drrU2iKzEcP9pKJGjf18/761UnOzpWJh1SqtofrB7x7Zyeb2mNrvubXvnuaX//+GSQJfuXdW/nwgb6beo1N3Fj83189xtdenyKsq/z3j+9lc0d8xeOvjef51rEZDE3mE4f7SYS0W3SlTVwMzw/43SdHsByfh7e1s6M7cVWvPzlT5KuvifXlxw/20rLO9eX1iTzfPFofE4f6SYTfPGPiz14YZzpfY7g9xrt3dd7Sa/nXf32Ev3l9mpCm8Hs/dZju1Ftr/3qrYCpf5QvPj+MH8N49XQy2RAgC+KUvvsJ8yebwYJpffGTzrb7Mtzw8P+CPnzvPQslmc0eMiWyVkuVy14YMh4cyt+y6ao7HHzw9SrHmcngozV0bWm7ZtdxM1ByP339q9Ibd8//w9eO8Op6nMxHiP31kF7J8bby+5eNiZ3eCt29rbzz25Ol5njm3SMxU+Yk7+jE15bqueTW8MJrlByfnCOsKP3FHPxHj8kezkuXyB0+PUrU97t/cyr6+1A2/prc6pvJV/uz5cYIA3r+3i/5M5Ia99+nZIn/96hSqLPGRg720xcyrev2K+OgNipmXz4FdPQke2tp+5RddI/6/p0b4yqtTRAyF//dDe0hH9Zv2WU1cO14Zy/L//M0J/AD+9oMbuHdTK74f8In//TT5qsP+/hT/9WP7bvVlvuXhej6ff/Y8i2Wb3b0J3rbl2udmM9/SRBPXh4Ff/sq6nzvy79/d+PczZxb43B++gOf5vG9PN//mAztvxuU18SbDkck83zgyg67KfOJwH8nw+uOhbxyd5thUkba4wccP9SFJ0k280tsTy3PMDwy38s2js0gS/Ni+bnpS4cu+9nYtgmnA/wH8HSAPbL34CZIk/SzwswB9fde+ic8ULPwggABmC7W3XBFsKl8lCOosopJ104tgU/kaACPzFdIRDZCYytcuWwR76XyWIAgIAnh+JNsMyt5kODVTBERH0ZnZ0iVFsMl6l4rl+CyW7WYR7DaC6wdYjmCQTOVrV10Em8rXLqwvRWvdRbDJ3IUxsVC23jRFMM8PmCmINW7pO9xKnJwpAVB1PE7OFJpFsNsUswULt945OJ2vMdgSwQsC5kuCCX9uvnwrL+9HBpbrsVC/5yPzZSxXrH2Tt7iTsmS5FGuCxTaVq93Sa7mZyFcvdMcsxYrXg9EF0aEwXahSc33C+rUVwZaPi6mLxsJk/TqLNZeS5d6UItjSZ1Zsj1zVuWIRLFu2qdqiC2MqV4NmyHzVmClYePU1eSpfu6FFsOm8RRCA4wmW7tUWwVbERyXrDYmZRYemmAOTN2BuXg6nZ0XcUrY8xnOVZhHsNsWpmVIjbjk5XeTeTa04ftDonhyZX1v9o4kbh5rrN7p+J68zPmjmW5pYC1dT3Gni6vHcyCJevWPn2HTxFl9NE7cLls58tuszX7Kvqgi2tB+IbrAAXf3RK4ItzzGfmS01ajozBetNWwSb54JUYxzIXfyEIAh+E/hNgAMHDlxzf/jO7gSzxRqyJLG1M37lF7zJsK8/Rb7qENIUNrZGb/rnvW1LG6+M5XhwcyszRSEhs7cvednX/ON3bOYX/uRlVFni7799+KZfYxM3Fj973xD/43tn6E6GeHBL2yWPHxpIU7FdEiGN/vTlF6Qm3lgYqsyungSFmsPBgatnk+/rS5Kr2Jiawqa29a8vhwbTlG2XuKkxcAOTTzcbiizx0JZ2jk8X2HsbsO8/d/8Q//3bp+nLhLlv01uze+StgC2dMSZzVVw/YHevKDSrssR7d3fyynieH9vbc4uv8EcDYV3lvuEWzs6VOTyY4fxihZlCjbtvcedVS9Tg8GCayXyNuze+dedxe9zk4ECamUKNuzZcf+fdxw/38dXXpjg0kCasX/tx5uJxsRz3bGzhh6fn6UqY6yZ5XC3uGMpguz6ZqEFX4soFk55UiL19SRbLNncMpW/KNb3VsbUzxtTSmtyTvKHvvacvyULZwlAVhi9DAFwLtyI+ihgX5sAdN7kr9qOHevn9J0fpzYTZ0fXWO3e/VfCOHR2cmCnieAHv29sFiDPDu3Z08vJ4jk/d0X+Lr/BHA1FD5d5NLZybv/652cy3vDXQLFi9+fDZuwf5wak5shWHf/jwplt9OU3cJjg4kKZkuUQNlcGWq4v3HtjcygujWTa1x9DV29Lh6qbj8OCFHPMdgxkkeRZZkti+jthSeiO0v68WdU+wzwGbgWPA7wRB8OxFz2l0gkUikf3JrgGKVQc/gN50GFOTmchWsVyfiK4QMVVyFQfPD1BlqcGsUxUJU1WoOB5ly0WWJFIRnZrj4XkBuibjuD6KLOH5AZYn3k+SJGQkbM9DkWUUWUJXZVzPR5IkVHllNTYAbMdHVSSUZY95foAkSbie39CwTIQ0ZEnC8Xxsz0dTZAxVplgT1xcz1YZ3wBIrtWKL619iqrbHDaq2x3zJRpElAgJkJAxNJh3RkSWJbMVuMP9kSVyjpshEDZVUWCNAwnZ9/MDHcnxipooXiORdUL92WRKvWQuuH1C1XRwvwA8CypZLEEB7wiSkKYyMjDAwMHBN4+RGoeb4yBKrLiB+EDQYt34gup1kSSITNVj6GS3Xx/V8XF98v0RII2yojbFWqXs36KpM3FSRkKg6HoWqg6ZKxAyNsu3i+QG264MkDhqqLBMAuiJRc33k+mfJkkRYV3CDAMvxiJkaiixRqrkUak597NV/c0lClkBVxDj26hVyx/dRJJlkWCMZ1nC9gLLtoqsyluOjqzKJkEbV8ajZHmFDxVjl/iz//Vw/IAgCijWXsuViuT6SBJ4X4Hg+FyvWSiDmUf0+KrJE1FBpiRl4XoDr+wSBuO9hXcEPxFxZ7TqauDbcrPkXBFBzPTRFvmQtXA9s16die3j1Mb60BkqSGDMRXWWp69vxfPwAFssWVdtHU6QGk37pNYt15ryuykQNDU2RqDgebp2V5XgBiZBGRFdxfZ+IoVKoOYIt7vkgiXU7GdJoiRpM5av4QYAqi/UyIBDfVZHFPuF6ZMs2nh+Qjui4vpgXnh9gqGLeBYFYO11fzD0/CJCQiOgKYUNFqa/RtucT0pRL2OAjIyMUtQuFuO6kSTpyczt9m7hxOHduhJJ+4ffrTYUI6SqW42F7PomQ1thbl+aTrohYww9E98rS/wcBuL5/+b3YE+PS1JRGDGJ7Pr4PpiZel686jdgiEzWuae6+kbDqsdnSdfpBQNXxcNyAiKFiuR62K2KXpRju4nu0dG9VWcLxxJ4tSeLvAWKfyta9a1JhHV2VGRkZoaunj5OzRSRgS0d8RVy3HMWay2LZJmIoly2iTOWrVGyPzoR52YLOQtlGkbgsW7BsucwULRIhlcxl1oR8xaHqeLREDVRl9eu3XJ+ZQg1Jgs5EaM0xcW6+TNX2UBWJjW1R5FVkOVzP59RsqbEudq2hvDCZq7JQZ773pUMkQqt/V6fuz5gKa4Quc88mc1Wqjkd3MoR5UdxZtlwmckIxwQuCBktelkRxrOZ6SPV4KqjHImpddnHpNw/pCrbrN2Limuvj+wHJsIaERL7mEARinrXFTDG+6p+tKzK6KlNzfIp1f+Kl+CtmanhBQL5y4fUhXUGWRGxuuR4hTV3zt7tWBEDVdpElubE2vFGwXR9FkVDWkHW5Hc4MNxKuL+JjU1W4FiWbaj1OkiWJIBDrmyRd6LRcWtdaYzqqLJOv2ixWHHw/IKwrOF5QP+ddyAWYmkIypDJfj2FUWUaux16u7wMS6YhG1FCpOT6mphDW19chOTIyghxvI191kIDhH+Hkze2OkfkSRUvEA4YiMdwRZ2RkBGKtlC2P9riBIkvUHB9dkRpn0eqymN3xAjzfp+b4lCwXXZFojZt49XEfWtZZu3SWBjEvIvU4eL5kUXM9DFXGVMVZMF91qDoi3m+NGgTQyJNUbBdVlomZKn4QULHFa0O6QtX2qNgiLpBlCVOTkSWpvgZ7RHQVTZWx6nGQrshI9fh/oWxTtV0MTSFSnztVR7x3a8yozyVhA2G7IicQNzUCAmpOPRd1hS7fm4mL107H8zk5U+Rie2NNEWfxREgnZqq4fkDFEmcUXV19rhdrDmXbIxXWG2d0LwgoVByyFQdJEuuKUd/blvbOpfWP+v4b0VUCRKygqTK3dwT6xuJ23vvKlkvN8QjpKrbrEzXFOPf8AM8PGnFE2XKp2GJ9WMoJLuW1DFWch0VeVOR+XE+cx+P1HK5Vn7dibRHrh1vPtdUcMa8NTUGVJaKmSlhTWSgLz6SIoWJqCiXLRZMlIoa2ZnxzuX05CKBsu0iIMR0A+YpN1fFRZAhpKsnwpef12/W3a+LKuNrfL1+xKdserTFjxZlzKcyyXVEPkCTREa/KEqFl62qh6lCxPZT6HhU1RD62YrtEDHXFvrk0Hiu2J2I61ydfdVAVmZaozmJZ5JGW8sqqLCHLYk8zVYWa6+H7gcg3uaKbrDsVolhzMVWlnu8X+VhdlVFkmVLNwa+fiWqORwDIiO+gyBK5ik3Frv9dgmRIR5bFd5UQ7+N4ARFDIR0R57sAUOq1j6U1QdRCPFRZzPcAMTdDmnxVxMcXXnghCILgksl+WxbBACRJ+i/Ap4E/DILg5y/33P37DwTGh/9Doy0wHVb5xKFefvvJ81RtD0WRUOvBuxcIVo2hSuiqQntMp+oEFC2X7V1xtnTEOT1b4LmRHKYmM5CJULE9fM/H0BUSIZ1sxaYrEWIsV6FUdVisOGxojbCzOwGIhfcDe7tRZInOhIkfwLeOzXB0soDleuzsTrC7N8lCyeL3nhwlYijs7knxyniOl8eymJpKZ9xgPFfFdn06EiZ3bWhpSBCENYUnzy6Qjuh89t5BKrbH//rBWZ45u0Clnui9YyjFuYUqpaoITKKmmDRv29LGxw/1YXs+v/zFVzkxU8T36wd7RRITRJE4OJBme1ecscUyXz8yS3vcqCeTNFJhjarrM52vcfeGDA9uaSdiKpQtF0WSOTyUbkz63396lO8dn2VkoczoQpm6+hD96RDf+8cPcvDgQZ5//vmbNYyuiOdGFvnhqXkkCT5yoPeSpMzvPTXCN4/MIEvQlQrRXpc1+cQdfbRGDf7kuTH+4qUJMlGdV8fz+EFAPKTx4X3d5Gvit/7G0WlG5stkyw5hQwThE7mqSEiqotBlez6OJxJuS7PUBxQJdE1BAhzPQ5HEuC1bLm4gHtdUCU2WG4cV6u+xVHSKGWJRytdEAVKVwAtAkiAd0XnH9nb+5vUZFBlsLyBuqrTHTX7x7Zv4te+fpVB12N2b5F+9b8cl9+/AgQM8//zznJsv85cvT3BkskCuYnNkIk/FuXqjxpghc++mVo5NFQmAkKawuSPGYtliOm/RnQrx82/byIH+Jvv5RmDp97vR+MuXJzg7V8bQZH76nkHOzJZ4eSzHA5tb6Upe6AYs1hz+w9eOc26hzIOb2/jUnQPoqszvPTnC6dkS3zw2TaHiYHs+YU0hFdYZbI1yeChDOqIxW6gxmavx0vksIwtlaq5IQqqyREiTSUUMIobC6dkSliv2urCu0B4zKFkuuYqN54Msg6Yo9KZNEqbGnr4kz43kODKRY2kYKxLIskRnIlQPeD1kSQQoEmAaKjFdoer4jQAAxBx7aGs7L49lxRqgKyTDGnNFSxT6/ABZluhLhxtJZEWW2NWT4Ph0CUOV2N2b5JceXakKfODAAebf/i9X/G25/ngTtw9qjsvvPjmK4/n85F0DRE2NePcm0p/8z43nhFSJeEjHCwL60mF29ST5549tY6Fs88Xnz/PtY7NIssS//cBOXh7LMZ6tEtYVPn3XQMNP6mI/oyX4fsCv/+AMluPTEtX55J0DzBRqfP7Z8wQB3Lkhwx1DGb57fJaXx3JoisSn7xogZq5Phsv1fE7OlEhHdDoSJrV6Ymg1ffLFsk3ZculdR1dwtmxTWuO5Pzg5xwujWVRZ4hOH+5kt1fjLlyd4bTzPcHsM3w94YTTLXMlCV0Ust6snwd6+1Aq/m6W16ux8ib50mNMzJdrjJlP5Gtu64nQkTKbrCeX7hlvZ35/iwIED5B/5l421IWYovPYvH131Ozz2Xx9nOl9DU2X+4ufvpj1+aafPN1+f5Gf+4KUrvtd//dYp/uCZESTgH71jCx8+0Lvq84Z++SuN/f/pX34bHasUm14by/Hx33oG2/PZ2R3nC3/r7lXf65/9+Wv8xcvCN/fvv30TP3XP0KrP2/hPv4rrB0jAU798P0WGC5AAAQAASURBVB3JSzuD/+PXj/LfvnsOEGv06f/7Xatf/z/5SiMxlzBVXvkX71j1eRt++SssRT0n/tUjGPql4/WLz5/nH33hNQKgNarz3K883Nj3ZgpV3vPffshc0eZaT0IyENYlLDfA8cX/R01VdL5nwhyfLrBYdpACSEY0tncl+OihXj7/zCgTOYueVIh/+s4t/D9fP8GzI4vYriAhHRzI8H++ewuTuRpffmWS8wtlBloibO9K8InDffzP753B9QNSYY3P3D14jVd/KeaKFr/1+FlmCjX60mE+fKB3XXN1OTw/4KXzWSQJ9vamkNdZTP/uiVlePp/D1BQ+c9fAiqTAEm5WzHIrUHM8/vcPz2G7Ppvaozy2q+uqXvvNIzO8Op7j+EyRqu2yUBZSOlO5KvMlCz8QZwpFljB1BV2WWShf+1hfDhUIGYKwM5AJ8z9/Yv+6SDgXxy0H+2L82d++7wZcURM3Ghd3m4z8+3ezadsunPf+u8bf9vYmOL9YxVBl9vYl6UmFKVsuZ+dFV63ri2TWC6OLWK5PxXJ5bGcn3zg+S9VyaIuH+KVHtzCRq/D9E3OcW6gwtlhpqEts64zz/z09Qr7qYtRjpFJNJNwdzydqqHQlTXZ0J3l1PMdErkrZ8pBBFNNlCd8PBCEkajBdsEScXScH2/VzgSxTz3/IDLZEmCvWKFsukiTRlTAp2+LzchWHkCaTiYoCYL7q0JMM80/etYUfnJrH8wOKNXFmOT1TYkd3grLl0hY3CesKP3n3IN85PoPl+jy0tZ3odRbFpvJVRhcqbO2MX1E29eK18x98/gX+/JXpVZ8rAZ0Jkw8f6CER0vn6kSlOzpTY1hXn5+4fIl91uXMoQyZqcGa2yGd+9zl8P2Bze4zf+vRBZFniD54e5VtHpzk9WxYFC12hLx3m4W3tbOmIcXq2xLmFMn4A44tVNnfE2NIZYypXI191GGqN8L493dd1f95KuF33vql8lb/3+RcZma9QdTwGMxFqrkdfOsy5+QqxkEpbzKBYdXjxfBbboz4/IfBFsctHJMuNOhF7PdkjiTp5Xxb/cgSHvHEmb40ZtMdNzs6VKVku3UkTXVWYL1mUbY8D/Unes7ubBza30Rq7sHdVbJff/uE54cHXk+R9e1eOwWfOLvDkmQXOL1YI66KwO7pY4cxsiZipcv9wG5+9d3AFUe12/e2aWB+u5vd7dSzLh3/jKTw/YLAlyq/++B5eGM1SthyOTRXRNZmeZLixHh6bKuB4Ph1xE1NTsFyP//HdM42mClWRiRoKQRBQsX3iIZWff3Aj79jeQaHm8p3jM/zOEyOCbFknck9kKyBJdMYN5oqiCJaO6PWckyDZ7upJMp2vMbpYwfeDRk5LlqAraRI1NWw3YLAlzKnZEiXLpSNmkoronJ0rsVi2sTwfTZbwApFnSJgKuaqL5V2IMmVJzFEf6uQRn2RYpyNusr0rwUPb2vjSixO4ns9n7uznfz8xwvOjWWKmSm8qzJ7eJCdmiuQqDqdmS3QnTdrjJj973xCHBoWKxqvjOeIhjU1tUY5PF3E9n01tMcz6GUKSpBeCIDhw8W91u8ohEgTBL0iStBv4hSs+l4BC1W78f77i8rtPncfxPLGQegEuQSPwdzyPqg2G5rNYtpCQsFyfxZJF4Ae8PJalYHlULNF1FdYUqq4HksT5apmq7VJzXApVl7mShe36jC5AtuKQqP8If/TMKLqq4Ho+qiJTdVxCmsrrEwUI4PxildlCjWfOLQCie832BFPKDwKOTFmC6WR7SBINnU9FlhhZLFNzPCZzVaw6u8rUFJYoM34QMJWrUbFcZIl6h4HoeutKhvjeyTkePzXHfMnGDwJCukLEUDBUhWLNwQ8kxhYrGKrCi+cXyVXFQA9rMmXb49xCmZihYns+5xcrfOGFsfq9qNEaM8hXbd61s5MvvTjBV1+ZZK5UY7HsNApgAAsl6/oHyQ3Akh9SENDwB1nxeD1JHUjQnw7TlQzRETfJVxzGFivCy0WCXD0p7vsBEV1hrmijKjLfPDbNiekCo/XgYIkd4wdiPFYcfwULKwC8ZZ/vBuDaHroi4XjgSgE1122MZS8A3wmwV7yKFQGEjOh2W6p3Lx2Mg0AUIb5xZIZsxUaSQK2zSW034PRciXzFYaFscXSyQM3x1vTDWCgJps3p2SJOnQl3LShaPt89MVdn7IuOtplCDU2RBVtfkTg6WWgWwW5zVG0PyxUslsWSxS994VUKNYe/fmWK3//sYSqWy0tjOfJVh5MzJWaKNb74wjiJkMaHD/TSGjMYmS/j+4JB6QOW51PzfMqWw7eOTmN7AQt1n8O5kk2tfpgV7LEASwrIVWxsT8VxL4xH3w/EAdf2G/PI90GRA+aLNcqWx9zRWdEZsGwieQH4XsDYYgVdpR7IB9ieSFpWHIu8BDU3aHSRyJJYV0RwopCr2EzkqowtVlZ0juiqjKaKrp7zixWCQHSdpMIqo4tVxherPHVmgTtvgIRYE288vn5khq+/PoUfiE7vT905gH3RdlN1A4KagyaLLo+S5fJbPzxL2XL5ymvTLJQsgiDg1753mh1dQlLR8Xwq9gU/qbnL7KuyJGG5XmPM2+6FPWFp77t/uJWeVIh0RMdQRbB6ue6yJTx+ap6Xx3IospAgeHU8X0+g9K4Y5/Mliz965jyeHzQKSmshW7b5g6dHcf2Aeza1cHBg5ZpftkRn5esTeQo1h7aYiSLJBAG8PJZDlmA8J7qrIrrCWLbCcHuME9NFzs2XqdgeQy0Rjk7msRwfy/HqjDrRiVe2xT3tiJsNptqO7gvyCss5HksF79VgueI3MgOFtRoeXhjNNv5dstZ+ryOTeXIVB5A4NlVY83nLh9Zr49lVi2DHpguULBFLnJxZ25/gzFyJYt3H6+xlvOuWfmZJEp21q2FJeQC4bIxgKBLV+prdFlv7mLL8Tr0yluXQhkvlmF8dyzXG/PyyzwdYLImOmOuBD5TsoMFY94FSTbCEz86VyVdFF5ePYHe+MpZjsl6k8AKwXY9P/+5zZMsiHl9iP/amTV6fKPD9E3O8PJYlX1e66EyEkCXBuCzW3BvSWRAEAVP5GsmwxlNnF5grWkzla6Qj+podjpfDaxN5Hj81D4CuKAy0hBtr3+WQq3dc1hyPquOtWgR7K6FsuVRtF0WWG2eRy6FYc3h5LEcipPGd47OMLVaYytXwgvrZ0Q+YyFbJV6wV5y3fC7Cr7g29dhdxfrE9m3lD5fmRLMmwzv7+1FWNmdfON71R3kwoWS7LS52nZkuig1rRkCTRFbZYsQmCgBdGF/GDgJ3dSQxV4dx8GdcL+PxzY/VOLo/RxSo/8/vP4/lCdaU7aTbijom6N17ZcoXKDhILxRqqLF3Ia8hguQHPnltgoSJyJkvnaM8LkDzxvJLt4RdrVGyhqmJ7PgQBXr3r1/XA88XZNV8RHV+FOnG0UHUwVLnRDVxzIVdxCOuCjd4S02mNGYR1hbNzZcqWw0BLFLNbdH61xU0sx2NTW5Tf/uE5jk0X6E+HaYkaK+SP50vCQkJXZI5PF9nUHqUzsbbPr+P5fOnFCWzX59x8mY8dujp/r5fGcms+FgALpRrPj2SJh1SOThSwPJ8T00X+67dPEQQSv/3Dc7xndxe9qRAy4PgBo4sVfv0HZ/jgvh78IGCoNcJ4rooRyOiKxESuyvHpIiemi8RDGqdnS2xqizU6UTVZolhzcTyfbNle8/rezMhXHSK6grqO2PrNgKl8lSOTBWpL/uKFGp4fkK049Y5KA12WOTlTZClU9gH/4lC3PhfXS59unN/r83jpb0vnmal8TTzmi67MhZJFOqpTslxs1+eF0RzpiMHIQplfeGi40ZHs+QEnp0VeYrFss28gAYFEdzKMLF9QmslXHJIhTaw39YJ8SFMYbAkTXyeBsInLY72yn7eKADydr6LKMi3LiqinZ0q4nsjxzhZr/MdvnKBie4zMCyLbfMmiK25iORLHpvL8yXNjSEhs7YwxX7IpWQ5VR8RrVcdD9XwMVaJQdVEUiart8eTpBfJVhxdHsxyfKlKyHFzPZ6FsYTkelhsgSSIe9AOQZEkQOVwX14fZosWL57NodZUwxxOKaI4nlBim8hahio3rgywF5CqOUJuruUQKCtmy3fiO9tJElKDqStjLzn+qLArdri/m6JLinmW7IgZwXY5O5Hl+ZBGAP1YVxrNVLEcU61wvoCWqM1+0GVkoI1P383Z8/uiZ8+zoTvDcSJYX62foPb1JvnN8hh+cmicT0fnn79nOnt7kmr/fbVkEkyRJA74G7Aa+LknSPw2C4JnLvcZUZUqWWPjkugSdkGiQkIBc1b1wSPUhaijoqkxI05ks1PDqRZBnR7PICFb2Utt3VzzEjp4EZdvj9GyR0YUKrg+GKmG7Ho4nDteKJIpM3akQNccjV7F58swCXUmToZYohwcTeH5Ql31TcCMaiiRRcz1eGFnEUBXCmkq+YuPWE6tL3Q+P7eoSpneKzPdOzDKTr7GpPcbevqQInGyXuzakeX40y2LZZmS+TAB0p8IcSoUoWS4/edcAmzvi/MHTo3h+wIbWCF1Jk+H2OB872EssrPGVVyZ45mwWQ1f42KEejk7lSYZ1ZCQe3trGN4/NEtVVIoZCZyjEfcOtfOf4LHNFi5lCjaihMrJQ5pWxHH/w9CiTuSr5mmBOLYdWl4681Tg0mEaRJSKGsqoW6/v3ddcZX3DfcBvpiM7LY1m+/PIksiyRiers7U1xYrqAqckslm0SYY19A2lOThfQFZlsxQVZLAL5qkNrVCeeMLE9j3zFpWx5l2VmGopgZE1kq8iKJKQCl71ABtZKm4VUiYe3t/H6RJGTsyUkEPIGXoDr+YR1hVJNFEtNTWFjS4SKI/4+Ml9hZ0+C0YUyQ62Ry5rCD7ZE+G/fzpMt22iKTCaik68619QN5niiABbSZDRVwarLWemuTHvcoFB1+P2nR3jvri4SV2Eg2cTNxdNnFzg6WWB3T4JcRaxBD21p53eeGOHMfBmvzgj93SfP8cTpBdFCHQgCQ77qkImItu1izSFhajy2u5OuZIj/9fhZKrZLe8ykNa4xma2RrbhE6yxkiYAg8BusMFWCdEQEoKmIwcb2KE/b4oCsK4LVOV24YC4tmGNCUiVqqCxWbPozJr4PtuuyUHbERg5Yjph4qqwga2KcKkiiWO37QgarPjdVCRJhDVWCl8cW0RSlnpgSwYDniYK5ocmkwzqfu2+I0YUyf/XKFIos2Dj5ijj8+37A6EK5WQR7k6JYdTgzX4YAFoqiUBVaxcBWRsjcRU0h5/Gd47P0pEJEdYWSKlOyXI5NFbhrY4ZN7TEGWyKkIwYPbG7l/GLlEj+jp88KtuKdQxm2tMf46utTxE2NmuPRW2fkFmpOoxglyxKb2mPMFGr8r8fPAvCh/T2rdi+BOCw+cXqe50YWsV0hhXJ6tgSIA2ipzmRbQqkuCQqQr14+wVGy3EahRBR+VuLeYfGdhfyIgqZI9KZDdCcNHj81z1SuJqRFdYW2mE5fOoKhCYmmiVyVF0az/ElJ+PaEdYUDAymGMhEWyxayFPCBvd20x00ODaZX3ffaIzBTrwltblm7A2KoLcxCqUZbTMfUVg+579nUwq8/PgLA5fL+fekwqiKkuPtSayfHlqM1uvpnJsNaI+64nJpeuV4Ak4By7dLfYQndSZNzC1UiukJ7YvXOoaHWC/5Il/ueP3XPIP/je2eRgH/8yNa1n7gM6TWkJpVl8+zir7m1K84H9nbzZy+Mk7uOIoEqC9ksy/UbslxGPeYNayq2LBKuqiJTc4X0eSKk1TsmFRYL1bpUrsSO7iT3DbeQCOlC2sT3MXWlIeMe0YU8yfv3dDGRq7G548I9nSnUODtXZktHjFRk/bHR46fmeWE0S8RQ2NEdpzVmMFu06kSMq4+xlktWF2o2v/vELH4A79vTxcBlPA8eGG7jGW2BzkSoUXh+q2K2UOPPXhinbHns7Imu2sF7Mb5zfJazc2VeGsuyULLRFInhtpiQP83XMDSZtpjBnCYzulhtzO+bofeiSCJhmQjppMMar47nUeoSO5cjN1yMZKwpePZmgnHRXhjRFUK6wsGBNHduaOHuDS08O7LA5589T9lyGW6PkYnqHDBT2K7HWLZal08KcD0he7ZYshsF7+H2GFFT5exsmd09Sc4tlMTaWbecaI+ZLJRtZDnA8X1sL2AmX8EHQqpCNCpkl7IVUUjxhHonigSdyRAJ22e+aNUT4xBTZNoSBqos4oIlApLvL5GHQZFlwrpC3FRJhDUmcjX8wKfqwIHuBH/7gY10p8L8+MFe/sd3TiNLQhbx0R0dqIrMru4Esizx+WfO88PTc8wUasQMlY5l/o8zhRp//OwYfiA6yWKmxpHJAj93/9CqHfVLWHpoLfnYy+IKr3EDOD1bJKifrsz6+lKoColnSYLxbBVdkUiFNWaKNrt7EliOz5nZEvdvakUGJrI1clWH4faokJCvk4FlSeLtW9vpTYf50P4eHC9gc0eM89kqJ0cKa8olv5nx1JkFnq4rOX38cN+6SGa3O4o1l/aYwflsVZxhQsJmI191UGWD4Y4ofekIU/mqOAPUX7ekWKQr4HigqyKXW76YIXgFqDJ4y5JgWr2Q5vkBiiTTFjfRKrZQsopo5Cpuw35julBjoWzzH752nO5UiExEZ2S+jBf4tMcNKrbLJ3/rOWzXZ/9Aip+5d4hdPUlipspdGzK8eD7LdKFGIqSRjhp8YE839w633pgb28RtjafPLPBfvn0KWYJfeucWdvUk/3/2/jvMsvO+7wQ/J98c6t7KuXME0MiBJJijSFGishwkjWVZ9ow9493xemc86x1712t75vH6sS3HVbAsiQqkJEokAWaAyKkb6Nxd3ZXTrZvTuSef/eM9dbu60QkgwIjv8+BBd3XVDXXPed/f+/t9A6bjcffMANOFJNWuzWeOTbBQ7RKGwt7XUCXumx7grqk8UwMJ/sXj5wEx2Dq30aZje8RViWJERN0zlGSlbpHQFX7y7gmemSuzVDN55lKFb5zfQpEhE9MwFImS5fXnC7Ik7P+ThrDtDQg5MJjkXKmLH8X6uH7I9EBcDI0dcf7PxWXqPRdFCuk4gniyXDOZGkiwGYZYjofjSRERBSSkaL8LUWVREw6lVOqmh67JzAwkCIDFqonjCkvGIIS4oZKJa6zVLSbziX7Mw/7RFE3Lpda10RSZuyZzrDctZFm4OOmqhKEYBGFIqWXRc3wub7Vp9oQLwrYVuOcHOF7AS4vVH7whWBiGLvDB2/1+CYm2dWUF9AIxnbRcH0VWRfYQV9gFjh8SQ+QkPbS7wFfOluiEIreqZ3ukYxr3zBQ4tdqMBl4h//QnjvDFkxvUu07fg//pSxVkSUKSRDO05/qokjjAv7rS4N9+Y45Ky2KjKQqrX3/vbp66WOZCqcMvPTzNnsEkj5/eoNP0eGquQi6hE0RFXSauoikKuwaTvO/AENm4Rrlj89Wzm7y0WOPASJpCyuCLJ9f5z9+eJ6Yp/P0P7ePn7p/m33x9jpcX68gSTOREmPcn7xzn3fuG6NouW22brbbNcNrgf/jAXopJg1eW6zy4a4C/9d69fOBgi622Qy5h8Ik7Rvnz42soskwuqTM1EGex2mNvNsXf++C+SOrvc6ncppDS2Tuc5v6ZAl88ucFCpSNsCWShqNoJxwuukkt+r6Cr8k0by0PpGJ+5Z4J61+HkWpPNZo/Ta03W6hbThTgDyQSFlIbpeFQ6Nq4XcnmrS891+djRUR47vUk2rmG7Hl1ZQpOh3vNI+CFpQxWKOi/oT9Sv/Y1IgCbLbLYsgpCrFC3buDFvHPJJnWrXZa3RI6YIOarjhxCGpOOasM/UJJKyxr3TOeK6xnylS810OLHc4B9/6jBPXCiz0ezxpZMbNyza2pbHTDHJmY0Wbcsjn9SYKiRZrXf7w+nbgYywPyqkdd6zZ5BnLldp28KD/afvmyQb0/jWhS0apstGw+J/+tC+H4oi8o1gpWbyjXMlimmDjx0ZfVNM7bcaQRDy/HyVMBQNtfObbeqmy3MLVSQJhtMG1Y6NKkv80Usr9ByfQlKn3nPJJzRmBhKMZmNM5ON85UyJlZrJVtvCcn32Dqao92xsN+D4UhMvyl1J6DIfOzzMNy+U+8pKEIot0xXS74bp8tpSg1rURPeCkHum8zw5V8H1bcJQWPoo0raqxsX2fC5tdaMcIXFtWZ4YWKVSCjIhw7kE90zmaPQcXpiv0fN8/FCK8vvEK4lpMmOZGAuVDqYbIkkuCV1FizI6FAmcIGDfQIpkTOOeqQEUSWKmmGC9YVHvOjQsj3bP5cxGi4/fMfq9+GjfwVuBSGUbEF6VX3UttjOJNhoW7Z6HosicXmsyNZBg91CSV5cbGKrCq8tNHt2n89RchfF8jJMrTcbz8assPZo9l+cuC6X505cqJHSF0awoeOumw2g2zpHxbP/7z6yLeufe6TzLNVPkUyLWmxsNwc5ttHhpscZq3aTWdblrMsuj+wZ5fr7KdCH5OuXHdCHBQ7sLtC3vdQO7azE5kOCRPUVqEbPt88dXeWR3sd84ulRq8+zlCmsNC1mS+L9+5AB7hlK8slTnC69tsNGySRrCtujB2QI912etLlSVMU3u5w7Ynk8hpSMh8VvPLtC2PMZycT5xdIxH9t7kMCvrgBjkBfKNS+mFrS5dx2erLd7H9ZQ7Xz1zxZLoJkIwxvMxYqoibFlz1/9MrkUmcf3hUL17RTVo3uxJo5X1VtXaclWw9tu2T7llMT7w+mGH7d3eoOmVxXr/OZ9bqPDho7e2iSsmr//7uBXZqpAybtuu70bwA3ARB7ykobJ/OEnS0Flt9BjJ6MR0tT/ItVyPYiqGaXuMZGO4XsBmS7g87B5K8bfeu5u9Q2mShorrB5zfbJPQxZB3udaj1Lb44sl11ho9XC8kFVPZPZgiCEI+f3wVy/E5u9Hklx6evWVtEAQhXzq1wVfObEYZFgZhKALL9gwm8YKQ85stjk3d/lAD4OBoBj3Kc2lbV4bZmy3rpkOwfFLno0d+NPa59aaF4wVk4hqj2fhtMccNVaFju8yVOgTb2aU9h+cWarh+gK4oTA8k6Tre2zL42r6aQkSdPpaPM5gx8L2Q11YbHB3PvuEMOdP83p8D38HtIwzCq8gE2biOrslMFRI8um+QgaRO1/HZN5zhwmabhKHysaOjzJfbzJXbjOXidB2XxYpJpeMI1Zcs4QYhAymd8Vycl5fqTOQTvLxcZ73RA0kiHVfJxTX8UKwTm00LxxWkAz9yN1GlkD1DMRarvSjnLtq3QjCdgPlyF0WWBXnZCwkQ54jhTJxz6y06togcaPYcPB80BUaycfaPpLhU6pLQFQ6PZ9EVRcQ7+CEnV5tUo700HRPWVXNbXQbTBruKCf7Tkwv85ycv8+69Rb58epPVeo/BtMEHDw2ze/CKZXCr5/ZrQj/6v6HKbDSF8m3oOjWYpsj89D2TrNRN9g+nX/fvbcvl9FqLyYE4E/nXE1Oyt1ARywj7ak0ReSyyLJT224RFLwg5t9ESlnCaylhOpmOLemqjZfHCQo3jyzUWKybpmMpMIclDu4s0LYdLWx10ReYzd09wcavNmfUmD+4qCssv22PPUJraD6ESbLkmmFOC8On9UJA9jk3lOTY9QKWziaGKjJ//+SP7+fq5LYppg5+/d5J/+qWzaIpM3FDxAz/KfRc/v90etDywbrNG3IlrTZwkCTKGGpGSQvJJEeOSjgiAD+0uUO7YPDAzwEtLddo9l2cvV3jv/iL/4YlLuL4Y+N45maNjuzS6Dj0v4ORKgycvlrljIsd0Icl0IcnZjSYdy2OzZXN0PIt1HUepd3A1blfd9f2OsxstgjAkCMVZeLqQ5PdfWMJ2A/7hxw+gynDHeJ5Sy+K3nllg33CaqUKCX3xgmqShcmK5zlq9R8cS+V1xXUFTJXRFYXIgTrlt89Jig9FsjF951yzv2jOIaXusNiwqXRsZiGninFDtuPiByL+UJJUHdw9QSOpc2uqy1ujh+wGbbYcAIcRxgxBDkdEUCU2WqEcZmKYrEVdlTNdHtIpDei5c2GwLYYIiMsUcSfS7EtHArdaxsX2wez5xTSIZ0/D8kLmyScpQKCYN6j0HWZIYiKkgydRNh6GUQavnMJAQGbOmLWKC3n9gmDPrLRYqXRRFZJcdHM3w0O4CK7Uuz8/X0BWZf/nYec5stNBVmY8eHsaL8phBEDM/dHDkpp/h9+UQ7I3CC64eqOxshras1y+oigxSxLZ58kKZYlJnMh9nrWHhBQGhBLuH0hxfadC1fVZqPf75Y+fJxDURCqdI7BlMMV/u4kbhbQ1TbGjzlS4vLtQ4vlQXzE5dIYwKtd98eoFvXSjj+gH/ry+dYyht0OiJgMie60e2KeKGUmSJT941zD/4yAFWaya/98IypaYYqL2yVOfASJqhTIy/eG2DWtdBkSVeXWnw0O4iPdcjDAPaVsATF8ocHMv089JmiwkSusiY2uo4nFltcmGrw2bT4pm5Cr/xi3dzaavLH760TExT+Mzd49RMB8v1eez0JpYjQmcXq90+iejTx8Y4sVTnXXuLXNzq8NWzm7y20iCuyXRtD8cT02Fpx2cT0xQSN1AVfTfhR7khkgT3TN04u+ArZzbZaFq8slQnrsv4gU/H8fna2S02m5b4ub61lM+fvrLOiaUGd07k+F8+tp/ff2GFE8s1OrZH1wmomy7NnktCUwijpj7AtTOuEOi8CTXVNiw34LnLNWHpGEaLXyR7VWTBxNIVESB8qWKS0sWCOpyO9W0yRa5deNOibXIgwcN7iizXTNYaIqvGD0KkNxhrG0Sv2XZFMOJwNkbGETYS903nadteXym2zXT4PriMvqs4vlynHoUN3zXZu+7h5rsNWZbYNZji8laHoxNZNlsWji9sR4TNE3z8jjGqXZtaR1il7BtJs1Iz8YMQywtI6CqbTYum5bJW7/Hti2U6thfl4YV9csM2QiTG8glimsjhuvJ1YSnmeRaqKhFlLgPCKnEwZTCcMfqWrL4fEkgSihxQN328MEQKfZo9ERIaItYu2wvIJ3S6jsdiuUMYhqiKRM8L8P0AQnFNyojDtekGrDR6ffJFiLC+imsyWmTVq8ky2YTGZD7Jn51Y40un1lmqmsQ0YY0ohYL9squY5PtAOPsO3iRW6yYtyyUE5mtCKeVdZ+7geEIZ6YViHbxnOke166DKMpYTsG8kgypLFFMGZ9aFHd7J1QbDmRhLVZOG6VCIFDEJXSGf0KibLmO5OPuGU/SioN6Raxoq9a7Nb3zrEkEAWy2bz9wzzkJZHNYPjF6xAGyaLpbn94diLy3WeHFBZH0cHsugyDKWG3BgNNNnXzVNl88dX8UPAj59bJwHd92emvHFhRoXSm1qHZtnL1cxVJnFSpe/+uA0ZzZazJXa2G5AIakzU0jSsRx+/4UlFipdiimDStsWDdlQBGZf3GzTc31alsfBkTQfOzrCar1HGIZoisx6s0ez59KK2HQ992aDIaibVxo0pdaNbShF/meI63t0HY8BXj+UKt5AxXQtyh1bkGVCKHdu3CASNtjiz60bKJzOrV+xU7wZT6W1Q/3VMm/8nDt/W6ZzfcVYJnaldrgZeeVipCYEeG35xraPO7HR6pG7zu8xuSM8+XrE9wubbWrdGyvcbgchwh7TCwIMLQRJ5j37BknHVdbqPV5baUQNWAlFkthoirwZw1Si4XSMjaZNrevyZ8fX2DWYEll3D07z6+/dTRiGXCx1+OJr6xiazCtLdVEfpQ1W671+M7XVc3nmUoWeK2y8//rDMxjqjQukuimakSOZGKbjc890jhcXajhBwHrTYjATY/wmbPyO7fHEhS2Susp79g1eNXTbfk22J6zbvSDkjonsjR7qRw4HRtL9RvrR2/y9fODgEI7ns1ztMl8xGckYLNV7SNF+ARIL1S6xaAD5Vo+Xdj5e1/UZycRYbfQYz8YZysR4994ih8fe2Gf8Bkn/7+B7DOmaZXsoLYiWz1+ukdRUBjMxXpivMVdqc3A0za+9Zxfljs2XT22SMjQGUwYfOzzM//z5U2iKTDGlM1NMUWpaHBzJcGJF5HqdWW8iyzKqJAlVrKGiKxJhiIiC8HyCUGR5SaFY250gYG7LpG157OTYbg/KghDkMMT1w/5+1TBdTiw3+jaKbigUuUGUMWSoCovVXt9qutxxKKZ0Ye3kiGyyb54tMZyOk46rDGdj3DuTx3Z9/skXz/GVM5toiszJtSbDaUG4uG8m/zpiwZ6hFA/sGqDn+Nw1mWOlZnKx1OY3n14gHVP5zN0T181mHEwbV5GfduLxaOj28qLEr77n9Vme2zbHN8L2scoLIpelUNgu1hMa6biKLsvsHUwSBiF10yGmyvzC/ZM8sneQ//EPT1DtODR6IgdZRuLYdJ5DYxkeP71BpS1qiVdXGvyfX7nQ7yndN11gJBdjKG3clMH/g4qHdxd5aq7Stx3/YUAmpnH3VJ7LUS9xIKnz+OkNLpS67B9J89hpQbTp2FdHZbxl9N1rNroACCUZVRFW5Y2ui+0FSJKE6XhsNC3etbfIkYksJ9dalNs22bjKesPCjqzhwjBkKGWwXDNxo9ecimJjtjFXanNmvc1KrUc+oTFbTHL3VO6teldvG97IEOp2bQZ/WAZbbwSfvHOMxaqo6z92ZFRkZLkBjufzb74+R63rsG84xd94925mCknqpsO5jTaVjk3SUPmjl5apdwXBO2GoHBxNk4vr7BpMkUto/KuvXaRuOqiKxKVSB0WSmNvqYKgKs4UkPcdn12CSy2URyyOucbEfhiHUui7FlIHp+HRsj1xMpW15WGHUmzMdXl0RUSL929IPafsiU3PnbeUGoAUhuioR0xRMxxd5YJ7EaC4eWc2Ln+i5IQkdLE+QSkzHJx3TSGiKUGsh7BhVRWJ6eoBqx2Wr47DasNhs2eQSGl4Is4NJVmomUiicNkayBvPlLqsNk6Sust4wWah2aZkuXhDS6rkMpHSWKiaaInPP9MBNSXfwQzIEuxUkRFMgDEFTJGaKSWTEh9CyBNv608cmqHRsnrtcRVUkLpRaFJIGXVtc4I4Xst7oEQQhf+u9u9kzlOaJC+V++PVi1aTacZAkiT96cZmFqrA+es/eAlXTYzwbo5jSiGmCUaPIYsKa0GVGsglxE+gKpZYFSBTTBhO5OH/80krEMhLZSKv1HiPZGJoipIMxVVhpxTSF9x0QeQh3TuT4nKZiuS5+KJjcSUPltZUGB0bSTA0keNzy8EOh3sgkdPxAWAu0bY/ffX6RuVKHuKYQ1xQ6lovjh9S7NuO5OHFdRVdlLmyKRtTvPLuE6wWc3WwLCaMs0XXcPrtDU0TxqSCGPBJCrtyxv7PGw1uBU2tNnrkksgtiqsLRiSwty6XStpkuJPuH+pgmhjpqpOLIJnQh/29aSJJE2lAZzycot23imkJMk3nyYoWn5ipk4hphGLJ7KMVKrYfjW4SeoKj1HL/PVtMUCTn6y5s9F4oQbPH7TusyhML2MEAE0cuyREyR0BTRGFQVYfOQi2ss1kwqbZsHZgeI6yr3zuTZPZjCUBWevlRhPHfjok2RJT5yeIT9w2n+/NU1ZEmwuRfCznW//2bouj5mrcfjZzZ53/4hkoZKpWvzf3zlAroq8+DsAMmYxiN7ije0Z/xhxp6hFAuVLvmEftvN0+8GPnXnGJa7nWEos1Q1eWmxysVSh5gm4/gBn7pznBfmq+wdSvHyUp1Gz0VC2Cc8e6nMi4tV0obGYNqgYzlscxh2WA4TArosYagSz8/XuGc6x1ypje8L5kr/UCxLBIFottoREUGRYbVhRj7l4j6J6wrDmRhd2+8HXQt73KuJFXFNxg9DbE/IrFdqJtOFJDFFoumI9VNTJFRF5BUEgWgSxjUFVQlQJBHEbboBiiKTMVRmC0nMKIMopstY0evqOR7ZhMGdE1kOjGRQFYljPwDF9Tu4PkpNuz/ErLRvvO+FCFuQmC7s1A6NZWn2XM6sN0kbGooi8Zl7Jjg8luEvXtug1XN5aFeB1UaPiXz8KusyTZH5hQemaVtufzD2czfIjLhc7tK2hE9+yxK2IT9z3yQg1CKm42E6Pp99YRkvCPnAwSH2j6RpmC53TGRx/ID9wxlyCY0nLoo8vWbP5SOHR1isdmn1xHu+VOowlBYDtLlSm9PrTQ6PZdl3DYvZ9YP+vnxqrdFfT7JxjX/99YsMpmN4fsD9swPRvRbyj/78DF3H4wP7BzkyluXjR0eIazInVlrIEvzk3RN87WwJ1zcBcTh+3/4hYYfSEVl9Y7kYVtnE9wP+y1ML3D09cMM9b+cQ077JwGzb2iUIodzqMXkdhZR8m2pmQ1WQEQ2/+E32vl2FBJergtRyePz6Kp7rCBGvi519suZNFWNXIF3bKY1wZDxDTBHM3502ftfC3REW4QS3Vw3F9esfZ3ZaUBo7rBG32ha/+dQCL+/IY/tOIYgOwgrq+YUq//pnjyFL8D9+9lU6toftBqgKjOUSdO2QIAiwHJGF5YXimlysdhnKGNhuwOOnN/nAwSF+//klTq81ySY0Doxk6DkB5baNIkGj69AwhRXIgZE0J5Yb6KrCUtWk3nUZyd74OskldMbzcTYaFj9+1zj7RkSoNMC9d+X5wMHhm9ZYLy/WmCuJGm88H3/dfQzimv3Y0R8NddcbQUxT+PG7xt/Qz2iKzMePjrLe7NGxA3qOByGk4yrpmEbbdmmYLilDRZbg7TTbCIKQsxstbE8Q1g6OZm6b4LAT2vfeyOAdvAH4gTjLb+NyuYsXhFQ6NsWUTiIiUhqazEBS2In912cXeWWpjusHPLy7iOmKuIexnKhZCikd0/FIGIIU0LV9bC/AD4TN+f4REf3w9XMlNhoWkgxJTemfa3VVpm15pAyVti3q922rtW0oEn27TkkS/y56QuLruiohSRK5mIIkyZQ6NjFV2JUndZVSyxIqJcej1BK+LTFVxgtCTq+3+NzxVeKawqGxDIMpHdsLePKCsIEVtoyixyNyslIkr/EDvlzuMFNI9i0AX1mq88JCjfWGxZ2Toi/x8mKNlxbrHBhN8779r8+/vBZq5HMsR+/5Wmg380Hege1zlyRBEAQ0TAdZMnj3oSL1rsvcVgdVEnksuqZQbtvkEjo9N2AgpbOrmOLIeIa7o8Hf1ECS85ttkroqVAV+0M9VvVhqM1NM8Ik7RskndFqWe1OVrOMFlFoWw5lYP9Pp+xmTAwl+4YE3lt32g4A7J7L86fFVpvIJ7p3Oc3xZDLM1RcLzI8XmNfmrO/eoa+/XN4IASGjQcyPXrxAkQoazMUrNHpfKHRRJkMhimnB+uVjqkI3reH4QWRsW+am7J6iZLmt1k9likmxCIxNTGUjqyJLEw7uLfHKHI0uz5/b7Yh86NPy63OIfBvwoDrduF4Npg3/y40f6f08ZKndN5nh1pU6lbdGyPE6uNjm12uD+2QH+wxOX6Touv/PMIv/bjx1CkWQaPWEP2um5xFSFf/rpI1Q6Nn/y8gqDKR1FgplikpFsjP/y1DzLNXEOLqQM8kmNi5tt3EAQsZVIbOL6Aa8s1vFDsSbPFpO0LJfhdIxkTOW11WYkuBE2hteeBYUN8NXZXkBk2S4ThCExTYl61xKZuErKUGlE53xFEoTH+2cHOLHcQFVkDoykaVked05kOb3WoBnlJk8XE1ze6mC7AUF01kvFVI6MZkjHVFqmw7nNNpYbcHy5TkIXpPdDYxnihooe1R6GKlPpOFieT8d2UWSR4Xkr/FAMwW7mlywDuiqRjmk4nk8QhrS6Lg/vK5Bv9Diz0cZQZTJxlb/+8Ay/+F+eZ7Nlsdm02DuUwvNjZOOiSFtv9Ci1bf7Zl88hAUs1k5FMnKSh8sGDQzx5ocyxqRyXtrqsNyximiimdheTrDd6DKQM/v6H9qHIMi3T5vdfXGHfSIafODbG4bEsT89V2GpZXCx1CMOAPzuxRlxTSMZU8nENTZH58TvHWG/2AImNZg9Zkvjv3jPLx4+M9QuAoxNZDo9lWKqaSBI8srvAqfUWT17cIp9QmS0Khmbb8qj3XH79fXv4z0/Nk09ofOv8lsi5iRRDJ1cbWNFNoisKP//AFBdKXRKqzNn1NmfXm6w3TAjhz0+skk3o9ByfiXxcWMREjAo3CEQ43naQXhCSegsCvW8XW22LM+st9gymrmJT7bTuiGmiCf0HLyzTc3wOj2X48GEhpSymdF5csBnLxcjEVSQkPn50lAMjHZZrXVYqJj0/4I6JLElDodISdmZIUO06pA1hn6CpkQ1T9JxB9LySJJGNC8scywveNIVze5hmqCKQ13J9dFUmE1Nw/BA/gMnIA3a+3CUIfUzHw3Z9whBGMzE0VWG6kCQMxb01OZC4rcDdlZpJtWvzN941y3y5y8WN1psuakJEzt43zpeYGkiw1rD6hXilbfPI3uKPbPDo4bEse4fS/aHm9wKuH9DsuVzcbLNnOEUhafD8fBU/skWcL3e4ezrH1ECSxYqJ6wfcPZXnk3eO8Z69g/z2M/OsN3o0ug6jmRiXy1222nY0qLJwA5+4oWH7LoRR/kQ03PJ3DInLbYtWT3gHO0rASMpgPGdwcr1NGEDSUJkuJhhO6Tw7X8NyA566VOmvlboCIxmDfcNpBjM6SUPj62dLbDYtbNejbYviXZVF5kwurtJzfWxXFByOJ/JaqqaLF4h7OaFJdGwPC5E/2XN8dE3ph29v39wSoqnlh6KwuHdqgPV6jycubOH4Pl3LY7Vucvd0np88Ns58pUvSUH9o2IM/SlBl6cqSHoqrV7smE0xcD1eaFSlDZTwfZzQbw/Z8Lmx2yMQ11hsWD+4qUEjqpAyFDx0eJrFjADBf7lBu2xydyJLQ1f4A7GaYyCc4NpmjY3t8/MgoKzWTwbSBpsj88csrbDYtJvLxPouz2nEwVIVjUznmSh3unx0gn9A5uSoY1TFN6ds+zg4mGVjRcf2AvTua5F89W8LxAtbqPfYOpa6q4zRFZnIgwUrN5J7pAeKawvnNFiOZWN9WTlcVfuGBKQbTBn/vsyfwwxDXD3ADoYK7uNkRdYsqcXAkzal1kduZS+o0esIieLlqsljpMpyN4fkhR8ZzWG5ItWOx3uhxfqPFwzuC63cioUt0okTg7QzCW8G9QVfa2TFEu9mKvp1XIsliDb4R0jENQxHZG67no12nOXRgNAesAKDfpHf0s/dN8BvfuowsSfzKIzM3eXVXoF8n7w5ElqIXCpa9eR2Xhm34O96bewtF3jby8evXk/fvGkD6hlh1d2awnFhu8PnjK29KBSYj7ulta5FtwoQmQVKXkSWJuc0O/+6bc/z8/VPcv2uA5xbEUDdlqCSjIYXri7W/abnEoyZtNqaxXDWpdh2CMOSFhQrVjstGs4dUg7FsnLiukE9qtHrCfcIPQ3YPpvD8kGNTOTabYo0YuoFCYBuKLPEz904SBGG/lvjFB6apdhwm8vHX1RfbTaxtctj2QFs0U0MeO7XBkfHMdQe97+A7g+sHwopGkdk3nKbacXhpsc7B0TRjuTivLNU5terQsRyCIMRQwHzzMXc3hQQMpnS6tiDwKLLExECccxttDoyk31Bd+ja9xHfwNkFXpKtUv5WuQz6h0jQ9vj1X4SeOjZNPijzDWtfhpYVaZK/sAxIxVebMepO6aWO7IR85PETL8mn1XE6tN8nEVIopna7t9mumS+U2e4dTWG5AKqZiOj4DSbVPMGlbHhIh1Y6DoogcbS8UOVmef8U+/fBYBi8ImS+3afR8kV+Z0bHcgJGhJDODSXJxnRNLDSwvYDCt8wv3T3Jpq4skhTS6QikehCFxXaNuOoxkY+wdTvUtmObLHUDkkz66f4hKx2Gr1aOYMui5PoWUIeqOapc9Q6Ie+srpTX772QVUWeZ/+7GD7B/J4PgBI9kYXhBy50SOAyMZfuvpBSzX59XlBu/eU0S9BXnmo4dHuVBqM5aLXVcRPJqLc2HLvOljbDdWg1Dkv/XcADcQzjAzxRQr9TKn1poEIWTiHX7iboVsXOPYVJ7xtsVHDo8wW0hetSbkEhqm7WO5ATPFJL/08Ay/88wiISHFlMGe4TQxTeF3nl3Ecn0+fGiEQ2OZ676+Pz+xxlqjx2g2dkOS19uJasfm1FqT2aKwx/tRQRiG/NmJNRqmw90zWX7jG/NUOw7ZuMZKw2S+IjLoVVlGV2WGUga26/fjAkBcW4Yq3CMCRB36ZpTBkgRuIBHXxTUmRarPTs+NsiuFa5DkB7iyhKopjGVjnFipo8oyB0fSHB7P8gcvLpMyFB7aXeTvfWAPf/zyKo4rRAv3TeeZLCT72YUAd0yIM5MiSxz7IVQtvoM3Bj8MafZcDFVhMBOnbXdQFYlXlutYXsBitYvj+VQ7Dv/A288HDg3xwnyF+apJKEm0bY/PvrjMuY0WFyMhykg2zp6hNIfG0uiKjCJJ/fr75EqTckcITxRFZiCpY3kBaUOh54k+Vd20ycRVurbP11c36bkBqixsENMxhZrpoSuy2L8ksZeC6P0acogb3UtJFboerDXtiFACsiST0ISy+q88MMVipcOZjRaqIjNdSDKSiXH/zABxXaHUslFleGmpTqNr4/sBmiqzUutx3+wA63Vh8ajIEpsNm691S0wXEhRSBn7Q6vdFtrMoL291mC3G2Wq77Cqm6NouTcsjpiroirBtHLiNPOMfiiFYeBNKa4BoqEiS8JSsdB0s1+HbF8vcM5UnZahYbkC1Y/OFV9dQVTH8sdyAnhtwz8wA+4YzfPzoCP/4C2fo2B5zpTaEIlNMkWTuncmzbzjDWsNivWExmtXZaqu0bZ8nLpS5czJLw3QZzcaI6yqP7CnS6rnMV01alpDm5hM6907neWquwlqjx3rdpN5zGcnG+tlNtW6PhK7yDz66n5cWa/zLxy+Q0FVWqr2rGDB/8doGuwfTpGIaf/XBaSHB3GxT77p89sVlQiSapoOqyFTaNk+c36LSttlq2UzmEhybHGAoHefMWpPVuomEaO4enczwiaNj3Dtj86WT6zx2ZpOG6WA5Po4fkoyp9JoWByLW1l+8uk46plLtOBCGV9l5uX6ILH/3WDtfPrlB3XQ5u97ibz26u7+IHBjJYKjCHnKmmKTZc+lFjKRtK82XF2v8p2/PA8LOLG1oTBeTfOtCGcvx+PNXV6l0XCRJWJwkdZXFmkkoAWFISMhaw73iT74DhgKZmMqHj4wQBiGfP75GcOPL+bpQuNqKyPVCbM/rS1ALKYO9QwleXhLB1fmEzkKl2/9+PxBeEpmYsHI4NJbBdgPG87cfStuyXP7sxBp+IBohl8pdym0L6TtgooZAu+eyXDPRZBlNFYwxWZZYKJu3NeX/YcX3kvH2+OkNXl6sU+7YzBQSvLrS4N17B3lxoUbHcvjSyU2QYG6rw19/eIZfffcsG02bhUqHf/XVCwQhrDVMxnIx5itdVhq9vlUcCHZYy/QYTOp0bY8wFI1DQ1PoWB5d24vsbH02mxZdx0ORYCQTYzgT4+hElrmSSdN1qZsO3XWXRV1FliTimizuD9dDVyS8IGSl3mOtYXPPdA5NkTk4mkGVhV+x5fUIQzA0mdFsnEtbbdo9Fz+ApuURhiaOL4oAwZ6RmRiIc36zw05emxbJNySgbQfIfkjCiIYeodij5sptmj3Bpj2x0hQNb8fnUqnNv/3mHLIkrBN/9d27vi9y4N7B7WOlfqXRUGoJGxjvOgORbExFkoWtZi6u8eSFMqoikdBEPmgxZRDXZc5utPpr+Om1VrRm+yxVTf6Pr1xAVSR+7I5Rfva+KTablhj+RAVhx/Y4udpgLBvvWwWMZGP82qO7CcKQJy+WmSt1yCU0fuLYOJtNYaVsuT73zuTpWB73zQ70lVjv3T+E6wf8xycu4wUio+jRfYMcHM0QhiGW4/Oz902+TlEynImxUuvScwP+zTcuMVNM8Mk7xvrNkp88Ns4zl8u8vNgA4FffvYtSy2bfSArTFtlag2mDzaZF0lBRJIljk3kmB+Kc22jhBiEvRIN5yw1IGgopQ2VqIIHjB7R6HqV2g67ls9bocXAsQyam8e59Bb702iZjuTjFmwwRtgdgAFvt28uucG9gbbxrRzbIzdjZLy7WhTVLAC/O1/i5+6ev+31nN5rYvggILnUsZq9DGOk6Vywcb2a1+v4DI1zYaKOrCkduoCq7Fskb7E9fPbfZH6Qu1no3/HlnR2e8dZvqs622RfY6uWCl6PoF6O54rNFMDNt9c4SjAHHgFS4TV4znvFAoZFIJFVkW9+a/+vpF9g6m+Kl7Jtlq9nDDkNdWmqiKUDAUUiJDJ6kLZuVSzaSQ1Nlq2yxWumTjGsW0gQTMFlPEdYU7J3N8+eQG1Y5DGLYZyuh88/wWAOO5RORi4dG2XL52bouu7fGxoyP9odW12NmgTEZDutf9HlsWnz++ioTET987QTFlcGgsw1DGIAhC/tmXz7HRtBjPx/l/furwmyYpNU0X0/UYzd5+/fnDjsdPb3Juo9Un5t0/M8A3zm1huT4XSu2+xY7tCku3nuO+aQLa7UCVYThjUDNFFrKExBdeXWetYdGxPe6fvX1G/I9YpO8PPGwvuKpxpMrCUl+ShANCtePwdz+4l7NrTY4v1/mvzy+xVjPpeUIJdbncxfZ8urZPUlf5+rkyQymdFxfrxDSZ/fuHUKMm1uVyBy/KOcnENH7qngk+98oqMQ16XogbhPiBYLRvWxz6O7YLJcpr98MQzw8jq7MQyxXkAy8I2GrbdO2A9aYtHDaSBp1I/uyH8LlX1tEVWKr1iGuKsB6UYL3eQ5ag5/p86s5x/utzi2y2bI6MZRhIGsyVOvzao7t4/4Eh/s035kjoKnXTJp/QMTSFYsogDEMkSeJSuU0YKcYulzvsH8kwnovz5IUyewdTfOjQMIoscWgsw0uLNfYPp285AAPhcnEzS8HOLewQQRAePF9YvLctH12VCEMJWYYXF6osljv03ICkruD4ouf16kqDX3xg+obn1GcuVXhttQHAf312kZ84Ns4f/9pDNC2XXEJHkSUub7X7vZiVunnDIVglymOrfo/ywx47vUm5bXNqtcmvPbr7B0KN9lbg6UsV/uilFUzH4zefXsD1A7q2j+W4fPGkSbvnoSkywxmDE8t1uq5PXFeuyvxyAuF6gRcghVfsN98oghBCPyRtCGWh7QdYrk/aEEKEbFzpxyqkYyp7h1NC2RiG1HsuuirxuZdXeX6+iu35DCR0XltpUO2K6AZVlnhxqc7ZjRaPndrkQ4eG+fn7p4jrCu/doch0/YBa16GYMt45o/8IYrXe65/LP3pkmK+cAU2WqERWujJSlFMHf/jiCnuHU5hRpJIfBJxYbrDe6DGUMnD8gNFMjI7tsVDp8EcvrXJkLEPNdLC9gGrXodSy+kPYdExlz3CabELj8FiaP3hhhY7ls1rvMZSOsdWy6FgeQQieJJTYtW7IUCZGNq5S7TpCuBHBjbLtFBkSmnJVPIAfbu+zAX4YsF+TWW9a7B7OcO+uAhIhv/PsMs9drmD7Ibm4hioLRWjH9skndYbSBj4iUiEIQwxdJhtqjGRiXCy12Wo7DKYNLDfg3uk8NdMhpau8sFgjDMW5KxXTqXU9wiBkMGOQMjRKbRskMcQ7u9nGD8Kb3os/FEOwW+UObR98k7oSTRNDbC+k3BHWdaosppFbbYeUpqDIEgldxnQ8PnP3JKPZGH/x2jpJXcb3A3RFjhqfAbbnc3ypTr3rcmq1yUazx3DG4OBohqfnKrhByJn1FoWUwfGVBpYfUOnYWG7AiZUGmizT6DqUWzYbTYvVuknHcuk6PhlDQVUkPnpomC+d2iQEvCDkxcU6v/30Qj9kPRVTo/fp8fsvLPH46Q2mBhI8uKvAA7sK/MELSyzXerRtlzAAyxN+oEVDZThrUO44wlpFlri41eaffPoosiTxd37/OB1bZIA9tLvI//qJA3zx5AYbTYvLW20yMY1mz8GKAmhVwihDIIHrh+wZSvF8lBcSItiz2wiijKrvFuK6Qt10MVSZa++H2Ws8Qw+PZXg6smKaK7X5/z09T73r0LJcDo9lsVwfxwu4UGqx0bCoRIGE2/qOhUqXuumSiak4fojj+Te0JbF92Gw7/MnLKyiSjHkbVYAqXZ0ddm2LaPsRNEViPBfj40dG+OxLK7QtD1WCRs+JPjvho1pMGhybyhHTFP7mo7uYGkgI72Y/4PhSnbbtcc90/pbKPc8P6Toeja5Dq+dyeav7HYeEqlEIoyRLJHWVeCjY8JoCf/HqOsem8hwYSXN2o8VEPv5O4+Rtxlrd5DefWsANhL1fx3Jxo03uyQtbtCxhadKxfQxVptpxGMvGeez0Iss1kzAMGc3GUSSJTEIlpsp0HR8/gJgihu2FdIy9Q2leW2mIDTtKve65HpIUkkmoyEjkExqm65ONa5iWS4gY8D4/X8ULxTUSImG5IT3XRZOF4sX2fModp69KdS0fRfJZrVvsG04xkolR7tgs17rIhKQTOnsHk2y1LOqm0y/UgwDqPWH/uC0fF9ldQf9riizWPcsL8YOgv+YFgO14bLR6pAyN11bqPHGh1M8Wcn2xcUsIy4W5rQ6SJHH3VD56jHcK7B8k3DWZ5fkFYbt2YPT6bNEQYSmW0BWaPY9Gz2N8QGah3MXxA37uvknumsyzeyhJretgOh6bTYtDo2l+55kFXF9k1NmeT90UA+LXVhp88/wWqizx8w9MUUwZfP1siYVKV6jI3z3bX9fPbbR4cbHGWl2wlps9l+NRMH3CUPjknaN95rLl+vy355do9lzef2CIw2NZDE3Gs0VOzB0TOQC+eb7EaytNsnGNX3hgiqWqST6pMZSOMZGPc2GjRb3nMp6LMV/u0nE8ZEkM/WRZwoxooY4XYKgK79pbxPEChtKimvCDkNNrDUoti4Qu1NabLQvbDdg7lERXZJquiyyHfZWd7QWRXYLI5JNlH8cNmSu1iakKKUPh/tkBdFVm71DqdZ/TNnaST7SbbI07bV6mi9d/vNwOxppxkyZKxlD6d37qBsonEHVF//lvsFRs7hgO3WyXfnpui+cXayhIfOjwMFOFW2dQnlpv8N7s66/ziR3Emtu1YtLl26sTb5R9tdGw+nOunU2/OyZz3DGR46WFKm9mFrZd03nX5FGGgOMHdHs+DdOl0XNRZYmpgQT5hIYXhgwkdeqmQz4lVF+yLNF1PCSETXWz52BoEm0rxPZ8JnJxfunhGSodh3um88Q0mXxS59R6k1KrRzqm9Rsv1a5NGIr3+uJijUulNst1k67t8bfft+cNvssrWKx0xdAQWKqafSvmYkrkazpRrde9jcYq0G8Ae37Ac/NVQNie/dGLK3hByKP7B/v2WT9sEKTLdRRZ4tPHxsnGrx4YLldNzm22ODSaYXIgwcWSsKi8WGqzbzhNz/UopgxycU0MO20X2/OJXNZxfFFLGTEZ1wvofYd1+LVwA3h1tY2qCDZwMakTBGFfPXvfTP6mDi078U7W6Q8Wrm0oKRKkDY2tto1piyHOX7y6juP5tC2XlapJN9rXPT/E8YVSXFNk4lE++bnNtshqlySemiszko2xZyiFG/gslk2CIKRjuwxqMQ6OZZgvtSl3hW3zdD7O+VKb6nUUvX7UHA8BKwjZalsMZeJk4lqkZpfo2kF//+vYPlMDwu3BCoTl+WLQjWwTZTRVJh3TODCcotp1sF0f1/P5t9+c49xGm4SuspboUUgZ7BpMEdcUJEm4xjx2eoO25TE1kORn7png8chx4q7JHAlNIR0ThOy5rTardZP5cpexXBw3CKl2HYYzMR7ZU+Th3YXbvrduBfc21oWdllgBovmYSwqHjXRMRYrIhQAdy4vWqBQtS+TRNEyHEysNpgYS5OIahqaweygVXQ/C4uob50qESIJsPZ5lVzHFYrVLKqYylovf1Gbuo4dHOL0uCALfC2zbUhtRjvNbhY7t8fzlKvmkzj3T33/7YNfyqHWdKJddwnZF/qflin6XBPiBz3xZnF0VWbrK8WAb22RzTYJQgje7VYVAzXSJqaAqCkEQUO44jGRiHBpLc2a9RcvyMHQF2xO2pk3LZb1hUWnbhIQ4XoAXiB5ZwhARKI7vM5KJk4qptHuCWLtQ6TJf6fTzL8Mw5LMvLPOtC1sUUgYP7S68Yavjd/CDhYbp8PjpTWKawkePjBDTFIYzBtm4Rsty6VoeqiQxWYizq5Aim9CZLsQ5vmKDF/DFU+s82BnA2HEOCnyferSPDSR19o+k+db5MgEhftBh/0iK9UZPZHLZPoWUju35fRJ21/HoOj61rst4PkHLEiovRZZoWy5uIFSTaU3GjmYYy9WuWLui7K5tsYbEdl9LRlUkwhtwDFwfnr5UY6aQoN616bo+h0YzWLboDYZBFCEShnihsIC3XY/1pofp+uTjuiA8uAFhCBsNIfYxVJlalJfW6LlCPewE7BlM0bI8PnpkRPTGSh1x3nJ9al1bOJ8oMi4Sluvx6krjpuvnd2UIJknSu4C9YRj+tiRJg0AqDMOFt+rxb6UICRBNlHxSIxvTsD2fmCYsTEZzMQjFsGO+IuwDswmNqXyCQkonpsn84UvLPHupwqVyF1UWIZCZuEpCV1mu9zi32Wal1qVj+xHbAAbTupATKhIJXeHQSJqvn9+i1nXo9DymCqJBE4t8rYMwZLXeo9Jx8IKA+2dzLNVEgfTsfBVJEjkxLcvhW+dKLFSEEkZXZd5/YIhXVxp4fsArS3WCIGRuq8P79g/ywnyVF+ZrkVe3wlqk7EKCvcNJhtIxZFls4MLbuctLCzU+dnSUjx0Z4U9eWeGBwQH+6aePoKkyW1GTdiyfYCRrsNE0+zeNF8Kj+4dYrHR5br6C6/u4rt/PY9u5twVheFsspLcKn7pznIVKl4mB+FUFZNf2eHmpTjGlM5FP8HvPL1Fu25i2Tz4Bx5cb6FGxvnsoRcpQsFzRKJsrOTi+CCdv2R4JXSVtKKx4AaosNvcwDPrZaDdDzw15/Tjr+pB4vfprJ1RZNISGMzF+6ZEZtpoWG02r/xktVsRnVkzpvHtvkbFcgmxc496ZPE9eLFNqWazVe7QtD9cPuHMyR7lt85m7x29YfGdiIu9uo+lyZDzLUr13U7umW0Ehum8jL+kgEDLjAHh41wBuIPLc2pbH8aU6HdtDUyR++ZFZvn6uxHrD4v0Hhm6aO3IjOJ5oyiiSxEO7C+8weiI4XsD/9+sX2WhZOF7A0XHBeCwkdZ68sEWpZeP6Abomwq5ni0nSMZVTaw0ubXXoWOIz2pTEzw/aOiGicBZ9X5lP3TXJp4+Nc2mrw9xWByLps+WIvK7xfJyfvW9KDLr8gPVGD8sNUFWV6UICNwhYqVt94kMxrdM2Hcwo+NP1PDq2j0yIzJV7KAwhqUvcM5Xj8TMlym3BmvECER760pKLH4bXV2mGIiw8pkqkYiopQ2Gx1sPzhR++afuYri++b8ePmU7AYkUohAxNIQiigXlUqAwkdB7YVeS+mTxPXCzjByGP7L21Bco7+P7D8g7Vy0ZdDB+uR4y4UOowU0xybDIXNUZDLmz4KLLM8aUGj+4fwlAVRrNxgjCk1LL5nWcXuXsqj6rIjGZiBGGI5flcLLUYTBm4fkAQSDRM0ZTYzokQdgZXnvvEcoOO5VE3HfYOpbh/tsA3zpUYy8XRFKk/AANhSbBtS7hQ6QpFtaKwaVncOTHS/77NpqgXmj2Xb5wrcbHUQZUl/trDM5zfaJEwVNq2hyLJ7BlOcWKpzp+eWCNlqPwvHz/IQ7sLBEFINqExORDnSyc3uFhqM11IcHQ8yxdPrlPruixVu6QMFTcIabdtFEViuphCkSUWqyZj2Xg/00KSYKHaQZdlhtI6SUNlq2UJFZuh4IeQT+gcHs/ctNmkylcauJpy49yknbtgo2czyeuHQ89fLvf/3L6J8ulde4u8uFhHluDduwdv+H07sVI2mS68fh8c3KEKutkO99JSnVZP+Le/slTnE3eM3fI5G73rn5gOjeaIqyJj9+DojQeMO9fZlnV7ddGN1sX4Dsvra3lXxZSBpsq4b8aD5zqQgKrp0ex5URaGsBMBOLvewlAl0nGR67VnSFhoXSx1sFwRRG17IbIMXVtGkUUzZ7qQZDCtc7HUIWko7B5MEdOEtdfx5TpxTaFtufzcfZNk4hqKLPHFkxukDJU7J3I8dmqTetel1LLYaPZuSRSqRQzT3YOpq1jtB0YyzG11kCWJfcNXf3aFlMFfeWialxZrvG/f0E1VYGEY8qVTG1ze6vLgrgE0VeblRUEQaFleXyn46nKdi6U2cU0MpX+YCE4XSx2aUX7C5XLndcO+vzy5zmrd5PeeX+K9+weZLSa4WOrgB/D/eewcDdNl12CSQkpnLCfyEZ+4WO5bhoNwCxjPJfD8gPOlN57NeyuEiLPuVF5nZijJ4dEs85Uu5Y7N2Y1Wv0F4K9jvDMF+oBAE4VWZYJIk0eyJzFORqeuw2bLIGEpEZhFseFmWKSR1Ckmd5brJcCbGj90xwrOXqyxXu3Qcn6KqkIlpWI7Pgtml5/goioymiHvm3GabzaZNw7QxHZ+e45OIBmqaLAmV9LWvd+dfQkFTSBkqjhdge17/3yUgZYh3lompdHoOrn+l5leCAF1RCMKAMxstwiAUajZDodqx8QJRdw1nDH71XbM8dmaTb5wr8eDuIhP5BK+tNFmumZzbaPPg7ADfOFeiY3mcWW9xYCRNMWWQNFSCQGKu1OGOiSxbbZuRrHFV9vPNapIwFDl9YSjIvLcaljm3eUaXEPuosGSV2DuS5u9+YJ+w9PVCTq016Tk++YROz/U5Op7rv+avntlkvtLlL06sRao8+Lsf2MO//KmjPD9f5dsXKyxVTTqWhySB5we8tiJyZPJJnf/h/XtvegbfNZi6Skn/3cYn7hhlvtxlPBf/jnsFq3WTUytNGpZLqdnjQqnDUNpgJBtjPPf9s/85XsAryw0Oj2ZoWC6FpMaJ5QZdx8WJGNqKJPqKfhBiOS4BV2yjrwcfviPnoCuvDVzfR5UlMSxwPF6Yr2K6whbV9wPKbYu2pbDVsulYgsQ+komhR7bOsiShKwpaXGEonWJXMckdk1lemK/hBiET+RgTuStksN96eoHffHqenhtweCzDZvNHxxbz+wVvJLts8Z9/4jt+vpOrTTYiIuHlshiIJnSVX3p4hvlKh7/9e8dpWS66JvHefcPcPzvA515ZwfVDurbHYkXUgNm4RtPyUGWZQkSSA6h3HZ6/XKHU7qFIErOFBNWOg66Ie2q2kODOyRzfnitT7zoic7othD2GKjNTSLBW7xHTIrJJ38JQQtcUvNDH8YR6WgvFAHjn+ahfRypSZJcuiN/C4vT1qs2NRo+ttsVAQudSqYPtCTK4ocooEgxmYqw3LAxNoecEhJEYqeLbaIoU5YlJ3Dudx3IDNpomHRvqposE/cxIy/VFVIMs8649RdZqJqc3WjRNR+SbIYiuuhpSadnot+iXve1DMEmS/jFwL7Af+G1AA34PeOSteo7bERR5QUjPDkgYKpbnU2671Lsu79s/hCpL9FwPNwjQZAnT9mlbjgine2WFi5sdaqaD7we4HnhKyN7hFMWUznrdpOsFNH2hhjJUicl8nL/zvr3UOy4n1xrENIXjy3Us1+/LARVZYjQbIxvX+PjRURw/wPNDnl+oElN1fuJu4UO9zeYWk1yP9XqPzYZFMa2T0FQ+fGiYx05v0rGEvVchqXNxs43nB/z2s4vMFJIEofBvNjSFoXSMUstCkuCVJRE4//CuItMDSVyvjSyJGxpgKBPj/QeGAXjiQpmvn99CV0Qj+pHdA7y8VBcTaEk008ZzMc5vtFmrm2y17b5HtsgXu/pDUhWZhPb2NXPnSm3KHZtjk3niukJcV64rp//2xXI/CPz9BwcjxrnEUtcmHVM4OJpGVxQGUwZ3T+Z4YaHG3Fanz2LOJzR8P8ALQ8YyBuP5BOdLHSwvRCJ80/Lum8G9xfXu+BAGIv/uvz23RK1r99lcIYL9lUvqIjdEU7C9gJeXaryyVGO51sMPQzabFookmhtn11usNyxShsJHj1w/4DwMQ7wgZCwX59Rak426eVv35Y2wzaj2AnF/Tw7EqJkuSV3lvtkCS1WThUqXrbZFMZUhUhtTNx3my0KO/MJClUrHZiIff0Ne3a+tNji+JJoy2bjG0YnbO8z/sOM/PHGJb53fomP5xDSZju0xnIlheT5dR7CRPT9E92V0RaaQMvjknaP866/PCQVu5M3dMh38yPrjwdkcSzU5GhKEPD9fIWkINe4dE1kRwtzzhK2a69OxPTLRobPUssjoCuWOTVJXubDZ5u6pPFIYRjleErPFBOWWwmpdXNemG+L7Pq5/9eE4BC5tdfk337xELqGx0bSwt9esUITsXns5y9BPjA4C6DhCzv7jd47h+ULiXus4QoGCUIoNZ2LRa4kstbZP2GFIXJNxXF+wLUNIxlT+xrtn+dMTa8yXu+iqzETu+nZW7+D7G6dWm/0/z5Vv3JB0fWHNXGpbaIrMN89v0ey5DGfEQdiLmhZhGLJYNWn0HAZTBjPFBIamcnAkxZ+/qlFu2yxWTFKxJh3LI5/QGcvGCIKQe6bzjOfijOfiV2WJHRnP8tvPLqDJ4t7eNZjk5UWNk6tNPnxkWCjCdIVcQo/YlRmWaybj+TibTYuaKZjZc1td9o2IvfbR/YM8fmqDlXqPPz2+RjqmMl1I4ngBd03lefZyhfcdGOIjUfbmv3zsHJe2OoRhyNNzZR7eU2TvcIqpAZFRuc2SfnmpxhdeXScMA8xoaKQoMneOplhv2HRtj5cWqtwxkWM0l6BluSiSxPGlOrIkrJPMKHPkrqksuiqz2ezRcXzetadAveuyUjMFc/wGFnJXkXpuc59v9a5P/Fmu3jyXYxuuT2T9CD3/NodDN6jy1+tXLJFv9vJl6OeYGjfI+roWhevYEgJ95XAA1Ls3JkFd9bu9yfvcSQYybjCI3KlG3+k+UIvU/UH41hgr7/zNeCF41zR8AoSFl2+6nFxtUGrF8Hwx/PL8sD8UFwfNAEUWzV1dkblc6TKWjQMGbdvlclk0gd+9d5ClapeHdhe4YyLXtzX82+/d3W+A/tS9Ezx9sUIypl5XzS+UZy5DaQPbC/jDl5aFknI4xY/tGHhmExo/fe/EDRV3D+8u8vDu6+fn7YTtBcxFQ5kz6y3es08Mcz0/YCwr1E2rNaGEeG2tRCGpU+s6/PIjs7d87B8U7B5KcnJVnOt2RU4UJ1cbzJU63D2dJ64pzJU6VDs2T89VODqRw7R9nrtcodJxGEhqvLhgM5DUGcvG2YwO+8EOatyeoXRkJ9690ct4S5DQFX76nkkKSR07utdu1XjYiXcoZj9YcP3gqiGYyIgSuTmGKvJ/6l2HzUZAo+fgB6IBNjWQ4OJWh2cvVwlDcd38ySurIrek56JFGZaaKrK56x2HrbYtzoCBINt0ba9vbxxVQqw1ewwmdXRVRgkCbO/G63nd9DA0F8sNIiefkKjvTUyXGc7EuFzuEAIZQ0VWArqWj6ZKDCR0MfyXoNkTZLoQUUuUOzYgLBYdL+T//menInchm/fsKdCwPC5stvADYdnm+EGUsyUccS5utqh2HbIxjaOTOQ6OZqKssTdG4jy/2earZ0riNxNyy7Pr7brxhIAfBGQT4vfc7nnIhNwzXWClZrJW7+HGhK30obEsM0XhVpAyVC5udfjWeWHJa6gysizxDz93kvfuHyZuKAwkdSbycRpdR8RqGCpeIJqymZgYVu7MYXqz2GpZPH2pwkg2dlv71O0ipl2/t/RGcX6zxe8+u8RTc2UGkjq2G5BNCKVv8i14/28lvnxqg/lyh7YlYj6E2kRGVwR9WZYkYqpEy/YxHUH2UOQbkEgjvNEYkBs+DiJbzNBkMjG1n3EkR0MA0/YYycaxXJ+W5fYb5w3TiWyuQZeFheLuwQy271NMG3zm7kl++t6p/tl+p4X05XKHuK7iBR4T+QQfODhMtWOjqfJ3Lbv+jQyB3sF3jqkBEQWiKTLZmEbH9vr1dbllsVw3hfLZC1iodGlbLqoii15SKFTHsuSiyTIJVSYV03h47yASIQuVLpfLXZqmQxhCJqExmBGDn/F8gvlKh/lqFzcQcwddFc51CjKVrkM2obHW6NGxXKrdAEmSyCU0LFcMpsJQukqYsr0PXu8WdP2AIJQwVJmUIpGN62TiGsvVLs0dBEU3EOe6zaZFlLADQDIuCN6Vto1EiISwTd7urxmqTEyVoxmBUHz33IBSy8bxAwxVJqmrdGwfyxOimrrp8tJijfGBOD03oB7tHdsIo/fk+AFHxm++Nn83lGA/ARwDjgOEYbguSdIbl2fcBMEtNnIZURDUTYe8pEVTSLHYldoWtheQNjSGMwaOG9C1PS5tdYVayXKF5aCukB1KsVrvIUkhZzfbZGIqmqagugGOHzCUMiikdP779+9htW6hKjKOLy6KwZRBQlfJxFRalrCL22zZDKZjVLoOk/k4h8czvLhYo9S2eGmhxqP7hxjOGNRNm8tbogmajmt4fsjegQTDGYOfvHuC33l2kfObLVw/4MhYlg8eGubEsrg5e5Fd2LHJHDVTZIwZiswTF7Yodxwc3+fsZosPHBhiriQKscdObrB/KM3B0TRPz5VRZYmXFqvMb3UwVIlXlur8+29dwtth2TWciTGajaEpMo4fEARXDvVqlJ2w81PyggDlJuzp7wSVjs2XTm0QhtDqua8b3Lh+wOdeWWU9ClMF0TCfKaR4aHfAN86V2D+SJqYKFslINoYiSxTSItiWMKRlCmlptWPTc3zBAnN84rpKXFNo4NzS5mOnTdJbDT8U/rTlti08UaUrygM/DHnP3kE+dWyMgYTBN86V0FWFatumGslPFUkUNsemsixWruQ33QiSJPGhQ8OcXGnw6nKNes/7jt7bzp/tRio7SZKZzMf50KFhvn2xLNjTklBajuVivGffYN9ma6NpUes6VDs1XlmS+NV377plIW17Po+d2mSh0sV0PJKGSuYmllM/apgrtXEjdoemSpxdb7FYMTkwmiauqxiKguO5BEFIz/EYTBt89UyJRtchF1exvYCELlPvivU3DAPG80lOrXUif25xzX71zKbISDFUpgpJjsRUnpqr4Poh6w2L//2LZwn8gJ4XUo2Y6n4YMpo12DeSRpbFcNvxfV5cEKoJQ5UZiOkgSSQMhaDj0NsxoZYQRYmmCMvC3jXTa5H9EhEuoqF/QlPoeYK8ICH+TZGg0nHIxTXWG1b/oJ7UVXRV2KkkdCVSown1mFCoSCQNDVWRKLUcsYm7IV85U+L8ZptCyhBWbm/HVP0dvO3YWaPcbGAS1xRqHYenLpTJJXVUWUaVQlRFjgLjDSzX5zefXmC9LuxF9w6n+PSxCTRFpmW5TOVjzJc7OH7I+c0WAwmdyXycRs/lxcgKcaaY4NhUniAI+eKpDVZqJo/uG+TDB4dZqfeQJImNZo9q12E8H2O5anJmrYUqS/zCA1PIksTdUzkubXV46mKF+2byDGUM6l2HA6OivHtlqcbXzpY4u95iqWb2fcE/cHCIwbTBYNp4XV7F7FCSL5/exFBFJt9nX1xmq2WzfyTNT987yf2zAyxWuoxm4ry0WMNyfbIJjWPTeUYzMQ6OZvjKmU1W6yInNZvQ2T2YZLHS5XefW8L2fA4MpxjNSliO8Cb/xNFxXlqosVzrRlkkCpLk4fohWy37xjlKOwoa9TYt+7QbbEGZ2O3tMxdLLbZagn24fJP9WAW2R0wzxeuX2xtt+7pfvxZeNABDom95dyuo2vVb2+c3W30r57XG7Q3+ujeZ9e18NTeKmM3ssJpTd1iPvLbaYNdgkrlSm622RSTWfdOQo0PkzY4jEldso6tdh+G0wVRB49Rq66rvC0JIGiL7K6ErWK7w8D82mWOh3OXx05uoikQxZfAvf+pO/CDk5FoTQxWZlpYbUG7bjOVi2F6A5fnMpBKkr2nI2J7P7z2/RNsSltf3TOdxow/Iumav+cKrgoxxbCp3VQ7GtY+3nQ90I1wud6hF2QPv3T/InqEUhaTOl09vcGmrw/sPDvOBg8OUWkv9gOvvViPpu4WhtMhg3IbjBXzz/BZhCJsti31DafYNp1jRFBK6QlIXxJ+mJfLS3LbPeC6OH4Sc22xRalpYO6ymZAkc1+fSVoebkO+/Y+gy7BvJ8OTFMkld4aHdBYYzcfbcxEb2WtzeKP8dfL/gWrWLF4R4AUzmDFIxHU2RWK2ZpOMqQRiSiakcHs3wynJdMNYDUBQJywvwggDXF9er5wdstiwe3lUgBNbqggEfyiGKImM5gkRsRySKbYRBSNPyyMZVerZHQpdo9rz+eXe79yAjzv6llk0+oYl8osi6TZElslHNvp0b5gch988OEIbCZmq9YfH8Qg0JieG0jh+KV+H6AUMpjWrXpWt7otkngemITMZT6006tkdMVbD8gI8eGeHoeJb37h/iK6c3oggBF0mG3UPCjv3fP3GJSsfmw4eG+fSxibfts2yYt5+j5flguz6+HzBvefzDPz3Nhw8Nc3y5Tqlt0eyJJm+r5/CvvnqBpKFyaCxDNqaRianENRnTEeerharJ6gtLTBUSDCR0ZopJZvYNMjGQYKttsVA2Wax2ycQ1vn6uxMeOjHzHDhhPXxKKs6Wqyd6htMh2+z5CwxSOBj1X2IjGNJmZYpKDI+mr7LK/1yi3bb5yZgPb87G9gGxc47XVBhKwazDJ1ECCM+st1hrmVeT3t9iR96ZwfGHFOJAStnJty8XxfBxP5AT6gRhk5RI6XcdCBkw3iCxZxT29WDUptRwmCwlimsJSzWS2mLzudfjT905iuj7FhM7/5SMHWIjOG5oi8XP3T12l5HwHPxyYKSb5m+/ZRalp8Wcn1nD8gPcfGOT4UoMnL271e2Xbw9JCymA0Y3B5SyKuSsQNjZimUDcdcX0GIadX66RjgsRa69gkdRlZkjEtj0bHZe9ISthe+yF+4HN+o40fEahVOXJqkyRWaj3SMQXbD6JzrMVP3j1BGIZ8+fQmpu0hX6dDG7W3xMwk+lrPDQkRZ8BsXCWmKYSEDGUMLNe8ynpflSVCCaEwi/phXiDiPWRJWOsqUnjVwEpTJI5M5FiqbQCQTxp062Zf1Z2La4zl4pzdaPf72KMZg/FcnId3D/CHLy5f5WijiojBSNmt3lIN/d3o8DphGIaSJISukiR9V3WicVUmJMSK7LCqXZe4JtF1Q1QZ7hjPcrlsMlNM8AsPTPH0pQonluuiAJMlWpYnpO4hjGZjTO5osLueTzEV46NHChiqzGbLYiwbZ7aY5C9f22CrbROGwnezbXu8b3+RYjpG3XSiIFdRELwwX+UvWzanokNsNq5heyFxTTDsLpc7ZOI6hiJxcDTN2Y02A0kDVVFIGsIz+atnhDfpc/NVjk3m+Jl7J1iodlFkmYGEzmq9K2S8uTiP7C3Ssl2+FQVpT+RinN1o0egJ9ZAqS/zlqXUetQaZ2+pg2h7pmErbclnuOjQtr3+D+H5ITIGJbIwgFJ68e4dT1LpO39bnenYXliu8Qd8OqLIkggbDEG3HhrXW6BGGYgr/9ciK4OBYhl+4f4p8QqfVcymmdO6fHeD0Wgs/YtvPVzo8tLvAx4+MMjWQ4MRSnS+f3uTCZiuyPBQ3XiquUu7YaIoo6lVVwrrJCfTtrAm2lTAAQRiQNBRMx0dCopDUeHhPgctbXc77bX72vkkA/sXj57lnKs9CtUs+rhPTZbJxg6GMCDz9xNGb2yCV2zZrjR6WFzCQEJYWb8V7lCNZeyFlMF1MIksShZRBLqEL7/RKF1WWCcOQb57fomG6vG//IE9cKLPe6jGRj3OLdRAQTMPtUMv9IxnevbfIcObtVd70HJ/VuslEPvGWsN3eDDq2xzfPbxGLrFVvdNg4MJJhqdbD9X1mBhI8e7mK6Xic22gxlo0REhDTFPJJYfe0XO3yh5er9BzB3kjrKnYQIEc2Yrqq8NzlKo4fBW1HA6Jy18G0fcptofYaShsE4ZWhejtin8gS0WBNQZFCFEmimNR58IFptto2Z9abuF6AH4rhURuPmWKSTx8b53OvrHB+84oiJyAaSofC3/zaAbUmw/7RDEEQsFAVEvPRbIz1Ro9mT6wBIYJVn9Bl7prK0+xt0bXFIbtre9getC1PZINFj6sqCkEYosgwmjUod0CRHGRFFlYSYchYNs5gyuCOySx73iAz9B18fyAdUyASg8WiAcH17rKuHa2ZEYFjppjEdH1KTYvffX6JmKZwbCrPq8t1WpZHOqbxyO5if5/LxDQe2FVEloWftirLlNrCqmckE2OtIWwZn79cJQjg0Fiay1viPji11uRTd45xbqPFRD6BHB0Iw1Dqh+J6QcjTlyrMlwVRwHJ9BpI6HdvjFx+YxvMDXl6qU2pZvDBfFX77HRtDlbG9gIf3FPp5YdfDfdMFPnCgzYVSm6+eFba2miKxWu/x8aOjHBnPsncozZciu7C66TCRj/Ppu8YYzcaZyMV5ZanOcMZAV0WO2Wg2zlMXt8gnNFRFJ5sw+My9Q/Qcn4l8gqGMwZdPWZxcbZKKaYzn4uwdTqMpMvuG0yKPxPFIX1NQhzuYPbfr/Gt712/5bn8ut8LJlUZ/HXxpsXbD74vHFNqWGLTfKGPsXbuKfPWsyD69mcCrF6lTpfD1g5EbQZevf7SwnCvqL+82qb83mKe9Do2eQz71+v260r6SfebsqMdmCklOrTb5ybsn+OLJdRYr5nc0BDM0GRlx0AvCEEOGnndlHykkZNqOcJMIAmERNpgxuFTqvF5lLMFEPsnHjozw+eOrkT9/nD94aRlCOL3eJKkr3DdTAOD4cp2n58RnqSkS375Yodlz2T2UYrMpMsPWGhaeH9C2PB4/IwbND+0u9JnSpZZF0lD5xB2jrDV63BXdpxvNHl85U+LF+Sp7hlKcW2+hyBKzxSQT+SuWQK+uNHjiwhbFlMHP3jd5Ve29E9++WGEgqSNLEndN5nD9gPkob+xcXTz2cMbg5x+Y5tEDQyQ1hak3oOT/QYQWDTTLbZu1eg/HC4hpMvfP5pkuiOvgufkaz12ukItrBCHsKiZZbVhUOw6tyEoMtrNYRH7Y2zkAA9BUhcWKcCyJaQrZuM4je27PpnUbiXd4Zj9QuFFT6T17i5wrdbm01UECJmUxDM1EBNxWT9iLSxKMpHXajk/bEq44apTXWe04nFxrMl1Icmwqz7n1Jl4orPAtz+8TDLa3Xk0WymiRGSwGZOGOBtu2ykuRxQ85PriOj6HIHBpPM1/ustEURNGW5ZGNaxG5UjxHpWWzfzRDzFbYbFp9Eprrh6QNBc8X76feE7kso1mDuKHwyaPjPDdf4dRak4GkRs8NMF2XfEIjHRP9Hcv1Md2AnuPhhwG2HbJe76HKMt++WEaWJRpdl0/dOYYsX8lA3WpbFJLGVVa12zgwkhYM/zC8rYystnl7kRRpXaLnCaJvTFcAic2WxTOXyoJM7YmzX0JX2GzZdG2fRJRX/6GDw0L5JsGDswV+65kFzq63cPyAnu0Ty8pc3OyQ0lU6js9kXmS2ZRMaMVXh0laH5Zr5HVsejmRjLFVNUoZK+jZJR98NrNRMXliooUjCyWm6kGCjYZGLa7iezy8+OP29fol9eH7AZ19YwnIDkoZKIWXQc3yG0gYyMJKJIcsS683e69yfroWEWPtN7zsjH90Ifggr1R4HRjNkYmokbBAK0pblkYnp+JEFuhOtLRISCU0iCMV6osoBvh+S0BX+4tV1fumRmdfldwIcm8rTtX1eWqzxhy8tM5lPEIYhW22HS1udd4Zg32e4XdXc9WwT612HuK6IYVAIm22LpuVyZq3Jpa0OCV2hYbroioSqKNw7necjh4fxA1hvWKI3LUkcHksT01TWGyI6pmv7zG11iesii872AvwwZCChstm2eOzMJvVegdlCSkSLqBKLFbP/vYYqiwzMMKTccZAlnaSu0uy5uH6A5Yq8PscVNohx9QqxW1dEz9wLRJRPTFNFtFMgFNN+lJnci1wjLC9AlYSjmxcEaJE9oucHjOfj1LouluMR11VGsgauDyt1E4kQ/xqyYTKmCXWlLNRpfhDw4MyAiO0JAhRZoma6eJHqrZjS0RSZ0xsN/vmXz/PRI8MsVroEpkPcUJkpJJgrtVEVQcq6Fb4bO8EfS5L0n4CcJEm/CvwK8F/eyie4XjGgysLD2PFBlUX6yzZbvxv5yWXjGltth6GMgabIGKrCnZNZ5rY6FNMBA0mdpeqVSWe5LVhMcV3GcBR0VeG9+4t88s5xLNenmDLYO5zmlaUaPddnNBsjJORSSdjnWW7Irz26m6culrE9EfB2YqVB23K5XO6wVDWRJYmhtE7HclmsdnlgV4GHdxc5sdxgMK0zO5gmREJTZI5N5QVjodLl6HiW48t1vCDkmxfK7BpKoisKDdPh1GqDuK4iSZAwFB6YLdCzfRpdEfKYjWs8N18jCHy8QNieFFI637pQ5sxaE0URLKlKx6Hn+FcauBIkYwqmHbBU6zGWi3FwNIuhSLyqNq7KtpARheh2D2X7hno7kEvo/PS9E1Q7DgeiTKhXlxv8xrfm0BSZv/meXeI1SWBEja7nLlf4jW9dQpYk/ua7d/GhQ8P0XI+nLlbYO5SmkDSQZYk7JnLMFpNcqnQ5sVwniKbdI5kYQ5nIahKRKdJzvJsOwb5TqLLUbySpkd1cGIr/JEk0mfxo0OgHIQdH0rRsj/tnBujYfp+NO7fVYTQT4xcemGKzaTNV7uAHIry92XMZzcZ5z77BW1orzG2JANTZQpKUoVLtOq9T1LwZaLJEqW3z8FCST945ylLV5MBwmr3Dac6tt3h5sUbXFiHFp9dEp/mLpzZQJbGoiiD5Ww+YRjNxErqwh7xnOv+2D8AAPn98lXLbppg2+Kvfo2L3+FK93wifyCduaO1w11Qe2wsopHQ+fHiYv/9Hr3F6vYkiS3QtD0kSwcb5hMFWy+biZis6+IpNd7vnWUhp+IEgFQwkNeEdHFMx3YB0TFhh9CwvGh75mIbPzECSuXI7YqVEjVFJyKqDMKTUdmlbHl94bZ137S0KdWo6RjlSakoS2L7P3FaHP3hxGd8PiaviYCcRFQGyxNRAAkJBmnA8ofAkBC0qeC6Vu/hhSC6h8am7xvjsi6t0bL/PdJEkifmKyV2TWT5yeIRnL1eod12hGPOEzZWuSGiyWA8VRSJrCKaksJFxhVWiF9C2XE6vNpkcSBDTxbr9Dn4wsXP24Qc7upXXYLv5AmJ48dCuAk9cKLPRtPCDkFeWa3z06Aj5pM5INsauYop7rgkNf9feohhchCHnN9tUug5IMF/pcu+0sCCUZYnlmonjBcwUE6zUehwZy5I0VO7d8Xg/dc8EzZ7LRD7B8/NV0jGVzWYPxw84s94in9AoJA0e3iPsZc5ttHnuchVAEHCSOoNpA8vx2T+SZuQWuT6n15os1YSNhOt7eH5AzwlIxxx+41uX0BSZu6ZyfPrYOC8s1GhZLjNFkV+23XT/4KEhcgmNDxwc6ucI3b+rwKP7h6h0bP7Gu2bxw5Cn5yrYfsDFUoeu41Hu2LRsj0vlDn/n/XtI6Cod2+P//aVzLFZ63Deb579//97+a90hKrrhoGn7Y96uAmauk80FoN+mzWBrR47qdqbQ9bCdiRgA5bZ13eFQccf+FruJNXU+rqFE6tfrNQCuhxt9XzF1hdGs32RP3vk7Sxo3/r5tb3oJKFznPcLVdoj+jsHbbMTk7DoeT1zYuvpJ3wS8IESXJXRV2HoVkzpudP1ODMQYzSb4y9fWAUHoMB2PhXKXZs8V15JE/7DpRfujHR1Y/SDk3IbIIKh2HPxQBE7HoswNCeGu0LXFYHp7sNUwHY6OZ/nqmRK7BpPYXsCptSabUZZBylDJxDQShsKj+wbZalmc3WgxmY+TTYjP8PhSg81GDzuybF9qmzxxsYyhyfyrn76TYqSUnCu1CUNBhqqbzg0VlJMDceZKHSajfF5Nkbh/doCNRg9FhvF8HFmS+mrRHwVIksSP3zXGbz+zyHy5Q9N0WGta6IrEM5eqjOZivGtPkY8fHeW5y1ViusLEQJKa6SJH96Yqg+1fsRLvvc0TMAnBsi93bMIQBtPGba9jV+EdcfsPFHbagG0jpkp0HF8ohYKQnuOzVu9xz1Se86UOl7faSAjicSqmEiAycR0vUl+goChSPys8ZajIssS79w2yWDE5sVwHSTSpk7pM1/aFfVMILcvl4EhG9IEkMVTYzi73wyv1lLSjBus4XkR0lvvLvqEKO0RVlthq2+iKRM0Ua9ndU3ks12MrUk/vH0kznDU4vdYmDEM0VUGVIWloyJLEC4uiBuranrC2liVycRE/0HU8Kh2buumyvReMRHaR6ZgGEpF1lc9UIdEfgAFRlmKHwbTBX4nOiyeW61za6nDfzAAzxeQbsua7nRVC2DaKPWl7rUnogry31hB16Vguxv2zBaFg6Dr0HJEh+uDsAA/vKfbrQxB9n999bpHNpsV9M3l6nrD9O7nW5PBYho7ts3coxcN7Cjx/uUbSUBh6C87iD+8usncoTTqm3lY/4LuFb8+V2WrZ2K7PrqEU+aQYzmy2bBZrJv/isfP8Lx8/eN377ruNua0OLUu4JIzmDP7qg1P8xyfnCRHkHz8MOb3axHHD2yJgOKFETBX3gPM2tAP9EFqmQzquYWgyeiiTS2hIEpQ7Vj8/SeQXhdhuQIiwfttW2k8XEjhe2M8TvhG2nQ0apsuHDqY5vd6kYTo8f7nK7u9hZt07eOvw8mKNp+YqpAyVd+0t8qWTG1zaauOHYl+bLiQ4t9GiG8UJ5BIGv3D/FM9cqtKxRd627QVYbsDZ9Tbv2z9IcjiFIss0ey6VyJFiIGHQNIXVaNt2CcMQSYZXlqqA6MfvGcrQMl2qposvpl/99VwQoQIMVUSLSJLEeqPHUs2kbYtZiKGpuKFQY4vAD7G2B0A+qXFkLENcU5nIx/jd55cxbREp0LU9HM8nCKW+na4TxdaoskS96zKajbFWN/GCgDCUmMjHKLV6eIGErkHgBn0yZ8/xKbcdRtIG9Z4nYhwMjcNjmf6+XGrZqLKEEc0ilqomiiLRMj0+dnSUR/YUeGFe9ANW6j2ycZ2JgTiHxnK3/Ezf9iFYGIb/pyRJHwJaiFyw/0cYhl97K5/jeoRSL4C2LWzdsjEdXZFQFBnb9SMvZ7FYLVY66JrK3VNZNlo9litdwhDunsyBJNHuuYJlh7ioal0bRZGJaQoP7hrg5++fZqNp8UqUIfSz96kMpWPIkkTX8elYHh3bw/EDFqtd/vOT8zh+QEyVWah2eWWxjht5zCqRn0rX8Vmum8w9s4imyHzyjlFsN2CpKmxQTMfjgVnRqPJ9IUsMw5CPHR7hWxfLeH7AmdUWB8YyNEyHhK7SiA6lZ9ZafONciScvlvHDkPF8HNsTdgAhEsWUyvRAgrW6xVJVMFQdL6BhiiHD9q96IKHyyB4xnLM9ka0wEsb44KEhnrpYiezCZPxADBPrpvu6UMyufXsspDeD0Wy83wBr9lz+07cvM7fVoZDUWax2+bvv38uFzTbHpnKAYMGv1Xs0LZf/8O3L/IdfvIfPH18VA6JsjDsnsvhByNfOlnjucoVm1xEB775QcQxnDSYHknQcl6WKKRR1O5iw23vnW3ks3dnQUSJDVz9SlYDwqu45XnR/CHZAPqmjyOKa+vzxNRzP59nLFb5+douBpMb/+olDfOTwMDXToZA0aJgOpuMzOZC47mvYiZSh8LWzG9heQExVyMRULNd50+95+3DiR7ak375YodS0WW9a6KrMP/rEIR7aNcBz81VUWebsRpvJgQQrNZPZQpKNpsVwJsZA8vYaKdmExq+8axY/CL9rRXInugc61tt3L9wKo9kYkiQ2sOs1ndqWy1NzFdKGynQxwXLV5LeeXuR9B4ZwPJ+27dHsiXydlKGgK0QZXzCY1vH9gPWm1T+QxjWFjx4eJSTkyYsVMURzfMIwYKFqoksieybwQ4JAqA/unRmgmDZ47nIFLwBVEQexhK5Sig68lheyVO0wV2rTsjwMVeLoeIYQidNrTWwvRJZCtpo9vID+vatKEsmY2rdgG0obDKUNaqaD6XgkNJlsXGe93u0PtUsti794dQ0vCuD1faEwtdyAy+UOddNhppDk19+7m3/x+IW+N5kqQzGtR+/Lx1AVbNdHT+kcX27QjfamEBEEaro+mbjWtz3KJ3QOjKRvKfF+B99f2Plxba/P17NN80KhXjd0maNjWeK6yv6RNHXTJWUoTOQSfPVMiWNTOX7m3klhJ5PUeW2lwcVSm4l8Ai8IeP/BIYbSMV5ZrPHkxTKSJFFpW7y8VMcP6Of6jOZir7M2e22lwUbT4oHZASbyCSby4uvbuV2llkXdFBlC04Uku4dSfbuynWrWDx8a5sx6k4Qu88pSA01V+k2k68H1A75xvsRipSuy/+IaiiIhS6IJcm6jxR0TOZYqXQ6PZkjqCoNpg4GkFlk216i2Hc5uNpGQ2GzaHIyckA1V4W+/bzePn9rkc6+sYjo+CUOwjBUJnr9UIwxDkckXhHhRhf65l1f41oUyEoIl92uP7u4P24IdU5ObWb3s/JhXGiaTxdcfiJu3uf4PpQw2muJ3OJ6/8Z68syb2r1cgA/M7sul6zo3fQCEt7KBlSaJ4m0OJ8AZJP6n4lSFY8iaDN0Wi30TRbjJg3L6HQuhn0L7uOXcM0a59VTFN4U+Pr7FQ6X7HmRQiZFoETVuuT8t0GUjqpGIaKUOn5/okdYW2Lc4Tjh9SN11CQhKGGtnkethuQC6hcWwqT6PncXA0zVLVpG15Yl/TFQxFJq4p3DWZ5Ysn12mYDq0oO/PcRpuELnNypcmDs5P83vPLzFc6nFlv8vJijemCGIYlDZXjSw0MTWYgpTGUifHHL62w1uhxeavDrsEU2bjGRC7OZ19cQpYkZopJXjleZ6VmMpjWqZlOfwh278wAHXsLXZFZrffIxfXrEhQ/fmSU1h73KovDjx8d5eNHR1modDm12owyAoIbqsl+GLFQ6XJ8SRAZz5faDCR1FqsmuwaTfPVMifMbbRYqXQYzMX7syAiPnS2JNVIWpJpQkpEJrpopKTJosnzVIPitgiIhSEt+2Lcc3T34xpXq5jtDsB8oBEF4lYr9QOT88vSlmmCE+2Kw1XF81hsmq7UujZ6LHwhCQ0xTcP0QQ5XwfKGK9YKAhKGhyhpj2TjnNlrIstTPQvICkZ01XYgT08W5dqNpia8jsrD2DaWYLCSod202dqzlIWKf2NljD8OQmumSNpSrGoe1jkWzJ7KrtomvcU3h/tkBmpbDy4t1CAXzfrlmMZDUSegKKV3FDYTjT63jUGnb1LpCERUEIamETj6hcc/UAB88OMx0IcGdk1nObrQ4NBrH0GRaPZeu4/HXHpzhzoksr640eeQaJvu2FXK14+D5AV4Q8sSFMgBde4tfKs6+oc9S0+Rbyth1mSuZ4qFQweUSOtm4xuVyBy9S0f3ywzOcXGvy2KkNQdCRfL51YYu25fHMpTJ3TOb5pYdnuGsyx+OnDeqmy3K9h+OJwanj+Zxdb6FHa/+P3TnGnRM5VFkoc56aKxPThLLizZ5/vt9IFcu1Lq8uN3D8gLsmc3zm7nEcL+CxUxv80y+dIwxDHju9wV97aIapwq17MG83iimDXELj3pk8ewZTvLhQY67UxrR9FEXC8QO2OjZeVJjdLPIjRFxLLmKIvp27vTO64zuFBDQtl3RcYzQbp2Y6NHouPccDJHqux3guwV2TKaYLCb56tkTP9bHdgKPjOSzXZ7FqMpGP8+i+8ZvaMr9r7yDPXKoI5yFZwvECsnE9Osu/+f7OO1lf3z9Ya/RomA4vL9a4tNXB9nzqpstMIcHUQJLT6w1OrjYwVIXBdIz3HRiiaXm8slRnJGtwx2SOr57ZFCrjjsOLS3UKSZE16foBcyWFiXyce2cH+PxLKyzVe6QMlUJSp9Tq0XWEGqpj+8Q0mTsmc5xbb2N5HiESYeQ05AeCZOKHviDM+cI9YjuSICTEDYJ+PpkfCCWvpMrEdZFFnI5pnF5v8mTkopKJqZiOd6VHFVxtSyxmJCG2HzBf7vQFL4vVLqbr9wUbA0mDatfpux0MpmLYfsBoLk4q7iJJEpfLHZKGyv0zA8iSxJ8eX8ULQFGF1XE8OislDJVnLlVYq1t4gSDVOF6IpUroLZlvnC+xdzj1Ohv4nXjbh2CSJM0CT20PviRJikuSNBOG4eJb9Rw3OvyC+GAs1yOhi7D37e/cZl5WOjZJw+eFhTqvrjRp9Nwo+BD+01+9h//b50+y2bJxvaDfzXC8gLSh0O55fOHVtb5ixPEDTizXGUrH0BQxMfX8kGxcR5UFO/ab50vENIVdxSSaLJrgcU1hNKtzZDzNZtMhlxAqGtcXQ5ekrnJ2o0XLcnl5sYaqSDx3ucrUQIKRbIzhTIx61yFpKDheQK3rsNbo8eN3jeF4AX4QMpmPs97ssVDp8hvfnOsPEkazcWaKSWaLKTYaPVRF4tWVJo7nk46pZGIKcV3DC/x+AD0ICeOvP7qbf/bYeepdB00VDIvjSw1eXqwJFVIoZJXbHtvXfkpvt0TY8wPqpstCpcNAUifet+soMpiOceeOPJJ37SnyRy8to8oSrhfw9KUyDdOh1rUpty3+8rV1Htxd5Pn5Kqt1k5cW63Sj7KyYplDrejh+i82mLYLfQ3EY2Ilb7esyQtVoe8Etv1dCTO23i4WdA0Y1ehzHD6JBXIgRNROycY17p/NkEzq/8q5Zlqpd/tGfnaZjuwShWLyOjGf7LN5CyuB29CebTYvnLlW5tNXt29/dbujuzRDXJDRZotlzqXddttoWo5k4my2Pf/+tOfaNZkjoSn/o/DP3TuL5QkJ7dkNY6+x7AxZymiLfMLfl7cCP3THKuY12X7H4vcDe4TS/lDZQFZnNZo8Lm23umsqRMoQS4k+Pr/GVM5t4fsBg2kCVZea22jwwO8An7hjla2e3qHcdelHwcSOy2JCAQtKg3LH7Q4AQ4St/er1JGIasN3sEQYiuSH3lqBvCQFwjjRQFTgtZ9k/ePcGlcodyZDNreyFB6CNJErIkWKatntcP3HT9kFCSMC0/uh98JCkkiHzM9EhFICuwu5Ck2nNpRWunIsv0HB/XC7ElmCkkeK5xxVbLC+D8hmgi+yHoKvi+GCRark+r5zJf7oj9RRPqQsKQQ2NCVTpdSHF6vYnj+izVemy17P7waxsS4lCxbdv6wrywP/ODkCPjN1dlvoPvL+R2KGOSUXjujVZHSQZDUaibLmfXm5TaNjOFBLYfMJaLsVDposoSd08NMJSO8dpKnf/9L8+SiWuEYchdk3kubLb5G+/exV1TefxQ7BXNnsvxpQbFtM579g3ywGzhKmUOQK3r8M3IJrnnevzEdfIohjMx/rt37eKVpRrlts1Du66wfPcMpfj0sTF6js+B0YxodNR67B8RGTeP7LlxILmmyKQNoQzNxDWm8nFSMY2O7TI9kCQxIuyfH5gdEAH0fhANv+r82YlVzqy3qLQdIGSmmLoqI+fpuQqvLNc5s9rk7EYT2wtIRXY95baN7Qs7FE0TzPDffHqBo+NZHD9gMp9gs2Vx78zAVU15e8dJ3bxNQo9/g9P9UPL2FFYHRzOc3Wj1/3w70G4QltXZ8ZpvRsLtWIKJ6CPIKLeDpnn9YWeldeXrNyNB7RyC3Uxlt5NXVTNtctchvLR2KOau1zxbrnWjz/U7pyJvvxw/ACcMKLcdQRDxAzquhxsIxXBSU3ECseJbbogsRZbBhqhl/CDg2xe3ODyWZTAVIxvXuFQS5IrBtMGh0TSWG3B8uYHnC9X+RrPHZD7BydUGz12u0nN9NiKLQ5GnI17dWC7BkfEMj+4b4r89v4TjBVGgvSBorDV6pGMi2xZgz3CKuybzyJJQeQ2mDJZrXRRJukrtNVtMkk+M81+fXeLJC2WqHYcPHRp+3e9IliVaPY8Lm23umMhdNTjXVZnL5Q6Xyx0sL+A9+96Ytd73C4Ig5MRKXRAqp/LIsoTpeDhe0M93MR2PrZbNeD6OpoizWCauYXk+g0mdnhuQ1GU8P6Bje/y7b4qcoDCEl+arTBUSkQo9wPG5ZvwFMQViuobrvz2OG4oscoN1VVi73TWZYzx/c6XvO/jBh+MFVzWOEoaKIgvimxuR6UIEqff0Rotm1yVEIqYJZ46YKrK4RrNxlmpdPD9EliWmC0lBKAtC6qYTqS9E/0SWIvthCe6cyHN2vUnXFoqUuukhEXJ2s8Vmy8K5zvVuKFJfGZk2JBKGjuX61HecVRw/oNINsF0fVZFxfY9iQii0MnENTZFJxTS6lsti1eTIeJZqdBaZ22rj+6LnYbk+rids3zuWR0xTmS0m+eVHZrl7Kt/PVHv/gWH2DqU5v9mmYTrMldqcXm/xm88soKsiB/HlpQYP7yn2960PHhzm1ZUG+4bTqIqMLIUU0waVts1o7o3fe/JtUFRDSSJtqHRsl7imoMgySUNlppig2XPZbAlFzfnNFumYRtJQ8YOAzaaHH8Czl6ogSby81OCB2QHG8wnG84nIsktiLJfgtdUGhiJhaMIKbCoi3W6TUZ+9XBEDSEQP42Znej8IX5db991CGIacXmsREnJ0PHvTYV0QhPy7b15iqSqyaB/aVSATkYTmK91+z6xluhRS3x+ZYINpg196ZJbVmskXXlvn+ctVOpZHz/XRZJla18XeMfARGpNb9752OiZpsjhLf6fYft6u7dOzXRKGRi6uMde2BOEpDPEDic2mxb7hNJ+4Y5xLZUFEMVSFvUNJFqomlhcwmosxlrv5EHI8F+dn7hXRIr/59AIgauxP3TXG9A+5nfOPCh7aVeDlxRqDaTEMltBEhp/tYXmivnP9kCDwWah2+YvX1ompMpP5BK4f8o8+fogLG20Wq11kSUJXJFw/5OxGm/FsjLF8jLiuMJiKoWqKUD9LEm4Q4rhX3JRCYKNp0bJ8hjMGrZ7EQFKL+qQObcsTPafoe90wxLQ9immDOyayrNZNeq6PFwhFlh+CgVCzGaqYI1wqtbm81cHzQ9qWx8O7i5zZaIEk+t5EjkYif0vs4RIiomRn69fxQ8ptG0WSGEjqDGVilCMybEJXsTyfdExhMGXghyFpQ7gizRZTqLLEZqsXjcdDXB8MNWS2mECRZe6ZHuDJC1ssVk16ntd/LUogyPtzpTan1po8vPvGfYfvhh3inwAP7/i7H33tvrfqCa63z2iy+PCThkourrHRtPpsFlUW9leWG9LoeZEXtMdwJk4YiA8hn9B45nKV/+mD+/gHn3uNxaop5L6e8If1AliumWy2LGYKSWYKSbwg4F9/7aL4IGMauiqjqTIfOzpMqWlzodSmY3mk48IHtOP4DKcNtjoOHTvg1983TTqmIgNfO1fim+e3KLdtOpaLIktkYhqHx7LUTJutlk25Y9O1XZKGymbLYrlmiostkvP/znNLgGgW3z2VAynKAgkFk2fbk//Dh4f5x184Qz6pU26L3AAnUqf98iMznFptc2GrjabK+G5AUlci1YiwY1qr9wiBfBRAKW4+sQW5wdUheDtxu5kQbxZ/enyNtUaPoYzB5ECCbEyjkBaKiw9ck300U0wyEzWmUzGRabTVdths2sgS/PmJdZZqJmfWmixWu3QskZOhSDA1kKRje8xtdq5qjO18dzdseF7zb5M5g8uV3i2LBqGQuvG/TRcS1LsOXccjpmncP5tnbqvDcMbg0X3FPlvrnuk8+0fSbLZ6KJKwY/P6w7PbhyLDmfUmrZ6D54u/b+ckvVmEiOGepkRWmr44OKXjGiGw2ujRsjwemC3gByF3RUPN7dd+eEwMChYqXdqWy+Gx7FtWHJdaFs/PV5nIJ7hnOn/r9xKGVDrCenQnO1ooLb73DK9cQqdpunzx5AZhCDXT4b6ZPJ97eZWTa80o00qQA5aqYgN9+lKF4bTBa6sNYSeAUC+FhGRiGqbrs1BpUzO9q1j2ddPltdUGuiIT12Q6lsgVUhSPetdFkuDRfYN4ATx2agPXF7kBHzw0zLnNFl8/W4qYNDaNSDIe02TG83FW6z20UHjiF1I6YSAGaMJCVmzSuioThqLJH4TguCEr9R69yDNZliTSMdF8CkMIA5+Tq038a67mnVYrrif2Gl2FhK7RtlxalksqptKNMghmiwlKLYdSy6HSdblvOs+5jTYxTWQSFFMGUmjRdYLocUOWq12GUgaZhIYSbXTBWzBcfgffXZg7BjJ2pLq53gorIdZNLxDqa12RsCMFyUAyhuMHnF5voqsyn5Hh8dOb/ObTC1Q7NqbjMx2xRdfqPf7k5RXetbfI/ZFq/D8+cZl8UsN0fN69p0h2R9j2at3k/EabmaIIgbZcn1z8+gfv5arJ8wtVdhWTfPTI6FX/Zrk+3zgn2L+OH/LQ7gIzxUQUQq31FWg3wt96dBdOxCR3/ZD1hsV0Ic5P3T3BZPTeGqbD772wjO0GXCp3MVSZz7+yih1ZlkwNJDg2leu/7622xeOnN0S91uxFdi4BTjSs3laNKrL47+WlOvWeCCv+tUd3s284zVg2zu6hG1uaXC/3dBvqjoHOnhvYomjK7ZXi23Y5siT1G0W3gulef9ik3OY6stbs9Vl9G83byy4bugHjutFz+n++mV2btINCfDMboJ31U9q4/iBx78iVYWHceP1d99HDI3z7QomaeXsDvhthLKPTtVyajjiyeSH4URbKcqMXWX9J6IrMUDbGSt0kDGViqvDVb1seXVvc/7mkxsVSh+FMDAmbgZRBIa1zp5bl0laXxYrJ5IA4WJdaFoosrL1fWqwhy1A3HcJQ3Ct3T+cppnRmi0kapktMU9g3nCET1/iZeycptax+U/F9+4c4MJIhZaicWmuQMjT2j6T51F1jLFdNDo9n+I1v9pgtphhMGTw1V+ajR0bRFBnb84ViabPFbDF5QwViy3L5sxNrBGHIVtvmk3deyZrd+VF/rxqZbwW+elYoTgspQS6aKST4/ReWcbyAjxwe4cBIms++uEKr57JrMMneIWGf9EsPzxDTZL7w6hpfeFXUPrIsc269Rb1r92v+qunScVoUkjq2578uvzQd0/jUXaNU2w6Pn9l8e96kJLHVFmTK4UyMqYLIw372kshCumsyxwO7bk2hS/7gfsw/kri237JU6ZKNqzieyDmPaYJFvm2dFEJkhSgzW0ySNIQzjRxNtlQZUobGrzwyy8O7Bvi9F1cwT21Qbtsk9WhMI0l4Xki751E3bQ6Opek6HqWW1SePSaE4W+wkX0pAMaljqBKrkYLaj+xzc3GNVtTAlyVRbyjC0xwvCFhr2Gw0bWwvYKNl8am7xriw0ebMeouBlMZ6w8R2AxZrXdo9F6JMp3xSx44saQdSBoMpA1WWOLve5HOvrLBvOMMvPzyDLEtMDiSodR1eXKhysdQmFmXCb699u4eSVw1SZopJZopXGuqyLPFz903SMN3XEZpuB15w6xGF44d4QUDSECQrWZYYSht8+tg4794zyH95ap5Kx+bxMyU+dmSUv/bwDBc2xDBPU2TScZWG6ZKOaZRaNofGsvzUPRM8srvIWC7OM5fKGKrMerPHX3lwmsOjWTLxq+uhpC7+LkVWjDfCpa02Xz61SS4h9rbvtu3hmfUWXz9XAgSJ8VYREh3Lo9JxSOgK3zy/Rc/1WWv0+MKJ1f6nEgAXNlvcPT1ws4d6U/jGuRKXtjo8uKtwFSn8ZkgZKsOZGK8u15kvd3D8QPQ6FQnX86Pr9fp9sNtBwlBxTO9Nu+Tm4xodWxCOQJzTl/7/7P13lCXped4J/sJf79L7LO9Ne4c2MI0GCEuCAAgaiZQoitzVauR2j/ZIu1ppZnZ2NFpqVmZlRlyKkkAHEkDDA42Ga+/K+0rvM6+34SP2jy/yVlZXVnV1oxsEOP2cA5w+WZn3xr1hvvd738dULXoSAb1pPSLQhQRBSMJQSOoqY5Gg4KNHhriy3qTWdvjK6VXu21Hg/fv7OTKSpS8tnJGWqia7+lI3ZLiHYdi1rg+CEE2ROTaa5e7b6A+9i58N9GdifPL4CP/yu1dQZYn//pOHOblY47mrIvZivWGTjevoKhQbDnNOuzuwunuywEA2xq/cP8655QYdxycbUzi9VKfj+Fy0hDI5E9e5tFrnwnIdLwRVFuSD12+XkromLHvbIqaoZjoYqixsOxH3XToiJHRcQZHKJ3QcL6DjBJiuf50IWBCqfKSIwLLeuDYzkZG4b0eBHX1JLq7UadoexaaDLItBVt0UThSKJKFIwg0jjPpjqiwJ4p+h8Km7RnnmSrE79E5E2WrFpsNcuYMfhkwUEty/q5e1hsVK1cTyAuHO4oWoKiR1mf50jKFcnIsrNRYqHTqO162NhXW/RMf2mS21b7oP2cRPYgimhmHY3fmGYehIkvS20hq2+4yqLBFKQg1U67jdL0ICCKPwakThBKIAcryAHb1JMU3tOPy7709xdDTHXRMFlmomXhCiyhL5lM5ILoahyCzVLCptm4blcmGlQcf1USSJ0YJEKhbjjrE8D+wq8HvPzrEa+fDbfkC949KXFsOZTEKjY/ucX67z9z64TwyyFFEgrjdN/utL8/SlDf7WY7vpz8b4k5cXuLQqvKh39afZP5gmpsqcXKgJL2ZJ5BLoisR0sUNMVXD9gGrbQZZlVAkGsjGeODTEhw4P8NJMhbgupr+FlMjvyErw0K4evnZmjXLbodJ20OQQSZeJ6QoP7eoll9AY70nwqNSL4wZULZeTxTZ3TuSotR3OLDeotG0SuoIiCc/wrbBv0px5W66JIOx+3y3L47ce3skPLm9weqnOBbPBZE+SfVvUN7NFYcE0kouTT6js7EuRNBQ+/+I8G02bPX061bZDqWXRsa9tOv0QFAU05VpTPKbJeAHdSfyt8PpBme0HqIpgwrwVMowmC0uqIGL/x3Vhb7nRsGlbPhdXmjx5erWbGfHMVAlVlhkrJNg/mKHScahG1+Ym2rZH3XQot1zGCvEuk3UrJEnkpdUtN1JAgh28tTJms/+lyOL+bFqesK1TJBxfNDlbtsfURosjIznmym0GMjG+f2njBobYSs3kyyeXAXEdPHgLJcKbwQ8vF1mumcwU2+zuS3XzM26GH1wucmqxRiGp8yv3jb/pIeNPAooiCSWkHwof3rrFYrVDWleY3FHgwkqDctumYXmRrazHcrVzXd6XZXtYjkTHDjBUiZrp3fB89gJIqzLpmI4sQzamoSoyD+/OYnuCNeKHMFtqIUsSMU1hrWHy7384TRiEfOrOUc6v1ClN2d3CIAhDPnHHMKcX68yW2nxgXz/vO9jPc1MVTi/W0GSJ6WIbQ5VI6iq2H9ByomEyUGzZZOOaGJRJErIsbLhCL8DywI3yErfC0MSk14kOQpHhrzwwSc10IQg5sVhnpWZiecKDebrUQlMU4ppCtW3j+AFBGBCGITXTxdAUYpqKF4iQe9cP8dyAF6aL2J7P/+l9e9FVmcPD76rAftZQ39Jg3xxKbFea5RIapuPRcTzSMRU/CBnMGKTjGrv70lxea3XtYGY2Wrw2X8X1fFIxlZFcgiMjWTw/wNCEJdkzV0t85u4xSi1BwlmrW7z/QP91AzCAz7+0ENUkOsfGciR1lXsmt990//DKBqWWw3LV5MBQhqSh0rY9vnVujZoZ1QqKzHy5zfGxHLWOy7fPrxHXFH75vvFbWhMM5xP8448exPdDXpgpcXG1iSQJhlr3uzRdHC9gd7+wYZJlCVWR2dOf4spGg7btU2zaJKLGSSamcW6lwVJFhA6PFxLMFFt4IUhBQMIQeX8ZXcGKmHyuJxr0YcgNdpHb4VZPc1URDTwJkUWyHaRbqJ22YiBalyVE0PvtIH6TRtCrS9Xb+ntrS93WtG6vKpkvdxjvvVGp5gRb/v5We5Mt/3arWd3Wf1JvMjTpTce6wc2ThWsNxGrb4cRCla+cWqHS/vEGYICwKtncBEYHtrkhtdygaxciazIrNRMJkaGpKZAyYqzWLdTIGliVZBqWy3cvrjPRk+DehE7T9KiZLpbrUTMlwijTbygbY99ABllqMVtuE/hCgR0i8lDvnsjzwcjK1A82G9XimuhLG9RNh6Vqh519KdqOUBZ9/sV5Vhsm+YRBQlfYO5Du1lZ//4P7+LMTS5xZqnF1vUU+UeE9e3q5tNpkuWZ2s7we27e9ikuKvhfCGwddQ9k4n7xjpEta+lmFyHr2aFoesiSsb5yogFitm+zuT3UtsOumy/curWO5Pt+7uMHhkQwdxxd1dBAQ130MVcbQFJwtbhy2J/KTfP9a00NTRMN4V3+SCytN8R1L8ONf3TdCVSQaprC5V2SZE/M1AF6ZqxKEIa/OV29rCKbcngj2XfyU4PVq5nJk6Zo0ZJqWaIjn4hpj+Tgvz1cJkEjoEsPZGMdGc1wttrG9kLZtI8sis32yJ8Hx8RzZpMhQuWcyz7nlBq/MVpguNglDce+4QUCxYeN4AcWmsBvcdEURQzWRRSQDSKImzyY0ym1HDNjFRI2hjEHHDSi1HBQZkrpCEGyS+KLPGTHkz680SRsqZ5fq/MOf288//9Zlym2HctsmHVPFsz3quRwcznB8LEexZbNUMUnHRP5QTFP4Ly/ME9MUzi83ODKS4d4dPazUOvzhS/OkDJWjIzkmehOossz7DvSjyfItszo3oSnyW7f5C29vj960fKQoVK0/ZfCxo0OYTsDFtQZBKNyGLq012TeQJqbJPDtdxo7iQD57zyiuLxHXxRC03nGvI3++78AA6ZjGJwsjN3W4ODaWIxvlOg1tyZV1/YCNSJ2sqzKX10SeebnlsN6wmOhJslIzqXVc9g2m33FiheX6nF+pE4bw0O5bP/tCYKyQIATKbTFs/dGVEovVNh33emVUseXc9HV+nGM9s1QH4LX56hsOwc6v1Kl1BHG63LaxXB9dkUjoKumYSqnl4gfOtcX9LaLjBmTjKlXzzfcHJSAIPeKajGdfu5eDEKqmy5HRNA/s6uHLJ1foOC6EcOdEnr/9vt28Ol8jpinko36s7fpMbbSIacJ6bTQf52tnVsXAIt/g05HqaxOllsOpxRogbOY/cHCAwUzs3eiCv2T44ZUirh+yVDW5stZioifJq3NVvLbN3oEUNdNlpWbiBQGuK4gVckLj/HKNP3t1kZ6kjqbItB2bUksIWtoREePocB+DuTjfPLfa7W3ZjnBYShoSLVv8MKZK/PX3TDJdbFE3XV6YLolrPHKWCyWh0r9/Vw+ShJgNuD5hFMORjqmosnAasly/u1/xPBCU8eutDntTGndM5Hh2qkxcV0VPLy2xWBFEkLShYjoiX0yRRF2vyjJeGKBIEkPZOIWkTkyVI9WoUBhrqkzLFvakticyBSsdF0UWBL6VuommSJiuKHIdL2SpZqMpTaaLbXRVxg9D5OiZE4ab/fcoZ9ANKLVuHsEAP5khWFGSpI+HYfgVAEmSPgGU3s43ULZ5yGyyTFU5xCNAV0R+k2imRAGI0ajSUASTTVcVoQQyBHtfj5iVO3qTJHQVP/AYyhrcNVGgZbtcWGnSk9TxAqFSCRFDMl2V+eSxYfYNZdjdn2atbtG2PZG7FQrrCCsM8YOAX71/gm+eW8P3hUfnueU6T0VKh7sn83znvI2myDRMjxOLNc69WOfFmRIgQhvvnMjz2XvG+fxL88iyuPgGMjEOj2SxXJ9sXMOL5OW2K+zMDFXm7okCHz82xNMXN7rZEJsFxs6IafTqXIW5UjvK6wFPEaG0gxmDjuNxca3Jrr4k3zyzwky5TRBAX8ZgZ28KrxByca1FQhdZBwMZlUtrrevtvqR3bhAgyxLvP9DPhdUGd4zlkGWJkXyCM8t1NEW+gTW1qy/FZE+C2VKH3dFm/+XZCilDFQGZaYO4LmwPXz+RX65aGLKEJIEmS8iI4SvcnhR8symQ0BVCZFRZxg+DtxQY7Qdi2h/XFRTZoNi0KbYccnGNtuNFDXmhZjRdnyAQDdORXIIwhD0DKXqS176bWsfh8y8tdG0+J3oS/I2Hd97Azu5NGfzCXaNkEypXN9qcXKhiv0VJ+6aOUNjViY1NEIiHs6HJlFuCpa9FzP2BjNgAKLJEEIScWa4jS3BkJHudasZ/GxU0fWmjaxsU09/4Op4rt4UPfdvB8gJSP4VDsJSh8pl7xig2bfYOpLkQBXwGIRwbzfHCdJlS0xGLjixyX+K6huM53Y2oG4Akhbi2h+vL1zUwN++FENHYzMQVCkkRAFpuO7wwU2aiJ4UXhDx7tYTr+fiEBGHIyYU6L05XgZB8QmPvYIa9AynaCzUsL8QP4A+em+eX7h7l48eGubTW5NW5GhKQjims1cXi6Poh2ZjCWtNHlaJrTYKEoXSvn1ACWZIpJHV8XwyoJAkCL0QKIaaLQnnvQJr1hsVsqd21fH15tsKegTQXVpssVTvdRpcfguSJHARDkxlIx5gpCZZQyxYsFk2GTFwVjLqoOAmCEDOAl2er/JvvXeHxQ0Nk4ho7et+1V/hZgu1taV66N3+w6zIEioTtR2wmx6fYcgjDDvWOy0Rvkt39aXIJjf0DaS6vt9g9kGZ3f4qYKlPtuHhB2CW+jEQWOXOlNr0pnZVahyvrTRbKnW7GQLFpc2mtScf2mC8LzyFVljg2liMmR5kcfsB3LqxTN11alsfJhSqHRjLdZvr5lQZzpTZTUS1x53ie+3aIJsBCpUMYigZTsWnfcggG4jkEYvhUSIqGen7LmlSJrJ8HMknef6Cfc8sN7tvZQ0JX+Dffu0pPyqC0pWkQ0xQG0gZrdRNNUUgbCoamEIYh+YQucjSBdFw0yzKKKM4TusKfn1jitx/dtW3zRKUb9cc2vJAtuFYF6Dd57g/eZhPre5eLmNFQ6vuXN7h3x/aNlpgiYfkiuyV1k4Pb25vkpdnGG77nYCbGuZUmEsIW9nagyduvtWnj2rEot+gNxAwFqyM+ZyF5e5y5YtMin7pxMHh1rd5Vsl1cvfZ5v3pmhR9e3uDV+Spt65ot1lutEkw3IqApcrfW0BQ5Cp4Wm0oFcf8HiDXL9QN29yXoScfJxoVKczgf59JqE7MtbLUWyibpmFBXNSyXRkTC+vjxIX5wqcRi1WQ4l+B9+/tp2S5LVZOJQpJUTMXxA6aLbRbKHSptm5OLNR7b18eOKJfu/Eqd75wXzPX3H+jnuakyz1wtsljpgAQfONB/w7WfT+p85MhQd23bdNscyMTEEM/2aESNgJ3bKB/TMY1fvGuU9YZ1naXnpo3VX4a17Y6xHKYjFO6iDoXDI1natsfdEwV0VebDRwaZ3mhxfFzUVqcWa4RhiOuHFJuOaKL4AY4bMDoUF+zcmsnGloFty/ZJaKJZ7gchKUPlvp15XpiudK2nb3Nu/aZh2UH33Lctj77I3v7AUJrzKw0O3qZdq/3293ffxTuI7ZS5QUhEjhT74HLbZr1hQRggEeD6ghgaAIeHM5wNA0JCZFkhqSsYmsyfvbrEX394B9m4xoszZb53qUjb9qi2HUIkdE0Mt3rTBh3HJ66LPk0YhCQNBdcTJAQ9eraGQMZQCYKAjKGiSIJQqSoSM6U2fhjiBSGaLOFFzcFNIuvrW0oXVupko1yvR/f08dJchUJC4+p6i/FCjKYt7M6Tmsw9O3qod1zOxoTl+2BWEDQlRB2WNFS+d3Gd3rTBf/+185SaIvritx7ZScN0MV1hgT4c1W4rUUzFVuvZtwu5hEqz/sbDhs09myyJcx03FL57cZ3vXlyn3nGJIsl5ZqrIK3NVFqsdOm5AXFdYrtn8048fotJ2+JNXFvHDkI8eHWYgIwZXvSmDDx8ZeqNDuE4Bt4kvn1xmqWoylI3xS/eOc3Q0y2rdJJ/QGc7FKbdsvvDqEkEYUmrZPxF73YFMTDiIhHB1vYnlBhwaztxw32yudTFNYb2hsVBpYzoBpxarOFskGsP5OI+8TeTdrTBUmZ19SWaK7Te01l6pmd06wXJ9Npo2x8fyBKFoNiuSRDou+qrZuIrpXv9Qv1U2GFxfd1luICItuH0i+NbeQtsOUZWAhCZjutdMgoMgpNL2+Ow9vXz7/DptRzwLjo5k+eKJZf7sxBIbDUv0dDQZ1wvxg5C27ZFL6NEeX7zadgT3TFw4iFU7Lrv6Un8p6ph3cSM296+KIpEwFEZycX7uyCBffG2JqWKbjiPUnJYn9pVJXabUslEVmX//o2l29KQ4OJxhodImaSioqoQeiF7mRG+SnpRBIWkwWza77zfZk0KWQqaLbcpt0YP70qkVCgmNs8sNPF84rhmqgqHKeGGIrirEVYVkXOTd102XuXKLg8MZ9g1k+MCBfi6vNfj6mVUWaiZ+tD4ndAXH89nUMEjAzr4kw7kE+wZsTMdjvmJSM9vCUtEPqZsumizyPUNED1CWQjRZZBebnk9CV/ivLy7gBSFxQ6WQ1CnEdU6UagQhFJIaQRAS12QUScLxQnpSBo7nC7vvMCKtByHLdUvMXsyAHb0JKm2XSltEEdmeyE1TZIlMQn3D/eNPYgj228DnJUn6N4jvcxH4K2/nG2znAb0JKfo/TVWI64KN0rZFEKcsi6HFcE7YOFyN8ows1xfyQz+gNxWjbXv0JnXet7+fXX0pTixUObPUwPUDUjGVR/f1UWw47O5PsVTtMJCJ4QawVDV5/OAg/SmdDx0a4MVZjekN4evvB6DIMudXGtw9WcAPQnRVptIWi8cmS+SDhwb5Dz+aZiATo+N4nFqsUW17xDSJ3pTOBw8O8PTFdREoqsj4msJkT5K//p4dzFc6nJiv0ra9qFHr89cemkRTZNabNv+vb16i3HJYrZvENIUjIzmycZUPHhzkB1c2CAAt6lTI0YBHV2UaUUD3H760gOl4nF1p4Eaj5LgmicJSkcknNbxAeODfOZ6nZTos1sXnUyXeMam64wmp5+GR7HXMon2DaQYzMTRV6rLENxHTFT577xjfOruG5QRcWmt0m42WK5NL6KzVzaihIaDJIsyz0nJAEgu9qsiYWzK9dFUMPp1brOZKxHQfLyTQVRlZglrbof4Wpkgywhbo+FiOy5HXeK3jYKgS+YROT0qn7QT89qO7cKOsge+cX2NXf4onDg6wUrdo2h7ZKMNmk8HqByFNWzRYgzBE3ib4/qHdvTy0uxfL9fjl//giJxbrb/r4t34nfggpXaHTtahT6Dg+miJR6Qjf21LTYmdfDweGMuzoSXJ2uc73o0wbRZY4NJzlI0eHaFouR0dzb/l4Xo/H9vWxfyhNLq6/ocXXq3MV5ssdGqbLZ+4Z6zZ5fxrRn451N1u26zOaF/ZouipRbtl4gRis9yR1WrbHcDZGqamy0rAwFJHTs+kJ7Ef3iipd21R6wTULQVVWsFzRSKm0HWFbWGpzcDhLQle5ut5El8UG13ID2raHH4S0bJ+24/P4gQEmepJ8+dQKfiAW4qvFFq8uVFmtC6vYlCE8m03XR5FlXN9ntengBwFxXWM4oUZKQ7n7PHL8gH2DaT5wYICTC1Ucz+eluSq5yMPZ0BTGCnHKLXFN5RMG51bq+H7ApbUmtiusrRqmixtAylBIGarIXlFl8nEd0/VFcG5CeOgHpkdMFwu2lIIwFLkwV9ZbdBzh3Xx+tcnx8TwvTJffLbB/xrDZZIdrIePbkVKLLWF9nNBk9gykWap2hJWiJKGpCgPpGLv6UhweybBSt/j03aOosmACn16s8f3LG/SlDDw/YL3pdZnEewbSfO/SBgldpZDQma+0u0Mw0xH3sRcExKNnmRyROjaxWBVZgUEQ8sxUEVmSuLzaxPUDFFlhJB+nZXvUOg4Hh7OM9yS6SqW7JvLUOy6ZuPqmvPFjUSD9VkxttLpB8H0pgzvG8zRtn8vrTR7d28ffeGQn51caHB7JioE2Yh34nffu4l98+zK5uMZoPk65LULobd+nbfnIskQmIZ4VHQeGc4IYpUQ+59tB1yS8iLGbuIkVH1x7Dm7xIrgBO/uvKZhvtZrcMZbj5dkKigzHR3I3/b1cSqfYsDE0mcRN6iz5Ni0YbU80CiVJhIzfDm7GuE5o195TvaX67drfu7ewTbwON/m18yvN7n87W3oXshTVqrKouZToZ5s2OreDzUGeLEniGoqpTPYkcKMaNAglZorXyF9BeC1LTkHYsm+0XCodH1UR1oyTPUlema1ACF4Ysqs/SSFhRDWQxvv399FxfPb0pbm40sQPIBtXeXhvHw/v7WOx0kGSoJDQ+bc/mMJyfb7w2gIXV5s0LY8zSzX+p184SmwzqzJC3XTp2B7FprDzySc17tvZ023GboXtBUz2JhnNxbkzsvsZzMb4xPFh/udvXWKh0uG5qdJ1QzA/ykOTJLHn2vq6F1YaPHVhnUJK57N3j3Uto9ciN4fbVT3+tOCJQ4PcPVkgG9eQJAlF4oZ8tK3quk8cH2F3X5I/emWB2VKLoYyBKoPnC4JOIWkwkInxshfQdDzMLUoBVRZKU0OVMVSJjbpQylju61PC3l4IO3gJVRGuK49Gyr8PHhrkAwcGbmljuhXv0IzuXbxD0F7HXsjGVCZ7kozmE6zUTc4v17v9AD3KpYjpCqmYSm9KpzcdY/+QqK+/fW6NP3l1kVrHZT5Stn7xxDJ//toyXiDyuTRFJqXLSJLI9bq01iSX0IipMumYSiGh4fkw1pNgrW7SNG3Wmx6E0HQ8dE2h0XFxggAZkRHkRwpJTZW5c6KAFxGQTVeocPMJlZbtd91rLC/kylqTpUqHVEzBdgVrPaYppA2NgbTK+dUGry7UGMiu89h+oR5XFZknDg3iBSG2J/axCV3BC0P+/LUlZood4prCaD7OgaEM3zonrEsvrzUZzsW5uNrgW+fWkCT41J2jjN2mBfLtIhvTWHyDIdjm2dZUiXxc5cFdPZxaqInz7AkyuRcKZWit41JIiBzulu2R1BUe2duHqshsNO1uBMYPr2xwcbVJXJP52+/fQ99bHPBtkp022f5jhQS/+fDO7r+LfHbxns42g4u3G+M9CUbycTEwlCW+dmYVECS4u7dxVvjFu0a5uNrgC68ucHmtTbVtR/0V8XxVJbh3sof4O9AzkCSJTxwfua0MNdGXkrA9n9W6JRQfssQHDg5iuz5XN1o0LJfxQgLLDSi2nK7VmipDLq5SN/3u0Oz1eP2PvCCqrW6zFMvHZeqWyDcKEL2jdFxBkqEVeZUbmkQQCmtJ1w/QZJG7d8dEjj97dYnFSody2yFlqZiOj6pISFLIvTvGODicY2dfik8cH2Gq2OoKBbbCUBV+9f4JTNd/Q6Lfu/jZxa89MMF4IcFAxmBPVL/ZXoCmKuzoTXJ+pYHvhyiSeCbGNQU/DHC9gHLL4dCwDIS8/8AAhqqQ0BSemSqjqzKfvnOUluvz7NUNYqqMokgM5uPkEirv3dfPn766SCm6t5YqbUwnhu2KLCxNlcjERG62JEkoioTt+6xvWJiOj+MGlL2Al2erHB/LcnalQUyVOTSSZa3p4EuiPzWej2NoCp4fslw12dWf5PBwlv/l25e4st6kZfvs7U9FYo9IMRZCGBVyAWDIEum4Rst06TgefbEY1bbou3l+yHg+wXhPgjOLNYJAvEbH8YlpQpE92ZOgN23w5RNLzJY7+H6IJkd7xjDajyIEH7YXMJyNE1MkSh1XWCdGkT696Rj7tzi+bYd3vBsbhuE0cL8kSSlACsOw+UZ/82ah3iT4W5U2p4cSEgH9mQTFhi0YjNEDNgiJPHlVsnGNIAiomcK/OJ/U+cCBfr5yegVNEU1SRYKZYouW5ZKJiYbSzx0ZRiLkXz19lYFMnHwUcq7KEi/OlHlhusxAJsbHjw3zo6tFXpgu4wciN2dTUv++/QMYusRzV8sokkTckKm0bK5utHhwVy/lls30Rpu66WJ5ProqZPj/2zMzrNUt5sttMjGN/YNpHj80wM6IiaDKEv/uB1PMlzuM5hM8uLsPx/P5/sUNFqsdFFkiG9eY7E0yURAL+AvTJV6YrtCb1An7093w2s0w+Zbto0oBC5UOKzWzG+AJUIs8u4+M5JgoJGlZHn4QcHa5RvC6BpD0YyVGbQ/L9flvL87TtDwe3dfHnePX+/G+3rZuo2nxpZPLjGTjxHWZ2VKbhCFsqAxVZmdvsmu3VOs4IrCdzcsnRFdk0byPFt/AD0SwZ1QAeP72i/5WeKH43jprTT599yjZmMqzt5m98XoYqsR6K7Ld9AJh+xmKCf0DuwqkYzp7+lOYrk/DcjAUhc/dK+z5nr64zpmlOjFN4dcfnCSui4f6kZEs/WmDnpTO4ZHsG1r5bTSs7iborcKLfOo83yOXUNndn8LxhaJxspCg2BIb/aShcmAo0z3Py7UOlivsYzafC7cK0QWRcTNTamEoMqoqc3wsh/YGn1GKJL63g5lim2xce8NA3+1werHGD68UmehJ8LGjw7fdWHiz8HxR1G5K988u1XluqowXBLxnzwBPnlzueggfGcny9z6wl0zkvf0/f+sSoSSxVjfxg7BrG+hG2XBBcL1lrSSBoSmkYyoJQ2FnT44r6y18XzAzP33XKB3X5U9fCdhoWsgIT3pNkZAlsakxHZ/X5mvsHUiKXDHbJ6EpnF9pCvaW4yEhmPYNU9i16KrSzSnQVZldfXFkSajDkobKoeEMs6U2S1WR33LfLhG6uVy3GMnFsV0fLwhFfpks0bI91hoW+aSKArQ9UYR3HJ/5Sgc3EJ//2GiO+3YWeOrCBkEQkIqrzBbbgh0kiQ12KqaiyTKEYthYSInFPWkIVo6hKRGzWrptNca7+OnBcD7BVKkD0K0PtnvEBAjGoqHJHBzK8Nm7x/iDF+ZIGyq5pIGmypxYqPKnry0SV2V60wZ/5YFJACxXWCEM5+KcX2mQ0FWurLUwVIWelM5vPbKT71xYx/PD6yw1z0VF+1y5zZ3jeXb0Jnhwd+91w/2+tEHSELYg6ZiG4wVokf84iFDo33pkJ194dZEAutlkIFTCn7lnjOA2hwsdx+PFmTLZuN7NW2zbXuQffu1LMzSF+bIg+gDEVDkiIplsRH7mKzWTfYMpfu7wMP/h1+6Ojl9lT3+af/ndqxSboulQSOqkDLmrfJ0pNtndl+KX7xu/6TM33PJ5buX8u1X4t1RpM7GNOqbavmbZcKum8KfvHhPuBarMew8M3PT3dvYmcb2AQsTO3w67B64dx62Wlft25nlptowkSTyw6/aY1LK8/daikNa7bPJNos126Elo1DqiOXe7A/+kcZPP2X/tWtw6DvzE8WEmehJ85/waL8yUWamamLdQaW6HIIS4Ck4gMibu3VHgwV29/N4zM1SiXC5dFenRXnitpyMDkiwG24QhlbaNKks8P1Vmo2F17bX29KdQZJma6TDWE+c33jPJN86scWapzstzVe6azGOoynV17tZG6VA2TrFpdzOAHS9gaqPF//ajGT58ZJBjozmCQOS83DGW4+p6k0xco2l59GfiPLpbnO+NpsWL02Ume5OMFxI8eWpZfDZFvq6BtlAR2ZqllsPdWzJMlqodnjy1gq7IfOaesRvO/ZX1JnXTYb7S5p6JPPuHMkxttPjq6RUAPnnHyF8I8cMPhI3pm627JEk4ddwunr60zh++tEC17XBgMM1MqU1CU/Aia6/5cpvfeXQ38+W2sImO/k6XRd6k64t6qzepc3m9Jchqb+qIr2Hz/nwj6IpgDUtRQ+JPXllEUxUe3dt33ffVtFwurjY4OpIlpt/4XHirTm7v4i8Gr++33DGeY6lqUmlbtG1f7Dejf9MkCdVQSccUjoxkefzgYJeYenGlzpdOLrNWt7Bcn8FMjOlii+mNFkPZGJWOjaHK1DouHSfAi5r1xaZggddMh47jk9QUhgsJepM6q7UOG02v+5wNAyi37C4JddNVWUY0yrOawmfvGuFKsc18uU3aEHlcEz0J6qbDlfUWQSiyRlu2h+UFXYJmqWVjqAoNS+Kxff0s10We+lrD6tYd90z2kNBVDg1laFkebdujJ6VzaDjLF08sMZqLE9cV/t7je5mIGn+m47F/SOwT66YgnYShyFJ8YbrMUxfWadse79nTy88dGfqxLP768wlYv3WvQRCJ4MhwhnRM5+xynacvrpNLaPSmDBxX2GD5fsjO3hRPHB7g8HCO8Z4EK5Fbih+EaIpE03IxXZ/vXaqzWrcwVJmUofH3H9/LWtOikNRvIChv4uxSne9f3mCsEOcTx0aQZYkPHhrg3HKdQ8PbK5kGszE+fGSQStu5oRd0O1iumZxaqLG7P3VdfMbN0J+O8VsP7yREOCBs/Q63g6oIm9sgFOt9bzoeWXn7NKJh7Xy5/ZZy2m8Xt3P99KYMPn33CP/lhXl+cHmDMAzZ3Z/mrz04yf/ynSvUOy4xVWF3f6pLGN+IBpQSsH8ww1rdZKp0+30tVZYItvQWb6Uma9pBd80KQgj9kIbpd3uMmgxJQ6Mvo/PDK0URFyJLDGVjfOXkCusNCzuKLRD9AkFERZJ4/4FBelIGl9eaQgCxWCMb1zg2nuP9+wfQVZnVurCeH8zEfiJqw3fxF4dy2+GuyTy5LTXsvoE0Gw1hafrRo0P8/S+cptKyScVUkrpK2zUJQmEt/4PLRXb3mfyjnzvAnZMFpjeaDGdjaIrE9y5v8NSFDcptm/FCnKbt0TZdJnb0oKsythcQuf7Sl4nRlzJYqXUIEFaBdculafukdAUJiUtrrSiTS6g0wkCQAaaLbTxfqGvnSh2OjGSomQ7jhSRD2RgbDZtCUsMPQy6vN+k4HnXLo9xyAIlK0saNVFubeyZFEYIPRZLIJXQ0WcJQhQospikcGslieWJucHWjxVSxheeLnpmmCEc+wa8J+f7lDT5xbISjI1mmi22CICQT1xktxPH8kJVah1LLZr1hEjc0OpaHLEvs7E1iuz5XNlrCnS+A6WKbgczNe7Xv+BBMkiQD+BQwCaibTdYwDP/Z2/Ue4TZLjAz0pA3WGzZSGNK0Q7xKhyAUTdgQ0GWJeEwlCERo23v397Net7iw2qBuenz48CC2J+wpmpZLT1JjvtKh0haKmHRMZ7SQYL7c5spqg6cuiMXhyEiWv/P4CP0Zg3//gxkcz6fUsvnYkWFimmjaxzSJStvltfkqS5UOS1WTli2KJDcIuXsiz1rd5uRCFcsTU9zoOo7kgsLK5LX5KrIEPSmDyd4k9+/q4dG9/ZvfPT+6XGR6o03NFIHYTcvh+akKF9caKJJE0lDoTRkcGc6iazL/9YV56qaLLAl7mdF8nNG8yGDyg5B4xB799oWSsBF7nWe154dcWW+RMjSGcoJd/uJMGQnpulB0L+THHpRsh2qkEAJYrHTesPD5Dz+c5txyA1WWuHcyT0/KQAIqLZv/91NXKbVsHtjZw88dGWSp2iET1yLLKdH4MoPguqtPlkBRZCRf/PzNfETHD/nehXXqlndTK0EJwZDZjhwtRQeQ1FWenSrTk9QYSMewPZ/9Qxl+8a5x+tI6Tcvjn3/7EvOlDsO5GPft6OFTd412C27L9bE9P7JUlPjAwZs327YiDEO+dHKZb5xdpdJxbnszfSsEgOn4XFptkoopbDRs1hs2o/k4//DD+9g3mL1OWXVqoUa57dyQ+XYzuH7An766yEKlTb3jcnw8j+MFPPQ22g/cs6OAeaXIaD5O/g2yw16P71xY49RCjUtrDR7b23dDls/bgdlSm6+dXiFhqPzSPWMkDZVSS/gVrzUs1uoWaw2LvrRBy/bpzxh8+dQKF9eEXWJSk7sBlw3zmlJASJdv3ABIiEFRf9rg8nqTK6vNiFEoctv+zfeucmwsx/GxLD+8ImTOTcsT1oqhsF9y/YDZUpMr64JTsSkrt10fPxQNyYFMjMmeBBdWmzRMmzAII5Z/iOv5rDcdsfDKMroq874DA5yYq2J7ATXT4W99/gSrNQtdldBVhablEYQhu/tTmI5HvSO+ozCMrFSCkLQho6mSYL0j1KLvP9DPI3v7SBkqG00bTZa4uNwgCEI6kTJukyE5V25juh5V00UKQyxPKNiShsq//OxxdFV+l2X2M4ihXKw7BOuN5PnuLaYdjh8yko3x0mwF0/GZ6EkISxVgqWaxVrNIGApxXbAWX5wp8x9/NEM2rmG5PkdGsqzUTUJCnrqwTtMS638mrvFL94yRiWl85fSKyKxzfRKGgrAyEtvG11vvpAyVX39wB64fUGravDBT5r6dhe6grNZxePL0Cn4IHz48yP7BTPQZA9bqFrIk8ZXTK4SE/OKdo/Rnbs78fX6qzAszZZqWS9pQWax2OLNUZ6InwS/cOcov3jXaJTo8fWmDtbrFYDZGfybGpbUmjhewULGodRxOLtR46sI6L81W+L88sR/TFRZlHz02zL/+/lSXDNWbitGxhP2oF4gNxXylva3ieTtI0u0tdLOlFg/tu3E9rZq3p7AqNm3KTQdNFYORm1kkVdoO9WgzH7uJ4urc0jWl9q3W6eemSpF6MeTlmRI/dxvWRYG/Pbu8kNC7zYz0LdjN1pbCqXGb6rONhsPINu6Ql9au8e623nLpmMbDe/p4aFcv/+Kpy/zRi/PYEZHhdhEC0awOCXhhqsTpxXo3HF2KBpaSJF0XbpYwFPIJXQRad5xuPbxSN1mqmYShqLVzCR1JEvdjy/IIA0HaW6x2KLdtfrlvjHt3Fphab3F2uc4DO3tYa1icWapxcCjbtR0MEbaWpxaqtB2P56dLLNdMfvm+8esY6nsH0zx9cZ2RfILxQoKK6TJiqPzRywu8MFUmpiv8k48eRJYkYSO6pYH2nfNrPDdVpjdlsH/Q4OG912qo6WIbxwtwvIClaods/NoQHuDwSIYnTy1jqAqvzFfYP5ThwkqdpWqHwWysW5v+JLEc5clqisRn7h7bNgv37YDnBzx9YYOW5VFs2t2Qcdf3cbyQUAkptR3mq23yCZGfGobCqikMr6kb/RCKLQvTfWNm/61wuzW7rioMZAxKbRfPD4hrCifmqzy8u/e6Idj/9YtnKTZt9vSn+B9+/sgNr9O+dWTDu/gpQ8f12DqOvrLWYq1hMV/usKs/QS6hUWk7hIj13wsl4pqIijg4lMH1A750Yok/eH6O1YaN7QqrpFrH5Xe/c5nZUodCSmOykGS23I5sPhVqpofjh2gKLFTaWG6A7YVd95KzS/Uuq3wTrxf/FBIxdg0keW2uhu351E2Xf/zkWZIxnY7tR/mjGuWWRbntkokJxVkqrlLvuMQ1mQCJtuNRSOroqsJdE3ke3tvH+dUGlhtQSOpcXW9iOj57+lL8T9+4wKnFOvmEaCp+4MAAk70JXD8kriscGs6wZyCNpsj82v0TgBgcn1mqsasvGWWoyOwfzPD/e3aWlZpJtePQnzG4YzzXzdbaDmEY3jKTqNW5zdylEKY3WngBIlsmInS8Z08vG00L3910L4qzbzDDeE+Cl2bKPD8tFA6FpM4L0yXajk9MVdBV8QzTVQVVkfjuxXUurjVJx1T+ygOT6KrMYqXDxdUGB4YyjBUSnFup4/oBz1wpcXm1yVAuziePj/CJ4yO3PPTNWvSt4Knza1Q7LlMbLXb0JrsK5Vthc1i1qy/Fhw4PYrn+LV1o9vSnuCvK+X1kr8jW/KOX52lEmVYvzJRpWN5t20K/UxjIxKNYmJDzK3WurLdwI4tAYeXsMVfucCTKG9qEhFB6N2/hbPR660MZQUDZiluROl7PXQq53rIwBBKawkbdYr1hi/pKlcnENWbLbVqWhypLwr7aF9+7F4a0LJf/+KMZPnv3GH/+2iLPTpVoWh65uM50sUWxafOr903wwnSZ5arJctVk/1D6HbEufRd/8Xh+qsTXzqwyX+nw0K4efv2hSRK6iqrIvHd/P0EQ8vWzqyJeKbJCr5surhfi+KLHZXoBJxdr/NZ/eYW/98R++tMxTNdHkhR+dKXImeUaEiGGIlywTEXimStFYpoiXF9SOpYXsFw1WSh3CKE7GLPcEFX2aYQB6ZiO4/lU7WjdBLxo9hEGAXsGkrw2X2OjYeEDY/k41Y7DXKmF7YXYrk/b8TDdIOrpi3tfVcB2Q1RFpieyJjZUCVWSyUYK7bWmRdMUpBE52gP1pkSswUypfV3vX5NFf8ELQzwvpFMzWW86zJfFPmg4GyMIBbmvZrokDZn5ckgnuum9jktLFi5/D+/p4+JaQ8SXBLDWsBi7xfoIPxk7xCeBOvAa8I6Uu9st8QFQaQqmvRdJ38NQNAT8KBBOVWV2FBLEdY0AwY5umB49KYN7Jgt8+MgQ//rpKWxXePM/eWqVgYyB4wUEQUixZVFu23zr3FpXoeAHIXIUFvn1M6ucXaqxXDMZzsVx/IDhyDf/mavC0sd0AuYrJmvRg1lVhMQ/iPKDJnqSnFmsUYzk3oOZGAeGM9Q7jrAPcAN0TTDCPT9gpWpSbtndwmg4J7zkk7qCrsj86EqJuVIbXZGEXUao4Ho+T11YwwtEbo7jCwVCsep0g+cPDWUYzcdZqHaYLTa7HtG2F5LQZTrRTiyuC0/S2VKbxYpJEOm/gs2qaQuWq29N7XQrDGZiHBvLUmza3UySm2GlZrLaEHltIcIaIRtXads+f/DCHNMbTRw/4LX5Cr/58E4e2NkTNcVF0Krl+jdsGFVFyMbVKIPuzWK1eXODfAVQFMHE87ZhLIeIAamhygShUE0NZmN0nIC7JvIcGc3ylVMrfPv8GlMbLRw/IK7JrDWEcuy9+/p5ea7CcDaO5QYs18xupsztwHR95ssi/yWuKaQNlbr15sNNN7Gphje9EMcXww1NkWlaLrarM5pPXjcAO71Y45vn1wgC6EnqkQ1lwGypzWAmtm0TQ0LkhGwG0wLXFXBvB3b0Jt8yiznc/N+Nt8/bhqkNwRxumG4U2p7mnh0Fvnp6hZSucHqxxiN7e/nWWY/HD+bYM5Dm1EKN2WIL1w/JxFRqpovjiYBoKaIlSAi28OtrXz8EhZCLqw2WIjWqG4QosiA0LNdMii2bg0MZ9g+leeaKdd0wLQjE0Gjr99G0fZEhFoh7MGEo3DOZF2zPuCWCsaMyOhfXkSSJtuXhawqDWYN9Axm+fW6NoVycoWycS9GAr255IlcnFnYtT+fLbdqOR9sR93/aUHF8iYSiEjcUdvelubzaJEAMPIpNm3/99BSpmGCEfu/SBnJUcIcINk1/2uDoaI5X5ioEoYzl+oRhiOmFyAgWZcf16XkT7PJ38dOD5eo1Vuh6Q6x7r3+CSwjrECRh2zFbbvPcVAlVlnjy1ArPT5XJJTTunigwmDFwg5CelEZcV3hhuozjBazWTT56ZKhLXPjWuVXWGzaVtkNf2sB0fFZqFm46ZHpD5Hdl4kIZlY8UjkdGsixWOvhBeF0Og67KTBdbfOf8Ovmkdp0SdrlmdrOq1ps2+6M5yVdPr/DqXJVSy2JHb4qYpjBX7mw7BJspttBVMZC+sFLvNgA2bWzmyx1alkvL9hjJx/n6mVVqHZdkTGT0tW2PgYzBXKnNoeE0p+brSIgmUMf2+YPn50jHhBr3I0eH+NX7x/mTV5awXZ+hnMHVtaZoyoQBO/qS5BM62YR200bSVmu9tn17uot0fPuS23Zu7+9fni3zZ68tosgyR0ez9O/bfrO9UrUIQpGBst6yGC/cqD6Lq7e3zp3eYmv8vUvr/D8+cWMj+/Vo3GTCO1Nsdgk8K5HV3Xaob8k92mjcfNuwWd8DHNiibtwKjVs3rmRZoml6pAyN+lsIY99ECFQ7Hi1HDFORhF1cSIgihWx+IhXoSWqRZdI1olSIIIHEdJmEJjac6w2LeyYLFFsWDVPid5+6zFAmHtkNh/zxK0v8/nPzeEHIQ7t6cP2AlZpQVqw3bBK6zIXVJueXG3hBIJpYCOueXEKLmJ3XsFQx6U3HqLRt7tuRZyi6T1tW1BiKnAV+8a5Rik27myViOj7nVxrkEhrZUOVX7p9gYMs9fmg4w1ypTUyT2dmbYr1h0TBFdoYsS+zoTXHfzh7MKIu5FLlg1E2XIAyxXI/FSudttwO7FWa7gztYrJjv2BBsaqOFpkj0JDVMx6NpeViuaMjHNKEU2NWb5M7xPD+6XCId06i0HKGy51qdLLFpOSl1STXvJNq2z0LFFJnC2Th+GHJg6PrsG8cLuhb/643t7/d3xtvgXbxTeH20ct1yRNMpDDGdgImeJDJQ6YjsktAXqqk/f20Jy/P5yJFhvnV+jbWGje8HGKqwHt7Rl+TqehNJAtcNubS+SV4ISRoaDVsEg3iBqKtblinyu4CGJewPZQliCiJDhOv3TBJCLfyb79lJ277KmcUaXgh1KwDJxdCuZacUG35EdFYY60kR1xQaloftBmhKEJEZJXb3J3lptsxrcyIj9dBwgpMLNS6singK0/WZLbVpWi4rdZNcQuO5qRKfOD7M3sE0r8xWmCt3+JNXFulLG8Q1hffs7uW/vTgv8sZ6EvydD+ztfoZjYzkWq51ultat1KbfOrfG5bUm9+zI8+Cu7UmdV6MM1zeCJAmShh+GkQJYIpfQaFgehioLa7m4hiLLrDcsdvWlKEf3veMFnF6s0bY8EbWQV5mIFAdHR3K870A/r0Vq/rW6xVMX1zg2muPrZ1cxHZ/pYpvfeWwXR0ezvDpXiYYNovk7VWxy1xbF8duNfFKnGll5v5W+wBtlbQE0o7iSWsfh2akSn7t3nB9cLrJSF3WPF4RcXW9y385b97PeaSiyxEeODpHQZRarHVRZ5odXNsgldCpth5imUG7ZPH1xg6azxf49EE5Ht6xwJVHLEYiayAu3J3q/VWTjGvmkRrkpFCxhGJKOa/SlY4zkJV6Zq5KOqTieiywLIoiEqJ+/eXaF4+NCkdKwPGQJOo7Lal1kl3/6rlFGcnFmim0apoN9q+yTd/EzjVJbxMt4vqhrik2biR5Rqz87VWKx3ObV+SrrdYsgDJnoSWJ7PqrcYa1p4/mBEFCE0HR8LqzUOTKa44lDIh/2zFJNWCsqUvc6NF3h6HV5vYHpCiK2E2WAQdQ3UITl9qb1a0wVrnVN2+sOqjcXQ02RSW/2wBw/GsDB9EYbVZGwvYBMTCVEKLsIxR7FdH1kCcbyCY6OZaKZhc6ZpQZNy2O8EOPuyQJX11tU2444xugmntpo8+CuXuaKTfzouFVp0/lGHNNA0sB0fTaaFo7rMVNsoqkKhYTOeE+CtuPTk9QZysY5s1jrnhNR+4a4nhjW1Tsuri++lw8dGnzDPcNPYgg2Gobhh97JN5BvYoe4aZsuS2Jw4IchMV1YYjVtj6Su0ps2UGSZctvmC68ucmW9SantkIl8NQcyBnFdoRYxEWOaTEKXCcIAQ1O4tNrknskCQRjy/gP9dGyfpKHyn5+bpWG5GJqCpsi4fsBipcPBoQzLNREIvd6w8IOQjuN1PfwdP+DuiTyHR7IM58TJXm8IRnfHCRjNx/jY8RH+5JXFaKMtcWAow2N7+3hlrsJTF9Z49mqRv/uBvaw1bZKGwt98ZAffPr9B0/ZYKLepdgRDOKErhCGUOo640IMQy5VJ6jIKEjFVomEJi6WpjRayJPHw7j42GhaXVlsgwXAuxkSPCOzOxzU+fnwEWYZvnV1jodzCiZLyRIOc7o0oSyLH4O2GJEm8b/8bK5cWyh3+6OUFBtMxSg2bXX0pzi03uLrRwnQ8bC/oDkUkSeKPXprn735wL4PZGN88s8b5lToL1Ta2G3RZKLIkhlBty8d5mzahqgT9GYOG6eGHIfdNFriw1sB0nRuGIjKQSxgicLWQZKyQIB3TkCWXjYaFpoiBlxcE+EHAeCHBsbEcH4hslfJJnScODTJfbvPHrywQhnD/zh4sz2dXb6qbIXMzJHSRa/bafIWhXAxdlWistm44ztuBBBiKGEjZvmjApgwVWRLWPJM9Cfpf56NSbttM9iRZq1scHcshSRLfOrfGTLFNXFf4aw/tuIHJJUsSB4bSVNoxkYd3aIADPwZz7O3G4wcGMBSF8Z44mXdIAXR0NMtSVahkX5qtsFg1uWMsxyN7+/jG2VXmym2Wqh3u2dGDock8uKuXWsdhOJcgCAJsz8dwhS3S3oE4pZZFpe2K+z0QVoaboZYQKcHcgGrHFWxOX1gOpQwFNxpweU7ATLFFvqNH1paRT7h8bSC4dTMu6mcJTZOJazJ9qRgJQ+XrZ1aotIQdItHf+mFAWldxfUkEeipwyqmRNBSatsun7xrjmasG3zgr/NxDhM1oTFWomx6LVRMZYQWlyhLpuMJQziCmqUwUEvzgSolQEsV8ue3wxRNLhEjEVJnvXVwXXvmGSiFpRCHCPp+5e5QfXi0RhDCcS1DrON3hNAhrhvg7lKH4Lt55mFuGHJt1yXZbakWW0RWJnX0pVEXhwd09PDdVJm2I6ySLxhOHBvi95+Y4v1JnqdIhHdNomC5xTWGkkOIjx4YB0XjaZK8eHk5TarsokgSSGLyO5OOcW6rTtj1G8wn+1nt3I0kiw+jPXlsC4OE9vaLpoig8fnCAqxvCHqjccihtIdvs6ksx2StCwI9uyeFcrplMF8XfpFs2d4zn2beNJezZpTrfvbhOx/HY3ZdkoidJOqaSNFTumkjz2nyVfYNpvnZmlZWaSSausXcgxVrdomP7lNsO3/vhNL1Jg/t39fDJO0Z4336LoZdjzJbavHdvH0s1MXzsRBv0v/bQTu7b2cN/fmaG1abd3XxM9mT43L3jDGVjfOG1JRqmy88dGbqByBBXJVrRyczEbj5o2VL2sGdw+0HN4hbrnFvhq6dXWG+K5sh3zq3z2L7+bX9PV2VwxBAmpm5fZ8W35Jjdqr2TTWh0oobMSO72hhCF2PbNufKW4ZZzCylkuOXhfivHgK3/1LB9tnvb+3b38MUzImvl9c4FIOreWkeQvX7cqk0CVElC1UGWZBK6SsMSjRU1ENkpHrDRdBjIGPQmDWzXpxnZiCGJmiSmC7Z8EAobrsFMnEtrTSTg4FCWfYNpEprCmaUaqiLTMF2WaybHx/OM5ONMb7ToSxt8/ewaDctlutjCjlQKD+7q4b37+pkrtdFUWazfqkIYCvvQgbTBnv4UR0ZzNCyXXELnV+8f5wuvibyAQlLj9FKdoWy8W08J1VJA03b5+LGR6wZgIOyUPnhogKcvbvDVMyusVE1C4L4dBR7c3YsiS3z6rlEWqyZ7+lMR0VAMBTu2x+8/N8eBIXFf/qRwcDjDTKmFrsjs6n9nrBirbYevnVnFUGUmepJYXsBKzSSf1JnsSXJ8PMtkIcWn7hpBlmUe2duL6XrMSG3attinIAX4PuQSKpqqYDkeTdtHJE+8c+SpAFHHBWGIJEvcPVngQ4cHr/sdXZX5qw9M8vxMmQ8fGtz2dXrSf7EKh3fx5hDXr69DdVWJLEMFE/vB3b1898I6P7pSpGV7SFKI7YlcpCdPrbJQ7rDRsJElsed8eE8vg9kYn7tnnN996gqNmTLVjktME026yd4UR0ez/PmJZZzQF70cBKFEdXz6UjorNRPHF+vBSC5GuWnTcq5d+dm4iu36rDQc/vGXz7GnP3UdgTWpq+wZSFONmpxOZMPmeCE7epOkYxqLVZNi0wYJ2o5POqby3QvrtGyRddS0XZ69WqLctlFkiUxcJxVTGcsnqbQcdFVGU2SGsoKQ+Sv3jVNu2cQ1hTNLdYai3ENNlvjB5SJ+ELBc63DPRJ6zyw0ycY3HDw7wD57Yx/NXS/RnYzfNVff8gIurDQDOLzduOgQLXz/R3AZGRJaRZbEHUuSAXELkF9faLumYTm9K4/GDg/RnYhwfywFweDjLfLlNb8qg0rZRFJn9g2mSMY3laoeELtj/IznRp/i9Z2Z4dqrEWt1irtQhF9cwo+8Z4NBwlg8eGuTVuQoXV5sYmsLkm8iYfSv4yJEhVmoW/RnjtixxHS/g2akiYQgP7+mj1nGwveCWjVhNlqmZLhuRNXexafPrD04wXWx2FWAvzpT/wodgIOr8nb1JWpbPl08t0bQ2nUoUHC9guWYhSTdGgLwRxUuVJYIwJLjFV5w05JuSzXQJnJtcypoMn7pjBFWR+fOTS1iuhyTJpOMqMU3m48dHqLRczq/6EFGVYqrcpfK6QUjK0Dg2lqOQ1InriuiJVITteqXjct/OHr53aZ1zKw3+yVcv8L9+9jiZW9h9v4ufTTy8u5em6TJbbnPHWL67/7202uCbZ1epth2WaqYQnmgK2YTGA7sGqLU9Lq8JMuGL0xXKHQcJkbWdS+js7k+JtUBXMF2f8UICTVVwSi2Ruy3BalWQw/tSBi3b7O4rdVVmJBdDCkOWaiZGlEM21pOg3HJYqna6PWoJUMKAWsfl3HIdy/EBiSAIIgelSEXpBmTiGqPZFJc3hDLMC0JG8wnet7+fPQMpJntSvDJbZmqjRct2WahYPHO1SNNyRQzPZia3JAZo55YqgqwSHUc2odEwPSQ5JKmJqIWm6SIjEUh0I6jiusIje/o4u1zntbkKUxtN+lM6LdvsvtYm8Wtqo0HDEvtKRYJTi9U3zDz8SQzBnpck6UgYhmffqTcI32jgEIpJ4WRPspuDpasKd07kqbZspktt0Rz1A9YbNpoiUWzbpA2VmK7gB5DSFUwv6DajmpZPGIQkDIWlWofelMF/9/69VDsO/89vXCQMYe9Ail39KQ4MpSm1HHpTOo8fHOAX7hzluxfWcbyAl+cqopli+1xaE3L6xarJrw1k2N2fYiQX48hIjnMrdZ48ucxsucOfvrJIUleJaSqZuMZ4IcnR0RxfeHWJ1bolhnDPz3FvtGjmkzqTvUlOLVYj6aLMeCGNF4SMFRIMZWOcX2lgqDILFRNVEbZmkz1JlmomnhdQt1xOLtY4v1KnN20w0ZMgl1CJ6xq5uMrdkwXmSy1+//lZOrZPylBoOX43W8uOGKRbz8nbkW/09MV1ZktiynzwJr7Qr8epxRpfOrHE05fWyRgaewbT9KQMLq02KEVZU0EY0p+OCTZ8TxJNlTk5X+XkQpULaw3cMCBpaDiefS04VhJM4LcTfiis1n7hjmGmSy2mik0aHQdNlXC969Uw+aTGcD6O64U0LJeLKw2QJHb0JnlxtiJsDh3BqM0lxObjdx7bLd4nYseIhorXHTA8fXGNpKFxbqnObz+26w2zsnrTBndNFDi3XGetLjY6b8X1MgQsH7TomAC8QNjpxDSFZEwEjluuz3curFPvOKRiKvsG0nz48BAP7irgeEFXnbB5Ttu2J7L95GuF/WfvGWdqo8Wh4cwtbbr+InDHeJ7j0UDv7cB2qoaBTIzfeGgHXz65zGypzcuzZb5+eoWdfSInMKYrXdvBgbTBheU6TdPj1x+coNpxObtc53uX1mmYDkPZGMfH80xviMyrZmRlJUuQiamCURIpqFbr1nXNV8sTxALfE6GiXhCwVGkjScJuUVVEiGezI1iV7Yhx7/jCLqU/beD44hynYirnlhqUmk6XUaaEYgjmugGmHETN1ZC66aEoMvW6S8v2sdyAv//BfbQsj2enNmhYPkEAmYRG03QwnQBVVehJ6HhByHLVBmx296e4WmzRtl1cX9ghGppC2/ZQZNGoDEMxEFQVCVsKcHwfxw/5T8/MiiZulLOkSBISEgohyZjCvTveObbju3jnYWxpVmg3Ie2EQBAEDPek+OjRIZ6IWEwXVxv84UvzXFhp8LGjw/RlDIpNsU5VTRfPD9k7mKY/E2MkL9RZpZbNH760QKXtsFY3qXZc9g2kUBWZK+tNJnuT/Or9E/hByFrd4sJKg3snC+STOp0tTMZTi1UurbYICRnNxzk2muXqepOxfJzB6FlpOj4/ulqkkDR4T9TQ3sQHDw5wZb1JNq7x6N5+Hr+Jte7mYOrKeouO45NP6rx3Xx+HhrMkDZXDI1nKLZv/9MwMHUfYPf7GQzs4MpLj0lqD71xYZ64sGsOVjs1yrcPu/jT/5yf2d99jaqPFizNlNFni5TmReep4Ac/PCMvpwA+Y7E2iKRJfOrFMJqYxkI2RjWtcWm3cMATbHIABVNo3X/djqozpCUX8zYg/+dskBAVh2H1muuHNh0j7htKcXqzRmzKu867fisEta92tVpdCXGM1GoL1pm6vYa3I2y/6Wx0Qb1W2b7Wyadk3t8Lb+hK24wA3Ktfny9cGjJ5/YxPFcn3GCgk2mjZL1c5t1yubys2tonxZEfmxPUmNmK6S0BVWqiGVtnvd61puQKXtksgLxqUqC3tUPxDN4t6kRscJSMY0fvORnXh+wH96ZpZcXOOhPb386gMTLFdMXptP8+JshcGsQUjImcUqf+/xfTR2C/Laf35+jqSucu9EgflKh56UyIg7OJThB5eLXQXn4wcH+MbZNdabFo4bENMV/sevi33M8bEsHzk6zD/44D4Anjy1zEyxzWthld7UJD0pgx9eKaGrMj2q2NCDGN69OlehPx3j4HCGV+eqFJuiJghDyEQWSpvoSRldpXPSgJ+/c4S65dIwHZE7HAp7tZ8UCkm9m7f4TqBuupxYqPDiTJm1hsVwLobrhfRnYgzn4vzt9+3hxdkKqw2L+YrJjt4kv3TPGHPlNrWOS2/aIKbJFOsmNdMhrqvs6UuyUrewKx1sL8oz49Y5gz8uLE8oFh/es32j/YnDgzxxePsBGEDLvrn7xbv46YPnh9dlKyqyxGMH+mnaAZm4ynghjq6KXK2lagfXDwhCX9TEcshr8zXCMCSb0Dk2lsX1Q/b0pymkDP7u43spPD/Ln766xGrDitQZPh3H5/ED/bwwUyGuCeXRUDbOat2i7QZIsoQSiuexJklsFWMYirBLF4Rjn4bk8upcBSPKM9EViR19KY6N5vjuhXVCwS1GV2C8EGcoK4g0haRG3RREItP16dhC2RRGCrRMXOHKegfXE/lNcU1mrtzh2EgWx/dZb1i4kUXu//j1izy0q4efv3OEqfVWN1ZDliR+eKWIIkuUWy6OH/A/fP1iN/u6L23g+gGX15pcXGsykovfQDgA4YZxbCzLxdUmx8dzNz2X/uv9IreFGAIcHslS7wglviYsC1ipmxiqgueHPDNV5OcOD2OoCqt1k//wo2mmNlqM5OL0pgSZcalmEdccvCAkpinYboDl+vSmDC6tNbFcn7Mrde4Yz/Gpu0ZZqpqM5uN4fsCltSa7+pJkYhq/eNcoewfSb9u++GZQFfkNyb9bcW6l3lXOu37IpbUGYQiPHxzoZuG9HnFd4ZfvHecPX14gF9e4sNzgz04sikgKTTg4HYsGi+8EHC/glbkKMU3hzvE37jVIksQnjg/z1TMrKHJAx/XRFYXFqonvC1K4HLmmbJIwthLBrnstxJBVjVSTfrh9XWjIsKOQ5Pxqc9vXef0ATAgfxH2sKTJPXyoynI2hynLU2wppWh67+pLsG0jzyL4+zizX8UOhpI7rop+gyBLZuN4dUt+/s8C+wQz/63evYLvCBjIfuUWcWKixHjlLVTvOu0Owv4TIJ3V+JbKs3Yqa6XBptYHtBaQMhXxSxw/FnrNjeXzyzhH+xiM7Afi7f3yKE4tVWpbHlbUGqzWL3/3McXRFYqlqMpKP81sP7+TLp1aYi9aEIAgotkRvqmm6gogige+LfbnrB2w0bWwfbD/ExyVneciSiMdxPSF8URUxbG5YLktVQcxOxYTIwnREFJOMeO65QcBS3UKK7t4ggKSuYLs+Jxfq5BM6R8fyGK8sinvWDyi3bPrSwn1MkSXathBvqLLEmZUmbgCqIpwo0oaG5wu3LtsXajfTE8+S4YzB7v4UbVvEF/SmdOYrHZZrFl4gLJF1VcRCKbKELEt0bI+qeW3hDwDHDzi1WOtmi2+Hn8QQ7D3Ar0uSNIuwQ5SAMAzDo2/XGwRvwHXLGDJ9WeFVvVQTNoCpaIP6aqktHr5ByFrDxlAlwbjb3Us6pvILd4xwYbnO+ZU6hSh3a6lmkomrdFyf3pTOctVCk2X+70+e40OHh9jVl6Jtexwfy+EHsIzJAzt7uTvKnFqtm4z3JDgwlOEDBwf49vk1XpgustEUA5WVuslitc1/emZGDJ1SBvfvzNNxPSotm1LT5vhYlqOjGRK6JrKGkjr37SxQatt4figWIQmShspEPs5zV4ukDJW9AynKLYcgFOynju3x8O4+PnF8hMtrTb5+VrA047qCH4aM5OIsVk1Cx8fxhflGw3TwQ1iqWsR1l0pLYa3pUGxYVNs2HTcgqcvk4lqUcRbcsLAFQCH14w0cWrbHmSjX4rX5CgeHM3Qcj1fmqhQSOkdGRdFRaTt8+/wacU3hw0cGaZgu8+WOsFULQ+6ZyLNY6TCYi1EzXeqmS1xTmSjESUef4dW5KjPFFqWmjeV4rDUsErqKIsk4Ec9lO5LKzRb/20UI5OM6HS/gzHID0xG+skPZGK7vs9EUijCRFafwyJ5ekobKH7+yiOOF9CR10jGVwYzBM1dLtG2PIISYpnQ9pitthz99dRE/CPmFO0fY3Z+ibjpsNG2mi63Ik10VKoI3wIHBNFfWGgykDTq2+5YGYFvhBhDXxRfRtj3RTJbg/fv6WKmZ/Ounr/DSbAU3EFl8BwYzHB/L8vmXFii3He6bLDCQjTFRSHB+pc6PrpQoJHU+d+84uirTtoX9zN2T+Z/arKW3q9CfK7X5+tlV0jGVT981dgOjc6wQ59mrRV6cqQg7ScQQTpbggwcHQQpZrZn83548h+cH9GViHBjKdPMpNEVlvSny2pqWix/ZUpZbdnQdiOuxJkHdvBZevVksW16I7QlVrKpIFJs+siw2o4PZGHsH0vzOYztZrdl8+8I6pxerOH5If1pnOBvHUGW+cXaNgJClSoeH9/ZyZvmadagUDWRbbkAgeRiqgu2FxFSFoyM55spt7h7PM1du88nEMPsGknz3oqDG2J7PYqVD2xUMdQkfNxBDVs8PUBQJSYJ83CBlmPiBS1/K4I7xPFc3WsgSLFVNbA8IAiQkHC/ARTynG64Yynl+QDah4QchI/k44/k4n75nlCMj+Vtan7yLn26M5GPMVQRzqT8tnjPbjcL8EHRN5qHdvYwVErw4XSYTV9nRmyKf0Fmsdri01uSeyTyFpM4d4zmeODyIKktcWGmQjokNWdv2mCu1ubjaYLlmktAVZooiJHckHycTDV32DqRZq1sMZWPdTdvBoQym6zO93uLJ02IwPpyLU2rZbDRtZEmibno4kVr65EKNCyuN6LMZXQuYIAg5v9JgNJfg0EiG9+3vx/MDik0bQ5PJJ/Tus+3OiTx+KJqpYRiiyaJJvpXpPF/pMNmTpNgUVqmKLLI5UobG+/b1UWs7XF5v4fpiCP2jKxtMF1scGs7y+MEBelM6z1wtcnmtie0F7OhNkosrtB0PRZbIpQyGc3HORZ9lIGMw1pMgoSs3bWBsPW83h3j+hEDH2r4dbd8qIG4L3revn5dnKyIU/haK91LTwnF9mpZgIuvbMMalLRfgrZaY3JYsitvNpDS07ddSb8vHvBWfZuv3GQS3OfiQtn/BHX3XrCBT26zxCV1h32CaF6ZLN1h93QohN2ZRuH5I0xc171hOodiwKTZFvazKIisyBOKaRCYmsjddX5DrvBA8L8ANQtYbDjFdbPIurTa4d0cPv/PYLr53cYOZYpt9A2n2DIr//dJ9E/zV33uR86tNzseafO6+ccYKYmD7uXvHWK0Le6paZKG+bzDNS9Nlzi3XUWThJDFfbvPNc6sUmzbjhQQXVhqUI1VEf8bg5dlKl82e0FXKLZuZUpukofJXH5jsqpQ1RUYT6db84PIGV9eF3VZ/xmBHb5LpYouRfIL9Aym+fUEwp3f3p5nsTeIHIV89vcJK3eT9+wfYN5jmb79vN4tVE9MRNvW3yr/5WUIQhPzpK4vMldt4QUAuruF5Yp90aCTLp+4cxdAUVmodFioi/+1z94yTT+okdbGPW6mb3DNZ4BtnV+m4IS3bRpUl9OjGeidVYCDs2QNEU2MwG2Mwe/vW6Vvh/uTj3t7F24i25fLaQi2yTPL41vl1QRp2hW3gat1GRqhwN5vMphfSsV3KLYfDw3G+c2Gd/rTBk6eWObdcp9ZxkJBo2z6Zfp3elMGxsRx102O+LGzHMnGNoYzBWsMmrql0QmFhOFsWdVb0GEKWZXw/xFAkOqFgpSd0GV2SCYIATZVZLHfoSxkcHE5Tt1zCjhjSjeQTPHl6BdcTTb3d/YnoeR6R7QyFjuMzlotz13iBqQ2hcEroKrv7U1TaLuW2QzauY3s+Gw2bE/M12o7HifkKHzw0yJHRHNPFNoos8cnjI3z19CpHR7M8P+2huH404FaQJJjsSbAe2QNrinTDHm4r3rd/gAd39XJ5rUmxadOXvnH/0LoNzq7vQ7XtslRp05OKMRwXfZtsXO86A5xZqpPQFYoNh7PLdTYaolnp+gGlls0Thwd4bqrMZI/IVP/Q4QFakQNBPoouGMjE6Dg+PSmdT989SkxTuoSKH1ze4ORCDUmCX71/4qd2L1SIMjxBOIVs1hONN8i03D+U4R88sQ/XC/hHXzrLRkNkTWeTGr9w58hNFf9vB16dq/DybAUQJK3d/bfOUn9uqtQd2BqqzK6+FNWOI/L/ArGv2XR+2Swrb7YOSQglqUKAGd78dxVFZqNp3fZ6FoYiCsbxAhqWR7lt07RddE0hoSs4fkjNdPnz15boSRrs7k9CEHSzWJOGxmAuznt29eGHAW3bZ6lq8vjBAbJxjb/zgb2cW6qzbyhFQlexXJ/xvHBw2dEjnCzexf9+0DRdFqomrh9QSGhdm0HHC7Bdn+9fKnJwKMt4T4L9gykUBV6bqwLQMB3+zp+cIBXT2D+YYaHS4Wtn1kQkhu9j2gFroYXrh2iKgqEqxGQJ2w2QFJgoJFiOxCog7ilJkig2bfYNpmhZLpoqYnI0RbgfeYF433xPksGMwUvVClF7n1REPNEVGd8LCRBr3+ZM4SunV2jYHl88schYIUlck4irIsYpFVOxHA8vEG4zu8dyqLJEteOwVDVJ6RJJQ6cn2mvPlzt4fsiu/iRPX9zAC0L60yofPz7MAzt7eW6q1LVtLLcc3GiQ4PigKyFxQyUbU2g5Ie0t0Tsy0JfS2d2f7tbDN8NPYgj24Xf6DbbbuEpAIanyiWPDTBc77B9Mk41rtG2fuXIHRZF5+uJ69OAOSRsqDctHkyUk2efkYp1H95lkExpN2yOmiSFAqWVjqAqW69GfNsjGdKq6y/mVOqYTcGG1wT2TeT6wf5AHd/fw+ZcWACi2bApJnVfnKnz55BJt28f2Az5915iQvVct0RT1QxJGwH/60SzpmErL9kjoCrOlDq4vwuAkYK5scnA4Q09K566JAnsH0nz8+Ag108X1Anb3pfj03aOAxB+/vEDNdOhNGVxZb9GbNOhJasxXOqiyxL/74TSSBLm4RsbQ2FBtZottLNdHliRRPMVUbC9AlSUqbRfbDwgDMZjIJTRiukJMk+l4QWSrGKApIZoq027f2OCRgFr75pkQb3zOQ+ZLbQxNxnYD9kYWS89eLXE+amL1poV/6OmlGmtR/sRMsc29OwqcXKhie2LKbKgyU8U2LdvjE8eGhU92CC/PVWhZwsvYUGVWazJtVyyUogHo3BC8uxWGIppLbzUWa9NesT8bE4qW6LuNazK7+5MsRwG5m/7nlY5DUleIaQoHBzO8Ml9hoidBJibyJ65utMgldAxN4fhYjsf2iabkQqXTVUw9dX69+zrN6MALSZ1P3TX6hsq9MAwptWwsL8AnfFvYpzIib0WRJQYyMbwgIKYqnF6qU+m4XF5vsVwT53ZKE5adXzopmMprDQtZgr/9fuGp/mevLYncvJpgzvanY3zx5DKlpk0uofEbD+14G474pxeX15s4XkC55bBcM7sbjE3cNVHgXz19FaJm9FA2xnSxhYwY4MyWWlxea7DesAgQnsa9KR0/EI1E23NRJDiz1KAVhUwXkjoSQlnbcgJMT+QAbH1kq4qwjrK9QLSLQ/Aj+VYQgCwFHBrO8rHjQ/zes3M8P1Wi1nFRFZnBrE7b9pgtd5ClMNpkC2LEbz+6m30Daf78xCLrDYeG5aLJEkoUxCkhk47DeD5GGIoA5SvFFoOZGH/86iLfPLcOiKBtNwgJIzZ6RHrBccXniOsK6ZjG+/cP8LFjQ/zN/3YC1xee45+9Z4yNps2LMxVGcjFemq0i6zINywVEYTGUNUTTU5MEu0UWKs94TObRff0sVEyKTZfP3DN2XQbeu/jZwe7eNM9PVwmBnX1irdrucaoqEoNpg/MrDT7/4jyX15sossQDu3poWB7PT5c4u1Tn+HiOf/HpoyQjS7tq2+GF6TJeEFJuF3hwVy8DmRhrdaH0MF3xv7imEAIfOiRCu+6ayHN0NIsqS92BlCxL3DNZ4KkL67SdqAZIGQxl45xdrgFQ6zj8wQtzWG7QVUjJkkQ+GpLUOg7fv1Tk5dkKA5mYYFDLEn/+2jJfOrlEueXwkaND/K337QFE83yiJ4kXBJxbbhDThBXcnRP5rr3x3oE0l/uFiu2xff2UWzZ/9toSYQh3jOU4Pi7CxTcZaPPlDgsVk7W6xSN7ewkjq5mG5SIjGhN9KZ2ELljiR0ayjOTieH7IbLnNrr4U/93795C8yT23NY8qrt18bQwjKowExPWbqABvog58PZ6+tI4fCgbgU5fWefzw0La/N1/u4ARCoVZumaS3YaW+PFXq/vethni5uNZtZvRnbt582kr4id2kOZdPXPsuw1vUTlsPp3ILdb0qCxsMCYhr25+n+3b0Mp6PUzNdPnXnaPfnddPlC68u4vhBl035dgwNAqDjBEyVWoSBYCqGCNeIwUyMR/f20JuK8ep8ldNLdcIQEobG+w708+J0mY2mTYiwHK11XP7lU1cYzSfYP5gml9CZ2mixWDW7991CuUPV9CJrq5Bi0+kOwXIJvZtl1Z+JdZXuXhCyfzCN6focG8vRtDzG8gkkSeR3NW2XM4t1bDdgPVIpPX1xnUtrTY6MZKh2hHqn3nFYb1g8tq+PsUKCnpTeJRMlomtAlcW6dngky86+JLoiM1/pkE/ohCG8PFthptSiJ2lwdaPJdLHNQrnDP/7oweuO+S8TgjDs7j929aZwQ1GXOZ6wqhnIxBgrxDHdgIbp8fTFdZ69WuKh3T1cXG1ybrlOEISsVi0kWdRJbhAyXzHJxpToWf5OjsDE3kaVoC9t8Kv3Tbzl2uQms+t38VOK19ctphfSMB0kWeHSWgtZhkrU7zg4nAUazFdM3IDInh9c30WSJCptmzPLdXpSOv/me1OcWqyJ7BFZJqHKIpskhPOrDWxXKKDKbTuyH/QIIzJZf0onpik0LbebXSJLwlUhDIns2UMSuhKtFzLpuMJ4IcFSzSSuy4RhiKKoDGZj+H5Aw3R5bb7atYnKRqQc2xMKEEWSsP0ATVHQVIW1hs2x0RyOH/DAzh7cIMTzmwzn4rRtj9NLNdSIuFNtO9RNl5dnK1Q7Lr0pAwlRP33yjmGWayaTPUl+eKVIEIb8lfsn2D+UoZAUStuRfFz0a96AuPnNc6vMlUSG2G8+fOP+9naeEJs1zlzFZCAbJ66pZOMasizxzz5xiH/7/SkWKh06jrCFvLTawA9CxnsStGyPTEyl2HD4xPFhTi7UeGhPL3eO51motHH9kOemShweyfKPP3qAqY0Wy1WT3/n8CQbTMf7ZJw+RNAQpEOhmYf60YtNhIQwFATSuK1iez12TN1ciwPW1iCRJGLpCEIbs7E3dVrzHj4PNQarIoLy15f56w+Lpi+ssVU0GMwaDmTh3Tub43e9cIQgEMSKmK1iu383VutXZCqDbZ9r8PU2+kVwkcpFuXwUeAht1i2NjOaZKbZqWiCC4ayzHvqE03z63xvRGmzPLdf7p187z0K5e1ls2kiSyOXcPpNnRm+TAcJqlismV9Qp3jue6tU02UuRvwvUD2q7HQCbGgdt0pHoXf3kwU+pEJDcoRXVcNqGzszcZkSBUfnBlg8ke4cq1Vrc4OCzq6AsrDTpNh6bl4fuBcA6KZg1tN8QDAjdEV2SyCY0PHx3kB5dLmK6PIkvCIjFtiBxvNxDRIX6IGXpcWW/huD6aInF4JMv9O/L8q+9PAyJbc6HSodS0hAITiFJDIht3QUhXkNA1EUcznIsLdzg/xPdDFisdJESf3/IC+nSZmVIHWYKK53Pfzl6alkshqbPRsKOccaG6VmSJXX0pkoaK64WcnK/SdjyGsjHSMY2Ti2K9LLVtHj/QL6wctziLOX5IoytaUdBVCXwICRnJiozRkVycg0O3Huq/4x21MAznJUl6D7AnDMPflySpD7gxpfvHeo9tfgbs7U9zYCjDCzMVpkttJnsS/K337eaZqyVOL9WwHBdZkuhNaiIU23KFFY+hsVjt8NxUkY8dG2Ysn2CxYrJuOtQtFz8I2TeQJqErzFU69KeNaMPqYLoBL81UOL/SZK7cZldvkqcurqPIEi/PVvjR1SKnl+pU2y66KvOjq0Ue3t1LPqkznItTbjuEoVgUN5kyd07k2TuQwg+g0l4XGQKWS6XtkNTFzTVbanNoOMPvPLqLpy9tMJZPkDQ0XpgucX65juUGnJivoKkqpuNzfHwYLwwpNW2ENFgUjrqq4HqhsB8B/CCg2LJJ6uIG6M8YTG+0WKqaUQifqIjjmspQVjAvFqsmXhB2b6LtFkFZgnTsrXvBn1ys8cPLRQA+enSIPdEQLKGLS1qRJRRJinLehK/qYDbGcDZOTFP4P7x3Nw/u7iWhKxiqzJOnV9BVmWRM44lDg/yXF+bEoMsPun7FpivkqGFkSSS/wUYzrqsEQYjl3d44SBUjfCRCVEVCVxSSMYWULtN2PExvsxAU3suaIiNJErIkOvO6InN2pcnffGQnr81VSegqMVWmN23w0aNDqDJ84+wavWmD+3YW+MOXFigkdT5+bFhYsfhiY75aM5kptZEkODqSYyiyhHojPHVhna+eXsH2AjqOhyrLP7Z9jRzlOBmqxO6+JA3LY71pc3WjyUA2RsoQvs5xXaEvbTCaj7PRtFlrWHQcn0pb3EcpQ+XoSJanLqyjKxKL5Q796ViXgW/eJhP/ZxmHhjMslDtk4iqj+etZu1b0+UXYcqzbhLu60SIT02iYDsVocRfND8E4Xq1bvH//AOm4ymyxjen4NCwX2wsYSBv0puKsN+rd0HbPv97CM0RIow8OZbi63hTNvNcdd4hohstI/OhKkZopiubAD2iaHkpCoWk53DOZp9pyMT2ffQMZZBl+6d5xzq82KLfLUaacxIO7exnMxHhuqkS5HaIqClPFJn4gLBISusJGw+bQcJZLa83ovUIG8zGWq2Lg6oXC5qxuC0vGuKZweDRLLqFzdCTDxdUmkiTx5yeWeWBnDw/sKlA3XaY22ixWO/hRvpkiSYwWkuiqQsP0QILxQkLktSgyKzWTVEzD8VyWqh32/xTl1b2L28dSvd29rheqwp5tuyejpsi0HZEfOlNqYzoecV3lwEAGNwiY2mgKtYnlXdf077iCBQ3XNpW/cv84w/kYqzWLqxtNrqw1cYOQjx0ToewADcvl6nqTE/M1JnuTfOBAf3cYtrsvxdX1Jrm4xq89MMHB4Qy9aZ1XZqvENLmrwpYk+JX7xtEUmXykGvrhlSJz5RYNy6UvbXRzItYbFosVEz8MeX66zG89squbK2S5fvf+62wO7rZkqaUM9bpMoI2G1a39vEBksjZMF0WRODaao266rNUtdFXGiO6vbFxDQkJTJZ44PMCOHlGKun6I4wZdS56PHB3m7z4uyBOOF+AFQbe22ERcl2lG8u9bqYg3z7skgX2TZeaNbIavvZY4NxKi8X0zbAYSh7d47bZze2vzbLnTHYKdX27c4tiuQbnJhOvSRqv73+5t9rJu1ZgpxFU22i4xVSJxk3PQsl1hReWHnF+pd3++UO507xXT8VEjtuOPq17XpGvfuxMGIAnP+5gqLH/OLjc4OCwxs9Gi3LIJAqi0baY3mkz0JNjTl2Kh2hEODKFYLxcqHSotmwcjhegmq7/csnnqwppQEvlxDg5lODRy4xpR77h85cwKtis+pyrL3DmRZzATY7JHqLDW6xaSBH3pGJ+8Y4QfFopcXW92nQNenBFs8S+eWGZ6o02l49CX0hnJx1EVmX2D1282H93bz0guQSGpd5u1m/fQSC7OcC5Gw/RYrpks10wUSdTU9Y5LJqby734wxZ7+NB88NHDDvffjIAhCWo5HOsp9/ouAqsh84vgIz02V2NmX5N7JHv7ghTlemC4xmImxUGl3a9um5VBpOUiSxJdProj9SCAyGqqmw4Eh0Uypmz6KFNlKq0KJ807CD0FXJI4MZ+lJGfzB83M8sKunS0i8XWQTP50ODO9ie3hByOvPmBQRuoIwRAsl8pkYA2mdlYbVJaYYsowsiXtfRkJXJfb0Z8hEBNvnp0rUOy6SLDGcjTFeSPDe/f2sN2ws1+fEYpWaKfK6JATRQIka9wlDYzgX49mpkiDOyaBpogfgeAF+9GzJxVUqpovl+uiqaCA2I+Kw4wX0pWMokkQmoVOzOiJ3HcGOz8RVJntSlJouHddjNB9npW5RN13WmxY1U/Rj/sET+3ji0CCLVZOUoZKLa/zV33+ZdEylbfscGs7y8myFIAzpuF60V44x2ZvA8QMmepKMFxIcGExzPGLS/3+evsrppTr5pMZvPLiDT94xcnvnyt8kE4ZvSuW8CUPe4nATguOGZHIaxZbIPetJGty3o8BixaTjeNw5ked7FzfoOD67+pM8srcP2xV5M3dNFLhrQti6f/nkMlfXm5xbqXNsNMdy1eQz94xx10SBz790ivlyh7lSm2enSjxxaIj37OklZah4QcB8ucN0scWd4/lta4NX5iqcX65z50Seo6O5N/+hIyyUO3zj3Cq5uMbP3zmCod5eJvNWldoDu944x2ujYbFQuVaL7OpLkYtrzJTaJHSZxarI+nyncMd4vuu6MJK7tZo3jCzeZkttoRjxQ1bq4jqvdlxUWcSfJHSZWidSvwVvnAl2XU8gvL7Zvfnvb+Tc+fpunBfCetNiPJ/A9nx0VWGiN8lfe2gHyxWL6WIbzwuxnICliomuyJi+cHhRIvVKNq7xUq3CYCbGjt7UTbOFnjy1Qt30UGUpspy+NSb/4dff8Hfexc8OPnR4kKcurtPsOKiKgqbKPLy7h/fs6ePCaoO1hkXDdHny1DJnl+s4XkBvSufnj4/Qsj0urjZwfZmO6+O4AZIs05/W0RRB8lMk4dT04K5e8gmDuukgS2JPqcgiJmS62CbpByQNhWrbJSTEDwJBZJUlrqw3Wa52MFSZIBDWo34QYnkBKV2haftIQNX0SBiy6NcFIaoEo4UYv/nITmKKzNnlOm3bR5UhocsEoYQfBKQMleWqSRiKe09XJC6vNXhwVw+rdWFt7AewWO2QT2j0Z+J87t4xJnqSrNctvnZ2hZYtrI8vrTbpSepcWG3QmzL46plV+tIG5ZZFw/K79/lmiWs6Pkh0M81W6hYt2yOfMDizXOeOWzw/3/EhmCRJ/wS4G9gH/D6gAf8NeOjteo+4rtDe5uenl2osVMXUsuN4lHSFhuVheQHD2ThhEBJKMFFIMlduE9cVYddlusyV2vz7H04zV+kIiZ/rk9QVOrZHIWVg+SHVyJ/SdHwe2dPLhdUG51ca2J6P5sq8MFNmOBdjZ18KPwiZKgqWi+X6qIqE6wecW66T0BSeODRIf8ZgodzmqQsbrDcsehI69+7o4Tcf3kFcU1AliXLb5tJqA12TKbdtCGGx2kYK6Ta4wxCOjeV48tQy5ZZN3fKw3ICWHSA5DoWkzkSv2JwuVU3SMYWZYoexQiJSdgQsVtq4fkBS1/ACkacU1xR+7b5xvnJ6hZWaSSCJm6gvbbB3IInriQA6TZEi32yhzNhu7Urqyo+VCbaVDbR1H/vgrh4GMgbZhIbrhyxVhRXUWCHFfTsKfP7ledYbFh88KKwCJEkiDEN+7YFJvndxndNLVYhsabxAFNlhGDKaj1FtO7QcH0KxiRW9pRDX334UZrvBmxoCyTLdgOEwCDB9D8cPWK7brNbM7u9ZHqzWTeyI8abIEmEomi4Hh9L0JHVURWJXX5L5isnltSbfv7TB6cUa8UjhdXKhhixJVNoObhDw2XvGqbYd/slXznNuuYahytw9WWAoF7tOit9xhH3gdj7k372wzuX1JoTwkaNDzBZbrNTtt8xH1RWJ3qROxRTD6qFsjFK7IQatFZP1us0v3ztONi4swN67f4BzK3UqbZf37O5ho+mQjqkYUZM1GVPZHzVqlusWdwEfOzbMxdXGm964/yxiNJ/o+hJvxXLN5IuvLSHLEr90zxhPnlrh4mqD2VKbjuMzkDYwHbkbohyG0JcRftmHhzOkDIWra01W62LwuOmp73o+y7UOVdPFdq9n2W/esqosMZA2eGhPH34YcnKhRhCKAdGmpUpCl1mpdfjPz850NwogVDND+bjIsAOenSoRhiGTvUkmexL84UsLwpPZ8brewUldZTATozel88CuHq6ut4jrEqmYyumlOroicXqxzoO7evn5O4b59oVV8ZmAlK4ynIlTsxzShspHjg7xtTMrrDc8VurCmvPRfQPcPVmgJxXjxHyF6WKTjabFv/2VO/lmlLmyuXBrisSd4zk+c9coK3WL56dKOH5A0lCptB1W6xbltsMv3TtO2/Y4MV8joalvyqP+Xfx04OT8teb7TGQRth2h9eHdPTy6t5+1hs2hkQxnl+rIElQ7NoeHc3z82AgrdZOPHR2+bv0cycV5dJ8I4r5vh9h4Z+MaA+kYBwYzUdNcrHUfOiTyWWaKLb56epWzy2IA1rI97t9Z6A50PnXXKI/t66OQ1Lu5jP3pGB85OkQQCAvUYsvmnsnCDWoNYa0o2Ge/et8Ep5dqfP/yBo/u6+PCap31hs1dE/mudRqIzf/Hjw3z/FSZ/owhGvK3sL3pz8T46NEhKm2HY2M5Zkst0jEVzw94aaYMwGP7+vlQlEcThCG6KjYVnh3QsnzunsyzWjN5ea7CUrXDXLlD0lDoSWr8wfNzHBvN8tJsBcsN+PCRwevWibSh0ozybPpvsfHVZAkbQVS52UDnsX29fPHUKrC9TeYmHj84INZuWeKJQzdnCG+tOlbrFiOFG3lnh0fTfH+qcot32zy2Pq6sNZFkiY8e2V559nrMVDqM9mVv+Hluy6DqVnWBJl0bkuXiN/9G6tF6YPshtuNtOyz55pll7KijcmKh1v35jr4kfUsGi+U2F1YbLFRuPw9sKySuz12KaQpKVN+n4wopXaPWEdZfsgyNjiDbLdZM/GjT5ngBL81USRoKaUPF0MReRFNljgxneHa6jKEpyBJM9iYotSxSRorX5qs0LI89A2l+46FeHtvXt+1g5+Jag1LTZrHSEetmNs7RsWy3SThdbHF6uYbjBVxZb7KjN8nxsRzzZZGhPJKPc3A4w+W1JqP5OK/OV9EUiXRcu+mQVZGlGwZjGw2L1brFqUXxzPnsPX386SuLwrLVUPnY0SGRHVM1ads+M8UWv/eM2Nd87NhI18L7x8EXTy6zWOlweCR704zCdxrrDQvL9dlo2lEuo03gC3vlhUqHP3h+nmrHwXY9aqbYByiShOdDOm3QcXwSuhgW6KpMIaFjOmLQGwYhpvPm7SdU+Y0bjVsRArYXcm65QW9qg1xCkC7fbC39bnTKzxaM161heqT07HghMVXGB6ptm1rHYbyQ4NhYHlmWKLcc/CBko2GRiaskYxrVjsPPHRnk2amycPrwQ7IJjaFsnISh8pVTy1heQE/SQI0soEBce8PZGDXToe34zFc6LEQNPkMV/QHHDZBliUxcI6Ur6KrMJ+8Y4f/7g2nank/d9Lo2g47ns1yzsFwxhPrQoQG+eHIZRZLYO5BClWRmK22Wqh0KSZWYIxxa7pks8Ox0iXNLdWodD111+adfvYAXiL0lCKusQtKg1nG6ygBNFcz6uKKQ0FV+dLXIlfUYUxstPnvPOKcXa1xaa9KfMbiw0uDkQpWa6eL5AU9fWr/tIdgThwc5t1xnLJ/Ytva4bsi1DTRFwo4KVVkSOY0j+Tiff3GebEKn0nHYP5QhFVtnOBdDk4VrQAi0bJ9P3TnKdLF1HXkvDEPmy20cP8APRB28SYQCODiU5rW5CnFD4+XZMpoi89jefpKGypdPLXNuqS6yoS2PJw5dnzUYhkJZFobw3FT5TQ3Bnp8ucWWtyd2TBQ6PZCN3Jx/T8VmtWUz2vv0Wdy/NlHl+uhxlT2m4QUB/yqDecTi/Usf3Q6pth48eHXpHCRu7+q6vD8Mw5KVZ4YT04O6ebl1lqDJHR7MYqsxK3SKX0LoE83LbwXY8mpZQefq3MfyCG+tAP7x1Dfx6yIj3ef3ruH5Ire1S6QjCyxOHevnV+ydQZZlElNtkOR6FlM5ARufyunDBUGRh1b6jN8HJhSqX10QesK7e/PsvtYTlqyTBhw/dPP/yXfzlRCGp88TBfiw/YDAdx/bEfpEQlqsdvnWuSr0j+kSbhPupjRardZP5sokiy+iKhO2J5tlw1mCyJ8n0Rgc/tElqKkdGc/zKfeM8eWqFdEyj44gsxV+4Y4TvX9ogDEUeGYjndtP2CUMZQ5HwQomW7eK4LpqsImkhoSTh+SE7epPs6E3yvUsbWFEB2LED4rqMHIiYnZ19KZbKHZZrYiC/0bCQgHxSPKvajk9/2uCVuQpS9P4DmRj9aYOzS3UkWUJTZJK6TLnl8KMrwubQsj3+0UcP8qWTy7QsD9cPmC21sb2Qh3b30HE8ZoouF1Ya3D2Zo2N7LNU7VF+Xwe0JEwwUSawnXgANy6NluZFY5eb4SXgr/TxwB3ACIAzDFUmS3taO86aV2+vh+CFBEEYSfIlsQmelZnJ5rUFCVzk8mkNCsCwt18dyfbIxFTU6YQ3T4QuvLqIpEoYisoge3N3LnoE0SV3hT15ZJKYpPLa3hw8fGebrZ1ZJxVRKTZsQif60kMauN23KLUecwKrJ0dEcM0WhTNto2vhhyHy5w0szFU4vVcnGNAazcWxPXFhJXRVNj8NDNGzR8LVcn8WKie2a5BMa51cbNE2Xpu0xmIlxdDSL6fjMFNvYnlBnDGYNGqbPe/f105s0+PLJFS6v1tE1hQ8fHuQDB/v52ulVLqw0RfipIhQ2XiDTl44xmI3xH5+ZZabYjnKAQFZgtWbRsETeVKXlYGgKISGKDP5N9mLKFvult4I7x/NdT+KtHsayLLFnIE25ZfPDqSJNyyWf0Dg+lmNqo81rc1WurDeZ2WjTn46xqy+F4wdko+bMueUGK3ULKRrebRZoK1UTywsJA9BVCVUhWnWv8U82F+PudflmdpQIn1NZCgn88NqrBgEXVpvX/Z4EtG2/67msKddsHqbXW/zhS/O8Olel0na4czzHS7NlLMfH8XxcP2DvYJrH9vVxcbXJcC7WbTS+NFuhYbrkkzqaLOypfv6O0a5cvm17/NcX5zEdn/t39lzHcvL8gJW6sPRMGSqFpIamKj+WIUsmrpGOq+SSOn4YcilqHvckdcYKCbwg4KmL69Q6Dqoi8+xUkTCAoVwMTVH49N2j9CSNbpNmOBvj+HiOUtPm/p2CkTaQiW070PvfE5YqHaEiCcLImsSg2nFoRaHPhiZzZDQX5ZcItrEfhDhByDNXijx5auUG+wJCWKrbKE0Rav96aIrEsdEMO3pT1C2PK+tN2rYf+XUH5BM6R4YzzFc6GJrMF15bpm25IIlFqz+t84k7RvjE8VH+9NXFrgJxU6GZS+h88cSSyG3xPJqWT0BItePyX1+c6yprVVlmMJNirWkzlI2xXrdIxlROLdQZvcJgAAEAAElEQVT43L3jHBzOROoHibsnC+SSOp4XMJyL85l7xri80aTSqUYbuw5TG00KCY3P3TvG18+s0LZddvalSGoqpbZ93fA+E9P4wMFB7p4sRFYY4vhycV0M0AOhxtvRk+TqRovVmsnXzq7w24/s+rEIBO/iJw91ywZKjqzvtjuDp5caZOIGHzgwAIS0LZ+5UosvnVzhT14VHtx3jOe6zWDL9TFUoQi+83Vsp+emSlyM1o4PHRYZOzt6k93sltW6RRCG5BI69Y6DrogCdXMIpsjSTa3IZFnig1s2e0EQcmKhiiTBHWN5HtrZQ3+U4bNQ6fDCdBkJeGRvH//6c3dSN13SMY3npsqsNywe3tNLJq6J7IqMQdJQaVoez02XmOhNXPeMDoKQb5xbZbUmbA7HCglWaib//FuXmSu1CYC7J/JM9CT5xB3DDGXjdGyPldpmyLpgi3/9zCqOH1DvuFQ6jgj2DkKapsdrc1VyCZHfark+6ZjGfLlzXYNXWJoKbDTtm577TTVbALTt7bMhSq1rP7+VM+JSxSRpCLuzuXLnpr+3tRYZy2/P7l2v3/yYt2Jmo4UfghQFvX/sNv4mvMk0ybpNxbWsAFHtKEk3Z2Bvri1BCK63/XsGW+40bwspKWWoPLavj3/+rQqzpdZ1BIs3i2xCpWaKvNWmI1iSAJYLLdPvWkrhgx96uF6AJssEst8dvIVhSMcRlqXJaBMpSfDArl7KbZHR+vx0hR9eKZFPaPz7X7uLsUKC00s1JODgcOamNfXO3iQnFqpiuIxo2pyYr5JP6PSlDb55do1KyxHkoPEcvWmd/nSMv/6eHd2g+H0DaSzXZyQXZ70hsszes6t32/fbDi/OlHn64jqzpTZ7BtJU2g53TeT5+PFh5sptRnJx0jGNv/6enZxdrvGtc2uU2w6X1hqoskzL9vk/vnf3Wz5HIM7/YkXcN/Pl7aiT7zxW6yZ/8soiQeSWkY1rBKGop3pSBi1L2Os7XhCFlUfHToihwGg+TlxX2GhYzJQ6BKFEw/K6Vs23KfC8jjkvS29uALYVXiCcH65uNDk+lhdOGW9ib7dRfzcU7GcJtuOzdUVxg5C240eEYE+QPXSZVBR8f2W9yfGxHLWOIBdfWW8RNm3yCY2Dw1mKLYdfvGuUmVKLfELnrz4wwZ++tsTl1SaltnjOzEeZXbIsEQaCzHJkJMPl9SYLFRPPD5AlCVkWZBfLFXb8ciCyu3b1ppCkkErLIQiC/z97/x1nW5rW96HflXcOlXOdnEP36RymwySYAAwj8oAFSBghSzJIvrKvLF/7SpZs3w8WtmzZwiCQACFggBmmmTzT0zOd08n5nDqV066dw8rh/vGu2qfqnDqhwyTo549puqldtWvXWut93+f5/b4/DFVCAuFC8wKBYg8jSk1HrK9I/L2ndtG0fZ7c18+v/P6brDYdVuLnY1pXySY09o/kOD5X6zbhXT/C9gL+/PgCsiTRtj2uldsMZA2OjudJagqfPy3cRQeHs2zvy3BxVezRSi2H4XwyxruLZ9Px2To9aS3GzYf0ZnQe3n5nd9F65RIaj97mGX27e14Mxa/3IhKqzMtTZTrxoH4oJ3CuL14ts3sgw1rL4fBYgUJS5/xKk48cGtryfP3Ny2u0bJ+q6fIrT+0gl9DZPXh9CPOzD2+jP5vg+GwNTVY4Nd9ge5/InVrPJRdOPpm248dZN/GeWpLY3pfm2lqHnf13P7QSIhQhCHrlWoVDo3n2D+e4Vu5QSGkM5b89PYL1fWMQRnzk8BBfOL3Mr3/lEpW2g+uLHtSphSbHZ2vct63n2/IetqqZitizgzgHPL1PCKGzCZWjYwUOjebpzxicWxaZv5oK/82fnaHZ3UPduvOjSOL8b99ivxbBW4rS2AhkutENVoupMaokkU2opDSFSytNptfaDGYTFFMav/TEDj53YpGOE+AGAYaa4Ik9fSzVbJ45tYwqS4wUkjedrzZWLqnRlzXoSemb9pvv1V/9Wm3a/PNnzvHNK2skVYWff2w7f/fpXbQsj7/3h8e5vNqi7QbClRyEQiSOMO8sNmyKKY1KJyKXFI5oXZHZPZDj6lobVZEoJnX2DuV4/94BXpyqcGZRDOf3D2dx/ZB/840rNCwfiKjjM5QzaFgeUQRWEKCpMilNpm77WBEM5STet3uQ56+W0RWBLd/enyZ1Te4OwTRFIqHIOPEp8vJqi5lyB8vzSesaD+4oihxONyBtqEz0pKi1bV4OQhRF3GvbetOEUchC3aKQ0hkuJDkymuOzJ5cwTTHH+OK5FSxf7B2c+J8B0JPSuG+iSNpQeXmqguUFvDRVYayY5OLKrc9phip3xRWKDL0ZgyNjN4sxN9Z3YgjmRlEUSZIkRgaS9K7LKW5lUU1pCj1pwYoupjX6s4Kn37J9ZEniwHCO0wsN6pZL0/bxg1DY9gwVIylUSmHkE4URQ/kkewez/PITO9jWl+HP3lzgqb0DdByfn3l4G6os8+ZsDccPOTha4Fee3IEbRLQdXzRZ2g5D+QRjxST5pMaHDg7ieCGjPSkKSY2kKvNnb85jegFrLZen9vZxcKSXn3pgvNvw1BQpHmDpfObEInXTw/UDNEXGdgPqpgiOm6uaXFsTi3fd8lBlmb6MQUJVeHpvng8fHOLV6SrnY9dMhMcfvDLHyfkGewczlNuiWesGAbLskdVVgjDk3GKDUtuh4/hxVo/4nCNEvkbN9AgjCNyAtC6ybRQFlDC6CX2z7ip5J3/z+yZvvSi9cq3KTLlDxwn4+JERdg1kSekiY02WJUzX50tnV2IVpsXJhQaVlk3T9sRwTxLNSlkhvkHFCTNENNktN+yGf67X3ZwhJWAob1BIqkyXLcIw3HRoXeco3xa0GHPOJSChCqVb1fQwlIgXpir0ZfQYeSMeRkOFJM9dXGW5Iab3e4eyXFlt87MPT276tsP5BDv6hVLtbz6yjWM3fL4t2+8OnNfamxtoqiJzeDSP5QrX4YtXK6w2bt2ku1PpijikOH5EEHrYfoQiSaR0lf6syuFRMSBZbdiYXkBCjSi3hTvB0BX2aeKaP73QoD8rQtklSdw/79XmOjiaZ75mIUsiTPblqQrbe9OUmg6yLNGwfPYOGkRIyBtQPOJ5c+vvK9j/W1/FKU0mn9R5c66OpkisNh3ySTXeCIjXvHStgixJuH5AGEmEkdhsDuYMtvdmKLU8vnm5hBNnHemqjCpLDOUSfPNyqYuuJRJNezt+CLl+xFLdZteAGJYvN238IOIffmg3n35jgZevVXn5WoXPnljk//rU/fyrr1zi0kqL+arFIzv7uLzSomX7mHbAZG+GtZbLSsOmP2twdrFBRleoxs9iNxDuWCcI+eihYT79+gJzVRMZkfc3W+nw47/5MlIUESGeS/0ZnUi6HmwfhCE9aY1vXSmT0hS+eHaFjx25O0fGe/W9UYMZnVJLNPvyifUD+81fV+04XF5tcXQsz0rTodSyaTo+lrMetBuRS2j8zovTrDZtFFni4R29/Mg9NyuD80kxKNMUiZF8iv3DmyX3R8fFYHvfUBYzbmz8xcklfuHxbbfMmoiiiOWGTT6p0bA8ejM6hqpwerHB81dExpQiSZxebFBpuzwaCyVOzNWQJIn37RZOlZSu8s3Lazx/eY1cUuOlqQr3TRapxQiVmumiyuJ+NjaohMMw4uVrZU7M1cgYGr/74gyDuUSMeRMb4KSmMF1us384x3A+yXS5w//6lUustWwqbdFU8wLhrntzpspATiAjJYQKVZVgMJ+g1LSBBHXTxfZDjk0UNn0Wtnv92bZxIHZjbTzQNywbuHlTXulcX09v15gazCe6GOTbiTc2Xlq3egZrd8h/WK9Lq63us+js0q1xiBur/xbZYRt/z9vVxne2ni21VW38qLxb8CHzG67lhLZ5wujEop0o2tqZeTcVIfIhZen691j/G261j5MRWMvBXAI3CBnJJ1iqW6zEDTFdlTkwnCOX1Cg1HZ69uErN9GLnvsCLBfF9eGSswAtX1mjg8dXzqzft6dZrIJfg7zyxE4Ca5fLvX5yhZnp88/IaP/3gBGlDIYwM9g3nODyaE6I/2JSH95XzK3ScgNmKyT/88B6urXWwvIBPvzlPRld5Yk9/9+tnyh0xwO5J83icnfHMqSWultpEUYTjBWzrTZHSBBFio1PgzEKd//jqHD1pjUOjOWbKHfwwuqOi825KVWQe393HxZUW99/m/PDtrE4sLpIkiUd39jLZm2a8J8nLU2VcP+TCckNkKG7x+wYRjBWSrDZsWrZ4slwptUlqMtEWJwaFWzcUN51d3uK1vxFXtS5ojBCOwpbtkUvevWPPeM8J9n1Vmrr5GRohMnui9fMxAsM3lEsIZJofMlsRxBnLE1SZIBLnyalSmwe3i2fbsYkiURhxerFJ2/axPeHCCSKQEPkfSU0WTu4w5JuXyyiKwDBqisxwPkExLYTOKw276zIynYBLq0L4rCoysixjOT59GZ2fe3iSiIh/9dUrAh8qwULN5j++OouiyAxmDV6brWK6QiTtBhILdbHvcoOQsUKSXQPCkStLQBQRxk6nF6+u8eLVCmEUCUxoIstUqY3tBSR1hR0DGT714AR/eXqF5YaFH8HT+wbYNZDB9kJOLtQ5OJrjymqbTx4b40fuHaGQNLqi1Hejbjds8MOuDgUAJwyZroh8JdsL8QKTL55dJp/QaCY1ntjTv2kf6voh55YaDOYSmxCBNdMlbaikDZXetIHpBXG0hqiEpvAj94yyoy/D1y6sYmgyPWmdoVwC2ws5MJJjR38a2w34rW9dI5/U+JmHJrpOtx8+OoLlBW8JoaurMpO9KWYrZtcVta0v/Y5FFwDzVZOZSoeDI3l60rpAHMdn0sd29RFGgqY0nE9289m7SSOROP994czKd3QIljFUFFkiCKNNuNpvXFrj7FITNX7v923rIQij7tp1NxVEIN+w3mgyXVqL5W1Nj7pVbVyL1r+thDhfrffTTC+gbnr8/O+8xlzNRJVlejI6P/3gTnrSBmeWmti+EJYriGiPq6W2uKdVhX3DWX7vpRmeOb3MwdEc/+jDe1Ekielyh/GeFIdH8zRMj0JKI5cU191spUPD8jgwnOuSNN6rv3q1ULOodFxcP8IPfL52YRVJkrh3Is9M1aTjBuiKRH82QaUtHNJBvP/75L2jtCyfpu2xfzjDibkGsxWTZy+uitytMIyFBAZ//PocMxWR72i6AWcXxDWrKTJejC0Mo5CVhqCGhfF67HvhJjR23fT41pU12rYPkkTddJle6xCEYmbihyHD+QSaKtMyPWqWhx86hKG4L/PJiOXYNT1b6VBMGQxkdZ67XMaN38c6yveV6Qq9aZ0QODic5XQ8wAsi0cO2/YBS02a8N82O/rQQyERR18Hdm9bjXjyUOy5tJ9iUd3tjfuBQzqBuuVRNgWc7PJa/oyDrOzEE+xNJkn4TKEiS9EvALwK/9W7+AGeLzCVDkRgppBgrpji9WKeY0glCg44t8DVrLYfpSoeHd/ZwrSxyb2QJ9gxlCEMxQXT9gKopJqq7BtPULY8/eWOeYkrnwnKTy6UOHzk0hKHI/OXpZVK6Qk9aY89ghjfn6pxfajC11qHcFji7gVyCJ/f08ytP7kRTZa6VO9hewP4hwXT/9y/PYjVsEnGD+Oh4ASV+eM6UO/yHl2Y4u9hAkqAnozOcS4hGbwTLNRE0rQQBjhfyzKklDo7kSGkyS3XRoElpMueWm7w8VRHW5TjfB8QF2bQ8iCCTUKh1QgxF4Adc38X2AywvxPauK1cVhFrI9oTDaD2knEjwunVVJmuo+GFE6PibUDOdW4VjvEs1XEjwzKklWo7HNy6V2DecZaSQ5B//4D4+d3KRvowhgtAjeHWmGgfVium0DKQMhZ0DGRZrIpNnqWZ2lSvmO2DtS5Jo5C3WnVj9efPXRIjPNaGIDcFGteb6F4i1WUJTFWqmaPZbYYQswaGxHF85u0o+VqfIkoSmKCQ1GTcQQ9KtwmWPjhcY70mR1JQtN9pD+QQP7+il1LJ5bAvW9T/60G7+ly+HnJyvs1SzsN6msFpCbGxMN8DQZNq2jx7fByJMPIUsy4wWkvRnRC7YvuEsx+dquH7IsYkiT+8b4LlLpTibCf7mI9u6eTXv1eZKaQr5pMqXzq5gewH3jBf5tQ/v5r/77Dlqpsd4MYkTCOVdx/G7LOJb9U0USSgs286tL4C2E/DC1YpQ5ktiQxCGIYosY7kBbhh2B+2SJO6HQkLnyHieX/3AHl65VmFqrcNXzq9Sajm0HZ+BjM5a2+XZi6XuwqfKEkP5BKWmgxZE3dyk/cNZckmDKIq4uCpCt//VV6+woy9NJ37ff/rmPClD5fhcHT8MMTSZU/M1XpuuYbo+J+drfPjgMIPZBKstm8srLYK2QyYhcheJInRVZqSQ5NkLq+wazPKP4s9VkkT+4hszNRFMGmOx8kmVqVKHnKFh+YH497UOT+zu5/xSi76sOOS/V99ftdHps54jtdUN5PoRi3WTr55fIaELfOvBkRyvT9cot20MVSZjKNQ6Lkt1G1WWuLbW4dJKk1MLDfYP5TgcK58e3tHDaCFJ2lC6B9l1BMM94yLkeb1p8YUzAsUnSVs71Nbr2YslTi80WKiZDOeT9GcNfu7hye7zGeg6GAFmKyajxSQHR/KEUUQqxjV88/IaJ+dqApUznKU3IzJRdw9mqLRd3r9vAMcPyCd1Cqnrz+0/P77Ap99coNpxed+uPrxANFrats9I3uD+yR6atstET1oEDYdCib7SsDmz2BDYukA8F9wgYiXGkh0ezfP6TJWCIpNJqOwZzPLj94/zyrUqSpwJemNtfLqZd2lmsG5h0zBjrOKd6qHtPXzr8hqaKt8W9bNxd7XSshjrvRmHuH84Byze8WfeM15koSbyoh64SxW6qmx9tOjL3hpvubE20tyq5t19Nrqy9ZU73pPsOuNyN7DXdvZn+IkHxllr2Vxeab7tPDAnEPrfdaTcutJTU6Q4F1Y4DSQJhnIic3M9K7YcI8slRANwojfFU3sHODlfZ7VpU+24NG0PLxBZsRld4Z6xfDe/ww9FLsB6SPSt8ltlWcIPQi4tt7BivHu14/BHr8/x+K4+DE3h/FKDZy+ukdCq/MJj2zYhtPqzBh3HpDejM5xPCvz1Soupcof7Y9XmE3v6AXhxqkyp6VBqOhwey5M1VLIJlWJap5jS+H/9wD4MVb7J0Wx7AV84u8JK06bl+Dyxp59ffHw7pZbDRw+9O8KPB7b18MA7bCg6fsBfnFyiZft85NAQI3fIUtlYO/szPL67j4WayKXdNSCyRj6wf6grRtDiwdJoMclCzcGJG4ySJHFuudkdWq1fruu4xIho070fcv15/s5kh5srm1AxHV80WYKQpYZFUlPIJlSmyyaXV1eZ7E3z4PY7f87f5uiy9+pdLj+MbmocFdMqQRBRtwJCIJ3QhJNmrU0hpTFXtWhYEg3TFa6dIESLHTyvT1eYLYs+ScZQWWnatB0PQ1fIJ7VYAACphEJWV7m61iGIwAuE4zaX1OhN6dh+iCYLCamhKURegB8j2cRQGa6sNjEdMWQot13+/UuzvG93D/mkiuvHzckwpGEJfHvL8qh0XBKagqHJqLIsIjNsr4tuWh9qqbIUn8tlbC/g9EKDSsdBkSTKbYeFaofjczVKLZu+bALHj/g3z11DlmAon+SXn9jRfR6u78MGsgk+uG9Q/Pt3Kb9wvWRkGqaHHwq3Wy6h8uq1Kh/YN4AsSd1z03p95fwKV1bb6KrMYzt7CYGjYwUe3NaLjMRwIcnXL5Zw/ZCZcodPHhvb9PrDY3lGi0kSmtwdaG3E1372hNi7NCyPuukxlBdr1brI6q3Wj947iu2F73jI6Pohb87WSOkKB0Zy/MXJRbxAkEJ+9N5R/vj1eUzX54eOjghawYbB4d9+YjvH52q0bB9dkVhp2iQ1lVzy3Rt83k31Zw0+9dAEphsw3nMdv7/eaw2iqJs3d3qhzh+9PveWnPQ3CrO8EDxgRyHBXMV6S0OwG9cPXQZFkUlqCg3TQ5bh8EgO2w/oOD71jkc2oZJPanGun8VgLsFMpYPjh5TaDtZslbShkUlqHBjJkdIUPnNiibW2Tc10+cQ9o1xYbrHaFFlHf+vx7ewZzJLSFVYadkzhaFJI6dRNr7sveq/+6tX+4Sz3ThSYr4oB1WDWwPYCFmsW23tT6IrEPeNF/vknDvHsxRL/5M9PC2OFF7JvKMfT+wb4/JllXrxaZakucImmKxDYCVXh6FiBiulydqlJQhWxJK4fimgexOBrKJcgjIRQxPXD7uBooy5wffVQFZkgCONBlKBP7B3O0HQ8Li41CUJJDKrCiKrp4ofgBgEJVeoOqtuOOK/UTY+OGzBaFTjUKAJJlnD8kKW6RV9G51zDJogivnWljCxJmG4gYhAiSGsKbhDx2M4eSi2bjKEyWkjy1N5+vnJ+hUvLLZHbaXuYToAdO87zCTGklyWJcuf6+XCxZnXPcH4I5xYbd/z7fduHYFEU/bokSR8CmohcsP9PFEVf/Xb/3HxCsJ6/calEFEEhodKf1bmy2mKhZiJLEi9PVXh4ey8Pbe8hAi6ttAhDiZbtcWq+jqpI7B3McnSswGszVaodEdAaBJGwZsuCXf/KtarIH6ta7B3M8AMHh/i/n5vi7GKDUut6ePv+4SzZhMpvvTCN64d0XI8LSy1kSeIXH9/Gb/zkUf7y1DJ10+H8cpOZcodLKy36cwleulrmq+dXaFo+kgRHx/LsHcpR7Qh2cD6p877dffhhxEtXy8xVTXRFImkohPHFvNyw8QOB9nH9kISm0JvSsP2Q0WKKX3xsG1NlgSVRZRk/iPCCENP1cHwRbpvUZNquOPCHkWjahVGAoUFfOoEfhFQ6YjNpqDLjPUk0RWa23KHa8boHtLsNRX+7dWyiyOO7+5gqtZgud/ja+VXCSLigfu1De/j9l2dYadrUTY8wdmysv6UIgYBbqtuCY6pJHB0vcGKudstg+7utMILVlrhpb6cNCSOR4TRb6eAF6840MWTUlPWNdrjBfi6aQG3bpxI3XOuWuI4Hc0n2D2bwwxDHDxktJHGDkDdnq3zrcpkDw1me3jcosgXuMCi6VdDr1Fqbb10usVgTLpe52ttv1EeA5QtTvOMFAmsBBFFI1tA5Pd+g1HR4aEcvQ3mNYkpHV2R2DWQ4PJJnV4ysWlcOi9Dmd36AmKuYVE2XgyO5W+ZgfD/WK9MVfi8esIfA5dU2c9UOR8cLXC21ObXQYKInhSzFKFBJoiet07K9bmjneg7YusKtGLPCvbjpKyEcFn48wFUUkU8UAVEoMKBCSRbiBNdDnA1VIFl70jq5hEbL8vnDV+fY3pfmjZkqLdtnrSVy52qmtyFrDAxVwVBltvel2TeUZaFmcWG5CZLEUt2m0naZq1k4ToCuyay1hMs1IsJQZGpth3/5+fMCDStLDGZ0Lq20KcUNukrHRUbi2DaRbdS0XBw/4MRcg48eHuLASI75qsnUapsLyy0MTaYvo3cPtAdHciR0haulNm4UosggSTI7BzIU0xqvTAm+csPyeHGqjCTBStPmR+8yD+C9+t4pZ4NK0g2u51rcWCEC73xhpUVKV7E8n519aRKacEJu70/Tn9GF+isQa/iRsTz/57NXkRCq0wMjua46/8xig8urLe7fVmQol+C3X5gWOYsdd9Ph+/37BhjKC3RNBHhBuOUzbr5qcnaxwZVSiz2DWfwwgxcKda6uiuD7Hf0ZOo7PYt3ikZ295FMaS3UL2wspNR0W6wI7KMsSA1kD1wt5Y6aGoSp8/MjIbT/HdUxQT1rnqX39vDlbp9yu0XF9BvNF9g1nyRgqb8zUYoepxbbeFMsNCyKRAZvUZXRVBP+GkVCx92V0+jMG5Y7Njr40/+ADu5noTZPQFH7r+WsM5gy+en6Vn3pwYsv3pd7lcpC+RYOl0rq7Kdql1RYNSzQFr6117iqnIq9vvaafv0tX199/eievTldJaDI//8jWTqMbq+Nu/fv0p6+71/TbfGabFOhbiNy2qls53gxdQZJBCrfOZLtnvEDGUAWm9BZusjvVOmVRVSR0RQhBDBV2D2RQFYUrqy3CMKTlCDRiX9ogn9S5uNJkrenjhtfR1jNrHf7Hz58nl9R4ZEcvp+YbeGKzzXhPioPDefpzBn/wyhwfOzLEDx0d5vxSk0urLX7nhWnu31bkfbv7u5/dq9eqNCyPsWIS2wvE31JVODxS4NWZCm1HoFp+6sEJ3pipdl/nxWSMC8tNDo7k+KEjI1xba1NqiXtYV2USuhIPbNik9p/sEU7yvqzRzf/92OERLqw0uWe8cMtGoyKL7FfT9elJ6zyys++WOXrfzZqvWizGe9yzi423NASTJImd/RleulphpmzSsD2e3NPPK9cqfObEEi3LRQLyKQ3fF4IigaFRSRmiebfSsIXyF6GCF66N6GYBgyRU9++25LBp+yQ1Gc8P6ckYDGQTJDSZR3b2xedeh4Waxb7h7C1dxet1C0Lse/U9WuoNg2tZgsFskoe2F/nD1+aFwtv1uVbuUGo57B8R6NOrpQ7ZhMpIMcnRsTyO53NmscVKwxJu40igPmsdFz+KmOxJstIQrlfbC2lbAaYTCodK/Kz3Q7Acn7aqEIQhb87VSagS+aS6KSYjikQ8xjoy0feFiLduunzlXClWmENKoYuuVSQJVZFiF2pEb8qg7fiU2y49GR3bC5itdFiOc16yhkJS1yi3XdKGQtNyUWXR9Lu62sJ0fUotm5WGQ9P22T+UZWpN7GdKLYdnL5ZI6gqP7OjlW1fWcLyQb15a4+hYnsW6Rdvx2TOQ/Y6j0LtD9CjCDa7nnIv9U0SpZYs1oWbxg4dEpuOphTpvzFQxVIXFuslayyaf1JmvmlwttUloCscmi4TxNL/ccvgPL83Qm9H5yKHhLt3pdv2IB7f3iMzqnMHgLZzn6+X4AUt1m+F84pbriRRjf99pvT5T5bVpsY6mDSXeqwts+VLdomGJB97l1TaTvdf3bw3T4/nLFT50YJDzy01USSKX0ulN6/yN+8a2/FnfzurNGNzY7Xl67wD5pEZ/xuBfP3uZ6TWT+7cVWazZ6IpETEO9Kf9bibdWd9pdLdQs3qp2eoNpDhC9s939aZ7cPcBXL6xAFJHUFVabtujHIkRJpu3zFyeXMFSZp/f0E4URr81UqJseVdMjn/AYzBXRVZl/9+IMFdOhYXmkDZXtvWlOzteB62e7dfHR508v8eZsnYWayQf2DxC8Q+rVe/W9WVEUcaXUpm17pHSVR3b2cWyygOUFnJxvsNKwaNk+Q7kk+4dzJDSFyd4Uo8UU5ZbNYM4gqatMlztYrnAqpnXhnJaQiEJhBPjahVV0TUGRJVRF5h9+cDf/8ouXaMWig6SmsG8oy1rLpu34qDJoqiAj2Z4wxcQgMzK6zO6BDOW2i+mJPXwQRRyfrdOfMTgdCCxh4AQYqtQVZ0Ps+EeYODpOgBy7uUPg1elyl7oURnCtbDJbNSkkdRbrFhEiNimTUPFi842uymSTArs+X7Vomj6GKgS7pabLS1MVmpYn6FMR5JMKddNHk4kxuJKIa1Ho9uU35ltGwKmFhohYuI348jvhBCMeen3bBl8ieHxzVTo+ax3BWlZk2DmYQ5MlavHUMAgj5qod/u/nrtKXMXhwRw+Hx/I0TZ8T8zVMxyehKcIZE4eqAtheSEpfz8oSQ6LLq02mYsxHIa0jSSJ4emqtTSGlkzFU3CBkR1+GnozB9FqHlu0xXzWZr5kkNIVnTi3zS0/s4Jef3Mmfn1jgqxdKNC2PUwt1HtzRQ7kl1IAREYokUzc9Ht/dh+2JyWi147J/JEfD8pitpPDDiLFikgsrbRRZBOD5ftjNudo1kKXScQQeRpb5wUNDFFI6q40qEhKTvSke3dHH1VKLl65VhdNLkXC8CFUIubr4oAgIQ4nHdvUylEvym9+aIggiWo7Ppfjnpwxl00FM5p0jEe9UP3rvKP/Hs1dwvID/8xtXeXh7L2cWGzQtj6m1NqosNsQDuQRhGJHUZFq2j6aIjavri4eMG0TYFfOmAZiEOADcSj28cWFWtvi6EDBUCde/GWQSRqKpv9HmrSniYZDUFawNjrz1nyVJER3X58pKCy8QuMb5msVKQ+At79tWZLFmMdmb4mqpzStTFUoth8+cWOCN2Ro//9j2rrr4rdY3L61xZqHBuaUmput3H5jv9C+8fiAJgbrpIyPTdiIyCZXzS02OTRa4vFLl0qrA22QNrTsEe2rvAP1Zg/6sscnSf7cVxYevhCZT6bj8+YkFokggy96/750FqkdRxDculVhu2Dy5p5+xYurOL/o2leuHmF6A5fn4ocRSYHF+qUUUhZQ7LpW2Kw4/foSEhCRDteMKbCjigGmoUjy4BCnOumhvcD1ECLRSMa2jqxJ10ycIQ/wwwlBlOm6Aqkg041wVCYELHCkkUWSJasdlpekwkNGpWy4vT1dwvQA/DNHig2oYifvMj8Tzqe0KhNyF5Rb//Q8dwPYC/se/PE/bDWjZPkuOwHqsoxMKSZ22KzK5etM6hiqz2GzjByGFbEJkO3Y8ErpMFGNWLqy0GMon8cMwRr2IzcIr1yokNMFarnVcVsomELHWtLG8AAmJi6stfu2DuzkVK/4zhsrHDg/zyXtH+LU/PY3p+MiSSqXt0HEDiimN3oyxKQPxvfo+KenmJ+FWB0I1XifWUUCVjkPT8nH8EMsLuLTSRgJGCil++qFJDo/m+Z++cEEMsCMYKSa7DYR1FxTA6fkGr/tV5iomDdPtusXWa6bSYaVhU245nFtqkktqfGoDYualqTILNQtNFcM3xxMq6EOjeQxVfM2ugetuo6duwM7++P3j/O6L05xZbHBptcXfemwb81WTkmxzYaXF4dE8U2tt+jI6pxca7BvObkKkrddP3D9O0xIoo76sEYuaLDRFwgvEAn1oNM9MxWShZvJPPnOWe8eLDGSN7ob6g/sHubzaIghCZqoWqgRLNYtSW2BRt/dn6Msa/IvPn2exZpFLamQMbRMaDjbnbt3tEOxa2eK+7Tf/9+wdGsXrNb3WZmpNXAPLd4kbbthbIwjtW2Tp3lj/9Z+fYblhA/DPnjnH/+8n7r3ja9q3wEMmNmbj3cK5BZDSrrvrhm6DfUxqMpYXokjCnbJVmU7Q3YhsNShbblhcXWsTRhG6IrJZ32opklBA9mYMkqrMQt2ibYv1oS8dM/qJ0GQZooggEnsYVZa6NIAICIOA1VaAFO/xd/an+Ycf3s2r16q8dK1CQpUxXZ/ZikAAz1ctnt43QC6pcS4eas5WTN63W3zPN2dq/KdXZ3lluspwLtEVUCiyhKoKZ6jpBhwYFvfaB/cPcnyuxlgxRTah8Xsvz8Y4M5NfeWonJxcaLNYsTs7XOTZR5GqpzY/eO8rju/s3HTQf393H4bE8aV3pooAOj+Vveu6AcBL5Ychi3Satq/zUgxOsNCzmqxZ/eXqZJ/f03/YQ+92okUKCQkqj4/jsHsziByFfOb9K0/L44IHBTQPBrUrsz8W16MYuwVemKthewGrLRVMVwiCiZMfZMBGM5DWOjBU4v9ykkNKE0/WGy/nGqzv6NgzAQJxPbC9krJikN2MQRCFDuRTjxSRtx6cUZz6l7mKA+d31t7xX77RUWaJhebTsgKF8gobl05PSxMCnafOVc6sUUzp9GR3LC3h8Vx8DOYPfe3mWuuliuWKwIklC9Lae8zRTNgVmMwJNEde2H4Q39Q1sP6JteyR1hSiKqFkhTXsdoyiqkNRIJ1RGCgmybZdyy8GN+ymm5xNGYkAWSTKqHJHSVXb2pWm7gdh/O34XQ9txfIIoRFMU5qsmrh9ie6Hor4QSKV0QM1xVRpGEY2at7aLKCnXTQ1MkdEVQco5NFCi1HPww4sxig5WGzULNYjSf5Fq5w2RvitWmw5++Kc6etR3eTULUs4sNrpba3DdZ3OTaeTdqKKuhyALv3pvW8ENEXnEQ0lQk9hlZTs03mK106M0IZFfNdDm72BTN1o7AaF1cbnFoNMezF0usNEQD+BmEaESRJapxJm2143LPuHVX5+GRQpKfeWhrUdKN9ZnjiyzHyPpbIYPfrdqI707qKj/5wDgLNau7Px4tJmnZPodGr+9vbS/gzGKD1aZN0/LIJ4TIdLSQFNk64ffGUzJtqBwZLfCP//QU37hUIqEptB0RJ4MEqgI3xr5G3H3eZEKVcN233jXa+IownsL9ytM7URSJq6UWpaaDJEFCV/FDIdSNJFhqiMHBjt4ULVesp34k+npuGEEUcWahwXS5jeWFFFMaH9g3SCGt8/EjI1xYbrJrILPJpVmzPJq2181Feuwt5Ka+V98/dWKuxp8fX6RqugxkE4wUkuzoyzDWk2K14fDmbI3lhk0hpXWFr8+cWiKKIvIpnUd29iJJ8LEjw1xZbXXXx0wihSxJXC21CUPh1AqBsUKCv/2+nXz08DDPnF7mW1fW8ENxzr9aatN2fIIgIqmrqKrcJS0EkUcQE8XabshsuU0QSRiqePamdYXjszWAbv8qqQmR6Prw2lClmLQhdd1jhQ3nrbYjnNPr1JQgDPEDKPn2ptggLwiQZdEOCRF5aild5ql9ffGQTxg5XpupsFS3iCKRL5ozRPyCGOyFMYJ5KwC4KAlEDArwzUslfuz+8Vv+Hb9tQzBJklps3QMX5OQournD8fZ/2E3/af05LCEOx7/w6CT/85cuYXmByKqSJQxV4UqpzUzFRFEkntzTT9tuMV5MsdIQzY8fOjqCpogmeD6pIkkSmiJzYChL0xaurIblo6sCo2N5AXPVDmPFBHsGs7x0dY2KF/DY7j5+7pFttGyPeselJ62jKRILNYt0zN/90tkVwkhMYttOIHjWbsDMmnBnPTBZZL5uUWm7GKrC6zM1fuK+MV6frrF/KMvHDo9QM12yhsa5pQa5hGiadtyActvmjZkabcdHkcQhzA1Cym3xe70xW2OtaTNfFcznXDJB3faQYtfHYs2kN5NASWqstBwsNxAHMScgCELGe1K8f98g5bZDLqFRs0STXAzuoPN2Ogt3WeW2Q63jsqNfYEWultpcWmlxJEbGvDZdpWV5fPXcMgP5JL1pneWGhSLL7OpPo0gSPaN5CgmVIIKzSyLPxHRcZAlhTd2C2SEhmKRRcGeFy60GZbIksXcgxbVKZ1PzxYhtr4IVJzA6fiQGkCP5JLOVNi50GcaZhIzti4eTGvNndVWi1hHB2zMVk5Pz9W74uO2FMUZAXEsdx2c2dgG+nRopJHljpsp4T5KZssiXcn0Fy90QCv826sZBWs1y0WSYr7TpOB7LDYu66eKHEdt6UxgbMj90Vebe24SZ3qm+cGaFy6st9g9nuW/yOtblbYrFN9Va2+HUvLDqvnqtyth9370h2CM7e/nm5TWiCK6ttQkjWGl0SBsatY6LIkt4vtgAZhJJkprMhaUWbnxRG4qEs+ECDyOwXH9TkxjAiyK8QCAC/TCkZQtHQ086xe7BDFNrHUwniBWbsLM/zVP7BvncqUVqHRdZlmg5PqYrnjmSJBb64UKCtu2TTarossJCzaSz4X5daVj808+c4RP3jvJj94/z5bMryLJEO5Ygq4rE7sEs2/vSnJirE8jw0w9NcG6pyWLdxgtCtvWlma8J5YwmyxwezTFfszBUmZbjoSsyR8fzXFvrkNIV8inhXFNlmK+YIqtIV0hoCortx/jHiOcurzGYM1Bk6M8mySY1/rdnr7JQMbuB42eXml0V/889vO07cEW8V+929aQMqqYYWuQTQt261dwkqYtsC11VqHQc2rbIFL1nokDNdIlC6M+KoUBKV8QA2w3wArFGjBbEdZKIlWP3TRY5NV9nZ3+aK6U2I4UE+aTGB/ZfH+K3bI/PnVxCU2QWaiZjxRTNDYiZuul2Q8MVOaJhebhBSFpXyBh3v4VsmB5XVlvs6E9jaArjPUnmqh36swa5pMoD23r46vlVZsodvnxuhf/3R/Yx3pNivmqRSaj0pHUme9P804/v582ZGt+4sBajozUOjuQopnSurXWYq5hIksjeWW8296R1+rMGuiKUb64fxtmwIuOk7YrniiLLzFQ6/O6L03zu1BKFlM69YwU+fmT4JtfVxgyoW+XS3lj7B7ceYKdvMcC5sa6Umt3B/dXV9l29pm1tvffStbub3K007O4avBAPw+5UtrU1wnCmev31/q02RcDRsSIvT4uD2SO3aSIk4iGYpkhI8ta/zyaM1BbD6BeulCGC8WKScsvuHljfSkmycEKNFhJYnmjougEEdoDlCvKErsgMF5L0ZwzySQ0tRvaostdtEimyBJGEF4ZkDZWWLQZiv/qhPSSeu0YYRVxdbTFd6SBLEp96WDQBcwmNB7f3MFPp8OiGzyttqFwrd/CDiIrpoioyP3R0AE2RKbcdDo3k8cKQiV6x/0jqCk/tHehez8WUzmpThHcD3ZwqSZI4vVgnpavMVEw+fvTmIe66MrrWEfuzrQZZTdvjj16bY2qtgxGTCH7oyDBBGPHpN+dpWj6rDZv/4v3vPJvl3ayUrvILj20njB2tU2vizAFwfLbGhw8O3fK119aEE+IHDw1R7bjcN1nE9gN29KdpOR4106VleXGWhFDzKrIgO2hxI8Lb4Ja/Xb0bQrRb1bpQr+20GMonKMbo2vsmixwazYv9z10QE1LGXx2qwl+HCqLNOEQ/zj6/sNLiUw9NMlJI8Oq1Gl88u4wTu79TuoibiCJ49lKJvpQ4W3hBhOOHqHEmkK7K9OsJetIa5ZbLWssmCCMG8gl8P6TSdru42fXrWkI4brb1ZTg7X4sdtRJZTcHxQxQpoun4qIrEJ46O8LULJaIwYrFhC1FCIJ6xGUPBCUIUSSaMIn7w8DC6KvNnby7QsjzqlogdqHRsZEtBlyUySbWbheSHoGsSfWmDjuOjKjITPUlenamhSBKmFzCQNVis20z2pvnlJ3fStH0uLDfRFJlvXV5jttIhk1B5em8/T+0bIGuoQkkf/7I3rk22J5wCUSSIEX/z0W3v6t9aV2TSCZWQiO19GXRV4cWrZYJI9L2attdtStZMjyurbQbzYn/q+iE7+zJx7qbG0bECZ5dE3ttKw6YvY2B5gTi7JTTCKGLfUPaOAoK3U+vuq/V/fjvrvskiuaRGUlO6/ZSNSO+fuKEhe2ahwdcvrgoXRRhhukKA7/gSlifQYb2Z716UQxhGNG2BWZYkiTdmq5xdahJG4r16QUQhqcV5u3deb3KGQvMGRbmEoHfFHsPuf3s7a1cIXCt3+LU/OsGTewaYXmuTTWikDYW1lksm3mvfN1lkrJji2lqHmuVxba3DcD4hcpcUieFcggOjBeYqHRppg4WahRoPCIBYYH0z5vCjh4ax3YBcUuPRXX1dA8V79Verzi01ObfUJIoiBjIJlhoW55YabO9Lk9IVGpZLEEWkdaUbF7DWcpAkIdg8MlZAU2QOjuT58fvHObvYoBL32zqOwCFW2+Lre9M6D+/oY/dghoYlsucUWfSQ/EDkgKmKQPyvr6WZtI4feGiyjCddN01YXtjt3RVTMq4foclifcoYKpmExr6hLC3b443ZGipC/C7LMjKCsJQ2VBRFRlEkwkBMnVO60iXVSYhcaAkJSXIEAlGVYudvhGEowpgThNRNj1euVZnoSdGT0qiYHmGcm6jKQCh141eCcDOxbavS5bjvGIk9c+YOZ+tv2xAsiqLvmFw9oSls1Q5YH4D9Vz+wl1//8mXOxnzIsbxBMZNgsW7h+gGOHzBVatNxfO4ZL3JsokDNTHN4NM+jO3tRFZk9gxkWaibfuLSGpsj8zEMTtGyfPz++iOMH7BnIEkQRizWLf/ynp9nZn8ZQFdbaLpYbcHahwWvTFWqmS9Py0FSZhKZyaDTP1VKL2UqHfFKjarr0pXV29aeZKXcIxWdJ1fTYOZDhh48U+bPji4RE9GV0Lqy0KKZ1gkhMVcd7UvyN+8b4+FFxkFRlmabt8cZMFVWWeWmqQjGl4/ghQ9kEUWQzmEsQBBFT5Q6XVtsoMlxZ9Vlq2EwUUhiqYCxbrsgFKqY0dEViJJ+kN6NxdrFJw3T511+7hKzI9KQ12o5PFIa3HA6t45reabXiQ7QXRNwzXuCpvf188cwyfhgxU+kQBCG251OLcyVMP2Rnf4Y9g1mG8wmW6zZLTRtdlUnrGfJJEZLedkQ+2Pr778noVNruJv5wCNgb1nIVUBShNomiiLYdbNqob3XT2l7IQsOmN22w2nKIIrGhf3JPP9+6vEYURV1XTF9aZ9dQDhmJpuPRqYmGkqJIZAydhCZyJsZ7UtwzXuT4XI3hvMAmJTQZTZHYP5zjY0dG+OyJRe7bViSpKjRtn219aQ6O3KzSvdv6gYOD7BvK8rlTS6hyjaW6ha4qBGGE/w6g/4okHoROsI7ck3D8iJAQy7cZK4ics8OjefqzRld14wfhO77Gptba8T87/OChYX746AjVzs0uirdT+aRGMSV499v6vnsDMBCL2q9+YA9fPLvMv/3mlOBaN20qHZMwgqyhIgE9aQPTDdg+lOHi8nWUlsjsEm7T9b+06YmmPLE7S5aEY7fctrE8lYbldQ+zLTvgwFAO1wtZa4nB81DO4NhkkXOLDZqW3w3ptT3hHosiyBoyg/kEjhcy2ZumP2vwd5/exS//3uvYnitCuiVxOK10XD5/Zpkfv2+CEDBtn6yukjUk+jIi16iQ0jm32MQNQl6brvF3ntxBqeWgyhJP7ennc6eWqJsib2gwn2C0mEKSYDifpNSy6Ukb8WZHouP6FHtSTPSk+NaVcvw5y3z4wBCm5zNdNpnsSXFmoUE1difv7M/y4pUK05WWGJrFgdCllghTfWh7b7dZ+V59f9UvPL6d/+6z54iAn3xQoE1uFMnLQC5uJGYSCmstm4SusG84R09ap2l7DBWSfPTIMGldZXtfmvNLTQZyBtv6UgznDc4uNim3p3hqbz/3ThS5Z6LAuaUmF1ZaZBNCxJPQFGYrHXYNZDFdgRc9u9hguJDknvECqiIzmDNwvIDPn15mR3+aQkqjbnqkdNHMUGSJkUKSjx25u5yeIBTul3xKI6GphJFwrNheyOHRPL/85E5ANJCfLZdIGyrfuLTGvqEsL01VWKxZ9GcN7t9WRJElTszVqXVc0obGSKyWzSZVFmuCP/6xQ8PMVU1Wmza5pBZzzAMKSY2RXIKW6XF8vk5CE4cAPxQHASQYyRk8e6GE54esNiwefXonu7cYXm1c1W6XJZVLqDRtIT7qz20tMtmIxbndkXmmYnVxM9OVWw/B1rOpAI5MFm7xvu7OfXZgJM9CXew17pnY+nvdWD3ZrTGNOzb8nrfziDQ25IDdzrFWM4Vb3/YjOo5HZovfKaUrXUdA4oaGxHLD4tJKC02VGUunGMoneHGqept3tnX5AVQ6Droq1kFVlnAQ66EUqxkHsgn+7c/eRzahcX6pyb9/aYakLrJa7XiPZOgaA1mdjivy8PozOglVxlDF0GS63GalYePGztBnL5S6+7bHdvXx2K7NA8Oj4wV+9Ngoz5xapiet88P3DNObSVA3XTKGyuExF1mSODSS58Jyky+fW0GVZR7cXuTgSJ5PHhtlpWEzXBCNzY8eHubiSpPRYpLzS01OzNXZ3pfuolOjSGTOZhMaPWmRX/npNxYIIyFSSmgKj+zs7TYFl+s2HUdgry1XUBj+4JU5EYTdclAVcX75Xq11NNlA1iAVExput0afnK/zjYslJEm4Y/cP5/j6hVVOLzSY7E3yjz60l/smS/zmN6eQOi6goMjCEf/Ath7ShkJKV1iseZueP0lNFkhpN2Ljp/VuDsAkQFMFVnR9Sy9EABEpTeFHj4123Q5vpZG9b/jOSNf36nun9BsGmyECizRX7VBIaRyfa/CNSyWRGxILRRzfx/Ejoiii1HSodxyBSw8iMoag6jyxp5+RQpKO4zPZm+bsQo2FmnBatSyfQkoDSUJTQFMU9g2lKbU8TDfg/okiKy2HTFLDCT00RebxXf3oisQ3LpewPCFy+daVCk3LZ75m4YdCDDNeTLB7KMe5hbp4j8DewRx/49gY2YTIKPmT1+c5OVcTudyyQhiFuIFEf8ZgsifNheUmbcdHlmSyKZ2WEyBJEj94eJhMQme22qE3LbLRDEWikBTuADcIsf2A3YMZetKj/Omb83ixYG5dRDDek+JDBwZp2T7HbljLdUWmmBJ464Fvg1tW10TmuOUFXF5tk9BlVEUiiiRShsqeoSwzZZOVps1ET5IP7B/A8kIme1PcP9HDSCHBS1MVUobAPPZkDFabNj1pIVgaKyTJJTX6Mgbv3zfA4dF895kaRREvXxN/r8d3970lwdWN9ZFDw5xbasQ5qN/ekiSJPbcQO21VU2ttoggqbQdZErEsVdMlCCPev2+AnQOZmygE38n6zIlF5qome4eyfPTwMNv70gznDEzXw1DF3uryagvTC+643hiKcJuvdRxeulLpmhVkhMjb32AZW+8f3M0atq5BWxel2V7IK9eqlFoOvRmDfUNZHthepGGJ+JPBXAJdUTgwnGOyN8W//MJFdEXC9gIe2dHLYD7BJ+8Z5cpam7btY3lC6F8zXVZbDq9eq/DQjq2jQY6OFxjIGWiK/G0Z6L5X3xulyusCJYnBnM6fHV/j9elqlxZVN13CSJwN9w1l+calEvM1k3KM5zu31ODJvf0YqsLju/uQJIlsQmUwa6CpMuWWy6XVBueXRC7Wyfk6V0qtLmo6iCN81u8YLxTPHssXVKKm0yGpKnGMiYwfhKiyxEg+wXxdnJPzSZUIIUpPIgS2qiKzdyjHqYU6h0ZyXCubqJIQ5kmKzM6BNGOFFI4fcrXUotrxiKKIYlKDSNA2MgmNXFIjDKE/o7HW8VhpWDh+RBCC5QihrheFNG2PwBe0pZAI24/YNZDGdkMqHac7VAwiUzwjN/zOG/vqMpBNqmR0mXLbJUAMqo9N3t4I8R17skqSNAB0uSZRFM29W997q9ByEA/GbELlzHyD1bZNGEW4fsRy00FRhfK41nFZa9tIyKw2bZ45tUi149GXEYOe3395FkNT+NiRYY6OF9nWm0GPc2pEEKRQOH744CAvXCmzVLdo2z4XlluM5AVD2g8ipssdnjm1xLnlBi3Lp255DGQNvCAS7jRJYt9QNg4+L3NkrMCewQwn5huoqkwuoTFeTHJ1rcMTe/sIg4ife3gbyw2LhZpFb0ZncAM2xlAVvnxuhYvLTe7f1sNTewcYi5tFNdNj/3CWlu1z37YixyaK/OZzU3zp3ApBKFAArh+wFN+wT+zuxw8igjASh9X4BOT4Ia/P1OjErrW6LbJz+jIi/LrjCJyf6YY3LWR+GGG5b5X+e3M5fthF3HRc4bAopHXKLQdDlak5PllDY/120RWZeycKPLKzj6+cXe5mhwjslMdC3UKKoq6FUwzEAgxF5thkgfNLTVrO1kMdH9EMUYOQYlK4rbz4QXUrbKIqX1eyDUkJKm0HTZG7gb89KR0vdoD1ZBI8tbef6TWT43O1bsaSLIkMs4lcglrHZa7SYSCjM5RLsNoSA75iWmcga/CxI8P0pHS29aUYyCZuapq83VpvrgZhxJGxPA3LY7Fu4bzD1Gs/Ep8pQC6hYPuhYHdrEtmExnAhwVLdouMKjN7VNYEl/cLpFSodh8d29/H+fQNdZNdbqcd29XJmocHR8QIgsm52vEv5poaq8LMPT2L74Tva3L9bJcvC8bizP0O5ZdGx/a67RJYE1sELAmw/4MR8nY2CxExCpeMERFFEuIEhvK7kSKoChRqEYvhtOgIHqEoCQZLRZb5yYZVy28VQZQxFoidtcHqhIQ5emkzKUOnYHo4f0JvWmehJcWg0z1gxyXMX1ziz1KTUcvjj1+e6zxtdkdjWl2Y2dmK1bJ+/OLWIHx88QyCtyjy2q4/xnjSHRnIM5AxynobtiYH/0bECtufzp8cXyCY0Dg7nmOgTjZ6j43nGiileulqmkNSoWx6nF+rYnkDHth3BgR/IGpSaNqYTULM8/slH9/HMySVenKrgBiEZXSUE5iodlhoWXhCR0BSyhlCZpjUZOwiZWmvz61++yN97/+7vyZyU9+rWtda0u8OLtTgTcis8rvjvEb4Pw4Uknh/Stj2mywGuH3JyrsZMuc3923pJ6jLzVZOetMED20Q+wvHZGpYXMNmb4t6JIvWOhx3zSbwg7CpT1zn21Y6L6QYcHs3TlzX46QcnUBURgP6Hr81ieyHT5Ta/9L4dtB3xjP2z4wsM5Aw+eWyU4fzdOYdlSTRGZUlipJDoDrRHCkmSsaPtL08v0XY8jo4V0OP7Zl25u9QQbrAziw2OjuW5uNJEkSX+yUf2MxYjgDqOx1+eXmYwZ7B7MMvuwSy2F3Byvs6OvjQSAjl0da2DFB8Gmo5P4AdcW2t38a0vXi1j6CoZQ+HAaI4fPnrnDL7bGR6kDe6j6BayIGnD628n22iY11vcq81bu7JyCZVqzE/3b4HSSd1l/sVETwJNkZAlmLxLbG9/fuvD/5p5/T3fbmcwV7v+da/N1O7qZzYtj8Et9CmyJILSCSP0G/YBnh+RNlTet7sfy/X56vnVLdHVd6oQcPyIpYZDISFcmEqsiExoMh/cP8BIMc2p+QaHRvNM9qboTeuM9yR58WoZIpFLu38oy1zVYvdAFohIGSpvzla5Vu7w8SPD7B3Kkk1oXF5t0Z9NdPflt3Mi/p0nd/GT9090ncjHZ6v87kuzFJIqf/8DuxmInaXTZSEa+8rZZb58dpm9wzn+24/uY7I31RUTJXWl664f2Jtg31C2ex1FUcSfvrnA2cWGEJY8Mkm14xLGCLEXrpYZKwpU+w8dFdl/S3Wri0G9f7IH0/VZrNuYjsgHkCR43+7vfZxQNqHxC49tjzOUA6ox7ePGMuMchyh2y3ccn+NzwikyW7H4zIlFptba5JIC/+K4AbmUhqZIvH/fABdXmlxebdK0Nw+GLS9ElcDQZdQQglCEo9t3AeBYbyTcSXkfARuPbJoshm+qIrDyb7dRu1q/O3fpe/W9UUEY3dQ4EmQd0XxaadikdIWkJgY5DcvDCyJySZWO7cfNYY2+MMLzI5KGyv3bevjvPn6AStzsW993ZBIq5bZwRuYSKn0ZnbWWi+MFnFtsoqkyYQRfvVDC0MQwTZXFtXpltcX2/jSKLOg9KV1FlWGuZhLEZ3xFFjSWa6U2NcsnpckM5JN88tgof/z6PNmEiun6zFVNcikNQ1NQZBEzoCsS8zWTHzs2hgqcW22RSags1cyuc6veEdELKV3hyGhRZJi5AUsNi7NLDc4vNmnaPkt1kfVraAreFuy4gyM5vnxuhd95YYb37e7j0KhY6GRZ4qceHKfacRnM3hobfKu6kdZxY82sCUqSF0Z08NFV4UJNajIfOTTIaCHJ+aUWPSmdvkyCR3f2UkxvXvsf2tHDmcUGCzWLx3b1MVc1ma10KLcdRnqSPLKjl3xSY0d/ZtPr5qpml0CgyhIfPPD2IwgmelPfswLC+7cVacZnWy1GQ5qOOGu/Nl1l+G3Sed6NiqKIhTj7cq4qSBYjhSTv3z/IrkqGxbrFbKVD68askC1Kl8HQVM4uNVlp2pswvSFioOv5YVcE1pvWqHa8u9qLrQ+/tA3iLy8IaVg+iixzbLLI1VKHnrSOIknoqkzNdPnNb13jY4eHukO0fFKjZYuh73zNpNbxxJA2azCQ1fnj1xdoO34XD75eCzWTL55ZIZ/U+JF7R+76XPReff/WSCHBwZEcqiJTajmU2sLE8MZslZWGjemFJFSZXQMZHt3Vx7/++pUuLnClYXNptYUqSTh+wJmFBtt6U8iyxGdPCnTr7oEMf3Z8kYbposVEAFWRSGqiL5TUFTRFwvEEjldWIJ9SqXW8uPcm4UU+uqwymjeo2x7FlM4n7h3l86eWWW3aREg4XkAYicHVkbG86OWbLn4QYagqhYRKJR7KC3qdDUg8uL1AdDE++wQwU7XQFTg4WsDzfC6vNAEJxw/FECsEXZWwYoF8EAqDh6HKsdEoy+O7+5Al+PyZFa6utknqCgPZBE/s6WehJmhmJ+ZqwkV244BcgiiMQBJUECUSJIurpXb3jLNVfdu7r5Ik/TDwvwIjQAmYBC4AB9+tn3ErLIQsQa3t8NULq1hxdpYIrZZpWB5ZQ+VXP7ibpbrNZ0+K5ui3LpdRFVhpulxYaaEqMoWUzsXlJg/t6O1mC9U6Lr/1/DUqbcGWfv5ymeFCgv6sQTGlUu14NO2AkUIC14/IJlSevVii5QgET0pTSWgKQzmN2aqJIkt89PAIJ+brbOtN4QUhbTeIsYkysiR1kYwJReGxfX0kdYUd/Rl+5akMjh/w9Qur4gCaNRgvJvm3z03RsLz4wimiKjJ/6307KCS1m8JV04ZKEEWM5hM8vLOXr19YpW56WG6I6/nsHcryxkyNhuXG7jmhtjDd6zZLcdPIBGGcZxWGIjdoi6ZCtOF/30n1ZcQAstRyeGCbQNb9+H1jrDZthnIJ/uz4AldKOkfH8iw3HA6P5RjMJ3ju0iq/+/IMlZYLklhw7SjAD7bmjFZMj2CljXMXbL+OG2J7jsgaQgwYbver7hlI8/OPbuO3Xpih0nFpmB7PnFqhL6uzbUAMRp+/Wma5bvM7z89gaDLZhIYmhbTciLShIEsSU2sdoiikZQs81mghiSRL3DNeoG56/MxDExwcyfMvPn+eK6U223pTPLCtZ5Nd2w9Crq616c8Y9L5FFUvaENl5rh9STGtdC+u7VZYX0pPWcYMQXZH5sfvG6UkbfP3iKtW2y7MXS/ihuNdWWzbT5Q6yLCEh8cH9A3eFZtlY9032bMIgvtulKjKZt/ievh3VtD1+/+VZzi42SOsys25At10bQdXySHoBbhBSMz38OG9uvRwvRFMlHP96I2X9cBWGAoWa0BQGchrLDRsniIQ7TJaQiWg4Pq4f4vrCvaerCi3bY7FhEwRR7ECVCCJISCLD76m9g/zEA+N84cwS2/szLDdtEprCNy+v0XbW+eQST+zp58RslYW6wKoEYchq0wEElrHiBnzlvBiYjhdT7OwXz9KPHBrmtekqyw3RpFuoCaSV15dhrDdNGAk1WbXjcmAkzz3jBU7N15ivmSzWLKbLHbwg5NNvLrC9N03aEPkvpabFb3z1srjPLY/etMFQzuhi7ZYaNkEocFqVjstgzqBuCpFEx/F5aarCfduKPL33nWXSvVff2frsycXus/CrF1b5n9l62LHWcoiAHzk6ysXVJhIwlE8wVepQ64hsJ8tT+Or5FZ7c089sxaTjBDyys5eVpo2iSJxfavB4LG4Y70ly70SBctuhkNSpmi67BjIcGM4RRRH9GYPDo3kqHYen94pn5KvXKrw0VWGm3GGsJ0l/NsnJ+TrT5Q6P7+pjKGfEze27//0lSeInHxhntWkzUkiiKTIfPTzE1Fqbe8aLzFU7zFbEIfueiQL3ThQYzCYwPaGozqc0Li43cT2fz9dMrq21SesqXzizzKceniRtqEytdViq2yzVbcZ70uzsz/DNy2ucX2qKLNj4QO/F+az9OYOpqQ5+KJxg67VQt8kmNGQZ5isWTdvb0jW18fe3nFt/GO24Ex1EsNZxGCrc7Hw4u9Do/t+3ayekdYVyRwzC8rdxcjUs0a32QnADjw36s+s/5y71KddKHSGI4Lo7+k61UjOZ6LtZDa1s8LndzqSdS6i0YwfYZM+tDzAbm3i32q/0pA36MzqmG7BnYHOjbaJXqOwvrzb57//ifJcA8LYrCnEDmfFiisW6CMZWZYmBbIITczWeu1Riz2CWkXwCNwix2gE/99AkM5UOyw2be8fz3L+9l6W6hRw/86fWOoz5Eb/zwjSaIvPorj7+5qPbOL1Q59FdvXeF4ixuGMh85fwqpaZNqQnTa53uAfHYRJHnL6+xWBeCwY4b8P/9y/M8sK2Hn7h/vOv2AoGQfPbiKg3LY3tfmp98YILFusU3L6+x1nLYNyRoCiKw26Fpe0yXO0QR3eFQFEWcWqizsz+Docl8/OgIrh/y7MVVLq22uGdC4GJuHFx+r5auysxVTf7y9BISEp88NnpTRs/923riXF+Z0UKS339llmrHJQojimmd33t5BlWWKHdcUrpCXy4hcO1pg8urLa6tdbrPkxvLj8B3xfBLke4+h+VGvMzdYqiCCIIgJEQgZl+6WtmU4+gHIZ8/s0yt4/Khg0O3RK3Xze9dp997dXN5QbipcSRiASQsL+SZU8s8uaePlu1yZKzATLmDjMWuwbQY7kTgBCH5pEG57TBYMLh/sodfeGwbQbyg/u6L01Q6Ltt60siIZp4qy0z2iGF8qVnuiiO9MIxFphKm6xN0RXgBV0ttZiodBnMGaV3lyb39/MJj2/iF330DTZGJohBNkVlr2ZieGIp5QYimOvyHl2cJghBZFv9/ywvQZJkHd/SQ0YUYs9J28Z2AP31zkYd39HJwWGSyV9qOEPkpMpdXW1Q6LtUOPH+lTF9Wp+36BGFET0pnvmYxVzXZ0Z/GdANyCQ3LDbi80u7iskAQb545tUzddGnaXncI1rA8Oo7PyNsclNzpERFCd6MjSXSdcl5InHNmkkuorDZt0obCc5fX+NF7x7qvL7Vsfv3Ll7G9gF39aX7piZ185NAQnz2xiOOJbFkrFhz+/ssz7BvOdfs42YQmCCPxs/GvagVxLvY94wXKbZf37xvgzGKDSsvlvskepO9iaqIkSTy5t5/zS03uicXAs5UOr05XBaFIV7ou9jtVBIRhyEylvWVuWM30u2IMXRG54W91MxZFkEuqyIS0nZBS0+7uM2crHc4uNhnvSfL+/QN8/XyJnrTOmcUGuYRKEEaYbggErDZt/p+Ox/3binz44CC7B7J84cwy4z0pOo7PwztuzOVrUm6Lfc5izbppoPte/dWrB7f3YnkhhibjegFfOLNMEEbsHshgqEoXI183Pc4tNbhnXKyHcxUTTZFpmh5OEPKlsyucX2xwZa2N7YV0HA9dVbi40mCpZuEGop8rS6JnODKajEXrAbWOJ/DrCGypoSr0ZcT/z3RDpAhSKUglNGqWj+mIHnd/LkHVdNnel+L4XANZkpAliVLboSelc3m1xcXlFi3HQ0ZkYRqx+aduulieT7nt4MRD65A4J9aHk7N1NE3uGiAkSRhhZEKQZRKqRE9GOCXrpouuKkQSDOQMBnPC1NAwXXoyOlbNZrgg8jHrpkNSVxjKJ7u9gvUS/CWBBza9QJwyJRE31X+HPvZ3woLwz4GHga9FUXSvJElPAz/9bv6ArZ6Tmiy47X4UoSkyjh+SjjF1fRmD/qxBUld55vQKP3x0hF95ahfnFxtMrZlMl4Uy8chYntmKSaXj8vCOHv6v566S1BQ+ce8or89UIYLVprA92p6w9f3wPSMQRXzj0hrVjssjO3vZ1pfGcQP+6I158nEY9mA+yZGxAj923ygLNREEemg0z2y1g+0FpBMqSw3h4tEVmYMjWV6brnFgJEvdDJitmIwXO92cinU0yamFOuM9KeaqJhHg+AG1jkvd9EgbKrOVDj035CTZXkCpZTOYTWD7AR87IrBvq+eEsuHHHpxgeq3D2aUm87Xrlmcrtj+vL9F6HPgqSRFhFF1HB95iIbsRq/B26+BIftNENaEpDOeT1EyXXEIjk1DJJzUG8wnGiylOzNb4xqUS5ZZLTPMQDqM7bDYaMe90vW53WFxXmUWRuEFv9XVBCJfXTH7npTnunShwbrnZ3Zi6fsQP3zPCPeMFTs7XWSZiqWGhKTKTvSn+648c4f7JIn/02jzfvLyG6QZ0XBFmWGo5NCyP/lyCoVySX3piB/uHc9hewEy5g+UGzJRNvnFpld60wf3xxvPrF0ucX2qiqzK/8Ng2UvrdPyKyCY2ffXiS+aoZo7kaeEGI70fvSji3qkh4gVAVDGYNgjDi6X39HJ+rUm6JAF5NltjRJw4UddNjqW7x4tU1TNfnk8fG7vxD/hpW2xZDqNFiggtLLVRZJqEruFYQc3iFxdl2gziYWrxORjRzEppMreN1m8KGKgknZRAhySJHRJVhoe4QhLECc/0+kmTato9ERBhJqIChKZTbDkGMV1RlRCNMCunJGGzrTWO6Pv/b1y5xebVNManh+mH8HA6QJJEJ8C9/9CA/cGiUX/2jE5RaLpohxwpVFdvzcQJxCIuAl6YqSFIFRZKY7E0zXzN5fbrKYt2KUapiojvRm6TadvHCkH/73BQdN+DgSI6EJjPZm+anHhhnuWHz2nSFy6ttHM8jZSiM96SIIuF+SelC3aopMnuHsqQ0mVLLZb5msW8oy3LDEsNCP6TUcknrKl4o8o0MVWbnFs3l9+p7u3rSejcPKR0/U7cS73hBRNPyODVf4+h4gWxCY9dABttd4cBwjiullsiRHMqgKjL9WSO+nhw0WWat5ZBQBe5w3Y3w1N4BXp6q8Mq1CgD3TxYJwog/eWOBUsvm6b0DfPDAIFEU4QVhV/E53pPiQ/sHGSok+KefPUvTEljl0dgNdHK+flcB5uuV0JRN2L91txZA21Fj1XXAvqFsV0mZMVQ+dGAQyw34t9+cYqFm8tLVMk3bQ5YkXpup0p8zuHe8SGmDM8qLJzyqLLFUN7m00iKhy9RNj7bj07J9LFco4Pww2jRMUWUIiUgowuG61nTuiA68nad9467CuMXkx3K2ztC6sfaP5JmNXVL33AJzCJtFR+Wmw1jx5mdGOnF9uKDeZuszVel0XYwX49yjO1XH33rFTxvXf+bt9lvaBmFOdBtwYj6pULMCDAWS2tZ7lf6sgaEpuEHI4BYK3UOjeT79xjyOf2ecz+1KkSBtaOQSKhN9KaqmSxRFqKrCTFVgvaptl/N+ncvLMh03EDlixSSvzlRFM1eR+eUndvDKtQp/8sYChaRGLqkyXzOZLncopjT8IMQJQq6tdfj9V2YppHT2Dm29JjQsD0OVNzmHD46Ic01CkzfhoYbyCY6M53ltpko9fl3W0Cg1RebuwAbSxPG5mjgjtBzGiikqMd5svJhCQgyy158NT+8bAITYpmF6jBXF30CSJA6O5Dm31OgiHXVV5gcPDfPwjl4+c2KRKILdA98/DaVqxyWKICKiZro3DcF0Vebx2NlWN106TsBANkGEwGGpskzDcnG8ENPxUSSJHz02iqbIPLKzl0rH6YaV36rCiDsKFHSFTRnEG0vh1s+zpCYTxcMCJc5eyGoKg9kE22/ITFyq21xb6wBwcq5+yyGY/c6BIO/Vd7BupGoYqtSl45iuzzOnlnlwew/VjkOl4+DGZ4aJvgyRJM6eYz1JWo6P60ecXqjz3/zZGSZ6U3zi6ChzFeHUmiq3Ge9JUTXr2H7ATNVksieNKl8/eecSauz+Enkotht0z5oBQhm+3LDZ1ptmd38WP4C9g1mBUtaF8LdtXT+76IqMKstcXW0RhIKwYroBUQSaEmJ7AYs1i209KYFJcwM6rs9y0yShqqiKzKGRPG3H59GdfYRRxI6+NGttB12VOTFXx/MjEqpojo4Vk2TjvNOd/Wke2tHDZ08ssliX+Nr5VT5y+Dpu2g8FCn49S7NhevzBq7O4fsj7dvd1z/DvZkmIvFLHC7sYSs8XpIuVhk2147F7IM1k7yBpQ42pO9fr1WtVGpboPw3nE0iSyMf6xL2jfPqNBYIoYld/hs+eXKTjBLxwpcyxCYG87knr/Nwjk3Tc4G1nlX8/1PNXyqy1HJbqNn/7fdtJ6yrH52uUWw410+PIuxC/8E7qnvFCdwAGYo0rpDQ6js/ugSy6IvPVC6v4/np2/dbfxwtBCa+Lr/Q4w2i9Nr4soQnny1uVR6R1maGcwXLdxg/FPdMwPS4uNzm90AAidvRl2DuYY7InzfHZGjOVDkqMttMUqetc7TiCkvH+fYO0bC92sOr8wMFBhvKbhVl10+X0QoPetLaJyPVe/dWtpC4Q5QAn5mrcM1EkCCIOjRZ4cEevyMNs26iyxMtTFT710ASjxSR9rxtcXmkxkDU4MVfjmVNL3aimwZyBLMtoisxoPsFcxSYK4vxphPBxd3+Wh3f28s+eOdftwa/3sctth7SuiqFQ/BpZkfnw/gFemKrEA3eJ3YPpGOWosK03jReE6KoYXC03bC4sC4dyFEEkCdJEQhPu7rYdCER9SpD2kqqM7YddN2gEuOsDMOJeXxQSSFI3GicIQkZyScJQzGPmKiZfOrtCMaWzbzjLQC6Bpsj8ylO7qHVc/tvPnKHt+KiymOWs7wAUSeDmZUWIJWKYCzKQSSgcGc9T6bjsvs3f8TsxBPOiKKpIkiRLkiRHUfQNSZL+l3fzB9x4lJaAsUKSB3b0UG2LoLlSjMe7Z7zIj98/xp8fX2K+ZnKl1CKKIvYOZrmw0mLvUIZHdvTGmRcJUrqKIkm8Nl3t5lj8+pcvkTFUSm2bwayO7Qm8oeOHcUC7xtmlFn4onCsf2DdIf1bn4mqLasfllx7fwXhvimrHZUd/hkOjBVq2xx++OocbBHz4wCD9WYNfvXICzw8ZyiV4c7bOXNVksW5RTOlcKrWZr5r8/Q/sJmOo9GcN2rGN13R80rrCrv4048Uk+4dzJA0FQ5G3zLb43Mkl2k5ANqnyKw/tYCBnMF0Rqs31cNOFqoUT80/9UEylM4ZoWmmyyGTww4hcQsELr1sdb3UW0xRQlHdH4RlFESfn64RhREJXeHO2yp+8vkDddOnPGtwzXqBmikP9XLWD6Qo02kaHmusL66p2w8K88Zpaf9CAOChqmowKWLHkUpaus/J7UiqKLOPFbjjT9VGgi1lcrxCBSLlSajFdbpPUFBw3QFEkjo7n+dF7x5AleP++AS6sNDEUCV2TGcwmeHBbL8W0zs89so3ZaidmrOtkDJWm5VE1RR5dWpe7fHFDlXlibz9nF5vkEirnl1pAi8FcgvGeFJZ7HZ3l+RHEAiw/CDkxXyehKrfNxPrquRU+f2aZhCqzvTfFTMWi0nLe+h91QyVUiSiMyCc1dEW44JAkZiodvnW5xBN7+tk1INTVE70iD+0HDw1Tbjv89vPXhCrjNugoPxCIxbtRVP9VrJFCkkd29nJppYUqyZRi10jD8bi21iaIQFNkTC8gqSl4QQCShKEq3DdR5NxSvbvxVWXhcrW9gGgDBkzcFlFXnSys0RFBECHLoiEWRRGOH1E3XXJJnUwipO0EpGI+/vv3DXDvRJGLy6IRW+uIPIByyyGlq4RhKLJ3ZImhXJKpNYv//WuXma9aFFMCtzHekxIYjkKSxZpJw/IptWzmKh1ML8RQJKodhz98dY66JWzligTb+9JkDYXZqkU+Vo3JkkzH8al2XK6ttXn2Yokogg8dGOSjh4eZLZss1jvM18RGqJjSmKuatGyfTz00weGRHP/Tly7x3KUqO/rTfGDfAC9dXWMpxohmEio9aYNOzCAaKSZ5eu8AI4X3Ntnfb7V/JM/J+SYRdBvPGxv9G8t0A84sNui4ATv7M/zQPcOEUUTL9vkHH9hNNqHy29+a4uVrVbIJjZGChq4q9KZ1jo4VWKiZZBJiqLRemiJcJQs1kyulHNmE1sXpXVptsX84xx+/MU+l7XB0rEAQRowUkhydKNC2/S5SUY6v44blx8i2t1ZRFG2Z05gxVH7xse0EsWhpY5VaNq9eExt4XRVYI8sTCOaFmsmfvjHPZ08ssW84w3gxzd6hLHvjfc5D23v4j6/OIssSvWkD0wmwvIC65XWnkIWkSjapUWm58SBEZjiXpGX7GJrMF88u8188veum951SIY6kYih36yHZxqaAd4sOwXAhDazd6ePrYl5hM5rsxlrPBJOAoVvkkPWmrivkbhfeXUzpzFQEEmfwLnNHttpnglDsX3+Pt15vN167t/2ZG2wsjh+S3OJLS00H0xE40YWqefMXANv7MmQMhYbpvyXBjgRd5n4+qZHQRH7X1Kpo/rsB7B5ICZczwrlQaol9dMvyWGna/NPPniWhKgzkDI7P1Tmz2ODVa1Xats9Muc3fODaGpsjUOi6XVlrUOwKdBJBPZblSanWHYFNrbU7O1dk3nCWK4KvnV1lp2uzqT/P+/YPs7M/w0cPDHBjJkU9oXffFejUtn/Fikj1DWX7xkW389ovTXFxpsnsgw8djhCEIPNd0uUMYZ/3t6s8gSWKsqSnylo27XEK7aZj8oQODfHD/wE33ViGl8wuPbcf1w++rYPl1FLgqS3fMnymkdJ7c089Xzq/QssUZQIuHZNfWOqw0bPYNZ/nooWEGcgn+/MQiuqrw2I4eXrpWxQ2vn33f6vB2fQC21RnNJ266bPFNwzAkn9QZKSRpOR66ovDwjiKP7upnILf55hvIGRRSGk3L72aFbVW7h97LBPt+Kk2RNj0jvSDi3vEs2aTGlVKH0aIh8hEVhbWWgxuIfO6hvBiUqrJQnU/2CBTycsOmGuMB27bHUD6BH4QcmyxyerHBeiehbXusNC0KaR0/tPECgWFMGwqWG3JgKM2FlTamJ3oSsX+JKIpYbTt8+s15Xr62xvG5Otn1vK1iknOLdSw/IqHKjBWSNB3RBA8iSEpCWOmHEV4QcWK2Tm9anEOHC0ksJ8AJAnrTAg07mBODnr1DWUaLSXw/oiet8/pMlbrp0ZfRCaKIgWyCQkrj0V29vHClwmO7RCbM4dE8r8W5MuaGKXU2ofHRw8PMlDs8vlsw+Zu2hxsfqMrtuxPR3Fh3wiGmDIXhvEGpbqNpCsW0xj/5yAEW6iI6RJIkdvZn+In7Jyh3HLb1br6XR4tJdg1kMJ2An3looivGKKR0fumJHd394LbeNOeWmkz2pjadwwspncJboBjOlDs8f2WNsWKKp/b2vyu589/uGismmVprs1y3+IuTS4wVk5yYqyNLEp96eOJ7KldqqW7xxkyNMIq4f1sPP3xkmN/42hWe2N3HcsNmqtTZlOu1sRSIczOFEFaXZQZzOqsNK84zEg1tQ5NI6UKABnfnTF7/mrYr+lbDhSSt1TZSHBXSmzU4OJJnoW6SNhT2DWZJGSrT5Q7nlpoMZA0qbdGncv2QKIpo2kHXlfi5k0u8cq2CH0b8Z49M3vTz/TDivokCKy2Hs0sNHtq+dV7Ye/VXs8aKKY6MFfD8kJbtEYQRv/ahPXz25ALH5+pcXm3xLz5/gd6MwUDWYHtfiqW6zXOX1vBDMdQxNIWetMFHDw/zxJ5+mrbHRF+al6cqNEwX2w/oSScYKyZ5eaoiemwb3oMkCRpbFEUkdRXLF/vQJ3b3sXMwy9W1NqcXGvzR6wvkEyo7+wWmMZ1QeX2miuUEnF1qkDE0NEVGkSRCCR7ZXmS0mESWZRZqJqWWI2Kc3ICd/WkkJNbaDrW2Q83yxTMdhG48irGMQUQYXqesuX6IqkoEYcRSw2Ywa2C6AZdWW+wdzJBNiEimtKHyxdNLVDtu7CDXSOgyri++53rWkB8I88d6hqDIIo1Ya7n0Z27vIv5ODMHqkiRlgOeB/yhJUonbC2ffcpk3dAOSmsxTe/qZrZmcWmhge0Kt/5HDI3zinlHyKY0PHOjncyeWaNsel1dbNEwPQ5W4uNxiR3/I33//bnozBn/46ixeEHFwNMfzl8vUTZed/RlWmzYDWQPHF2gwQ5XpS2ts70uT1FT+zpM7eXGqTFIT2Vz3ThT45LFR7h0vIssSf/jqXPzeA37w0BCXV9vdppTI3ojIJ3VqoXArnV8Ww7p8UsP2A1qOaN76QcjXL6x2sz0ODGeptF2urrUhgr/1xHZUSeblqTJpQ2Wt5dyUQSSUOuL1b8zU+INX5pgqiQWkZfv8D587y97BHDv7M3hBRNv1kRGhskF4vamV1BXW2m73+99u4QoDYfF/N+r8cpPnLq3FIX0u19Y6sZpDTLXnY9zA+qDSUIRqrZjSMN2AhCZBJFGLEUKGIhinG+tGZEiEuLn70hpLDbEh3/j7dpyAo+MZTFeEB65jGlTxoyDarNa2vYAwXM9fUtgzmMH1Q/7NN64wWkyxrS/NsYkiF5Zb5JMa92/v6SICckmND+4foidVw9AUHtpe5LXpGhdWmsgSLDdt/vj1ed63u4/7Jov8yNFRPnHPKBeWW7x4tYwiS91ch/fvH+D4bI2RQrKL/gR4c7bGS1PCSZDUlS0PtZdXW/zp8QWW6harTRuJiAip+/u+nZIARZZBFg6JdfW4FygYqsxy3eHDB4v0pg3enK0hy1IXYdiXMfjEvaOcW2xuGtz5QchS3aY/K5Acf3FyEV2V+cn7Jzb9zn+dav9wjj0DGT795gJXSoLFm04oVNsuLcul4waoslAF7hkscGq+QRhFvDlX3ZRPISFhqOB4gtlLBDIRREGcKyZyhULiJq4EQQAghmHivpL56JEhGqbHqYUGO/rSvG93P596WGw+n9wzwHy1w2987QpJTUGTYaXhoKsSk71CoblrIMO1cofLqy0sx6dueyw3be7ze/jwAaHsmvJDBnIGDdNFVRSyisxARkeRZSRJsJb9MGTvYJaxYoqra21cL2SuY/Lorj76swlmKx3OLzW4sNxkOJ9g10CWC8tNrpbaPL13gF2D4j752vlVziw22Nmfxg9snjm1zJszNV6eqojBux8ymE9waaVD2wljh63ED+4f4I+PLxIEEb0pnY4bCIzi99DB6L26cz24rYfPHF8kjOgerLYaAkSIjaPYV0R0XJ8/eHmO9+3uJQjh+StrZAyFZ04vU7c88kmNJ/b08wMHh7hSauH6IXuGsvzsw5PdYdLZxQaXV0Wg7mrT4T+8NEOpYbNYM+nNGNw3WaTScSjHYoW65fJTD05wbqnBl8+t8MC2Hv724zs4s1jn6b0DHBjJ4Yc3D6vuVF86u8y3Lpc5OJrjZx6c2NSgCMMoXp8D8kltkwP5uYtrLNYtJCKOjhdo2x6VjkF/JkGl41BIaqy1XV6frnF6vsHphRRXVlsM5RPsHcwyWkix1nJYrNsE8aZclkSGScpQ+c8emeDiSpsvnlkhisTm2QtChvIJoijiy+dWUWSJv3Hf2Ca2eE/awGyIz+xuMwBW2vaWHPDybUQaG+uByQIvXS0jy9JtD9p9GYPVpkNCk9Fu4ZDS9Q1/v+jWrbDxYpIT8w0kYPIuczXmKx3Gem4ehPVtaJSvNyK3qrZzfW/Ysm/d4GvEa48TQniL36HleDQsDz8MWWluLcgZLggyhOWFRGF411lKHzk4QMPyOLfcwvbFoC2IRH5NxxHK4osrLaGODEI0WUJTZVQkZEXC80PKbRcJQW3Y0Z/ht5+/RrXjcGaxiR9EfONSidGiEM1lExp1y43dDzLbelMcHSsA8NLVMv/uhWl6MzoLNYvdg2kcXzj/bc+n2vH4r35gL4osMdmT4g9fm6PSdrlvssgTe/qJYlfk0fGiyMHIJbDcAFmS+NK5FT54YLDbxPzA/kGurbWZ6EnheAELNYttfelNboRSU7iZx3tSzJQ7vDlbY89g9iYR1Y2NyjCMKLUcXp4qM1MxuWeiwNN7B+78B/kulhcIPFp/1uBDd5ldc3qhzhuzVeYqJm3HJ6Wp3DOe5VMPTfDKtQovXi1zZDzP//OtKVaaDn4YUu+I3OKELiOmYOJZZt8t+/CGyhiKyHS+4b+HkXCLRZHIA1ovJ4Ca6VJIqfRnDA6M5KmbHsdn65xdbJI1tG72TkJT+PlHt91xrVioWm/rvb9X353yYzTuekXAB/cP8LGjozx3qUTD8tjZn2WpbnFqoYZjeqw0bJ45tUQhpbO9L03D9MgmVfYP55jsSfGlc6sAnF5ooKkCFbqzP8Op+TpJTRb52r5wVS3ULHHNOj4t26Ms9AZU5xr0pDWSukJSk8Xz3PXpuAEt2+NqqcXUWicerPsM5ZJ0HA9JksklZe4Zy5PUFU7N1wExIDJUhYGsxnRZiCc6rk/GUETcQj5JRlcZyBmossz2vjQP7eil1HKw3IA/eHmO80sN5qomxZTOwdEsR8aKTK112DuYIWOo/N4rc+TiJuSRMeH8/9jhYRbqFsfGrxN7JEniR+4Z3SQiGismeXhHLzXT5dFd1/cCV1ZbhBHsGczccQikSXAbkjMtJ2B6rSOG5nZA0/ZxfJ8fOjKMIonP59HdveiqzMXlFldLbR6Pc78GsgbHJors7MuQ0OUtc7nX39+HDgzy6K4+UltkHftBKEhOd5E5+Np0lXLbpdx2OTpe2DKX8Xutnto7QK0j+mZrLYHqB7EPtW/kBn4Xqtpxmaua7BrIcHqhjh9GbO9N8/TeAZ67vMb5GFNe7bgEt8qmQTgzG9b1jK9cRvTgvCBEUyRKTYeQCEMTIrf1r7tT+2jjIDeIYK5ikkkoGKpwr+wbynJktEDT8plaa/PClTINy+PvvX83ddNj71CWpKYwkk/w/JUyICHLwt16erEOTHJptcX55Qa6KvPadJXxns3D3sd39fGHr84SxVjgvozBzveQiH9tqjets28owwtXyly91GKyN00EZAyNMBQDoyv1NpoikU/o3L+9iCxJLNVtSg0HWZYYyBn84mPbeGqf2D+OkGS0kORnHpjglekyr07XUBUxcHp9pioQiQgntqrIwgnlh7Qdn45DLFSXsbyQ33tpmmtlE8cTDv665XGp1BYzijgrWJVlHt7RixT/PueXmyQ0QWbY0Z/hwnKT47M1PD/Cj0I6js94sYdTC3UqbRdZktAUCZBRZBGXFEUR1g3CTwnwwvVoAhHn8+TePhqWz2LN4usXS7wyVaHScbmw3OSFK2t4gcAupnWVfFKlbfsoEciSEKcokthvDmQN5qsmbihiWoIwpHMr5EFc34kh2LeAAvBfAj8L5IF/9m7+gBvVjI4f8szZFRRJohrnJ1xebfEJRWRLzFdNnr9c5kqpTcPy2DOYpSej8+q1Cm4gDqUXV1r80NEsP//Ydhwv4IWrZQopsaCm4iHAfMVkrmIhSRKjhSSjPSk+/eYCldjG3J81kCQx4Hj2wiqXS21euFLhP39iO4ospqDrw4eJniSSJOz42/rSLNctetI6uwfSvDZTExez63NoJCt4nm2P4XySKyUx3b1SajFXMUkbKoM5g6btU0hqnJit04xzwTKGylLd4mOHR7hvWxFDlfnS2RXmqqbICunP8MVzK6R1lZSuEIYRphcyUzE5Od9AliX8QAxrkrqC5QmMgB9EqIpEGCu17TtcdCAWxK02PHdTXhDy2nQVQ5W5b7KIpsgEYcSF5SZeENJxxRAxiFGElhuw3LBpWCKfoYkYWophI7ScEFWWuwvtXWR8xitzRKntCcX1DcpJO4g4s9hEkcGPrk/A/Ug4m4gilBCQJXb1pqhZPuW2S1JXyCeE4ySKp9oPITFfMbla6ohGigKfP71MWlf4sfvGSeoK79vdj6pIZAyNB7YV2TmQ5ZuXSvzha/OUWw6qLDLlvnBmhcurLXYNZPj4kWEGsgaZhNptqucSGk9t0XDYmKelKTdvrBumJ5i4QUTdFEoIYizMWw2Z3/QxS+LvHUYREhK6ClXTQ5E8Xrzqc2yyyHhPkmcvrnJqvs7ZpQZP7RnoDrP2DeU25RQAfPHsCldLbQopjW19abwgwgtEEGo+9d1FD3w36vJqi997eRbHC7i40mS+anat/7YfYMcceD+EluVRaztEUdRVam2sjKEQId0UeuuFkFEkelIi7DbkesMfhNsqocpIshhkOW5Ay/apmx7zVZNCd7MsBtgpQ2WyN0WtI5rbmfjfB3MCLdRxfK6tdVhr2rjx9eNKMrMx+uBLZ1eYrZoUUjqP7hQD5WvlDpqqUjddDo8VeGSHwaXVNoosUek4dByfjuszkE3wi49vZ6yY4je+eonzy1BuWsI9nE/yv3/tMm3H59/3pfmj//wREprC5ZJwr10ptTk1X8fxQ751pdQVEhwYyfG186vYwfoATDhMP3NqWWAhwpBTiw2GC0mM7yNl/Hsl6uxSAyTxdz2/JNAHth9wKw18UlPYP5Tji+dWeOFKmT8/vsDeoSxNy2fHQJogEkPSvozBkfE8+ZRGue2yMxYnlFqOcMwC37y8huuHQp2tyoRRxKnFOqPFFEP5BDv7M4JlPpih1HQ4NiGCur96fpUogqbl8eP3j/Pk3v7u+9u4BvhByIXlFoWUdhP+a72CMOK5S2tMlzvMVDrs6s/w0Aau/jOnl3jhSpmm5XHPRJGffXii+/570jqLdQtdVTi/2ECSZB7c3sv7dvcRhuKzrZku37y0RsPyuHqxxHylA5JEylCpxCrpWluIfQKE0yhnaISEnJpvcmm1xfoS58fB7/uHs5xbarK9L4XthUyVOpuGYIuN6wOVi0t3hwnsvUVTZl2Ac6da389GUUS5c2uHdcvyBA7bC2+pzJ0tX3dFubfpoS83nG6S12zl7hrWsrT1oi/HbqE7bQkWqteHgm/OVm/5dRvfdrVj05O52SUbhtdRUjcK5tbrM8eXaNkenh/eESW3XroqMV8XOXxJXRE5eTGXv72B8eb6oqGzju8YKyZ5Ync/z5xeotR0iBDra8P2mKuIjLpqxxUuaUlkQ27ry/DAth5OztdpA7blMZjT2TUg3M1hGPHaTBVNkVisW9w7UeTB7b20bLH3Xa5bKJLMGzNVHtrRS8cNuvfFevC9aLSO8PULJRKaLBrMbZea6XJsonDTunNotMDzV9ZYath85sQij+zsZaInRTsmUXz6zQWiCD6wfyDOE/aYr5nsHcre1t31pXMrAl+02ODIaJ7LK63v+SHYn725wHLDJpdQeWrfwB0bYFEU8Y2LayzWTS4sNwmjiP6swWDWoNpx+L2XZ7HcQLjC/ZBK2+nmMAYxZlqV5a7jZSvh3t1UEMXio/Dme9IPQNriPvZCuFwySakmY0UR5j5XFchU+wYMqtRtjNy6WtbbG+C9V9+dCqJoU+NIV2Walscv//6bpHWFY5NFVho2pxbqFJI6nh/SsEQO1mqMVpVjYkQxrZM1VJ7c3c+ZpQZrbUe4IlfbvDJdJYhCvCAiqSn0ZHSmyibDOYO1loPnS9je9eszQkQWZA2VXFYlndDJJTSmKx2CUAzXkQIhSPUjWo7HaivAdAI0VebMYgNDVSg1bOHu1RRySR3T9UnqMpYbIkviWa8pCoM5g560jh8IAs22vjS//fw0GUMRgh4vpBKLk8EFZD5yaFjkqnRc/oe/PMfZhUbs2tdIagqfPDbGWDF1Syf1xqGWJEk8snOzEObSSosvnFkGwAsGu9lht6q0IePYt7//Nj5XgjDkWsVkam2O6UqHjKFi+4LWcW6pyWLd4pWpCrmk1o1UuBthqSRJN4mzQQhD/tOrc9RMjyf39nPshiiPG2t7f5rFukVf1tjkJv9er/u39bDUEOfYjx4e5txSk3xSe0u48W9HhWHEp9+Yx3QDLiw3eWBbkcurbTKGxmLd5PNnlmnbHg1LRMJEd9g8bewFNSyBJu/izeI9kuMFaIosnGFAT1KhYQfX41VufI83/LsPWL4QCYWxoPDUQo3+jM5yQ+x1Ti006M8YJDSZ16YrfOjAIB/YP8BSwyJlKJxeqOP5IdWW6HUQCYpDFIVUt8iw3NaX5gcODfGty2UANPm9M/pfp7q02uKbl8qcW2pge6Kf/PD2Xhw/ZDLOkN/Zl+biSgs/cFiI6UT5pMrhsTznl5uAxKvTNQ6M5rvnzLWWw2dOLApR3EKDbEJEH5TjoVNClwjD2J0diYGYGwjikiILMeellQZhBBIRSV3grFsdV3yd74Ik0ZfRkSWJV65V6EkLoUo+qVHvuPyHl2fpTesM5kQEjabKeG6I6QW8OVsVAq34rGJ7Ak+gSIg+4BaPA0kSzmYvCEU/25cZyiVpWG1qphtn63aYLpt4QUjNFCLBhK7yxJ5+zi416EnrVDsurh9188h6dJlj4wVm4rwwL4zEme4ODejvxCohAV8GqsAfAX8cRVHl3f4BGyuKhMto/cC9/j9+DFJfadq0bJ9OHILdtAUqb6SQFLi6SLA5QWB6Oo5PtS3yZqbLHRZrJi0nwA9D7h0v4IURkz0pjo4XeX2mynzN4tpam3xS4yOHhnjfkX7+j29cxXIDgijEdEN+6sFxptc69GUMoR6IeZ0T/cIO/tzltZiPmSOb1Jgpd3AVGUVRSOsaF1ot+rM619bacQaOzIGRHLoi80vv286ZRTEQyiU13pip0rJ9GpZHy/a4uNKkLyPs+5WOSzGlY6gWq02H4VyCctthOJ+kN6NzpdShaQvsWBiJiSsxuixjqNiyCNpLqnKcdB512aC3K1kC5W1mgr05W+O1adEYySY09g5lmexLMZRLcLXUIqUrZAyVtuNhuiGWF2I6AQlNDMu8IKLdcQhDsSgriLDeG6+p2906hio2bavruWJbVBBF+J5oaStS1G2uyEjsG87hhyGaqrCrP8Nyw2LfsMRq06bSdvGCkIGMgR9GXFtrs9q0SBvCBmp5ISBwgHNV0VRYrFu4fsT4cBJJkhjMJQTLPAyx/YCzi00+fGCQ6bIY/H7mxCKGKvOhA4N3hQw4NlEgFSsGJntvbt1qqoSmyOzsT9N2xSEmjMRDV5EkWs7by9uQouvBsbIkkdAkmpaPLMuMFcXDupDSySfFQzVC4tNvzvPiVeGw+dUP7uZAnDcRhBHPX1njhatl+tI6Tctn32CWhaqJoSlvWblTN10ur7bZ3pem/y4xUd+L9Z9em+ONmSprLXH4c3xx8Fxu2Diev8n96IUR5Y6HH1/Mm+zYiEdAb0rD8oIusgnE/d6b1jk2XuSzJxfxgmjzayXIJzWCKML2Qy6stKjGGV+LdYuvnF9huWHzMw9NkNJVxoopntjdT7nlMFsxhfPTD1msW1RiBK6mwEje4FrcuM0mFJ7cO0A2oVCzPDF0iyLcQNjHhwtJrqy0aNoetY7Dj903ytVyh0rbZaInxbFJ4Th8et9A93DyAweHuLTSQlfEQL5uutRM4UKdr3R45tQS908WSesqU6U6n7h3lKbtcWWlTRgK9UpKF7kGpaZws8nIOIHAswRRFIs8JKRIPLten619zzcF36vNNZxPISERQRcbtZUTLKHAQC7BP/jgbi4ut/F8gf1rO2Idq3ZcDmk5PnxgkEMjebb3p7sNk3vGC6w0LPIpjfENh+exYpJrax0+emiYmumSNlRkSaLacdkTv1aRJT5+5DruzPYCEpqC5QbkbuPYAXhxqsLx2RqSBJ96aHLLZ6EiS+wdzDJT7tB2fD53aglZlrquOKHu9mnG6MWG5XWHYO/fN8DeoSyFpMov/8Fxah2XXFLtOn4f2C7+GYYRXzy7IhBLTafrbGmYwmG2foiWgaQmUUynOBcP0LxA5IpIEhiqUMotNyzu31ak1HQopDT2DN56fYjucnXzgq1P8vdO9vDVS+U7vv7UQp22EyABp+bqfOqhm9EswHX3hnTrnzlevO5eU2/TqJ7sS3J8roYkSV1n650qn9q6ebNxPWlZtx7ibeyl3G47qW7IoBjJbz1SbtsesizyJm8UzIHg6FueTxhJJHSFIAhvUi9uVa4fMVcxGe9JosgSAxmdcsfDDUJkWSGlK/hBiJEU66GuKigyZA2Vli2cCFEUsVR3YtR2xHSlQy6hde/R/qzO33lqF4aqcGK+xn/5wd2M5pP8uxemySZVckkxVPXDiKW6xVzV5MhYgU/eO4qhKfzkA+M8uL3In7y+sGnwlE9qPLyjl7lqh0d29G367zVT5FqdnK/H61HEVKlNpePSlxFKS0UWDdjxniSffmMBgOm1Nq9cqxBF4pmzLnBp2T5D+QQNy6MvY9xxKLLatJEkkQkjxHY+v/PCNB8+OPhdbwpuVVEknGt10+XN2RpN2+eD+we7jrfXZ6q8Nl1l72CWD8YuMUmSGCsmWayb9MX5trk42/T5K2VKTVu4X4IQSYKmHWCocoyZFnstPwy7eVqKBMWETO0ODe0by/djd6IiXB2WG+DETYMQbnsIcgJx3eWTKqWmzY7+DNPlTndNudtKv0d3/r4q+YbzYj6h8uULJeqmEMXO1yyKaR1dkRnKJzg6lufNuVqc9QVOECEHIBHg+SEP7uul3HbJJ1W+dG4Fywu6e6O0rhCqQoQp0OQRpaaN5QVYXripyabKQjzUl9W5Z6KH1aaF6YYM5gxcP8T1fIFWlEXmUMcJkCW6glYFcf6O+3j0pTUiojjyQSaZUhjMGxiqyr6hLI/s7OPUfJ1X58XQ5ze+colrFZNDIznu39aDKktYvk8Yq9FrHZe/OLnITz04Qc1yWW3YZBIqbSdgR1+GS8tN/s03rmKoCrsG0pTbLgfj73W35W8IC9xqrbuxMoZC9Q7PjI29EFmW2D+Y47dfmKbt+DRtj4yhoikSsxWTuuXStDz2DediAes7UMAictNq8dBhpty54xDsgW09HBzJYajK91W8wXhPir/71M5uL+Z9u/vv8IrvTAnxq9hbTFc63D9Z5O8+tRNFlji31CRjiBw8sW68te/tBdGm6JH1W7EvozOST/DmvBALjvdmaC+38G4XhHlDBUGI6wt0+FrL5uRcg0JK4JglCe6bFEQuIUCB5y6t8Yl7xzg0WmC5sYKqyITAXM3E8UN2DGTYUUqTTWhs36L/BXBsokhKV0loStcN/V799ahsQsXQRJbX9ngg+r49/bHpxuKBbUXOLTUpt2fIpzRGCkn+1uPbaNo+L1wp05s1hPDZC5irmAxkE/z/2fvveM3uu74Xfa/+9L57nd77qMuSJcu23HDDYFOMCQETIJB7cxPIyclJuLkvDjmQAwmQBAgJhHbBprnbcpMsq46kGU3vu9en19XX+eO39jN7z+y9NZZlIyf6/jN79n7Ketaz1u/3LZ8yV+3wO1+7woX5Op4fUGzZYjDbskNQn48SiKHXCpsyCAKCQPTbIpoiAHVtl5ShMpaL8+bdvWgy/OaXL+N4Qq0pExXX7GA6IkgtfsB0pUMurjFRatG2XabLbfYMJNkzkKLcsrmwIKwd2o5437iuYnsuLVvMT3zEEE5atXkEgCbD9p44SBKT5Q6qFFBIxnj80jILNZM9AylenKhQbQsPvhXbAxAEoabp4PsBjisAKbIsVOUAkobGC9PVNTmB6wVr/AzXi+/4ECwIgl8GflmSpIPADwKPS5I0EwTBI6/Ve8QjGtVV/5dk8eHTURVdlUPN4VhXSm2pbnJpsUFEVzjcl2C+bvK3L80S1RUe2N7Dw3t6ORBKjMxWO3zixLTwjNIUtvUmePpKCZ8gROqZvGlnDx86NoyqyPQmDVzPZzI0E287Ptv7kuzpT1JsWjhuwJZCjLbt8ez1Mp4fcM+2PFeWmpyYKPPCZKWr76/IwvPi8EiGN+3oYbLUYrlhiWmsIrPUsLnTUMnFNWTixCMah0bSjBUSjBUSK+e/O9CbqXSEZGDbY7FukTAUlLAg3VKIY6gKk6UWu/qFpGJ/KiIGipbDYs3CdH0imkx/MkouqXJ2thGydKBpe13Jv5XQZYEaXC8NUiWhL/9qYoU9t/rnnb1JdvUnmSi3SRoKfhDQlzSYLLeRJYSfETK259O2/C56RJHWenmtxKb063CBaVkbyznqMkRVWbDRJCEMaDmC0l9I6Biayt6eGM9NVHjmWpmRXJSoqpCM6DRMIQmVixvUTYfz8zVqHZdUVGNrbwIpCKi0HaK60mXJfO70PJ4fsFDr8LH7tgDwviNDPHF5mYblETcUnrle4U3bC3zq1Bw9SYOzc3UOj2bWoNs3Ckna3OMgpqt8JJTQ6tgelabQsNVVmYd29XJ9ucXzk5VveRDmEfqvqTL9qQjzIVrKdH0qLZtax+GlqQpv2dPH8xNlZiriflUliarp8J+/fpV/8tadbOtJcGmxwUtTVeK6giRJvC00OH3r3n4yMQ1VlvjqhUUcL+DBnT1rzOTXi787KbRqX5yq8PEHtn5P6I/fHAGQiWqhwbOHTEAmpqMpMo4rZChk/C6zy/GEZ1cmqmG7dogwAVkW7Mpd/SmWG1boHyjuAUOVMV3RZJ6vm0R1BafjosniXlJVBVkWMrAdx8f1Ao6MZohpqpBICCQuLTRJRTQWaiaKLPEfvnIZXZbY05/i6atlvMBjsWmRjem0LBdNkUTTUVExVBlVkXnrnn5++M5RPvHCDL0JgwuLDbJxg6bpko5q5OM6Z2drBEHAxYUGf/H8NIs1wZ4Zzsb46L3j5OJ6mGgIWZK9g2l++4eO8uz1Mn4g9oSzs3XmaiaFpMHVpSYnp6tcLzbxfDg7V+fnHtrBE5eW+PK5RabKHR7cWaBmCuZaIaFT6zgoro8qS+zuT5GKqBQbJg3bpzdp0POGFOL3XPQkdbJxjcCHobCRe3Mz6dBgkl985x5sN+Cl6SpXlxtdxNSbdhQYzMSwXI9i06ZhusQNlaPjWSZLLRwvYHtvorv2gwACTZXbPLyrlwd2CCllxxdJdF8ysq7/1kpENIUfumuUYsNaF/SwOrxwH1+REtwoPnbfONt6E3zx7AKFhMHFBSEbqisy927LE9VEw/vQcHaNEbosS4zkYkyV2qihdO9Uqc1vfvkS/akId2/NM16I88N3jYUDfJ9zc3Valke1ba+RVoEVyVWFqXKbIBCgipWmWzqi0bId2qbLubkG+bjBkdEsP3bv+C2fR4buuriZv9Xq2OjsjK4aSEU3ycoNVbxPICFknDcIb6WRHWziy7pqf7vZ0H51jGTjjGRjyDIU1mFarRepyPrX1VfO3/A9a22ihj2YjjBTE2ywO7Zs3Pha3eerdxxikVs/x4HhDEOZKC3L475thVv+fnKqysGhNKWmTYDw3pu6DYm2ALps5fcfHSYTVfnsy/NcK7YEYEyW2FoQrKftvQnOztU5OVXluesVLi4K2ShVho7tU+s4yLKMKsts741TNz3etq+fR/f1szOsB1ZQ/74f8NNv3sanTs3yzctFzs3VUGSJ5bpF3FBxPJ+XZ6scG80hyxJbCgk+cHSItu2tYQbcsy3PPdvy+H7A1y4IGbOV+7Bte4zlYpyZrYnjUmQuLzYpNi0+f3oBgPcfGWK8EOe+7QVKTYuxfIwvhrJmhYTOSC6G6XgcG8uiKzLHx7JkYvqaPKncsokbyhqprId39/LiVIVH9vSRjKj8zUuz1DoOL8/UXpdDMEmSeOvePr56Yal7PdY6Nn/67CRN06VpuciSxOnZGg/u6kFTZHw/4H1HhnhwZ4Hfe/waXzq3yGLdJB/XieoqWwpxig2LZERlvJDAD3yuLLfIRnWCQKiVzNVM3FB1wwtAVRR02d+U1XlzBIjc2vcF4NN2fSTv9kb6R0bSRDSZYkuAhNJRjcIr+C+sF4Xk7UnJvhGvj7i5zEmHOXc2puN4AfmETuBDRJdDGfNRZCTe+R+fYKLY7l5bK0OKluWiyPDklSKllo0WsoKGs1H60lFimsKFhTpz1Q4pX0OWhIrO6j09E5XZ2ZsiFdOQZZli02KuZrF/KEVn0UWXJWwgHRXssyCQGMhEuLbcBEn4XvYlI7i+T6XjQAAxQ2UoG8Nx6kDArv4UhiZqxw/dMcLZuTovTleptB06tvAZlWWJUtPm+48NI0kSSw2TpbpFRFOxQqmqZ66VMFQhPfXk5SKa7PH4paVuA/XAcIavXVxmKBPlm1dKHBvLdtfMpbrJmbka23uS6zba9w6khP9KEHDgFVhgAMX2xpOLdESw31y/a71CXzLCkZEM2/sSzFY6XY/Ho6NZRvMxzs3VMVSZfYNptvbEu17krzZ6kwYHhtIs1E3u3HJ7w8DVUtrfS/F67B8ossR7Dg3wm49dpj9p8NmX5/n4g2IIZrs+uZjOeC4assk33nh0GfrTETw/YL5mdZVgVkILPWyRBABNV2VkSVgpLDZMdFXC8bhtVSE36HIfiBsqB0dEfveWPb30JiP4gQD2ZGM6i3XhKZ6MCODRSDbG5cUmqiLRnxaS0D981yh3b8nhB3T7szfHK/XI3oj/eWM4G+Mn37SVhbpJNqZ3FVH2DaaFn3xEozcV4cBQikuhV92fPzfNWD7G+44M8Xa7nz9/TsjnPnm5yGAmylS5zVRZeHB5vs+OviQDGYPHL1i0bT+sPwUxxQvJAn4g6sKehPAOOzvfoGO7KLJE0/K4sNBgttJGAmK6RNLQ2dqTYN9QiqFslKtLLYJA2A68PFPj/HwD03IICJAliTu2ZGmaLsWGyULdom25DKSjHBhOcXqmRq0tpHgVCRRJIpBEnyxA1NYDmSj/7vsP8NtfuUKxZeO6PklDZbrcFvvnQoOG5VDvuIAg17iaTCBJpKMqpZZNre1Qbtvd95EkMU9o2C6tVTr2MvD2fX2vCIb4bu4WS8ACUAJeUxi7hFhkV5J/XRGspFxcNHOPjWdpmC53bsnx2Zfn+IMnr9NxPIYzUXYPpJmqmNQ6YvK4byjdHYABNE2XIBBMq8MjGZabFnNVkxcny9heQLFhsqsv2ZWLG8nFeOeBAc7M1am1HUZzIsGPaArHx3LIktDvbNt2F6nTNF1kCabKbVRF5ptXlnn/kSFemKhwrdjim1dKbC3EeGGqguV45BM623oSDGUjDGWiXF5scm6+3kWeHhnJdr94SZLYP5RhJBdnttLmhckKX7uwRKkl6JQJQyAjsjEDx/PpS0VIGCq5uEFcV+g4PlsKcZyBgId29bK7P8m5+Tp//eIMxYaJ6foosrRus8XbpAETAPKrpAyvaGfroXZ4x/Y4PVvl9GwdQ5GQEFrAiYjGrt4kl4tNopoiZMVuKvA0RSKqKVQ77qaFnxQ+NggCPF8g5Q1VIar5mDdJ6KgSyIqMpiokVKFNvn8wFTZNHJqmS6Vtc3nR72qWV1oKTcvDdFw6jkdP0mBnX5InLi9jucIQ8O5teXb2JZgud9ghS3g+nJ6tMVvtkDBUah2HdEwLTVZNDo9m+Pm37OSPn56g1LQpxHXu3pYnFdN4/OIy+YROJvraaWbn4jrHx3Kcma1R7jiYjsdAOoLtBXz8zdt4+U9PYL4KN0AvgI7tMlfpYLoekiQayamIGFydmq7ysfu2sGdADGAcz6fjeMR0lf5UhEb4prm4jiJLJCMaj+7vZ89Aiq9fXOKlqSrJiMqRUeF1BTeQ0pvFytr6+ktdbz8k4ANHh3lpqkLbdmmaDtWWhSTJ9CZ1MeS6iRZpuQEesLUnRrFuUQ+ZCQDXiy3qHQfLE68d1VUUWUJVoC8VIR/XaJguPuL+PzKawQ+gYznM1Ex828PxA2RZ5l++exc/96cvCI1j22W5afHSVIVi02a20sEPArIxnVxCY7biossyjudjhPfcQCbC4eEMf/3SLB3b5ZtXlzk5U+WOcdEczIQFmpCJNYXhtSpju2J43Zc0mCp3SBgKd2/NkYvrlJoWn3xhhgD44NFhepIGqiJz3/YCS3WTi4sNfu1Dh7BdX0jUljs0LRfTEVKOAg2v8+6Dgzx2bpGRXJRs3ODgcIaW6TJVaeN6YCg+o/kYf/Bjx7kSIuwPDKUZygrJxzfieysUSTS4fSnoDr+Um4re+brF507PM5ZPcGKyzLWlFvuGUmzvSfBj946TTxhMFFv8zUuzYYIq9uEVWdLV7AOAT5yYEddb0uBH7x7D9wP+4vlpSk2bXf1J3nlgYNNjTkW0bpNjvbiy1OSlqQpbe+IcG8syUWxxbblFb9JYt6D3PAHIeXBHgWrHIaKpXF1uArCzL8k/uH/LLc9ZHZoqsX8ozbXlJroq8fWLS8R14aPwj9+yg4FMlI/eM85UucWVJfG6w7k0nete14tAlYWMpOO5GKoq5J0D8HxRRLi+gwxUTZeI53NpscHPPrSDcsvm5HSF0Vy864e5Ol/YDM8TD313JDZmKwVrTtfGO4qmKshh4q9skj+tPpxax2ZkHeHN1YSctrXxxnz3tjyffXkeXZM5OprZ8HGro255DK7z+yNjGT71shiiqJtsnEO5aHcINpbZeAgbbPK/lRjOxfjFR3dxcrrKzz2045a/jxfinA2bd8WmRaNz+161PgK8MZKNcu/2AhcWGsiyjASM5KJcXW4xXzNxvIC5altI8wKWLSR/fvJN2/i/vniB3lREFI6KTLHpsLMvQW/S4MpyA1mG7b2i8fLYuUXOzNbwgoDLCw0WGyZyyCoSjUqJSsvhG5eKmI7fRZRvJK8Fou44OS1k0795tciRkQwP7+5la0+Ce7YW+MOnr5OLaWzriTNZviGh2QyvmdXNSdcXQ8RjY1kimhLeU37oebB233rqSpFnr5dJRTV+5O7R7iBsLB/vDt5NxyMb06ib7qZMzL/v2DOQYnd/khenKthuQCam8vxEBT8I0BWJAImdfUk0RUgxn5+vsWcgxWguRsN2Scc1LMfHdHyyMSHNLisSrg/PTZR4dF8/7zk8xN+9NIfpuERtj9X4BQnRPLwZzLeRooUc/tHxwTE9dEWiYQowQESTcb0bze+bX0dGrAkP7erhS2cX6U9HeHBXD/uH0rftjbg6ys03PMG+l6JrfB9GtW3zwI4CP/3m7QQ+XFpq0DSFVP2WQhxVkfnkCzPUOwKcJljXgn3seALQ+cJkmbrp4ng+MV0lbqhoqoIfQDauIyHhBmLNSUeF8kfH8fH9gIgmAxIXl5r0JAwODCV55noFWZK4vtxie2+SatuhHtofvPfIEHdtKfDfn7xGMqKhKcLe4uhohhemNM7M1LBcD0WRRLM/rCdPzdY5NpphZ3+CfNxAQqy7luOxoy/B5cUmru/z5t09ZGI6T11ZRkLUPQld5Y4toi/zdOit/d5Dg1xabHL9ugAxGaGaSlSTuWdrnqnQy3x1LvW50/NU2g7n5ur8ozdvv6XBJ0nSKyLfV0fSkGlvpDOHRCKihQPHgGRE5WP3bSER1XjvoSGeuVbiwZ0FBtIxTNejOmlz53ieY+PZb3v4tfrzPHKbHotvxHcmRrIx7tyS45lrJSy3zR9+8zp3b83xH79ymUuLAsS2kgCvXI037zmSLHwr01ENXXOww56ZhJDyVVUF3xZgtbrpYbkdgiDA9qHWdlGlQOx3/q2DMBmRa/m+z2zV6ua+siRqmKNjWX7g+AjLDYuBdIR//smXma12+OaVEv/mvXt57Owinh8wURQEgGLL4ofvGqXj+rx9bx/ZUMJ89xsDrjdik+hNRcjEdD5xYppi0+J9hwf5L09cZ6bc5l0HB/jwnaMUkhEKyQh//Mwk5ZZNuSU8eUU/W+KFqQqnZmrcvTVHbypCT8Kg0rLp2MKPMWPrZGMatY7bvc6FTpDI5WSEj2vH9jk33whtRhSCUBJ+uSEU0KKGih/AodE0uZhBTFdIGir/+OHt5BNGF+jem9T5zMvz1DsOhiYzWWzTsjz6M1HMENRRbFpMlzs4nk8hYVAO1WYMRcL2AxodYU/k+AGHhjOMZOP0pyO4XoAbBGRimmCEShJHxjKcnBJqJ5oic2QkQ8f1WayZRDWFhinYxytrhyJBJqbSMD3alo8shwQbxEzoerFNpWV37+H14js+BJMk6R8hGGA9wCeBnwyC4Nxr+x4hiiAMWZLIJ3Q+fMcIo/kYy01hOvnVC0s8f73McsOibbsYikw6qrJvMIUqSzywo7DG9wKEuWi1ncd0fe7emsNQhSRc03SYKLWwvYDaTUVzteOwKyw6V1Dfb93Xz8mpKtt7E2iKzEguxgM7e6h3HO7amsPxPBRZwvV8ZiomY/k4jud3i86d/Sky0SWWXZ/JUpufefN2DgylaZguz10vYzkejY7DbEU0XY+P53hw543Pko5qJI0UWwoJCgnRuN1eiPErX7hIveNwbDTLD909SiEh9LZjusJMpcNEaYKpcpv+dFQ0XyWhO226oqlrewGaLLG1ILSYHdfrIja8YOMizPFFMv2tRhAEzFY75OMari/8SC6EiPJT08K0MxFRiGoKV5aaSJLErr4EbVugwhuWh+ILuTcvEA1931/bAJIRLDwhqSYR+DcQ36YjhmgdJ8DzPTJRQbtfLQEpy+L5wsxVIR3VOL9QDxNmn4nQ90FXoiQMoQeOJLGtJ87V5WYXYdsMB7eKJDGYiXDPtgJNy6XUdJAJkGQh7xjRZN5zaJCFmkk6qvEnz0zhBwGllsV7Dw+xq+8AtY5DJqYR0RSOjmbZ059CV+XXXDIgqiv8xP1beWh3L//xK5eZLrcZykY5N1djJB3l8m16iqwORRIsA9PzcH2xyElBwL7BFMmIxr7BNE9dKVJtO8QNlb2Dad57aJCWLQZm+wdF8tKXivDRe8awPb/LfltqCEmmhukS05Uua+92EK3fd3iIK0sNxvPx1yWK63ajZQlpWNPxcP0gbH74TFdMJESxGoSDr5XwfcG2RZaIhU1ex/PxfcEeA3HfN02HXQMphrNRdvenuDBfF/KtshhUf/jOEeaqHZ69XiGXNDg7K6jfUU3cw/fvLLBYM2nZHrv6UlQ7LkdHM3z5/CLzVZPH2os0TJedfUkimsJILkpMV+lNGty9Nc+egRSD2Sj/6WuXma2YxA2XwA94694+Li82QJL4B/du4a9emsEO9ZujmjBxblgeO3oTZGIaRsiaEPRwcSauF1trpN/+9uQsrZB1+VMPbGP3QIozc0J7/OR0hdPhZ/uDJ6+ztRCj2BQslfu2CSPes/N16qZg6YzmY3z0nnEC4ItnF1mqm1xebPJL79zz3bko3ojXNPpSAtHqBwHDITAmepMHQrVj8+y1Mh3Hp9pySMdUFmsW7zk4RH86ysszNa4sNRjJxZivmRAII9yVuNmPxQr95l6crBDTFB7c1UO5JXyAlurmmsdOl9ss1k32D6VfkQG7El+7sETTcpmtdjg0nKHUsildK9GTNLqDopWodRx+47FLnJyu4HoB33d4kPuG0kyWWqiKzFD2lZunA+koH7lzlIsLDf702Ummyh2GMhGmK23+8sQ0V5ea7BtMce+2AoeHM9Qtl/F8DAg4O1dnLBdFlmRenqlhaEp38BMEN3w7Vw+zPB9ycYNcQucvnp/i1HSVbEznl94h7sGkIVOzxBN6UhvvF7moRsvyiKjShtKSpfB7AdZIxNwc2ZgeSucJlPRGYWgypuMjSxs/7puXlro/b9wIgwvzDSxXeGpdLbbYsoFssCzdYGZt5Pd6cDhLXFcwXY87xzdmeE2Xbgxbzi/UN3xcQpdp2D6aDJEN2GxXFpv8fz7xMqbjcW25yX/50TvW/H17b4KPP7iVluXw9YvLpKJiKGjdJqPGD+DacquLeDw+nuNdBwaYKrf4yoXTtCyXpYbFUDoSNm89thbivPfIIPdv7+H8Qp1z83XycZ2XpqtMl9sYobfXWD7OlaUWP/Nm0Uw+NyfOxXy1Qz5hUGzZxHSF0Vyc8UKMHb1JvnpBfK/mJt/p6sjGdQxNZnHRJBXVWKxb3dwwZojXBlisWxweyWA6olZZD/V8cBWAsG27/Plz0zRNl0f3969BUHt+wBfOLjBX7bA1zHWNxK3XTERT+LF7xwXq83Ugb9WxvZD1vvZYS00LRZa6Eq1t20VThN/Itt4E23sTIVPc5cJCnbNzdZ6fqDCWjzFf7aDKEr4sEdcV5msd5qomjufTtoQ05GPnl7hjS57tvQmuLNWZqbSpr0K9BmyguCHfqnKhyBAN14cVHxZhLu6RMFQyhoJpe1RNF8cNMBSJQlJIfa4AGX7ozhE+8/I8Cw2T5abFm3YUXtUADMB5FV5mb8TfX3hewGr4Ralpc9/2Hrb1JJAkiZemq8zVTErnF/nYPeP8xfPTfOblOTKhTHoyKgzstxbijORiNC1Rm674NRYSOrm4Ify3NIW37evj5ekqMU3B8QTT+9BwmkdSETF0dnzmaiZ+EAhw6VKTWtslbihsKcT58XvGODldCcG6AVeXWnz/0REOjWRYbFjoik9Uk5mrmfSnIkzHOpSaFh3bZ7bSwXSFOoUi+wykI7xtbx8juRjvPjTAzr4EiiyxpRBnqWGxUOtw37YCXz63wO8+cY16x+Ht+/r50XvG6UkaPHutxPn5BhcWGkgIadzRbIxSy2ZLIc73HRrkXYcG0EMpqOhN+2hMV6m0HSKawmuxHP74/Vv41S9cXvdvkgzZmErc0Ng/lGbfUIr7t/UQBIK1Z7s+z1wr87H70nz6mTmWGxayJLGrP8FLUxW29SQ29Ih9vYTvB8ivg33l9RySJPGh4yPMVNo8P1HhyatFKm2bi4tNam0hzbZ68CQDzk2bkeMKWdGEoaArMp7vo4d921g48FYkqQuQdb2AiKagK4LV2Ap9w2RJSPda7g0we0QT/dSELrPUKGJ5AZosCAl3b8vzcw/vCHsD4lpcqZMs1+P6siAQ9CUj/PvHLtI0XXoSBi3bQ1Uk/ubkLAG3eu+9EW/EenFhvs5nQ1WutuUKpjHwzLUyH75zFNPx+KsXZvjimYWuHU08ZK4Wm5aQALQ9HjsnJDm9IGA4G+XEZIXlpslCzSQT1dYA0/1AKISYrhgUZ+MarhfQtFwMRWIgE6XWcbqev5cWBLBOliWyMYNkVAMEIGUFqPalc4ss1EwmSy1SEZWYrpCKaAQB5BI6XiCGxookak1ZCtBVCcsTanEEAemoQSKiCh80X5Bl9oVkkJ5kBFkS9/nlxSY/fPcYx8dzQg5xsszV5SaLoaXB2/YN0J82+LUvXiRlqPQkdV6eqVFtC+Z1x/ZDhRgZ0/VJRFQ838dyA567XuZrF5f4wNHhDb+z7wYTbAz4J0EQnPxOvYEfrEW+er5AW9+zvcC+wTRTpTYnJsuUmsKkdDAjhg97B4Te8s7+FDFNYSCzNolvhdT1bFzvmrgHQUDKUNk9kCRmKIzn4yzWBTPs8IjQmT0wlO4OxlYo6UOZ6BqJHxEBLdulbXs8uLOXJy4X8f2AvYMpXpgsk43pvPfwIH4QMJ6L8yfPTrJYtxjMRHDDzTsd0/iJ+7fQlzL4+sVlLi81ePzSMicmKjx1ZZmeZIT3HxnkN758mcWayT+4fwvvODCA6Xh84cw81bZNXFeJ6nJXamQgHeHacovffOwSSw2LiK6Qjen85pcvsX8ohe0GDKUjtAZTNDsuPSmdmapJVFPJxXR0VebyUiv8hBuHu4FXxZrv1g/49MtzTJbaZKIaX7+4hKKIBvpAKkpUF4Ogxy8udX0wWqaHKkmhlBtMFJvEDY2+hM7uAYPJUpvZqokXssJulg8JEBrk2TBpz6cMIppCEPhcWGh2kSi6IlEzfWK6zEg2wkLdREYinzCI6Aq6LKEoMuWWhaEqTBVbBBLda9D1YUshgen6HBhOYzseM5U2DdPh7q15xnIxXD9Y05T0/YD5Wodryy1298fZ2ZdkW2+cmK4ykI7y1QuLXFoUAzc9hIpGdYWIJjNZahM3VHqShjDnbdvIsrQp2v9bCcv1+OaVIpcXm8xU2sxXhI70teUWZ2drXQP2bzUMTbAoFFkSuvOI72wkF2Oi2OQPn7rOVLnNeF6g9N9zcJCXpqu0bY/vOzzYZWkCZGJrm5UP7uzhyStF+pIGewbS9KeieEFA4TYk59JRrdv0+HYiCAIalktCV/9eEvLf+uplLiw06TieQGqG99HKdS75AbsHElxaauF5AtnseC7Fposdam+DaGZU2o4wtA1W0MYSlZZNX9JgothkotgmGVFRJIn7dhS4stTib0/O0p80CBD3w3LD5Opyk//2zWvMVjqUwkZf23b50HFhHP0P7tvCb375ElPldmgKGvDBY0Ocmq5hqDJHx7Jk4zqyLOTOPF9IohqawkO7erlja44LCw0KCYP+dIT3Hh5iqW7yI3eN0bRdhjNRLi81uw3FeDiw2N6b5NxcnaWGRcd2Qy1mcX0ZqhgGrtx3uip3NexHcjFSUZ0XJys0TJcXp6pIkpCSkxVIGqKo9X2oWy5xXev6JbVtl5emq/QlDT51ao4funP0O39RvBGvaezsTzKSi2G7PvtDj8Kb73TXg7rpMlls0ZcShdibd/XwwWPDdGyPJy4JKbl8QufAYJoryw1KTYs37eghZqjs7ktyarrKUDZKIWHwviOCbWg6HlPlNufn67xldx8vTVW4d/uNou7sbI1/9XdnUGSJN+0o8NCuPvYMJNesm+vFQCbC5cUmPUmDSlug2goJg9RNen6fOzPPk5eKPD9RBgQyrNYSTPifenBrWNgKluTFhQbj+dgtrBHL9bi23KI/ZdC0HJYaZteXczwf5+JCgzOzNaZKbTRF5ofuHmO63Oapq0XqpsvxsRwP7e7hq+cXsV2ftu0ihxIsAWuVBFZCVYRnhu/7XF0SSXm55XQHj6slEPVNfI7ajocqi/cptWxSsVsHZou1G0OfzSRfTs1Wu4Oml6bKGz5uMGUwUe6Q0BUMbf00f+9gBpgDYLO555nZGksNCwm4vFDnkT3rI7PH8zEmSm2SEYWeDSSWBdBE7A3qJkw2Q7vxt8QmBvf9mQidYpt0VCWur/8hPn96joYpmP5PXln/nKmyxHghxvZKkulKk7nqhm9567GqMjPVNo+dXySqKYzlPXJxjT97thh66Ypc1/J89g6m2TOQ5Nh4lgd39rIQssR29CZphjIguipT6Ths6YkT0xSxX8pChWAsH2Oy3OIDR4eFx0VURULscbv7k8L7TBFssOObDBlNx2OhZjKYiZKOanzs3nHOzdV56mqJdFTrso29VUA11xd73Zt29GA6nvDZ8UQBGjdu/Y6W6hb1sA66utxcMwSbLLVu+P4YKvlN8i1Jktjk9vquxWSpxd+dnEORJX7wjpFujnhlqclnTs1hez77BlO0bY+dfQkODqUoNi1KDZuWVWUgHWUwE+XgcJonLxdp2S5zVXGP1kyXgXSEjuMhSzK262F7onHg+UJK+tlrJV6aFt5K1c5a4J6EGObnYxqVthNKvkIqplFtOl0AkwQQgK4qIfvV74L+JEnC8gJiSPSno5hOi8DzSMU0bNcjqsmohszx8RyJiIYsS3hewNa+eBcY9GriW4dCvhF/r3HTvegH8PJMhW29CdqhYkMQCC/Oq8sNlhoWw9kYtY5LIaGjKjI9SYOxfJxMTGOy3Ga63CEb09FV0aweTEe5XmpxYCiFIkls700yVojz5OVlggDOzjV4274+OrZPJqryzaslik2LXFxn72CKju1T7Th843KRr11comWJ9SoI4OJ8g1/6q5c5M1uj7Xj0pyI8P1EOa36d0VwUWRIDJ0WW6E1GkBBertHQv7duOizWTA6NZKh3HD5xYgZJEqoaiiLz/EQ59LBWsD2fp68WOTyS4fhYlsW6Jfy6ESzk8Z44O3oTPLCzp1tLtCyXc3OCLZpYVZ9/3+FBJkttBjOR1wR4aW8ClFCQGcrEGchGycZ1luo2nzo1x8cf3IrnB3Qcl5wkcpl0VGO5YRE3FB47t0il7XBmtsbHH9y2oeQ2iNr3+YkKLcvlnm352wZgvRbxxbMLnJurc3QsuwYw/r9yrIDMMzGdxKo9PQgCBtJRDK1G23KFYk7ouQs3SAgBQgbVt9f69fkIMHMqorPcsAWAXWBoaVouEQ/2D6d4eaZKyxIDr3xcZbnhAEJ9SZYl8nGNX3jLDp66WuKxc4vIEiQjGqmIynLTImGoRPyAuKGweyDF8bEc+fja3OLn37KDr11YJhfXeH6iSrll07ZdJpZbNG1RZ+iqTLUt2C/T5Q53bcm9MSx9I14xVnzB/MDD0AXYo266tCyHH/jdp9AVmbmqiev79KcivHN/f/e6undrD586OYfnB1xbarLUtInqCr2pCBIBjgeNjnNL31yVRT6nqwKwno8bYkAkuUiSFPajhN91Oqrxsw9t51/+7RnOztUJfKHOcWQkw+FQ5ePUdJVnr5UEKDQIuGNLnuvLLQxV4vRcjfF8HAhIRFRMR+T/ni8xkIowX7OwvICW62G7bdIxjbfv62OpbpGOalxabPBXf/gcjY5D2xbA+VLLIhfXuLzU5Px8nbft6+foWK5r/zSWjxHRFN6+r58TExWOjmbZ2Zfi+eulLolBCs2uVMUPe40tHISi2s2AtZvju+EJ9kvf6fcQX/GNZDob14loCv2pCGdma+GmbKNIEkdGszy4q4CERCFp0JOM8IUzE3z5/BL7BlP8k0d2dg2kn7xS7CIv+1JCevC562Vemq6Simj8H+/ex188P8WnX54jogoPjbfs6UNThA/SZlFqWjxxSRih267PB44O80/ftouFmslMpc0Tl4q3GM3/+w8d5pMvTKMrMttXoXFVRXjxnJiokDRUXF9IFDx9VUiNJCIqlxfFRPoLZxa4Z1uB07M1rhfbDKQj5BMGj+ztxw/RmZ99eR7b9Tg1UyWiKRRkg9maSUxTmCy1SRgKF+br1EwHAoldfSlmKh2KTWHwnY6q6yIQbw5rs25PGA3L5fJiE0WW+JNnJqmbDpW2jaHKjGZjyLJMIqIIVkoYPoLZEwQgK2C6Quao3LaJN2zqHRfpJhaaaMqIZroXCDP5WsdhKCOo/n4Ao/kopaZN03LRVQXfD/ACIb+2sy/FWD5OuWWjyjI/cs8YXzqzQNvx6Dgeruez3BSbraEquL7P/TsKJAwNTZG4b1ueX/3CBZYbNooscWmhwbaeBKoivsupcpttPQnihkqt4xLTVaYrbd5/ZKi7iD5zXSQGc1UTXZG7g1uAE5MVnrxcRJEl3nd4kL87OceLUxX2DKT46D3j9Ke/fYm1ExNlPnNqjomS0LJtWS5uWMBPlTu3ree8OqKqxN7+FMO5GBPFFp7XxA2NET93ep6JYkvotCPQrIdGMmiq3GU8XFporDN8FtG2hQxpqWkxXRYG5bv7N6a8l1s2p6arjOZjbNsADf9q4nOnF7i02GBLIc77jgy9Zq97u6HJMkHg4/nrC3E5PlxdbiFLoChg6AqeF9Cy1yKRQSTDuiIR0YX8gRcEqJIYikd10dzb3Z/i7fv78X145loJzw9Yatq89/AQ+/oT/MrnL9AwXb5xuchINtZFKmuKTG8ywnytw4nJCrIsEQSQ0NVu86njeOiqxOOXRLH8roMDXSbEcAh+eHaiTE/aWOOPsqUQZ0threzWoZEMuZBGvYIiS0c13ravn//x9ARfPLtAw3QZzcd47nqZ4WyMo6NZxgs30I+XFxt89cISA5kod23JcX25SVRX2FpIcGKyQrll84nnZ/ngsWGCQJzTdESj0rYpNm2uLDWYKbchCDi/0KDUshlIRXho92uqKPxGfIfj3Hydk9NVgiDgpakqj+ztQ5alNeCdREQhE9PYE17LMcMnrquh9K5MIaFTbNq4XsDzk2UuLjTIJ3SGMlH+4QPb+OQL07w8UyMZUfnZN2/npakqtuuH+voSQ5ko8zWTUsvmaxeWSUc1nrhU5NOnZlmsm12DaM8XqLTV19gTl5Y5OVVlJBflHQcGiGgK79w/QHGLxcRyi29eLaEqEg/uLNziMfnZU/MC5Rbq+GXjOsW2w7aexJoE9dOnBJr4xKTMxx/Ytob58elTc3zm5Xlczycf16l1xD56cDhD0lD43JkSlZZNy3J56mqRh/f04oZ+pX3JCFPlFv/jqTYTpTY+Yo/33Bvr1s25iiYLKddrxRaPnV/kzi15ZEnkjNFw2NJa9aRie2MJPUUSsmayBNkNmGC9q3xxNkvZO6vYH7VNtIWLLYcggI4jBn7pdQZvfav2/JsR56tDVcLsWpI2lWCE0B9Skm81jgljvtrpykfP1DYGxVirWI2bSTXOVy08H6odl7blkl6n4BnI6Dd8aDbwrZivmSzWbSzH5dJC4xVz15VIGQoHhtNMlztU2zaLrk/CUPjXnzrLbKVNKqKGCGjB+B/OGHzkztHuXpNP6PSnIyw3LB7dN4AsSSw3LO7akicdEwOuN+/qpdJ2eOycYE5FdZWjo9nudQhAOO9qWi7LDYuepLFhQ/HiQoPf/uplDFXmzq15fuD4CDFd5fh4jiOjWSQCTs7UhJ/XaJZH9vTh+j6HQpbXUsPkEydmWKoLf858wlgzFFqJ4WyUbb0Jqm2bIzfJaBaSBr2pCKmoxlv39t/eyf57julyR0iD+QGzlY7IR8P/X1xssNQwOTldpT8V4VMn50JpZR+kgF3pJK7n8XcnZ/B8cHyfjuVRN20USUcioN5xSBgqPSuS0UGAocps6YnjBwEnJit0bG9DBY0ggO19SQbSEV6eqTJX7VBtrR2ACa9UmUQone+4gCSRiak0LQ8IsFyhQNIKG/XFps3KW8Z0JZSv8dnek8APRF61dzC97jHdToxmXjtJ9jfiOx83D18kCb58bgnTDYT0q+PTtB36UlG+emGZxUaH2UqbiCaxsy9NvePz7kMDvOfgAP/l8WvM10x0RcJQZQYzEZKGyuOXlsjGdL58fommJdiXD+7owfF8Li82iekK5+fqvDxbJRPV2NITJ6orZKIaxaZN3XSomy7grqlpZEmg1c/N1+k4HqbtCZ/1ICBhqERVmYSh8ZbdKR7a3cvfnpwlGxNr9I7eBN+4XOQr55f45IkZHC9gS0+MfQPprjTsteUmuXiOdx4Y5Nx8g3rH5sREhVPTVT53eoH3Hx3iwV09LDVMbM/nvUcGuwzKiWJL9K3SEf7tZ852+zO/+eEj3eOPaMqGnkSvJi4tNTb8m65IzNU7ZOM6lxcb6KpCw3SQnxD54ZnZGu5IwNXlJsOZKB3H4+FdvXzt4hKVttPNOzeL68UW37wi+mCyLH3XhlFBEHB+XvT2zs3V3xiChfH4pWVemqqKnDGq0rI8tvckWG5azNdMri2J/ouhySCJnpntBOiKAPHpisxoLo7t+lxdbq3JtgJE7u8v0d1PvAA8DzxfkAFimoLtij8Wm4LpoSsKfuCiq0IS6Mvnlzg3VxfgVy8Q4OurJSQE2MgNIIFgTI7kYt18iPDvLcsNv++A0zM1hjNRHD+gGPrYx3WVgVSExboYVsxUOlxaamzaG3oj3ohOSG74ifvHmauYTJbbbO1JMJqL8ZcnplmsmV0v7wBBNomtGjTbns/dW3KcnK7RdHxKLZvqskOi2BKsfQQ7d8W7dcX32QtgNBfjTTvyXFtuE9UVBtIRPhcy0hYbFk1L2CglQhDHUCbC2dka14otFEXijvF8lyDw/EQZXZW5MF9n31CaqCazeyDJ9WILWZIwHQ9NFcSE3qTBaD7K+XkBdrEdX4DgJei4Pn7L4dR0lft29NC2PV6cqnC92AoBXhDVVA4OZfB9qWuN8PJMlb0DKf72pTn8IKDYtHh0/wBv2tHD7z5+NZxBrBCRVAIfVDnguYkKHcen1nawXA8plIl/aPfma/v3poPkTeEFa32ehlI6j+wbJJ8wut4Q2ZjOm3YW2D+4Vu7HdDyeuVbGdDzOzNaYqYgLFyAZIlBrHYevX1jiji25MLES6CfH8zE0MYCJxhQqbYda2+ELZ+fRVZl37B/YsBCNG4JiuFAXfmS2K/Q0CwmDpcYNqaLVOUTCUNnRl0SWJOLG2td9+mpJGEpqCgd6k8zWOlxebGB7PltycfpTgqnUtFz+4vkpDo1kkCQYzcWJ6QpPXS2hhFKHpabFUr1D23ZpWC6pqMbuvgQvTFY4MyeGYbPVDh3Hx9Bk/AvBmiGHoBRrLDScNV5Zq0MLb+ZXir96YZq/fnFGDKe8gHLLFp4KrseFxQb9KYNqW6battc8L9xHUSSZiCZYJI4npA9tz1+jby9LkIoKtKMXCMlDAkKvhQgdRyC/oprKgeEMyw0LRZGYKLbpi+vEdYXhbIQvnRO7+7aeBJmohqHJXCs2aVkuEW2F5SPhBXBgMMNPvWkbiw0hwfAnz0yxUDNZqJv4gc/1YsikCwL+8sQ0LcvjzGydH7prlGNjWV6YrLB3ILUGnZIKJ/OGKpNPGl3PORBeZCv//s7Xr3BxoYkqSyzUTIpN6zUZgj17vczzE+XQYF4U3AC+7294HbxSxA2VqUqHqUqbqKYQ0RWqbYdi06Jp2l1DyIguENNJQ+XFyQrXlpts602we+BGwdC0XL5yfrGLrD03V8dyxaKdjGhMFNtsKcT5mxdnqXYc3rl/YI358JfOLjBfM3l5psZb9/ZyabHJnoHUmqLkzGyNK0vNrlHw7cRkWXzXk6W20Nv/Lksrfuj4MM9eL9NxzC4L7OYw3Ru/d0y3+33eLHcqS5CJa12DSglwA59dfUkqbYeYrqLKMmdmahwfzxFRZR7c2YME5GIa6ZjO7v4kp2ZqNEwX1wvIx3WSEZXDIxl0VeYzp4RGcTamM7orhiTBvdsKXAyZXYt1k0q7RUQVbMd7tuXZO5ju+oi5fsCFhUbXZ2WjCAJR4JWaNhFN6SbSlxcbfOnsojgXns/OvhQXFuo8ebnIzz+ynWRE47nrZa4tN6m0bUxHMEnu2ZrnY/dtYabS5vFLyyQMIdtoaApXl5tkQ8RabzLCoZEMpZbFE5eLFJuCCVczXQxV5plrpTeGYN9jMV1us1Q3CYBrxSYgwDLWqseM5WIoisw3rxRJRjSKTYsL83USEZUPHB3mB+8QUoD/9jNnBThHEmv+1y8V0cKk9fkJITe4rSfOZCg9u28wxZt39RI3VF6aqgJiLXzuepkry03KLYeIJhPT1W6h565aB2zX5/nrZV6crvD8pJB8+8DRYeHzk4wwURQsplREIxnVeGGywvn5OkdHs7RtoRluuh77hzMMZaL4QUAurq9hj7w4VeHFKQHi6U9HbxnGL9QtOrZo0vrA8dAs/oNHh/nXnzpL0xQelB3H47nrZX72T1+k3LIxbY+IrlBq2l350SCUaV5boK8NPxBo7LmqyW99+QrDuSg/9+bt7BlMd0FScV3uSqvk1hkyrUQ5zE1sL6DYNMmsw3rpz97Yf9VNaC9v39fHHz09hSTBuw6s57q19hMFBOgbIOEmSq3uz51Npj65qIYfCJPyfGJj1vhs1cQLRL5calgM52/N79xQotMPwLqZercqOqsAFiu5y3rRDB/n+qKIXC+KzVeWmuxJGviBzzPXS1i3SWqJajLbe5P0JQ3OzdW6OaYbSqEM52LEDY3tvQlqHRvHC9jak+C562VOz9Z4dH8/VigrPpaPcXAkzc6+JHXT4ULIbAQYL8T48rklTs+KAfdwNkbbdtcOwcJ44tIyFxca3c9080C6Y3v8ztcuc2a21mUmFhI6kyVR9zy4s4crS00ev7jcfc692wprXmO+amK7AiQmS8Jjdblh3TIEUxWZ7zu0/jWaimj8+H3j2K4v5MDXiVrb4cvnF4kbCo/s6XtFZuprHUsNkxcmKozl4+wdTHFgOM18rYOuCvWJb1wu4gcBc9UOp2aqXfWFhulQalmYjmCFb+9L8sGjwzxzrcznTs9zdamJHTLIVVmm7Xikozoty+XEZAUAP/BxPJDlgLmKYH75gVgbbgbwwQ05xLMzFSaKerfuXPFOkIBkRGE0H6dluuQTOoaqcNVqIQUBLUsA69qOTxAExDSFluUS+OLJXZCTJ5qbH71nnC35ODFDNAy/HZT8TM1+5Qe9Ea+b8G+uEQKodBwev7hMy3aJaioJXWHSEWzPQkLj1GwNx/WZLHV47+FBJEk0xd+2r5+ZSoepUhtdldnak+DUdJWW7VHrtMnHDearHeqmAMPuH0ozXzXZO5ikaXtUWjYLNRNzugJIpGM6j+7tYy6UC5UlQk9iGRkYy8c4NJJhoWby1NUShA270UyUQJLohF6+bdtlOBvhylIDCYn3Hh7qrj/FpsVLk1Vsz+P0bA3PD0hHVaTQj/F/PD3BnVty/OKju/nc6XlOTleptm0GM1Emii3evq+fnwj9T1dqvZPTVb52YQlJgg8dH2GxLjLD5aaF7/uv2j/9lWIzCVMfCdsVPjIdxyOiyfgBXFwU+4umyFiuz8mpClPlTvdzvOfQINeWWwxlo68oYZswVGRJyFQmN2F8rxem4/H1i8so4fBsJS+7nZAkiWNjWc7O1btqHX/fcb3Y4tlrJbb2JNb4bH43YwU8PFFskYiovDBZIRPVKIT9pJbt4flCak1G5I0BdP1CTNfn/HyDqK7c4iXetlxOTlfW/FIN1RgkSRJA4FwMxwcrlFz2AohoEpqq0bJEP/LJy0U8P+j2Rh3TFY13xCDV9QMxzNJkvn5xCV1R+NDxYQYzUZ6bKPPsNaEGsK0njiJLSJJELi7IAlFfYe9Aiu8/NsRfPD/NRKlNNq6T3SS/fyP+145q2+aPnp7kpakKO3qFBKyQmRbXeVRXuGtLjk+dmmNXf4rBTIR3HRjg+Jbcmpw2G9fwAilUXtNYqIrau+LdYFUGAdy9Jctzk1XmqmbXD2wsH+fn37KTP3p6gmvLLb58QdiE2K5PRFcwVIm27fLMRJkjY1netq+fuarJU1eLnJ2r8/nTc7w19F7cM5Diy+cXKbcdXp6pEdMV8nGDqXJbqNIV4ty/vYDjefzWV67y3LUyTduj4whVgaiusKMQ4dJiG0kSdeFz18vsHUjRk4owV+1gOj6KIpGJ6mzvTXBgJMXjl5dxPZ93HRjgqxeWOB2qnkyX22RjOpoqc3W5STv0R3vbvn5Mx6fUtDgzV6Nji7VoBbylSALQFdM331det0MwSZJ+AzgOvBgEwS98K8+9Y2uha7J+ZDTbLTiOhnKFqyOiKdy9NccXzy6yoy+xZhhwz9Y8A+kof/XCDEsNiy+dXeDH79uCBGRiGlt7EvzE/VvY05/Cdn3u2prj9GyNuaoYYl1ebK4xqr/5fd9zaIA/eHKCSsvm8UvL3YvwTTt6yMZ0cnF9TWF5erbKybCJlYlqHFplgLqCANVVmbFCnAd39fDHT08SM1Rs3+fXf+AQXzwzz+WlFnNVk0Mj8KN3j3FlqclTV0tYrs90uSOklJIG1bbFSou70rJoWi67+pLM10zqptv1m3DdgMW6uaaJEjOEjrTa8jZsTEiSGI5sFr4f8NULSzQsF98PUEJzzNVP6zg+MV0CSUbCv6WZpakSKUOhbXtoIUBZV2WCQGgNZ2M6I9koNVO8h+V6tCzRTMvENHb0p4ioYkN/ZE8vA+kov/r5C1TaNkFeyFz2Jg1enKriuB6yJGHooqldSBg0wqGp6/v0Jw2qqkxEV4gZCp98cYbvOzRIbyrClp4Yni8kGJJRbZX8pmDBgGi4A9wxnutKpa2OY2M5jIdlLsw32N6XXONXdHf4epOlNnJNEtImiswdW3KvGbJsPmyCGZpMXFOoWR7JiELTdFF8H/fW2n1N5GIaUU1htibuH1mCZFTDtD3KLQcvCo7rE/ihfwsSyYjK9t4EpuNzcCgtvN86Dlt7EhwayaxJ8l+aqnBtucWpmSqaLNG2PY6MZDA0hULS4NhYlrmqKfx2gLNztTWDrJWmk6HJfO3iMrbrM1Vus7NPaOFbrseXzy8SBGJj/Nh9W27rvD2wo4eT01X2Dab+XrzFLi81ySd0yi2riy4BIV9wO+y9Fdbnin/YQCrCfGBiuT5RVeFt+wa4YzzLU1eLXFtudpvimZjOB48NUzddzszWqLQdnr5W5r1HhjgTIr1sz2P3QJKfenAr43kBTogZCoOZKKP5GJoiNIHPztV5eHcvV5aapCIqZ+bqa5rt//Z9+zk7W+PsXB3X9zk4lHnFzzVfM7tDg2eulXhP2NCbKLXJJ3QaHZdCQngbfPn8IhDwG49d5n1HBpkqtQEJ2/WIaCr9aYNsTAtfq8xS3WJLPk5vMkJv0uC9Rwb5D1++zGguyrGxHO86OEDHFgygXf1JehIGV4tNWpbHI3veGIB9r8VoNtYtJLfmBQvE0JQ1Q7AP3zHKp16eJ5+QqbUdJCSiutIFM+iqzJNXllmsm3hBQFwTjOJ6x+HJKyWiqljTE4bMbNUkpit0HI/tvcnuwOlNOwp882qRgXSU/lSEL5xZIKYr7OxP8NMPbAcpoNS01+QWuiozXohxYrJCb1q/xWvo2FgWNURyj+fj/Napy6FvhGBjHhhKU2xa/MIj22maHleXm2uYIabj8fjFZXqTBrbr8/3Hhm/J077/2BCVlo2uyDy6vx/X99kR+q72Jg1mq236U1HqpoOsybw8XcUJpYTHYxqGKnf3T1UWDRzb3XhPEiAOGVUOKLctSi2bL19Y5O7tNwYCg+kYpbZoCI1tAnhYnQItNi22r/OYU5O17s/OJovux9+8HWSZiKrwoeMjGz4uH9dxPavLOl8vVvfSN0NsT1U6aIqQ07hWbG/4OE2WsMPXWi1nuDoMXSWqKbh+0GXZrvtaqsxKZ0V9BTmLlViqm/Skbm3qOau+5I3214imoMoywbpc6FtDkeAjd45QSEQwHYFgrrQFs7zadvgnj+zE0GT6UhGqbYfnJ8rk4jrD2QhnZsU1c225RalpMx36/q40edMxjemK+J3wsRFD6bF8DEmSeGBnz4bygSs5iipL68qAXAobmIamhB6YMT738gJD2SgvTla4Yzy75nnrMQR39SeZKLUoJA1UWSIb02/xALydMFRlU6mSF6cqTIXnZksh8ZoyIG4nvnJ+iYWaycXFBuOFGOmo1r3nVsCV9Y7NpcUm2ZiO4wX87Nu3E1Vl/tPjVyk1LNq2T1RTkCWZLfk4miLjBsLz1AnlDkFIai7W3e4aFdMU2ngEvk/DCrp5mOsJ7wU5EINkWYDjVzFaxU8RTSYT0+k4HpYjGiGj2ShxQ7AIV+RnF+oWTujXoMgSvQmdVFSj0rJDX1axbjYsMRxLRFR29CbYUnjtfHC/h+10/5eMW753SYAbWpaDH0j4gQ+S8PTVFAFCdT0BPHR9vws4nCq32NWf5MhoBsfzmK50MFSZXEJnqW7iqxKZqJA5i+lC7eMzp+aI6ioXF5o8sq8X/1zQVRyRCLAcj0LCIBs38BDrVz4ufM4rbZvRfIw7t+Sptmxmqx3mqh2Shso7Dw5iuz6PX1qm0hJqLCdnqrie8Id2/YBDw2lqbYfPn57D0ELPLl3hqSslHt0/wPuPDPL737gOwDevlPjxe8fpOB53jOfo2C6ltsPRMO+5+Ry2VvmTti2XH79vC1+9sMSbdhS+YwMwgPt39PD7T07e8vtcXCMX10PWj4SPTH86wmLdYldfklxc1CPbehIcGc0yUxGebDFDIaIp7B28PdZMbyrCR+4aoWN7jOXjr/yEVXFqutplc/UmjTU56+3Em3b08KYdrx8G2DcuL1Nq2szXTPYPpV6xefudiAd39vDMtTIjOaF6pSrCH7snYVBq2YzlYlwvtUgZKqWWva6UrQCpC4C8jADNuZ6Hj0TH9khGNGJaQCbsb06V2hSbFjJimL6jJ8FSQ7CwYrrKYEYw5YMgoN5xYSVLk4REdBAIMLsi0VWzsRyvy+7qT0WodRwGM1GUVfed7fpd9stDu3sYyUWpthwePdDPaC7Ott4kz14rsX8o3ZWHfiPeiJvj6nKLhVqHji1sB4pNm9FcjJFsjN0DKfYNpnjngQE+ctcolxab7O5Prns97RtM8+j+ftLXNMotC11VkOUbQCYx8JJYbNo8un+Av3x+Csfz6UkY/NzD24jqKiPZOC9P12hbPl7go6tCDjGiin2wZbqcmq5y7/YCpabNU1eLqLLE5TCfBbhve4Gvnl+k1BQg0vlqh7mKiabIbCnEeGhXL0fHsnzu9Dwd18MN6FoEBAj/84RhcHBIY6LcRg9rbUWW+LUPHuSff/Jlzs3XadsecUOh4/qcnq3TlzKEXPFig8lSm55Q1nB3f5I/fGpCsE5dH1WWSYeKKnOVDotNE2eVR6Aa9i0NVe72vTeL1+UQTJKko0A8CII3SZL0nyVJuiMIguc3erwqywykIyzUTFIRjY/dN95FheiqvOlG17RcorrKew8P8q4DA2s2HkkShqfjhTjT5Ta9yQhxQ+WRvTc8EWL62v+P5jxemqqgKBKDmc0XzoimkoyoBCGbZSU0RebIOuiUdFQPj4vuRbASHzo2TMMUEjg7QiPmQ6MZGh2Xl2eqVNoO+wbSTJY7RDSF4WyMhKGiqzJn5uqYjtf1LXnrnj7+8+NXqZ6cpWG5ZGI6P3jHKHPVDk3bpdJyiGoKddMhGdHQZGHCbXs+siTRkzTYmo8zV7OQJImYrghfnvAjysAHjw53k7sXJ8v80788harI/P5HjzFeEAW1HHqUnJuro+kKhbgu9FVNB9sLiBsqA2mDdEwgWQ1VpuO4tOwbza4thQRxQ8HxxXd9aDiDrkqcnq3h+gGHRzL8q3ft4RMvzjJdFjfepYUGM5UOu/qTHBvNsn8ojSJL3YXrrq15pstCquCdBwdomA6Tf3uWSttmvBDn+48NM5SJ8qWzi2zrSVA3HbYU4vzD+7dSbFl4fsD5+Qa263NxocFILsb7Dg8xX+2w1LC4Z2uBY2PZ7jn4wNGh0APslZsA+4cy7F+nwR/TVR7e3cdCzeSvX5rhoV29fPDY8KZeDLcbXzo7z298+TL1jrguepMGB4cyTFXalJsWS5JF3XSRvQDHW2dQKUPc0PjA0SFKLZvnr5fpOB5v2dtLXNd4/NIyKV8gxfrTUS4t1GjaPn2pCAeGUmztSaIqEkdGsuzoS/B3J2exHJ9thbWNmYF0BClEBg5lopTbDtv7Erx930C3eZSMCM+0Wsdh903G7+/YP8C1YpOBVJSvXFjsLtQrBY0my+TiOqWmfYunzWaxfyi9RprvuxlBAE9cLlLrOIzkoiyH1GlFlkhHBVu12LBpO344/FeJaKpgUwYBamjkGVguuqZwcCjNLz66i//yxDWmSoJZ997Dg+wfSlNuCTR8reOGHnUtdvQl+ODRYaKawunZGmP5GPuH0uTjBo4nGkjjhfiaYeYHjgwzVW53DUNfnKwwFHptHBrJcGq6St10iWhK93tIGCp3bc2vkQh9pcjENOKG8PlavZZLiD1nV3+SH7hjhC2FBJWOzadPzZGKakwWBXqs2na4Y0uOh3b1ril6x/IxpstthrJRPnLXaLcR+Evv2EOxabGrP4mmyCQjGh++Y5Sm5bKtJx6yDDZGtgy8vj2o/5eOvnSEbEzH84Ou96imyKQiKg3TZSQb5dEDAzx5tUTTcvnhh0aFp6Uk8f5VEql7BpJkYzqWK+TJdvQlOD1bI6LJPLSrj2xcx3R9HtrVy86+JI7nr2Fc9aYivP/IDZPY9x4e4qWpipA9TupkYjrb15mxfvCYMJKfrZocvGmtUmRpDZp2OCuu7xWWeduucHw8y1BGXKA3N7P10CNkuWFxdDS7BryxEv2pKP/q3XvXPbe/+I7dnJ2rYbuCQf3CZIWIalFu2yQjGvdsy7NUt1AUmZlyG1mSGM3H8Dyfi4vC41Pc02KIH4Qs8D39KbYWYnzm9AKaKjFRavPk5SL37xCDsAOjWS4tN5GQODi8MZp4KBthrmoSUWUObCAb9n2HBvi9b1zHR3itbRS5uMG/eMeeDf++Eu87MsJnT8+xpz9FzwZ7/H3be4lql3Fcn90DGw8x3rq3j5PTVVRF4i2bMFA/fOcIj51fZFdfasO84uhohi2FOMWmxbsPbsxke3TfAH/23DSyJJjKG4WuSNieaIrs2eDcvn3/AL//jetYrs/92wvrPgbEdRzV5Ff0N1IQg9//7Z17KbVsXg4ldX7n61dwvIBd/UnedXCgu+b/j6cnkCXhZ3rXlhzn55voqqhZIprCC5MSHcfjqaslZqsd3rqnj3u25ulNRkhFVXqTEUzHp9KyuXtbnoSh4vsBXzq3SLll85Y9vd3c9IEdPQxlomRj+i01AsBQNsrugRRD2RgxTSEAdvcbzNdMhrJRIqEnz4eOD2M6Ptt6bm1MRjSF9x7+zss2D2WjnJqpoqtyV9J4JVzP54tnF2mYDo/s7bstD9ebo2N7fOHsPK4X8Oj+/lsYaZmoxkLNJK6rt/jabO9N8IGjQ7Rtj3LrCsWmxSN7+7rgtJ9/eAf/9RvXKbdthrNRepIGO/sSjOREXXB2vk42pjFRbNGyPd62r4+pUovHzi2RjGr0Jw1enq2hhPVTuWXjByGoL6IhSxK25+P7Aa7n07Y9ZFmYoGeiGsOhj8+VJSG/HFFlHA9G8zGimsxoPs7R0QxNy6HYFBLLUV3h3HwDQ5U4Pp6j1nEYy8cYSEd46kqJpuVweDTLLzyy8zUFa/3AJsP8N+L1F/mEQX3V/zNRTcg6BT5+IHFwOM223kTXx/kH7xgBSebpq0Ue3tWLIotruj/M6Xf0JZivmeweSPH9R4dx/YBPnJjh/EIdx/PZ3S/8SX0f9g6muV5ssa03wXsODPLERYFkdz0fOcxDfuTuMQKg43hsKcTZP5jmd5+4Kta4TIzRXAxFlhjNxYTlQTbGOw8McGWpyWLdZLGuc3w8K2TaGzbZuBjyS5LEjr4EL05FMTQFQ5NpW0J2qdi0KLfEvT5T6bC1J44sS+uCVdeLlfeL6grbexPs6EvywE0SfU9eLnK91OLebflvS45/db/l1z90YN3HvP/IEHFd7Srg6IrE3qH0hgPwj9w5Qt10XtVx3cxWvt0QtbdoDOcT3/tMnZFsjFLTFlLGm4BDfvlTZ/ji2UWOjWX5rR86+poeQz5h8K6DAwC868AAn3xxlnrH5kPHR6i0HL54dp4Xp6q0wvp6oWaGzP6g6wsWVSWGczFAMPxSUaFq0bFdEobGQCbKYDrKzv4E339smKvLLX7na5e5ON8kE9M4MJymZcW5HnrfDaUjfP7sIvmEQTam07I8IrpMvSMkFFVZoi8d4Z6teU7NVJmtdOhLGewZSLGjN0F/OsquEDB3x3iuq8I1lI3ywkSFRETl4HCGwyNrc/itPYmuKtgb8UZsFNt6hJWG5Yq9ynSEfc7h0Qz7VtUkA+nohszbUtPisXNC9eA9hwZomS79qQhPXS0RUYWiWKlpk4qo3LO1wA/fPcbV5SYN06UnYXBiskq94/LmXT3UOjZBEHCt2EZXJd66t48Hd/Tw5QtLKLLUJfo8sKPAeCHBcsO8hXl619Y8UV2AFQ8OpXnmepmG5TKai3fVtQ4Opykk9K5cve36RDSZwyMZ4fuZMLh7awHH94R0cCFOKqrxo/eO8WfPTDFZahEzNEEoyse5utQkCESOulg3gYjoBQQC1Hl5qclAOkoqovLuQ4PCoiob4Y+fnsR1A2zPJ2Go5BM6TdNlIBPhgV2vDHKQNtIX//sMSZJ+FlgOguAvJUn6IDAYBMFvbfT448ePB1/5xtOcmChxbDRHZhOE6c3x7LWSoMUDD+7qWZca7Xo+S6Gu7GYmnythOoIRdDv0bMGMsDk4nN5QOnF1LNbN0KT11sQhCAT9b+V1LNfjaxeXOD8n0J+P7u9nV18y1Oxcm8T4frAGfW06HlOlNh3HZe9AOkTmit9X2w49CZ3JcptCwqDctPnUqRkW6wJtNZSNcXK6SsN0cL2At+/rZ+9Akv50FFkO6EvG6E8LCY3jx49z6Of+E89dFxTlRw8M8Gvff2jNsU2WWkyX2hwdy+J4PosNi0JMo2I6KJLMaC7GRLFJyxbT76euLPPCRJXhXJQdfSnef2SQZ66VsN2AN+/qIaqrTJVbxDSFfOLGEKPUtIgbKnbIBovqCumodsu5Wu96aFquQATrSrdJ7fkBtutzYqJMLqF3F0TT8fjrF2dpWg7vOjjY9awKgoCO433HEUAr9/xrUcgeP36cPT/9O5yereJ6PkdGs/yzt+9iZ3+KT52cZa5mEg/lqGzPZ0dvgsG00H2fq3XIxHUcN0BVZe7akoMAFuomQ5lIyO6DWsfGdH1apstQNkbDdHhhsoyExNHxLKmIQPqvfJ6VpGy9e7XWdmg7QuZqPB971UPAlWugkDDW3OeW61Fu2fQlvz2JmO9W7DlwmP0/+5+wXcGO+vlHtjNdatOfiWJ7HqbtY7keluMhyRIyEn1pg4WaMEE+OVXlxGSFiCrzviNDHB/PIUkSpu3RdlyyMX3N/fXSVJWxvFgfri43MVSF7zs8yLaeRCjJoyBJErOVNmfn6hwby77id9SyXIG2XnW+yytI5nUko76VMB2Ptu11WQueH/Afv3KZIAhIRjR+8oGtgLinnrlW4sWpKtt6Ejyyp5eG6ZKJ3bp+gJD4imrKtyXxdPz4cdT3/QoLTSEX9u8+sI8fvHP8Vb/eG/Gdi5PTVb54ZoEgCHhgVw/3bitw6Mgxdvzkf6Bte2zpSfA7P3xMaNbb3roN7JVYrJuooRdP03KZr3aIGQoDqaiQA/H8276uRLLcIh3VXlUjeb3w/UDIKEeERNDNucV6seLBmY/r39a+JHIgIXl4dbmJLIlhtQTUOw7FpskfPjVBIiJYx9eLTa4utxjMRLl3Wz6UrnOwbJ/3HBpAkmWeulrk0yfnSMc0YrrKTz6wlTffdzdf+Po3+Xefv4ChyvyzR3dv+J1VWhafPjXH3Vvz7NzAV2C5YfF/P3aRhVqHt+0b4CN3jr7qc7ASluNhvEJOeXamysmZGh+5c2RTxPly3URX5XW9xVYiCAKmyx3608aGEowLNZM/eWYSzw/Y2Z9YM5BdHb4f8PULS8QjCndt3Xhw9fCvfYVyy0ZXJL74/3qY7AbNsGeulrhebPLuQ4MkIxrHjx/nxIkT3b+3LJffe+IaHcdFlwMuLTYxbR9NkXCDANsTciXv3DdAIqJyfDxP4ib5phMTZWYqHe7dll+Tn5+arvLklSLbeuK8fZ+QQFRkqZuftCyXL5xZ6LKePnR8mOHs5oiG6XKbT74wA4gm8mYDxZvDdn0CAozQ11aWpa7v4N8HE32zaJhOl02yEsePH+cvPv91PnVyDhByr2/b9637ir00VeHroezjPdvyt6BGPT9gpiJqnPgm0u2m41FsWgymo9117huXlzkxUcFyPB7Z28fxm5rhbggYvLLcREJ4kqqKzNWlJj1Jg69dXOLzp+exXJ8fu2eMnf1JHNdnqW5hBz77B9Ist0xaHZdTs3Vmyh0KSZ3DI8LkXJFlXD+g1rFJGBq6KmO5Qp5RlqTucbqez2y1Ew5aPX7viWvIkkDzvu/IEOWW8FVpWcJjafVnfLVx/Phxjv78f+brF5eI6Qp/8LE7ODZ2++CkN+K7F7/+pYv89levAPBDd43wK+8/yL6DR3Df8//D8QQo7nd++ChRTSUT0wkIUCSZgbTBVKVDKqLdAmpxPB9l1TUIdK/NlfUnCAJqbeHjnU8YxEJGvK7ILDcs8gkdVZFpWUIa3/MFuHYgG8VQFYpNi1rHYWs4sPH8gOlyC9cXA2zfD5iutGnZoonYEw5iVh9b23axHI+orq5Zfy4tNqh3HA6NZJipdPji2QVycZ33HxlCkQSgYbP14tVEw3T4ryHLrJA0+NG7x17V66zXb/nl9+zlx//gac7NNZBViSMjOQ6OZPnpB7cRM1TKLSHHfjv9qe92lFu2kOD/n0SurtKySUbUDfP348ePE7z3/8QOPW+e+qW33JKHfOeP0cLxRN6w3DBJRlSKDfE9lFs2Y/k4haQh6hBZoh0CeFIRteuHtNyw6EtHSIXAk1rbFmAhWebt+/oEiDVUlvi9b1yj3LKxHI9/+a49SEjomozj+lwvNrm01GQoE+PIaIbJUhtVlohoCqmodluWK9+tWJ1zjv/SZ/+ej+aNuJ2Y+NV3dX++uWbYKCzX21Tme7147NxiV/78PYcG2N6bpBX2lMstm0+cmKHcMtnak+TjDwq/7HLT4sJigxcnq10FgZ95aBuGKlQeLEcAoyKagiJLNC03lO69cVy261NuWV1Aykr4fsBiwyQb0zFUmZlKh7iuko2v7WeZjofrB1RbNksNi7F8jKYl+n6LdZPRfAxVllmsm10J7pU60Q984oZGMiL2V7GPB/SlItiu3x1q+X7AUsPib0/O0DRdjo3lePOunu5xLNQ6/OE3Jyi2bHJxjR19Ca4uCan/t+7t49iYyL0lSXohCILjN5/7188KsTYywNXw5xqw7+YHSJL0U8BPAYyOjpKOarxlz7deCA3nYqjXy8ghO2S9UBWZwQ3+tl58K8mCQBvc9sM3peVKkrTmvQ1VYUdvkourkKcbFTDryUTuXId5JIxble6xg/DT+vlHdgHw+dPzXFhocHAozYWFBhFN4f1HhtjetzGL6YGdBU5MVpAkiQd33trwGMvH11DlVxoxuVUIoq2r/H22FBLI8hSW43P31hxx49ZrYzR3K8J1pdkuNtAND3fd6yFhqLdsuIos5KzedBOiK6Ip/NBdtza5BGvuO39LvtaNjsOjGc4v1FFkmWPjOfYOplEVmR+4Q3zGCwt1vnBmgZyu857DQ93ztBGGafQmWYQVryRCUEVUV3jHJn4oiiyhbCBrlI5ppNE21UK/ndhoTTBU5dt+7e9mGJoY9DZMl2PjGXqSkW5BuFkMZ0NJN1VhqWGjq8IfZeXaiujCv2115BNGlzXrBQGz1Q4xXemivFcXjkPZGEOv0AhcifUKzs2ktr6ViGhri78VBOlUub1GAk2SJO7ZVuCeVf4p2U2O4VtJkDaLN+3u4wun54nqKvduwnJ4I/5+YzATIRERCd1IeF2rssRIPsFctdMFSKiKTDq6+QBrdQ6w4hO6Or6VwaokSd8Wqni9kGVpTaJ9O01TTZFfkyGcyIHEenAzIzoTF1Jf+4aEJ8j+oTSpqMZYPrEhAAqEbI6ExPMTZfpSka5EXCFh8GsfOrTuc1ZHNm7w0Xs3l8ZNRzV296foTUbY8Sqk5daLVxqAAewbzrBvOPOKj+u5DWazFDLsNotMTCOfECzZzeSPZFni4VUKCxvFvqEsL05VGMxENxyAAdy9Lc/d2zZutEc1hf5QTeLYWJYtPWmmym32DqbIx3W+cblILq7ztv0DG4Lbjo/nOD5+6+8PjWTWSDXdXB/EDZWdfUmmK8LwOR9/5fsgnxA+mU3LZfxblJFaffwr9+brscEJG++TvUmDeChz/q3KaK3EUCaKrsr4fsBw9tacTZGl23rtFWWN1TGSjfHSVJVUKJt/c6ys0TtvWru3hff+rn5hRB7TFY6N57rnYWyVusFKHXRodH22iS5La3K59WoLVZG7n9FQZUZyAoW7pSdBKqqTCtVHVv/8WsQje/updVwyUY3tPd9dmcs34vbj7q05PnMqhh8E3Buun4Ymk01GqXVsDg5nuWfb+g2MjfKK9cCJN8uiSpJEJq6vATSvLFF9qywr4oZG3Lh1jVjxV18JRZa6CjMg1r317u3VxxbT1XXvmdX37JZCnJ9+cNuav7/WA7CVY+lLRcS9+SrXu5W4ud8SMzT+4mceAOBrF5Y4OV1lKBPtAghfq1rqOxGv52N7NbFZzbgSY/kYlxcb9CSM7/oADFb1Y6B7j630A9aLZPTWvuXNQ8t0TOcfv2Xnus8fywuPpT0DyTV7kKEqHBjOcmCVCsPN++kb8UZ8t+OVZL7Xi7F8jHNzdSKa3AXQxQ01ZC2q9KYMYobC/TsKXQntXMLg3oSB6Xicmq4xFHrSgsjxb65T1hsI66p8ywAMxP64uo85klu/rlupGxKGGrI/b/TRU6t6AKt7pRvViav369XHL4fstZ9+cD0jAehPR3nf0aGutcPh4SyLNWE0saI+s1l8LzDBPgAMB0HwHzd6fKFQCBra2gaGhJANVEOJsnRU6xoal1s2pZaNH2qz+0GA7wtpL1WWQlM1qatVHjdUJIThmq4KdoqQA4OYLhAHTdOlbQvzYk0RaCDfF0V/MqJR79g0LQ8/CDBUmWxMR1cFqqlluRiaTE8yghpe4B3bo246oWmjjiILdoTp+CQiKumo1kUpGeHF4voBsrTW38HzAxqmmAArskimVi6uAGh0HAKEUbUkQdt2sd2AiCZjOj6qIt1y81iuT9N00FVh7Gy54jgE80mgoIT8i43jC53uFWmnbEx8lrihoikSExMTjI6N0zAdYd4c1daML4SecIC2iVk8gB+IzylJonC+nTFPy3KFwackmnZt2+t+XsfzaVkuuqoQ04WmuSxLWI7HYt3E8fxug1xX5ZDu7SFJEA/PccIQsnGm42OoMqbr4XlCu9TxfKGTrojvNxXR6DgejfA68vwgRMDKIXJXfJeeH4SeZmKKL8tCN71heZiOkPHRFAldUfAC8XgC4Y2y4i9juULKTlFkkoa4lhwvwHRcDE14ePlBIAyFZZlERO1elzfHxMQEA8OjdGwXy/WxQ6N32/MF4jl0R5UkqTvdXy8k6KKjV45TV2U0WaJpCW85XRFDXtcPumif9a6Z12PUOw6d0Ow1nzBeN8c7MTHB+Pj4Lb93/YCm6XbvB9v1qbSFaW46qmG5Qh4xoiuYtkCDpKIajicQKDFdRVUkwUwNPfVWotq2WW7aguac0G8pZISPhdf1LQkCsSkKfy3hc7RynWVjOg3TwQsCFEmi1LLFfSHd8FMBsU6vIGEkSazvAUIOUpYl4rq4j01HIOyimoLpeOHn8ZFkCS28/mzXx3QE20QJdYpBMAVSEY1y28ZxxTq94j0kfF182lZo2ilLFBI6MsLRN6op2J5P23Kpdhw8PyBhqGRjOtWOOO8rvjUr9+PExASr971CXO9K7b0Rr6+otW2mKsI8fCAdoZAwuHb9Oi39RgNTU2RyIXMwCMQ+YYXXVlSTMbQb62J8neZMK7x2YrpCJqZ395f11hon9Oi4HTxEEEAplPFdyaE8XzAhY5swLVf2zG+VOOBscNwNUyDjVvIHQxVG7RvlDq4fdNF0K/tKre1guh4JQ8X1A+GXo8nhMN8kCMR9rCkyTcslrqtYrnh+Pm50z9fExAR9QyNMltpIwNae+IYqAefn67jhQrR/ML3uORda6HU8LyAb1zcEXTmez0ylgywJ2cmNjOebpkuxaZGMqJsyac/N1fFC78SNQGAty2W+ZiKF72lsMAS6vtykaYtztZF0s+36XAx9qSKasuHAb77WodgU695INroh0vvCQl2gkiXWSI/c/J6Xlxr4ASQNlfFCfM2+V2yKHLxhul2p5hUN/vVCQuxHhhr6yoXec8mISjs0jo9octd3SVOEN5gsSbQsF02VkCWpu0+CYL93bI9ERGUoE6XjeCw1hE9GfzqCH0DHdoloKhFNXJuO5xPT1K7/WtNycb2guz+s5P6qLJEIB2auFxDTFRRFwvOC7p6+Uo+4fhDu536Yo6//Xbu+MKJq2cIH7eZhVQA0TUec84i6piZZ2edWcuv1omG6Xenfm6+3jXKW11N8q/VIJ0T8en5AIWS+3Pz3ju0RDesNEHVew3S6tcHKujhZanXzo2REpeN4EAjwmK7K3dxH1DGitnJ9UQOvfE0SEt4r9AZkCUZzMUotG9cLwmHgK+cfN+ctw1kh3/lGvP7i4nyN0F0AGdg3lObqteu0jRt5iyJJRDSZqC5UVHRV7JWqIrFUF82oRESlZblICI8TQxNy36osfILKbaHckI3pTJXF9ZuOaiRDfzpFloRnqBeE66Covf3QG291feoHwtd0pb+TWoeh7Xh+uMaIxyRf5TBhdQ8hn9A39NZc3cdY6dNISLRsIenWttxurhc3xH1a77iko4JJV+84uKEXdqV1ow7rSRpU2jZt2xOylLpKreN0mb4N08F2BaI+G9dv6bf4QcB0mJfeHLIk5IElSQrl8TXihkqlbVMP9zVDlbFcn2xMJ6orVNs2nbAeNFTB4JUl1vSpVqJtizqvE9Zc2Zjo0Ukr61q4d3RsIae1WR/idmKlptUUad1B5UrdubpH9nqL1f2WmwGa34lY7/7a6HEN06VuOuiK8MuTQzlEN9ybCgmdhumK6zMARRb3ha7IpML+7GJd1BkSN/qZiix17w0Q+Zc4nBXPZB/bDQgIulLmEU28ZjamY4e9PMGIlqh3HJqW6NVmYhpJQ6NhCjUVXZUptWzRB0BCDfuOCUP9tgeuK3lLw3TxgoCkoaLIUreuCYKApuWGNYgAOVXaDq0w11MkiULS6OaZxYbw8wTxmWVJ9M8UWawtov8RdO/Ftu11LSZ0VTDCax0H1/NRZBlDE/fzSr94xS5HlSVatji+le8iCJWWopqCoYk8znI85usmfiDqVdPxw96q8AGeq5nd95ckiagu6thq26Flu93Poauy6KO0btjpiBz2Rn9JVxVqHQfH83E8v5vXgOj7y5LwxHV8v5vLR8N+YbXjQADJqEoqfM2ZSkfk07rIv9dbxr8X8s43YuN44YUXgiAIblnYX69MsKeBjwN/CTwC/OFmD871DZF4z69s+HdFgsHeOMe35Jkqt3n+WgnJFQttRBNIQC+Ut0pFVNwgQEYkK3FdGBiLwlfpynXNVTvIMuzoTfJP37aTL55d5Npyk4W6yXAmxqmZKoOZKEPZKHeMZfmrF2eotIUE1qGRDB86PsJQJsoP/f4zlFsWthfw1n39/L/ftpOBdJSvXljk1HQN2/V4dP8AiYjCx/7bc3RsD02VeeeBARIhlfDH7h3nG5eLnJyqENEVfuTuMVwv4G9emuHE9QqZuMa15Rb7BlOMF+J89J5xTMfjfzw9wemZGmP5OPfvKLC7P8l//+YEIOjKwhvJZmtPnNFcvOut9nN/9iKXlxo0TZdURGM0H+s2R6ZCryzPD3j2Womm7YlEMSwIB9JR3n1ogNFcjB+8Y5Tjx4/z23/5Rb5+YQkkeOeBAQ6uQib/2bNTLNZNtvbEuz4EjbC4Xo02X5EfAbh/e17QNw2VB3f1bDiV//Spua7BdS6hUw6bLh+5c5SvXFhkqS4GW7IMxYbNzv4Ej51dhPk6nh+Qj2vsHkhR6zi8OFUlvapmVCQYzEVDDzMXRZYw/ADHC25priQNQTO9qzfOk1fLRByxsUkIuQnXB9N2cVbNjxRWbONFQpC96UU1GVxfLP4yIMnhc3yIy+L4fCQiqsKOgQQd2+9qI+uqzMWFBssNi/1DKUDiI3eOrmt2e/z4cX76N/6ShZrJ352cxXaFJKXtgiIFWOF9trnLxtowFOjPRNlSiHNhvoHatLsFuSIJ9GpMV3jH/gHyCYO37OntXjO2K2S1ColvT1brtY4/fXayWxD+1ANb1yThK4P5bEz7tuTxXk0cP36cJ556Bsvx16DQVt8bHzw6xBfOLvDyTI2xnJCQrHWEF4oiwWS5Qz6u88jeXjGwdH2WGxZLDdHY29qT4FfefwBZlnjycpF/9omT0LSE785Akt/88FHG8zGevlai2LA4P9/A8wNOzVRYbliiiZiOcGAojecHYYJk8/xEmbihYMgy5Y4jpGLbwndsBQTh+zeM1/V1ejoSENNFsRaEMm6ESfRoTGO6bOIhrrtkRCOiiUR9PXxJT0JnMBPhWrGN64phVzqqUUgazFU6tGyPfHhfrsh1juVi9KYiZOM6luNjOi7PXCuHoAGIRjXikoTnC2mJQ8MZ3n14kPcfGeb48eMUH/nlNcdwYhV9/414/cT4L32WgVX/P/Gr7yI6sIOBH/vNNY9LGMLAVpZEk2BlEJuKaqSiGkOZKLv7k+wZSIXsw3wXQfUP/+h5JootDE3hQ8eGWWpY9CYNPnbfDRbSC5NlHju3iOsF9KcjfPSe8Vcs+Gtth//65LWuNEO5JZouR0Yz/PxbdqyLln7qSpFnr5fxA5/xfOhRuoFxueUK8EchYfC3L81yvdhiIB3hw6skASdLLf7qhRmemyhTSBgcHE7zUw9s45lrJZ4O5axX7wNXl5v84Tevc26+juP6GKpCb8rg6nKThXCgo4WFVQBIAUSalvCWGkgyWzW7A407BlLIssQ/ecuOrqfg8ePHyf3wr9NaFLILe7dk+fOP37vu51stffLP3reXD999KyvsP339Mv/XFy4BYq058X+ufx//zJ+c4KsXlkGC7797lH/5rltEEsTx/KvPk3B8JAm+8C8eprAOtf1/+8QpiqGkHmy8dvzkHz3H1y4uIyHx4XvH+ZcbeLON/9JnWRl9/e4/uotjY7cyU3/sD56mfrn8iu+54198loFwvS4kNJ7539+24XuuxH/76Ts4OH6rZ9mvfPYsv/eNCUAU5yf+7Tu60iYN0+Fn//RFXpyqELe+lSxFRBy6dUQqonWL+ZFsTMh+hAPL42M5Ht7by5OXlim2bHqTEUZzMdJRjbu35vnpP3mBtu1iqAp/+BN38N+/McHT10rYns8d4zkGUhGmym3yCZ1feGRnN3dPRTX+4Zu2MJSJ8efPTQmAiOfz6L5+qm2H8/PCvefebXmeuloKAYAWI9kYh0cyXFgQA8kHd/WQMFT+5qVZTk5V2TeYYntvYs09uBKnpqt84cw8czWT/pTwNbtnW57lhiUGdn7AyekqxaZFsWkzlInykw9s7ebrf/LMJMsNkQt9/MGtt6wfV5aa/NULM7w0VcH1hZz6T9y/pctau11ZmtuJ9WqJ1yKevFzk+Qlxnb99X/+6ufPq+Mr5RX7viWsAHBnN8EurfP8cz+dXP3+Bs3M1ggD2DqRIxzS2FOJcW27x5OVlZqsdoUYRUWnPN3BdH02VGExHaVmukGjTVSRZACzjhoJbtTYc9N5u9GQM5JaD4/pEdYVf/uBB3vUK0pw35y0eb+Qtr9e4WbbrxK++i+TwTgZ+5DfW/D6igCzLmOF1cNe2AneOZ/ni2UUIAiptAVRr2S6EHui7+pN84Ogwn3xhho7jockSP3zXCP/m0+exXA9FEvtzgoDRXJwfvXeMxZrVHTp99N4x/uzZKWzX56HdvRwO84vZaod//8ULXFxsMpCO8Oj+fmK6aHjetz2PJEn8/5+b4ulrJRZqJkdGM3zw6DA7+pIsNyyevlZiKBPpyihtFp99eZ5LIajjB+4YoTdpUG0LWeeV9eor5xf5qxdm8IOAM3NVWiEQzlAVkprSlda3Q9P0hKHQsT3yCEDrP3h4O397ap6O5bBYtygEIMkSBweTvHXfIJ98YbrrcfS+I0P89ycnCAjIxw2uLrfoOC4D6Si/9ZEjvPPh+9f0W37/8Wtr8tL1Qg/Tw5ghADX5IGCm0sFQZbyArjf0eCFOT9Jgqtym0rbpT0XIxHQ0RSJhaPyb79vL09fKmI7HaDbC1y4WeeLyMteLLaK6QsrQ2DOY4sGdBb52YRldlXnLnl6uhNJWWwpx3nfk1XtR/s1LM0wUheTwj9w9tkam0/F8fudrVwgCwWD4ifs3Z+5/J2Ku2uHEZIUt+TgHhtcH9Bw/fpyP/99/wWLdIq6r/PwjOzYEQn27UWpa/PlzUziesBEZycXWsDWCIKDYtGlYDr/0yVOcmqlTkMWQOxH4dNxwWBUOvKKGiuz46O6tQOhsTBWgrqUGthN8S/2ijWI4E2H3QIqzszX6dIV9IQDtmaslpI5DTFPYWojz9v39PHu9hKYqmJbLUsNitmpiaDJBKBcdN1R+6R27sVyf8XycoWz0W1auOH78OH/5+a/zyRdmcP2AO8ZzjOWi/JtPneXCQoOO7aK4gqwwmI7yMw9t4xuXSzx5eRnP9/EC2NOfBAmuLrdImy7hkoEEpCIqUV3pDtddzxcysoHwO+44fncAfN+2gvCbapohMFgmYQjgr+oGgLin9/QnKYZWJoHv03ECOo4AMxiawpGRDKmoxr3bCvzRU9dphvdqRJVISWIIt6WQIB/XUObqdBxhLdGTNPC8ANP1iXccquHQuydh0JMyqLZt5HrY+0kZNCyPnoTO/sE0vSmDl6aq1No25xcaof0JZGMKthcQ0VT6UgYjmShXiy0IAQfHx3LMVtpcXmrgeAH3bi/wjx/eQcN0+N//9gzllk0hofOv3r3vFo+sle/vtco734jvfkiS9OJ6v39dDsGCIHhRkiRTkqRvAKeCIHjuFZ6w6Z+9AC4stig2LKqm2zVwDAAn1Of3Q1qAKssoBPg+NGyHZoi0E4wni1RExXL9MJEJSOgqU6UODdPh0mKTxVqH2XKbWCiPl4/rfP7MIi1LsKFEkmTzjUvLtCwnbHQJxtVEqcWF+Tq9yQjbe5NcWmx0EzVFlmjbglWUSxg0LY+EodGbNPjEiRmevLyM4/mMZGP89QuzNEyHxy8t0zAd4g3B9pmvmcQNwdg6PVtjoWay3LQE8kUR9MNkRCCJkhGFZ64VWaxbXFpssmcgST6hs6NX+GvU2gKZtNSwQiS1QIKVWzaVtk2lZTNXNUGCiCLQ4IoU4Pg+U6X2GhNKy/U4OVNFliQeXaXt7/tBt1gWRnkCIfzJEzP4Abz38CDjBUHD7k1Gwqa3MNWdLLcZzcXIxYUX1589O8l8vcOP3j3elUFYMUkvJATC++lmiaiuMFdt880rRaZKTQxNJRfTqYf+PrIsUPqO59OwPF6aqmKFTI+br7nZcgcvAH/lFxtE0xLsr4VqB2tVfrCCXqi1nTUDMFg7VLr5vYE1j/cByb/xHM8HJ3wH13c5NVPvsgJ0RWbnQBLf99FViZdnamzrSfDYuUW29yYICOjY3hpkdk/SYKHaoW66XdaaIonjX5/3tXlYHkyWOizUTBw3WPMaAoDs07bh4kKDw6NKNxlxPZ8/f26Kcsvm0Eiah3e/spzSdyse3t3Lc9fLjOfjt6DQPvPyHNeWWwxno3zou2wS7vkBf/jUBA3T5eFdvaiKxHzNJBqiy6O6wkLNot5xusyvO7fk+OLZBUzHJxPTcFwvROMo5FWFFyYrtCyXS4tNcjGNhbqJ7fnUmg5fPLuAJEtiyZagJxnh/FyNZ6+VmC63URWZxXqHqKYiIVFuOQIxFoAXoo3fsb+fc3M1ik2LiZIbDohkHE8gwkBcdyrhNbjJ9hAAHVugibxA3BsQ4HoeTdPrNom8QCCI5M7GDIFa2wYCPM+nEx6H2bBZatjd97I9cW+I9/K5tNhkqtQkHTMYyETY2pvA80PmZwCVttN9fUWC03N1dg1s3lB7I743Yt21MQhwPC9E7QlmtRqyCTVFYqFmcnG+zufOzHP/tgKu7/P+I8M8P1FmoWYKtLUkMVlscTE0mj0+nmP/UJpyy+aJS0WuLDWRJFEMdUJ2e6lp8ez1MglDMEb6Uka3CZSKCibodLlDf8rAcv0uY+HkVJW66XB4JMOpmRpxXeXebXkWG2K/PjfXwHR8pspttvUmbmGVO57Pnz07RbXtcHQs293nlxpWFxn5zStFVFnuMuDihto1U3c8n5PTFYYya4vSpbolULLhfet4FjPVNh3LoW6J/VqVoGkK3fR8QickLbPctCk3LQiRleWWhSLLt6ADl2pm9+e5avu2vnPTXr+8L4V5DmyaKtA03a7+e9N0N3xcO0wA/ADOLdR4YJ0h2Goz+c3aKBfmG2HOHHB2vrrJI2/EYqUF6wzB7tvey+PhEGyz0auz6hw0LWfjB66Kjmmu+/ttq9hm7k0NGNcL6E0ZGKpE07r5mbcXAaLBYDkWsix+UWxZuG4QIorh3HyNa8UGC3UbiYBqxubsXI0thQRbC7GQ3RVA4PPV84v0pQzaIUtgrtrhwnwd2/MZzcWotOyQue/Rm4qwWLfYM5AiqitcWmwQ0xWevlriwJBopOmqzFA2iqHJtGyXasuh1KwyXzMZSEfYM5Bi/2CaZ6+XUCTBeG7b3obS6xcXGjx9tUSpbbO7L8nB4QyXFhqcnauzWDcJCLpM6o7jd4/n0f0it+9NGiw3LDIxrSvf0rJcnrxSJK4rNEyXq0sNii2LiKrw4lSFNy/33CL7+mrD8wNqHQfTcfnkC7MEAbzvyOCrllVcL9JRlUuLDQxVJh195TL7ri05Hju3SMfxbmE0qiELfYV5XjcdUlGti3qfLLdD5qdNIa4hBQGyLMB1mahKqW0TBFBp2yIf8oX38Lc7AAOYqd64aRwv4ItnF15xCPZGfG+HtM6VY3qsJM90LI+nrxSZDq/LlZrRJ8D3fBxf1Gonpyq8MFkhHVXxAnGNf+HMIlFNsBbcwCcwHZHb+z5bCwmCAJrLLpmYyhfOzHNpocFoKOG5OnzEgFuW4OsXl7vSjMPZKK7vM1FqdVV5oppCLq7j+wGfOz1PqWlxdanJlkLiFdkf923PY3s+E8UW//WJK5yZraOrMr2pKO8+0I+mwS/+1cvUO6JxbK3Z3F2imtxliXUjVAEIAgGYO79QZ7bSpm373TOvBaAoCkv1DrWOI3yoU5FVxYlEPKIKULfvk40JgDes7bfczvhkhQlod1xqHcGWFp/F69YykuNzdq5GwlBwA0kM4RUL1/eZr1lIEvwfnzqLKkt843IRGcEOXG7aXaUgzw+YLLX40jkBigpCBlLcUGhZXlc2fyUqLZunr5XW5KqbRW8ywkSxTdy4lfm34rFbbFj0pV4bb9xvNb5yYYliw+LacpPtvYkN/axnqx3OzzcYyES+YwMwEPuF4wW4ns9fPD9NXyrC3Vvz3BPKon71whIvTVV5carMRKktlH4QzNCw/O3W3r5PyIBa/70apst8tY3tvjYDMBC1wdNXi5hhDrLcNLm02KRluvhegIXLRKnF7z5xTbCb/ABDU0gYgk2lyhK+JI7ND4Q/4tZCnGrb4a6twkP0vrCHOFVu88dPTzCci/HRu8c2BGCrssSZ2RqW67OnP8lzEx1OTlfpODfubdcXrMRrxRaLdRPXD3B9Uf9fL7UwHdGvWN3XEPu6j+OC6Yo+sReIvFSVwJfEeqKENc6Z2RrllkW7m2j7mDfnxr7P+bmaqD/9ANcN16Xw77Ln8/JsDU2ROTldpdS0u38zw0GaJEHLcrBdL1RKE4DeVETl2nKbtuPS6LjdFn41HIh1LA8fhAoPwj6jZTp0HJ+ehM7V5WbIBLtBKqi0PRQZfN+l3pG5YHo4nofpCh+sZ64VqXfcUJ1B4uR0ldMzVd5zaJB7t+b4zOmFLjvujfhfJ16XQzCAIAh+4XYfK93mRtCwhETh6vAD6EvoDGdjSBKM5WJcXGwwX7OwPZ9kKJtjumIh7U9HmSm3WJGRbNkeL0yWubDQYLFuYnk+thnw5j293LutwOdenmO63MIHthRiyJJEsWnz2PlFsjGN+3fkubrYxNBkOo7PiYkKT10tEwsLWgm4WmxhOR4j2QjVjsuDO3q4a2uO/UMZMjGN//L1qzRMh6WGhen4RHSZr5xfZrosUOEf2J7nji15nrxSxPcDLi02yIf+GEdGsiSjKo9fWuZascWP3D3Gnz83xXPXS9Q7LjFdyAStvP4PHBvhJx/YiqHKLDctLMdjvJAgZij0pwxUCS4vNUlHNUzHoz8dIWEIKYTlhiV0TnWFbOwG8lJXFA4NZ0L2xo3vUpYl3rq3jwsL9S6KfKludaWFFupmdwi2qz9JIaFTaTn8ybOTSEDDcsknDJ64tMQfPT2B5wcsN2x+/UOHeCpEjz+6v59Sy+b562UODqc5Pp7lFz95mhOTZVw/YDgjWCKKInPv9jzJiMqlxTqaImG6Ph3fv2VAtRKqAv7GfSrgBqMrCNZvijZNh5ih0NroTW4jZAQS5+aXUCRxjleQZ64XUGxaTJ1tk4lp3L210GUJZOMatbbNX704Q8fxeWBnoZt4vvvgIGO5OF84u8hstROyaxSiqsxyy3nVxbblrn2mEm7kvg9O4FNt2yRC6UQvvEfLoVTEXFWwkIANk8nvZgyko10m480xV10Z8JoEQfBdZbC5fsBy3eL8Qp3ryy2GshEShsZYPsYP3zVKIqTka4rwvXjb3n529Se7EkfVto0TNqd29SU5MpplPB/nVz53DtPxsD2FO8dzPHFpmZlKB12ViGkKR0az6KrE4dE0Z0NmZbm1wuKS6EkaHBxJ8/tPXMNxfY6MZrr6yJbnc8/2Amfn67TrHoYqzlcAoYxagBxKysXDRnjL8fB8MZBPRBRKLXfN/XYzOG2ja/bmuzCqSt2Bl+MTNut9Vs2ubnktQ5XoODcSyrYLbtPC8Xz6khGGc1Emip1bnucHdIEKb8T/fKErQhvcUBUW6ya2H2BoMrv7EsQNlabpMl+38IKAdtthptLh0QMGCzWTJy8X2dabIG6IIfW+gTSzNZOepMF86H8V0xXihsJYPo4iw/07CqTDffjxS8tMltpcXKgzmosT1RVGcjF6kxEhGaQr3fv+42/eFsrA+Xzq5DwgiipFFntFf9rgvu0FJEqoioTrBSQjN+RwgiCg3nEFa8H2qLYdah2Hx84ucO/2As9PiL1YkiSeulri/LxAWr/jQD8fPDqMJEldFO8fPz3BxYUGk6U2//ztwpf00mKDZ64WubLUIKLJ9KeMrsxKPmHQtDtdpmgmplFq29Q6LlvzUa4st5kqtUlFVFIxjUNDaZ6bEP4Zn315nju33PCVaq8aaFXbr7DRh2EH65f4qxsvm63+D+/p4+x8HVmSeHDXrayn9aKwQSMvGbuxjmyWQrurkmZrgyHezRE31h9xJSOrPGv122M9326fx99grPaF0/Pdn1cP14JA7BPj+TjD2TilVu323midCNV5hMyVLKQGbc9DVyVkoNZxqLTpSjdW2gJ1OlFs8utfvEA6qgrmr6bwyROz9KYMJAKShsJSw2JbIU4tHH58/swC5ZaQurRcj30DKWK6ykfvGePxXKzrxXv3tjyHRjLhfa/yY/eMU2xa/PZXr1Bu2yzUOozmoqiKkM7Z3pOg3nHZO5ji0EiawVWeAMWmxYmJMsPZGIWkTtNyiaoK9Y7DnoEkpiMay/VQfquQMLhrSxbHDdA1hZ7kjWvwrXv7ODgsapcV5vtz18ucm6uLQU0g5EVTUY2G5TKej20oh/lq4pMvTDNXNYloQtoVRO71Wg3BgiDgc6cXWKyb9CYNFurmK/qbJiIa/9/37qfcstc0e09Ni2Hlj941xnghTjRUtXB8n7fv62e63ObTp2dpdBwIpavu3JrjoV297OpL8Y3LyzTtJTRFotK2aZkOTSsg2AwZ9CpCQTDqVVmm3LLXDA9c12e+ZjKUjSDLr0+ZsTfitQsfsbeWW3bXR+y56yUs16c/GyMV0bi01KDWFuowDVMM3LNxjUrb4QeOjfCJF6fp2GI4cngkw7/+vr1s7xUM+OWGxdXlJs9dL1Fq2SAJ9ZaVSEVUtvckuLrYJKIqRMK8Q1OENNefPDOFrsiM52N8+B2jpCLCsuJvX5rlxakKpuNxbCx7iyRp3XTwfZ/Ts3WapsuWQpS65fGZkzM8fa3UbSiroRzZ516eQ1MkmvYNZZebwwybvHLITI/qCtt74kxVOjQtj8G0QTZmUEjozFTNkHUsmP4/es8Ynz41z1i4Pt6zNc+bd/d2bTfevq+fpumw1LDZUogRCRm3q/stZ2cq1Kzb7y0Eq/6VwnOKF+AFov5pWR66poAkmG77BjNUO0UhQ9ayKYY9Iz8IsD2fmKaQjmhi7QhrzD39SdqOhyxJ3LW1wJs1IevYexMo44nLy1xbbnFxodHNVTeL+7YX2NGbCBU9bvWg+8HjI5Rb9hqG2Hzt/2Hvv8MkO+/7TvRzcuXQ1TlOzoPBDDKIRIJZoiRSEilRsmTZkizper32tdder72+j+7e3Wuv5bVlW7YVrGDJokSJFKPAABIgcpzB5Nw5V44nn7N/vKdrume6BwMQkEAuvs+DBzM11dXdVee87+/9/b7B5ORcjZ19qbeMhLEV+lI6paZNJqbd1J1hKBtHkYUbzpoN7tuB7b0pbh/LsVgzCaJ+52LtmnXmXNXkzEKdUtMW0ReyyJU8NJzltblad+CrK+D5onezZk13PWSg3PbeEmLGGtYsFYnII4QhgS9sE5OGgqqI3p7liWGuHSlVTUcMaHVVZjQXY6EmLP6CAEoth7rpIkduYGv4/WcnOTlX5+RcjSMjWW7fIl/YC0IOjmTxfDH0PbdwzSp97WdWFUk4WoQwWWwRAgNpgzCE1abVtbnPJ1UqHRc/BF2RSMc1QVaWpO57DWI9DgOxxrgB1E2Ppt3kZtyctc/J8kEJgk37k74f0gl9CD1imowkhRvWOEUSDlS2e22ondBlDE3F9UPyCQ2pI/o9piNEJV70vdbWF0URhCLbD3D9kENDKVabTteKNQh83CB632Sx5qiKsELUFYnVpks6JvrsT14sifpcCruCiScurrJnMM0P3j4iyAhByDsxIupdXMP16vSbYfoWHAa+L7ppt3LNSoDjh+iKUJp0vxZo2T6hBJW2i+u3qUWesZ4fYjoBhi6T1BQxqHJ8MZWPCpadfUkcP2A4G+PyShPbE+wa3xOqsrmqhe0Jz9Jd/Wmmy22hIopyXyQkDg5n0HWFKystXpurYXk+Q1nBWOpNiQytmKYwX+2Q1BXOrzSE36os8b59A+iq3LUmySd1LFc0qFKGiqEp7OxP07A8Lq+0iKkyHzsyxI6+FD9+xxiKLPGF1xYAWIgk7i3LI66pyLKEocrIEqw0bOodl76kwc89sJ3/7UcOUWzZPHZ6mZemKyRshaliGy8I6EsbuJHdwUrDptx2SBkKoz0Jrqy2ubjSImFcK0KOjGUptWxUWWLf0MZC48BwZoOVyL6hNIs1Ey8Iue06yXghZdCT1Hl0fz/be5Pcu6OH7b1JpkttZEkiQLBUXpmp8PlX59EUGcvx+PKpJcoth/1DaQ4OZ/D8AF2R8QMfVRb+1DFN4bHTS1xcaQlWOCHZuEQpUnmsQUEUhm4QEiChayE3Ixb4iAJAVyV0BbBD1j+9YQcozq0VqdLafxIbZNJINw7ABEPMR5Fkjo7ladoupuOzUDPRZIl8UucDB/o5MpZnuWHRMF1+8+lJzi02ODicYb5qcsdE9DvLEkfGsjy6f4C/PL1Iy3IxNIWa+eYHYNdDkSCXUGjZQTT0gvmayWNnlnniUpHelME/++h+Htzdy1SpzXhPgv/0xBUMTeZH7xjdEPL4TsOj+/s5OVfjwHDmr9zC0VBFEOdizWQ4F+tacvQk9e6hI6Gr7OhNcmqhxvHZKrv7U7wyXYlYVj7be1Ns602y2rTRVZm7tuWxvDA6fIp8xNfmapHPtEZvyqDctqm0BeNntCfBjr4Un7xzjBOzNeGLDRwezfHgrgLVjsd7dvXhej7furDK05eLwiM8FB77fgg5QyFAKFvalosT+Yo7vmjg60FIIq4ynIvRcjxsP6QZKb0E0+jmzef1kBDXoxaxvK3GNQZUx/FRZZmbGYB23BvvCieAUtvlO5eLwitcgutmwCQNmZ19yZsq297FOxObHf6uv95kon3WdFEVmUJSxyGgLxPHcQWjrdyyhb9+OsZP3zvBA7t6adlepJISjGZdEfZkmirTsFzu2iYOZDFN4b17+3l1psr9OwuMr2v65pM6M+WOyBILAmarNrPlDv3pGJoi8969/VxaaXJsIt9dS+umG2X1BQzn4qw07Cg7Qthd/MjREYIgZKFmcmW1yXNXy9y3o8B3LhU5s1BnJBfnx+8c5f6dBf7g+RkGMwaPnVliR2+K6VKH1aZFIWqmaorUtddZj4bpdZsAZ5canF9q8mevzrFUsyCEVFzYgyQ0hWRCJhPTqZketY5LTJWRZEns9WHAhZV2l3jhBSEfPDCIKkt4kxUUKfKSX4f1g3Pbv7Xh0HBm82Z4o3OtjrjZ7T2ajzOci6MqMv23yFheU9tcjzXCCNxcfeZ463436dYWn9QmFpkAZxeuDZqsm9Q1xro6vecWbWd2DmY3ffy20QxPXBKkp/XRsl89vcTj51ZEdpzz3bE/JYSyUJUl/FBYqa/ZtBi6gu/6UQ6MsGTszxgs1cX90rZckb+qKCiSi+0FlFp2ZO0ikU+KPNk1tnyxZUVWxBKZuMbnTyzwy4/sJKGrfOTwELeP50jHNGGPt055uRa0/fMP7uDZK0UmSx0UWSYf1/nsK3Ms1y1uH8vx3n1iuGo6In9PV2W+fX6VhZrJS1MVsdZEr5swVE4vNHjfvj7umMh389WCUBAEBzMx+jOxrk3yWubLYHZjw3JtaJLU1W6ezafvHWI0F8fQlLfMrtDzxUBm7TPbN5jGC0KOrLNg/27h+AEdx0NTBLHxVvOuREj5tfel3LL59oVVQKg3fuKucWzP549emKHUdPjW+RW+fnYFmWsZN8mYyqfuGueRvf1cXW1haArv39/PQCZGqWnx5dNL2L5wWHgrETdk7pjoYc9gmvh1Deb/44vi9wABAABJREFU5QunmSl3uH0sxz/96P4tXuFdfK9AfZ1BpqZEzUhZ4sOHBlBlmQvLQqE6kDH40MEhVusWv/7ty9ieTz6hcc/2Ho7PVtEUmY/eNsxkucNLU2WyCZ3Do1l6kmIPUGSxdrRsl4YpVNH5hM7ZpQbDUR5dOqbxM/dNdNffHX1J7t1REJZ7MY1cUgwbxnuSjOSu7cfz1Q4TPQksz+en753oDkoWaiaffXmO56+WaFkeqZhCsWlTbInsX9cPNyHUiftrvfLr+howEg0TEOWkKRIThQT7hrJomkK56fCRw4N84tgoh0ayfP74Arbn8969/fydR3ZiqAp/64EYB4ezVDsOd23rwVAVfvSO0e73yMQ1hq8bwK/vt/ze02+cXKsimttrWZAN08WPLOgVRRaNblXho4eH+Jn7tlF4RuQ2q4rMWE+Cakc43yiyzEguxqfvHef+Xb1okoITBAykDcpth9i6dX8zImshaTBZbGNom2fkbobrB2nrcf36C/CNsytU2g4Xl1v8Su/Wua9vBT54YJDDozkKSf2mg61H9w9wYrbKvsHM26oEU2SpWws8d6XEYt3igd3X1P33bO/h2ctFbhvLMVcxGe9J0LJdUobGYt1iqW6S1lXcUAzIHD+A4Mb6VpMgpso4t9jnulWsNp0uMfbQUIblplAmKrJMOq6hqwpJXUFTJEbzCV6eKlMzXYIw7BLcJElm72Cajh2wrTeOFq1rYz2JrpMUiMHSckM4bd3sGttWSHLnRJ6G5XL3th4mS22ycZVaxxOWkZrKo/t6+Qcf3Mf//7ELgFB4JQzhCOVE95kqE+2zom5d+5ltPyQIxFRIleiSgZ3wWp98bSjW2aLkHcrq1Doe5losi3Tj+UAm6k9E/6D4IUldJRuTIAyoWb6IQvFFX2OtZ+FZPorkUlUV9gykObNYJy1L9CQ0qh2Hlu1HWaYyKUMlDEVtaHkBnh9wYq5Ob9qgN2WQjamYbkDNFDnw23uTaKrC/sE0fhBwZqEJkoTpuPg+TPTEuLRGjNAU2rbHTLnD+aUGs5UOl1ZaEA1IQRAmb0Vh+i6+t/F9MQRzb6EBsXYPu74YVKwVH6osFpCFSod80sByfXb1p6i0qyQNjXxCw/VDah2HnKoz2hNHU2Wapst9OwvcNprjO5dWmSq2OTae5dXZOoOZGIW0QdNySMfEZLovpeN5Ab/w4A4mV9u8Olvh8kqTy6tNoWgqJFioCWl7Itr8h7Nxfv7B7fSmY5ycq/FHL8zQtFxW6haVlkPLcXnv3n4kSeLu7T0UGzb37yxEjCeNb5xdpi9tcO/OAq9OVzk4lOHiapPPH19g31CDuYpgQ945keeFyTJxTaHUcnjvvn4yM2X8IKAnafD4+RU6tofpSvhhwELV5HPH5yk2LV6ZroqmnSyRMFTG83FC4Mhojg8eGOCxM8s0LZeepEax6aDKEhOFJGnj2qE2oat87MitWWgYqsJHDm/tYi1JEkPZGI4X0Bcxgx7Z28dKcydLVYtP3T3G05eLLEf2CTPljpBvB0IOnDRUfuW9O/nW+VW8IGC+2uG5qxViqgj7jGsKaUPl2ESOjhPwzOUilut3N4kgBDcQzCjfC29q+bOGAHC8EHsLMvlag379PrTZ3+XoD0F4bRgmS9ygfoyrMJqPMVMWuWlNy+WB3b2cWWygKnI0DFW6RdZILs7V1RZJXaEvbZA0VO7dUdjwmpIk8Y8+tIddfUmeuLjKldUmtc4aE0hsxFEN9KagyNCxA7yg67pBGAqWScP2WKxZ/NELM/yzHzjAoZEs//KxC5xfajCUjfGl1xZ5dP8Au9bZIr2TsGcgzZ63mWV2M/zs/RMM52LIUcaQ6fg3BJyXI2ui+WoH2wt4/NwK55caGKrMHRN5RvNx7tkhCoaYrrJvUAz8R3NxTs/XMV2fjx0Z4uE9/RRSGp99eR4/sKmZDh8bG+YHjgwzkIkxmI3x3JUyI/k4puXxjXOrWJ5PJq4yUzG5WmzRNF1CSVjZ+oHI1oppKkPZGJdXW9iqguQLksBEIUHLEpZUnh9wcaWJH4h1f23QFCDUWaokmpdrg0CJza/Xtdpvf1+S6XJ7w+Mt2yOuK12bkPVQpDU7z63RcQIc17lhABZTJd67p58d/ektbarexTsXY3md2WoUaB4Tu8L1x1fLB6vtRgzGgGrHJRvXuLzSYnd/kvlqB0NVODaexdAULq22uH08T1/a4G/cN8FXTi6yXBf2GeW2w6P7B/D8gJemKt0a4VsXVjEdn6+cXuJXHtnV/d4P7uplLB9HV2R+48krGIqwrdnVnyKX0Dkylrsh0ysb1/jpeydo2R4juThLdZOYqmzIFpRlYS/x2pwYfsQ1hZnonlmombh+yD07ClxaaXF8tornCyaeCFtWuXNbD0O5OCld7arWgkCwiGOawj/+8D5+86mrYr0ptTk+W6XadglD8TodW9xvSV2hZftUzY6wQlRkLC8kGQQR8SDsqkIUCbJxHV2ROTVfYyQXx/UD/tEH9274/devDf6tCcHoTW3eEH9trnZLX3+12KbadkGC2VKHY+Ovf0jbyjYxoV67Am/GvaiZ1+rrK8Vbs32U5M2PFvsGr+1zNxNo64qMHW30cW3rY4rMus9hi18iF782RFv3K0cqwwZtx6fWfpNeiNHPUEjr1DsOpiv0vWEQkE3omK5PEITdfOGepEZf2mBnb4LF2ioxRaYeQEiIooRoqkLbEV+jKhKGorC9N8V8lC22XDNp2R6DGYNqxyWX0ICQWsdlMCuY4fmEjqEKwl5cF4f9l6Yr9CYNBrMxHj+/QhCE/NQ946RjKr0pg5ei/Kq1e/PySpO/PL1MTJP5yXvGiWky0+U2TcsjpkrsG8xgaDK1tkMQhgxk4vzKe3dRbYsa/8unlmjbHlOlNuW2g+eHnF2o89HDQ133hvU4MpajP2MQUxUkSZBJhnNvPXFJVWQe3tMnBvrj+beF3W+oCj90+zBjs1WOjOXZ0ffm6k5DlVFkSeSgRs3gStvhmcslOo7fVdavkdZycRUJ+MyLs7xwtcyugRQ7+1IEYcgdEzl+79kpwiDssrrXzghvBanGD0QO4/v2DQh1SATHE1a4QDdj9l18b8Pxb36KS2gqg9kYYQj5pMGdE2I4c3qhziP7+tjRm6LStpmtdlhtWBwbz7FzIE3CUNAUGUkWzi5rWaGpmIomS1iu3x1M7epP85N3j/MXJ+bRVSVaB68hE9f5Ow/vZLVhM5yLbcha/vE7Rllt2AzlNtbRj+zt5+xinUMjWSRCfu/ZKeqmw5XVFk9cWO1a/cdViZZzY7b3GrRNXFdgY72gAH0Zg6bl0naEGkySZXb3pzk4kuXEbJWO4/HC1TKKLNaBf/3jRwAYzsW7w490TOP9B96Y7f/6fssvv8F7P6VL6IpCKAlCcUyTkUKFiimy3vYNprltJIeuyewdzPCZl+bIJnR+6ZGdfP3sMos1iwf39NI0XWqmy93be/j40bEbhjm3csZ5z65CpILTbogYeKuQjYv86XRMRXmbCapy1GtZQxCE2FHG3nrs6k/9lfcy7t91o7X1/qEMf+uBHcxW2rx/n0bdctk9kObffvMShiqTiqkEAQShhCytKbJADmB9RdqNDFmHrRRjbwRrrxmGIRdWmmiKzFghgSoLpVAQCJX6ms3wsYkeXp6q4AUBcV2lJ6kzmImxHFkSdtyAn79ngt0D6RuGobsH0sgRKWnwJteuLEs8ul/cr8t1i139Sfb2Z7hYbGIoMh3X58R8g6+eXmYwEyOb0CikDA4MZXjiYhFZohvb4AViYNOyfdKGiqHJqIpE0/Lx/KAbObH+PdUU0QNfI/5e/54rskTDFMQEv+UQBKHok1z3e6y99Nr/XV/kPoaInmM2JqPIMroiCaJi9HNrsugVhsBUqU2xaaMrou9ie+L36E3F+NjtwyR0mc8fX2Cm0sZQJAJk4qrEbLnN/qEsh0YKvDxdRVMk5qom81WTvYNpPnZkmMlii8lSB7PsoUgyT15cwfYCHD9kIBsjaajdPPbjM1Ualofl+qw0bU7N13kyV+T+Xb30p2OM9dxcxf8uvrfxfTEEkyXpln1kA+jaYOQMFUUWAxAvgKbpECLRWW2zozdBxxEqh1RMpdgQDMeYqrCtkOTIaJa//eAO/uyVOWod4XWbjuvcv7OX/rTBUCbGl08u4/shO3qSlNo2F1ea3F7LM5KPc7moR1lkYsCWGMoI73dZQlUkCkmDAJFXlTJUFmom23uTnJitEobCQ//CUpPTCzUe2tPLa3MqmZ1a96DRtl3ySZ3etEFKVxnrifPqTJVMTCOuq5yar5ON63QcMXl3/ZClepv/+MQVfvnhHdGE3SOb0OmJmCkJXeHjR0dZrFuEIWKopQhPbV2RGMklUBSZX3xoO9t7U+QTGrPlDl86tUjL8hjtiTPWk2CikNyw2b+V6DgeXz21TBAKa79P3TWOJEn8xF3X7BL29Kc5MJxBluDwiJBupwyVjx4a4HeenuLsomjaD2aEh7TrB7RtFzmSoN+5rYe/9+hu/snnTjGcj7NSt7Bdv2uLtn5zudlxYW1/upWD6Nrm1/1aSZCyg3X/TigeVyJGchg1+/wwxFpXlfdl4iR0FUURSr+hXBzHD0kZKp4fEoQhewZTzFY77BsUKrz9Q2lWGha7+tN86ODgpnL9dEzjJ+8ex/YDZkptQiRkhP2PkEAH3aySNwIZIadXNImULhOGAaYTENNkEoZKp2WTjmlMlztIkpDsl1s2siRsboZzcb56aolffGjHO8Ia8Z2GhK5uadW4htvH8vyX71wlE1dZbliECOVlGIb8xN3j7B3M8NpcjcsrLe7clud/eN9uTsxV6UnowhrBC8jFdcZ6EuTiOpm4itaQ6U3pZBN699Azmk/wybsSWK7PP/7zk5Q7DoTw1OUSYz1xCOnaN60NrUROUchcpYMsCYuzhKYIS1TLY7wnzmAmzmylw6n5uhicyRKKIhH6IgBWVyT2DaY5NJrhi68t0bY8DFXGC0JRLKsybhB22VEhMFMxI1XoNT9vPxTDuXxCo3ydFagfsulwbA2RY8OGAZgSsbkKKYNYxKR9eE/fm/mY38VfI3oSxrUhWKQM2OxIvfbYWqZiy3bRFZm27ZFP6Lh+QCqmMZCJ43gBizWTvrRBJqbxoYODfOv8Kpm42rX2+ua5Fb52RpBhUoZKOibUkunYtaZR2/b4zEuzIuc0DOnYPsWmzXB2Y/F/ar5G3XS5a1tPtxmVjWtdtu5Watu1xnYYQjqm8tCePl6errB3IN3dRyYKCS6vNhnKGNw+nuOOiZ6uimV9reD5AX/6yhyrDZsHdveiKzL7hzL0JHUShspwLs6BYR9ZhmLDpmUJy6WYrhIGAZ7lk46pdGwPJGhYPjsKCZqOhyK7eF5IJq6yoy+BHdm6HZvooS9t3PQwdKsH9uQWihbTdjZ9/HqkYxq9aR1Zkm658bOV6COUru3hN2vvjORjzFYEaeiu8c3VVtdjK9uz9dblN2Mxx3WFZsQMvpkKSF5XO6W0zRVjq41rtjXr34relI7tBXRs903VJetfUw5BV5UuIU+SJXb3pVhsmBSbdjffJZfQcP2AJy+VMJ2AjiOo0X4ghh4JXcV2AxFQLsscGc+xrTeJH4RcLQoXiSPjeaodhx+6fRQ/CBjMxhjICALfZ16apd5xuzXlsYk8puN1LUWPjGVxIgljteOwP8qXvH9ngavFNndv78H2fGbKHYIwpG17fOv8CtMlYRG6UjeZKYuh1t3b8hTSBrv7U10G/do9+8EDAzx3tcy23gQz5Q6vLdUYzsX58slFfumRnZsy6tfWj1JLnJU8P2S88NY3II6O5zm6hV3RW4U7Jnq+Kxax4wV8/sQCHdvjtrEcj0R7fkJTycQ1ZEliR5+w17+43OTO8TxuGNIwhZKwZrpU2y4fv32UbELjn//FaV6cqrDcsPEiNrmmSMR1GdcLNlWnvxHYXkC17fA7z0zihwGfvnsCOVIR/tCREV6cupYJ9y6+t3G9ldx6SEAhqZNNiMy6J86v8oXjC1iez0/dM0EYwD/7i9OkYyr37+ylbrk8vKePYtNisWaR0MVQ/n37+ulJ6GRiCqEk8a+/cRFZEoTBjx4eIpfQ2TOY5hcf2knL9jbdm2Oasun6sdXjh0ayjBcSfPHEAv/0c6e4WmwThEFEbLiGpnPze8UPNhLeJIQNWHud0uXYtjwfOTzE54/PM11s44fiHHPnth4+cWyU3392ihCYrXa42/PxZZlqxxE2aW8hNpBIbgFeICFJYgAYjymM5BNcjnpOiiIxlI3z4cNDjObjXC22CEKRXblUt/iRoyMs1iz6UjpLdQvXD9nWm0CRJeYqHa4UWxwczmywNVwjkKzvN6x/7O1uUP/AbUPMV00GMgby26i6uh5BEPJnkW3vPdt7Nh1CvRNw385rGWEAX3xtgYG0yFZLGxqKLGFGzi6W63St65KaRDu6rwLoWoauYc3V6LvRhq0p7yUEqUaSfOqWiyaLYVFCV+lL66iyOF+ZUXzLfM0krslYrs8HDvTxzJUKCzWTUtPh8fMrpGPaDdfdw3v6SMdU9g9lbvk6+erpJZ67UmK62mFbIUm940ZZrwFnFmr8Lx89QG9Kp9x20BSJQlInDEOatgeS6F/cOZHn8moLGRH3k4trSEC5Hb1zkkTKUDFdD11R2NGfZLUhMt7bjt+tnfWIuKLIErbnU2qJrzc0WdSnYYAffXapyNLcdsVQSdC+BNb+nzB07h3LUmm7rNRN/CCg2vEwNIW+lMFQ1uD4TBXH87E9qUtArFs+23oVLi43OLPYoNp2RD62KpOLq9QshyCAiysNzi42sCKHhSAI6dgeZxcb/KvHLnDvzgKHR7JMl9rEVJly28H2AxQJFCnGw3v6GM7FqHc8Ts3XWGnY5CJLci8Ima+ZnF9q3GCJ+y6+//B9MQTTFHnLIdj1jAJFgp6ERtpQGcsnmKmaNEyX/rSG6YXdJpChyiQj665P3zPOZ1+ZZ7VhsbM/xUcODbFnIIUiS0gSZGIKKSPBD98+wm2jOWodh8liWwwqZIlyx2ay1EZVZF6cKjOUjZOLa/zQkREeP79CLqHzwK4C+4fSXFwWVoe1tsPOgRTPXBGHh3u3Fyg2bfrSMTq2x2TJpu34/M7TU/zqDx+kbiZFCLck1AjHZ2usNmxWGhafPz4vJuCZGLoq05s2eO/ePi4sN5EliWevlHhpqkzHEZvAXxxfwHR9DgxlGM3H+PTd43zp5CKyJJGKadyZi7NUs0gbwl5MDNYUCknhXb3+8HdwNMt3LhU5Plul0nF4eG8/H3iDzKU3AlWWu7aV1zeJSi2b12ZrnF1qYEaWLZ8/MU+IaLT8lycnKbVtSi2HvpROb1JnW69gjkyXTQazBpIk8aN3jPDKdAVNkWiaLpoi4/j+hobM9Vgr4YQl47WGeD6pEwKVlrNhw9ciu4E1S6DN1GAhIH5FCT8AXZMYy8UZyMQ4tVDHDwLGe+Js703xzJUSbdunkNL50aOjvDZf48HdvXzy2CizNZOTc3UGMwbHxvNMl9vENKVrMfDqTJWnLhUZyMT4+NHBDay69bA9nz98foavnFpEU2USmhiuyrKEHQ0GTNe+5YahBOzsi0eWoiLzazQfZ6InybmlBjKQTWjsGUiTimmM5eNIksSF5YYo0jWVY+NZ3EAMvlXlr66I/X5DTBe2AADTpTafODbKl08ucnAkS6Xt8JcnF7kYHYb8IOTB3b3Yno/l+Nw2mqVuioPqU5eKpGIqR8bygMT+wQz55I1NzmpHMMyFhD9kLLIB83wY64mzsy/J18+KXMXVpk3LdvCDkOFcjJ6kgecHnFmskzJU+jNx/tGH9/HclSKlliNsGmIqthcg6xKKJCzctveleHB3P9W2y+WVVpeMsNKwIrIATJY6XRu0IAzJxnVUSaK0zltAlUU4bcpQ8cMw8rsWa0BCkzY9REtALvL0Xt+0DhG2izFN4fxSk/mqUAv/8joVz7t45yOzrpGfjArrzZbRmCoU1bIE+YQhQs2TOg3bJ5/U0VWZn71/GxdXWmiK1L0nQQylj47nWKiaPHWpSE9S58WpMssNi5rpkjQUfvTYKPNVc8NgabVp04zUQi3bY1tvksFsjJFcjN97dpo9A2mOjGX51nlhzeX6Ae/bd2t7+LcvrHByrk5vyuDIWJZi02ZXf4qfumdiw/N6kkK9sli3SBvXBmueH2zYb5qWx2pDqHaurrbQVZkwhHLL4cFdvZGN4QCGqvD1s8tcWW0xkDHY3pvkOxeLmK7JWE+S0VycK8U2sgSqKnO4N4vpBVRaDnsH0uQTGromcd+OYcYKCcY3abbENbpWxz3JWyult7Ihu2N7D68uvL7K6sMHBzizUCOuKRusaa5HTJWwPNHs3tW/udplvUIlc5N8LnXdsMwPb80OSN9iCLZelXYz4k8hFWO1Jd7ckfzWhCk5mq7KElRtm0Tixr2kZ13Gh7yuBnjv3n6apsczV4q0bI9bjDsTr0NUj0kiy2XPYJoHdxX47Kvz3VzUq+U2B4YyYv0PPTRZWI6HiJwkSRK5CmuX9/6BDJbvY0aKh4lCgkf3D9CyXOYqQnG90rCIaQrv2dXLp+4a2/AzlVo2tY6LFwRMFtvsGUgzWWyxLWr4qrLEweFsN1D80Mi1geY9O0R+2O89M8Vc1eTAcIbBbIx6x+HycovFuomuyuiqTC4umlttJ2A4r3UVW2EYcmKuhueH3DGR59OR4mu5bpHQFdq2H6mkb16HPXZmmVLT5sx8fcuB2TsdlbbD2cU62wrJN9WorXUcyi0HQxN5vWs22dmExieOjTJb6fCenQW+eHKBdExjsWHxs/dtw/YCJkstVFnmwHCGbEKj3BSZkbWOvaFZZagyY/kELctltmJ9Vw3HMBQ1T9NyOb/U5NxSo3t9ffqecT59z/iWX5t4tyz/nkIhaXC9btZQ6Np5ZeIqfRF598snF6mbNtt70zx2ZpmkrjBfFaSER/cN8NHbhKvLxeVmdyBfatkcGsniByF/+MIMs2UxJHK9kHJLEG8/eadY+/JJfYPy/LvBSsPif/vKOZ6/WqJpeV1HiDeKANFYyyc0Oo5HTJUZyMZZaVg0LZGz/qsfO4CuKXz9zBI7+5LYXsj/+gMHeM8esac/srefE7NVdvWnGSsk0RTpbXEL2ZFXuVLdWsYuAXv6k0xXOkKlT4jthWTjGgldY1tPkplSGyXKIWraLsM5oZ5wPJ+nI/Lijt4kqiyjyhIn5mocHM7SkxQ2id+5tCrOhYbGVLHNz9wnakPbC/iTl+do2x4fPTzErv4Uluvzpy/PUeu4fODAwIaojLcDmiKzfRPl8luFhZrJ1dUWB4Yz9K6zfe64fjcr/Gqx9Y4dgvlByInZKpIER8fyxDSF4VycVExFkiSurjaxIyu7tuNjez5hpGLaTO2lyYI0Z3k+hG9epazJoufjeQGhJKEoMrbrR3lZYrDdsoWVel9apydpENNkTsxWUWVJKO9liT87vshv/OQxvn1xhdPzDexI2by2p9dNl1PzNcbyiRvONK+HpC6GbxJQatp89PAQZxfrFFs279nVy2A2xi89sotXpis8fbnEo/sHcPyA564Wu4OsM4sNTNfHdHzyCR0/DMnENExHuFPlExq7B9IMpGMYqoLj+3h+yMGhDGcW6hRbom8iyyE7CkmKLYe6KYi/iiIR11U0RSIfF/mtbpTNlTJUQsD2PBZrIp/W8X0aHeGEc3BYEBNlSabYtCMr3Dj7hrKsNEyeu1rG8YQLR0KX6dgiZkiWYLbSYbXpYLmCsBiEMJSNkdAVgjDEdn1cL8T1BVksZSjkkjrlpo3p+CzVTSQkJEni2ESeWtshJKQa5TZnExqn5uvMVU0e3t1L2/Fx/RBDVblrIs1XTy+R0BRyCZ3CLVqxv4vvXXxfDMG8m6yU6ZjwcHX8ANsN6UmqFFIGO/pSKJJEUOnghyFtR8hHqx0XPwzpTRtUOg6ltsNAJsbfe3Q3XzuzTFyXubLa5Otnl9k7lGahahIAD+/t45E9/Ziuz5culSi3bG4fzTJVahPXFRZqIqR+Z3+KTjTZuGd7gZF8nNWmzd07CsjAmaU6i3UTWRLsmGxcp95xGS8k+Mm7x/nD54UlYrHlIMuCzfDqTI3TkcJhMGuwvZDE8QKe6ZSinCyDakdM1G8fy/GJY8Iz+vbxPBeWGzx2epl9gxlmKx1sz+cLry2QS+h8+NAgHzo0RG/K4OJKk8lim6+cWuTn7t9OKqYKRRgh924v8Mjefl6ZqfDgdY2Zc4t1XpquUDddCmmDxE1YZG8FdFXmJ+8aZ6Vp3VC8fOXkIjPlDhdXmiIbyBIBreWWTc10iWsylZYNSKIIqZtoskxf2mDXQJpSy6YnqfPM5TJXiy10RQxKFRnceoAqhTSiz1aRxCbseEG3aa7Kgg2srg3LJGHnN1ZI0LY9LDdAUyT60zEkCaptu2sJpCCe74dC0hwGgAyBDz4hCV1h32Ca3/ipO/jSa4vUTJfJYpuGJdge/+4njqKrEsPZONt6U8yU2yiyxPmlBidmarQdD8v1GO1JcnQsx6uzVZ69UuLH7hjlyqpgEa80LBqWtyH0ej3KLYeZcpuFmknTdEUuWmQ9FyBRadko8sYsla2QiYnw3vfs6uV3n52i0haHn7VQ2+2FBA3bZ2dfivt39bKzL9Vt7CZ0lZ19Ykj9qbvHqHZcBjKx78lmyjsF23uTbO9N0nY8bhvNUkgZfPDgIE9eXOU3n5qkYbqM5OPs6E0R1xUur7Z48mIREIHEHz4klGSOF9CT1PnknWP88JFhVEVie2+KpuVyer7OSD7ORCHJQDrGQCbOwaEMfhDy4UODbCskeWm6ShAI6f1d23qQJJFdMl816U2JZrftBZxebuB4AVXf5f6dBUZycd6/f4BnLpdoWi4Ny0dTZbb3JCmkxPo4W+kwnI3x4UND7BloU0jpvDhZpml7eEFAwxJFcxiE+IgDgOsFPLC7wGNnhcUUkkQ2oeMH4Pg+OV0jiKss1UUDqn3dAGyNMZrQBNOpfp1Rt6HIjPXEuX00x1zVxA9C6jcLGXwX70jU1n2u7cj39noljAQgSezoTXJoNMfRsRx//OIsAO/b38/egTRD2Rh7BjPREPkayi2bV6arvDxdEeHjXsCegRQJXeXAUIaBjNEdelxvpTKWj7OrP0XNdPnxO0fpOCKo/r+/OAPA5dUmd23Li1zNMLwpE/x6XF4Rg/FSy+aV6Qp10+P0Qp1feWTnhvzDQyNZHj+3gp8MeWGyxJGxHF84scBi3eShPX0ci5QbuYTGbaNZ5qsmR0azXF5t4QcBh0dzTJc7zJU7zFdMjo5nCcKQ+3f18vHbBdmo1LKRJYlK2yEb04SCJm3QcsSetrM/zVSxxWLd4nKxRalp89zVCr/w4I5NG1CDmThTZdHQmyhsbU+jcC0hMBPffO98eM8gv/XMPAC9ia3f3xemypyar6PKEqfn69x9nS3xGrxo2BYiCAW55I2HuWxM6RJ3YsbWait7nf1VayvPZjayynNb1AixdVmwNwugjmnX9mrjJnaISrSASkAhvrkNjbzuOjPW1QBHx/Ms1y3KbZuO49O2PermrYWzrykbCcXvMVvp8MSlAEkShIUgFIOufEJcV9W2Q9PyqHSEXWAhpVO3PRzXjzLpYKVhktAVepM644Uku/tTZGIaqw2bwSgj+FN3j7FnIM1Ez42NuaFsnL2Dacotm70Dacoth5blcWK2xvbeFA/u6aU3ZfDxo6M3/kLAM5dLojnhCwumf/qRfXzxtQWeuFgkF9copHSSRgrTCdjZl+K+nQUSutKtsy8sN/lOtOcrMl0y3GA2xs/ev42ZcoehbOx1mdJrmVKGJm/47L6X8NXTS5SaNifnavzSwzu3JI5thb60wYHhDCsNi7u2bVSUrVeCZ2M6h0YyJHSF9+3rv+G9Xa5bfPI3n2O+ahKEYmDbVa0HIZm4zkqUa6zeYm2+GRQJhrMxetMxelPGG3JcGMq/y7b+XoKqSBuGYNvzcTzA90XmXz4ijr1UEXaHXghnFxts70ty9+EhTi/URVZ537U17LbRLIt1c8N6cnm1JRxNEHmGgSaIvNdnzr0VCIKAL762wInZGg3TfUPNdwlIq9DyrtmMZuMqcV00ipumS6fUJhPX2F5IIskSj51dwQ9CdvWnOLPQ4I6JHF88tYCqCtvqv//+PcxVO4zk4m+b1R+AFSrcaHZ2DZoME73iZ16qW/i+j6GqPLy3j7/73l2Yrsh7euLiKrIk8b69/V0XgmeulEkZ4kzz69+6xErD7pKlZ8odPn33OI+fX+H0fJ1Xpqscm8hRt1z+yedOYbk+h0ayXQLAldUWu/pTFJt2N8v0SrH1tg/B3k4EQcgXTizgeAFTpTY/e/+27r+lDJVjE3mmii3u2aLGeyfg9EKdpy+XALDcgMlii2LTFr1JTRa5mE4g4lJ0hSAICCQ2RA6sKb40WSITV0nqCsVWiK5ISLKMEoZUNqnL1jL14MZhmhE5t6iqghZFtdiqhOOF9KV04RoENEyX+3YU6M/EuGtbnsMjWb5zaZVvnltFVSRWGza6KvHArj7++MVZFmoWqiyxuz/FldUWF5Yb1E1RY/38g9tJ3GI2HcCPHB1FluA3n5oiril0HJ8fPDLCXKXDSsOm43gkdJU7JvL0JHWOz1S5sNSg1HBwfdBloRi3HF9YHIcBkqSCJLF7MI0cSgzmYhwYzuIHASfn6tQ6DroiM5xP8PFjo/zjPz8plFYezNds9gykma926Dg+cVXmR44OM1nqCDe0pk1cU6h2HLJxjbrlMVHI8J9/eg9TxTZPXFxBliTSMY35aofjMzVkCVbqFroqk4n7HFElehJ6tKZ5pA2VkVyctuOxXBeZapm4iiorJCKV+oGhDJm4xuXVdtciejBtcH650c1974+peJ5P0xYDrVLT4tEDAzxzuUi57dCbEnX4cDZOx/a4tNrC80O+fHKJdEwjrinkkxovTVfxA5EXv633XRvE/yfgbdtdJUm6B/i3iPP/K2EY/gNJkv4n4IeBGeBvhmHoSpL0U8D/C6gAnw7DsCFJ0vuA/x2wgL8RhuH8zb6XIktbbuPbe5NIkoSuSJxdbNKwfFTZoT/tYrkBfSmdYtPGdAK29SZIGqoIdg5C+lMGubjGxeUm9+4o8Ol7xgnDkF//1mUAnrlUZLrcEfZgF1aZr5jdWIKW7dN2hJ2g7fkMZeN84EA/nzg2StPy8IKQ7b1JDo1eY2O+MFkma+gsKza9SR1Jkii3bH7tGxd4aE8fO3qT7BlIccdEDtPxqFse79vbz8Wo0bRYN7FcoYD64SPD/NCRYWKawq7+FFdWm5xbbPC+vf0b3p81pqLpeHzyrjF+7esXyUaS2gd29XbZKYYqCk91zUYsDCNGqQgm/LWvX0SSBXvnZ+7b1n39q8U2CV00W+6ayHP/rgIvTJbZ0ZfcIHt/K7HUMLsMi/UwNIVUTGUgHWNnX4owJBqWJXj+agXH8+lLx0jHVPYNZTg+U2OpY5IyVPYOZkgZwiap0nK76pC+tC7Ccg2VWsftburZmEIhHUeVYbkujgwd10eP3qMQceCUJInxngS261PtuAxlDA6O5JgutWnZHrITiOBcRNNFWB3KJGIqpuN1bXwkBDvjiycW+Ob5FSRJWAolDYUrxRZfPrnIj90xyrbeFGEYcnK+zrnFOldX28xXhfXN0fE8M6V2FOqtsFS3OLVQR1eEDeS23iT5TZjWaxjIxIhpCmlDo2P7OJE1kMgoi8I5b/EzbFo+V4st0jGNbYUk8YhNt2cgTcMSapmDwxn2DmQY70lsaFI+tLuPoWycfEKjLx3rZsO9i82xXLeYLrfZP5jp5u5cD0NV+JGjN1ommo5gIWmKzK6+FD9w2xA7+1LdHAgQg2kJkfPieAGGKpOJqVxuWOzsS7HatPjD52dwPJ+G5fNz929DUyWOjefoSWjYfsBDe/oZycXpywhG0H/89hWmSm16kjq3jeXwg5C4oTCQidGyfeKGSiiJZuPZhTr/qXmFSsfB9cNugzWuK2QTGrv7k7Rs4f39pZNL3L+zl1957y6+eW6FasfB8XxhD9txsaPmsiyJZl1/xqDlBLx3Tz+vzlbJxjVykTrN8jzK0YFNjhpMa9e/HD0m1kaJwUxMHBCue3+9IOD+nQX+7nt389VTS6w0LD5979as6nfxzkS5da1tVI2uiesbozFVJh1T6cvEODCcQVNljo7nqZsu9+/q5dDwjVZ0s+UOS3WTU/N1ym2bC8tNBtJGpFKX+JGjw3h+eFM2q6rIm2Zy3rujwInZmrCoycT41F1jNC33hiGaH4ScnK9hqDIHr/sZ797ew/HZGvuH0kyV2mAKm9HN0JfWeeLiKjXTRZIk3OigfHG52R2CSdI1T/2vn13marGNIsvcPprjd5+b4uRsjdF8nI7jo8hi+Ga6PnOVDoWUweWVJk3bxXSFQnXPQDpiKqpMldpkEzp1y8N2faZtF6cqDvaboZDSukOwvtTW++J6yqsqbd5lXt+8Dm9iTnhitka1I66f04tbD8HWJlISiDyGTWC5QTcs27s+OHQdfuzoCP/+iavIEvytB7Zv+bz132Wrpn+4rrt4swGHs64bb95k8JaLazieYJpafsBmO/1to3liqowbBOy6bpi5vS/J9l5BTDs5X7s23LoJFCJ7aoQltRfAfFVYMCcMFV1VsByfREzFCwJ+9v4JnrxYFO4BFiDBeE+cqimCuU3XJ66rzFQ6KLLMeE+cn7hzjLFCguFcXNhyOh4fOTy0gS1+w88lS3x0XV5uy/b47acmBSlkocZ7dt28mWZoMiP5OEt1izsn8qiKTN302DOQYrUhBoX96RjDWZVfeGjHDV+/3rJq7byw/u8ThQSn5uti4HyTnKwfvG2IyWKbkXz8ppaZ70ScWajj+gFa9HNrirxh2H+rkCSJDx18ffvAT941xmy5w7bexKbDxQvLDRqmSxg5SagShLK4xlVZotS0CYJQ2KjLEgeH05xZbPA6sU83IAihLx1je1+STxwb6TbCbwWa+m59/r0EWZYxooayoUAgSdQ6DjFV5uhIRrDwWSP1AKFYW8pthw8eHGRHn4iYWG+fXEgZNygp7pjI0zBd9g2med++ftIxjeXozPBGEQQBXzq5xGLNZKI3TtrQ2T+U5tWZKr//3DS6KrOnP0UYCtKqIoMSsqXDkCJtzNWxAzEcDAmJaSq96Rg7exN85/IqXghyEKLKEmMFYf/n+QGm63N8RuznKw2LgUyMf/+ty+wbyvA379/2V5ITvVUttgYnEOSGB3b1cWmlgesHjOYT/IsfPNAl9PzEPROsNm3mqiZfP7dCT8rgh44Md197uWHyynSNIAjJJjQe3C3sL//Dt6+w2rSYKraI6cI1pti0OL/UQJVFX2S8kMDxQm6PznjLDZFjH9cUjl6XUbuG1abFZLEtFP1vkUrw7YAkXTsTbxYv8fCevne89b2hyrQsj5WGydOXVum4gnynKwrLdZMrq21atovnB7RsH1URdf31JVZclZBkCc8PsX0RVxCGErcPZ/DDkOcnK917LSZDNqXTtjxMVyjqw+DavapIgoTlegFeEDKSS9CXNnB94Ua0dzDTzfuzXB8rskG8bSzHgaGA47NV8kmdTEwFQv7V1y52Fav9aYPzS03++KVZ5iodmpbH/qEMiiy9YcJOTFO4b2cfj51Zod5xySY0dFWmYYrzieX4JHShqNvRJ3Jhv3xqEccXPZRsXKc/FWO60kaSJHpTGjv7UmQTOu/Z2csHDgwgRXbJf3l6icFsjErHYTyfYHtvMoqVkJEkHy2KeknoMoNZA8sJCQhJGBoThSSPn19BlyXang+BxHLDYqInSU9S5/mrFVYbJlOlDkEQ0nZ8FmqmyPX1AqHY8q71At0gJBvT2DuQYld/mgvLTZwgoDel44cSQQij+VhXwFFu20wW29Q6Ntm4zlguznSlLeqdqG6JaQq6qpAMhatITFN4YbKM4/soksgs+/Q94zx7pcSF2SbZmMZS3WTvUIaRfJy+tMFzkQI4DCFhKBwc+t4dsL+LW8fbqQSbAd4XhqElSdJ/lyTpQeC9YRg+IEnSPwF+RJKkLwC/BDwE/Cjwd4B/DfyvwAeBA8A/RQzJtsRWi09Cl7m6KqzdCkkN2xOSy4W6sAcayMQ4MJTmnu0aQRhy384Cy3WbyystCmmtK/v86uklluomHz86iixL3LWth3OLDXqSaWbKHXw/ZLLY5tRCvZvVMJSNReoqETR9aCTDPTsK5BI6ucTmG/NETwJdk7ltNMNHDg3x4lSFZ66UKDVtZssdKh2HhK6gyDL37SjwgYMD9KQM7kno5JMiD+z5q2XOLtZJGgqfvntcKLhKbb51vkgQhjxztcQP3nat4RXTFH7sjmvM0B+/c5TPvbrAzv7UBt/sR/f3M9YT72aLSBLENZkwDHns9BKrDZuYrtxwSN9eSAorOlmiJ6nztdNL1EyP1+Zq/J1NDtLfLeYqHR47vQwIz9r1MvIfvn2YyWKbsXyCYsvia2eW2dOfJq7J1Dou55aa7BtIkk0a9KUMtvU6mEs+fhDy5KUitY7L0GKMn7x7jL1NUaC2bZ+k7nGl2CYIQjRVojeh4yPyT2qmg+n6uH6AoQirRtsLuvk/a9aVj+zt4/R8nZWmzaXjCyLTgWshu2tnUj8UKqn7d/Zycq7KVFnY60iSRLFp86cvz9KwPA6NZIQqxg+5utJiqtTmyYtFRnIJPn9inpNzNXb2J7s2N2pk7blQt8jGVCZLLT50cLDL7N0/lH7dQ7kiS/ytB7aTT+i8PFXm1EIDy/XYO5DizGID7w3YDYXAYt1mqb7ctdfYO5ghriuM5ePsHRC2eFeLbb5xdoW0oXWvV1neaBP2ZvHExVVOz9c5MpZ7xxejbxYh8Lnj8zhewNVi6w1L+t+/v5+ZSoeW5fHxo6Pdz2CiIJohjhewqz+FJEl88s4xnp8skYlr/Pmr87w8XcH2Anb2JVlu2CxUO6RiGp99ZQ5DlTE0hablko5pfPG1BX7hoWuKjOGcUEumDIWkrmD7Ift7kmTjGj9w2zA/cHiQx84s8/zVMl8+tYjpBqQNFV2VGczFaVsenh/SsjwqHZfDI0IJe3y2yky5w3ytw3/69hU6jofrB4RI2OtyY3RFYqwnTqXlsNq00VWFR/b20rYDvCAgqatcWfUpu140jFYpt50uw1SSxNqrKTKD2RiaLLNUd244HPihsMxKxVR+Zh1T8F18b6FmXmvkr+WvONctiH4YEIQhTcujbXs8sKuXpZpQqvzBc9N8+OBgdwAE0LRcvvDaAn4QslQ3GcrGuWMix/v396PI8qbe9W8Ex8bz3eETCEXHWvbPerw6I1TDIK7p9U2q9fk7R0ZzTJXajPUkNm0M37O9wGdfmacnofPslRIfOjiIG1mrraFuulxaabItsggCUf+1HQ9DkdnZnxL5DZLE8dkaMVXmc8fnuWNbnqQhwq6vrLZo2R5pQ+MTR0f401fmqLZdPnxwgLNLTY6N57habHFqoQ6hyJXcDHPla1lTkxVz0+fAxhzAxhZ5Ik9cWO3+udzZeujz0J4+XpurocoS927feqiRi+tUOw6aIpPYQuXVsPzuemPfJBOrajrkElqUt7n5ewEbh2BV06Z/k4w4Q7k2HLmZIii1TjFWSG89+GlFttaWF2w5eMsldFIxQW4by2+8H/YNZig1HWzP57W56i0pAGRZ2LPUo2aFFwWNx3WVTExjvCdBw3KpdVzqpsfd2wvMlNp86bUFLDcgHdMIJYnJYhvbC0RmRZSb4foB1Y7LfN3k5EKd3f2pDfX5G0HKUDk0kuUPnpuiaXn8iy+e4d996iixLVQ69+8UpLds/JrF4V3beriw3Oja8kHIndvym379zr4UHz86ghcEm1pwPn2pxOmFOpIEP3XPBH1bfK4xTfmeZPhfXmnyzXMrANyzvYdDI1lG3+ZBXspQb/peHRjOMJCJ0XaE9Wt/Jk6l40Rj9pD5agfXD1FkYQttOl40wnhjPlQia1thR29qU+vYm0FRvhsjxnfxVw1VlujJxFmuW6RiCqoiSMZBGHKl2GYwLdSe924vsFg3mSy1SemCmPvqTJWRfHzL/ND12N6bZPt1pIs3O9T45rlV/vD56e4QZVtvipblQigxVW6R0BWyhkIrIs++niJyTeniBiEdJ8AJQFVAkSTimsyO/iSXVloEERElDAXJaUdfislii9F8gof29nJ6XpyRG7aH4wXYiug3XFltve15VwBta+taYw2W63Fmoc5De/rozxh85NAQmbiOH4ScXqiT1BUODGeFhX0QcnG5iXUg4IeifstTF4t8s72KGwRMFBK8f38/pxbqrDZs8gmNoJAkFVM5v9RgqtSmbXuM5OJs70t1bS8BXpws89zVMgAfPjS06ftjuz7/4dtXkIELSw3+5nu2Ju38dWPtTDxX7bCj7+2zXHw7sbs/BZIguy/UTGRJkKE/ddcgn3tlvhs2q6sKhh8Kd6DrXiNEDEb6ExpOEAp1k+vjhXBivtZVyq9BVsTgzfEEiStpqDy6v58Ly03mKybZuEpPQqcvpXN+pSViGVyfg8MZhvNxyi2HkVwc1w/IxjVKbYefuGuMIIR/+IUTfP3sKjIBpuMx3pPk1Hydo+M57tlR4ORsjfcf6OepS6Wuzd8je/sY70m8IYeMNSzVLRG9E1M5OpbjttEcL02WScdUnrpc2kA8fs+uXs4s1HhlukrD9OhLG9y1vYe7d/bQsYWTwWLdJBPTeXBXL198bZFXZ6ocHM4wlIuRS2j87Qe204ksA79wYoF8QqMnKYZnmipzdrFBLq6JyIn+ZJQlG3ZJnF4QEtcU4pG4Igzhz1+ZY67aIR1T8QJomg5txycT0zg4nObUfIOW7WJ5PmcXhN2j5QXMVQNW6hZuIFR/mqKwUG6TjmlUEy5xXaM3FdK2fRYqHWzfpy8lY3o+rUjxldTViNQcYroekiRjqDIn5mrs6k8xkI5TkmwKKYOvnlri6mqblYZNte0wXkjS6AinID8Io9cMiBsqu/vSvOcdakH6Lt5avG1DsDAMl9f91QNuA56M/v448GngHHA6DENPkqTHgd+SJCkBmGEYNoEXJUn6l6/3vTY7/GZjKn40lba8gKQubWB4Op5PEATsHhCWhq/OVpEkiQ/u76fYspmvmCQNBc8LuLzaotYRN83hkSwn52u8PFVGkWVURWY0H2eq1ML1Q4IwwNAE63Sq1BZDEMdHUyU++/IcU6ULjBcS3DGep+345BMamiIzmovz//vqeZq2y+1jOfYMCM9W0/FJ6iJbphN5l642LVKGwlA2Rn86xmtzVc4tihC/mCaTTwh12289NUml7ZCJlF2qIm/w4z8+W+UrJxfpOD6j+TiqIvPRQ0M8/JP9fO74PP/+8cscGcvx0J4+YprCweEsf/7qHP/16akos0Sn2LJpmh6GLhq6d2+/Zt1he8IDuO34LNZM/vCFGVKGguvDkdHsm2JIXllt8o1zK/SnY/zI7cOoisx0qc1jZ5bpSWobrEMurjQ5MVdj70Ca9x8YIKGrXZ/6Jy+t4vqCWZRPaBiqwj3bexjOxzg8kuX2sTylls1nX57j5alKxL4OcX2fP3t1HtPxOTqe4737+vnKqUUUScILA2HV15dkpW6LMEbX7yq/Ol6AHVXXa80WP4Ra2+brZ5bwA6Eg7KpFJNAVCCQI/XXS71BCk0WWy9pjbcvnwnIzYjHItG2fX3p4F187s8RCtYPl+lxaafL//cpZlusmfkgUTlygaXnUTRc/CDm/WGeikOCubT184MAAf/TCLEEYvu5n1XE8fvVLZ1mq2/zceyb45Ud2cmG5yYnZKv/+W5ffUN7GeoSIBl3DcnF9n6fOFkloMg/u7uObz6wQIiwl/ujFaW4bzfEDh4fe1HW1GdYsRs8s1L9vh2AS4HoBr80JFvxILs57dvXe1Dry1ZkqL0yWGc7GqZsOq1FOydOXi+xvpYmpCt++WCQk5L17+7ufx0vTZX7n6SlimmjQz1XEddmxPfJJHc8PqbcdLq40uG00x2rT4tWZKg3LpSehc8+OAuWWzVOXSwxn4xBCqelQNz0KSY0Xpsr0p2O8NFWhL2OwdyDDKzOiYPRDUPGIaQZ3b+thLJ/g4kqD4zM1nr9a5tJyE9PxScU05ipt/vwVk1Lbxo7sPhRZ7loXgmDDeoHIqauZQgH6rQsOEpIIx5UkTFd4oXu+RF/KoG66eBEjNK7JpAwNLwiZKnZQZBjKGpSazgb2qSzB+aUG//HbV9g7mOa9e/vfVnuUd/H2oJDSaVfFACEZ5S9dv0rJkmCFnpyrEYQhHz00xCeOjfDLf7RCEIZ8/sQ881WTyWKLjx0ZZv9Qpvsad28vsLs/xUQhsYFkE4Yh55eaKG8RMWAzrF8qrs/78YOQc4sN/CDg+GyNELoN9usx0ZvkPbt6+erpJVRZ4txSg3/4wb0kdIVXZ6psKyR47Mwyqw2LL3cWGOtJUO04PLynj22FJHsG08xXTR7e00ul7TJfM9FkieW6xc/dv40Hd/fx2OklvGAJy/WJazL/4LMnsT2fhKYwWWqhKcL+WI1sKdcseDdDbZ0tabGx9XBIVxUcR2SGjmwyRAQYuEW1soQgXGmqdNOMy9vHsjx3tcxIPk4usfmwIR3VhSHXgrE3g+mKrB9Jkm5qPb4e2fjma9SGvTncutN4cane/fOpueqWz9NVBcUN0GS5G659PS6siIDtAFHzrke17fDqTBXT8bu12evBDWA2updlSQzF+tMGj+ztJxPXIjVQ2PVL/O2nJvnKyUXaUfi76fq0LY9MXKXScrp5r8E6pfxXTy1xeCTLS1MVCimd28fym7LFXw8fODDAN8+tMFNu07J9VlsW4z1JVhsW8zWTfYPproWPIou9a7lucXy2yt6BNJdXm8I2L6bSmzZuOry6sNzgW+dXGc7F2N6bumH4sz4m7lbmQmEYcmG5iSSJYeU7GU9cXOXpiCg31pMgrisbMtc2Q910+Yvj83hByG2jWRK6ysHhzJb1a7Fpc3K+xsXlBilD4+PHRsjENL52ZokvnFik3LZx/YCJniT/4mMHKKQM0obKrv4UDdOj2nGotk1AJghDWs61612RxPs9V7W2vI9uhrShMF5I8ON3jr7h+tt7/T78u3iHoZDSsTzR6Dw2nkOSJJqWS7Xjkk/q3L+zl09el1n4uVfnefpyCU2R+PkHd7yppvGt4LEzS4QB7OhL8OfHF5ivtrm43IrW2hDTkZirFG/I/JqJCKU3g4RQAnt+SMP3UWSJhCZheyGBHxKLqeTiOpdX2uhRYSRLokaqtG2euLCKoclYns9zVyqM98QJEfmM6ZiGLEmossRILsarM1V29CbfVjVT8yYq6zXYri8cgGSJnX0p+tIGv/HEFb52ZolMTOPAsCCSFFsOMiL/ds0O9dBIlhOzNZKGiuMHHBhKc3g0h6Ep/OHz01Q7Lo/s7WN3v6jdCilD2LaqEl88sYAqwcePiTVlPWlmq1zJZ6+UmC62cfyAgcw7U2F6brHBExdXGc3H+dhtwzfsE7WOw9Vim119qS2dWf66UG7ZTJc77B4QVs1CgaRTiwhBKV3lod29fOPsClPlDq4XcHg4S8cRWZHuFntLGICiyMRksS8GUfnUsHyk6/SYHXfjvjXekyChK4zk4rQsD1mCeseh1HIwXY+O7dGyPTIxMTA5OVdHkSWyMa1LqpYkiZcmyxyfqWJ7fpT3GjBX7TDek+DgcIYPH7qmsjedgCcvrmK7PqWWTUxT+JOX5wiiJvNEIckPHh56XetnCGmYHm3Hww9CDE0mH9d4cbrC1WKLmUqbFycrYs18YAejPXEKKZ2G6dKyPWbKbWK6gucH1E0Pzw+YKrf5t9+6xJmFOi1L9F5/9NgIQRDyf/zleRw/oNiwSRkqnh8Q0xUSunAt6E2KzzIbEw4/livcCoRdo+jT+H7IeCHBP/zQXr51bpWziw2CEBrRQN31A/xQDDMNRUZXJbCFPfjZpQa6KmM6Hn4gzodxTWEoJ3pJsixUxUt1Iag4PJrjmStl2o6PEwRkYgpnFuo0TA83CEnoEqO5OJeKTdp2gCYH1E3RLzqzUCcVU9nRl6QvZRCEIW1HXB9JQyUTUzA0lWcul6i0RO1USOnsKCRxg5D/65uX+Jv3b2fb25gJ+Gax7X/+6i09b/pf/sDb/JN87+Nt76ZJknQb0AvUuKZYrQN5IAc0rnssv+4xiOKQNnndXwR+EWBkdOyGX6S+juHiBSGLkSXdmkw/FR3qnrtaYrrU7ippnrxUYrVpY7oecU2EuNZNl7lKh5NzNaptm5cmK6w0bTw/pDetEwTw0J5+zi7WWKnb+H7AUs1iW4/4+jVrl3OLza6k+5XpKl4Q0rE9RvNxWrbHYs0kDIXN1u88PclrczV6kmKgFdMUDgylubAsGjWTxTZ9aZ1/8cUzvDJTRZMlHt7bxytTFYoth/yKmO7XTJe9g2l++p4J2o7HgeEMqw2LP3h+mq+eXKLUFnYYMU1l90CSStvm3h29LFRNXpurMVft4PhBVz32u89MMV8VVme7B9LkEhqTpTaVtk02oVFpOTQtkUd1aaXJybkaHdtHRjAEqm3hd++8Ub+NCCdma9FGJRQkR8fznF1sYLk+izVRlN69rYfHL6xwfEZIqM8u1Hlody/6uqJ7IBPji68t4vsB+4eE5HpbIcHTl0tMFTvMVsxuzkrdcqmZLiFQabvEbZ9sUsd0fM4sNBjLJ+jP6Kw0bFRZsGJCIKkrgq2y7uffbBZk++CY/g38SymE9iY1at10+PLppa5dVPd116yNfPH7/auvXaDeccnEVXRdZOOdnK8ThiF+xFBL6iqfODbCxeUm37lUJK6LPItH9vaRNFR0VeLKapvDIxmCINxyUz+/1GC63MHxAn7jias8dbnESsPizGK9a9/0ZhGGIYYq8+3zKzRtnyAImSqL4iQeqWkkJP78lXkWqiY/cdf4W1I83j6W4/RCndsj24Uzkf/19t4kHzo48JYN2/66cXQix2SpxUy5w3/49mW++NoCHz401FX+Wa7PxeUmwzmhBD05V8PxAl6YKtOb0pkqtcnENE7M1biw3OBqsU3ddNnVl6KQNGhaHt84u8zFlSZzFWH/VEjqpOMq6ZhGsWnRsNwoNFqlZfssVE1OR9ZCpu1TCR3+/NU5lus2tY7DVLHNA7sK2F7AU5eLNC2P+WqHq6vtKKBb4alLJWExGN0XbTfgYC7G+/b105cyeOrCKlOlNrbnUzdd+jMGEDJd7iADjiu+NgyEXQOqROiLe0cmpNp2SOsSpZYwMKt1PNKGwqWVJr0po2v7IEuiYa4pMoYmGt6VtkPNdLDcAD8Uz2laHoW0Tst2USWJthMQBHB8tsa5xQZ7h9Is1y1+/sG3XkH7Lt5erCfqBFE9cD0xwPUDJCQ0VabcdPizV+f58TtGGcrGWGpYxFSFx8+tYLk+S3WLDx0cYP9whp6EzoHhDPNVk19//DKjPXF++t4JDFXhzEKDx8+vdL/H9YMw1w/40muigfrBA4NvquA/OpbHUJWIYb3x61+aqvDCZJmluklSV8nEhWK9N6XzzXMr9GcMPnabILNoiszfe3Q3F1earNQtliMF1pdOLrLasHlZF6rP+arJQrXDheUmh0ezLNUtZFnq1ihnFuq8NFUhriosNUxGcwk+8/IsHzwwyHSpxavTFWRZeMtX207XslQCelM6qw0RTP3Qnj7GCwke3bfRQnoNKV3CNsXicjPL3TXFXxhCsW1R2OS5q237hsc2w7987GI3E+PffOMiv/Uzd236vLNLDSwvEPmclkvPJplgnn+tNlmzLt4MxXonYsaHG2w9b4aTs3UGD99oW7XSuKaYu1n/rWZfq21Ozde3fJ6uivreUIMtc4jqbbvLJG5a12qRlu3xJy/P8tiZJUzHeVPN/2DdACthKCKbLGUgI+F4AfPVDqcX6tTa1wamQRDg+CEP7enlsdPifvZDoQ5WIxvT0XychuVwar7BdLnN/Tt7yUWs5ZGcCDkfysXIxrUNljyb4W/cO87vPjtFb0o4HJiOx288eYUwpJsR7HgBF5YbpHSV339+mnbUOPL8kN39KXRN4RNHR7ccgIEgDTlewHSpQ7lt32B3/uDuPgpJo5spe3Kuxu4ot3AznF1sdJVVYQj736H2NGEYcnKuRjpqCn7w4AAHbuFnnSy2qHZcqm2Hc0viHOH4AcfG83Qcj8srQg3Sk9Tx/IA/e3WOKystGpbLzr4U3zy7zCP7+vjvL87w2lwd2/VJGSK74w9fmObvv38v/+2FGU7N11htWvghiGPxjfe6H4r/3JvYom6F/pTO4dEsf//9u8kldJ65XOrWzfftfP08m6Xa1irad/HOxGBkfX/baI7/+SP7AGHNPFUSqqoDm1g3v1FcXmnyrQurDGVj/OBtw7ekqPzsy7P828cv07FdAsByfK4XOa/P6FyPW1n9Q0BTwffFmuQF4QbVmMjcCykkDOKGcMoptxyqkZV6sWkxnItzZqFGytAYLyS5e0eBfYNpOrbPf312CtcP+K/PTjGYifP05SKZmIamynz86Aipt5gAt2bvvhUkRJ2qyMJ9457tPfz+s1P8ztNXCQNhgesHIU3bxfV8xvIJTMfnt566Sj6h88O3jzDWE2NHbxJJojv8Mh2fWsdlopBgrmIy0ZPED0JiqsydEznOLDRYrtv8u29dZqrU4VN3j3HHeB4tyiZTtiDtSJLE/uEMddPhQ4cGNn3OXzdOL4jz82SxTc10b8hY/9zxBRqmy8m52k3tp/+qEQRhlwB+YbnBT90zgSJLfOjQIJ9/dZ5yGNJxfb50coFLKy0cT9gPNmyP1YaN7Ye4W1xuPlBpiedcz0W62RXqh2KdmCq1gBDbE2dxsVZIJAyRQ1ZuOZxdbPDKTI0wFFZ/t41kGczG+aWHd/L81RJnFhrIsrDadP2AlK6QiuncMZFn7LoM1h+7Y5Qrqy2MSD21XDc5NV+j2LS5YyLPxWVBvHK8gA8fGtxS1Vlp20yWWgRhyG8/PcV8zeS1+RqXV1voisxksYXpBMiyxO8+O0VPQu/mYBFCue1QLTpR3p7MWD5Bve1wdqHB5ZUWqiIxmI3x7QurnI9+pnLbRZWFk1dC17DcgG9dWCFlqEz0JGjbHnO1DrIshASeJ+7vEDH8/5VHdnLP9gJ/8tIsmZhQl33p5CJJXeXiSp2porBXDAl5eaaK44nMMjcE1xbDtYG00SUPy7JEPqFR6zi4vnDJKjUtXp72ubjcoBHFBynAc1fLuH6I163nReSE6YhejeuHdByvSxQutxw8PyRlaCQNlXRMpdpxhKWqrjJf7VBuuwxmDIIgZCBtYHoek8UOCzWRUfmPP7z/ZrfF/yPx/TSEe1uHYJIk9QD/EfgkcAewpu3MIIZitejP6x+rrnsMuEE9C0AYhr8F/BbA/sNHwtcro9cKIZk172YRkG65wqs2YSikDJUgmmCXmk43XDETF2qt+UqH84t1Kh2HtuXRnzHwA6GeqLZtSi0HLwyptjwUGTzfR5VlNEPp+iN7QYgZ5VVISDh+gOUGOK6wdfGDAAh5cbJE0/bwAsEyNR2fXFwnoSsUmzZpQxRcM+U2hEKSv1SzCBGh4oos0ZsyyMQ1dvcl+bePXyKhK/yjD+7lt56e5GtnlmiaLqYrlGuOH9AwPc4uNFBlGVkWFhlrzJwwDPnMS7O0bcFYSMc1jo7lORVlgWRiOh3b5+tnl7E8n5blcXK+TlwT+T+m42F5AXFNiVjpb+5Am0/owoLQEJlVR4GJQoI/fmmGWscln1BZbTpcXmmx2rRJ6sICqe34G4ZgHcfj8EhW+PraLtW2y+89N03DdHH9kK+fWUZVJOFlG4IZfT4gfJyXGhYXlxpIUe4QoWClNCwPXQ0pJHU6Ebt4q6J7PcLov/Xh8lt9je0D/k1KgzDk1ZkqQRiS0BVSMY24JvPCZCXa3GUcXxTnV4ttelMGt92Zw/FDvnpqEU0R/u2a0qHYtJkutfmD52eQZZn3bdEQ3DuQZjQf5/xSk8GMwTfPLUMoUW5br1tovx4kSbBgJYluVkFKl2maHoeGs3zsyDC/++wUS3WTc4t1Lq82ufO6MPE3g4f29PHQOgXYidkqlutzfqnBA7t73/IDyV8Xbh/L8/JUlZNzoonVsT2Gs3HCIGS22hG5X65Px/H5+4/u5rZRoTK4a1uehukxUUiiSGJtCwIRhIok8vYODKX5ixMLLDVMam1HrHsSZOMa+4cydByfWsehY/uCFOB49KV1ym3BVKp2RMhu0lDx/JC4KnO15UAaEobKVLnBXLlDzXS7t4QXgOuJzERNlkR+S8Syf3mqyp++PEcuofHiTBnL8UXmXhAwmIlR7biAUBCvXbWKDJYvrBf8KNcrCENsP8B0QzQZkCT8ICSUIKWrZOMa5SgYWzTHoGmKrD0lGoqt77kGoWC49Sc1Si2nyygDIBQDvLMLjU1tpt7FOx9rxBGAdrSwX1/YiCak6EYOZAzCMERTZN6/v5/FusVK3eLicpN2dD/+9xdnMVRhAWh5Q3zj7ArnlxpcXGnynp297BvKiOvU86l3XJZqHV6aKiNJEj98+7DI2Khb3fy+0wv1NzUEk2VpA5s1CEK+dnaZharZVQTlEzqLdZPZSoejYzlO1Uw6js90qcNq0+6qwxZrJpoiESIyH4tNG8tdU0+HfOy2YZzI23+hZiFJ0g1M2rV7R1UkCkmDStthuWGxVLN4/mopsjySumSouumQjYnswVRMJRUT5I8fOjJy0/fDXrdBNyx3y+etCS5CwLY339VnilsPeja8ln9tXQpu0rBebdpiTXECGm170yHYk5euWTA27a336Cula9fu+aXGls9bj+GezdV+0rp8slttt29l3wdQaor3veOGlJs2Q/kbv29jHSHOXDd5niq2WW3YKBKY7sYcsjcECWodl1NzdSzXZ6VhY7leZKHrE4QbLYCCENq2x688vIvZssjz8yOyhkRIGIbcs72H5yfLtG2P822b2UqHXEJjZ68YfmiqTDauda0LK21nQ62yHr0pg7gm7sMXJivEdYVLy4KQ1zRdyi0HRZaomy4L1Q5XVlss1ExSMRVNkem4Pv/og3s32KNvhkMjWZbrFkO5OD2bWL5risyRsRyeH/DbT08Jcs1Kk0/eOcaV1RaSxAYr1eOzVV6dqTCci2/cD99hkCSJwyNZzi42eO/e/htyEbdCb8oQzGQZClEjNIiKgq+cXGKhZhLXFX7hwR3ifBCKvAvT9Tk+WxWOJNNVik0b2xNWum4QMhDTaEfrzOWVFmlD5ZbC7t4EZETG8WLN4le/dI5DIxlWo4zF47PVWxqCmVsvne/iHQhFlvjw4SGmS20e3H3NMmq8kLjpGvHhQ4OcX2owmr8167CT88IJZ7LY3nSovuG5czVenCrz3JUSDdOh4wRbNs/fpClJF7YnsvU2u2xlWdyjDdPF8mQe2tPPldUmL0xWxBoWivW/3HLZ3Z/GDwQRYe9Ail/7xkUWa6awaGs6GKrC6fk6g9kYu/qFjeJto7nv8qffiJu1EUDULJYbcGZBuKKcmKny6myVpuURBDDaE2f/UJqT8zW8IKTt+vhBQL0T8NJUhdlKh4G0QdV0sN2A4tkVWrawchvtSdCxfe7ZkeX3nxPn95Sh8rEjw8xUTGodkSV1cr7GwZEso/kE1Y7LheUml1Za/I37Jriy2uK1uSqHRrLcv7OXB3b3kk1o5BP6TXNw/zpxcDjLasNmtCdONn4jWTeM1ul34p639jMF6w6v23qS9GdizFQ6yJFlth/lTLYdn0rLpuN4Nygvr0d7qwnZ68COcsTWk8jdIEQiRFMkepIaKw2bhZqJIkdOSopEx/H50MFBnrxU5NsXVvH8kIwhbLMdX8L2AhLR+cl2fb58aom66fKRQ4MM5+J85NAgr8xUOTCU4cmLRU7N1TDdAE2ReHhvP+WWjSRJnFmo32QI5hLXFOqWRxiGfOXkIpdXmrRsH1mWGOlJs1y3iakK/WmDhuWxrZAkpsrokS3h2ZpJ0/JoWkLIkY1rzFdFXlkIDKRMOo6GH4SUWg6OH+IAvh/g+kCUmVVuO9Q6Dkjid29aDdq2UE6Jz12i43gUWzafeWmWpy8XSegK/+JjB/nZ+7fxu89MsVC18AIfP5TAFwRAV7S01/VTJEbycUJEbd6b0kkaCqoiBpCOH4AkRflcQqCxlstuextraccXNoiwLno5FG4LtY6L7fq4vk9PSkdVJLS1/DBFkCkXq5bos/sBuiKJa9X1o7mAx+XV9pu6Jt/F9w7eti6uJEkq8EfA/xSG4bIkSS8DvwL8n8D7gReAS8AhSZKUtcfCMOxIkhSXJCmFyAQ793rfy3u9nXwdAsQmI1hzcWJqSEwT4cVjPYlI0u8Q02XGexIsVE2KLWEXt1i3yMY1DgwJn3XH83h5uoqmiIGTjETb8ggJkWWFIJTY059istQmHVP5xIFBnrlSIh1TiUV5N5Yb4Eey+krHQ5MVqh1XsJND2NGXZCwfx/ZDkrpCIaVTbjkUkgaqIvOBAwP86cvzDOcMPnJogKcuF5mrWDy4u5cHdvXSdnyevLhCuWVTkSS+cmqBckvYfAVIpGMq/ekYmbhKw/TIRfaMvSmdk9SpdVxuH83xjbPLfOalWfwgZLyQ5Ofun+Cl6QovTlXEIE2RyCX17sF5sdbh3GKdIAwZySfY1ptkttIhoau8Z1cvn7rzzeUc3L+rwELNpGV7HIy88EtNm1rHpWm5fO7VBbQo4yqf0Ll7ew8ThSSZ64qNQtLgzGKdUtPGDwNapsgGCkPRhAiCgE5HWFEqirjG1gapYeCL8HPPJ0Qi6fpk47qwPwsgdH32DaUoNR3AEoNNP9xgd7OG69VfwRaPb+bSLyOK7huYMxKUWhaFlEHb9hnOxnjualkouYC4rhHXBRN6rCfGUDaO5frs6E1y/84CsxWTx84s8+N3jJKOiSwj1w/4wvF57pjIb1q4pWIa/+aTtzNX6fAvHztPJqax0rSQJQmZG32g3wgsT1jIpXUZPa4yko2Rimlk4hoJXWE4FyNjqBiqQrntMLpJI+ytwIHhDE9fLrGtkOTiUoMTczUODmdv6aD/VmLNMz6f1G56MLxVZOMaP//gdqZLbU4t1LC9kEpHsJNdP+Sb55apdVx6Uhp/UUjwtx/Ywe1jOb56eglZgl94aAcjuTgLNZMLSw38MMQPQt6zq8B3LhV5+nKRUsthvCdOQleptF2ulto8srcPPwiZLLZQFZk92RiTxRa1jssdEznOLTUZzQlroZPzdV6cKvODh4ew/YC24/H4+RUcVwRMr50XVEkw8huWGF47fkguplC1omBW4IkLKyQNDSQJVREEiRBYrpksN23ajo+CyN5z/RBZFvZBnh90lcReAM2OS0xX0FSxf8gSBJEkc7YimFT7BtL8+F1jfOdikdfma7hewGSp3VUQiGevfa4BMxVzy16VLIlcRdvzMdS3x0rmXbw9WO/81j0MbPK8IIBADpmvmfzzg4M8fn6Fb55boWW5yLLEA7t6sV2fmuWyWLMotx2k1Ta/+eQk23rjyJJETJO72V2HR7J89fQSSPDExWLXKvHyaotj43n6MwZ9aYNq22HfYBo/CLm82qSQNG5QfdQ7LnPVDgtVk4blcm6pge0G/MBtQxv806sdh4vLTUBk1jy0p4+4pvD1s8Ih+/hcjQNDaSSgPxPr5ojOVzv86ctzNEyP+3b00LJ9vnluhVxC476dBbb3JskldX7mvm2cmhfKi/Xh8dOlNt++sMpAxuChPb0sVi0GszFOzFVZqQtVMoihXU9S5398dDffOLfCS9MSU8U2R8ayrDRsFDnAjtaVStu5gam7BkWWWWup3SwUe/3eLa/3hFuHzi02guPrFIU3s8dbL7T3gs3bfq59awptZd3PfKvh3/n45oqh9YSYm71SQoW1aLTx/NaN1bWI9TBkSyVY01qvwrr2+HghwWBWKBpcPyBpqBscJG4FMhBXZRK6KpwErpRoOx6m7eMDqnzNfUJG/CGmKcR1hfPLTQ4OZym1bCotG0mShZVMEPKrXz5HJqZEdkDQlzJQZRk/DMmndJbrlrg2o3rdus5Tbrku1NW7+lJ8++IqV4stZFni9jGRjbd/SAyYDU3k4Kw2LVFLSFL3fBIEkElqHB3Lod6CCmMwEyOX1AmCEMffOqMtZI3sJ+rqC8uNbo7vRw8PsTdah0pNu9swvxVl1V8nHt0/sCGvEcRAv2173UzU6/GNcyskdeFIcmw8h+MF3Sb3miJrptzmvz4zybHxPD96bJTpcpvxngQ/9p+fw3R9VuomqiIUJylDZSQfp9bxePLCKrm4RkwV58qkLoua6C2GqoiG00ylg6aIayef1JEkuuez18MbN/l8F3/d+KEjw6//pOuQNNQ3RE7cPySiKoaysU2H6mv49W9d4nOvzKOpMn4QoMpvNNHujSFA2Ad7Xrjh+2iSIIMu1kwRgRBKHB7JcPf2HmbKbcptl5F8jEf3CYeNjx0ZYalu8eyVEl84scCrM1XqHaH0/R8e3cU3zq6wfyjDTFnk+U30vPVDnVtVv/mhqBkblkvD9CIFhyAEHx7JcLXY5t4dCXb0pXh4Tx9fOCGyaoNQ5KkbqoITNZZrHaEq2dGX4h9/eB+VjsPvPTtNpe2Q0FTu39nLbaN5fv3xS8xWO5Edrqjz3KiwCSMnjt9+epIgEJZy9+8UNv7rc2wBVhoWtY7L7v7ULdjTvf04NJK9qVXujxwd4cpqS+RtvYMgyxI/dmyUyVK7+3msPf7PfmA//+Ofvkaj4zLWE6fYtDFdkatVbDlY7lu/96zHZp+qeExkPemqghcI8psTCLLImcU6X3htnpW6zWLdjDItk3hhyFxFEFC2FRKM5BNcWWnxtTNL+EFINq7x8aMjFFIGP3HXGP0ZccbIxDUU2WN7b4r7dhQ4s1CnHjlxbYU7J/J8JRcnabnkkxoXlpvCFUMN2V5IcMd4D9t7U3zn0ioXlhpU2g7D+Tg7+lNU26JXveYk4Ed98KbpEYZBd8B9udimkNRRZGG16vohsiTcSWKajK7KdGwLNxC5RbIk/n3fYIa5isj6Smgyk2UTRZJYbdgUGzZ106VuuvzRizMMR70bxxMDMFUKo/sfEppMXFcwbQ8nENnSmiqTimn4obh3G6aHKgvCcBiK+rEdxbQ4vrBMXBNsKJKwo4zmd7h+SH/aoGn5hGFAXFcpNW2CMERVZFRZpmP77BtMiWgiRWapbpGMqbQcD10VzwnDkKrpdS3fJcSwt2V5pGLfH4T3m+FW1V1v12v+danG3s5P9seBu4B/FR0A/inwlCRJzwCzwL8Lw9CVJOm3gacRCrBPR1/7vwPfBCzgZ1/vG+mqvCkrZyuIYUZAw/L4Pz9xmIurLf7i+DyliLEQ02Ratse5xQbFlkPL9tBkwXgbzBpsKyS5sFTn+Yjd07Z97ttVoDelY3o+CV1s+MmYSs10GM3Fcf2Qs4sN4prMq9NV7tiW5+5tPbw0XeHMapOm5dF2xIF3SJUJo4V6pWHzo8dG+Ym7x/GCkG+dX+G5KyVGexLsGcyQjuu4XkC57fDV08vsHkjxSw/v4sBwlpWGxWdemqVuelQjr/p8UqduemTiGllEUdGX1lhpiPDzUsumaXlcXW3h+D4nZmt85+IqO/qSXRue3rTBi1MVvnZmGccPMFSZkVyKg8MZFEVmsWpyZbVFx/GQJYl6xxV5O4ZC3XT58slFig2bf/Op29/ApyaQ0FV+9v5thGHIQs1kttyhZXsYqsyKI5rh6ZjKSC7ORw4P8bHbhnhluso//8JpnrtSIp8w+D8+cYhy22YkG+PCUgM1ktirimCI9CVjTFc6+AF0ojDwtdyGEMHsDv3IxoyQUttlpXHNcscPYWq1w7GJvFCDuR5JXaJqejc0uOOahOmGNxSj3UapBDFVYjiXYKbS3mChFSAsExVpI6MrDNcyjCR0TeK1uTqO73fZOW4gmnz9GYMfvn2EStvmv3xnkjAMyCcMdFWmJ6FzeqHO33//Hhqmy6mFOuWOw2dfnuNvP7B9y2JyrCfBLz+ykz97dZ6XJ8uUWw625/AmXFY2wA9CJFkiF9foTcfYP5TilRkhP/+1r19kstimabnct7OHwVsIXX4zuGOih2PjeSRJ4j89eQXbDXhxqsy9O3r+Sq0Rn75c5MRsDUWW+Nn7tr0l1o+vzFSYKrcoNh2OjmU5MpojJOTPXpmnYbnRYOsaA+zKaov/6xsXKbcdvnV+hX/+gwcZzcd5dP8A23uTrDQsvnVhlcdOL1FrOyBBtePSsX00GQI/4Mxig1YkdY9rwgu63HJQFYnFmomhylxaaUWB7T6eH/DlU0scHMpQatoYqkzd9KLMOogrkI7reF6wQVHpQsRmEn+33ABVCUgbCqbtI4chlhswWe5AGDU2DQXLE4MvmQBNU9BVmUxMFrYOfoDjhbi+sF70gqBrT1pqObQiJrbt+UyVRAOybXvYbtAdpic1iUImxmyURdCyb7xJVFk0biUJtvUm2NmXencA9j2I3f1xzq0IvfpASpRdWzKVg5BK2+GJC6toiiwOAl7Ajr4k9+7o4ehED6sNi6+eXqJluzx1qYSmyOwaSPF337uTid5kd9glyyKPLq4pBGEYHSIkJiJmoibLmK7H8dkKhiozV+1wcq6OKkv87Hu2kYnysFzP5zeevMKZhRorDWEFnY2yH567WuLeHYWuXZFQp8RYqlscGM6wfyjDVKnNaD7OZFEotCXg8EiG9x8Y7P7eJ2ZrzJQ7NEyXYtNme2+KEMEc7EnqPHZ6icGsyBtKGirPXy3z4mSZ9+8fYCgX5/hslfNLDb74WpNMXGMkF2c4G0OS4NsXVwlDuHMix/a+FHdM5JnoTSJJEotVk2rH4eUpofQd60nwF68tsNq02Nab4m8/sH1T5vqGXfsm+Va6ck01ttVhans2xlNbvsI1OOsYuNYtKqxbWzQgJO3W2s/beuLMVMS1e6u5cguVFqObNO2S6wZVNyM6d9bNdITVzeZYTwDqOB65TQaWg5lr9cD6GWQ2rvF3Ht7JXKXDStNiobp1rttWCIC2E2D7Lo+dWcJaI0JBN4dXlSUUX+xRawPnlu3xH759mUMjOXIJnUJc4+JqC9f3aUVFXsPy6EloDGZj9CR1fuqeCd6/v5/JUod/8/ULaIrMTKWN7fpU2i5/HClD793Rw5+/ukAQKcpiqsKegRSWG3Dvjh6ycQ1FBlWWubjcZLFuRk1tib6Uzn9/aTbKsw0wVEncE+uIRWEYcrXYJhNT6V+Xu3J2sUGpKewyr662OTy6eaNPU2Q+fmyUmVKbg8NZpsvX2LbCBrBJTFOotB1KLZsPHBjgarHNzr7k94wF9XLd4rOvzBGGItD+7u09LNZMvnV+hZ6kwYcODmC7PsWWRbXj8LHbhjZkOf7A4aFudkzb9nlhsszffV8Pg9kYf3Finqbp0olYzoOZuHAt8UNmSm0sN0BRJP7b89M0LR/P83He4qmAKolmluUG2J5oLDVtQaL88TvGGOuJ3/JndZM4wnfxDkW94/LMlSIXlpq0bI9jE3mCMKRhunzgwGCXhPPd4OBwlgNDN2bkzVU6/OWZJc7M12nYDheXW3Rsj6bld+vltwqxaO++4XweijOFOGvDgeE0YSgUFAOZOMWmRRAK5W1Sl6l1PCRJkEjatkc+oTOQifEX0bDo4nIDRZYYLyT5qXsmuH0sjyrLPH5+hYMjGT5559hNc5rfTsgIJUjL9mkVO6QMmZimYHs+NdPlxSmhxFpt2PzQkWF29KXY1Z/is6/MYzoeewfSrDRtah2bq6tt/FC40XhBSLFp44ciEzFlKLx//wCpmEYqpvH//uBeLq802dWf6u4zD+3pIxPXhG110yauyaxE+UabodJ2+JOXRFbTndvyPLj7nZ/t3ZsyusSwdxrOLNaZLXfoTYmYgycurtKfNuhPGxQSGuWGyUypQyjBUEZnruphWv6G/tnbgbVSdl3MJQHiTK04AZoiU0ga1DrX7Lw7TsDLUxW8KO4gCEL8qBcwnIshSRK6qlBpOfzJK7NMldqossxCtcOXXlvgK6eWUBWZX/2hg/z8gzvQZInpcoedfUl29qcYycX5+tllTt9ECdayfbb3Jji/1OTScgvHFQrW3oTK9t4Uw7kYF1caTBXbLNQ6eEFI3RJ2f2lDZbVp3aCwc7yAhCFjRaRdy/FZDSxkSZDQFFnEoBwZy7LasOi41wZmIYKkNZaPMZiJUW7Z9KVj5BMq2YTBXKXNct0kEVkLSpLExaVmt18tSTL5uEyt4+BEkSv92RhSpCRLR9aHHUdklDpegB8ELNY67B1Mk4trnFtuUq44uJ74uRzPxTMUwhAGs4bo9TZsTMcXn5fjYbqiBtnRl6Lj+Kw0RR1uKD47enMM5eI4Xsj+YZF5u9K08esmsgQxVWHfcJqsofGlk4vXrg/bZ7LY4t988yL/n48d/G4v0b8WvB2Dre83vG1DsDAMPwN85rqHnwf+1XXP+0PgD6977HHg8Vv9XreiBJMRxYqMGILJstjIx3uTLDZsFFnmykpTNGDrFq4XUOu4uJ64ky1XMJxN1+fSsrDuaEVS0bmqSefcCrIk0Z/SURQFVwtEYHbKoNJxGc0nODaR43efmSamybw2V6XcspkstTFUBUmS0GTQVJmhbBxNkZmtmARByHcuF7lzWw+7B9J8+NAQh4azfP74PJ95aZZH9w+Qjmucmq9TatlcXW3hB2CoCg3TJQiEzHXfYJr37CqQixsMZw0qLSEDbdkec1UL0/XJJ/UoHFyi0hFWkSEiO+LCcpMjozn6UgaHRrJ85uVZFEUi8ERjfLLUZrbcwdBk/BDycY2ErhLXZEbyMXJxnabtMlsRWWiPX1h58/YzwHS5wxdOLABwdDzHQ7t7OTVfZ7lhocoykgQvTpZ54sIqF1eaTJfa+IGwOfvjF2d5/4EBLq+KA6MfBOiqHDEWVOK6giwJVoQXCLszJaLzdv3Fw5CULiPLCrVN/Dyultr4YQhhgOUF3aDP69F5HQm4oULcUAlCwWa5PrsjCK+FjEsIdYGhypEVkkchLSxXsjEV3xePlVviek/qKqbj8++/fZlnLpfIxDTu3Jbn3h0F5ioddvenkSSJX3x4J//5yavoioztCXsf+SY87kMjOV6aqvDl1xZpWu4GVvqbhWAPw2rTwnJ9Dg2nySc0Km2H1+bqyJLIQTsymn/d1/pusHYg29Of5vRCvfse/VVijVXlByG27wPf3RCs2LT4L09e5eJykzAU2YW/+sM5vnp6Gc8X60HKEMGzQSie/+JUWTTDA2F78dtPX+XAUJZH9vaRS+ikYxr/9elJdFUmBBKaQjauUUgaTJZaxDSZydUWbdfHUGVsT8Lzg24D8PmrFQxN6f6unh/i+CJvpTcTo2Z6rDQt4rpCDwZeEJDQZGK6Gtk7icOwJl/L9lqDphAdnizsaO+QQ9EgDaB7WPWDa3kCShCydyiDqoiB+ULVjO5pH1USFb4iS4xk46w0re4Art7xePZyieWGvc5WQMALJTq2j67K0bp7DUrE1ArDgO29CdxAsMRrtyoZeRfvKHz48DCXi1cJgQ9GAcubrfxrzfN8QqPYsolrImeo4/jENEUM/lsOmiIThuIwM5ITzMuzC3U+cmiQ0euUMz98+zAXV5rsGUjTFx2u10gMz14t8ZkX57A9XzTdk+OA2PfcddfkS9NVTs3XWKiKYUjSUEnoCtmExt6B9Ia8DlWR+dRd4/iBsFT+4msLTBbbJHSFv3HfBL/91BQtW9gjr8eu/hSOH+AFIU3b45G9/TRtlwNDGf7y9BLVjsu3L6xycCTLdKmNIgv7j7lqh597z3YGMzGevVKk7fj0Jo1uvurZRWHzqsgS+aTB333vbmYqbR4/u8JS3URXhH10wxLB7gs1k76UznzVYjSfxPWDTYdg65ttN9vjNvybtPl+f3WdXebNsKc/w+XVNhKw/xYHUnK4+f6k3OIQrRFN8CSg0rq1QVHH3nydaq8LArvVXbNzkw7++sbKVj3ChXWZQ95188CO47FUt7pW4m8GIYKN6keDLjnaC66pwEJkKSRhqCR1FccLsFyfbFxjodrBcgNmKy3am5AgAI6N59g7mOHMYoPRfJwDw1k+edc4L06WcYOQkXycJy6s4ngB2wpJelJad58xXZ8PHBxgIBNjIGNQ7bjoqswdE0KRsWZPuF61tX8oQ73jMF1q07Z9lusWF1ea3BetHS9OVXj+ahlZkvipe8e7DbvtfUlOztdQZel11fgjuTgjkQXq4VgWL7qZik2bJy8WKTYtsnGdmKZwfLbGYs3inu093L9Ocfp2w/MDpssd+jNGlwwwV+mgKfLrNvmtder0atvms6/McWq+RjamsVS3yMRVCgmdJy+u4gfwe89N8csP7+quM7mEzv27emlYLi9OVtg7dO1ef+5KGS8ULGvPC0Qd4wo3ESe6p8PIJqhzfSDSW4C4AqqqRKHzBi3LY9dAmpFcnF98aOeWisyt8FYP6N7F24swhM+8PMuzl0s0LJdYRALTFJl0TOPEbJWPHB56S76XJEm4fsDXzizTsj0+eGCA47NVnji/wsvTVYJQNLDNSJX1Vl/u60uUtaGXFP1cihxGQzCJpuXTnza6tdnafXduqcFETxxVEQoMVZZJGiqOHzBTbrNnIMX5pSY/dscYxZZN2lB5X6QoPTSS3ZD12LBcVhs22wqJLVW2bxS3MpgQdvHr/h6KnCHH8+lPx+iJcp/v31VgR2Rnm45p/K33bCMIxSDqwnKD84t1ik0HQ5ORJJm+tMHL0xV+5OgIHccnaag0bZ8wDJEkib70jW4EMU3h3h3CeSVlWOwdzLB3MOTHtnAWWutXwEYr5HfxxlHvuJycE24KL01VsD2fr51ZJhNT6U3pnJirRUp/HxmodZxuFAG8vepMZ5P7vnuHRL27TFzFdL2upbgENG0fQ4EgVMgndTRZYmefqPlTMY2G6dJxPKbLHZHJ2rIptWxOzddpRbXspeUmD+3t4+9/YC9+IFRUkiTx/NUypZZDqeV0Leevx0rT4txig9mKSSGpUTUdJCQ6TsjzkyVenq4wnI3hrMvv9YOAWtui1BTuB9fX0Zoq4XoBhiqcadwQgqguUGVxPjs2keOeHQUeP7dC0ghZrq8bpoUhg9k4+4bTVDsOrh92VZwt22e61GYkF6cnqXFppYUfiFrj0HCWtu1xJXK6AfGZL9YsoZz1Q1IxjY7jCyVXGKLKoiavmx7nl1sYikyxaYmsxXWv0XF8tvcmGc7FSWgKS3UxPJdYIykI9y7PD8kndKZpR65XKoW0Qcv2uFJqkdBUpsttHE+8n4YiYWgyd4/nObVQR1p3lQaAockbzizv4vsP3xcaP02V2Sque00RECIGBgPZGG1HMIaOjmZRZZlnLpeYq3ZwfR9ZlsVQTRKNV0OXUSWZpCFsCmsdF00WTSJVEsxe2/VZqPkEQUgmplBIx+hP68JGLgi5e0cPd47neWhPH188scBq06FjiyGb4wbEVYVMTEWThQ+qIkscHs0ymI6x0LBYbdj8l+9c5VfeuwtNlvm1b1zg1ZkqPUmdhK7y8w/sIBfX+YPnp+i4fuSL7TKUjTFb6TBTblMYy0eH7Q7T5Q6VjksuodGyPCzXpy9lcHgky97BNF84sUAuoeO6nmiARL/nYNbgtpEcHdcTslovJKEpqIoIAW96Pi1bsH1jmRhHCgl+8PAg/+GJSY7PiIJ1baF1/eCWJdKm47NUN7my2qTcdnl4T9+GhSllqGQTGlOlNqWWTU9SY+9QmumykNKXmjZhJM3t2B6W47FYMzkymiWhy+TiGi1byLYXayarTRs/uFYg+gFkkxquFxA4fneBN70Qws2bPSEwVb628d1KsblevQKiEe544AUu9U2a3xKiAE/oklCRhCAr4IeiODedgPlKh5Shcnikh+ZsjZim0DCDbt7ZfNXk8koLzxfex6Yb8NDuAjUzy0Tk7z6UjfP3Ht3NmYU6O/tSr1uA+0HIi5MVEZobvjXFj0Q0dJYlZCSeulxme28SRXKJRRvVWE+C9+7rZ7luIUVDsdeDHwi7v7rp8uj+gVtmYL3/wAAP7un9a1HlPLSnj4Su0psy3hI7xP/1i2eZLQvl45pS8JvnVpgqtVisWxCGDGfjDOfidByf3/zOJMdnqyiyhB9KGLrwrn9pqsI3zy1zdDyPrkpcLQmG92A2ThiKLMT+tMpto1lM2+PiaosgBFWW6E/qXfWUxJplrchEVCUwVAk3ELaY+/pTJDSFcjvG1ZUmxaZNSIjj+ozHdfwgxFBl1CDsMhY9PxpwAQldw3T9DdZciiwsp8ptB0ORyMYV2pEKVEaoXyttW+S9eMGGIk/kbYg10nI9muvWJkNTqHYc2o5gZLsbDpMi86kvrVNq2rhB2G2Y+yGEXkDSkJmrmbgBLL+2wPbeFJ+6a+wGe9d38c5GT1rvNlTWWKubraIhwmrnffv72dGb5L89PyOCwGXRUEnqCv83e/8dZdl133ein5NvDpVzVeeI3MiJADMliqRISlSgZcnx2fOe18zysp9nPOs5PY+tGY9HjuPwrEhRoiyJpEiKERBJxG6EbqBzrBxvTief/f7Yp25Xd1d1F0CABCV81+qFRlfVvbfuPWfv/fv9vkFT4ficVE2lTY0Hd/XiBREDuQTPXCxx10RR2iu3Pa6UWlxYadEfszWlbXDQze5ouyGDOYvZSofxYooPHhri1bkaAzmL3g1roRdG7BvM0pM2KaYMRgspfvGBCSxD23INXG/erBeLbhCx0nDxwoiOHbCn/1q7lwPDOX75oUn+4OV50qbOhdUmn7hrFF2TuWdrzTJJU6PScjm92MANQsaKKUxNo+OFfOeszJuwvZCWoXFgKMtP3jFCEMnnHchZfOKuUV64XOJzL85ypdQiZWpUOl5cQMlbOfJDqh2fvUM5PnR4iGxi83uts6HybttbWwtu5GitNlx2bNLHH0xv737+iTuGObUkBw3v3SKf83rMl9vcPnGjZW91m8Vdb8bAUBVQoJje3n6jbTHsU68rMreDm8XHZGPLQFNTyFqbv4e5Deq76wkr1Y7HbKV9y2yU7SBCFlSmrjKYS0iWbhBhoqIqKpamslDrSBWBqlB3fA6O5NCUDmeXrs2wURW5Dtw9WSCMA+lNTeXSaov/6zN38sT+AR7a3ctsucOppQallrzX11oud40X6c8kqHV8jkwVSRhyjfiN56YptVyKKYNffngHjh/GNsVXh+ZhJDgwlCOIh9GvztZQFIUTc3XySZNX56rds3cU7+nrGC0k+RuP7YwbxNsnBqmq0h3Kfem4JLalLR1NVYiE0l0v2z/kJuY3Tq1wfqVJytT45Yd3cGG1yTdPraAo8Mm7x65hd78+X+e1hRq3jxa4bSzPVF+aJ/cP0HKlUv30UpMoIs7d8FEUmSOXTxo0HLlmrdvwALRcn987Nkel5TFX7TBX7VC3fdKmtNFPGqrMkg6hkNLQVUU6icRNR12hm6X4VsMOgTDk4opU4IwVU+zoTfOR24ff8AAMtr8OvIt3BgTg+hHFtIEbhBRTJuPFVDc/akf/W2vbN11q89p8jRcvl/nVPz1Dx4+uIY11fsDM6ZshiIdeCV2hL2NSacvIhKSh4oYyVyiIBDPlDrYXdBUvmYSBqakyz92PSFsaxVSK/UMZNFUhaWgM5RPsGczyxP6Ba85QTUfmNI73pLrrqBdEfP7FWTpeyN7BLD9x+1szZNzuO6cqkjiooJCypE3cYD7B3eNFNE3l0mqTUsvlSqnFsxfLGJrCR+8YIWXqtNyAy2ttzq+06c9YFFMGe4aydLyQXQMZvnV6hblKhzASdFzplrMdXulQPnHL/WY4n+T9BwepdjyOTP7gOeF/kZFJ6PSkTS6ttTgyWeSPjy8wX5U5W3NV7Zp6+vrB6RtF2lRpbzbZegNY/2lTgYSustqQ4gZ5nlS6faM2YGohXiiIIsFgPsHB4RwXVptYukat40nVE4JiWhJi0oPSci+bMDi8QfG+fh0u1GyKKQNVUUhb2pa9qPlKh0rLxfYC2hoYqkLblT3GdeKegiQYhXFmuhtIm9EgErScsHuvqEAmoWGoihzCCwhZtw+V61La0pjoSfP43n7+8/cuSwK/kPc2UYgS5zFfKbW5XGqjKoq0CWxBuSNzzNteyJVym6YjSTaqIodUP3tklH/5jfPYnlS9akgycdbS8cOI4YKFriq4gWC5YRPGCjw/AkOHlhNgx3VGdN3CJID5mi37QmEUZ73L17a+5gaRoOUGFNLSPaHS9tnRl+bhXf1cKbe4UmrzYjyYXH94L25QfuvsSlfwso6krvKRw8N87K7RN3X9vYsfD9x0CKYoigo8IIR47of0et4UouvvmI1fi/8rkMWBZOgJ3ACeOr/Gdy+s0XT8bkaLF4boqoKiyD8ZS+fwSA6EDGpWRICu6Zg6DOdlE/rUUgO77UOsIKi0PTqxNd9wXuH8cpOUoWPqGgdH8oiFOpGIqDsBfVmTwyMFLpaalFpyAv7C5TJ/6f4pRidTrJ1eJgwF51ea/IM/fI2BrMVywyEIBaWWixfIAMUPHh7ihcslwlAWlZauUml7XC61KaZMlpsOvRmT//7SPAs1R/rHF1Ls7s9wZrmJpihcKbXpuAEfODTI3eMFPnd0ltWGQ8MOWW44HJuuMlexKbc9Vho2OUslZUm2BIqCqauYmkJf1iJt6Yz3pPjya8ss1W3c6/yze9PWlszdjRBC8HvHZlmo2sxWOhwYzvHilTIfu2NUFpiRYLI3xW89P007HlDpikK947FvMMPrC3WZ16OppJSIhKHy6nydiu0zXkzxmXsnUOJF/N985wK1joemyM92uS7D5S1DxdRUaXMZhBiahkKEE4htM8+2c9i8/qGEiBNHNqn9FSBjqTELQ/5k2tSwTA1LU2i40v84COXXn71YwtSlpdtUXxo3iJjsSfPMpRJJU2O0KMPMTU3h3z11CU1TmCimODLVw6nFOneMF3jPvls33fwwYqbcoT9rsmcgQ8vxiYS4peLtVli/fzWg6QacW26QS+rsH84xXe7Qn5VM55dmJEvZ1FU+fucoU7cIx52tdDizJPNrXpqu8qHDQ9Q7Pi0v6DKVt8KPypYuZcqcnbcKIhJoqko2oZHQNRQFjk1XsHQNS1Npez5OIDizWGep1uHSWodICAayJvdN9XBxrcXF1TZurJ69Umrj+CFBBBM9yW6OjKLIA0zkw2pT5hKG8QGs40d0PJldYSjQl0uyVLclA0pVMHQVQrmGPHe5RKXt03ACejMGZt2h4ch1/exSg6SpkbYMRgvSe/rSahs/8lEEZEwV25frwMYrUrL5I3RVIQIOjuQJojrLdVey+4FK272GWa0APSmDXNIkCkMWY5u4dWgKHB7OSqWwd3XAd/W/guG8xf6hHMdmqsxXO9gbAr0jwAlkc14gi4q2F3B6qdFlQ76LHw/8zvPz3c/1SyeW+PsfPrjlnuCFsKsvw2ghETecpeWy4wVo8V61ULUptVwacWP8fQcGqNkBE3HjpNRy+d0XZzm1UKflBaQMjbrt8ZXXljE1lV+4f4JH9/bz6J4+LEPFUBQe2t2Lqqqbri0P7uztFnSvzdWp2x7/9umL7BnI8vje/psSDj54aIjX5mtM9qZZqtkYmspIIbnp4OHgSJ4983WOXalQd3yOz9X4yw9N8dCuPkQECUNapPakTVQFDo1keWJ/P70pk1OLje4QOZ/QGO9Nccd4gbrtM9WX5pFdvbw6V+eFy2VW4xzRxZocMAqU7s1p6lLnbGgKF1dlE7yQMm4Yhm3crxs3mSepKhte1+aDmteWthfALISgkDLRVHWzY8GmyGwxHEpsc//6mXsmeO5iBV1Ttp3lam3xnIuN7SlZdaQSH6Q1zFYwukXrjZbS69joOCCuqxVaTkDHfeuGK6YucxYsQwbThILYxlmn1PJxg6hLXgJ48XKF5bp9LfkJGMpZHJnq6Q43Om6AoyoM5xOEkcDQYrcHx6fl+BRTBnZeWtjUbf+GzJFvnlrm2YslvCDk7okithfye8dmabshO/rT3DNRZLSQ5AvHZjkdZ0/ct6MXQ5NnzMneFN+7sCYtaCLBPVNFCknjBpufH1Sh8NCuXs4uNSimTH7u/gnSps6ZpQbVjsd9O364Tcz1LDnbDwmiiGacFyfE1cE+SIXG54/OkDI1qm2vawN5x3gBkA2xE3M1RotJPnr7EF88LrNFRgpJHtjZQ7nl8dDuvu6wzw8j/uc/OsnxuSqOF6JrCilT4/xyHTcQsvlD7PpgKHH2b0DHD7v5c2F09f55uxAIWKrJLJH9Q+41w9Q3gnfNnX+8oCrwE7cPM1vJsX8wR0/awIj3kq1U028Upxcb/NnZZS6tdRjMWfzpySXm34Rd7VsFVYGmI0mistms4rlXm6mhkCpnTZW57fuHshwYznF+tcVy3aE/m8DSNR7e3c+TBwbQFAVdUzm5UOfkQp3bxwocHMnh+CGfe3EW2ws5NJLjA4ekXXSp5bDWdKVayvnhu0HoqiSVZiydjhtyZqnBQ7v7+NSRcX73xVk0VcX2Ip6/VOZ751dZabjMV2z+x/fv5bvnVzm33GS20uHuyQJ7BrJ84q5RvPha+YOVOfYMZllrOnzg0OAbyu3azn5zs/ytd7F9nFqsc3y2imWozFY77OhLM1fu0HJlNtRbhe18+tcTxm+G2NwKJ/bn602baJpKqel2Byh+KOTZTJFEtYliioYTcs9kkZ60Qbnl8cpsDYUQx4/4a4/tpCfOvrzepvTUYp3PH51lue7wibtG+dDh4S2HtJWWy3zdkft15JPQVXRNkW5L8RpRTOtk4vs+igT5hE7HV1A8mYG1zg3SVHkmzCZ0DC+U5F9HdJWQAmnx5wURf3x8QUZJRFJZpigqqNISMlJkbxkB2dh6tNr2CSKpvNo/lGMmHlqDHFjt6E3z1LmyjBRyZWagpkhVWspQ2TtewPYjXF86+ISxZbgdCDQFTFWTNuJCDiITuoITiK6aXkU6+pRaHmFsW0lMoF4nDwkB8xVZFz+8uxcjdnsbzFvUbI8rok257V1TJ5iaQssLOLXQiAedV5EwND54eJjJ3rc+i/FdvHNw0yGYECJSFOVfAQ/+kF7Pm8JGi6lboWH7BFHs5e8GXTs5XVOwNJWcpVF3/O5AJ2Pp9GUT3Lejh9PLTSLkzSEAQ9PoSZvoqhyQBFFENqmTS1r4QUi57bFcd5jqTZFN6Ji6ymLNpu4E5JImKVOjL21S6XgYqkbS0HF8H11TObPSoBMHHrqhYKlu4/jSEmn/cIahfKKb6wGy0B8uJHH9iAd29TLekyKMBLU4X2OqJ8XXTy5zpSxlomPFJE/sH6DWcTm/0mSu0pHMh1hqem65hRAKmqpRSKs4fkjK0nGDiHrHRwiFEIWUZcjCK1aUJXSNQyN5TE0u5mstaZm28RPKWhp3TRRJb9Eo2YgwEjSdIJbQy3+b6EmjqgoP7Oyl1HL5/IuzXTtDL1Bp+xG9aYuBXIJC3IBWFQhDmcdT7/ikhjX6MhaP7+1nteXiB5L9HcYy3IYbYuoKftyAtjQFEUv0hVCodrw3dN1tRwm2EUYcOmv70Q2bvYrcYCIhEEJuIkIBOwiJiKj6UmZcTOl4qtq9zjtuSCGp09OTotSWDFM/EAgEQ/kEZ5cbLNYNFEUhbWpcWpXMYscPWW06HNhGOPlXX1vi/EqTS2sdiimd0UKCmap9y5/bLoS4Ki2bLnX4T589wkA2wWxF2mN9+fgiS3WbO+Pm563Ql5H3oe2HTPSkqHU8fueFGfxQ8OievjcU5Pzjik/eM0ap7dKbylFuS+n+lbU2j+7tp5g2CaKIuWoHS1epdnyc2H95IJfg0/eN88+/ehYvjAgjmZVl6QZtNyAI5VoxlE9wqdSmmDQoZjTSpoaiJKi0XaJQHkTanmQAhgI+cGCQD98+zD/+k1N4oYelqYwVUlxYbTJb7uCHkbR6FYIoSsSKNNFVb+qhYChv8Nce28m55RYXVlvd68bSVe6d6gUFvn5yuduIjyJo+yFRFKFpGsP5JAs1h9Wmi6kpeEF4TR5f1lS4Y0JmxBVSJv/tmcv48ZBOAYoJlZYXcXal2VW4wbVrgBDSerfpBISRXJ82fl1XrnVPSxkKY8UUewe3Z4P2Lt45eHR3L+eW5bD9yKS0bN2q2DN1hf/w9EXGe9PkkwZOEKKrKg0nYLSQ4sOHB/ne+TX0+LrXNJWUpfPpeye6mUstJ6DW8Vio2yzVbPJJk//27DTVtkdvxuLUYoNH9/aTtnSeuAm54cxSg9cX6tw+lufxvf34YcRzF8vSXmK1TcrQeeFymft39JK2tE1VU30Ziyf3D7LadPiPry6wWLM5MJy7Jlx7Hb0Zi88+MInthrw8W8X1I757fo3xnhRHpysAjBSSBLHK85ce2sHO/gwLNZs7xwo4fsBC1SZh6Kw2HH7/6BxfO7mIpig8f7FM0w0QQmBpSteGVI2Lv6ShoakKhZRBb9pksjfNsekK51daJE2NX3pw6k0pHUZyFnM1l4QGw/nNG8U37vKbo+NJFaoiBPY2mbJ9W1i3HRwp8NXTJeDmjYf/37PTOH6EEsB/efYK//KTd9zyOd0tPM7++uM7+cNXpe/+ZM/WJJONDfySvXU7v+LItdULoem4pDe5/tZaV30irh93qYrCjv40i/U3b4e4EW4gG3tNJyBYP6sIIV0fYgsWRZGDUUNVKLe8Lut1fYBhGiq5pMlQPkm14zFdbuH6Ifm0QdLQODZd4ZHdfXhhxHfOrGL7IRlTpR47VXz79AqjxSRuEPHeA4NkLJ267bOzL81K0+G9B2SjUaoYIr5xcpmnzqwQCah3POaqNj0pg6W6zQcODWJqGreP5Sm3PTpuwI6+NE/sGyAII+arMh/kjTa+o0jw9LlVGo7PE/sGunlYXz+5zMW1NhPFlGy07urrDpN+2HjfwUFena0x2ZsiZercPVHEDSJMTWVfvAe33ID/69vnefFKBUNT+dl7x294nNFCkr/66E4URTapPnbnCOeWmxwezTOyCdHqwkqrm82MEIRCssMlsUiQNDU0RSGVkHbzD+/u5/ePzUp7RPHGGoQ/KCLkfqWpCmEk0N8N+PoLgd0DMvfpemjqWzPSfPrcKn/06iJLdYcwCmWB+0PAxjpdQQ5/FFWV6nVf7kO6CiOFBH4YUbeDDXa8qrRUF4KRYorH9g7ghfJcUWrJIXHHC64hTz59dpUgEpTbqxwcyeFtcMip2z6LNZswEnzx1QWcIKQ/a/G+g4M/lPdiHTGFkZYbUGl7KIpCT1pGcFTbHilT7neP7u7FjwTzVZvVhsu3Tq/wyw9PcnmtzeW1Nrmkzl0TRe7f0YOqKiTia+W9BwYppEzGislt9Rj+vGKl4ZCIYwOW6w4pS+va8P6oIYTg6bNrrMZnqfGeNL94/6QkoD83Letkle4etA6NmMD5Rp4LtqUC09iUH34DQiHroUhI8pGp6+STcpirKCEKUv3Vk7LwQ0EQhZxeavCeff1M9qYZLST47ednKLddiklpU2/7MsZgM9Rtn5lSBy+MeO5SmQ8eGmKrE3YuaXQHPUEksAyNVKycMjUV01DZPyTPXqam0fI9bD/iyf39LNZszq+05FkzFHH9JdV6+aS0or+02qK2YY0KgSvlNqamktRlD7ftCtqeJGepCqQMHTcIiISCFUTcNVFkue5wZrnBSC7Jg7t6mexL8+Xji/hhiBa7B622HAxNQ9fkMDGIBAld2p7WbJ/VhhR5bBwIrpPb7SAiY2okTB3bU/HDiJRJ15FgPWe36QTomlSBJQwVN7yqdFv/HdtexNNn14iE7C0t1Gz+t5++nZdnqhQSOh3PQwGylkKEQiToquyuIWYqgrWms+0c5Hfx44nt2CF+U1GUTwJ/JMQb6Pr/EPFGMnk2rq3rv42iQE/apGEHtH2ZvZS2dAxNYbSYlH6pQcTh0RzHZ2sEkQyFH8hZrLY8BnIWlba07csnTR7a3ctTZ1cJIxkUO9WX5pcemuLXn73Crn6Ze9GbNjF1jaX4kOMFEUP5RPcm9IKQ5ZqDH0Xs7EtTt71uAHEuYXL/VA4/jFhuOPzhy/NM9KbQVZXhQpL+rNVV7Ty0q5dqx+e5SyX+4KU56rYfZ46Y7OxL86cnm1JyqyoIpKd8GIW03YAzi3XsIGLfUI6P3jmCpsL+wRx/+PI8Z1ea7OzPcGgkx7HpCq/N17EMjVzKxNJlU67S9hnJJ6h3PFYaLoamdJtun96kWNwMuqbykduGubja5NP3jOGF4hrGoRxqCkYLKZJ7dZKmypnFJvmkwd7BLEEoSBgqQ/kkLVc2CUYLSe6aKPKefQN85fUlZsodEoZK0lBpOvIY7PohUSiLul39aZrxkK/thpiaiqHJ0MyGLdmXKHJo5QQRmio36PXDQC6p0/EigiDa1qa9zkJPWzq2f63NkqVBXzYBRJRbPuuE1PUbM4ibT2EIq82AvoyJaag4nrS1TCcMFmI2/krDRQiBE0ilnxACU1cZ70mRMjUGc0nKbZkNMZxPdIewN0Ol7dH2Alw/pCeT5sxSEx0F5SZM7e0ioSvkkyZtz8ePBBlLIwjlEC9t6XS8kMGc9E8+NJrn0MitD9QZS+fDtw3LgXTGYq7SwY9vwkp7a4urNwIhBCsNl0LKeEtYkm81ckmDR3b3I4RgreWiKAqDOYv37O1nuJDk6OUyyw2XSAjabsBYT5LbRgv8jcd3YntSOVtI6ri+oD9rcs9kge9eKBOEgnzKwNRVknFuQBBEFLIWkz0p1poODdvH0jW8IMIPBaoQXKl0+NyLs/SmLRpOQH/Gir2yZYG52nCJIpm/oikKmYRBGAmqsc2QQGa9/NErCxRSBmEoulZ0VTtgvCfJQDbBt06vyBwXoCdjkDR0wkhQSBnx+q9iavJ1N72wqyhQFejPJtg7mKHcdtFUqbZQkEzVhK7gR1LmHzgbLB6RwzOBDNAOIsFawyVIyxb4xiGbAtwzWeByqU3HDREK/PTd4/ztJ3bRkzZ/OBfGu3jL8IFDw3zzzAqhEHz0jq3tFUbyFtmEzlzFpuOH9GcTHJnq4fRiQ+aFFhI8fa5EX8ZkrJigkDIZLaQYL6auCQcfyFp4QUTW0qjoGpoCLcen44XkgpAnD9xa1RtFgv/6/cu03ZDZcof9QzkMTeUjtw1xarFB2pTP13ICPn90Fi+M+EsPTjKc33y48fylsmxqCWlhvRXjt5Ay+eidIzJvxNRiy0OVgZzFlTVpeTzZm+K9Bwa6GRSDWYtCyuDgUA7Hj7D9kJWGAygs1myEkEVZytAwDZWH9/RzfqXJueUGE4UU+YxB0w7IJnQmezNkkzo7+9Is1x2qHR/bC7H98E0NwWxfFpgRUtWT34RY+ODOPi6VFm75WMWUgaYqaIoMmN4KWVOl6UnW+uAWn8fODcP0fHLrUiAMhbSSFaBss5vhB5sPrmYrNgldJRKy4N/eY239NUXcmlykb6gPrr/i+rMW9+3oZb7aZrr8gykN1s9thqZi6SpJXToGuOuZsPH3GSrcNV5gvJhkrmpzaqkBKAznEowVk1TaHr0Zszuk7Umb2L5kIB+drrDSdAjCiAd39nKl1KbS9shYGqeXGgRxLbFuidqbrvHInr640Wgw0ZPmYHwu+sDBIb76+iLllrQoFUKS6YJIntV60xaP7RlA1xR+87lpGrbProEMH719BICvvr7E5bU2vRmTzz4w+YbqsOlym9fm6wAcNSt84NAQpZbLTLlDy/GZq3ZuqcR/u9GXsXj/hoazqas8fp1KtuMGNDoBvWmZg3r3RHHTx9p47pvsTd+UXTyYszg0kqfjhfRnTRwvYq3lMhMTGAspg4SmIpBEAFUV5JM6fiCzTrIpnXoneNsHYdImTiVr6Uz2vfmcIv3PRSjDX1ysNhzSlk7auvaDXG06pEz9mnPJduD4IRlLI4okyTMMpcX/Ot7qIe/GwZdlyAd3YvKriCCXlBEC3e9TFFkvI69/J4jQVUgnZN6jpWtYusKB4Sw126Pl+Lw0UyNj6VTjWIO67ROEEaPFJDPlTjdDMZcweN+BQearNmEU8fvH5rD9EENV6E1b7BnMbNuyfzvY7nsZRIJK20NTFVRVJWVoTPakWKrbXCm1AcEfvrLAaDEZDxoUDF3hzHKTvoxFakKjN23GA4Fr0ZM2r1ln/yLixFyNp86uYmgKh0ZyHJ+rY+rSsWGdIPKjhKLIXuieThZdU/jJ24cppk0+dGiYP3xpnv5sgnzCpD9rcXFNxpaAHLqoG26whCpz+zbrgynI63E7PbLt3v+qItVChirFBAowVkjQcAMShiST3DNV5OHdfbzv4CD/9E9Oc2apjh8KPnx4kN5Mgt99cZb+rMXhkTzVtktfRmZ57ujbselz3j1R5LaxPEt1h8OjuZvui4/vG+A3n5+m1gnoyxj8g48c4MJKm5enK5xabqCrcn2Z6ElxfqWJaWpYhspC1cENROxOFQERmqJQt31aTsDB0Rw/e2Scf/qV03ihkFE/ioKpyaBagXTHShsaavxzUSTJ9fmkhhtIB4B8UucnbhvmqXOr1G0fVVW4fbTA0ekrJGNnLD+CU4sNNEWhN2MyXkySTuisxMSy/lyS6VKbcsslkzAYKyRYa9jYgST6qqokoyVMnfftH+BSqc3pxQZhJEUL67aaRpzzrqoyPz5p6vQmTFqOR8O9tgpYN+yxA8ELV6r80q8fpZgyEIpC0pD9256UyVrbI2mohJpc4xBXyWj9Gestt/Z9F+88bOd08j8BaSBQFEV2FUAIId4xlI2t1NM32+BVIG2oOJEs/uRwQw4e9NgCpC+ToJA0uLDa5kvHF7i40pSLBXIYsdZ0SZsaqgJeIDOn7ECqkEQkaHmyKLm40iISgr6MxWvzdUYLKf7SAxP8wy+e4tSStOsbLSRRECR1lXzK4O7JIrsHQhZqHT5y2zC25/PHry5Stz1qbY/LpRYz5TYKCjPlDkemisyUO9Q6HrmkwaN7AtKWTtKUfx7d08dTZ1YpJOVH6EcRnzs6w4XlFooiGCsmY5uiBH/vg/v5T9+9jBeKbtDjnoEsth/y0kyVvcM5fuquYZZq0hN33QbN0JRuVlHHCymmTR7f108QCep2QNLU+H+9dzc/cdso+Zs0cK7HOuvs6yeXObPUoJgy+OyDU7hByNnlBqamsKM/w+HRHCcXGnzw4BA7+zMkTamaKzf7+e75NV5fqKOrKodG8nz8zlF6MxZPnVkFpMf5WDGF7YfUbR8/kI2fKBT0pE3SlkHd9ggjFyGklZAfClQlzggTxOHACvuGsuSTBq7nM1Ox5VAl2nwAdj3zLKEr0ptYQMOR3rrr36AgN8337BvkN569zFLobdoAWr8dtJiV5vkhmiobM3eMFTi70qTtBiR1DTcMSZk6jifz8Exd5VcensL25TBgptwmnzBIGOq2hmCP7O7l1aer5JI6uYRBLqmzVI9jk36AKZgC5JPydfRnZSFwx1iehiPz0oJQXsO5hMmje/q4/yZ2cXOVDq/MVtnVn6HUcnl1tkY2ofPZBycZK0qmS63j8+Cut8Zy7nsXSrwyU+0+x4/KRnEr3DleYKbU5kq5zSfvHGW17RKGkh20sy/No7v6eGmmihdGsTWYyXsPDOCHgucvlWWTWlfZ2Z/G1FRURcH1Q/xQkE3ofPjwEN84tcyVUodzKy0urbUYLaZ4eFcfz10ukzE1VpoyRFdTFKptj1LLRVcUcgkTS9ewPTkIQoCqSsl8EEm7wEf29HN6qU6vI7P+2m7IfFVaxpq6ZBWtI4wE37+wxiO7++lJGay1PdKGxqHhHHuHsjSdkD0DGfYMZnhltsqOviRBBK4f4vo2YSiv46WGyxeOzaNpCsWkiUCwsz9N2wtoOwHNDeqvQkIjaemMxBkAL01XmI7zAgXSl9rxw2vu5Zyl0pu2WGtL5tdkT0qytMx3O0Y/jrhcamGoKrqAK2stYHBTO+C7J4q8PFsliCL8UKU3bZBLGIwVkrR9GdCcqDuYmoqmquwZzPGJO0cZjNU+R69UmKt0mK92aHsB+ZTJbk0ySs+vNuKcHTi1UL+lonC20qHpBNTjcOh17B7IsnsgixuEOF7E85dLvDpbY67aQQjB//PJPTc0xEAquHYPZGg4AR+9Y+Smz31gOMc//thhXrhcZq3psFCz+dkj4zxzcY3nL5VZabh869Qq48U0/VmLC6stbD+SrEchm0lJQ6rv9w/mWGk6mLpKrSOzUofzCe4YL6CrCjv70/SlLcotl+PzNb57bg1FSTKQS3DvVA8vXqkwnE/cMHzeeL5M3+S2bDhBbLcqcLYYDs2UNg/Ovh6WoXF4NI8W23VvhfXVR1FAbBF4ZRkquiKZmMWbNFru39XD64s1VEXZtiVdb27zRl02ITNkgxBS2xyC3cQNkWxCo+6EGCoUUps/5/7hAjAPQMK49j3LWLokfzS2ShW+NYy4kE/oMlzdMlQsQ2eymGCt5XG5ZBNEIWLdtkaTe5yqSOvwh5N9+HGlf2A4R0/a4tE9fZxfafGBg0N89/wqGUvn9FKDhutzcbXFn5xYYrSQZFd/muF8gnPLDTRVxfED2l7AuZUGh0byDMXrQn/W4kOHr+bIrDVlM0dXVUaLSa6UOtwxluNKucOhkTwTPSn+0kOTNOwgtgILCCPBsekKKVPn8b39lFseQghOzNXJJRY5PJrn1GKdkUKSe2+ioA/jIZuhKbh+RNLQCCNBxtIZyicwdZUjU0UWaw6vzdd5ZHcfxXco8WMgl+BTR0b53rkSh0Zz2yJezVc7vDwjz5+bWXX1ZizGikl0tYexYorbxwp85bVFTi9agKCQNpkpt5kptbG9kIurbdKWTk9GMq5bjvzMbpIScA3ezFBBRSo5fQF+CLv7M6w2HQpJc0uG/FYY+xEPO9/Fm8fRKxWevVgiYWh89sHJ7sDrldkq3z23hmWo/ML9k+S3mWHrBiG/88IMDdvnFx+c5JkLa5xdalLreLihuJoX9RbRsRWkw0LHF7HleJwvtaFmSBga48UksxUbP4zwgpDVhkc2oZFO6IwmdFAVdvRKRXE+YaApKrqmsmcgw+8dm8MLQhRL54OHhlhpOPz+sTkiIXj/gUEOj+bY0XtVVXd4NM/h0Ty//fw055abpE2N9x2U6t37dry1Nuj5hELVufmbqWsKOVPDDSPCCFKGzPo+vdTA9kIKaZO67eOFEfNVm56Uie1HDOcSXC61mYwJ2rePXbvWtd0AN4i6ufX37ejZkkD15x3ltjx/+KFgtiKdc7wgom7774ghGMAn7hrlyf0DFJIGqqrQsH2+e36N28byTDoBbTfg1dnaDVmU6/uQroIbf2n9FKbH+5QcmspeasN+awgcpgrZpI6uKJTaPqEA01Cw/ZCdfWmGcgkyCZ2JnjTVjs/XXl9mqe5g+xEChV9/dpqBXIKzS02CKOK20QK6lotriM2v07WmSzah87fes4uvvb5Mb0ZmlG9lh3hwJM/PHBnn5Zkanzoyxr07erm42ma15WJoKn1Zk9vHcpxblhbwHTekN2uSsnRUJcTQVQxNpSdt0nKlIswXEaWmx9deXyabkDaKlqaRMFV29GXY1S97G34QMpSXsRNCgO0FGJpKxjIwtZBS28PxI/7JV06jKwodP+Q9+we4VGrJDOqshQKUWh5RJGuY28YLZBM6f/PxXTQdnz98ZZ75qnQxiwT4QciZ5Za0eTRUDo/l8YKIuYrNQDbB4/sHufTMZUxdQwjJaG7F7OC0oeGEkbxmUBACDg7nqNkBi7UOa013y3iauYqN7YXs7k8zLTqUWx4rvg2qihAwVkix1HCxPQ9FkX3YuyaK9KbfOsLBu3hn4pYdNSHEO14LaOoamyUqRIClS+mkH8j8me7AIaYdmIpKx4vkwAFpZzKUT3BwNM9oIcFALsFMpcOF1RZu/BihgOW6x1pLqqosQ+PAcJamHXBkqijVFKpCQlNImjKD6dunl3l5pkLKUCmkDM6uNKnaXhwUGLHacHBj26NC2uQ9+wb441cX0VSF4XySclsliARzVQdwqHZkc9TSVZKWzpVSh4bjsVCzSVkaq02HHZY8WJ2Yq/K5F2fpy5rct6OX3rTJaDHJN08tsdp0UBSFiaIMtX5i/wAvXC4jEOwdzLLccJjqTTNf7fD6Qp1j0xUadsCOviSZhMlyXR56Dg7n6E2b1J0ATVU5s1zr2qHNVmwURQYqPn12DdsXPL63j90Db+zSWmtKpm7NltYyr87WOLfcAmCqN81Ej/wDsNKw+Y/fvMSltRZtL6CQMimmDPozFkEYxTZnKmlLWhX81B0jDOUtfu3bF9AUhXUBcSjg4kqTj945xkK1I38nO8DUVOq2bNyvX1ciAgXBfLVDxzFZakorQUVsXWSK6/5uBwJTU+R1cV3zSgCnF+u0XWl1tRlUFQYyFoaqdA+n2YRU5aUsmfd0x1ieM0sNQiFQPMmOHxjKoqoKB4ZylNuxHaiu8sT+AVJmhdFi8paHMccPeXm2xmy5g6bA+ZWmlJgHjR/4UKMiGfW6quL5AZWOwlLdwfFDOn7IUl1m3i3UbNZaLvuGst3Xa8cqnnzKwPFD/uTEIm4QcaXUZiArN7lmHE5upbQt85YcX1rSFFImq02Ho1cqjBVT3HkLux6pSJDP0XHDd9wQLGHIAsfSNZ65XOZvPr6LV2erfP6o9Ka/Z7KI7UfsHsjw5P5+Km2fiytNnj5X4tW5Kjt600RCMF1qs9qU+VxBJFBVaTXV9iL6swnOr7Ti5r4cRH76nlFySYOLqy1QFFQ1thJM6qy0fNqeVHa1HF/K8yPJxtZVlU4UoALLDYczS3WmepIIFK6UWt1rba3pkjC0a3K8EDDRm2at5SIUGMknODSSZ+9glrPLDVw/om57/O7RWfm5iRBN0TAMjWLKivMjIzQFvEgQ+iFhbCyeTUj1yLnlFpoXdkO1VU1lV38W2w84Ol2l7YYUUgZeENEbB0WfWmqyvhqoCghF5bWFOkEk6EmZqIrCyYU6/+qb5/m7H9y7qe3cu3jnopAy0DSFKKJLANmMFPDsxRJBJOhNW/RlLX7m3glajrTwu7TWptJy6fghDTtgIGvh+CUe293HqaU651davDJTpZAyqNs++4dyFFIGH79zlKW6w3/4s4u8OlsjnzKvUbku1x1emqkQxMrnI5M93Wb0/iFJfvnIbTcGsUvGs8aDu/o4eqVCn2+iqwoNx79hCFbv+Nw2mmdXf4aUqXXJFPWOj2Wom5Ir/DDi2HQFIaDS8XhgRy/H5+rMlaVKbiBr8f0La/z03WP0ZSyatk+l41FImvhRxAO7enh0Tz+REPzBS/Mcm64QRIKd/Rnqts9nH5zie+fX+ONXFmg6kjRUs31ySQNDU1ltuNw9Udz0d4dr93T/ZvTVDZ78WxFBwm2miIdhxJ+eXMZQFX7mJvlcndjyIBSw2rLp26RoTxpa9+zScre2Dp4ptfBDgYJgrrY9a+Ocufn6dMdYDx86NMx8tcOvPLI5k/Z63Exgsr62h4JYOXjj885Vr1YHXnDtB2D7IVfWWjIg+00gYygEscrQDkJEx4+Z8AHllsI9E0WSlkGt7bEQn1dcX9B0A5YaUkWcTRj0pE0e2NHDJ+4aZayYouUGPLK7l5rt8zcf38VC1eZXv3GW5y6VUcKI2WqbL5+Q2VJnl5o03YDdA2lKLY8Dwzmyls4vPTTVHW46fojtBZxZbvLCpTJeGFFMSSvoiZ40Hz48zL1TPZxdafC552cpd1z+5Pgir83XaToBj+/r40q5g6VrvDJT4cJKk5FCEkUIXl+o8+0zKxydLuN4EW4gFfkbHRtsL+R7F9ZIGBrlWPE1kLXwwoiXZqpUOh4fu3OUX3xggt98boavv77ESmxFvNpwGC0mySWMt4yY9FbigZ19PLCzb9vf/9TZVcotjyulNoM5mZ+8kdwShBHfv7BGue1xyJG1y5P7B7hnqsjx2RptN+DEXI2WG8bOIQKv49Py1q2J3tjrfzNnc0OF+6Z6qLo++wZyzFZsvn+xxGAuwS/cP7ll028zLL+Fdunv4oeL9drG8UMatt8dgq3G/+76sgew3SFYxw0ptzyW6jZqTaEvnUDQBBQMVVqeB29uqd4UAmj7AkOTLM20paMpoquKRYWsZfDArj7+l58Y4NiVMv/62xcA+fWJnjS7+tN84q4x/DDiiycWGC+mmOhJ8bkXZnjuUplyXI/uHMgw3pPi1GKdMJIRF//62+fZ2ZfmwEiOj90xyjMXSzQcn7vGY8tsRSofjkz10J996xuy7VsMwFRF5rBapsZgKoGuynz0mWon7peF/MrDU3z5+ALltsdQLsHDu3q5Y7xIylSZLXdI6BofODzE8bkabhCyeyBLrePxuRdnpW237TGQTdB2Q37+/glAuhBUO16cf/rn12JVuhE02TuQwfUjMgmd28fyPHuxTD5pvOmcxbcDmqp0iWDVtse/eeoCpxcb7OpP8/DuPv7z9y6z3LC7Z891KEBv2qDlyriBa87N8eXnBAJFCbv5Tm8F/AhcX9COQjk8R5LCS22PHf0Z7p7M8b4Dg5xZbjLRk+Lps6vsG8rSdGQkTc32WajZ7B3M0rADFus2ewcz/Px9EwxsQvJ65kKJY9OV2E0ixULNZqFmM96zdYTBmcU6R6erKEgb5J19GVYaDhlLjwd0KfrSCWZMm4xloCoKU70pOSwtt3HciP6sScMJKSZNIgROIMnLvRmTS6tK7LIDXiQdCeZrkphfbvvYfiR7CUqIrqsoKMzGZEaZzwVNN8DUFMZ70jQdn2k/ImWq9GUyjBWSfP9CiVAIOn7Isemy7P8uNQjCCD8S1G0fIWQ9lzSkwCSha2iayv/0/n0IAb/x7GWW6w4vXCph6SpZS6PuRLIPGV8TmZTBgK4xU+3gR4KaHfDMxRKP7+2nbuvSqhXBZk6aAnnWP73cpLHBHlIJIzRVYSBnSat8TFqOj6lLW8p3onPTu3hrsS1auaIoRWAP0A0XEEJ87+16UW8UN8tmCgOBaSlohsxXEvFAIhTQdKNrlDjrbN2luoMbCjqez4mFOks1h44nlTM2YZfFIJVAQBxIPJRPkEsaBJHgoV09PHuhRM0O+MNXFviDl+fwQ4Gpa3ziTsmCVpEZNb0pk6rto6squaRBX9bi2JUKZ5caCOA3n5/msT0y/0oI2bROGBr7hnL0ZkzunSoyU7Z5ZabCSsPF9QM+9+Isf/cD+6jbHr/69XNcKbUZyid474FB/vYTu/m9o7OU2z6GrmJ7ITU74IvHFym35eHEC6RC6P0HB8knDb5+conVhstizUZVFC6utdnZCws1h/mKzeVSm519aZKmhjWQjRkCLtOlDrpGzM7WYwb3MmtNh7//of1v6HN+z74BXp6psiN+nnVbAE2VMtx1NG2fv/cHr3FhVVo9puNMhP1DWWzX59W5Kk+dW2F3f5Yd/Wn8MOLUYp2UqTNaSJGyNObKnW52nBdGvDRdIZ/UWa47uH7UDdTc2Pta96WtdgKqnTcfSx1GAg+BiG5kc87XXJbr7qYhYwowkrWY6E2z2nRjmzoTy1BkKGUgeHWuxlgxSSSg2pYNm4rvs2coy2hBWppMlzvdTfkvPzR1S9b+Ol6ZrbJY7dCwpe3WWiuWGr/pd+IqDA2CMGSpEaApkDRlHt83Ti6TSxikDI2XZqqkYtZeqSUP0PWOz+eOzuAFEY/t6eelmQonF+pkEjqHRvI8sX+AFy9XGLvFkK/tBvzOCzN0vJDH9/VzcbXFQtXmwkqLHX3pbpF3fqXJxdUWd00Uumyhx/f2x4qp5I+c0dx0fAztxqZzw5YM89vG8hiaSqUtg2C9QFqupkyduUqHU4t1TszVcIKIQyM5JntSXVue8ystah3pGZ8xdQbyFj1JOSgfylm4gRwII+RaeWK+QbnlsFx3mOxLM1pMcn65wVLDJZvQ8GQkBn4YdZvM0qdfiTPxwPEjXpmpcWqxQS6hE2y0FIwZ+huhqTBf6bBSd2l4AZqiMFORA/6OG4IiCCKBoUoLUVlwh2SEYLxHZjs2bA/bF2hKCCo4QUgUyed7faFBGEaoKiQVhYSh4fgRC7UOpZYrA3j9iJQpVbOGqnBmqUkQRnL4Fb8/bTdARBGapnLXeAFFUai0PVQVah3/3SHYjxkOjxZ4ct8gAsE9k1IlsdmxpeVKEklP2uBvPraT8d40C1WbT94zxnfOrPLd86vUOzIgudRyUIDffnGGgWyCF6+U6bghLTfgfQcG6c2YPLizl2LaJGlqvP/AIDt604z1JHho11Vbr6fOrjJTbvHybI37pnpo2AGP7e3jj15ZIBLwU3eMcNtYAZDNLj/O/8vEqvl8UirXv3JiiWZsX7qOIIx4abrK85fLJAyNn79/orv2nFyo863TKyQMjV94YIJcwqDjBTxzoUQmoXPfVA+FpEGp5XFmscm5ZclA3NGfpm7Ldaw/a3F2ucGXXl1goW5z22ieUwsN7p7s4eJqmyf2DeKFEbYXMF5MMZyXw/xDI3mOXqnw7TMrLNVtLq1KS5+MpTOQS7BvKMuDG8gQqw2Hl2eqTPZetZPbiJs15jYWZYG3+W44XEzCdH3rB4nxm89P07LlAPO3X5jhn378tlv+TMPZfMD1zIVy9wixbl+zGabLHYiHZWeXb/0aAeZrbXYO32gNpygw3pOUmaXb3Atv9t6uWxdHIs4L3QSOe/Usdn19/M1TKzIg/E30XhTA8QWaJm1a5CcrGzmGppI0VQxdpS9jYekqa00XWxCv4R5uKJt9TTtgrenSn7FQVYXfPzbLlXKb47N1LF3l0T397BvKkLZ0hvMJCimpctRUhUrLJxQyd2aqN80vP7yD3zs2h6Gq1DqSZKcqCr/zwgxLdVnHVNty8GzpGp+5dxxNlVm3iqJwfrnFYt3m+HyNF+N71tI1Lqy2+dQ9Y3zp+IK0QExLm8d9g1ncIKLjySD1tZjBfGqhfk0D7+WZKqcXG4A8g2QTBst1m0hIy/OlumyaXyl1eOrsKtW2y2LdQVMVzq/Ic8mu/izD73DVkBuEPHexjKoqPLyrd1MrpP6MRbnl4YeC33lhJs4Sm+g2uc+vNlltOrTdkJOLdXozFudXoJA0mC63u/kmSUPmjkKsKA+im2b7vZXwInh1oc7/+pGDhET8xrMzhJHgtjH5Ot6Ibaz7gzLk3sWPDA/v7iMSgv6MdU2+3QM7e/FCQTFlMH6T7MeNiCLB986v8qXj81TbLoW0hSIEDVsqht7OyySKrdJaccP3KiFNYaVp8/J0hdlym+WGG2dmy76CvAelben/9qdncYOIyZ40mqrwtZNLVFoeE70p8kmDh+MB/r7BLOeXm1xYkQ3ZmUqHQtrk4lorjpao8e3TK+wfyrF3MEvK1N6wpeR2cSvD/0hA0wlpOyHLDZfxQgIvFLSdgCtOwGAuwX/9/jQLMTnGCyPumizy6J5+/v3TF3ltvk5fxuTpsyvYXsR0qc3/8GSGctvDC2QDep3/s3HI9yevLXJ5TZJUP3Vk7B1HHH0rEEZC5lJHgpWGw199dGf3a1sRr94pKLddNEWeLearNs9eLFNquTibTCAEUEhbjPVonF5sdLOzr/+ejv8mDmE3gXRZCbtRCGlT5cEdPTix88pq0+XUYoNDIzn2DGZjJVsV288xV+7w4pUKpqpSSEoyebntcWGlxd0TPV3njY1Yqst7oOkEZCxZn+uqclOXhZWGQ8cLqbU9bD9kodphZ3+GUsujN22iAM9cLFG1XQopHSUWqZ6Yr2N7AfWOT8NR2DuU446xAn1Zk5lSmwiFtabDdLmDF14l4IlIcGSyyNmlhrTA9qDa8TA02Qdef3wBMcE/wlAVPKA3bXJirh4TKAWTPSlmKzaapmCpisz28kJUIpYbso+SNlTcIIydsqQrRn/WojdjMdmb4vxyky8eX+DYlQqBgJdnawznE3S8gKYToqkCQ9eZ6k0xkk+QMnW8MGI6Vks6gXQj0lTpjKFqCkoUdV+/GvdpA8DzpXXj9cIDL4iYKXfiWI2IliPFMO/iLwZuubMqivJXgb8DjAHHgQeA54En39ZX9gZwM5u1CHnzrXs3x8S5TaGpcmOKhKDRdlkwVKodn6btoSoyhM/UVVxfHsh0TUEIQSYhm5kX11o03YC/8sgO+rMWpxaazNccHD+K/aMVLF1h/3COz704w0rTJZfQMU2NQUPDDUJ29KVQFYUvnVhgtmLTn7HQVfhP37uCG8hJek/aZCiX4GeOjPHtMyv8xz+7TMJQ8YII1w8phxGvzFSZqbRxY4aW4wcsVDos12z+xZ+eZrXpycDDmk3d8am0PS6sNFms2azUHVRVIZswaLkBX3x1gYWaTRgKQkBTBGOFJI/s7uPCWguBtAJEhd2DGe6b6iEIBVdKLVRFkNB1Rgop3ru/n2+elkGwK/Fh8o1gvCfF+IbCeqInxc/eO0baNK6xV1xpOth+SC5pEoSSldqXkRYzz1+u4IXyfZqtdFisd6i0fP7s3Br37+jBiyKSus5oIYkTRLTcgGLaYrnhslJ3ukXnZnizLg2WphAJ0WVwCiEzvaItHi8QMgtDU6/65YL8f1VVqdsBi3UHtSHY0ZvmgR2DFFMNSi0P25OWhrmEZEZ03JCEoVJqefwP79lDPm1warHB8dkaKVN7Q8Vsb9pCje11VhsuAkFf2uT8pjrNNwZD1+h4YdevV9dUBrJWXGBIj+aUKQ9Zth9STBmsNBy+8toiM+UOQ7kE51eatN2QXQPSTvEz941j6Rofv+vGjJ71cOL1hm2149GJG5iLNZvetMlC1SZtaSQM2ejwgog/fX2ZSAjWmi6/9NAUAIO5xKbPAVIRdXqpwYGhHBO9by/r68xSg2+cWu42o9dDdxdrNl4QMZizGMknJOMrZZIyNHRFBqUq8eCx0vJk4yoedN0xXuDuyQJfODYHyOtVVxUe2t3LcCGJoatUaw5Pz1ZpOjKXztIVxosJ9vSnOb/SxAkEl9fajBVTREKh2vGotD2CaJ2JqKGrSmy5mKEWs+3rtkcQ3yeOH5E2pZJlndVfTJsM5yxeW2hezWPRFK6U2jhxwyiMPwMnJjIkdI0QqXrQVIUgfqz1oN5CyiAUglD4BO61OV4tJyRpSqZTytRJGhqREDi+T8P20VWFMJL3qRcKOi2fmi1tpixD7TZxHV92nN0wYjSX4I6JAilDxw4C9g3muvkB7+LHB6OFJH/j8Z2EkaA3HhJttrZrqoquKSzUHP73b57nvqkivRmLnrTF/qEcpqbw3QslOrGVTMrSWW24DGQTZBMGO/vSaJrMdbx/Zw+5hLTxfe5imTPLDUxN5a6Jnmv20ZSp8vpCnUrLo9xy2TuYkft9bOPhxdZA9Y7P7x6d5flLJRQFHts7wF9+aApNVWjYQTdAuO2F5JMqQRjx+aOzvHilgqGpTPSkKLfcLmFgPlYAOL5kf+cSBi9ernAqbpYP5RJ85r4Jpkttvvb6EpGQrMKDI3ke2NlD2wt4ZbrKP/vqGXRF2pz0ZSxGe5LdXNfPvThD0wm6jdmedJIdvRmOTVe4UmqjqwrVtk/CUGNL54j9Qznumih2zxRBGPEfv3uJattjoifFVN+N6/R2TzIrHZd9m/z7dm1Op/pSfPe8QFEU9m8zsFllCymVuHp4uNkQ6N7JHi6stFAUhcf29G/9jRtQbW9OApqrtvnt56exvZCGE9zUNm8dW8wNb4C/RXjY3VO9/MaLcn/qTV9LHlis2WQs5ZqBwnYhkMV1EF49+/lxM1VFsl3lmh9JR4L49QWRVNJoCMS6k0AgFVE/919eoOPK80sQCsZ6Ulwpt7lvZw8D2QS7ByLunSqyoy/FpVKHfEpnutwmnTBi1b5sGEyX2vzq18+xbyjLHeMFOl6IpauUWiETPZLo9eCu3huGSoM5CyHkvjuSTxJEgr44w3NHX5q/9OAUr83X+PrJZSodj8f29HH3RBHbD3lyfz/fPbeGrqldG8Z1rDPINVXh/QcHubjW4vJaOz53JHjv/oH485ED+7arkbV0yTD2Ql6fr1NMWdtWlPyocGKuzvG5GgA9KZPbrrMAA/jgoSHuGC9wZqnBa/Myf2S16XSbwL1pi/5MgqQhB/cgz1QX11os1x2aTsBET4owiggimS0Uia3rhbcSG20WF6odfv25y6Qsg8GcRaXjc+d4gbYX8L0La0z0pOh4IdW2xwO7erds5Pek39mf6bvYGj1pk4/deWNtU0iZ/NQ2yZPreOrcKv/8a2dYa8n835WGi7qhKftWQVdvfMzuFhMKwlCex1VFdK/3+arDpbU2SUMlbekM5Sx29mfwQkFfxiSK6FqRTpfauEEoLeGjiMMjeX7l4R2ECBq2R9oy+NDhYU7M12m5AQO5BO+LMxvDSOD48qxSTBt8fO8ouaT+prJIt4Pt9iwi5DcuNVzMOOSpN23Sl7XwQ0EuYRBEEYdHsowUkqQtnWLK4PBoDoTC6UVpaXn/zl4URVpH3jGep+kEfPaBSUIhGN6wZ8xXbdaaLkevVGi6Ab9w/8SfO+KfqsiM11LLe0tz3n4Y2NGX4cFdvewaSOP6IdVOwIGhLCsNh81MDS6vtZgoWAxldGbrWxOu3gqoSKKRoSrYMYNK/pvKcsvjjrECo8UkL09Xu31AXVN46uwqXz+5RNsN0DUV3w9IJYw4viEpe72WTmGLKJdH9/TznTMrTPWleXBXL7sHMpi6etMzS8oyGMoliCKBH8hBc9sL2dWfIZc0mK90WG44jBeTTPSmqXY80qYk9b82X4+JviopU2PfUFZm9JU7tN2Ajht0e94K0qnm0b39fOzOEZ46u8p81cbSVUJD656zougqUczUZA/YCeTJYrXhsFSzacZ2yw1bfo6RgHTKpGm7WIZGEIQEoSBpKBRSJn4kaDky7iFhaOzoz7B/KMtwPsHJxTrnlhtdolsoYKXpkk/o0p5WQMaSFup7BjI8tr+P5YbDXM3uOta248z09XPregZdGBPOFMCIe80KNw5gQZIfarYfq98EuiI4uSDPuR86fGOO4bv484PtVN5/B7gXeEEI8YSiKPuBf/z2vqw3BkNXu0OuG6AQWw4KjNhiLqErsXpMkbZdCpiq9IJ2A+l7rGlyACZDB+X3RQgZsqiBEksM0qa0OTqxUKOYsvCCEE2F718oMZi3OLOkdA9SmqowkLGYq7Y5s9TE9SO8IKInEhRSJgfGixSSOl8+sUjTCdDUeFDhRdQ6HmEkGC0kWaw7LDccXpmroSnydxnMST/49blSqenyq396lqk43L3thehqxO8em0VXFYbzCcaLKTKWxkrDpdaR1n4CqWYbzFk8uqc/zsESMluCODRQkbkg/bkEO3rTzFU6FJMmtXbAbNlmR4/LhdUmQSQwNY0DIzkOjeT5q4/uIIzkQOFmmU3bwXSpzZdPLKJrCj97ZPyar+3qz/DeA4NcXG3x4cNDnFxsEEaCHX0Z7pns4T9pCs9cKMW/j4JlqHhByJnlBiqw0naZ6EmxZyDDqcU6ArkhXFzbepijK9CTMqjaAf4bpBX7cfD8OsSGP1tBJV7cVXltqarMU5LB6L7MUAIurrWZ7Gvzt5/Yw4uXSwzkLO6Z7OXpMyvM1xwurTXJJw0me9OM9aRImhr9ey32DGQopqS91XaywAD2DWUppgwKKYMXLpfldYPA0m60dnwjSJmqvF8V+XklTY27xwv85G0jPLKnTwZlRhH/7qmLZCydyZ40ry/U+YOX5qm0XdKWzsHhLB88NMjx+Tqlpsvj+/q3ZJfNVTp88dUFVFXh0/eMMZBLMFpIcud4gXLb4/7YUnTvYJaetNl9HF1VyCb02Mf71gf2MBL88asLhJHg0lqLv/We3W/6PdoO5iqd2Ps5ZK3pdodgaUvHMjSUOKMEIGFqTPWlcYOQT98zxt7BHPmUwWrD5fNHp2l7IbeNFXjfwUEMTWUgl+T2sQLTpTa7+tN8+p5xjk5XOLPU4NXZGtWO1yUgqArMlGwENXb3pzk+VyNtSu/qSluuN+GGQ1HbC7E0BUNTabvyvTU0ybpuhrJ8FcghXcsNASEPvYrCcsPF1ABFwdI1NEWGbBsqOEGs5oybSCpyjc6aOklTJZdMcWKu0W0u1e2Ae3f0sFx34wNoiKqIblNIU2Aoa7FUdwmjCFM3KLVc7EBgBz7FhMHdE3nOrjSptT0UVTZLjXhYtnsgS1/G5MRcjZodoCBtfBt2gO1FjPekeM++gbf1GnkXbx+24+2vIMiYGjUnZKXh8PylMkP5BJahcc9kD7qm8pl7xyVz0g2Yq3aY6EnzkduGAIWVusN3zq5wcqGOH0YUUwb/7KtnqHY88kmDsWKKn7//2rXp9rECJ+bqHBpR8MOIy2ttqh2fnXEocNOR6qyejMFa02Gm0sHUFF6arvCZe8dJWzJz9PlL5S7rGeR9W2p5jBaSlNset43mmeq9GjR8344eqh2XvrRsssv3SP5sqSXvsb6sxf7hHJWOx3zV5qFdvYzFjeHpmTb/9/cus1DpEESCwZzJVG+KT94zRtsNCaKIL766CMBYMclizeabp5b5wkvzHBiW2WSHhvP83H0TPHepBEjrocOjOXYPZLC9EENTeH2hzmrDodTyKKZMjE3UHTfb3XIJjYYTogJ7BzfPDFrcps1gfybBYM5CVdRtN8bWG+nXIxLbG/r8zH0T1GyfhK7y2L7tBdhvlnUE8Mp0jUrbRwBHpyvbeqztSgCutzpch6VvGFFex5i7vNbiqXMl3DfqIXcdNrpJKIok6aRMabW93HBkzmw8LFMVGTQ/VEjQdAKiKML2I9puQMMWqIqsRQ6P5hgrpvipO0a4d6qHsWKSlhPwzdMrfOGlBVQFOl7I7eMFdg9kJNNXCGw/ouNJRehoIYnnh92zy8/eO07C0LqqDT+MePFypTvETZk6//hjB3lpukohZfL43n46niSSgWx63zaa53vn18gnDeZrNn/lkR14oRxmHR4p0PGDGzIzDo5I1wpTUymmTQZzCUpNqUPYP5RlT2wXNJBL8C9++nYWah2OXqnw+y/NUWl5WIbMx7g+l++dhmK8fikKW54BVVVhpJCM8zoCLF29xi5pMJfg//uJw0yX29w+mqfSkTZz//3leWbKbQopg8neFIWUweW1llQSxsqKtxuKIpsG8syjsNbyuLc/Qy5h8OHbhnl8bz9feGmOxZq0Czc1aaseRGLLZpLjvb1N0Xfxo8Vr8zVKLZf7dmw9CAVYrTtoqoqhyTrWUOiqGN4qKEgb4ELSYKXpbEqwiIAgbh5HAiaKKUnma7s0nYCUoXFwKMd79g/w8kyNe3cUSSc0hvMW5+2ApbrNUt1B15Q4Hyvkd4/OcnqpgR9GPLCzlw8eGiJpauwayHD7aL57//+1R3dycKQk1/WxPKeX6gxkE1vupz8osiY0biUH24BQSBJX3Q3pzSb5Kw/v4PhcjfcdGGS0mOAbp1b47rk1iimTJ/YP8MrMupuIzVA+wW1j8vyjqgpP7t/6LPHk/gE+f3SWqb4UdnyO/PM2BFMUhU8fGWet6V4zAPxxgKYqvPeA/Pxmy21+8/kZ9g3leOFyeVMyUSRguvrmc1ffCApJnZFiktOLzavPj6yXFmo2Ez1JVpoODSeg6QaM9aT43rk1/vT1JUotB4GCrkZkLR1LV9Hi/fp9Bwa5d6qHgdzmn9V0uc1q0yUSgvt2bM++dDif4OBIjsneFDPlDklDwwlkvy0IBT977xhfeW2ZTELnfQcG2NWfYbXp0p/ZxT/84ut868wqlqYw2ZNmNJ/gm6eXWW24FNNGfJYkdikzeWR3P6PFBJ97cZZIyOG9pavkUzrzFYem7eFLcxt60iZTfSkmikm+9voSXgiXS238UApAIiFd1hKGSm9Ko9p2CYSCjiBp6uiqQscLWYwV/qaukDY1xntSjBaSZCydcsvju+dXaTrXktfCUFBMG/RlTdYaLhnLYLHq8NWTy3zpxKKsHyLZb1HX7Z/jTSISG/rUXCXspE2tS/bfuKEogI5UMpc7PtWOSyAgDGCt6fGbz01zb0xEfRd/PrGdIZgjhHAUGcRtCSHOKoqyGZn1RwYFKaWer9pSBsm6WkRBAG4YoisKaUtFC+TA6P6dfZSaLhdXWxi6iuMFrDWl+kAAThAxmUvIx6108KKQth2iawqRpjKUS1BzfIZyFmeXW0SRYLnu4IeCP35lgZFCih19GarjPi/NyKB7LxRcXGuz1nKlJ6qqoCkKhZTBcCFB0tD41plVah0Z4kgIou3hh5FUJChg6TIjx4/k79iTMkgndPoyJlficHVdV2h5IacWGizWZH6GH4puk8CLBItVm0rMgPaCCCeI0FWFpu0z1ZdiKJdguJBAUwR7BjOYhspSTfr9BhE8f6nEbKVNue2RTRoIIJfUGcxZnF9rcm6lieNFjA0k2T+UZbyY5H//+jlqtse+oRwfOrS96Xrd9nlltspIPtllmkeR4NtnVpgutRktJOM8KLlIdbyAPzmxiKWr/M8fOUA+aXBgOMfRK2WqHY/9w1n+0UcP8c++egZLVzm1WJdZKLrCct2hYfskDA0jziI4t9JECIWBrCmDvLdotAQCqh0fTVO619B2cf2RQVNubgGkIplruqKgKFIVlrVU8imLYsokDAWqIq1mLE2NWRseYQRPny2hqRr7R/KUOz63jxV4z75+dvZnuk01IWCx5nAutmxwA8FP3D60rQy3gVyCXf0ZZssdvn9hTdpnrgenvQkkdIWBTAI3CLHCiPFiKm7ipPCjCCcIOTZd5YVLJXb3Z1is29wxnpf3lkrcHE3wyXvGyVg6T2xjiDBftaU3dSRYqNkM5BIoisIT+6/92fHr/LpVVeHn7ptgpeHcUq3jBRG/d2yW43M1+jImt8d2Y28njkz1yMybhHFNMzqfNPjF+ydpxOvZc5dKlJoyWwRgz2COvUNZvnVaNtd70xYXViv82nfOs1Br89cf28255QamrnDXRIGBbIJ/9/QlZsotHC+k5lz1YDY1qXaxg5BLq010VcXxI2zPppCSyq2lpkt4XVPSD6UKxAtCTCMgYdyob6jZAaoi0JD3XyPODhTx87p+gKqq7OlPcXGtg6LIG1VTwYrZA24Y4dohdUdltel17y+QNk4za20e3tPPQrWDqcFi3eketExdYVd/lnzSZKkhcxA3rheqBn0ZiwkvxNIkaWM0n6Dth+QSBsP5JLeN5al3fM4sN7F0lZ0DkhFmeyG5xNtjifIufjTYTD1kBwLdC4ki0W0gOoHMLJ2rtDk4nOdDh4b49plVXrhcwdDkcPcPXlrgo3cMs2sww5dfW6TStjkwnOXLJxapdTxaTsBg1mKqN3VDI3myVzIXa7ZPueVKVlzH59NHxrmy1ubbZ1YAeHh3L4dG8vFQyMX1Q2w/JG3p16i0Ty3WWaw5PLizh/t39DBT6fDz908wuWHNAWmHuFx30RS1S965a6KIpip85bUlrpTafO/8Gj95+wgP7bqauVNpexyfq+F4UuG1npuxfyjHsekqjh/x8btGmYrZxi9PVzm71ODUomReN52AVifB+w8N8tCuPsZ7UnzktiG+dXqFXNLgwHCW331BWtKN96R4cGcPu/oz9Gd9PnnP2KZDsJu1n28fLfDqXI3ejEnW2ryRs2sgw3fOlW/yKBKqqtB2QzR1e8QUgMV6h+Ge9A3/Xm5vr/t1caXJC5fL6JrKp+91GN2GJd1Kw2XXJo4+hZQOMWtT2k7dGtpNfk1tw9FiIHfj7wjw9PmV7t8r19lUL9YdBG/6eLIpcpZG0tRZiy2p226A60doQMJUY6a8wSO7ekgYGs9fLnNmqY7rR6iKtJXRFIW9A1n+4U8e7DomDOeTvFKv4gURlbYnrXlje+OTCw3qtsdIIcntozkqTUmUK7Vkrl3/hsaNF0R86fgCK3He76nFBqtNByHkAOaRPX38yiNXrZmup6slDI1IyDzOO8YL19ha5lMGeTa/xgc3vAbHj2QjJmtxz+RV28zX5mvUOj6TvSnabkjO0nH9kKShM5R95zcK9wxm+bn7DJnNe4vXm00YfPyuUZl9eKWCqavcM1lEURTqdsCLl6ucXGjwc/dNkLZ0fv7+CTRVYa3h8M3TKyzVO3iBHLxZmoL35h3Yt42ErlJMmZi6rBtrHZ9i0uBvPL4bU5frYi5hsIhDNqF31e03Y8Pbb6AJ/y5+vLDScPjOmVVA5oN9eBObt7lyhz86Ps/OnhSHRvPUOy6qonB+uYm/Ib/lrYBA9orunihwcbXFyYXGprV215ktFHhhxEO7+3jxchnHj/DCiBemK7w0W+OO8QIn5mqcWmjQcSOG8wlsP2Qob6GrSmwh3KDe8aVbhaWx1nQJRUQ2oWNq6jUuNsW0yU/eLhV0Xzq+wIWVFos1m4/cNsyT+wdkLf0W4o0MwNKmxsGRHKauMhQK9g5m2DWQYV9cJ56Yq2Fq69n1HR7aJXPfP/fidEy+jDg0nMfxQ45eqZBPGtyxRZ72geEcf+e9e/jO2dV3XDbWzRBGgpemKwjg3qmeW+aZJQzthj7CjwuqbY/PvTjDS9NVRgoJWo4gY2lvWFG/FbZSKWq3aCf5UYSuxTWFuPpYKNIO8JXZGi0noJA0eHhPPz937wS/9u3zNB2ZXWXoCjv60gxkLQxNk/urrjFaSHJqsYGiKN0BVxBGHJuuoipwYaWJEIJSS9Zb27H7Hu9JkdRVzix2+OuP7aRuy7x1Q1e5c6LIgZEcI4UUL14p841TK4wWGnzqnjFJstVU+tIWth9ybLrCs5fWSFsGewcz/NJDU3z/whpfP7lMxwsopizOr7Y4v9JGVeUZ0NQUqh2fy6U2lqaSMHQUJcLQFIbyCY5MFTm/3ELXNUIREgqBpatEftTteagKVO0QNwSBIG1qZBM6tY50KlkXgKiKPBs+sLOX00tNyi2PIIooNSUhbj3eQiBrqctrHRQFetIWlZZN2xfS1l2IrgW6oSqEG0htCV32Z5X475GQZOqBrEUmYdDxwmuuGyV+3mzSwI8ixopJKi23e92FQpA0NVI/pFywqf/3V38oz/MursV2umrziqIUgC8C31IUpQosvp0v6o1CIAdecFX2OdGbYK3h0fZC3CDCDoScsGsKWcvg9uE8V6wOkZCDpFLLo9yudJVO64O1fNJgRVPpeAGqqmAHUaz8kPliF1elpce6FNPxA2xfsjB1TWH/cJa2F3JhpRln20QEkWBPf4ZQSCXY+mOutRycIERRFJT1MHUBZhxY2HIDrpRsNhL+TEPlP332CF8/ucx81WGp7sShgwqmpskGUfz7qKqCocYyUQW8IMQLIoppE1OXrWNdVTm/0uL8covvn18lnTBRFClJnehNyTBGX4YqVm0fDVBU2dwdzScZzFq8vlgnimQuTtsLmC13+PLxRRZrNn1ZKw5kF6jbMBF6+uwqV0ptTig1hnIJ8imD00sNSi2XhuMzoV1rT/Sd0yv89vMz+GFE0/HJJAy++tqSVDwlTP7O+/dw13iR0WKSIBR88NAwz1xc49iVCm3HlzlgQqCgcKXcwvMFKIKG7WO7ESpbq7R8Af5NplcKMttqnX2mIlVOGw8NKpAwFDr+VYVJ92uKbBytqxivSoAVLF0noSsIAQ/s6mGt7RJGgqFcAj8U/N7RWaYrHTKWwddPLvPvf+FuBnMWGUu/geVweqnBsxdLlFoy/2y0mGK61NnWEAygP2typdym1HK7wfVvBjL7S8rPLSPBvVNFah0fL4zYP5zlrokiX3t9iWculKi0PfYMZHloVx8/cfsIc5U2QShImRo/c2TsDXmqHx7NsVCz0VTYP7Q5c38rJGMF1a1Qsz3KLY8Dw1nSls6n7hl7Q8/zZtCTNvmZ61ST68inpKXosekKL16uEEWCuyYL7BvKdZuel9daABydqfL6fI1IwJdeXUBTVJ65sMZKwyGfMnnv/kE5IG+5N4SUrtt4ikjQCULcOKtOHjwCelIGu/rSLNYdmvH92P1Z5L1paQqWpmKrKilTdK0KvSBkMGvFrHofJ5CHNan6imXwYcT51TZJU+tem4qioAF+JLqZY+sWcHD1XneCiNcW6zRi6byhqvSlLFZakuGmqSqjPQmqtoepqewdyNBxQ9pxd2owl+BKuU3d9gkiwb7BLEEk2NWfQdNU3ndgkMf29IEQjBST1O2Av/v+fUz1pyk13RuGCO/ixxtb1cdeKOjPyrV5MGfh+BG3j+aZr9k8dXaVb5xeJgwjVpoumYTetdCZq3b4lYensDTJdG7YPg/s6OX1BZl3+fCePh7bM4Cpq1xak5mGd4wXyCcNPnBoCNsL+LXvXOD8Sov3HRggY+kkDJX5agdNVUgaGp+8R66lz10qUUgZLFTta6xcVpsOv/7MNHPVDn92bpV/8rHDPLS7b9Pfc309WajZXQug43M1Si2HtCkb7WlLp9SS3v27+tMEoeD/+IYk0xwezfPxO4b5zrk1VEWh3PbZNyTvqdlKh/GeFE/uH6Ta9vne+VUurLbww4h80sSNIvYOZLsNiMulNpdipfd3z63x2nwNP5RFfTZh8HNxYPv1Cpd13Owk03RljqUfCpwgIL3JsXu6tD3L4NVGPLSJYK2xPWZt0ty8AX1oKNP9+xaGiQB85bUlSm1pUfWtU0vcvWFosRUCd/Pu2mDWQlfkWWkgu3WTQOXqYDGb3LoI3fi+O2FIZpMBzEbLv+s/p88+MMH/8sUGnhrxgwpp1ovnlhfiBPKsOFdpk7EMeaZXZHbmnoEM/VmLuZpDreNxcbWNHXddD43kZD6bEHzr9DJ1O+Dvf3gf/fFA5cBQjplyGyW2ozk4kuOeySL//aV5FmsOoPDkvgFW40yJ4XySzHUM+pdnKvz+sTnCSHSZuaamdve5jKVzcVU2X++cKHQV4yCVY24QkdBVCkkD/028afWOzzdPL+OHEcs1m2rHozdjMV/tdBvmNdvH0lX2DGbpSVvcPp7niQM/Hiro660gb4WXpis8f0nmiGUSOvuHclwptYiEoOkErDZddlg6KVPnF+6b4Lefn2at5eIGska4mmN0FddbrL8VUJHNs1LbI2tpJA2dJw8MMFJIdQdgAO8/OMi+oSz9sVVaw5ZDza0wkH9rG/vv4p2DdSvzIBKkN6nBluo2/+uXXqduB3wrDFHjgf9cpUPtLRqAbWymr9cQbS9irJDi7HKTIK7Z16/Cjc8ZIvMb5ypt6RqkylrB8SMUIl6dlTmhd08UODSSZ99QmkLKYqbSQQWePrfGbKWNiAS6rlHUTY5MFRnIJPjMvRPUbb+rgr8e2YTMIF9uOLw8W2W0mOwSE3/YyFoqnz4yzt9+YjenlxqcmKvxwM6rmYcnF2RW0Dr5c6NyrZC02DOYlXbUGZNnL5Y4MVcHZE261RCoN2NtWa++U3Fyoc5zlySZKWFo3LnFkO/PA758YoHfOzpH0/F5dQ5MTcX2t+ldfQvczKYz1gNc8/WN/9/xojjmQ0ZoqIqsvWUvTFpT+5Gg44d88p4ximmTTGy/lzB0dvaneP+BQZ69WKYtZMTBJ+4a4YuvLhJEgvlqh88+OAXIbK4XLpdZaTi0nYAIwcfvGt123u1Mqc3vxMqsf/qV00z2pllpOIwXU0yXO3zttSV+8o4RTi42WGu4+GHEa3M1fuuFaV6erRGGEW0vYCWuC3ozAffv6OGhXX2MFVO8Olej0vJYabgkTE0OjiKBoau03ZBaR541bT8kZWrkkxZV22Ot6fDSdJXFmoPjhWiqwmghyd0TRc6vNDmz1MCP5Dooc2fl+79/KEPD8buWiZqqSLJ+/CmdWmwQCah1XO6dKvDKbA1NqOSTGo4X0ogDQoWQn3Ol5ZIwNFKGfL1h7AhlxOedjVnxuYROpSN7Rm4oB3ZTxSQJU6c/Y3J6qXHNdZI01LhnH1KzfQopi7Sl43ekMv1Dh4b4K4/uIPk25TG+i3cGbvnpCiE+Ef/1HymK8jSQB77+tr6qNwghpP++qsjCOW1pnF9uEyHzq1RFRYnp/G4oOL3U5J9//SwTxSSTfWkurbXxQil/jaIIgUIhadCXsZjqS8kQQl/gRxFpU8pU52sObiCtS0xdZr0oCIJIDs/6MiaaKvNhPnBokJ6UwYXVJpauMZRP8HP3TfA7L8yw2nTxA8Fa06FuB2iKQk/apOOHmLEF2F1jBVaaLpfWWuQTOpqm0IoPiBnLoNbx+MDBAU7MVal0PKzYXiuIIsaKGVYbLl4YYSgKuaQuf8YJaNjSAtHSFP7xJw7xb5+6xHy105WnCqDphaRNnVLLoTdtkk+YuL7bbcSEABGsNjxeX6xzYbXBYtWh6Uu1Q8cNef5SibrjS+/7hsOF1SZLNWdbGUjr6iRDUzFiW5uUKcO6Dw7nUBWF//K9Kzy4s5cHdvV2NwTHD3nmYom7JoqsNeUG5QUR//2lOX7zuWkMTeWOsTyHhvs5mdTpzZhU4sVPE0KGOaKgqnSVXZoWy4CjN5//ldA1LF10rUva100JIqDlCZIG2P764EyhP2uiayodN6DjyYahiCI0VcUJ5CK+1paf55W1Jn25JLeP5RnKJ7i81qbckSwXTYEDw1mEEEz0pDbNZUuZGuWWy8XVNtmEzqHRrRlb12Ot6fL1kyuo8KYPROvuRYWUga6pNJ2AQyM5MgkDTZXqiM/cO8GVcptvnlqm0vYxNIX3Hxzg0KhUgVU7ftdip7PhPY5ia8/rf+8oLnBAMnTf7qFUf8bi8Gie5brN43sHts3qf7uRMjUqLZfnLpf55ukVfvbeMX754R0oisJDu/p4eabCUNbiXHzAXGl6fOnEAos1Bz+M0N2Ai2tNDE1sytZyI9ADgSMCMgkDO85LjJAKV4HgYC6D6xv0pg0adoAXH/QUIZVVK02ZFZAyNMINk2I3EAzmE3zszhF+67kZLq/JPUAISWxYJw2FkcD2QrT44OYHEbqmdQfMGUvHiwRBKGhskOqryJDuM4t1ejIJ+rNyjXfDkCAS5JMmx2frVG0PLxBcWG3zvoODtFyfQlJa5Z5cbNByfLxAsFjroKkqd44X+OgdI4wUkrw8W+NDh4d474FBhvKJrgVI7s+ZFci72Fo9pAK3jeY5MlXkg4eGuVxq88evzLNYswlCQduTFlqmrjKUTTDZm+ZKuU1v2mS20iGX0rF8laSp03YD7hov8sT+/q79TMsN+MoJmbE1V+kwFbMe//TkMq/O1tjZn+5ed5W2Ry6hc36lxRdemsOPBA/s6qVme+jqtTZeAJamUYup/S03oOUGW6oAHtzVx/OXS+zulw2SS2stnj4rm+AHhrPsHsiysy/Nb78wQ6XtcXKhzv7BLKqq4IeCphuQsxIUUia2H3BwKIepa4wUEhweyRNFEb//0jyVlsulUks2sISCrikMxQPpu+KBznomlxCCV2Yr8UBM4SdvH2akkLwlo/emQzDHl3uhomw5+Ky3nZs+/joMTcWPiVKmfvPXtI6tvi9Uru45+k1UWQ0nIIizrqr29qzLQnXz/ezUUqNLjLiwuvXgb2PeqaltvfZt5By1PZ8+bhxAZI2rP399I1bXVA6N5HllpiLV328ShgKZhE7Hlza2Xig2WLQEaIogk5COD68v1PEDEee+mNRsnzCSKrCFmsNI3mK2Il0tTsxX+bVvX+CvPbaTyd40SVPjE3eN8fylMl94aU4qg1oO4z3SYubRvf1UOj57BjLM12ym+tJY+rUjzlRsVxNGMjP2p+4cQVVloyKMBPmkzn97ZhqBtCX96bvlWehPTixycbXFgZEcmYS0UN6ssX0r6HFdc2apgaGpfOW1JX754QTzVZuFqs1gTtZPD+/qlbasfem3XAHxTsGZpTq/8ew0lY7HoZE8KUMnigR3TxQptTwKKYPxYrJ7Pj06XeXoTBUtVgwKIRtNlqGjOmF3T9FVgfMWKsPWiZRRJJn2IlrPRzG5b8e1uX66JrNb13ErC8vB/I+nEuJd3Br5pMHP3z/RvY+DIELXVdlnEdI1Z7XhMFvp4IURQSj3K+dmVihbQOGqS8pGCCQRLogttFYaLnW7TNPxCa87hK0P7NafXVPAMnQWag6qIhUSn7p7lK+8vsxizSZrGewbyjJUSGCoKh86PMxr83XqHZkv4/hy7yykDHbGOUq3jeb5r89cxg9lw3yrte3xvQO4fsTxWGGVeptywW4FFUjpOp+8e4zejIzJeHRDNuhizeZbp6Xa+vaxfNcmbx0fODTI3sEMA7kElq6R0DUWah1KTY97J4vXDMGEEJLY+2O63qctrat+/VF9Xj8sTJfaNByZSWlqCi0nuIY8uhHrqpsNx6IuNhKeNvv/zXCz1SEUcGG1xY7eJLsHMqQsHUvXURXBcsNloWajR4LbxvIoSPX56YU6CV3F0FR60ibnVlqcWW5i6ip1x+dff+s8thexZzBDckN+b8rUWG06HL1SjpXcPV3Hqu0gZckMaNeX+2mtI2un1+ZrMvZBl/mqLSdgsWazXLd5+uwqth9Qbcler+OHXRVVsxNweqnB8Xmpdjs4nOf7F9YYyieotF2yKYtax6fjBrE7WIAfQcpQsXSVpKHSdlVabsiJuTpCyH5ZT8bgzvEiHT8kaWgkTQ3fkcoqHYGpyZrs3GqbvpQkZqYtHRV5Rjc0hZF8EicIObPUxFBVbh/L8Xc/sJfTi3We3D/Ev33qPKdiC8t1dZhlqCAibE+SCFHkWq4qKmEYdpVm6zmPhqoghLSBDEJJhhwuJGPiMbE7lByA6aq0UlQUBU1RWY77xhHy8Rq2x2Du3fz1HxZ+VEq4bVUwiqI8AuwRQvy6oij9wChw5W19ZW8AqqLwqSOj/LunLpHQle6iEAqBaUiG/fOXywShVGw1nIAoEpTaHkP5BCsNJw74jCikLLwwYt9QhjvHC3zg0CB/+NI8oRAkdCkZTaZU6raP7cv8mv6sxb6hLLoqB1gfvX2UEzGTeN1OseUG7OjLcNeEVFf0po04vykindBpuSFeGDHVmyJpyqGMHwju39nDp+4Z57lLa/zX719BCMEHRvI8c6nEbKVD3fb55qklRgppCikDx49o2Da5hE4uaXByoYGmqRRTBvVOQMsLabghaVMuZG4Q0fZCfu2piyzFrMz15rWCXEhsT+ZrLNQc+W+b2QdEgtlyG0WRxbWuykWs7fp0vOjq5iekbeDLM5VtDcHeu3+Aqd40/Vmr26ja2Z/hU/eM0XR8vnFqhUrb4798/zLnV5s8sqeXkUKC1YbLdKlNNmFg6ioCBUNVOLfSxPakTHet6XJ5Tfr4aqpCQpfNiyCClbrNUD4pNwwvxPZC6YevqiR0gUC5ZoC1GYtsUygySD2Mbm55uN5rksNGwa7eNHU3pNYJyFoqlqFRsyMaHU9adEZykOMLiMIQ0/a4f2cPH7tjlM8fnWOh1qHjBkRINu+vfecCaVPn00fGbsiq2dmfYe9QFk2VwZZP7BvYlr8xSDaQpiqYukpC13CDN1aJG6rclIopQ94HaZNi2iRpabTinDxLV6l3PP7kxCJhJDB16SN/9EqVvqxFNmGwdzDLhZUWQSQ4OCLZcws1my++Oo+la3z6yHi3Ofu115c4t9zkyFTxmsP92wlFkQHx7yR4gSy45mtyvXL9kP/zm+f5s3Nr/I/v28PR6Sqnl2ROz0gxie2FZC2DtYb0v3dDaXlycr6GF4rr41cAeZ+0Y3qy35ZrjczikoeZhh1wbKaGpatM9KQZLRqcW27ih3I4ut4AjwTYQYhxXbF0frnFS9NV3CACRcFA+la7YUQYygI5iOgWKpoiMwE1VapmB3MWfVmZiVdueTx7sSTzzAQIFBKGIn2wM3Io/dE7Rhgr7OJzR2eptj1pxaCq1AKfbMogEvDeA0OUWx7jPUk0XeX753wiIe/FXX1pPn1kjN0DWX7r+WnKLY8T8yp/8/Fdt2y8v4sfb2x2f6jAvuEcKVPjq68tM13q8Hc/sJc/O2fKhnfTY0dvkh39GR7a3cdje/oRCP7F185i+yH3TPZw/45eVpoOfWmL335hhp60yXLdjZ9T5prqmoIXCM6tNFltunEYtDy/uH7UVftYhoapawSRQFNVzi83uXuiyM/eO7Hp75RPGfy1R3fyZ+fWuHuysOkATBZWCgu1DtW2j1OQbav1Zr0QAj+MKLdcxopJEob8d1NTSVkq/VmTHX1pbD/gexdKDBcSuIFGPmXw8O7+blP2S8cX+OKrC7TdgELaJAohiCL2DGRYbkgl+fpr2dGX5uBwlucvlWm5IUkjNtVW1teKNz8E88N40B8JHH/zTX/PQJYXZ1s3fQ6Auu3FVtiCWmd7e2sQbk5G6c9c3fdv1q+Z6k3x6mwVgH2D2yvw01sMPufLne7f7ZvY5my8N4Joe2QasdkNBewbznSL5WL66utarNl8+fhit2D3An+78WM3QgU3iDBUFVVVSBkKdTeQQ4O4eG84PlpdEi160xZV2ycQLsM5k+WGh6UrtL2A04vShjeTkCSQy2stvnR8kb/yyA7Slk7T9vncizPMVTpcWhW8eKVCb9rkbz2xiyOTPaw1XZbrNvdMFTE1jV/7zgXumih08yTvGC/w9z60n0rb5d6p3muy5Uotl996fpZX5qrsHch2yTlBGHFxVV6fc+UOn7lvgnLLY1f/G1cnpy2dn7tvgoShUet46KpCueXy/KVy1xr+wZ29KIryY5/FsL6+bAYviPhX3zzPmaUGKVPn8GiOUAj+w5/JbNufuXeclCkzoi+tNnlgZy/PXy5xcaUpnUYAy5QkOOc6wpkbvLUWn7oqrTwdTxDF17Oqqjy4q/cHtvOqd94a9cC7eGeiZvtcXG3yW89P8/p8jYSustSwadihJIRdt+i+mQHYOrZavyWxWaM/a1JuB7jB1cYxSKcbVVFI6GrXYksBckmDHX0pkqbBfMUmY+kM5ZNM9aZl3mIY8eT+AR7eoHZ/4UqZV2erGJrKnoEsEz1pbhvNc2A4S8cPeWm6StuV1/zltdaW9sKaqvDh24bZP5zD0JRuFuoPE0kdDF3DsjRmq20ObZJNZuoqapxNvxmZ09DULiEV5B5caXnUbZ8vnVhk50CGkUKShuPzhWNzuEHEx+4c+ZH8vj8oCikzrk8FxW1kAL+TcbO9q9xyYsKatMDLJaUrxFbQ1i2UNsHGe1ZX5PXixDEGG3Ez4vn1/y6QhC0nEOwfTvPkgUH+2zOXmSm3ySR0cgkD25OK9l/9xjlOzNdBSJeIpKFTbrkoyDqk1vaZrdj0ZU129afpyVg4vlSaHRjOsaMvzeW1Nst1hxOzVX7n+Rke3tPP43tv3UtKmgZP7hvg8lqLTx+ZYL4q+5FrTZfVpoehqd0BeE/aZKHWYa3pEiFJVUP5BC03kIRfIQiEYLrU5tefucIvPjBJy/HRNQUniNjRl6HlBjh+xGRfinPLTeJliJYXEYQe4z0p2rHN/ToZQBHQdEIqbZfX5mo4obRiXOfNpUw9zgkLado+bcdHVRWKlkm5JfuTuqrRm7E4eqWE44d0RMgXXppjqjfD/+M9u1huOASRHCK7fkQxpWPpUnCSMBSWGi6qKl+Lrmn0ZUwcPyQMBUIRKIoUCLihHIAlTUnSdgOYrXZI6jJ/MZc08P0AJ5Cfq5S8SEVYGEbd6z2K4JmLFUpNh74fAxvud/HmccshmKIo/x/gCLAP+HXAAH4HePjtfWlvDJ++Z4Knz5RYbjjsG7I4t9LC9kN+7sgEvVmLTx0ZJ5cw+M1np3lhuowXRBwazbOrL8351Ra1js+O/gwJQzI5xoppZspt/sEfvY4TRDIgUVF4z94+7tvRy7fPrvD8RRmmXkwZ/PJDUyzWZShif076tFbaHlnf4MR8HTeQN9jH7xwlFIKZSoehXIKG7ZNPmRQSOqW2x2zVZmdvmh19af72E3u6v58bSKtCL4wwDY1d/RnWmh6REHzj1CpTfWnSplQzCKHi+CGGLm2Rdval5RBQCEI/QkGhEkSEcTFjanI67wZRl021bvknm82xbRg3H/KsN2cEEIbgh+ENh1IhYLnubHuoomvqpsyK9cJrqe7w1deWGMwlKLc8EAoP7urj80dn8EPBq7NVhvNJBnIWLSeg44bd36vUcllpOPSkDY5M9rDadHHbUn610vRQVZWJnhQXVlqEilwYTUOhmLEoN100rrLOTF0FIWTz/ya/T8N54wWfAJ6/UiFpatheSNMBTfERKGiqHHAW0ybT5Q6OFyIU2by0NA3L0PjFByY4v9Li5GKdharNXKVDxtIRaZgpd24YggG898AgQRxQOXqLfKuNyKcM3n9wkLPLDTpvIqQgElJx04oblJW2i66qLFQ77B/KsbM/Tcvx+YdfOknbCykkdfoyOsWUQSgE55ZbhJFUoX3ynrFrBglPn1nl+xdKZCyde6eK3DFeJIwE55Yl++TMUuOHNgR7J2GxZvOl44u0XJ+XpqvMVtq049xBU1M4u9zk//jmORw/YqnhkDI1Ht3dz1rL4eR8HU1VyCd0Ol6AE4S0PNhKWHCN1cg6Ux6pRnV8ee8EEYReRKXlkLIM/JhdFgjQoqsFqqGqRAgsTQ6VIyGH8d85s4qhSWbTuuqvL6njxGpe25NrgK6qCCEHajlL47G9fRRSJn1pi2cvlpirdjg4nOWFK1WEEOzqS9H2IiZ7U+wdynLsSoWvvLbEx+4c4Z9/4jaOz9YwdZX//L3LgGQ/7R3M0J+xeGR3H70Zi8FcgqYdcGGlgRtE3D6WZ/dAFj+MWKw5tN2AsWJyG0ax7+LHHdfvjQpQSBsUkwbPXy7T8SLabsC3z67SmzbpzybYN5hluJBkV3+GDxwc4sJqky8cm2Ox7qDUHWbLbUIBewYyFFIGh0ZyzFY63DVe4I9fnWeuYvP43n4+c+84yw2HCytNrpQ65FMGI/kk/dkE790/0G3M3DGWJ21qjBVTuEF4TX7PRpRaLn/0yjwKCp+8Z4z7d8okITcIeX2+Tl/GImVpfP7FORw/5In9A5xebADSfvd9BwcZK6YYyFq8Nl9joWoz1pOi2vH4qTtGubTWQlXgG6dWyFjyTHNxrUUhZRBFMF5Icmm1xUDWQghJfEgacr+sdjwShkoxbXLHWJ58yqTa8fj9o3N889QKn7l3nHLb4/ePzWHqKvmkzNhRVZVyy+PYdJUHd12fjHTzz3IjOp5suPlhxBY9BSb7rionbnbvrzZdwlgitdbcnh2i2OIR5ypXmxZtb+tTy31TPXz7zAqGprJ/+MYm2GZobDGg2yi2utl7pqmSLASQ3iJH7Xpkzc3PlLJBEL8u++rr0uPsg5Yb8Miefo5dKbPScN/U8CAIZRFtGgoJRSOT1KnZVx0VEPJ7Ol5AMW1Rd3ypPA4jnFCybSMhLXfXMw/MMGKiKLOF67bPifkaRyblZ1FuuZRaHkIIBnIWHS9koeYgRJW9gxk+++AUQgh+7TsXAHmPvWdDHurhTZqZINndfhixbzDLnsEM74tZ/bqmcmSqyLnlJvdMFunLWFxYafH1k8vsG8rwocObBMDdBD1pk7/04CQXVloya7PcRgg5jJzoSW/ZfPtxwtErFf790xdIWzr/6KOHGIgz0ZqOzx+8NI/thbScIG4iw8O7+3jxcoXpUoeMpfHNUyscHs3xrVPLnFps8LWTS4wVUqw2PXRNxYtCOl606T7yVg/A0oaGF0Jf1kRFDnaThsaJuRq3jxauGaS+Udjeu6Fgf57QcHzOLjXJWir/5CtnWajZWBpMV+zu2vZ2YL0/sZlVmhYrX51AsLMvxVzVxtQUGk4gs7uEwDQ07p4s8tE7hpkp2ygI6k5AywmwDJWG7aOg8NylMmlLZ6yY5GeOjN8w+Hl9rsZ0WVquP7K7F13X+Ojtw3z7zCpzlQ5CiG7/4+A27A13bMNe/+2Cpmn0ZxPs6EuT2cJWuS9jcfdkgUrb4/6pnk2/ZyNMXSOfMml7YVcVDDBfsbsuRBdXWz+WQ7DpUrtrDXul1N5Wn2vjGXk7UQo/DJxebPDtMysM5RP89F2jXdtLgK+cWOT3X5ql3I7JoTqM9aSotD1CNwCFGxSWYbQ95yRFgZt30LaPjhfSjIc+r85UObXYoNz2KCYNmcena/zx8UWCMIqdB6TlezElHTVUVdYC8ntVxospXrhcQVGk6m0931DWYbI+mavacV1ibmsIJgeHCumEwX995jK1jk8+ZbBnIMNAzuJyqcW3z6yweyDDUD7BhZUmLS8gqauMFJO8Z28fHTfgz1SF6VJbutz4IRO9Ke7b0cMXX10gbWg0Y1Kz78sapNzyGM4naTvNLhk/EILpcluqyzUFsYGIrykK1Y6MF4qAjCmJ7n4oz2zD+QRLdYfVlnQ2IxJU2y5RBHYkh8Kvzl0d/oO8JqYrHf7jn13ig4eHGMialFsyxiWIoN12ySQMarYcyEVCWnX3ZU1ajszZtXSV/oxFwtQ5v9LsrvVHJoucXGhQ6XioAixdozdt8c8+vpdXZqr839+9hKYpqEgC5GBOvrdhfOEKZL321deX+aWHpt6S6/FdvDOxHSXYJ4C7gFcAhBCLiqJsX+/5Q0Kp5XLPlGzQ7OhLsbM/w2Rv+gYm8r/89O2cW27Sl7FQFMEfvrzAY3v66c1Y9GctbhvN8bXXl3F8WVTaXiiLlEgyOzRVJZvU+T9/5k7+zXcu8MLlMsP5BFN9Gd4T2w09fXZVKoYMjbYbcGAoS90JeGxvP6ah8YVjc4C8oXf1y+n07WN5js/WuLTW4kq5TTZp8OXjC3z5xCI9aYuxgkXD8VlpOKw2HPYNSqVOEAhyCR0F2D2QYbFuc3mtjUAhCGUu17mVJl6cURAJYvltvEsJyUiMhRNYukoQXg0f3LgdbWdr2vg9mzU5BNB0Q756YolH3sTA4eRCne+eX2OsmOSjt4/w+N5+Lq62eP5ymbFikuWGw6XVFn4gA20VJKMlbep4gVSu1N0gDmoNUZCNkVxCZzQvh5JBzN4ttTwMTWG97W5o0gqk5QTyvTJVwnWJbSCL0esP32/k/dNjqe71Px+JuMEfD9DWi1yBIIgE5ZbLzv4MhqrIZigK/Rmre3B54XKF43NVRgpJsgmd20bzhFFE0tLZNZC54XUAjBaS/MojO7b7sQDEeVJlRgpJcok356MbxtNXF4HT9okEaKpkujp+xNnlJqWWixtE5BI648Ukt40VKaalUqInZfC115cAcP2w24wF+dlZusyaWR/8aarC3ZNFzi41ODiS47efn6bjhV17ur8IOL/SxPFDyk2P8ytN6ra0ztRVCBSVpuNz7HKF9T5pxlL51pkVWraPH8mmnR6bQq9nI64P0bdrG+r64oZ7JYgEbhhJC7BIrl/ryjFFkYPnjhsQIu0CU6aGoiq4fkgnVm4O5RJ0/JC9A1nGikmePrdKx5Ue11HcdDNUhX2DWd53cIjRQpIXL5fJJw3qjsFayyNlauiaInNWMha7+rOUWh51J0BVFJbqDpmEzmrLpdL2ODiS4+7JIsNxg/XFKxVOLzX4q/9/9v4zzLLrvO9Ef2unk2PlHDpndCMnAiBIkCBIilGiJMqkqDiyrz22r2WPx2P7sR/P2J4ZjW3Jvh4HWbJoJUqkSDETBAGCRO5G59zVXTmenHbe98Padbqqu6pRAEGJhPD/0tVVJ+6zz17vet9/eHCcg4NZfv29u/jt713FdDwEgqbt8tJVmUfpeD4P73rzA7Dfxo8ebvxedCV1TDfg5KzM1LRd6VvfMF1+8s4hEhGNqK7yE7f1Ezc0vhk2RydWGpiORxDA7z1/jcW6TW86yv/98UM8tq8XkLkWXzwxy/l56ef+Tz+4j339GbZ3J7m4UKcnE6F7A8abEIIdPal1TF6Q5+kXXp1luWbxnn09FOp2e4PzuVemcTwfVRFcWKghhGA4H8d2PY5NlYkbKl2pCLeP5Dk5U+bAYKb9mEs1i1zc4JXJErOVFhcXa+zsSbF/IMNsqcnFxRrlpkM+YcjaKarTnTb4t9++TKFu8d1LK4x2xMknIvRnY9y3Pc+LEyUWqxaqAqWmzUM7u2jaHtWWw3SpycRynXvGO/B9n6vLLVJRjd5MhHTUQFPFlhSZt1SChdmErh8Q+BuPfspb9C5rmHa7RjBvkce0tpbIxjZmJD9/abn9862u0V8/u0CpYYOAZy8tv+ZAEOC20eyGv6+v2QTf6phpisAKa9DIFq2CKy2HjvTNTae1ijNnTXemOxXlMw+MUWzYvDpZ4sWJwhseHqyud5YTEPguqy957cOpoZK5Jx2l0JAELIEIB36SdbxOAed6dKYibO9OMl8xeXGiiOX4qKrCQDYWukskmC62GMrHuFaoc3W5wbn5Kp+6bxQhBHeM5DkzV+Hw8MbD6xuxozvFy9eKNGy4b7xzXdbTjTZYZ+Yq+EHAufkaj+7paTcztwpdVUhFNb5xZgGA7T1JtnUlX3cO648qvndpGdPxMR2bo5MlHj/Qh+8H/PfnJ/nmmXmCQNCfjbGzN8kD27tYqJj81lOXKLccUhGNq4UGXz2l8L1LK1iuT0xXiahK2CTyEIpArJWzhHizxwyuD03HIx0z2NeXpmVL+/Wq6bBctfjWuUU+eKj/DT/+TPVNDC57G3/p+OrJeWbLLb56ap6roSX5m4Vb7Sd0VaCpCprwqVjyVgrSprYjKYnJ0XAAk40bTKw0yMQMkhGFyaKJHq71TxwcAGR24W9//ypLtsWp2QojHQl609G208m2kDRdbNh87ug0p2YqjHUmiOoqfZkYEV3hp+4abjvYaGEdEdGlE8lK3WKy2GzXdX8Z0ENLsM0gLR09ejNRTs6UiUdUhvOJdcOdy0vSfcP1fc7MVcnFDd5/sK9NVC7ULb7w6ixCCD56ZIBtXUn++iPbuLhY48BApv1YY50JejNRWrbH3v40U4UmXzk1Tyam85EjAz8ykQG3wo6eFOfmqwTAzp6Neys34ukLy5ydqyIEfOre0S3nSf0wcWaugucHzJZaFJt2e2/wyrUi/+KrZ6k0HSzPpzMRIZcwmK+YKKEK3tlAybnVNcnxWWdHuoo3Ej/ihvErE8t1erNRCIcoO3vT7OhJ4vkBcUPjHTs7qYY9vaiusFI3mS23yMV10jGd/f1ptncnGe1M8B+fvnLTZzvameB///AB/t23L5GJ1albLru3aInYlTR49vIyCxUTz/eJG5q0kTddUlGNa8tNJmkwXZKiiVWhgulIFe25+TrTxQZXlxs4fkBn0qA7HBL93T8+zncvrlC3pDKrYUn7wIblUGk5dCcjqKrACz8vXZUxIqoQ7WHQKlq2y2LVkuSkIMDz5Z4moilYbkDD9tjdm8KfD1iqybgcIRQMXfZSdQWWqha5hE42LmNN5ivS8rthuxTqFl3pKLoqeG6i2M6DtzxJhlcVmbE30hGnbsr+resHtFoOlutz52iO/myU2VKLqKERj2gyh9LQpN2hIjg3X+WZC0vMVkwCArJxg129KW4fzvH1s/OUmw6WF7TPNVWRvbG1USlv462HrXSq7SAIAhGGagkhfjSoCjdgIBejLxOlajrcPpLf0KJhqWoyVzHZ3SttPv7gpSmatkehYTOQjfGOHV1cDUOnTdfnp+4Y4PPH57Fdn/5sjJih8t79PSSjOpOFJn/n3Ts5O18loqnrGBx7+tJcWa4T1SWTWI/p/MMn9nJ0ssTvPX+NpapFzXRpOS5NW4b9DWRiTCebDGRjBEFAqWHzO89dIwikQiVhaBSbNpoCfqBQs1zuHs9jOz4ThQYrdYurhRrlhoMQ4HnywmTZPpm4TqFu4wXh8OeGqqc7HaPctDEd2Whe9VT9IZK2OL9YfUP3Oz1bodSweWGiwELF5NE93TRtj0ODWaK6wrWVBuWWQyamU2jaGKrKYDbGZKlJTJdetfeOdXJqtoTleCiKYCAX49BQjtNzNZIRmaOihhkJLdtFVwWpqMFgNsrl5QYt20VRJGtEEUIycjd4rZoirTqtLR7IG3taG91LEbKYdkLFmQAimsZyzaIceigO52PkkxH8QPqur1pzzpRa/M1Hd6x7PM8PODVTIRPTGe6I07BcLi7WGMrH6XydVjQnpuXzXF6qM1NsoYXDi9eL1Zy5VUR0laShhiHgDk3bRQhpHdSwPY5OFrljNM+HDg8QN1Tq5x0alrTwrDQdJlbqjHcluX97J6bj05eJrmOZ2a6PFwQsVSW7GuDCQu2vzBBsT1+a75xfYrLQwAobtrDqlxygKoK1QoGm5RPVJctq9dS2wx9UJbQtFNJbfxOL8JugKAJ/jcorokrZe7Ul5fyaJ9qZLT6gBNCwXBACzwuk9YHjMZCNMphLMt6RYKUhbd4alkulJTMVA1/6eLu+tO6I6QrpmM6h4QzFmsWfvjLDiZkyQsBQLkYdeS1UEOSTBoaqUGrZ3D2WpysVodZy2NOX4t89eYlXJksM5+PkEjqFhkU+afD8lQKqIrhzDUNyMBfn0FCWiWWZiWO7Ps9cXOZ7l1bIxK77gr+NtzZu3NIv1eX121Agn4ww3BEhEzf4/sQKhaaDAkQzKgL4/Ren+ObZebqSUe4cyXFxqU4+LsN/ExGNYsOi1LTbdmKZmE4mpmN7Pv3xKBcWavSEGQ0HBjPMV1qcmC6zuy9FsWFz9FqJ4Y44BwYy61QZpYbNnx2fpdpyaNkeEV3lzJxU0D53pUCpYfPspTKSNKLQnYpQaFiM5OMYmhx+Wa7PbcNZjgzn1g1UdFXh4GCG8ws1Dg5muLgoCQ+ffWGSv/noDlIxne5UhGxcRwAfOjzAt88tSstD08XzA8n2djzOzFdoOR4D2RgHBjNcW2lwfKpMRXV5ZbLEb37iNr55ZgHb9an5DqdnK9ieTzqmoasKQSAYyEYZ7UigKlLBEzc2L5dv1f9fVdJ7gVSCb6SZiWjXz4ZbVQszpevqr0tLm9dQEU3FDXMPI5u87mJzazlk1aa0biWQg6atYK5i0pm6uQa/fTjD/whJYLdqaSWjGg1HPtdrZQqtYjPl+cGhXFu1359ZX9MM5uKoiuDYdJliY2vKulshQJLMWrYcAq+uaboq6Ejo9KRjcojhyUDxuKFSM138QNZzhgq+K+u84XycbNxgvCtBxXS4vFRnutjk9pEsu/tSpGM6/dkY/+sTe+lORfjnXz7L+YUag2sypB7Y0ckDOzpv+ZrXwgt8jk6WcDyfr56e55ffsU0yZIOAXT0phBDYrs+5+SqD+RgnpioUGhZ//Mo0Hzk8uGVF0FRBWrkno9dv35WMsq9/a0rDHwe8c3c3Z+aqpKJae/2vhcoS2w1wPI/BXIxffsc4uqrwt//o1XCPJ1iotqiENc1qTeYGAQsVE8vxQgeKH94G7cZcFtuTCp9s3GB7t8FSTRJ+DE3h+SsrLFRavO9A3xtSb7y+0enb+FHGN88s8J++e5nJYgt/i+qPrUAhtON0rhMFEjokogblpkNEU/AD2N2XQhVwalbmuIPch493SmXEMxdXmC21UBQhVe4Rjffu6+U/PztBseGwvet68zod09jRk+T4dJnedJRz8xVGOuJ86HA/Tctv2+xfXqozXzZZrlnEdJUHdnaiCsGhwey6muHhXV2YjkvC0Li8VOep80t4fsBixWyrSv6i0ZWKMFfZfN1r2j62a/LUuSUSEZUXrxY5OJjlb797J5OFBq0w+90PAk5Ml6m0HO7b1sHZ+Wq7B3d5qd5WeF1ZrnP7SJ7t3TLztdJ0+N3nrnF1pU4qqnNkOMcju6Vi+eunF0Lyq8dcubUuZ/BHFZmYzs/dO/q67iPa//7oNNoPDWVZqdv0ZaJ0JK7XTOfmq21CVy5msK8/harKKIGG6VJq/uDf+I0eYbO8vxthqAJ3NTtKFaQiOumYxlA2xq7eFJWWQyKikYpqnJ2rcmmxJhWJikI6KmuxqWIT2/UpN11GOxLkEwYXF2uSgNey6c/GuGtsPRFMVxXycYOm43LXWH6d6v5WKIQ9CseVvTotjK7Z0Z0KbZIF5ZbX3m/5fkA2plFqusyXTToSESYLTVrhcKxpuYyPd3BqpsJ0qUmlZSOEIPAlySppqLRsHzeAharZdhFQgJHOBGfnazIjPSTYrP0smvZ11bqqKPiBjR8oWK7HQqXFZKFJ3FAZyceZr5gEQEdCEg4uL9XwfZ9i3aY7HWVff1o6Wzkerufz7KUVEhF5/FUhcJB7qiCsi/1Afq6XFmvYriRdBwTtYVjd9uhKxfB9sP2A5ZpNzFAxVJm5Vrdcqi2H//D0FQ4MpAkCsD2PIAiotGyWqhZuOGzzQ2FDMqqTjemUW86W9yBv48cPWxmC/bEQ4v8FskKIXwI+A/znH+7Lev2IaCqfuGvjnAqQqp8/fmUaxwuYLDT4idsG2qHC+wcy/NI7xtFUhSsrdSKaSm9aZf9gjkf39rUzg5QwjPjb52R4+4cOD2y4aevNRPnFB8f57sVljk6WACmNPj5dlsGguoqhKQghC7idPSm+cXaRiZU6XhCwvStJZyrCYsVkptSi0nRCmajcHEc0lV9/zy68AF6ZLHJytkJcV3n2UhEnbOh3xI12ptNS3SJqKLSc643kVegKJAwN1wvwfZu67YX5Nz9clBrXG71BIAcnqiJes9DZP5DhlckicUOq7OqmtA+bKja5Vmi27R9Vwouj5XKt0CAR1dvFcyqm4QWSNSaAmXKL33zqEtu6k2TjOTkIWqqTjWk0TDlwiRsa+WSEeMWSx9gPaNlu28JtIwiEzF1rvTkJ1SowkI1Sbrl4vosfyEU/HdNwvADP88klDHRVoSMR4eJinYbtsb8/zVdOzmN7Pp99YZLH9/fy1PklyZxOGlxbaSIE/Mxdwzx9YZnZcouorvJLD46tk8FvBtfzObdQ5dx8le9eXCYeUdFDq7kfFLoCnYkIipCboGLdJRXVyScMOpOGHLaEXuQnpsu8/1C/tPkEyk2HPzk2Q7XlcGK6zKfvH2PnDYoGy/U4PVsBYLFq0pE0aNre6wo3/XFHT1oOBVfqFu4NUyvbCxA3DHETEZWm5W543ns+oSJy48/+RkaXKiCmqyAC6tZ19WkgFKxQ3dJyfBKGiu16tELWkhKqVtcO9B3fZ6FmkYoZCEUwlE/QsNy2vZrl+uiqIKKpxFRIGSoRXSMAvnpyQTL5Xdl06kwadCQinAutMnf0yMzHqulwZDiL6wWUmw73b+8goqlUWg5LYbDqaGec0Y4kL1wpsK0rQbnl8MD29Y3Ix/b2cna+Sn82SrnpQCCz7RIRjbnK5t7qb+Otg82ujo4vB7y2a1BqOHJrHFRIRnQC4MRMmS+dmKVuSquPv/7Idr4WNgwSUQ3T8dg/kCEd1TkzVyEbNxjIxvjkPSPEDQ3LXX99q1suf/LKDK4fcGW5zrHJkmz8ZKL8rUd3tpVaIAOny00Hzw9QVcmI3tefxg8DlCumw2LVRgDjXQm2dSW5fUTnnbt7iEdUJgsNdvSkSEc3ttZ5dE8Pj+7p4cpynX/37Us0LFda9waQimjcMZpnstAglzB45VqRb51dJBXV6UoZdAYGvZko2bjOXFkOeDzfbw+VUzGNSsthvmzyJ0dn6U1HKTVsTNen1LSJaGqY+REhFzdYqds8d6XATKnFleUGP3nH0Kaf5a24Hv6a66e/Sb5VNnG9FN/MSlbeTmcyzF7oTW/uVb+aEeQFUKpb5BM3E1rsW1HA12BvX5KjU0WEgP1bHFLkExt/vl8/u9j++VZVUU8qymJNDsEGt2jHXLc2fsSm7ZKIari+T3IDVVw2pof5D1t6mteE4wVEVJk16a3ab4d2Lo7rs1g1ycQ1snGDStNp1+QCgaYoaBHoSBr8xJFB7h3vRFMENdPl5EyJasvluSsrjHQk2NmTpCcdDV0tBH3ZGDXTJRc32gOL14vLS/UwA1iSgi4t1vjySamsd1wZJv/U+UXOzdfCvVOai4t1lqoWk8XGllRcSzWTz786QxDAHaM5PnCon5rpoCqChYpJb+atkcFw23CO//rpOwH5ffzjl6epmg69mQh3jeXbTfuXrxV57orMHvV9pJ25prbV7GpIKsrHNJqO/5qNwDcDG10Z/ACmCg0+dFs/EV3l3HyVl6+ViOkKDcvjzFz1x9LC7G28frx4tcCLV4p86HAvr05XUcMMw//7mxeYWHnz69cAMBQFa82ZOZyL05OJMV+RBNBkRH5nVGSOlReutaqiYLsBTxzso2X7PD9RQFME1wpNPn6HtG5erFnMlVu8c3cPyzWLL5+ca6vu83GD/+ubFxBC8PK1Ih842L+uJtrenaQvE2WlbtFyXCZXmu0sr7V4+sIyL18rMVcx2deXAgSJiIb/w2623IC1/ZZtnfFbDsEC5J6u2LDxfOmmc3WlwXylhecHjHQkeGBHJ7m4zsVFGakRBPDJe0bbj7G9O8mp2QpCCMZD2+cT02VemCjI4YnlcXGxTkxXMR2Pd+zsQlUEe/vSTKzUyYRkjx8EL04UOD5d5sBAhvu2b50U8heBh3Z10ZmK0JWMbEkF1ggzoIbzcTLxrVlFv17s7EkR01XqlkulZfPFV+eomA6aIjgwkGG62GI4H6PleDi2JGskoyp+5fU/11ZUXj6vlcor/64pAlUEIGTfqmE7XFlp8Hzo7tKRNMgnIrw6VebaSoPJYhNdkX26ZETFdn2qLQ9dhbihcGAgzdMXl9FVhcVqi5iurcuZX4XlSnX04aEccUO9pXJoutikZkq1WG8mxlhHgqrpkolqPH6gj339Gb59fpGRzjivXLNQhKDSclGFHMwXGyFpSih4vt+u9eWwyOfpC0tYri97ugEQBHSlZFadqintK6jrB7Rs6bCUjknyvxxwESqvFOyQwOf6soeuqQqj+Tj5pMGFhbok6TgeriJoOT5N28N0ZM9UhM/Rl4lwdaWO6QYoImCp2uLcgkATgmREY7IgLbgXq7JOTkV1jKiCF/i0bD8UHMiIn1Vig+0HJA0VXVNwXA/b8fBVmYkmgLrp0JmKoCB7Ny9OFDAdqYR7NYytUAS8eLXI0ckSyYhGwtCIR1RmSi2ZFxkE7OhJkd0k33grGP0HX3nD930bfzHYyhDMAp4EqshcsH8cBMG3XutOQoh+4MvAXiAZBIErhPhN4AAwAfxSEASeEOICMB/e7deCIDgrhHgn8C8AE/i5IAhmXu8buxEBQbvY8MIfnjjYx/n5KqOdiXaz/4HtnaSjGpmYQU/YZDg4mKFhuRwZyVEMhzfVlsPlxRqXFmtMFZs8uKPrpsb5jp4kZ+aqGJrCWFeCPZU0p2bLDOSinJ6t4vk+TxzsZ6wzwX/73lWCAPKJCH/3sZ08c3GFnnSUx/f38W+evMhsuYUfBMQNle50hFwywoWFKk9fWCaqq9Rtj3RUb6uY7hjLM5JPcGK6RDqqsVKXFmBr5V2GKkhFNbb3JLm8WKPUlMWQvBBeVxv9MDC9JkTz9Kz0Hwb4wKF+tm9i0dewpGT5Vx/axrfOLhEE0vLwfQf6uFZo8IcvTXF+vooQgp+8a4jffOoypuNRszw+fucQz14sMN4ls95Mx8MOGZaKC4XAJlU2aa4ZcDUtF02B7d1pmra0Nau23LYC67Ugz7nXdwRXHze44Xci/CEVlQXh0aky+AF9mSjjXRVztDAAAMl2SURBVDJ36PxiDV2Vg9qJ5TqZeI5EuFC4fsB8xeTqSoMXrhaZCY9/uSXlz6uMirbaJtj6Z//s5RW+f2mF5y6v0HI8qqbTfrwfFEJApWWHkmqFgICYIZlHs6UWvZkYPekolabD3r40dcvB8QOycZ2ZUouXrxWJ6SoHBzO0bI8/PzFH1ZTqnQODWdJRnZ09KS4v1Tk8nOOe8de2enorYndfqm1L9Fo2nnXLQ1PZdPO22ad+I7sY5HVGV6Fhrf+LIqDhuLheaDfq+3hBqK5EFmWqopCNy42v48nvsuX4rNRNWlaCliM3xL7vt61eFSEYyscoNKStmOYHkukT06jbPjtDm4RtXUmpNJOkMuKGQncqSkCMnlSUb5xdZK7c4rsXfT7zwBgRXWEoH2dvf5p8IkLL9rhnvINqS2ZN3mg7GjPUdr6S6XiMdCaYLZsMZGPs2UJOwNt460JAWITD/ds6ePriEmfnavRmoxwayjKcj6OpCqWmLRUztstHbx/g6LUSnUmD20fyKIrg66fn+e7FZXIJg8/cP0ZHMsLP3i3zIZU16i4/uF4bOZ7PleU6paaN5Xp86+wCr0wWec++XvqzMca7EhyfLrWzv/IJgyAIeOlqkWLdZiXMrBrKx/nAoX4+fsPgaK262PMDvnZ6nsWqxaO7u9ep6bd1JflXHz3IqdlKuznwnQtLXF2pc3q2yvPhpmbV4mRPfwYRyOHBrz2ynXJTKmdeulrg9FxVNmhsD8+XOZP/8ZnLBGGCqRdAoeGgCAdVwHylha4qHBhMM1ls0rJdLi/Vw3D7jb+btxonrW1at5yNlVSaWKMEu8WyuVbtVDc3V2UZqqDlyg1hTN+YyKJrGvDaqlPHD8JsRbnZ3wrOzlQZzN1MJElFtqYUSkTk1kQgh59bQdcGVogAu3pT9KSjIYHhZlvAS0t15soW8Yi6LrPgjSIV0bC8gEMDaS6EQyXP86i0HCpNB1UVRBzles212qwgwAt8elMxxruTfOTwIF4Q8OufO0ndclip29iuzLSUgzFpBaOp0m50f3+apuWRjkoiRTqqb9qMmS23aFguO7qTWK78zvdnZNbgoaEsx6ZKKAJ+/6UppgpNdvWmcP3VhkhAEEi27W2DWQxNBrcPhQOQJ88ucq3Q4IEdnRsOxXz/+jnuegHbu5N8+9wiJ8N80U/dO/pDa+69mZgrt6iHx1AIwVy5xUyYNSSEtDpctfqaLjaZLcua+8BAhk/dJ63GVy3XlDBnZLWZXg+VE3FDxfFk7aJrKhEEhuVib21+/QNDALmYiumCokAttHd+x44upkstoprMVRruULZsAXUj3jZD/PGC6wf81P/7AgC/8eRFdCWMWVDgTbh8bghdFYx2JpguNim3pE3+RKFJ1fJ5z35JKCs2bGoth86kQdLQ6EgY+H7AaEeCbd1Jnjq/jFDgztEcp+eqdKUiLFQsGpbHR44MSsLsSoOjUyVJTMNhYrnBfds7ed+87FEkIxrZGwge+YTBrzy0Dcv1+A/fuQLA0ckStw1lbzpusiktc7Ee2tmFEg4V/iKxtt9ycDjHs1dKt7y9j9yPxQwNy/EwXY+nzi8RN1QWqybn5qskDRVVUUhGFHozUWxP9lEuLdXIxQ1+8cHxdY/5yrUiz18pUGpabZVsqWmzVNNCK22V4Y44v/bw9jflPb8yWcJ2fV6+VnrTh2Cm43Fluc5gdmtDqbVrrxCSlLmnN82XTsxiX5D9rI5buPB88fgci1WTZETjFx8c+6HkZ85XWvzpsRl8P+DUbIUry3U0RWEgF2N/X5pkROPyUo3ZklwDM1GN+hZJVWuhCEgYKrUtXDhu7Imt/d3q/1UBbiCjYHwEpuOxoyvJ0ckSUV0lG9NJRnSMsN/r+wFN10cRMFtqUjHdMCJGkoNfmSzTl4lSbNhEdY24obJtA6J+RFPZ1Zvi0mJ907xVkETrPz0mCUDlls3hoRyfuHuI/gsx0jGdasvhd5+bwPWhPxsjoslBl+X4BBAqyAN8wDddTs9WCILVOl+gqSpBAFY4vAoCSZ4v1B2iukLDlIOuIJDuO1XTwfMhost8r2xcZ6Vmk08YtGyPStgTVBVpjZ+O6Qx3JPjY7QP8znOTvDpVRtcUDFXB8fwwSkauBZ4f0JGMMF1s0QwLFj+QLeilqkUQgBcEGKpAVRQ830NRZJ2xrz/NyZmKzF7Mxmi6LktVi7VMtdWcR0UI5ssmfbmYzC5rObRsl3LLaZMtNUXWqE3HI2moxAyNcsPGD/d/nueTjOrcMZoN1cYBh4dzfOjwwGuel2/jxxtb2V32AH8LmQn228iB2FZQBB4FvgAghLgTMIIgeFgI8XeB9wNfBJaDIHj4hvv+b8BjyAHa/wL89S0+56aIGxofPjzATKnVZvFkYvq6zCCQstbbR65bVzVtlz98aZqz81VOzVb49ffsplC3eOaCVHkVmzJg8OVrxZuGYH2ZGL/60Hh7kXrv/l4Wqy2OTZVp2h63DWXY2ZNiT1+aj98xxJ8em2FXT4qRjiQ/f3+KIJC5VH92fLY9XY8bGg/u6CYZUTkxXSEd1ak0HYZyUUwnoG459GSi7OhOEtNVooaKZrmsiq3TURXXCwgIEAiSEZ35sglC0JeO0rBlUGzFdLG9jfMbAuRiIwTk4hor9Y1VIbfCWnGJvUZ94tzCP+3Pjs+yVLVIx3Tes6+HLx2f4/uXC7x8Tdq3VFoOp+bkRrrctNEVRSpZgBPTFfb1p2k6LtPFJnXLbTf+VheN84u19hsNAtoF62ShDkDFvH48tvJ+M3EDVQiq5msv8JqQYZQdMYOy6eB6Po4fssJFaJUYwOXlOqqgndm2UDUJhGCpZiEE7O3PkIkZ+L5Py/H4/ZemyMZ0cgmDhapJRBMcHsqyXDWpmS7v29dHpeWQjcvh2hMH+jgzX2G0I7HljAc7zCtIRDRW6tYtPcZfDzQFoppU/Hk+mMJDVWgP2nJxg1LTZqFiEouoRHTBuYUqnudzfLpMdzrKUC5OxXR4995erizXmS23OD1b4fRshXPzNT58eCCUuEdv2rS8Fk5Mlzk6WWJvf/rHfnh2Zq7KUrWFv4Ef940I4A2x5jUVXO9Gm50Au3Xzg61VeLk+RIF0VCoem7YMqs7Ede4YyaGrCmdnK1xcqoXsJp9j03Ig0LQ9VFUlGdXIxDQe3NbJ0ekKXakITUsGM6tCYHoBfekIPakof+exnXSlovzzL59lMB+nGnqin5ypsLc/TYBsSqmKIBeXirFfeGCMk2G48eHhHIqQRWMQBK+5SYnqKp++b4xPhTYaP4xNzdv4y0XTdvnyyXlcL+CJA31k4jobOYdlYyqm42O5PoYq2Nad5NRchUxMBh7fOZajPxvn5+4Z4Y9emsJyfY5NlXnf/l4uLtY5N+9zZbnBO/d0853zy1wrNIhXTBq2yzPHZM0SN1QyMZ1P3z9GMqKRjur8xG39LFRNDg5mWKyYsnbQZP5MuelwcqZMfzZGZzLCL79j27rXfHy6zHNXCpRbNumYVH31Z6N84DVyYpZrFpcW63h+wJdOzMmmVRCEIclRorrKHSM5rizXmSxIO8Ojk0UuhyHUlrtKAoniegGvTpVQhaxp/vo7tzOQjfHspWUuLdZoWtLCWBGS2Ww7/k1KpHb2puWhCI/nrhRIRTUqLZtH9/TwyrXiDzygXrXbvRFXQsUp3LopPLuGPHRufnM7RF1VaLnSDjG6iUVdb1bn7NKtXy/ImsMOFbgTy/XXvgNsqkLKJbem8lmqSUJWAMyVG1u6j7uJyk4NGxym6zNbat7098WqSVRXUAnQBGwQafG6YLoeihAs1kz29qW5uFhjoeohCNAUsO0Az7cxVIUAOeho2F6oFJMs45+6Y4g/OTbDSxNFZktNlus2vudLe2FF1u9N22WpavLMhWV60lE6kgafvGeYz74wxTdOL1Ko2zy4o4ty02axajHeJZXRf/jSNEenSuzoTvLwrm5my02urTSJ6iq/+OAYTxzsQ1cVpotNXN+nKxVhtCPBocEsAI/u7mG+YlJpObw6XeZn7h6iK8wMqZoOp0Jl/cvXSuuGYC9MFDg7V+X2kRxPHOyj3HS4bSjLyZkyXz+9gB8EDOXj7WHbjzKWqiZ//Mo0QQD3butgvDPB7784xbGpEn4g86P39af59P1jXFtp8L1LKxQbNj3pCDt6ktRM2WA/O1/h8lINBTg4lGWm1GKy0Gifg6broSqyweR4YR6xIjZnIL2JUJBs8Pu3d3P7aJZK06FmeQgh8JDfpZW6zb3bOvi1h7e94bol+aMf9fM21uDaSp3smv+vluremzQAE0AmpmG7fltZNJCN8muPbGelZvGbT12kYnpENIW+bBTT8bhtKMtCxcQPAv6nh7YxVzGZKjZ59+5upssmNdPhzJxcL+/b3skju7t59tIKA2FONsCfHp2h2LBRwsyviKa0Lf0+ec8I+/rT9KSjG2angmyEb+tOcmWpzp6+mwfC79nXQ2860ibG/WWR3db2W0Y2iA3ZCKbjs1hpoqtqqLaQtVQttKHuy6R5YHsnigJJQ+NLxyXZ9MpSncGcrFcjutJ2+olHNC4tycgQQ1P46JFBJgsNtDDz8I3C9WT9251ar6ra25fm+HR53efy4kSBM3NVjozkXvfefy2+fHKe6aK0gvuFB8Yotxy+fnqBuKHyxMG+dVbXCxWTz4Xrxn3bOtr9xyvL9bZ7wcnZCtWWQ7Xl8J59vXTfoPhf7ZHZYYbom7ldvLbS4OkLS6EluOwFLFZNDFWh3LLZpiV45tIy08Vmu2YBWGlu3e1IDkhkbSfr+Dc2PFvbQ9SEFH8ZukpW16iYNpbr07BcnrtSYLQzQW86Qiauc35BXgdiulR/SeW73KP5oZONpgjqlofrtehMGgx3JPj0fd1k4wY7NyF7vO9AH8H+W+/3bfe6navt+nz+2DRfOSVdPCKawqmZMg1bknavLNVJRtR1/cNG6HawSpRczQiLGyqJiIppezRsDxFcJ9+5gI58XatqKFUFCNqkBVUIxrsSPH1hGccLWKqZxHXpECbCciMV0RjIxNjWneCLx+c4v1DF9Tx0obSJ6TJ3UaFh+3QmdOZKTUprnLAiGiQNSc6qthxsL0ARKneMZJktt1iu2wzn40wVmniej48kOd45lue7l5ZpWg1JuBDyPcshXkCMgLtH87hBwMnpEidmKthuQM10WKkrxHQNQ1fpTEXIxw36szEuLtakuMT3UVSFbFwnqmscGMzg+wF/45H10TFv462J1xyCBUHwj4QQq0Opnwd+Swjxx8B/DYLgyi3uZwLmmgvCOHAy/Pk48G7kECwvhPgucA45bFOAVhAENeBFIcS/fCNvbBUrdYtKy2G8M8FQPr5hVtit4HgBcxXJ3FismqE8Ww4Uyi2bwax8vBvthb52SorbHj/QRzKisVAxefLcIi9MFFmpW8yUmiQiKp8ImSP3be/knvGONnNzJtysD+bi/NdP3cHxqTJu6FN4frHG5cU6o51xqdjxfaZLLUpNmz19GbpSBiAQQk7A5ysmdctFD6fzq76z6ajGQC5BLq5zYqZMJm7QnYlhOR5Vs7ZOEaKrodVZIJsKuiozse4a7eCpC8t4vry4v54BiBOyom8byobhh+KWbMJCXeacLNdMLi9WOTNX48BghkxMR1dlU9pxfRzgWqFBRNfoSOjEDIVUVEfXFD64t5+rK02W69KLNwjA0BUCP6AVgAjkAmto0n+8LQPWtjYQArnI7+pJkojozJZbJAwFy5EX9BvrO01cLwYUoZBJGjRcj1bI/PCC9cxw64YOjeUGzJWaOD5EVJnX8GuPbKdhecyWmyxVLfozMd69t4cP3zaA7fk8eW6Rg0NZbhvM3sQUzsR17tv2+phSD+3sIhXVGMhG+T++dl6yaV4n1PAYhGpnYrpCR8Kg6XgkBNRtaWXn+QFRTTaPxjoT1E2ZC1aoW0yXWvRnY1ieZIcYqqDlSEXOcD5OzXRJRNR2k8JyfU7OViTDBGkFdCsWz414fqJAy/Z4YaLAXaP5H+vwzNOzFUw3IBChYusH7LFspGj0vPX/30gZBvL6cmOBq6pKGHAqix9DU9jeneSffGAvx6YrXFio4QcCVZWF1lzZpFC32dmTJBnVWKia5OIKr85UuHs0L9n4msJXTy2gqXJD5/jye7+6R3xkVzcJQ2WhahINh7wdSWkz+08/uJejk2XyCQMh4I9enmGlZhE1VCzX5/6Qbfh6GkNvD7/eujg1U+HJs4v4QUBXKsK79/ZsuHtVhCCqy2vUStPm2GSJ24ZyPHNhCQR8/dQCSUPnsb09fP/yCi3b5cUwi6vctCm3HK6uNFiqWeQTBo7n05mSw+DnLq9wZr5Kd0oOatdan3anIxydLDFVaPLhIwMcGcnTk47w7KUV6pbbVme7ns+1QoOuVJRMaBNhhov+YC5OEEiV4+MH+tYFmU8Vmuia9HVXFMFANiYtbVMRnru8IhW/TYfbhrOcmK7w7r1y4//8RIEXJ4ooQvrLRzRVqs+ArmSEjoTB7aM55sotXpgokIiolJo2l5dqZGI627uT7OpJcXGxJtelVVWTKogKMDeZePgB4Mm1N6qplBr2TVa6a7HVb+5mtj7T5ZuHMxtBV68vkqvNu41gho0FHyg2HfLJm583om5NYVVZY129UttajlhPeuMhWMK4fqRuVVFV11gbLlW3lpHYkdi4Oflfnr1CMzxHv31++aa/7+5Nc9dYnt50hO9fLjBb2dp73AgqqzWa9AsY64xLK6jwN46/qmQO6EzqRHWVdEzj9EwVQYCuKWRiOp87OtPOXSo27TaZQhEBvi+z5WK6zF6rmi6VlsMhPYPjBdjuddWZ5Xr8wUvTFOoWA7kYO3tSLFRbVFsOc+UWV1fqbcW+E7L3Vy3tlusWuirY3Zvm3Xt72vVNzFAZ65C1lx8EbUIWyAboYC7GTKnFrjXfF98PeGGiQBDI7/SvPnR9kP7CRCFUZZi8d1/vLVnwPyqw1jSzrud2Bfhh9obrBaHKz+eFiQItxyOfMPilB8eZq7T4L89eZaVuMVloUGm52K7L9u4Uu3pSTCzVaTqyuRUE4ONjKAoNS2ZI//DHX2sgBC3XQ6CQTRhs647Ql42yqyfFzp4027pko/H3Xpjk7rGON2Qj/maR5t7GXwzMN/CB3eguEdUk+atueeuysFUB453SYu/BHV1888w8TcdntCNBfzbGY/t6OTiY5fPHppkqtbhtKMtP3TmEpiicmasy2hlnMBdnzxrb3sGOBMWGzcRKA88PGOtM0JeJcXgot27PtmorFtUUfunB8VD9LP8e1VXu3cK++IOH+tt5jDciFdV5YEfX6ztwPwSs7bf81rfPb+k+PiBFMj6jnQlcL2AgFycIApJRjXRM52fvGcHxfL55ZpEgCLi4UKMS1qNV02FbV5JHdndz21CWu0bz7OhJ0rI9etIx3h2SmpdrFmfnq+sylFcxWWjIqJJb2OU+eW6Jc/PSfekz94+1Myof2d3dtlkEaXX2/Op6dKXwAw3BVs+bVWehUzMVlkMSz9WV9RbBlutdXzfWnPhDuTiJiIrjBRiqwv94fpKXJ0v8ky+d4X9+5zb+P+/a1T4X33+wj3PzNbZ1J970nsPL14qUmrIvd+doB5oq6EganJiu0J02WK7aCGTek9iKj+EGWMtz93xwCbZkibgWN/YngkAOtVJRnWxcp2I6OF6Ai3SCSUd1Ht7Vw0LV5OxcTVr4+QHpqI7pBsR0Fd8P0FSI62qobhIcHMoAUnxwZbnBX7u3a1O134WFGi9eLbAtzJ/fCEP5OO/Z10vVdDg8nOV3v1+j2nJYrpmkYzpW6L4VBPI6u3ZgLQizh4Prx1ASclXycZ2q7eH4ATFd9kJtT9YfAuhIRYjpklBeNWWfIxXRWGlI6/oDAxn6Mtf3CI4HLeEjFPlasnGdR3d38+juHr55dpFjU2VMxycW0cgnDBqWtOGOOp7MZMOn1HTwguufrSIgFzcY60wyV2qyXJcfogh8HtjexZXlOs9cWLpuyR268ByfLnFmvsLdY3lalsdK3cLQZNbXqmMKCN69t4c/eHkaz5fXbUUJyCUi3LetkxMzZWzHw9IU3rWnhzvH8vzrb5xnptxCURSEkEKZuK6wXDVxPb89cHwbb21saRccBEEghFgAFpCD5RzwJ0KIbwVB8OtbfK4LwEeBfw+8M3wMgAeCICgKIf4h8MvAnyKtF1fxhnli5abNH7w4hesH3DWW3/TCdCtkYjofPTLAF47NMZSPMZiL8/3LK3Snoziez8/cPcJgPrZONXN+vtq2mzs/X+WO0TxHJ0ss1yy5UPoBmZhOLiYt21YvPqsL2uWlOn9+Yg6ADxzqY3t3iiNhUfDvv3OZZugJ/L+8bzcCwe+9cI2l+gKaqtCwXR7s7WSkI9G24PB9eSFCURhIRRjpiKMpKg1b5mnZns/tI3lSUY25cgtVkQojIQSm7eL40JXQmK+67Qu0oSkMdSSIGTJrwfFCNoa4tZ3PWqiSjiDtGzcoetai3LSpmy7n56us1G25YQ8CCnWTv/HIdmbLLX7hd65SNaWFYSau07RcBrJRfvLOIaaKLaYKDb543GakI862rgSL1RbHpyv4QUCp6WAoQZuZm43pNG2HUsuT1iNewOHhDFeX6tRtr81k2fB9hU38/QNZYobKlaUamqZQbzo3MWakd66UNyc06XurAElDoW7LBSyiK/iev6EFihDXN5GWF6Cpgu5UlN07UvzRK9O4ns/27mR7+PtbT13Cdn1+77lrnBvL89DOrnbTo9Jy+OaZBQxN4T37etc1MW+FqK7Sn4nxuVemadpvjA54x2iOmmVzYaGBENImp2q67OtP8bHDA3zp1AK+D/OVJqbjM9aV4Lc/fRf/+uvn+drpBRQhyEQ1VmoWqiLY3pUkqit84s4hxrvlxjwT1/nFB8Z5/6E+Li022NaVwPfh9EwFQ1MYzMVYrJq4fsDAFjzIt3dJr/PxruSP9QDsybOLxA2VzqSOKgIsx6dpu9ielKYHwfqh1K0g3a5k9uCN9wnFjOtw4yBME7Lgslwfy5FMs5ihogk5IJ8ptzAdn0xM4396aDvnFup868wCQ/k4xYZNLqFTt1wE0kIzHdWI6hqR8LvVl5FD0gfG8uzpSxPTNZ6/skyx6ZKN69wxmmtvsh7Y0cldY3nqlsup2Qr3jndg6ArZmM65uRpHhnPEDJWJ5TpBANOlJrm4wUtXi9w+ktvy9+dtvPWx2gyQa02ocrlhoczGZF5oPmmwWLGoNh2ePLvIfds7+OTdw8xXLUzH45mLS/RkIpKpGYRWoX5ALmGQjettK5r37OuhEnrP64pgoWqRiuikIhpPHOhDCMHnXpnG0GSD9VtnF+lJRxnKx3lgh6yVtndLe9BXp8t89oXJdkj5bNnkw4f7ec++Xu4YlaVcRFe4bTAjmXpr6qEXrxb4ysl5rizVmCubjHUl+EdP7GW8K8kn7x5GFdIe+YxVQRGCsTW2iFOFJqdmy6SiOv/fxwb50OEBjk+VyScNSg2bU7MVHtvbzZeOL7C3L8VMscWlpRq/9e1LvDpTkUOy4RyfCO2Rp4tNbNejMxmhbrrYrnfTIL5traIKOhIRHt3Tw5GRLJeW5MBgozryVjlea7FcsWHw5t8P57emkLpztJMnz0v51kO3CN/uSkWYL0tFX9cmQ4Wd/Wm+dq7wms9520iO84tSAXbn2M12gquI6wpNx0cVkIhu/Jyqcv28uNUxSxoay6FVY88tss/WomG6dG7Qgx/vun4+6Rus00P5OB8+PMAzF5d5ZbK0KTljI6hCni+ra50H4AcoyIHhN88uYrs+ash+Xn12QxE8vr+XfMLgxYkinSkDTQgODmXpy8Sw3QYCSEY1mrYmM3SF/F6pAvIxDaEoZKI66ZhORFO4bThHOsy9q5kuC1UT1wuYKTU5M1fhWiHCQKjmHOv0WK7ZXFyscftwnsFcnJF8nKgur0H7+tNy3yDgXXt6bsoqeWBHJ7FQUbp2sKsogo/fMYTj+Tc5CTQsaRv13v29636/vTvJiekKD+3quilHZzO4ns83zy5SbTm8a2/POpvVvwgM5eMcHspSMx2EgGcuLrN/IMN4Z4KooaIKwfbuJNm4wbbuJMenyox2xPnvz0/y/SsrVFsyC3qm1KTclO4bgzmPPX0p9vSl+I1vXaRpy9B4BYEqZFPsDfYd3xDiEZVMVGe+3OKp84sMdcSppFweP9CHqgg+cKiPy8t1jl0rUajbvDBReENDsHzix7d2/quI2Na4E20IpLLCWdO5DgLZwOxORdAUQalpk4npPLC9k7/3nt2k4zLbekdPii8en0VTlfaebN9AmqgxQjamk09E2nuv1ZplI+QTBr/84Lh0sQlvf+Oe7SduG+DCYo1dPakfaD/3o74XXNtvEWLr5N4AuS+P6Rr/4IO7MN2AgWyUVydLCEWQjxuUWzb3bZPqpsFcnP/+/DV60hGWaxbjnQmaYWN5W3eSv/PunZSbDneP54mEji8A37+8wu3D6weUJ2fKfPvcEkLAx+8Y2nR/vmoX7Xg+ju8TW9M+VNc8nhCCbV1JLi/VN43f2Cred6CPU7MVxjoSGJpCMqLRclw6k5F1gwWAkY4Ej+7ppm663D56vZZa7U34gcyxPzZdbvfafveFST553zj5cA3uSEZ4YMcPZ73b3p1kptSiMxXh7vE8uqpwz3gHtivJHEcnS3SnIwwsRUISsH/dqSjEVtYoJaybVjlor3V7QwkJ4YRWfqy3GXeRxKCG1aRUV7C86xbvTdtjb3+a9+zv4epKg6lCEwhIRTUWqxbpqEYurvPlU3O4Hox1JUhHdWxX9s5UIUJCfIDlesyUHAxNuUkR+vyVFUpNh0K92O4N3IhVEmG15bC9O0kurjFVbNKwJJEpqqlowsXyQmeKsGaMaAJdVfGCgJh63b0qoioIReAEAVFVIRPVyCci3D2a5/hMiasrDTzPx3F9upIRKi0HIQS6qnDftk4uLdVIRTX+3nt38vLVEr0ZSUZShYKCvG73Z6IYukpEV9FUQSYUUDRsl46EzlAmyquzVWqmtJEPfJ+EoRD4oGuCUtNBEYLeTJREKAjRVKUtAIgaGsemSrw8WaLatHHW9FYDoOVKm/DLyw1c3yeqqxwezpKJGxy9VqRqytfxymSR3nSUF68W0FVBOhbhgwf7+dvv3sE//MJpVuo2QQAvXivyyJ4ejgznKDVkFm13OsKvPDjOP/3yWaaLUqDyxRMz7Onf+xpn5tv4ccdrljNCiL8JfApYAf4L8PeCIHCEXD0vAVsaggVBcFwIcVoI8R3gNLAY/r4Y3uQLwN8On2PtTmjD/agQ4peRQzOGh4c3fM5WOO0HKdtexbWVBss1k+W6RT5u4AcwlI8BgmREZbbcIpeItBfa+7d3cXg4x3ylRUxXGetMcHGxFmZ46Tdt9mzP59x8lY6EgUB69491Jri0JNkbJ6ZdWo7PQtVs++ivxdqA79oNqprxzgR/9Mo0MV3lC8dm+cRdw3zm/jF2dCf5/Ren6MtEiWgKD+3s4gvHZuhJRbAcj52pCDtDdVIiovGuPd189+IKDdvlPft6sV1pJ9iTjvDUuSUalsfp2UrbNnCp7mFokg2kCOlNO7nSYLnSbNsgbLVRvgp/i7YnVdPhyrK0TVqqWdQtKcHvz8bY2ZOmMxVhqlhvHzfHl8fNUKTU/okD/bx0rcjTF5Y4v1BjOB8nFdU4PVulUDexXYgZCrquYDs+LdfHbzoy4FL46EpAMqLSk4wwU2ji+147F0xw/QRd/X9U18jFDaaKDYp1m6rpynNxg/mQokDK0Gi5PhFNUKhZNG0PXVMYzEVpWB4RTaAqgkLdxvICDE0QURVA4HoejZAZrgBdCYPhjhi5hMEvPjCGHw4sQaoi8wmDieUGluuzVLV4YaLIx26X5+CpmUp7ePt6VVFfPD7LK9dKiDfA6hHAsekyCqBrCl7Ioq2ZLtPFBiXT47/8tTtZqln8oz87RbnlcM94B7qq0J+N8cFDfSxVpeJzuW7TnYpQatrEdJVvnVvk5/OJ9jFQFEF/Jk5/Rr7nM3MVsnGD3b1J/vzEHM9eWmGsM8GHjwy8Zsj7u/b28MCOTiKvQyX4owbHC3jlWpGpohwu+gHS7kJRSemCmvn6rE4tD5RwqLsR1p4bPnK4vtK4/hw9mQgHB7Ks1CzOLdYIgiDM+wo4M1dlvDPOUs1iuWbzey9cY7QjQTZuULdc3rW3B1URvDpVYrZkEtUUDo/k8APIxXV0XeEnbx/i62cWePriMl85Nc9Usdn2ZH//oT5uH84xVWiSS0iW/rfPLdKwPd69p4dMXOf5KwX+7bcv0bBc9vanGcrF6UlHeXBHJ4am0LRdBkIv77fxNlZhqAqL1WaoZJWboxuHpDu6U+zuTRMNM5w+/+osNcvl2FSZB3d0ogjZDDg6KQv/9+7rZTAnB7zn5mvkkwbv3dcrM+7ixrrwdoAP3dbPtUKT24ayLNUs/vDlabyQkDNbamG5PjOlJsMd12sSIWRu1vcurQDStsXxfMpNJ7QYznB8uozr+7xrTw+KoqxT+JiOxxdfneXiYp0LizUiquDCQp1y024//uP7+3jxapG7R/PcNZYnviYDygvZmlFdJWaopGM69+/o5LMvTPLZF66RiuoUGzYP7+riq6c8EDJ/51jdwvECTNtjOB/ne5cLrNStdvZAMWRArl271268Vn/3tx7dwWP7e/njV6TSc7lmcShkDatc34hvErt1E7qyGw90otGtZSDdsy3Py9eKKEK0MwU3wqqtrcxD3PjFJY3rz3mry5XjSda4EGA7m68Gqxa2XgDOJn65kuEtDSSyt+imNtZkny3Wrc1f3BqsNFuMcHNDK25cf57EJplkx6bKLFat0CkBtsrl8YLrg60b17ay6VE1vbZ9blSHwJcZfH2ZGDFdZWd3is++OEXD8uhJR/ilB8dpWC5z5Ram4/GOnV28MFHA8QM0IaR6MqmTS0g1TsxQWa5ZZGI6+/rT/NHL00wWmm1Fct10aFguLdsjGdGIGxq/8tA2vn56ns++MMXZuSqjHQn2D2QYzF1v2I13JTg3XyNmSMuxGxHVVe4ayzNXbtGyvZsaPrqqsFAxeebiEt2pKDt7ksR0hT29qZvWxnfu7uG+bZ2cnq3wBy9Ncedoju3dtx6mTBabXAgtRI9NlnhsX+8tb/9GIRs24qYh22ShwfGZMrbrUzUdOhIR/CDgr4WWxquYK7c4OJDh3vEOSg2bf/2NC7Rsj0REWqc1bY+J5Tqlhs1Mscl/f36SVFRnvCvBYtVittjCQ6rtVgeur4WYLtoB8luFocqBbsuVzzGUi3JgKMPLV8vMVUyuLDe4sFjj4GCGb51d4L37+xjvSjLakaDccJgtt9aRF14PFPE6pypv4y8Vpgs37gxv3AuvRTamEdUVSk2HgABNVYnrKhFN5V17u5grWyQjKks1i519mfYADOSw+ZffsQ1FXCfWPHtphaOTJQxN4a/dO0Jqzdo5XWySjupk4jpHJ0tcXKxxx0iOHVsYbPVmonSnIsyUWtRMZ93jvlXx8K5unjy/sunfBbKvkIiq2K7MZa5bLleWm5iOyxdeneHKUp2RfJxTM3IvPd6V4IOH+pkqNtjVmyIT00lGNe4a7VhHdj4Y2uuuYqwzIdV8HQnZn6jJjGRNVdoZiUHALRUaj+7p4dhUiYFsrJ0HtBnef7APy/U3JSuu1C2eOr9ENqaHte3G508+YfDQTqnwm1iu873LKxiqykM7u8nEdFq2t+693Pi+Z8stFipNjk2WGczG8IKAuC6oWvIafnAge0vV/w+KSkuS7aK6yrv39rCnL42hKvhBwNdPL1AzHd61p4e7xvIIIY//TLGJ7cpBU2dCEtJWh1Sb9X8UpJNBVJfDHFXIfPHVvuGqy+9G1xJdFUQUJYz52Ly/4AVQtfz28yvIWJJffnCciKayuzfN33vPLuYqzTA/3GYoH2eu3OK5iSItx6NlS7We5/vMFFv89Ue2M7HSoDMZYalm8a2ziwgBP3nH0DoC0EAuxoWFGr2ZKAuVJn3Z+E3n1o11y5n5Klb4vfLcAMt16Uxq6K4kdfnIHN2xriQrdQvL9dnRGcdDYb4iFf26qtCZjHD7cJYHd3YT0xVevFrCdH2qpttWg9Utl1xMJxPT2NefIRFVeXh3N+moxj/+4lkalktnIkLC0Cg0bFIRjYimkkvolFsOCxWTF68WsRwPTZX7vKWazUJF5ns5no+mKqTjOgKpRPP8gO4wFzVmKPg+pGIanuvRl4sRBAFDuRhn5qu0bO8mVfjqoExXBU3bpdx0cP2As3MVPn7HEPvuHZF7s4bNn5+c5+6xPNmoEWbCgaELvnhijsPDWWbLTaYKLQp1m//83SucX6iiKPDY3m4+fscwz08U0EKykeP5rNQ3z1x+G28dbOXK2gl8JAiCybW/DILAF0K8//U8WRAE/wz4Z0KIfwp8TQhhACIIAgu4H7gSBEFTCBETQiSRmWBnN3ms/wT8J4A77rhjw4q/LxPjkd3dFBsWd49JdsrRySL/8ZkrnJgqY7oyAK8nHUVVBA/v6mam1KTQsBnKxfmZu4c5HAZpf/PMIldXGmTjOp++b5QT02UWqiZfOjnPz90zsu55z85V2dGTZLLQ4OmLS7w8WeTT943yK+/YhqbAb33nMrYrJbobSbtlwLVsDN8YmvqefT2cX6gBAdUwGF0IQUcyQmcyQqHhtJtf79zTQzIqBzL7BzIoYUMLpIS2KyWZAWOd6xsH1woyP+HKUl2GWEPIQJBMgHRUYanmYJkuTfs6y+v1MhS3MgRrWC6ffWESy/Hpy0gLpnRUJxFRed+Bfu7fLoche/qy5BIG5abdZsvano/peHz30jL7BjK8OlUmqst8FF0RlJvXPYBX7U2CQDaQfN/DcqXiSxGhBZuuooY5DhCyUpALrarK1LVUVENTBN1pg1MzVWqmi+36aELgigAluHlxD4QgEzOkDWXYpPMcn2zCIB0NuLxUxwtAEwE9SR3bk7Y5thtQs64fdR/pJ/2fvzvBZ+4fX9fMnC23Qi/qgMf29XBmrkq56TC65jZD+RjHpuTA7VaWAxthpW6TjKosVgWqEqxjBr0WpHowwEeQNVRqltteDKumx6XFGn/8yjT5hPTyTUY0doRNksf393FypsyLEwWuFZpUWg6piIbp+DQsj4WqheP57SHYjXjm4jKW4/PnJ2ttG6H5ikm1tTUp9A9b7eO6Psdnyox1Jn4oNkGaIri60uDiQg3PD/CDIMzREtRteW6tLSgD1jeJN/rOb/TRZ6IqrudLiX54TdEVSMUMCmuGYJ4fYLo+FdNFFQIUQRDIorTleEwWWzRsj5iucHSyxK6eFI2GQ6Euc08gIB3TeceOTt61r4ePHRni0lKd6WKTIyM5ZkpNFitmO2MjCKTN2l3jee4e7+A755c4Pl0mqqvcv70jvNbCsakSj+zuptJyQusjOTQ+P1/F9eEz94/x1x/ZTsNyienq29aGb2Md/vEXT1E15Tfjf/uzU3zwtoGbLT2AhZqJrigoiiAV1aWtlufxT//8LIqQzeXVXIUAacN837ZO/u23L6IpCi9eLdyU2bWKj94+yKtTZU7OlLm4WEMIwWShwb3bOjgykiW/YtCVjtB/w7VfUwQDuRizpRbv3N3NUs1iutikOx1hsWpyeUmqhE7NVG4KHbccn2zcwHQ84rqCqijs6klxaOj6ACcdk7bB1ZZD1XL54JossYFcjCvLBiMdiXZT45mLy/zZqzMsVuWga7Em1bs7exK8dNVmpW5jKAquJ0lQhbrNfEU261fheAExbfWKdvO1TFNgpCPOI3t6iGgqox1xVmoW3WlpK8INt98qoXozO8G1A6lbXTkWKhaKIhBCMFvefDhUaNoESLvHpUqLdOzmhtBaVdat+oNzpRZu6CZwK6vAtcej0LToy9/cFH9qjR1h+RZh6GtfT2yL2aR96Y3Z4XVr/ee+EUY64lxeqjOUj7NYNXk9NJ7VW0Y0adesqyIk34n283m+zPOSGR6CmuXyp6/Ocm6+gqYI8gmd5ZrFv/z6ebZ3JVkJyVNn5qr84oNjfP9ygaWqRU9GZsr0Z2Pcs62D24aymI6HqggUIaibLjt6kjRsjw8c7Kdue9L5QVUY7Yhzx2iOUtPGcnzGOhPUTIfJQpM/PTbDoaEM79zdA8D27hS/8lAcVRGbZsN+5eQ8V1ca5OI6n7pvFMv1Wa5Z9GdjqIrghYkCc2WTubLJeFeCTNyg2nIY6bj5vFCE4Nlw0P610wv81J36ptk7IJWOcUOl5Xjr6tw3E+fmq3z99MKG6oNqS1qpa4ogEQ5Zb3xfp2YqPHluEUUIfvquIXIJgz29Muv5jtE8P3v3MM9dKfB7z0/i+QEN26XSdCg3bRRFoW457SF7wMZZdRvFg3meDJu3XwcrUVWkRb5Ts8JGpFR2qAo0bdkozicMsnFjXW2sKIKP3T5Iy/FIRN5YozaXeOsPG95K2GxrN5wziEcjlBo2mbjOQDbOWGeMxarNfMWkLxOga4KP3z7IdEnW4J+4c5hUVONfff28dCI5vcCu3hT3r7EevHHvttr3sF2Ze706rHphosDzV6QK4KfvGua7F+Va88zFZXbcwsp4LZ6+uMSJ6QoxQ+XT942+5d0cOm9xjQW5pmmKYEd3kpmSie35dCYNvnZ6jkLdlo3rsMmejkmlUtV0eebiMn9ydBaBtBv+xQfHXnNP9O69Pdy/vZOopvC7z0/KGJOuBD9x2wC3j+aww0zEgWyUlZAY05mMcG6+yqmZCvsHMuztT/PILRTyayFC6/HN8Mq1IrOlFrOlFjt7UoxuYchfDYd1qiJo2C6+H/AHL02tey9rcWK6zOdfneYLR2fbKnpNEZiu/Pnde7r495+8c52K7c3G8ekyU0Vpxz3WmWBvvyT/Tiw12rmzRydLvGuvrIVfuVbixGwFe9W6jwBVVfDCps9mNomaAgLp8COEJF6sve1q1EpEU2TWVXD9YVpOQD6pkjAMFirmhk4zcN0ycLWvpyqwszclo2SQvb3feW6CF6+WSEc1Hj/Qx67eFONdCWbLLc4vVInrKk9fWGam1ETXKjywvYMP3CbtG75/WdYoQbBeoOD7ARPLDa4WGpyaqzCx3OD20dxNpJgb6xbLy/OHL820/x4g19ueZBTPl5mIEV3jfQd6efLcEit1i2hEZ6Vmk4jIWIiBbIyBXIxfeXg7fZkYnh9wtSCHfOmYdBGwPZkL5gUB7z84wN3jec7NV1GE4E+PzjJbbmF7PhFNwfFk5IgiXA4MZJgqtaSoQLUpNx1296aoW274Ocrc86gmGTqqgHREJxbR8HzpQlAxPRzXJ66rBIrHcDrJ2bkqA7k4PWmDo5NllqsWdljIqEBEl3T6ZERj/0Ca2VIL0/VxfBs/kH3Bb5xZZHdvmkREY6Uu931HJ8vkkzqJqLQWnSm1eOr8MneMZDk8nKMrHGSematSaNioAk7NVunPrmA6HqXW9cHX5EoD0/He8mvAX3VsJRPsH9/ib+c2+5sQQge+BhwCvhHaHf4rJHn220EQvCiE6EEOw+pACfhkePd/AXwLMJEqtDeMG71+Sw2HuulRt93QVzVoBzOajkcl3Ny0HI9y8/oXohQyl6stF9eXkmVFCM7OVviTV6a5d3tne5M0FOYPxQ0NRQhatmQXrFqKfPjwIOcXauwf2FhpoqnKTc2kVSiKwocPD3B+oca+/uv3LzcdOpIROpIRRNhGycR03r23l+WaZBBk1jRCKk2HP3hpGtv1eXBH5zqGzv3bO1GF4MRMialiA8uTF7e4IQMKLcfju5dWcH3JEB7IRJkutdp2fYKbgys3fJ/a9dOvUJc2djcGqjdtDyuciHSlo/w/P3UbJ2cqHBnOrdv8pmM63/m7D3N2vsJ/ePoKZ+equH7A9pABtq0rya89so2nLyxxZanOs5cLRHSFeCSCaUtLpHrIvNAUydy3HBlQqSjQm4lxYrpCKqJSXMMU1gX0ZmNYrhdmNggcz+PotTJV0yGmq8R0uainIyqeH1APD5QiIGFoZBMRTNsFVBSctm3c+bka6agqB4wBCEW0LRLdwF8/kUBKxjVVodhwKLdshrl+fMpNu+2d6/nwc/eMrNtAgNzEr3qhv94L/5HhLH4g5dkBsiCoWVuchAXyXFGVgGTI4psuypyzdFRnpW7xzMVl+jNR+rMxetLRtu1KbyZKV0oOhu8ezxPVVO4Zz/PNs4sUGzYfPNR/y835UE42v3b2JGU2gxdw+/APFpT7ZuI3nrzI0ckSqajGv/mpwyTfZEaYENJGZLokm9A9GYPLSw0sxyce0bAcF9sHVQSoQuAFMpNklQF/q694VBV0piI0bZdSUw66VCFt01QhN1d3juSpmm5bmeH6AVPFJilDJaIpVC2HhK6QihqUmha264WZZQGdyQifuneUC0s1mo7Lufkqxbq0jdrWleCJA/0ESHZo0/HQVNloOzlbQVelh7S61ODQYIZ3hEy+1eu86XikohoRXcF2/TZL/oEdnRQbFlOFJpm4wdMXlkhFtfbG/I02gt7GWxtrWWWNcPFQbmgKnJguowjB/oE0d411MtIR58pSjZPTVWxX3j+fiHBoMMsju7s5MJhpD4ZGOhLMllrrlOWm4/Gd80sEwDt3dxPV1XaO4XzZxPF98gmDHd0p7tvWwX/53lXqpsNzVwrrLP+EEHzsyCB12yUV0RBCULdcoppCsWljXFXayuwbsVy3UEMFy73bOsjEdX71wW3rNvWu77eZvoW6xTfPLGC5PkeGs5yZqxLRFPb0pdrNMEFAPKLRk44ykIvRlYzw/csrVFou6ZiGrsUxbY/xhEFn0qBmuW2bN9cPMB1f2ql4stHgBzc39u4azfPPP3SAZPh9fnBHF4eGsiQMrf3a46FlMUAqunEG1o2IbjJQWNvw38BFpY1smEcgCMhtkk0g/34dqU0UV71rFD63sibc3pPg1ekyimDL1kExfePn3LumZo3eQn4mgusvyL+Fv/baNWizmiWxRgmm3/CcE8t1Xp0qs7MnxU/fNcRkoY6i3Gi2szlWn1/WvILubJSIKu14RGgtHASB3AOE9r4EksDWl4ni+ILbh3PMlFsIIXMlmpZLRzJCVFewXI/BfIJ/8oFeXpgocK3YYLbUQlWEtEi84X0/cbCPi4t1Dg5m6M9Kpu292zpp2i73jncyVWzylZPzOJ7P4eEcvekIx6bKgNwbgWTAP3tpma5klPu3d2z63lfXSplp5fMHL01RbkqbvycO9jGUj3F1pUEqKr+rf+3eESzXb3+n1uLCQpW5cgsvCHC9gP/xwlTbCn4jpKM6P3//GI7n/9DW3NX3FwSyfl47BNvTl6LSkpkXd4/lsT3/JuXB6v39IKDScuhOR/n5B8awXB9VCP5/T19hsWryiw+M8dSFJb5ycg43CHD8gIG0ge9LItet8lkjof3Wcv16bp4iBGNdCa4s17esaAwCeV3UVAVdEVRMl6+elAPAwWyU+3d0MdohiVh3ja23rlcU8QN9Bj8OGXBv4zo2W54ats892zOUmja+D+/Y2cVHjwzyP16c5OJSDU0o3DaS52N3DGM6Xjs/FGB3b5JXrhVxPKl4vRUe3NGFQHBtpcGxSUlOi2hqW13ueAEtx6M/G2WubL6uHPjVa+Bqz+at2gBd7bekX8Pb0nIDfFVe/x7a2YUqYLQrwedemaFqOmiKQm86yl3jOd5/sJ/ZssnhoSynZmXEgO36dKUiGw7Ajk2VuLrc4K6xPEP5OELI64jt+u0Bw2oPLqLJ3smlpTpn5qqoqsy7//DhAZ46v4QdKsfW1hc/KAZzcc4v1IjpKp2prV2j9venqZkOQSAJ7KuONmvfy1qUmjYNy8fxAoIgwEOqxQVy+JtLRm8agHl+wGLVpDMZ2ZTc+3owkI1xfKqMpgp60tffZ1cqQlRXwxok1n69ANmozqJqttcNJwyp0lSBroh2ButaKIokBYUlEKuCPgXCoZgglzDIxHTiEY1q02Gy2GjfPhnm/d44AIsosjdYM1060zpKIJgsSuJWIqJx+0iuXXOcnCnz/csF5iomQ7lYu4YSSNtt2/N5/soKlZZNNNz7f/H4HHv6M2zvTnH7SA7b9YnoCjvW1MKO71NqyM+9ZXuyl9x0bsoHTEd1Pn77IFXLYbQjCQEcGc5xeblOqWERIHOzdvYlsWelBeNoR4KpgsxY3d6dZKFiMtop+2BN2+PIcJb37u8jGdYfqiL4xJ3D6Krg88dm0ZRmO6NuZ2+Gf/yBvaiKYDhUwH3jzDyeL8+/fFxntmzS9H0cX+X0nFSq+QQEyJ7LxYUaK3XZr1FFQCZhEASQVhQZJZMwGMzHubxYww+uZ+ZNlU26UhGuFZp0hL3wdt0irkdj6Jq0wa2F15dUREdRTBQhyMZ0LM/DtH1MV9bU411JCg0bTRHMlVt0p7MUGjadiQjXVhoowOUlSfYc60wS0VX6sxG+fnqRctPh3HyVhaqJrikyA1oXBIG0SDS2SMB7Gz+++KF17IIgcIB33fDrh2+4zSJwZIP7Pgk8+Uafe7bc4uWrRUY7Ezc1s+/Z1sFLVwtUW7aUfEY1Dgxk2NOXwfY8dEUgFMGBwSx3j18v9h/b18t3zi9RMx1Oz1Z4fH8ff/jyJNOllly4vYCfuVvaMj62t0dujMILaMv2KDXt9hBstDPxmqwS1/OlSsX1eXhX1zpLl43uf/tIjpbtEdGVdiD15aUa3zi9yHylRU86yifuGqYrXMy/c2GJUzMVhvNxVtZsoIIgoGm5PLizEz8ICPyAK8sNhAJ7e9N0pyNkYzrnw9DTXMIgoqs4/vXhVyqqApLt6t1iDjKxVA1fZ50vn5xDIPjYHYPrNptdqQgP7epiqWpyz3hHKLffuBGTiuncPd7JYsWUwd2WSyamUzMdig2b5ZrF5aUGl5fqFBsWcUPhwECWn75riP/1C6fx/ADb9RnIxojqCtcKDUxHFuWXFmuS1XtDQ0YogicO9OEHAVeW60wXW8xVnDCHTYTZRqGdiQKGppIWAl2FjngEVwiyUZWy72M669VHfhBgewHpiIbt+WiqkHYAtkc8ojLekaAcKpeCQHoc92diPL6/t73Ar55zu3vTFOo2K3WLPX0pNFUhtcEFfiMf49fCZKHBtUKDparNcD5B3fb4+B3D/F9fP0fZfO1B2OotgkCq996/t59XJgssVC00BWbKLVxPKpR+/b27CVg/bFAVwfsO9HJxsc6BgQxD+Tg7Q1uxiHbr9/PEgT6qpiM9oEN10I+SDcZCyLyvmS4103nTh2AAHzkySCamo6mCu0bz/MdnrlAzHVQEz15Zodq08ZGD3LVNlXVKiA3+7yOHWooQ7b97AWi+TzSqy0Ze0yEb06g2bVRVIWVozJZaaIos9lVF0HQCdvREScV0Sk2HhKHSkTDY0Z3g91+eZiAXxXF9yWR2fApNm+lii5lSEyEEp2YrOJ7PF47NcGGxRjqiYjqCl64WOTCQBSHaBIGHd3Xz4kSBvmyMsc4knwkbbavnRDKi4QcQ0VX6MhH+5qPbKTcc7t62cbNwqWby/JUCfZnYTc2jt/FXB7/5Mwf4hd89DsDff2w7IIPS1/YonZCUc2Gxxp1jHWzrSlJrufRkTORMIODvPbaLJ0KlVMv2WK5ZdKUifPTIIDXTWUd0OTNXbSsZu1MR7hjN05+Ncm2lyTt2dfHqVDm0tqmHYekAos2yXcWrUyUmC03uGsu3G72rm8ruVJTP3D+GFwRcW2nwZ6/OriOoPHV+EYQcpPlBwAcO9KPdsHGPaCrv2d/DxHKDuKHyatiUdz0f25Xq0W+cWURVBLeP5Llveye2J9WYR4az/J9fv0jNcjgynGFPX5qW7bGjN8n+gTT/+1fO07J9dJWQzdyiUGvRcDdWVkgmqbT+u3H4cmOTe6Qjzpl5qYLb07c50zyf0Cg2XDQB2/tuNJKSyK4ZaGm32HhFVFVmwXHrtdp1r6t4W/bGquZVWxaQQdibYX9/hi9pc2jq9dpyIxgKhBERpDZQngHr1tbMJrcBqaxfha5t3hRV1mRtuZtMC7oy0fYGO3HDMXvq/BI102Wy0GBiuc75+dqWc00VZL3rBrKJY7k+8+UWfZkI/dk43ekoHckIs6UWyzWTlu1yrdBCEQE7ulMcGcmzoyfJsxeXWaxaMgs2oqEqCju6EpQaUrEVVaUy9L7tndwbdPD8RIG66ZKKavzZq7McHs4S01X+03cnSEQ0fvWhcWLhfkEIwZ2jeVbqFpoqLbVBKkr39afZP5AhGzeYK7fa69NzVwpcW2lybaXJtu7ETbkmq3hsXy8npsvs6E4SIG2VAAoNef24fSTP9u4UMV1tN+s2UpW5ns+3zy/Rm4lSaljks3KPslK32X4LUr+hKW9KE3AzHBmWeypdVW6yxtZUZV0G0UbN8jtH81iuT9xQ2RbuWXRVQVcVvndpmWdCpYquLvDr791N3bQ5NVvD9TwMVT7HSD5OOqLIHGIvYKpktutlQ0A+rlNo2Oue1/QC5sstBjIxrhZbW3qvphsQBI5UKyoA0qZKEXBoKMffeGQ7uYT8XExH2nvdSqn3enC10HxTHudt/MVA3YAxoQjoTse5bTiHgrRNrrQc/CDgk/eMtnsMXakIjufzvUsrOJ7Pw7u6iRkq/dk427uTRDR1Qxu7uuViOR4dyQiZmE5n0uDiYo1z8zV6MzFuG8qGxGFJuBnMxfnY7UM31USvhUd2y/q/Pxu7KQfxrYK1/ZYrS5Vb3jZAqlyW6zbPXFxCVRWuFpqhI49GANi+z/n5Gj93T4T9A1kA7o/pOK6PEJJseCOatsvXTs2jqwpNx1vnpmRoCu/d39uuS1exunYVGjLGRNWlrfVqTbsRCesHwf6BDMMdcSLaa/cRVqGpCg/u6Fr3u43eyyruCvuEnutzcq5MV9IgYegcnSrJnOlCk6+dmufde3vadeGXT84xsdygKxXhkze4UL0RbO9O8gsPjqEp65VxmZjOz98/iuNJ4sqzl5apNG1GOuLs6E2SixvUbZdry/X2UEp4AbquklKEJHCseR7HXe8W1XaYEbLu2def4lce2kZPKsr3JwqcmCoTBAHLoTXfrp4Ur05XcDSf5hq7X1WBzlQEIaBYczA0VeYQhvuOxJr3VG457OxNEdEVDg/n2jbKFxfrvDhR4DvnF1mq2UR1gaGpDObi7O7LUAhrkaiu8sjum4uSiKby4SMDpGMafhDQnYpyZCR3k4VmqWHzBy9L8cE7d3dzcDDDrz48zpdPziOQ183eTJS4odGViqKH19rLy3Kfsbcvzc4e+fo/fe8YL14rcH6+xh++NM32ngTFusPhkRzz5RYvThRp2dJRJ26ojHYmeOJAb3uoun8gQyamkwmJ5/3pKDXLRVflsFJTZP8ypqt0JgwycZ0ryw0KDQvPkzEtEV0jHZXXgoODGearFmNhf7rSdFiuWdRNh6iuEA3ziRu2g64pHBnOkk8YfO6VaeyYjh+A7bjkEgbdKQNNEWzrTnL3WB7X81mq2wgCZssyh7VQs3nwgQ5myyaP7Ori2GRJOieFA93ZYgMPIR0/BCxVTSotl0xUZalqs68vzVSxyWy5xZWlOoamMJyLoQjoTUf5nx/dsakF6ug/+Mom36a38eOGtyRt/ekLSyxVLa6uNNjRnVzXME9GND55zyiGpnJ0ssju3rT0ML5tgN/+3lUSUZ3+bHSdJQ9ItoQI/UKfvrDMR44MoCoKqgJTxeZNzOls3MD3ZePeDwKePLfIL28yvNkIFxZrnJyRBUompm8Yxr4WUV3lXTcUG984s8DpuSqlhk1HMkKxYcvA9EqLqyt14hEV1/e5N2zgNm23bfuYTxh84s4hdFVp28nJXJCAo5NlOpIRdvQkWa7bLNdMNEU2GXpTEeIRjWuF5i0HYAAdoQ3GSl16ygYEFOrWTaGnR4Y3z77YCA/t6kHTZLPo4mKdhYrF9y6vcP+2DvSQbRL44IT2b5eWGgx3xFlp2GTjBk8c7KNYt1mu2wjhEtGkH7bjSZbm6mVREZLF+O59PRQbNqdmK1RaTmiXFKCpgnLTaduStELbmlRMJ26oCAHLZYtS3cZ0XVzvepGwyiw2NIV9/RlajkexYTNflptaQ1W4czzP0+eX8EJmTNWU1jdD+Ti//f1rBAE8squL20fz1Ew5mJssNPncKzP83L0jbxrLTW5wBLbnk0vojHcnee++Pv7Dd65Qs8zXVASqyGGirgp296bY1Zdivtri6kqTeMIgpqkIHUzH5fOvzvLhwwM3Pcb27tQ61vBWNz7KGvVhVFF/5Jh/n3lgjD85OsOBgTR9b3KRv4pEROODoU2D6/kM5OKUmw5z5SauD24g6EpFmCu3NrTfiWoKtw1mObtQwfXkdyrgesMroqsYmofp+tLSTZNSddcPePaytKP0gYjwWWnaoVVhaDXqB+iqQtV02dWTQgjBtUKDa4Um5xdrjOSlfUMmbjCQi3PUK1Jo2hiavG71ZWIYmsKFhSpn5qpAQKkZsLcvTUDAXFlahf35iTnuHs/TnYry+IG+6+9NX39OeKG9Gsjz/kOHBzc8pp4fUGraPHNhmZlSi4nlBtu6fjiWlm/jRx9/9PIcRrih+ca5Ar/0MNiudxOrejUweqVu8/SFCZq2Ry5u8KvvGOdjtw+RCIfgqzbBTdvj/u2d3DWWb1/HXM+n3HLoShmoisB0PM6GjL4PHOyn3JKMxRcnikwVGwRBwEeODPLAjk6WqlY72Bxk8+npC7JZ27BdfvbumzfdMUOuj0+eWyQIJFv05+8fA6SC+sL8EoUwj3K23GJkDYGn0nLQFMHu3jS7e9MsVU1OzVTwgoD9A2l60lF+74VrOF7AV08usL1bZky8Z5/8jl5equMjB+1N22e4I8FoR5zbR/I4nmxAX1io4YaD7HRMD5v0NxcnMV0Q1TRsz6NheXz+2Cx///Hdm36micj1NSZubL7edMYNmqZLPKK1Vfo34uWrxfbPDXvzwunicrVtTXh+vsb7Dmx8u7U2M5utv6u5mHCz5dRaPHlukbrlAz7fubjM3ds2qUXDJ5X/bPykxbrVJkQ0bzF5S8cMCO0e8/HNm+0KAi98o5up2c7MVNp1VfGGgUFfJkbNrJFLGBSuOdhbzKkFeQatroVr/12pOySjLqbTpG65CAT3bevkzGyFzmQUVYGfvHOER3Z3sVQx+WdfPosfEj7292dIRDQMTVrmLNUsfuPJi/wfHzlAKqojhHwsx/P599+5TBBAoWFjOR6nZuV+YWdPkicOXt+/fPXUPJeX6vSko3zkyAA1UzYhdodq+kND2XbOnTwmUa4s1Ykb6i3rqIFsbF2t/u69cpB9ZE1W3VbqMFWR9cVS1eKusU5SUQ3XD/7S1fhRXeXRPTc3cLeKmKFu2AAG6M/GSEQ0mrbLeJfMrH3Pvj6W6w6ev6qEsOVj7O9nqWYysVSn2HIxHVfayvamWK5uXF9XTY98IiCqgrnmaybZ27TzW9Zi1TU08OQNA4BAqvSOz1R4ZFc3puPx2RcmqZkud43l2daV5KVrRcY6EjdlUG4VS5WtZf69jR8N+BuQDeQ56PP4/l7+7NU5yk2H49MV/CDg0/eP8ZEjg1xcrHHbUJYLC7X2tSoT17lvWyfDHXF296XRFEFXen2NXGrY/P5LU9iuz2P7etjXn6EnHcXxfKm+DYm96ajOe/dfzwbcyFnmtZBPGOvq/7ci1vZblraQe5M0VBRF9jICIGlofOLOISqmw3OXC1xZrjFfbvHfvn+Vf/T+vYC8dr73Fsfx3HyNS4t1bM9vu7oAnF+ocnGxzuGhLO+74f4P7+7ipatFHtjRQaXpoiiwrz/DwcGsJJm/zs96K3itXLGtYFdvat17XIu4ofHYvt51mZb/5lsXOTNfpdJyODVX4ZtnFxjpuG5TuKrqKdTtNlH0B8VG6my4vv+dKjR55VoJgOF8jPu2dTFdbNKRNPijl6cotWrS6UWRpCs3uDkfbJWwtApljfrH8wMuLTf5/LFZig2bqWIL03Hl/kAVRHUFVRVs706gihQvTaywajSkqzJHfqVuo4iAuuVhaFJFTxCsI4ncOZrHdHwe29vLA9s720OOZETjxasFFqqmdJ4SGh850sPDO3tw/WBdfbQZbvU5r6LccrBD57HlmoUQgnfs7GZXb5qXrhZ5/EAfp2YqOL5U6ucTBpOFBt8+t0QiotKXjlCzPfoyMfJJo61cfWGiwDfOLpCKaFxarHOt2ODMXAXb9VEVwVhnnH0DGd55Qz2zUrc4MJgln4xwZDjLC1eLrNRtNNWnJx3lA4d6aVg+labF184s0rI9DFVBDXs7QfgYlutztdDECQk4qiLoy0QpNixajk9/Nkp3KkrTdrFcaYufjurULUkyCgKpajdUAz+QduKKIpguNinULVqOzLTtSaWpWR7VlnT8+fyxWQZzcVxfunromoISBBTr8nk1VUglGYKnLixRackoHNuT72+0I85s2QyJjwJFVRjtTHJgIMNzE0V23EB+ehtvPbwlh2DdqShLVRkWfWMIM8By3WSkI4Yi8ggh6EpFiekqqahGzXRvYrgtVEyOTpa4ttJgqtCgZnpUmhYRXeXAQIbdfWke3tXFpcVa24okn5A5GCt1i7rl3MQOsVyP711aQVUED2zvbLM8zi9UeflaiVrLptS0iRsq5+arYYC1zCt48WqRfX1p+nIxEobGAzs6adnSvkv6opakFUDJZLlmoQjY1Zts5zylojpRXWMoF2dvf5rvX14hE9M4Pl3hlckSHXGdlu1St1we2d3NqZkK06UmcUOl0nSkTFWV1pCaIohqKuNdSaKa4K6xTiK6wu98/yqet3mAJYCiygLjtqGszPJSFPb0/eAXnUxc530H+mhYbriYenSnpFXkp+8fw3F9HtjWye+9cI3FisnZ+QrpqM4HDvXx03cMs9KwwwFpEkNVScd0LizUmC9Lf1uQloldqQijHXHyCYOvnlqg2LBJRhR0TWOsM8FkoUG15aAKuSHe05tC1xSmii0MVaHYsPF8v81cWS0QjDBfzA+CMHTUotySDI2IprSP6TOhb/HqJtjxAy4s1Pj337nExcU6cUNjptTk3EKVxYrFRKHOUFY2vipNh6YmreWixg82/Nk/kGalbtGdkvL8PX1pig0b2/NfcwAGcOdojh09SeqWxwM7uhjOx+lJR9nRk2RPX4aOhMGlpRpn5iq8eLXAQC62Zd/vH3fsH8iwf+CNNRfeCDRV4SNHBijUbT73yhRNS/qaB4FsKNdMl86ERtP2aYa2YiMdMWK6KoNRFUFEKDQdH9vxsBRpoei40sYzCMC0PRRFep/ba9hhqqLywLYOjk6VqZkuIgjkeSkEvg/nF2rs7Emxs1uGxGq+oBqyz+8cyeEDHUmDdLQAQg73OpIRDgxksByPCws1bE/avw5k41iuz+6eJKfmqpiOlNb/5B1Dtzw+qiJ4bF8PFxZqt2zSfeHVWaaLTWzPx1AVEhH1bavEv8K4bSjHd8I8pFUbZENT1ynBxjsTCBHQm47SCFXMpYZcb+cqZnsABjIXY1WxslBdn9P0J0dnmK+Y7OxJ8an7Rnn6whIXFmq8fK3IQqXFhw8PYns+HQmDUjNCKqpxcaHG/oEMd4zk1lnXRDSFTEyXdl431EVHJ4ss1yzuGe8gE9PpSBis1O11t3viQB+L1RZXVuqcmq1wx0iubfU8sVznSyfm0BTBT94xRHc6Snc6yqfvH8XzA7Jxg/6syx+9olJsmMxXW+08rkLd4thkiePTZUp1i1RM5+hkub0JOziQoW55PLSzi+lSC00IdE0hoip0xHWurDRYrFl44QIV1RX29qfbPvaO79OTud6MW6zKGnCkI86+fnk9HszFePlaCYHM09wM85UmpgdW00XZZAgWXaN2ulVLo6d9bMVN2W1r0Z02WKhIS5e+5Mav7c7RPFqoZNp7i7qrYXnYYXFi32JwldBVbM9FU2h/Tjfi4GCOuCGtpvdtoooDiKxRDEUjmw/oOhIaK3XJNI1sasGYadtz529olD2+v5c7R3PkEgZdyQi//9IUKzWTphO8pt3vRhBCrkFLVbPtRBDVVRqWQ7XlomsK/dkY92/voBTmPwWBJI7oq4zdjjhRXRI/PM/HcX1+86nLDOViPH6gj85khLrpkA2V0d2pCKoi+O7FZVRVMHxDNtVieH2YLTdxPH9dw20j3DmaZ6wzQcLQXpczwL7+TPu78fqOmfz+lxo2ncnIpuzbtxLGu5L8q48epNZymCo1+cx/e4mJ5TrFpkUQKMR0hbLpUm5YfO3kLJm4zlzFYndvnGLT5c7RPK4XsFSVdrOKGuAHtLN0hZD7ibX1tyJkQ7vleERUgabQzn1di9XmpSpkPRgzVF6+WuTe8Q4qLemoEdUVFiomk4Umi1WTieU6412JN1Tj7Niixerb+NFARL/5eiyAhZrFf/jOZT50eJDJQoPBXAzL9Sk3HHb1psjGdY5OlkhEpMWa6wXtAdbu3jQJQ2bp3tizKTTsduN4sWqyrz8jlbdhk/Pt+N3Xh7X9lr39KV6YKG54OwGkIwqKquAHAVFdAQSGJjg0nGUwG2epanEltLxNvQ6XkuWaxf6BDKbjcSgcnruezzdOL+IHASs1i888MLbuPt2pKO8/2L/Rw9H5Y0ourDQdnp9YIaIpPLCjCz081g3ToeX4tByfL746xy/cf/1YvGtPD8eny+zqTf1Qs8LWIhPXMTSF6WKT6WKDqK6RjxvUTZdszEBXwfXkQCsI5NrhhJEJshQUZKMaLcdv28HnEzqJiNYe5CQNlclig8mVpiR6CbDdANMNmC+bmLbH3v40Y11JTs9WsMK9f8PxieoKqahG03LRNUHMUFEVGO1IcHGxxnfOL/Hwri4SEW3doDwIAiaW6zRtj3zC4OqyJJ73pCJ87PAQB9bs8Zu2y/curZCMaNy7reMN5X6P5OPcPpKjajrctcZpTA6c5Ll9+0iOmunwjdOLnCiWeeJAHw/v6uZkmN0Wj6h89IgkLT+8q4vvXlxmvtqiajpcWqpj6AoNyyUbN2RGV0wHBOmoTq3l4PkBJ2ekkGEkH+fIsCRBGarg1FyFHd1JXN+nOx2l1HDZ05tishhmwgcBMUNlvDOO7QUsVEw8X2aJXV6qE9VUmqaDoihUWg73jOUpNCwWKibZuM49Y3leCZ0+hjviLFRMSmHOuhsE9KbkEExTFHJxBdP2eWGiiOcHHBxM8+iefsa6EnzulVkalsPEcp265eJ4AaWGhVAER4ZykqjRslEVhf5slExcb2cKOn5AMiQwfub+Mb54fI7vXVkhE9W4Z1ue0zNVTs1W2NHzdl3yVwFvma7c1ZUGFxaq7B/I8OjubvYPpMnFjZusZZaqJt+9KMMNRzsT3Lutg55UFEURfPKeEcpNh550BMv18PyAuKHxrXOLzJaaHJ0sUW05LNVMrizLEO1fe3gb79zTg+cHfO30Ap4v7Yx0RTBZlIOjXNxg5w02MiemK22lVz5hcHAwi+3KIuDYVBGBYE9/mqFcjNOzFa4sN+jPRHjhaom66fDStSL7+tMcGMhyYbGG7fp0piIEgQwD/P2XKvh+wEBWWrJcXKxzabHBB2/rZ6wzwc/dM8x81eTYZInz8zWuLNfpz8aIaQpn5qtENZVEZJKfuG2AJ88t4vo+Z2YrGJrKtu4EpYZDqemgCIgaCuWGw0TDZmKlxYH+NAO5OFPFpvST3aSTsGo3FNVV3rt/c9aQ6/k0He81WTmr58C+fmmJl4ho3D2W5+JirW1HkoxoBEbQZps4nk/ZdLl3vIN37OzkwFCWz74wyWLVwvHgvm15fvquYb53eYU/fGmSM7MVapZHTFeJair5uME/+sIp4oZG3XKBgFRUYawzgaoE0rbJC/jZe4b5xF3DnJmr8sXjs9RNj7PzFVJRjduGs8yVWhydKq9Rwchjc2GpAchiQlMEqghVZXbARMNZ10QVQN12mS9beH5AzZKskz97dZZUVGe8M0EuPNeenyjw4tUCpabDbUNZfubu4TfMeopoKu+5obHyxVdnaFkb2zDdiOOzZc7MVxnOx3n3vh6+dXaR8/NVDE2hM2nw8/eN8Wu/f5Ry0+HkdIUPhIXwYtXk1aky27oSNwUfr/3+vo2to9yUrMu66XJuXjL1AgHVsHiKaApdqRi3DWX4yql5Wo5PxXRZrhZpOTeE1AF26+ZzwA0ASdIipgt0VSOqK/TnYlxebmKoKvdvS7PScJgqNIhoKomIyqWlOoWGRSqqMZSL0XJ89vRJZciRkRzd6SjLNYtKy2FiucE3zyzyrj0y1FcIwc/dO8LuvjR3jeZpOh7VlsOXT8xxarZCbzqybqh1eanG5aU6h4ay6+ygqqbMPHmtYf2pmTIrdZvhfIyfvmu43QwFaWP3RnL33saPL/b1p8nEdXw/4NBgFoBK02ZtmX3PaI6P3zVMJqZRbblcWqrzhVdniYf5eGvRl4m1bc7WKrc8P2gPxebKLTIxnaF8nO+cl6HKFxfrXFqqs6s3xd95bCdfPjnH2bkKv/39q1IFfaBvnaJcVxV+5u5hSk2b3vT1ocvimjrK8QI+cKifn7xziGJj/RBMVQRDuTim4xPTFaZLTeqWg0CENr7y/ks1i+70dZLOKgxN4cBAhogmmYOzZZld+BvfusB8xWR3b4rebAw/gJjtMVuStm5/cmyWhYrJ3r4Un75vFNPxeHWqxMVFuVH75z+xj995fpIrS3V0TaArKoamUjMdmSEVwErN5s9PzLJ/IMvzVwosVk0uLtYYC5VsK3WrHct5o4XkWtRCImoAvDCxyOMHbx603zHeCU9NAJC9RU5HVFdRhEARYGzQjFxFPhGh3HRJxTTswGejVJQTs+V2k3zyFpZkpab0/xfAYsXc9HbVcL23PWhaLqn4zY2psmkRBLLBUb9FfVBeE1C9XLM3vd2u3hTlayUGc7FN1/rVhooI5OB5LRRFtM+79x/q5+7xDj712y9yeamGF6qRt64Nk8coFg4IXB8WazJ8e65iSjKUrlJo2Hz6t18iqquYrkdMU7B9n46kweXlOnOVFkP5eDgUl3kTJ6ZLnJ+vEjM0+jJRXrpaJB3T+NjtA/Rn46iKYEd3kpiuMnhDBs47d3fz7XNLTBYa/M73r/GxOwY3tThcxWs1Fb9/eYVqy+HebR2vW22xEXRVaX8Of1XQlYowV2rxf37jApeXajjuKmnQJyT7YwPnFuoyK0MRFOsKXeko3z63hKYouJ5PRBO4voJCgBHIoYAuAootF02V14rOVIR7xzt4YaKA7fvo4ubcFgUwNCQT2wvQdYV7xzvY1ZumKxVBE4Inz8l1JJ8w2Nef5s+Oz1JtXVezvRE4r0N9+Tb+8rE6kFqFgrxOluoOL0wUOTKS556xDv7k2DSaIsiFji/fPrfEVFESQy8t1QkC2cTd3p3i+FSJL5+a48JCnT29KZ442M+hoSw102EoF+PQkCS1rGaXn5guc2q2jBCCs3PV17yebYSq6RDX1VvaD78VsbbfMnWLdT8A6raPpsh9X0RXycZ1snGDf/Cnp9jZk+TvPraTu8fzVFoO923rlO5HjlSL3Op6cM94Hsv1yMR0RkLShhqeK4W6TUfyrWlFeSOevbzMt84uslAxOTNX4/EDvVJ5v8YNwAf+5dfP8dlfvBfYWpzKm41MTOdT943yRy9P8eTZRS4vN4ioCqoiaNguIHtTcUNm2DfD1x8grbbjOu3cbEnyluSquunSl4lxYDDNg9u7+N3nJ4kaKq7nk4sbXDFl/6vh+DQrFg2nyImZSjtnCuRjeUHARw4PMlVs8tHDA+iaQtV0+OqpBc7OV/mNb10gbqjcPb4+tuD/efIiXz05jxCCluWEr1e61Hz97MK6IdiLV4uhmwx0p6NbzsddC0UR7fzxjbDaw/z6qQWOTRWJ6CqVlsM/+cA+vndpBSGEVKqFVLmq6TBbblGs2ySjGgdTcqB873iHHFQmDC4sVHnxapHJYoO///lTEMCOniSuF5COaeTiBg3b5fhUmbHOBIP5GOmIzncuLHFuvspXT83TmTKotGSu+6pCr2H7JCI6P3P3IEEAv/vcJKbrkYxqXF2u07BdCnWLpapFw/YpXCpwaqbCfeOd/PyDoxwazPKlV+eIawrpbIyOpBESvoPQRlrjqfOLmI60Zj49WwUkSaIzaWB7HgKpUHU9aZsv/ICVhk3M0OhMRSTJL1RLdqYMutMRDg5KNXJ3KsLe/gyHhnOcm6vw9TMLPHuxgOf7bOtKcXAwu8mn9DbeSnjLdIi/cnIOx5MDoF98cHzToige0dqBnT3p6LrbRXWV3owa+rZO4bgB7z/URzqi8VJJKoqiuoqqSKutbExvW7ooQi4UxYZkdrq+tKxr2R6DuTgdSQPH83lxoogi5OALJGNvVcatKYJUVCOqqwgEPSk5qT83X0VTBDFDD0MkRejzKj++pu2hKYKVmiUzvmoW8+UWuiZzfBJRjUbFozcdZa7cYqwzwfcur3Buvka15XB+sYYgkOyBhM4YCQoNm5rpUm7aJCIqi1WXVFQWLB1JnWNTZQpLdToTOss1m2rLkYuH53J0ukxPmB1Ws1yaN3gDr2LVY/5WcD2fP3h5mpWaxV1j+U1tIYMgaJ8D08UWv/SOceqWy3cvLRMEMpvkp+6UmW3fOLPAV07NY7nyIhpRZaBjb1rKde/f1sGZuQqpiMqpmTKP7unmA4f6WamZzJZNWk4LXRU0bI/vXV4mEIJc2GwsNmyKTZm9tbs3Q1cqhq7KLJNEROf2kTyVlsuxySIvXy1Qbrm4fkl6YiuCFyeKBBvwjwPk0FABAkWs2TBfhwiZnsMdMfq8KOmoxmSxyUA2TtNxOTKc4/EDfSiK4LeeukS15VJp2rRsj0LdflOk/6tQFAVFFQjntdnUlhPgqz7LdYsvHZ+jYXvMhiGalutzdFoOn43wc1pVRn3zzAIrdZsLCzV+tSNORJPWV2fnqlxZrqOrCk8c7HtDxcpfNbRsD00VLNcsLMdnqigZvoamQBBeyxwHTVUIgMWaRTqm43g29aZN3XmtT/k6BKCp8jEzUZV8KkpPOkqxYbcb5JYbcDD0l+9LR5kpmygCmraP6zmkIjqdqQiZmEEyqhEPGchdqYhkMoUZcqbjta/3Ix0Jaqa0kdvZm2K0I0GxIYd7xYbTVnM4ns9XT0lCw0LF5NMhC++Zi8scmyzJfMU7hzZlrJuOh+sHWK6HpiptBS7ATKnJF47NIgR8/I4hev6KNf7+quLoZEn6uyuCY1MlPnxk8KbMqecmVkjGdDnY707yDx7fHSq7i+2Mn7VYm0mzClURvHN3N+cXahwZzgLSTrjWcnl+YoWYrrXzpzqSET502yBLVSvMKnKYKV1visyWW5ydq7KrJ9XO+FpFYk0dtVrLRDR1w7rrWqHZXlszMZ3PPj+J6fo8tLOL8a4EEU25iSS0Cl1V+Nm7R/it71xCFYKvnJyjNx3FdHwShrRNu2e8g2srDbpTEQ4OZrh3vJP//KwcKM2UTX7hgTGCIOD0XBVdFeiaIJ+Mcmgwy3hnkuWayXBHgkuLVU7PNPADWZ+dmC5juR6ThSbbuhL8/9t77zBJjvrg//PtyXlz3r2928s56CSdJBSQECBASAgFojG2Meb3GmNs/Dqb1xFHbGxjjLGNDQaBAZERAoGQkITSSbo7pctpc96dnOr3R/XMze7N7O3FvZ2rz/PMs709Pd1VXV1dVd84OKWNaAphXgcmTuTb6Z2YX14br1V+yp3K6HAeeVXZiwp06O10No8IHBurfM3JRJacUiTS+UqRCYvCS4BEtrKH12XddewbimKJVfTiK0fpdSZTOcoFgosl86SzdvjmROVQTIXcXYJOiF6Jp49Mkswo9g/HmE5lifhOFp6NxpI61ImliFfIjwZagXz/nn6mkjqEYb7sTIxiucp9J3JyLoycglxOoU2ksuSVImuH6pxMZAl4XTgzOeoCHvJ5xXQqS/9kkkxWsa49TGvEy57eSXwuB3UBV7HdpxJ6Tl6wBp9tCFRgWWNQ52ZIZcnmFf2TyYrrI50DS+YUDH/zuV7+54mjBD1Oktkct1cICWyoTDqbJ53NMTiVwOvUecLy+Rzl9EEnduk5fzSZZTyWJpfXQjWv0yKTU+TyCrcTmoMe4ukssUTO9kz00NMY1Ll184p8HlSZPHsKHYI9ZXvnZ3OKV61o5Ka1zTQEPWTy2vOso1ZHv3j++ARuh4XXZXHb5vay+d7mw3Ty1CHZDBc3hWdnYCrJl586SkFIW5jXh7wu+icTPHt0wvZE1AL0l/qnsCzhS08do3c8ASh2Hp1gaDrF5q4axmMZav0u3nZF14y8TOlcnvF4pmgkcLo8tn+EJw6N0RB087bLuy45RViBkNeJ3wnxMsOisxBeTLQJjMdlMTSdom8iicsOe/fVnb34XA4OjcQYiabx2hFB/G4Hb79iScUwezV+N2/ePDOtQcEjeCSammFwtZhJZ/O2F135OUyd362jBVlCLJXh5f5JYqmT52IN5yk/3f6hKIdGYmzqiJzSCCXocbKuNcJ3nu8nmc6SdwgBj7OYM81hQdjrZCqZJUl+xhwoldWeyiLYimcppooZnE5SP+HRERvsuczShqA2lpqVfyGWzOH0a0VbIZSiKO2dmkcrO/qndRSw/UM62sN0MkMslWVg8uT8mPuHoiSzefJ5hYX2xM/lFblcnv6JEwZfqWyOoL0Gc1hyWnkG50s+r2WYTxwc49mj4yig1q8NkqaT2qtqT/8UK5tDRQVz73iCvokE08ks7TVeRmNp4qkczeE0H7ihi6lEhv1DUcI+F8l0nvFYuui11RjyUBtwcXw8gd+t885Op7KsaQ2TzOTwuR1MJbLkVZ7DI9GiwV82p0hkFPUBNzmliCbzvH5DC73jSaLpDK9Z08xP9o1wYCiKz2XxYrZg2qNz2z99ZIzxRJrNXTV86/k+JuM6yshr1zZxdCLJ5o4aDo1EOTAcY0m9v5jLC2AslsLjdBL0OGmN+IrynWgiSyae1jJ0jwOn343LIRwciRVzS/c0Bumq89MW8drvNHho7xC3b+kgmsry4EtD9ljlpCnsKTpOGKqbqlGChbxaARX26VB+sXSW+oBnhstqIp0j4HZwz/ZOppIZuuvLW1MU48KiBQ2FBNfNIQ8+txOPyyKVydJS4+eKpdqyQES4e3sng1NJav1ufvzKEMsaA2zqqCHk1WG5njkyxlOHtev5TWuaefsVXVii4+GDXtC87fIuLl9aq90xm0IcG4vjtCxea8cNvn5lA08cGuPq5Q2sb4+QV1ro+rODo3Q3BNjeXcfhkRiH7FB89Xb+q+lEhtUtITbarucFy9++yYROZO51sX1pHa9Z28wDLwxyfDzO5s4a1rZFWNEcYiSa4rnjE9z3zHGmElk8LgcNQQ8el2WHSctQmEY6Le3m7XM7cIsiWqHNVCXpTAmxdI4R2yzyyGicq5eXP05EdL6PaLo4QBWUJrGU9iJLZXM8eWiMe588xkg0ZbvYRrhpTSOPHRjj0w8fpNkW1jWHtLVlNp/n17/0LHdt72J1a4QtXTXk8opYOotS2urJ49Teflf1NPDTfcNM2Ra/6ay2PvfZFhkrmkNk84rnjo5zbEy7fOfyeWKpLN97YZBl9X5e9DhtIXqe2fnZgx4dLiKT06Hl8nmlFaKWgFI4HBZ1ATdv2drBQ68MMZXI0Bh089SRcda0hmgMe/jRy0Ns7qrh+lVNeF0Ooqksa1vDdNWVsxWfP9lcnicPj2HZidjftKmN/3zkIDuPz514F8DnAodlUet3s7mrht5xLRhY3hzi6uUN1Nvea5ZMsr4tXJwohX0uRqJaSeu0tAv49/b0MzydKobNODYeN0qwU7B3cJrv7R7A57a4c1sHa1rDTCTSTCX0xLutxsvAVIq2Wl9RAR/2OtnYXsNP9g6VDakD4LJDUBUmwwK0Rdy8YUM7E4k0Q9MpDg7HmExkGI+lEYHxWIb6oIe2Gi/xTJbOWh0a8+rlDXx7dx8HhmLU+XUYhQ1tYUaiaY6Nxfj6zuN6DIinaQ57bPGl2JaGfiZiKT798EHiqSw+O0/QiuYgY3YOsrVtYY6PJ1jeFMIhQtDjZDKRIeI/Mdk9Oqqt0gankiQyuYqhf5yW0BLxMp3MnrQIPD6uBVGglQxGCXZpcOWyev7z0YOovGJ7t86ZM1uxNRJN8aWnj2GJkMkrBqdS5PJ51rVFGJhM8A8P7mNDe4RXlyRmzua0p/XRsRhHx+Js6axlY0fNSVZs161qxGnBT/YNs3dwuvjcHRiJEvK62NARwe2wcDktjozGWFIf4Lu7+ommsuwdnOYD1/fMmEsdG4sXw7YlMzn6JxIcGo0hCJcvrZsRpiXic7GhPYLTKVy7opEHXhwEtFf+a9e1nNIj0ud2sKQuwMsDU6Rieda0hqnxu7GA61Y2cuWyeq5d0UgikysmR792ZQP7BqP43A4e3jvMcDSFx2HRGvHhdTn46jPHUSg6a/2sbwvz3z87zEv906RzCpelrUFXtoTwu52EfS5uXtfKurYEDSF3UdhbCBEIkKrwDgTwWBTzF6zpKO9BWut3FfN4ueawoM7l8yTt0LIila8Z8bkYiabwuRwVz1e615pjLvbuK7vZc3wSn8fBa9dXDqXXUuOhbyKF1ykVF5Bhn6O4mJY5fKxuWNXAC/3TWAJvmOOahZCg2Tyk0lkoowS7pqeBxqCLqUSWm9ZUDqM8lUjz7NEJav0upuJp0rnKikFtjGbnUhNBlLLbRQtQvC4H2ErI4vgngNJ5agoC3S2dNSQyWZyWVoS4nRYTCe35NjCpc7e0RrzcurmdyViaWDrH8qYgItBR6z/JCyuZ0XPcgMfJtiW1pLN5njw0BiiWNvixLKti6MsX+6b4/M8Ok1fwGzevpDFUfmwamNI5FKL2WDqbZCaHAM8cHS/7PrjUmYin+dzjR3j6yBjtNT52LK/nVSsaWN0SYnAiyb6RKD98aZCBKf0cCFop7HFZNARcHB9PksvbOenySoehduhsg+msom9Se1sGPE6clkUik2Xn0XHyeW0tbYlWWIQ8DqaSMxW2qUyJ4lcpHnp5mBq/C7/byaqWENesaODAUJTL7QgbfRNJmsNeQnN4r56Ktc0X1qvBcHbMntOKaIWJz2XhcggHhmNk84qGoBvLEo6PJWiv8dEQ8rCmNYwlyn6GFbdsaOWRfSO02iGg6wIuxmIZWsLeoofXeFyHkm0MnXjXNAQ9LGsMYIlQW+adfyoO2/KPkWiaWCpHxH9pKsFqA25Wt4bZeWxqxn4HcMWyOprDXg4Nxzk+FmVwMlmUa+QsCOJi1/FJBqeSRJNZtnTV4rC0AmM6meWHLw7SFPZweXfdKZWMSim+8sxxBqeSvOOKJScdH09nefLQWDFq0mJgLJbmi08cJZ3Lc/uW9rLeWzt66rFEeGlgitUtYfrHY7RHvIzGUkRLlGGrzkGakNmksjm+u7vfNvZM8K4d3af8TVe9n4DXlkPldRjTLV01fHVnL8PRFJPJLMvqgxwYniKWPpEOo/DX7RCWN/qZTucgqg3tM7k8qUyOvskEbqdeszeG3YTcTnb16hy4loDLgq66AF57zjFl57nPKXipP0pT0Fs0+CnkTXNaei3vtCxEhB+9PMjmztqi4d5btnTQN5HAIUI0mWViPIYlglhCPJXhBy8MsKwxyP0vDJDPK65d2cCyhiC1ZZSSB4ajHBmNsamj5oxyf1uWluUdHo3hczvwuizetaOb5rCXD37xWXxuB797yxqWlcytty2p5YW+KY6OxTk2FieeyRNwOzgyFieZznH/CwMMTCW5vLuODe0RvvDkEQ6PxAj7nNyxtZ2vPHMcyxJEHDhEK8Uv764lls4RT2c5MBRlT98kqazCsrRMdXVLiLsu62QsnuH5YxPEUhm+9NQxQj4dqeOF/mk+/JpVDE+lGIklOTgc4/BYohjmPZbO0jue0AZfCd3+4/E09z51nFROpwna1B4mlc3hcTj4let7ePrIBIm09jLzuRwMTiW5ZUULO49N8HL/FGGfi5DPRWvEy6bOGnxuB88dG8frtJhIa3lqKpvlgZcGCLicLG8K0lrjKxr+D9rPSzaXZyKe4uhIjIlEmvp5OGoYFjdVowS767JO+icTpLJ57vn0zxiLpXnjxjY+8tpVWJbw/RcGeLFvirqAtrwQgeVNQdpr/Ccl9O1pDLK8KUgik2NLZy3HJ+JEfFpIccfWDlojXr709DGGplIcGdXxkJ85Mk7YFiYBJ1m5wMwwP0Gvs6wA1Od20DuRZGAyRf9Ekng6R9j2OGuJeGmJtHJzmdCBpQPs0sYAqWyevsmE3q90Iua3bOkoluFVKxrZeXSMgSk3y5uCpLJ57rqsE6/Lwc9d1T3j3G6nRcDjZDqZIZHOMTidJJtTLG0M8KrlDTzw4qCO4epzkszmGZxOkczkbE+MysKV6fipEyJHfC62d9dxZCw2I+xTOe66rJO+iQTttb5iud92eZcdlszP/XsGeODFAYamtYVHc9jLurYwL/RPMxLV3luHx2KMTqfI5SGW0rFqY6ksn//ZUd595RJSmTyZXA6Vh/qwG7fToqcxyJs2tfHa9S1MxNMcHolzYCjKgZEoiUwej0NY3qQH5888coBvPN8P6JwTAY+TiM/F8sagDjkV0YsByxIGJuIUoslZ6DBy2Yx2Pc/Y+dZEFJYoLNF23S/2R/n1Lz3L0oYg43ZoKpdDGJxM8rtf201rjY8jY038wjVLK+aaSmZyPH14nBq/a975qHb1TvKEHVs84Hayri2MNc9ob363i8awtsx/z45u+iaTtNX4ZghHf+naZfzXY4cZi6X514cP8vtvWMMtG1o5Pp4o5sRwOSx8Lq2Q9LoctNf62LLAydUXA4dHYjoOeUp74PndDhwiKHQonaaQh2tXNpJI5/C7nTy0d4hdxydZ1RKmPeJj33CsKDgpeHllcjomeClaxissbfLTEm7g+HiMkehxJhNpxuMZ8nZulHgqw84jkwS8DprDXgIep54wJbM6aXwqx8pWbZn88L5hxuIZnjo8jt/tpD7gprPOj8v2wPr0Iwep9bv5+rO9TCd1f+6s83FkLE40lWU4mqI57MHncrClUysnLEu45/JOBiaTdJYoh69a3sDPDo7qfCllFGBHRmMcGokR9DgZi6VtBbwOHVBQzK9vj9A7rhPHrjFJVy8Z7n3qCNO2JuQLTx7j1s0dzJYLx9KKsFeH9mir8bKsMcC1Kxt57tgEzx+f4OWBaXYeGWdFU5BcXvFC3yR7B6PklSKazBaNAirltbv3qWMMTad4oXeKrV01jETT/OQVnafsmuUNHB6JMTSV4lvP9/Er1y8n6NWK4KDHOUMBNh5L8/0XtKfkgaEoK5pD/OzgaNEzPeBxzBBU3L6lnb6JBG01PpyW8NyxCfYP6fypL/ZPs21J7ZwhQgDevKWN/Q9E8Tgs/uuxw2zurOG5YxM8fmCUI6Nxfut1q6ktOX7bkjpq/W6+8VwfEOPYWLw4ngiKpw6PURtwIQjf2tXP8bEEGXulns1D0OfkN29eSb89FjksOckbri7g5vCYnku0RiovlsSyIJ/HEphMZGipOfmYRCZrKwrUnDnBCsnJFfDTfWN88MbyxwU8DvxuHUY2V0HB9fLACQOVaKayQup7ewYYmk5hxYTH9o9wawXPnxE7bGEqpxiYjNNed7Ii7MW+yaJAZChaOczhD17Sz2Vewdd29nHjuvK5QFxOnVfSEnA6yk84dGhFHc5pfA7vs31DUYank7gcgs/jZKqMRXaBHOBQOtRK0Osg5HEyPJ0i4HEyldJGYj63AyFDNJ3DKbpNVjSHWN0Soa3Wy09eGUYJvH59K48eGCWVyZHM5vHYiegzuby9pgmztjXMp35ygERaW+i+/7qesuV68tAYzxzRz0it38XAZLJoeLdtSQ15pcNQllM87zo+wYFhbejx3d0DJ60DCrx6dTOWCA1BDzevmamgfHlgiu/vGWQykcZnhxqb/T641BmYSjIWS5PM5Imlcly9PMIbNrbyxSeOsrN3ks4aHyuaQ4zFxsjmdA6Oa5Y34PM42HV8Qoc4zFH0GkvnFB1hL363g4GppO19IATsHK7xTJ5cfqZXo8vKky/EOLW/sKNUF8kDu3onGIqmWN4U4P4XLD5wfQ/3XK4jaiypD7CqJUxD0D3DS+d02TMYO+PfGi4808kspZKLnAKvA4JePZ5OJzOICFOJLKmMNo70eRy8anmDDumPEPK6GY2m+OKTR2kO65wt797RzbUrG/nJ3mFesmU1OaVY3aqfsVI2d9bw5KExXA5hwxnkTL6qp55HD4zQVeefYeh2qaGUYt/Qyf1Pifbs/8jrVvOB/9nJeDJLNg+ZVA5LwOfQYdRSmRxj0RRup0VrxMM1KxoZmEzaIem1l5HX5WBrV23xejuPjutQyEqKIdCePDTGV545DmhPkw+9ZuWM8vx030gxFF1jyHNG4S8vNHsHp3js4Aj5PHTW+soqwUSEK3vqubKnnn0DU3zkf/cxHE3jcQoO9PvY7RCOjp7sxXS2OK2CAXt2hmxyLkJeJ+01fo6NJRA7+pXD9gZOpLPk8nrMqPO7yOQgURI61WGnAPC6nYzEsiQzeZyWzmPZP6mNQycSGQR4+tA4uXyenG1olleQRxiJJnE7HSgUboeQQchmtRJt7+A0ly+rZ1lDkJDXyfPHJ7htSxsv90/jdlrs7p3C73YwPJ0qRoXyuCyuW9nE3sFpxuPTOBwOstkck/EMTx4ap38qxcaOCHW2MiSdVWUVYMlMjm8/368926ZSvM0eI+fDi31TjMZSXLakjrDXxdrWEIfH4rx2XQvXrmzk7x7Yy9B0Cp/bwf6h6AwlWI3fza++ejmpbJ7h6SR7eifprPWzuauGiUSGiXiGY2NxJuJpXuibIq9gNJpmOpXl/j0DrGoJs+v4BIdGYkwndGjKI2MJsrk8I9E0PreDoMdVzGV845ombtnYxtU9DTx2cIR9g9M8eWQcS/R56/wuxvan6ar10d0YxO3QciSvSwh6XHTU+EhkcoxE07zYr3Ox5xXkVJ5DIzGyKk/Q42JnPo8lQjKTYyye5tqVjQQ9OqXLX33/ZY6OxhmOpogms0wls0wns7TW+Mgp3ae2LallYDJJ73iShpDQGvHRO5GkbzyhjYMcsK27lk22fHBNS7i4VspkFU8cHudv7n+Zv7hj07zb0bA4qRolmO6sTu598hCj0TQKxe7eiaLF/v4h7Y/0/LEJOuv8HB6N0TuRoCnkpcbvmiHsdDutYpLCwyMxXuidojnk4Yqeejrr/IzH0gxNaQXO/qEo08kszx2bADjpXLNZ1hAg5HXRN5GgOezB73by8sAUY9E0PU1BXu6f5vljE4zG0vhcFo1BL26ncOUyHYZGKcVzxybI5hVbu2rJ5PLsPDJOfdDDqhYdDuUNG1vZ2BGhJeIj4Nau6hGfa8Zkb21bmLVtYZ45ouPcbu6sOaVFdk9jkOaIl/6pJE7bJbilxsfmrlrySuc6ebFvkp/uG2FoOkUik8PlsMjmc2Xzgk3PIWQo5ZoVDVxD5TA8Bbwux4wBArTisTDA7zw6Tv9EgnRWsb49hMvp4OBwjLDPhdMh1Prd9E8miKVzpDI5nehVdLhEj0NI5/K8PDBFIq1j1NYHPWxeUst7dnSztCGA02Hx7h3d/Pfjh3nu2DiWiE56nofRaKroHaLyOuZwfVAL7Ld11XL18gaOjcc5Ph7k6Fic/UPTlN6eiM9BHiEropM+Yq9fFaSz4HQoVFYRRwvbphIZWmu83Lqpje/tGWQqkcZhOUln82RylQVeoPM9lOarK1jXz0WgxKvB53ZgWUI8Ob/2HY9lWN0aZkVTEE+ZNgRor/GRzOQ5Pp5g0o4pv7I5VMzPArrf3nN5F8PTSbrrA3Nan+XzimePaWHRls7aSyIZeyW2dNUyEk0T9jk5OBzl8QOjPHpglHQ2x0Q8w3g8TTSV5e7tXTz40gAv908xncoxfmCUuqCLuoBLJ7cViHgdTFdod7dTSGfzfOqhg1zZ08At61vY1FnDo/tHqPW7SGV1iJNYOosrmaEu6C66/TeEvXbIH62k2tJZg9OhvdJAh52wJMdEIsMK14l49AVLH5/bQTqnBYi/cM0yxqJpeif1s7SyOczr1rfMeD/63c6TnsOexmBFD4d0Nm+H8syydzCKzw4L0lnnx13yHAY9Tu7YZsJHXWocHj4Rum7ADjk4O69yyOOks85Hrd/N9asabU/lGja0R9g3GGXv4DQep4UIfPP5PgYmEwxOpVjTGiKa0kqwwBw5EINeJ0PTKbxuBy6HA5+dXyqvdO5Ev8fJeDyD1+XQIZ1zeSbtvD+luEvCdwXtZOgRn6uoRJqdm6l0XFZKMZnM4Hc7efLwGFu7atk/FD2lEszjdNBR62NkOoXfVspNJ7OksnmiqRzR1Mlel363E9FO0qxsCfL4gVGaQl4ODMWYSmaYSmY4OhYvjskFLIGJWJrRaLrsWFSg9D03HK+sXHE7LZJZPS5XSh7fGPTiczlJZXO0zCHgiZT8viFQWXAR8bkJeV0EvE7cFZRDTSWCReccSb77JhMMR1MIc+c+K3j2KwWWlL9mW42vKHf3zuHx5nU7ikL7mjnq6bKENAXvlvLHTNrWprm8YiJWuZ0OjcS0J6DDQSpz6rlLHnBb2iu61u8m6HWRyuQYj6dJ27maPC6LRFaHGFzTEuH6NY3cs72L/3z0EC6HMBHXwoADQ1HiaZ20u6chwLLGIGOxFEvq/bzGztEXcOv8EEMjKb789DG2d9fNmP+AVrSBHXbIfSJMcF4pHtk3gt/t5NhYvKzV9/buOn740iBup0VHbeVncHlTsKJ3/cFhbVCTssNARXzu4vsgmcmdtFa5FFnaEGBjR4TxuA4fVh908/DeIb78zDEmYmke3T9Cd7025HGI9i48MBzF63bgthx4XA47b8mJvCs6/HqIlU1BDo7EyebyJGwlG0Ixp18eLVR1uxwIimg6Xza0pyU6OoOI7qcDk0k8Lgff2dXP+67143M7cFhy0vN3JgTdl6YXzmLF5Tj5RSsI9QE33Q0B9g9N43PpHJuFqW8slSWWyvK6dS1EU1n+54mj7BuaJpHJ017jm2EIc93KRvYOTBc9TW9YdbL37oHhWNEj++BIjDWt4dPyNl2IvEoXI2JHvZgti8kr7WnzQu8US+sD7D4+ScFAxxLB7dRGQePxDA1BD0Gfi6BX5wu7flUT+4eifOO5XtuL9cSc5ZXBaR7eO8KhkShuhzZUrQ24ifhcxblouEyouYLRocMSvGehcL+QuB1aJpnNqeI4XI7JRIbdxyfZeXScqWSWbDZPNlfwlof6kId3XLnknJfPYQn3XN7FwGSCrrr59YWQ18X/d8Ny8irPweE4U6kM/RMJQl6nrczQx43ZoUpdFuTyej5SF3Dz9ss72d07hWVpA6ZcTkCERCZH30ScXF6XK2nndM+WDExKKZIZRTqbRYkO2RxyW+TjGZRStEV8vOOKJeTziqePjJHLKdZ2RLiqpwGHJXx7V3/RkLdAYbsl7OHISMzOfWeRzStcljASTdE/qaMKWZawrr284arDsud66Rz+Mt7xlRiaSvK9Pf30TSR4oW+Kjlofq1sjbO6q47bNbdz71DEmE2ni6Swhr/Mkh41sLs8/P7Sfl/ommUhkWN4UoiXi5a7tnSRSOfJ2PqxcPs9oNMtYLEW8kK4hk6PLloVPJdKovIM8cMXSOv73mWP0TSQQpWgMuhmzhNu3tPHOK7up8bvZfXySpw6Nc2gkyrHxBLmcIuJ3MWUrVB8/OMoj+0cJeZ0oFLU+Dxs7wrz9im5++NIAx8cSPHd8AskWwsAL9UEXo9FU0XtvYCrJeCxDNJXFEuEf37aVr+08ztBUkmQmy3hUEfK6yXkULodFjS3H9TgtVjWHuDd5jIaQB5/ToT3InBb9k0l7/LLom0hy/54B3nnlEpY2Brh6eSPD0ynGYmksO4y0ofqpGiUYwH3PHgcUAY8OHfGmTW3FwfOqnnqeOzbBps5WBiZTttBUv5w9FRKMx9NZ/vfpYzxzZJyQTwsUehqD1Ph1eJ/j43G2L60rKsTmOtfwdIrv2C/hvskEPY1BJhMZti2p5Xu7BwB44MUBoqkcx8ZidNT6mM7lifjydNYHiy+/lwemeci23rZEu/O/aFvI1AZcNIW8eJwOljedWGTOJcjZtqSObUvq5nV/fW4nf3b7Bh7fP8qP9w5RbytILl9aRyKdY1ljUCsch2PaxdaCDa1hDo7G2D+kY0aXMjsnyvkkm8vjcghup0VdQIf36J1IYImwtDHAkjo//VNJ3A7hwEgMr9PBxo4I91zeyVQiS1edn5aIl4deGSKXV3TU+vndN6xhWYMfsPjCE0eYTGS0V8qhMdprvKxpCRNN5uibSpDKas+461c1cWA4Rj6vWNUawhJhPJ7hiUOjvG59Cx6nRWvYy8HhaHHh6nIIPU0havxuesfjRcVE0p4hKLRSx+EQyIPD0tZSG9pruHldK9esaGRwMsnOYxNkc3neeeXcVioFZaglekCZD6taQvhcDkQo5kabSFbOvzED0XkBhqdT/NsjB7nrss6TwvyICLdsaCGvFDU+V8WJcMTnmle85j19kzy8dwTQeWcuZUvlxpCHt1+hn4kvPHGEgyMxXBY4XQ6Srhy5POzpneTY2Cuks1liqRypdJYkWrl0/cpGDo/FOTISZyKRKU6EQT+LQbeTvMqTSOcZjWWIpXM8un+ELR0RGoIeXr26CUv0QufLTx8nl8/TFPLwkdeuoinsIZeH7no/g5NJHtk/jCXCVT113L9ngNZaH9evaiKWzuK0hTI3r2vF79G5HZfU+Tk8FuetWzt4eN8QK5pDXL60nmRG5/rJ5vMcsgV3Z4Nlh8ZKZHSOjmUNAWr8Lt6ytaNsyKjzweJYGl6arGsPs8sep5c1lRcAf+R1q3ipf4rDI3H2DkT5qX+Em9Y2IyJ85LUreeLQOKtbgjSHvbidlm2RKLTW+LhjWwfprGJZY+XF7Idfs5J7nzzGtiW1uJ0WTWEv91zeSTSVZZktmD0yGqetRhtrjETT1AXcJ+WeCnictod1isaQh6GplB27PVV8/1dCRAsxUo58cS5VCCl9Kt66rYNjYwne6XcxHs/QEvGwp3eKxpCnGCK3lOawh3u2dzGZSPPI3pGix1DY7yKnFAdHoiilw9fVBjxk8nqeYFlCnR3qGbTn20v9UyxtDMywQG4Iudlne860hisvmJpDHpIZvfj2VlBSBjwuuhsCxFKZiuHqAN52ZTdHvvsSTodwx7byHn+gLTabQh4aw56yQkuAdR11uG1L3J7Gym0WTWVQSluHx2bHaC6hrcbH8fEEAa+TYIXwaIl0rihwz5azjLIJepzF+U/AM9d4LsXjKiU/awy5CfmcJNN52msrh59d0RxiTWsYlGI8liKWylLJQU4Av9tCsFBKhwZ0O7Ty6PBo3A6ZnaOnMYhrKkVj0M3/vWU1W7pqmU5mGImmOD6ewOuy6BtP2BEgEjgdwmQyy2vXtyICN65uor1Wt80d2zr4r8cOs3dgmq89c5zDIzE+cMPyGcrfrV211PjdBNxOO3KEl4jPhdMSvrenn1gqV9HYracpyMfu2Mh4LH3G+RC2dNUwGk2xvCnIurYwLvue7Do+waP7R0ikc4hIca1yKeJxOnjTpjb6JrXX1uceP0JbjZehySTTqSzpbJ4XbavtrB3u6dh4HLfDwumwWFrvJ53Ps38optexllZsDU2naAi66az1sc82+gx4nXhdFvUBD2PxNPm8oq3GR1uNjz29Ov9MfdBN0O3gyFiCnAKPU9jUESHodfO6dc2sa4/wo5eHmExkbMXGuTUYC1YwDDBcnJTzGmkKunjfNUt5tndSyy6SWT5wQw/5vH6Gv7u7n3RWW/u/e0c3d2xtJ5fPs28witOSk95JXpdFNKUVsEqpGZ7ohe81ikf3j/CDFwfZ0VPPlcvmN5cwnOCK7jq+vqt/xj6npUO33/v0UV6/roVcXvHQK0PU+l343E5u3dzOjaub+OrO44zGUogSlNKh9Td31hC1lZ6NIe8Mg4nCut1pWdqj1ZYxtLeG+b03rGEkmuTaFScrPXcsq6c57CHsc5X1xLkYWdsW5ua1LSSzOXbM8Vx+/4UBescT7B2cxukQ7Y1rT2UsdA6t+UbkOV2CHucMWeF8CHictNX4SWcV6WyeI6M69J5ViOeN9voK+VzUBdw6SlTAzbuu7GL/kFZYJzJZIl4XsXSWZDrLRCJLIpMDhJDTgUsEhcJRUKQpaAp5qQu4SdhRpmr9el4T9jhxOS0ut+/xC31TfOmpYxwfT/Bi/xS/+KplLKkP8LbtXQxMJWcYbmztqqHW7+I/Hj1EyOcCAY/TosbnJp7J4nc72dxZwzUrGjg6FiebKz/HdDksti2p4ehYghtXl8uGWx6302LX8Un2D01zdDTOH795HSuaQjSHPViW4LSEWr+H5rCX1a3hYhjHAkfH4zy2fxSltKf30oYArREtA/7RS0MEPE7Wt4eZTmR5eXCKkVgat2ilXWd9gOVNAW7Z0MKffeclDo/GWNcWpqNWR+wo5HjUuWRhd+8U39szwNsu7yq+f/smkiRSWd0+Tg8rmkIotJza73bSGPKwpauWoekk77xyCa9a2cgVy+q479le+qcSDE/qOcr2pXUkMjlGo2km4mmCHhfLG53sTk8VU/48dWRMh3h3O0hnnbTV+vjQjSsZi2tjRa1MU3Q3BAl6XezoqefIaBy/28F7rurm6Fict0+niKVz7B2aJpXJMziV5N8eOcBr17bwvmuXcc3yeh4/MEpHra/oLWiobqpm9vnd3f08fmCMejvR6XuuXjrj+y1dtWzpOhEwR7uBR3USvAqLMcu2NijkXSpY9IsIN6098aJbWh+gPuie81wuhz6HJRQtmNwOq/iyKSTPTGTyOCyrmCS7cFwBd4lSwu1wFP+3RHBZ59+iLuR1cfP6FtZ1RIinsnZ+ghMT1KuX1/Plp4/SGPKwvCnIjaub+cZzx3llIIrbIaRLBhH3PBUs54KnDo/rXEY+F2GvjjteH/QwFksT8blZ2xomeXiMLUtq6bJzxXXV+7lmReOMUB9//pYN7OmdoqcxwMd/sJdYOsdNq5v54UtDTCYzxFPagmUikeFVK5voqPXx4EtDhL1OescTbOiIcOMa/eysbw8zlcjyzed7OTwao8bnYsKOf3jnZZ3892OH6JtM0hLWHl3buut4oXeSRw+M8sTBUaaSWVQ+T9jroj7oxuV0MDSlLTY3dNTgdlr8x08P4XJY3LimiV961bJ53asdy+ppCHqI+FynZQ1RGi7KaWlBx9BUcoY1TymCVpK0RbzaMiWrLVePjsVPUoIB7OhpoDHkxeO05hS0zocZ/egCPocXO1cvb+CFvinWtIZY0RQi6HXw2P4x0tkcrwxOg1g0R7yMTCdRSgh6tfCkEKZpMpHBYYFDhCX1AX75+h7etLGNWz7xMKPRExZNlmjPzIaQl7YaH9u76+iq87NvKMZoNMmVy+rtGPPCruMTfOLB/TrXl4KxeJp/eHAfY7ZVv1jCh29exUQ8w4qmYNGrr8F+dlc260n+O+q7i/X0uhysagnx2IER9g1F2TcUJeB2nrF1qNNhcc/2LnonEtT4XUwmMixvCp5xsvgzoSFg1GAXK+vba2jfp5XuhXmIw7JmWOAHPE4d+lMpxuPpGe+lsM9d9AgBuGd7J30TSXqaAvMORfXMkXGyecWTh8dY1RLSeU7DXgpnLfQJ0POjQp68y7prTzpXXcBdXJDV2u/q2eECK3HnZVqZ1d3gP8lrbC4KeWkAmsJeljYE2NQRpSXiPUmI9tArQzx3bIL1bRE2dESYTmVZ1xamxu/ijm0d3Lezl3QuTzKTBxQ9jUH2Dk6jlGJjew3/58YVxZxIf/39VzgwHKWrzs/H7thYFAK/88pu9g1GbYvaypa6DSEPI7E0Nba1cznCfhc7ltUxmciyrbuyUVI0qXOtWiLE05U9ut+8uZ0N7TW01/gqekTXBd2E/W6SmRwdc1gCt0X8+D0OLGROxcWS+gAKCHpcRQ/d2Sj0nFfZ3oeVqA248bksO+ROZaFXS9hL72SCoNuJ311eWVYf8PKaNdoD4bo5PA63dNYQ9jrxOHVy9LwCh0OYjGcYi+kQRamsQimFJTrvmcOytAJrPE5LRIdjCXqcxNNZPE6LTFZx5dI6Ll9aX+z3h0ZiHB6J69wTImSV4o6t7XzyoYNYomiNeMuGIvS7nXTXB9h1fJJ4GttTaOZ9Fjk5H1tB6HP39i56xxNzKsobgp7iuHkmtEZ8J3mZvdQ/xYMvDXF4VFtat9f4L8ha5WLGEi3gSqMNJwvGePF0jtFoiuFoGq/Twuty4XM5GJrW+SHrgh6WNoZor/Wxvi1Jc8TL0JQOg+R2OhiPpTg+kSSfz+N0O7liaR3XrWpieDpF/2SC1oiPt9i5QPYNTtNgr9PesqWdP/n2SySzObxOB/VBH5u7Ity6uR2nw6K7IcCBoRitEe85ny+v75ifEabhwuOyjSSAYphel8M6KZvj9aubuGplA33TKRLpHMu7QrTX6PlAPq9wOYR09oQsY1VLmPdft5wj9juhZ5Zn6Vu2dnBkNI7bafGpnxzE5RDuvKyzaOC4ri1SjLbwXduI+OX+KaMEOwMuW3ayEgx0dIuhyRSD0yn8HgfdDQGaIx7+4rYN1NvzgHdeuYRkOsf+4Wn6JlNsW6LHuJf7pwh5XSQzOSYTmeJcsbshwFu3dZDK6FyEYa+rON5oRU95ZY9lyWkraxYar8sxr6gfBUPjsM/J1T0NfP+FATI5rdRwO4WWiyxvdCECS2PQzZ6+KaaSWSx0W04n9Zq8NeLlulVNvPfqpaRzefweJ61hL8fGD+oQ0h4dLnEqmQXLoi7oJptTOC3B73FS63fpCE0I0bSOyvSmTW3FdAIvD07y3V2DWBYkMnmclsXLA1Oks3ncTqs4R3dYJwy5I37XSaFPRYRljUEagh72DUaZTGSot8Ow/uqrV1AX8NAS9nDv08dIZfLsHZg+SbYMOkfyT/eNAlqucarIFgVq/G6awx7GYqlijtmekuf8bjstgyVCe43vpLVeU9BDc9jDRDzDq3vquXZlU3G+Vxingx4XzWFtvDc8nSKd1eEr9/ROMpXI0BT20DeZpLshwEQ8Qzyd400b2xicShFPZ4mmsiilyGTzxff3iuYQt2+x2NOrw/QrpVjbGqGrzk8un8fntoh43azviLCmJUx7ja94770uB2+7vIsan4sX+qaYSmZ436uW4XU7+PgP9jI4laSz1ofX5aQl7OPQaJRMLs+3nuujq97P2tYIItp4uyHk4Xo7R/Z3dvWzb2iaK9J5dvTUc8uGVg4Ox2ir8eJx6VDkK2xZ0PbuOvYNTfN3D+wlpxQv9k3z8bs3c+3KJq5dWTlvsKH6qAolmFLwysA0q1tDZHJqXgOPiBSFowWSmRxf3XmciXiGN25sZUl9gHftWMJlS2oJeB2sb6spey7LOvlcs6nxu7nzsg7GbGHIeDzD6pYQTofFnZd1MB5Ps7QhwIGhKIlMjqaQjvE+NJ2aETqkpzHIbVvayebyrGgOkc1pr4m6gPuCWsi0VwiR53c7ee/Vy9jdO8HGjhpcDqEx5KUl7KFvIj8j2bjjAi6EnQ6t0FzRFOKy7tqi1VJD0MMbN7aC0rGMY9Esd17WgcfpKFpUlNJVF6CrLsC3nuvj5YFpsnnFI/uG8XucxNLZYjLgG1Y28Zat7aSyOoSf22mxrFHnEnrzZiGRztkLTouOWj9OS0iVhClsCXvZ3FlLT1OWm9c10xrWyrQ1rSF+5foe3rihhZf6p4u5sxpDHjprfTx5eJzlTUF2Hh0nkdaheRyW8GL/1LytiSxLzjpcTdjn4u/v3sIXnzjK88fH2dU7WXTxB72gag55uGZlPYeG4wjCvsEpljaG5vRcrBSG53RZ3RLGaT9/5+qc1cCS+gC/fG0P8UyWVc0hRIR1bdoSeF1bmO4GLYT78ctDOBw6L8jKphDD0RRXLqvjpf4pDgzr/H1bumrZ3FnDWDxNT0OgGPJ1bWuEaDJDS8SHiPC2y7uKHrt/8uZ1PPjSEBs6ToQ3eal/irxS9I7HSaR1iNXpRJaGoIepRIY1LSEtzD+DxYKz5B1UauF8dDTOt3f3Efa6eOu2jlOGioWZk+z5hBA911zVc+qQsYaF4R1XLtGeguks775KL6ICHidR+3sHOgxQPJ0j7HVx+dI6LptDGVLjd5c1FADI5RXfeK6X3vEEr17TxLo2/d4vPOuCnNKaX0R47bqWOY8pJZrK8pWnj5HM5rltczstkcp9MeR1sbbt7PNwuJ0Wa9vKe0290DeFUvrvDaubWN4UZHAqyQ2rm+hpDFIf9DARSzMwlSKaytA3kaQ14uOG1U1s7qxh7+A0Q1NJGkMeBu0cooWQgAVqA25et74VyxJ8cyh0dM4ci7DPVVEpHvQ4+fmrl54035uN0yEEPE5taDDHK8nrclS8N0WU0FXnJ53Nz5lj46Y1TRwbj+GyTljbluPGNU18/bk+tnbVVAz/85q1zdqrdzpVMecUwO/fsppsThHyOPn5ayof9/oNLTx9eFwv/Cs8036Pg4agh0QmR0dd5XqKnBC0vXFTG68MTjOZyNAa8RLyulhS72MkmqF3LIbH7eD6VY20RnwMTKVor/FR63fxyuA0mzsjBNxO/B4dDqkh5OHu7Se89g7Z4bv8bm3EtqQ+QFPYx9/cuZHnj03MGfroxjXN1Afd7OmbZHNH7Sm9jMdjab66U+dauX1L+6mfifNAwROxq85PT1OQK5bWLRpr/vOFZQl3b+/k2FiCloiH7+wa0M9nrY+jY3F2Hh4nlcvzGzetIJ2HdC7Hs0fGqfG7uWltszaYcDuLxmBHRqN8+uFDPHUojcsSxOFgRUuIT75zG7m84pvP9xHxuXj9+hb2D0UZjaaJ+LRXh9fl4LoVDXx7SQ3HxxLUB920RDw89PIwsVSOd+9YQo3ffU6fnfaIm97JNALsWGrmLRcrm7tqeOrwBADLbG9hp0Mrbwu8fl0z779hJQ1BL3df1knvRGKGIt6yhLsu0896T9MJBXxjyENjqLzCPeBxsrYtzCP7hklmciQzWtAcKVnDFtaJx8cTHBiOzjuijWEmd2zt4HOPH+aVGbn5BBF47bpmbljVxN8+8AqWCIOTKb749DF+bkc3Ie+J1B8rZs1Zti6p5SevDNNRq8fFUs7WgLXaeO06/U5uDnkYmk6xfWktPzswSkvIS23QzV0XmUdK2Oviru2dHB6J4XVro71URnt4P7Z/hHg6h9ftYHt3Hc0Rb1Gm+oYNrcX3wF2XtfNPPz6A22nRWevD53YS9Dg4NpZgRVOQHcvraavxUeNzc2A4qudX9pxhOpll1zEtE4gnMgS9eiwMuJ2MRPX8+aY1TRwdS3DTmqZ5PW/vv3YZyxoDPHd0AqV0hJurehqwbIMtpyWkoKJBmbMk2oKzQuSFStyzvYvv7elneVNwhgIMtPfbXIZnQa+L33/jWoamUqxsDs0wULluZSMtES/1AQ8hr5ODwzEaQx4ODsdQKJwOC5fT4pWBaZrDHqaTWa5b2UTA42RpY5Bfub6HA0NRvru7H7fT4s2b22fIELsbAvzlWzfx4IuD1AbcbO+uYzSWwrKdDQYmk3Q3+PnqM718rn+K27a0c0XJ+uHGNc101mkDuy89fYxdxye1jKneT9jrwumwis9VOpsnlc2xo6ee16xpZufRcTt1ih5PUlmdEw7ghb5JdvTUz7kGivhdOlKB0yKXyVWMlmGofqpCCSYCGzsivDI4zRVL6+ed5HE2/ZPJYmjDl/qnWFIfoCHo4VXz1OqfitaIryhsaC8xri6EpwDYMCssW1MZwW6pO6/TYRWFXBcLO3rqi3lEJuMZ9vRO0Rrxce3KJv7tkYPawlaYkYfjfLOtqxa/24Hf7Szev1JrjfFYmlQmT8DjZN9gtJj8uRKddT68LotUNs+atjC1fjdOC9a2Rajxu4uKlRCcJOxZ1hjkm8/3ccAOWbKiOUg2p3j9hhYm41nS2RxfePIox8YTNIU8dNUF2HlknFxesad3ihtXN7O6Jcxr1rWeVK7b7NA569sj5POKb+/W8YY3LUC4vxXNIf7w1nX86OVB/uGH+zg4HCOWyoKl85F8/O7N5PLw1OExnj4yRketn7qAG/88FA7nAqP8Ks9sj47lTaEZVniTCe1FqYCb1jQzFk+zrbu26OE4m32DUWLpPD63A0F43boWmsIeHt0/ytKGwIwY2o8eGKV3IsHgVJKuOq003tRZw1hsmI7aICtbwzx5cJRXr25iaUOQWDrLmpYzF85ctqSWgMcxQ6AE8NLAFKlMnuGMDlt1sT4rpZa6rQugeDPMnzsvmxm+zuWwCHudxFI6jvrglA4ZcbZMxNMcGdUhDF/onSrOD65b1UhT2EN90FNRgXamHBmNMW7nxXplcHpOJdiFYGtXLc8eG2dDewSHJcUcrwV6GoNgD//5vOLF/ilCXidL6gN8+alj9E5ow5X3XbuMuy7r5Kf7hnnVysYZuSNXNYd4uXEal0Pm9K5pjfjpacxQG3CfFNaplKawt+x8r5Tu+gA1PhcOSyoaIs2XJQ0Bbt3UxqHRGPdsrxxaceuSWvweJ26nNWcOoGwerl2hb2oyUz7s3rHxOA1B/Qz2TSQrnqs54udf3rntlHW4YXUzfo+TVbMEAKUMT6eIprLU+t28MhBlTeup58ttNT5WtYRIpHPklWJLVy23bWnnu7v7+cZzfTSGPGxdUsf1dr6a6WSGf3vkELFUDrfTYkNTkO76ACPRFDeva5mhdN7YUcPAZJIVzUEdNjGVY317mI5aHXlgLtxOi2gqy2Q8y8P7humq98/puXVwROcsBp2/eCHyHCxvCvGmTTosWsGwxjDTkGE6maHW7yadzbO9u46DwzHqA27cLie32B7Ad11Wfk2SzOT42s5e9g9FCXpddNQKXfUBfuX6HlwOC5cD7rLHnhf7pnj6yDhup8VVPQ143TrUVk3Qy8fespFj4wkE+NJTxwh4HGRzeQ6OxNjadW7HixXNESaTY7idFvXBszeIMJwfWiM+hAkAGu0ckqXezJbAv7zrsuL/tRWMcecy2pmL1S1h9g5GcTutilEablzTXHHtYTg1PreTjroAR0YTZHI6TUiN38kVyxp49Zpm1rSGuXt7F195+higSGd0CLy5jGpXNodOaRhu0HhLwh02hr2sa4/w7h0nextdTDSHvTSFdCSlw6NxXr++lbWtYb6zu5+vPnOc9lof+4ejrJ0Iz5Cpvn5Da/E98EdvWsd9z/YSS2W5eW0zX93ZS3dDAK/bMUOhPfs529M3SW3Aza7eCVrCPpY3BYpGsE0hD3sHp3mhTytEJhPzS8nhdTu5dVM7161o4tBojGWNgeJcX0S4c1snR8bi9FSY57dGfNyxtYOpZEaH1D4Nti6pZeuSk6NtzJdKirLZsuENHRFq/C6+t6efkMeFEsVUPENbxEdeKW5e1zJjft9R66ej1s91ZXIyFmgIeri7RFZa+u5vCHron0zwk71DxFI5PvezI2zvriveV7fTYn17hD29kxwcjpLM5OibSPDWbR00hDz8+yM6RGXI6ySTy6OUYkldgPZaHxs7a2aUw2Onr3llcHre99LndvJ7t6zh+eMT3LDaeH9dqlSFEgzOzUSo1Y6hPxHPsHYeC2XDqYn4XfzcVd30NAZ57th4UTAQ8bkuaCx4y5I5lYURn4tljQGOjyfm5TG1ujXMz121tGjhMt9QULNxWMJbt3UW8zq018BoNEWt383AZBK/W+ehy+YUzxwZY01reIYgbi4sS7h1lvBvIdjWVcdtW9p5bP8IR0bjJDI5btvSzpXL6hmOpnipf4oVTSFCHgebOiPzrp9hYbisu46h6TS1fhe3b20/ZTi2Fc1B2xM0Qa3fRVuNl7VtkTnzsClOeA2ubgmzukTR9aaN5+6ZrvReWNsa5tBIjLDXRUftxatc2thRw3PHJ3FZ8BojCFhUOCzhpnUtPHFojJZ5KEDmS43fzdKGAL0TiRmJlM9n7sMldkjoZCbHqotA+FFqiHMqLEsqjvlKaUvdcl5x9UEP773m1MKK129oIeJ3sawhgO8sDTwifndRUXI6oSTL4bCkbGiX2YjIvBb2mzoi/OzgKCuaQxU9Z+uDbsI+F9FU9pxYhG9bUlsMwVSJxpCHjlofw9EU6yskNp9Nc9jLhvYaRmIpXreupeh18IaNbaSyeZKZ3IwxKeR10Vnro6PWx0g0xebOmorrkaUNAX75up551vBkSlOfnSqVZU9jkOePTZJXakENORZbKKsLzabOGnYdn2BTZw2XLaljOqlz6qyZp/eVy2HREPSglOIXr13G1q65+0TE5+I1a5tnvPfqbeU0QEetj/ue7cVhCT0N5/65edeOJeRRtIS9bOg8cwGg4fxy5bJ6Htk3glKKHcv1uON1OXC4HSSzeZac57lxY8jDL8xjjDWcHa9d28z+wSguh0VXnZd0TsvDuuwx+jVrm9nYEeGbz/XhcVVWSBouHUSE12+YaYj9pk1t1Afd7Dwyzrq2CO21vhMy1VljWSEsXoF1bWH2Dk6zaZaCYzYb2iMMT6fY0llLS8SLz+3gfdf2lI1ucbpm9hG/i83+k69fSblfypnKAC8knXV+3nftmc89T5eGoIcan5tkJlkxUs+Sej/Lm0LEMxOsbg3TVuPD47RY0RzkyGica1c2Mm6nvpgrgsmZ6ABWtoRYeZZRrwyLG1GnWkUtAkRkGDgCNAAjC1yc80E11qtQp63Azln7qpFqrVuh/aq1fqfDYrwH1dx+1VgnuHTendVep2rue1Cd9arGvrfYyw+nX4etwNHT/M1ioRrasxzl+t65PvdiYLGXtZreneWo9jpV+7xlLhZ7nau97xWo1rpVY/tVSz1g7rpUY9vNpprr1cW5n3eeCdV4jy9EnZYopU4KtVEVSrACIvK0UuqyUx+5uKjGepWrUzXWs0A11w2qv37zYTHfg8Vc9kpUY53g0nl3Xip1qsZ6QnXWqxrbb7GXH86sDtVQ73KYel1c5z7XVFNZF1Nd5sulUqdqrOepqKY6V1NdZlPNdStQLXWslnrA/OtSTXUuxdTr/HMxleVcsZB1Kh9E32AwGAwGg8FgMBgMBoPBYDAYDAaDwWBYxBglmMFgMBgMBoPBYDAYDAaDwWAwGAwGg6HqqDYl2KcXugDniWqsV7k6VWM9C1Rz3aD66zcfFvM9WMxlr0Q11gkunXfnpVKnaqwnVGe9qrH9Fnv54czqUA31Loep18V17nNNNZV1MdVlvlwqdarGep6KaqpzNdVlNtVctwLVUsdqqQfMvy7VVOdSTL3OPxdTWc4VC1anqsoJZjAYDAaDwWAwGAwGg8FgMBgMBoPBYDBA9XmCGQwGg8FgMBgMBoPBYDAYDAaDwWAwGAxGCWYwGAwGg8FgMBgMBoPBYDAYDAaDwWCoPowSzGAwGAwGg8FgMBgMBoPBYDAYDAaDwVB1OBe6AGeLiASAWmBCKRVd6PIYKlOurUz7LU5EZBtwJXbbAT9TSj29oIW6CBCR7Uqppxa6HPPB9L3Fg3l3Ll5M2y1+StsLWEUVjH0ish5YDxxYLGPW2WL63eLDtNniYT7rAtOei4PZ7WTWfIsf0/cWL6b/LW5M31tcmPa6NBCl1EKX4YwQkVcDfwBM2Z8wEAL+XCn1w4Us29kgIh9SSv29iGwC/hFQaGXlbyulHlnY0p0ZFdqqCxDgCFXUflCdbViKiHwc8AA/BCbRbXcTkFNKfXAhy3ahEJFyXrQC3K+Ues2FLs/pUI3vzmrtc5fKu7Ma2+9SaTuozvaDsm14FXrs+wzwCIts7BOR+5VSrxORDwE3At8BrgZ6lVK/vaCFmyci4gBuY5ZACPi6Uipb4TdVN+ZB9fY7OL9tJiJNwHZOPD9PKaUGz6rA54nFUtZTrQuqsQ9WY/+r0E5bgOeAz3KJrPnOZJy5WKnGvlegGvvgbKpF5iIiQeD96D5Vw4k+9a9KqemFK9npM9+6VGvfq9Z+d7G1l4i0Ab8LrEVH78sDLwIfU0odv9DlOVsuuvoopRblB/gp4J+1LwA8utBlO8t6/cj++wCw3N5uWMz1qtBWjwGPV1v7VWsbzqrfw6ezvxo/QBz4EfBj+29he3ShyzaPslfdu7Na+9yl8u6sxva7VNquWtuvXBsCD5drr8Uy9pW0008Aq7SeC12206jD54CPAFuBHrSA9iPA5+fbjvY+0+8u4s/5ajPgt4BvAR8GfgH4deCbaOHNgtd7EZd1znVBNfbBaux/Fdrpp+XqtFjGvTO8D6c9zlysn2rseyX1qLo+WKaOVSFzsceuO4E6wIFWLt8JfGuhy3a+6lKtfa9a+93F1l7Ag8D2WfsuBx5c6HtVDfVZzOEQU8AG4ImSfRuA5MIU55xRZ2ui65RS+wGUUiMisjhd9jTl2spV5rhqaD+ozjYs5WkR+RTaKqlgKXEjsHNBS3VheQm4XSk1WbpTRH6wQOU5Harx3Vmtfe5SeXdWY/tdKm0H1dl+cHIbPo0WjoVE5GYW39i3VkT+Gy3U8wAJe7934Yp02nQrpd41a9+zIjKX9Wk1jnlQvf0Ozl+bvVEpde2sfR8XkYeBj53luc81i6msp1oXVGMfrMb+V66djgLXishbuXTWfGcyzlysVGPfK1CNfXA21SJzqQe+qpTK2/+Pi8hXgQ8tXJHOmPnWpVr7XrX2u4utvXzAC7P2vWDvX4xcVPVZzEqwdwK/LSIfQ7vU5YBdwLsXtFRnz33Aq4BviUiNUmpCRELAngUu19lQrq2eBSwR+THV1X5QnW1YRCn1YRHZAuwAVqLdwD+tlHp2QQt2YXkjJwSIpbz+QhfkDKjGd2e19rlL5d1Zje13qbQdVGf7Qfk27Ae+CFzG4hv7rrD//gGQhWJYlz9YsBKdPt8QkW8DD3FCIHQd2jK3EtU45kH19js4f212WER+m5kCxZvQgv6LjXJlvZGLsKzzWBdUYx+sxv5XqZ3eCyzn0lnzfbPCOPOthSzUGVKNfa9ANfbBGVSRzOWfgYdEZBe6T0WAdcAnF7RUZ8Z861Ktfa9a+93F1l6/B3xbROKceM68LK41Wyml9ZlGj6sLVp9FmxPMYDAYDAaDwWAwXDqISAM6hEYNdp4ktOX+UwtYLMMiwM71cytaoFiDfn4eR4cxuqhy/SymshoM1UbJOLMN2A/sN2OMwXDmiIgTrciLoMezfYt1LKumuhgubkTEhw65Oa6UKmeAv6iw61MDTCxkfayFuvD5QkQ+sdBlOB+IyD8sdBnONeXqVK3tB9XZhobqoRr7XrX2uUvl3VmN7XeptB1UZ/tB9dZrMSAiFjAG3A/ca/8dBf78DM5l+t0i42zrppTKKaXuU0r9llLqfUqp3wJGLkbhVbmyKqXuQ+cgqQqqsQ9WY/+rxjrNhYjcr5QaQQu5r0ALuj9oewhUBdXY9wpcas/rYsA26ngz8PPoHJe/ANxmK5MWFWdbl2rte9Xa7xaqXiKy2t7MAW9Bh8P+iIgEFqI8Z4uIBEXkN4D/RqcW+JyI/KbtRXjhy7OYPcFEZBtwJVo7OgH8TCn19IIW6hxQrfWajYi8GwhRhfW8VNrQsDCIyH+gQzIOKaXWz+P4u4CPAgp4Hvhbquz5vJT6XDW+Oy+V9qvGtoNLp/0ARORypdSTC12OSxE7jMbPZu8GNiql6uf4XVU+n9Var0qcbd8TkT8us/ttwBeVUn945iU794jI24DfQIcu/Trwl0opJSI/Ukq9ekELdwZU47NajXUqx6U25hX6mIj8BLihkPtHRH6qlLpmgYt32lTzc1rNdasmRORzwG50eN9JToQi3qSUeudClu10OZ26VOvzWa31KsdCjX8l49CngMPoeeDV6Hyxt1/o8pwtIvJN4POc3G/erZR60wUvz2JVgonIx9GJvWffyKxS6tcWsmxnQzXWy7bcnc3fAXcAv0aV1LNANbah4eJCRK4FosB/n0oJJiIrgC8Dr1ZKjduDaZ4qej6rtc9dKu/Oamy/S6XtoDrbDyq2oQD3K6Vec6HLYwAReQY9lk3O2v+DSm1Sxc9nVdYLzl/fE5FvoO/ZJ9GCGwH+CviIUurhMz3v+UBEHgOuVUplReT96JyzPwfcp5S6YWFLd3pU47NapXUyYx4gIgPAA8CrgRWFkE0i8rRS6rIFLdxpUo3PaYFqrlu1ISKPKKVeNd/9FzPzrUu1Pp9VXK+LavwrUYI9pJS6vmT/jP8XCyLyKPCqglGJvc8CHlFKXX2hy7PoXFBL2KaUunbWvvtE5KJaxJwB1VivKNpyV9CeKABbgZxS6mslxy32ehaoxja8aBCRjwJRpdTfnOV5aoC3K6U+af/fBnxCKfXWsy7keUYp9bCIdJfuE5EedLLWRiAO/JJS6mXgl4B/VkqN24eurcLns1r73KXy7qzG9rtU2g6qs/2gfBsKsHHBSmR4I1Auhvzr5/hNtT6f1VovOE99Tyn1ZhHZCHwQGAQ+AYxebAowGymEaVRKfUpEngW+BTQtbLHOiGp8VquxTmbM01xh//0DtCcmIhK0/19sVONzWqCa61ZtfENEvg08BEyhFSfXAd9cyEKdId+cZ12q9fms1npdbONfm4g8AtSJSI1SakJE3OhoMouRfwYeEpFd6H4TAdahjdIuOItZCfa07dHwQ068gG4Edi5oqc6eaqzXS8DtpZa7IvJ3wJ0i8laqp54FqrENFyUi4pwj10MN8AHsl69Sqg+46BVgc/Bp4P1KqX0icgW6Xq9Gx7QvWGA4gL4qfD6rtc9dKu/Oamy/S6XtoDrbD8q0IWivowUqzyWPUqq/wv65cjpV6/NZrfWC89j3lFK7gF8UkVXAH6OFHBcj/y4iXUqpowBKqSdE5B4WpyC+Gp/VaqyTGfMApdSRMvuiwPcWoDhnSzU+pwWquW5VhVLqb0Tks8DlaPnLceC/gO6FK9WZoZT6axF5HNgATHOiLstmHVqtz2e11uuiGv+UUqvL7WZuo7+LFqXUF0Tky2i5ZAQdjWHfKdZv541FGw4RQES2ADvQL9MJ4HGl1LMLWaZzQbXVS0Ra0ZaW6Vn7L+PEYDjBIq9nKdXWhguNiPwe8G7gGDAMPIO2CP9NpdTTItIAPK2U6haR9wBvALxAALgV+AY6brEL+H2l1DdE5F50YtNXgB+gLRS+rZRaLyJe4F+Ay9BWgB9WSv3YPvetgB/oQYel+a05yh21z3sTMA78Ljr0ThfwIaXUN0VkHfCfgBuwgDuUUvvmcU+6S8obtO/LKyWHeJRSa2xrpQxwF9ABPILOgbGBKno+q7HPXUrvzmprv0up7aD62g/mbMO5jCsMFyHV+HxCVdfrgvQ9EfmCUurt5+p855PFVNZyVOOzWm11MmNedVJtz2kp1Vy3aqJCqDmA7y+2UKsi8rdoj+wcUA+8Vyk1LGXydVbr81mN9brYxj8REbSscwdahjkIfEcp9dSFLsu5QEQcwG3MyiUHfH1B7u9iVoIZDIbqR3Tyzc+iw1M40ZYmn2JuJdifAhuVUmMi4gT8Sqkp+7ifASuAJdhKJPs63ZxQKv0GsF4p9fMishodG34lcA/wh8AWIIVWOl2jlDpWoewKuEUp9T0RuQ+tlHsDsBb4L6XUZhH5R3RC0f+x3Zwdhfjzp7gvpeUNA68opVrLHPcp+/yftf9/EPjtxTqIGgwGg8FgMJwt5YRWFysi8mO1yHKBGQwGg8EgInG0/GXGbrSspn4BinTGiMhPlFLX2dsb0WGVPwL85WKZTxgufkTkM8ALwPPoyE4hYAxIKaU+tpBlOxNE5HPAbk7OJbdJKfXOC12exRwO0WAwXBq8Cu1xFQcQkfnEj/6BUmrM3hbgz0XkWiAPtAPNp/j9NcA/AiilXhaRI9hhBYEHC67SIvIiWplWVgkGpIH77e3d6IErIyK7OREC4HHg90SkA/jafLzAZmMr+A6JyJ1Kqf+1rUc2KqWeB76O9vz6rK0EXAkcPN1rGAwGg2HxU2pAsdBlMRgM88ZYrRoM54kzHRdF5DGl1FX2769SSn3hfJTPYFjkXFSh5s4Sp4i4lVJppdQuEbkd+Dw6v5HBcK7oUUr9or39IxF5UCl1o91nFp0SDOhWSr1r1r5nRec9u+AYJZjBYFgMlFv8Z9HhA0GHPiwlVrL9DqARncgzIyKHyxw/m7lyRKRKtnPM/R7NqBPutvnCb5VSedtDrRAj9wm0h9j3ReQXlVI/mrNwIl8ErgcaROQ48Efoev6LiPw+OuzjvWjrke8DN9sKuxzwEaXU6FznNxgMBoPBYDAYDAbDTETEoZTKKaWusnd1A28HjBLMYDiZNwLlotwsxvxGv44OAzgEoJQaF5FbgTsXslCGqmO3iPwLsAu4DvixvX+x6m++aadoeYgTueSuA+bj3HDOqRSf1bDAiMiHRMRf8v93RaRmAYtUVYjIR0XkNy+264tIm4h8xd6+3n5ZICK3ishv29u3icjaC1viBeVh4HYR8YlICHiTvf8wsM3efuscv48AQ7YC7Aa05xboZKahOa75DgARWYnO4fVKhWPPChFZBhxUSn0CPRBsPNVvlFJvU0q1KqVcSqkOpdS/K6UOKaVep5TapJRaq5T6Y/tYpZT6sL1vg1Lq3vNRD4PhXCIih23PRUTksVMc+8cicpO9PWPsrCZOdR/m+N1FNWaISI2IfGCex0bPd3kuZURkmYg8KyJXiMj9IvKMiDwiIqtFJGR7GLvsY8N2v3QtdLmricIzXjr/M1ww5jJ4uthYTGU1lFA6nzGcGSLSLSIvi8h/icguEfmKiPhF5EZ7DNstIv8hIh77+MMi8pci8qT9WW7v/6yIvLXkvCfNMexrPSIiO+3PVfb+60XkxyLyBXR0j9Lffwx4lYg8JyK/bv9+c8k5H7VDpxnOMZX6V6nsxLCwKKX6Z+dasvcvulyDSqknlVJDs/blqlm+YtZiFx6l1AeBfwdGgb9QSv2p/dX/XbhSnTlKqb9Gj5MxtAz2ReC9aJnrBccowS5ePgQUBXlKqVuUUhMLVhrDBUEp1aeUOkmho5T6Zkn819vQOaUuCZRSO4EvAc8BXwUKbrN/A/yKLRiea3H5P8BlIvI0WrH1sn3eUeBREdkjIn896zefBBx22MIvAe9RSqU4P9wN7BGR54DVwH+fp+tc0hQ87wyLjxJL20rf/6FS6of2vx+iZOysJk51H+bgNiqMGQvUL2qAeSnBDOcPEVmFHlN/Hvhz4FeVUtuA3wQ+qZSaRlvsvcH+yT3AV5VSmQUobtVTaf5nOK/cs9AFOA0WU1kNhvPBKuDTSqmNaEvyD6NzRt+tlNqAtpD/lZLjp5RSlwP/BPz9aVxnCHiNUmoreo32iZLvLgd+Tyk1e07128AjSqnNSqmPA58B3gNFY0qPUmrXaZTBcJbMkp0YDAbDokFELGAn8BW0V5glIg7gzxa2ZGeGiPwt8MvAFWiv6aeUUsPAXyxIgZRS5jOPDzqvzjPoBHXvs/e9Dv1wPo/OEwRQZx+7C50AcqO9/6PAb5acbw/adT4AfMc+xx70ZOuD6FxCu4Ef28cfBhrs7Xfb538e+Jy977PoSdpj6Hw/by251keAp+zf/D9730nXtfd/DK2Z3QX8zULf93Pchr+H9ub5IfBFtKDnl+x78zxaGOSfx/38Lbttngc+Zu/rQed+egatpFlt738T8ATwrH3d5pLn4XPAj4B9wC/Z+7uBPfb29ej45KAn0v8EXIVOingIrRTqAXaWlG0F8MxC32vzMZ+z/QDvBJ60n/N/BRxAFD34P2+/Xwv9qdHuv0/Zn6vt/R8FPg08gA5R0gj8AP3e/lfgCFqB+ifAr5Vc+8+ADy70PVisnzJtd4U9pnjtsecFYL39jnsYuM8edz4FWPY5DnNizIuWnLvc+/ezaG/Qk8bOavoU7oN93x5CT4xfRiv6xf5uxhheYcx4CK30+AnwG4X7V+E6PwG+DOy1z/0Ou213o+OVn6r//Yd9vYOFPoUO1Zqwy/PXQBB40O6Xu4E3n2adt9nlfAYd/rXV3v/Bkntxr73vOvu6z6HH5dBCt+sCPEfdwKB9H9fZ9z9Rcl+eA16yj70a+Ia9/TiwfqHLX22fkme8mxPzvyeAdSXHPGQ/5wG7Tz1lP79vtr9/D/A19Dx0H/BXJb+92W67ncD/AkF7/0nzfXQ4nz3o9+vDC31vzMd8Fupj98eX0cqMPfaYcxPwqN3HLqfymr8ePe98lpK5pv3dSXPbha7rYvjY7XG05P9Xo8NDPVyy70Z0bmXQc8hl9rYLGLW3P0v5+U7p+zeCXqPvttspbu+/nllzS2bOUb5dst8P7Lev/THg/yz0PbxA7VROrnUY+Ev7uX8SWG4fW2nuWGmcc6DntbvtPverJW39/zgxhyzIYN4D/FNJuxs5mfmYj1LY/fEDJf9/FJ1aY861mL1drr90o/O+/Rt6jf8A4LO/W46WgT5vn7un0nnMZ0YbxdFy4tLPj7HHssX2AX5Ssr0Rva7ZDvxoQcqz0DdksXyAOvuvzx4Mm4FjwNJZ3/8j8Ef29quB5+ztj1JeCXYH8G8l+yP238PYE+bS/9ECi1c4MZkuXPez6MWthbb43m/vvxktBBb7u28D15a7Lnoy/wonBEs1C33fz2H7bbNf6H50DNL9aCVYfckxf8qJCVWl+/l69ASqoCwr3P8HgRX29hWFDg3UltzPXwT+tuR5eN5+nhrsZ6mNUyjBSspWOnn7MbDZ3i5Ycy/4PTcf8znTD7AG+Bbgsv//JFr5r4A32fv+Cvh9e/sLwDX2dhcnBLgfRQvGCxOxfwJ+x95+nX2+Brvf7bT3W8CB0neD+ZyTtvtT9OL1n0va4HogCSxDL25/UHi3UUYJNsf797PlfldtH2YKWyaBDvt5fRy4hgpjeJkx4yG0pw8Vvi+9zgTQCniAXk4seH4N+Ht7e67+95j92wZ0SAcXJeOcfZwTCNvbDejxWeZZZ5d9jUb7uLuB/7C3+9DW16X34lucELQEAedCt+sCPEfdaKXmD4D3oedE/XMc/zxaefjkQpe9Gj+UF8L+eklfawX22tt/DrzT3q6x2zGAniMeRM/lvWihe6fdnx4GAvZv/i/wh3O8K3YD7aX7zMd8LsWP3R+zwAZ7zHkGLZgX4M1o5VelNf8ngD+0t9/Aiblm2fnRQtd1MXzs9jhS8v98lGAFGY0LGLG3PwPcZW8LkC45f+H9+1H0fNVCz0+y9v7rKVF02fvKKsHsff+CNtA6iD1frfYP5eVLh9Hec6DXAwXZRqW5Y6Vx7lfQSjOn/V1hDXCYE/KbDwCfsbffw0zZiZGTnb92r6FEqWI+F/cH2MJMpcSLdh881VqsUn/pRo+Xm+3jvlzSh58Abre3vWhZbNnzLPR9uZg+6DlHpMz+Hyx02c6wPo8C7pL/a9GGBoMLUR4THmr+fFBEbre3O9GCg4eVUocAlFJj9nfXoAdOlFI/EpF6EYnMcd7dwN+IyF+iJwWPzHEs6EnfV5RSI7OuC/B1pVQeeFFEmu19N9ufZ+3/g2hvoUdmX9cOi5QEPiMi30G/kKqFVwH3KaXiACJSSMK3XkT+FD14B9FW5AXK3c+bgP8snEcpNSYiQbS1/f+KFEP2e+y/HcCXRKQVcKOt8Qt8QymVABIi8mO0VeFzZ1C3zwA/LyIfRgsALz+DcxjOAhF5ghNtXuBdSqndC1GeKuBGtOL6KbtP+dDhSdKceC89A7zG3r4JWFvS/8J2/jiAb9r9DPT7+XYApdT9IjJubx8WkVER2YI2cHhW6XCZhtOnUtv9MdriK4n20CnwpFLqIICIfBHdRpXy4pz0/j0fFVgkPKmUOg5gh1LtRluiz3cM/9I8r/OUUqrfvs4BtHUf6LnLDfb2XP3vO0qHkk2JyBC6f81GgD8XkWuBPNBuHzcw67hydZ5AexX+wL6+A+i3j98F/I+IfB0tsAQ9Cf87EfkftLDs+DzvQ7WRRofJ/D7aw/aQiNyplPpf0Tdyo1LqefvY/0Z7z//JgpT00uTLaCXlHwF3oYV3oOfzt8qJnLJetOACdESKSQAReRGd/7QGLfB71O4fbrQCeYry74pHgc+KyJfRnmUGw6XMocI8XkReQPcxZYdK70b3sXJr/muBt9j7v1OYa1J5fmSYH10iskMp9TjwNrR3wS+LyHKl1H7gXWiv8AJ3oz137ka/9+BEPukvo5WZ5XJcRoDjSqm8iPwcel5xKsrlmf4MWun5yCU0Xz1JrmU/61+0v/8i8HF7u9LcsdI4dxPwKWXnkZp1Twvj1TPYfa8MRk52/qhBKyA/ucDlMMwDpdSzItIkIm1oj8xx9Nrp46dYi1XqL0fR4+Vz9v5ngG67P7crpe6zr5sEEJFK51mQ/FAXKW9ER+mYzesvdEHOEb+Ofk8MASilxkXkVnQEiguOUYLNAxG5Hj3w7lBKxUXkIbRl7Kpyh5fZp9Da8dIcbF4ApdReEdkG3AL8hYg8oJT647mKY5+vHKlZxxX+/oVS6l9POlGZ64rI5ehJ+j3A/0Er3aqFcvfts8BtSqnnReQ9aEuuApXu5+zzWMCEUmpzmfP/I/B3Sqlv2s/RR+coT6V2PRVfRQtKfoQOhWiE9xcYpdQVC12GKkOA/1JK/c6MnSK/qWzzESDHiTHMQr+fE7OOB52As/S8lSjE729BW/sazoxKbdeCnuS60ONfoV1O5z041/h3qVE6PuXQlrHZ0xjDS/tFcX5iK0DcFa6TL/k/z/z630nlLFOWd6AXYduUUhkROYw9R5pFuXMJ8IJSakeZ49+AFkbeCvyBiKxTSn3MFl7cAvxMRG5SSr1c5rdVj1IqJiJvRCtbPg/8goj8PrqP3oue54IOA/annBBiGc4zSqle2zBjI1qA+8v2VwLcoZR6pfR4EbmCyv3jB0qpt82+Rrl3hVLq/fa53gA8JyKbzZyyPCISVUoFz8F5rkdHCnnjWRfKcK451fiXLfMbNetvKWXnR4Z58xLwcyLyr+iQlL+GNv75X1tB8RQ6rHYBj22kaKGVZqDDdX1DRJ5ER3EpnQsV+CTwVRG5E+1tVu6Y2ewCsiLyPPBZpdTHlVLPiMgU8J+nW9HFSjm5VuGr0sPsv5XmjpXGufnIwCrNM0uPASMnO9d8DOixDdR+gBZ034U2EL5PKfVHItKNDtn8U+BK9BzzP9GhLJuAdyilnhSRj6JDt7ejHQ/+Sin1b3b7/xVaCaCAP1VKzdegz3AyX0F7qrag5/zzWYuV7S92286eg/qoLHep2O8MmoIBapn95eYdFz1KqSfL7Muhn70LjnXqQwxoi6BxWwG2Gv3i9gDXichSABGps499GP0SKSxsRpRSU2jLo632/q1A4Xdt6FjTn0e73m+1z1POogj0hO0uEamfdd1KfB94r+2thIi0l2j+Z1zXPiailPou8CFg83xuziLhYeB2EfHZVglvsveHgH4RcWG32yl4AH0//aDvv92+h+zJMqLZZB8fQYeQAvi5Wed6s4h47ba8Hj15nw8zng3bquL76LALl8xE21DVPAi8VUSaQPczEVkyx/EPoBcj2MdvrnDcT9GT8oIVUm3Jd/ehQyRuZ6ZHqOH0qNR2nwb+AC1Q/8uS4y8XkaWiE8DejW6jSpz0/i1zTKWxs+qZYww/1T05jLaMhsqW0XMx3/5XYHZ5IsCQvei6AW1dP19eARpFZId9bZeIrLOfp06l1I/ReeRqgKCI9Cildiul/hJ4Glh9GteqCpRSh5VS6+3tCaXUdqXUPyilXqeU2qSUWjvLGOsadASCiQUp8KXLvehnN1LiVf594FdtYRCivZfn4mfA1SKy3D7eLyIrK70r7P7xhFLqD4ERtADKYDCUp9Kav3T/6zkx1zzdua1hJnml1PuVUhuVUncopeJKqQeVUluUUhuUUu+1Pc8L/LNS6gp7jNsPoJQaVEpdqZS6XCn1OwVF9qxxcZ99jStnHfPQbGV1yXcZpdSN9hj6cSjKeCxOeNBXPXPIte4u+Vvwyqs0d6w0zj0AvN9WeM5HBjYfjJzs3PDbwAHbIPwHaK+ey9H3aJto7yLQ+aH+AZ0TaDXwdvQc8zeB3y0530a0Mc4O4A/t9niLfb5NaOeEvxYdaclwZtyLVua+Fa0Qm89arGx/qXQBezw8LiK32cd77DX8aZ3HYDjXGE+w+XE/etDdhRa4/AwYRodE/JotbBlCh+b6KPCf9rFxTig+vgq827aQeAod3xh0rPG/FpE8kEHHOwYtMPyeiPQrpQohh1BKvSAifwb8RERyaDfS91QquFLqARFZAzxuzyWi6KS8y8tcN4S2jvKiNfS/fvq36uJEKbVTRL6EDjd4BO3mDloo+4S9bzenEJ4qHUJtM/C0iKSB76IH7XcA/yInW1F/FG2h1ot+bpaWnO5JdCzULuBPlFJ9tiXFqbgX+DcR+SA6j8sBtGD5LVxCE21D9aKUetHuSw/Y79cM8P/N8ZMPAv9sv3edaAHE+8sc9/+AL4rI3eiQKf1ogTxKqbTosKQTtmWK4Qyo0HbfQOdU+IKIOIDHROTVaGvqx9EWhBvQ7XbfHOeu9P4tpezYeYlQaQyfMWaU+d18LKPnYr79DwCl1KiIPCoie4DvoZWi3xKRp9Fj9Lw9s+x++1bgE6LDUDmBv0fPsT5v7xPg40qpCRH5E3txl0PHwP/eadb1kkJE/hFtdXvLQpflEuQraGFRaRjKP0E/37tsAeFhdMiUsiilhkVHOfiiiBRCNv8+etwr9674axFZYe97kBPegIYK2O1wknW6zPLwEpF/Ap5WSn1WRF6HbscRdKL4wrk+il4TLLP//r1S6hP2d+9Ev2vd6HXLB+yf/TtwmX3t/1BKfdx+178f7an0olLqnvNV/0ucj1J+zV+Ya+5EzzWPwpxz2yMXuuCG84uIvBv4M+DDSofgu1QoJ9f6CuW98irNHSuNc58BVtr7M+i56z+dTWGNnOy8cKqQeXOFmC1QLmXINcAX7TX6oIj8BG24+k0Mp40tUw4BvUqpftFh4udci83RX+aSm7wL+FcR+WN0X7pzjvOY8MCGC0Ih2Z3BYFjEiI6bHVFK/cFCl8VguFixhYA5pcPG7QD+xbZawxZI7ERPzvYtYDEvGWYLCQ0Gg8FgWAyIHQ5RRO5AC25fh04m/xRwBTpk/klKMLRRwj50GK396PyMfqXUG20l2M3ofIshtOFlC1og+1fAW2wr7U+iDeteAD6mlHqNfY0aW9nfByxVSqUK+87/HTEYDIaTER1W7TJl57M3VB+2Efe3lVLrReRvgb2qfMi8bxc8LkXks/b/X5n1+4+iZdR/ZB/332hnghuAXUqp/7D3fw74X6WUUYIZDIbTwoRDNBgWOSJyH/ButMWwwWCoTBc6IfnzwCeAXwIQkbVoYdSDRgFmMBgMBoNhnhSt05VSg2jPn+1zHL8abQ2/T2lL1M/P+v47SqmULTAeQiemvxEdsvYpO6LIjWhvsYPAMhH5R9u7bMo+xy7gf2zvsUWZP8JgMBgMi4bSMOfnItRduZQhDwN3i4hDRBrROX9PyjNkMBjOPXYkn6rBhEM0GBY5SqnbF7oMBsNiwFZwnZRDRSn1IlqgZLiAKKUeAh5a4GIYDAaDwXCmVEr8nmWmsWlpgvm5wrDMTi7vtK/xX0qp3znp4joH8WvRYfXuAt6LzqVyLXAr8Acisk4t0mTqBoNhcaOU6l7oMhjOL2XCnH+B0wuZN5tyKUPuQ+cIex49hv6WUmrgHFbDYKgKRORP0DlK/8H+/8+AQcCDnid6gPtKvC2/js4B7AX+QSn1aXt/FPg79BzzN5g7b/uiwoRDNBgMBoPBYDAYDAaDYR6UhEN8C/DL6Lx5deiQh1eg8wM/gg6L6EXn2Ph/6HCIe4EblFIHROSLQKgkHGJUKfU39jX2oHPh+NG5Na9WSg2JSB3a6j4GpJVSU3a+zM8CW4EupdRhEXEBx4FVJiSiwWAwGC52Zo+DBoPh9LDDi35NKbXVTvexD51D/Ub0fFXQufT+Sin1sIjUKaXGRMSH9rq8zlZsK+BupdSXF6Ym5w/jCWYwGAwGg8FgMBgMBsPpUdE6XUS+jA5NuA94FkAplRSR9wHfEZERtGXt+rkuoJR6UUR+H3jAFmhk0J5fCeA/7X0AvwM4gM+LSAQt6Pi4UYAZDAaDwWAwVD+2EdSoiGxBh9R+Fh2m+2Z7GyAIrECHGf2giBQii3Xa+0fR3ptfvZBlv1AYTzCDwWAwGAwGg8FgMBgMBoPBYDAYDIZFiIjcDVwFtAD/hfYC26uU+tdZx10P/Clws1IqLiIPAR9VSj1UiHhwQQt+gbBOfYjBYDAYDAaDwWAwGAwGg8FgMBgMBoPhIuQ+4HVoD7Dv25/3ikgQQETaRaQJiADjtgJsNXDlQhX4QmLCIRoMBoPBYDAYDAaDwWAwGAwGg8FgMCxClFJpEfkxMKGUyqHDaa8BHhcRgCjwTuB+4P0isgt4BfjZQpX5QmLCIRoMBoPBYDAYDAaDwWAwGAwGg8FgMCxC7FyxO4E7lVL7Fro8FxsmHKLBYDAYDAaDwWAwGAwGg8FgMBgMBsMiQ0TWAvuBB40CrDzGE8xgMBgMBoPBYDAYDAaDwWAwGAwGg8FQdRhPMIPBYDAYDAaDwWAwGAwGg8FgMBgMBkPVYZRgBoPBYDAYDAaDwWAwGAwGg8FgMBgMhqrDKMEMBoPBYDAYDAaDwWAwGAwGg8FgMBgMVYdRghkMBoPBYDAYDAaDwWAwGAwGg8FgMBiqDqMEMxgMBoPBYDAYDAaDwWAwGAwGg8FgMFQdRglmMBgMBoPBYDAYDAaDwWAwGAwGg8FgqDr+f4Exyu5skU+DAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# a lot of data, so take ever 50 to improve plotting\n", "scatter_matrix(data_train[::50], figsize=(30,15))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Not much to be gained beyond the correlation matrix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Building Pipeline and training models" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "from sklearn.pipeline import Pipeline\n", "from sklearn.model_selection import GridSearchCV\n", "from sklearn.model_selection import RandomizedSearchCV\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.model_selection import cross_val_score\n", "from sklearn.metrics import mean_squared_error\n", "from sklearn.ensemble import RandomForestRegressor\n", "from sklearn.svm import LinearSVR\n", "from tensorflow import keras\n", "import tensorflow as tf\n", "from tensorflow.keras.layers import Dense\n", "from tensorflow.keras.layers import InputLayer\n", "from tensorflow.keras.callbacks import EarlyStopping\n", "from tensorflow.keras.callbacks import ModelCheckpoint\n", "from tensorflow.keras.callbacks import TensorBoard\n", "from copy import deepcopy" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "from sklearn.base import BaseEstimator, TransformerMixin\n", "class ColumnDroper(BaseEstimator, TransformerMixin):\n", " def __init__(self, columns_to_drop=None):\n", " self.columns_to_drop = columns_to_drop\n", " \n", " def fit(self, x, y=None):\n", " return self\n", " \n", " def transform(self, x):\n", " if self.columns_to_drop != None:\n", " return x.drop(labels=self.columns_to_drop, axis=1)\n", " else:\n", " return x\n", "\n", "def display_scores(scores):\n", " print(\"Scores:\", scores)\n", " print(\"Mean:\", scores.mean())\n", " print(\"Standard Deviation:\", scores.std())\n", " \n", "def visualize_model_preformance(model, x_valid, y_valid, s=1, name=\"model_name\", alpha=0.1):\n", " y_predicted = model.predict(x_valid)\n", " plt.scatter(y_valid,y_predicted,alpha=alpha, s=s, label='model')\n", " plt.scatter(y_valid,y_valid,alpha=alpha, s=s, label='target')\n", " plt.legend()\n", " plt.ylabel('predicted')\n", " plt.xlabel('expected')\n", " plt.title(name)\n", " plt.savefig(name+\".png\")\n", " plt.show()\n", " \n", "def train_and_vis_model(model, x_train, y_train, x_train_v, y_train_v, x_valid, y_valid, s=2, cv=3, scoring=\"neg_mean_squared_error\", name='model_name'):\n", " scores = cross_val_score(model, x_train, y_train, scoring=scoring, cv=cv)\n", " rmse = np.sqrt(-scores)\n", " display_scores(rmse)\n", " model = model.fit(x_train_v, y_train_v)\n", " visualize_model_preformance(model, x_valid, y_valid, s=s, name=name)\n", "\n", "\n", "def plot_history(history):\n", " pd.DataFrame(history.history).plot(figsize=(8,5))\n", " plt.grid(True)\n", "# plt.gca().set_ylim(0,1)\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'popularity')" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEKCAYAAADjDHn2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaOUlEQVR4nO3df7RdZX3n8fcngCEQURjxTn51LjMNtBAUmrvSVKczF7FDpjIN7RINVQmFTrpYWMHJrDHoH5FxZS1mLUEEhZkomDBKMvFXyfCjFjOeqi0QA6WEJEazzB0ISRMRhVynpCT5zh/7SbK9Oefuc0/OPj8/r7Xuuns/Z+99nuf+OJ/zPM/e+ygiMDMzG8+kdlfAzMw6n8PCzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCpUWFpJOlbRR0t9L2iLpllR+lqTHJP04fT8zt8/NknZI2i7pslz5XEmb02N3SlJZ9TYzs+OV2bM4ALwrIt4OXAQskDQfWAZsiIjZwIa0jqTzgUXABcAC4G5JJ6Vj3QMsAWanrwUl1tvMzMYoLSwiM5pWT0lfASwEVqfy1cAVaXkhsDYiDkTETmAHME/SNOCMiHg8sisI78/tY2ZmLXBymQdPPYOngF8HPh8RT0oaiIg9ABGxR9Jb0+YzgCdyu+9KZa+n5bHl1Z5vCVkPhClTpsydNWtWQ/U+fOh1Jh1+PVs55bSGjtFtDh8+zKRJ/TeF1Y/t7sc2Q3+2u5E2/+hHP3opIs4eW15qWETEIeAiSW8GvilpzjibV5uHiHHKqz3fSmAlwNDQUGzatGliFU4qa+5gePvybOWTLzR0jG5TqVQYHh5udzVarh/b3Y9thv5sdyNtlvR/q5W3JGYj4hdAhWyuYW8aWiJ935c22wXkuwIzgd2pfGaVcjMza5Eyz4Y6O/UokDQFeDfwQ2A9sDhtthh4MC2vBxZJmizpHLKJ7I1pyGq/pPnpLKirc/uYmVkLlDkMNQ1YneYtJgHrIuIhSY8D6yRdBzwPXAkQEVskrQO2AgeBG9IwFsD1wCpgCvBo+jIzsxYpLSwi4lng4irlPwMurbHPCmBFlfJNwHjzHWZmVqL+OjXAzMwa4rAwM7NCDgszMyvksDAzs0IOCzMzK+SwMDOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOCzMzK+SwMDOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOCzMzK+SwMDOzQg4LMzMr5LAwM7NCDgszMyvksDAzs0IOCzMzK+SwMDOzQg4LMzMr5LAwM7NCDgszMytUWlhImiXpO5K2Sdoi6cZU/klJL0p6Jn39fm6fmyXtkLRd0mW58rmSNqfH7pSksuptZmbHO7nEYx8ElkbE05LeCDwl6bH02Gci4tP5jSWdDywCLgCmA9+WdG5EHALuAZYATwCPAAuAR0usu5mZ5ZTWs4iIPRHxdFreD2wDZoyzy0JgbUQciIidwA5gnqRpwBkR8XhEBHA/cEVZ9TYzs+O1ZM5C0iBwMfBkKvqwpGcl3SfpzFQ2A3ght9uuVDYjLY8tNzOzFilzGAoASVOBrwM3RcSrku4BPgVE+n4bcC1QbR4iximv9lxLyIarGBgYoFKpNFTn0cnTqZx3S7bS4DG6zejoaMM/r27Wj+3uxzZDf7a7mW0uNSwknUIWFF+JiG8ARMTe3ONfAB5Kq7uAWbndZwK7U/nMKuXHiYiVwEqAoaGhGB4ebqjelTV3MLx9ebZy1SsNHaPbVCoVGv15dbN+bHc/thn6s93NbHOZZ0MJuBfYFhG358qn5Tb7Q+C5tLweWCRpsqRzgNnAxojYA+yXND8d82rgwbLqbWZmxyuzZ/FO4EPAZknPpLKPA1dJuohsKGkE+DOAiNgiaR2wlexMqhvSmVAA1wOrgClkZ0H5TCgzsxYqLSwi4vtUn294ZJx9VgArqpRvAuY0r3ZmZjYRvoLbzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCjkszMyskMPCzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCjkszMyskMPCzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCjkszMyskMPCzMwKOSzMzKyQw8LMzAo5LMzMrNDJ7a5Apxtc9vDR5ZFb39PGmpiZtY97FmZmVshhYWZmhRwWZmZWyGFhZmaFHBZmZlaotLCQNEvSdyRtk7RF0o2p/CxJj0n6cfp+Zm6fmyXtkLRd0mW58rmSNqfH7pSksuptZmbHK7NncRBYGhG/CcwHbpB0PrAM2BARs4ENaZ302CLgAmABcLekk9Kx7gGWALPT14IS621mZmOUFhYRsScink7L+4FtwAxgIbA6bbYauCItLwTWRsSBiNgJ7ADmSZoGnBERj0dEAPfn9jEzsxZoyUV5kgaBi4EngYGI2ANZoEh6a9psBvBEbrddqez1tDy2vNrzLCHrgTAwMEClUmmovqOTp1M57xYAlh4+eLS80eN1g9HR0Z5uXy392O5+bDP0Z7ub2ebSw0LSVODrwE0R8eo40w3VHohxyo8vjFgJrAQYGhqK4eHhCdcXoLLmDoa3LwfgmtceOFo+8oHGjtcNKpUKjf68ulk/trsf2wz92e5mtrnUs6EknUIWFF+JiG+k4r1paIn0fV8q3wXMyu0+E9idymdWKTczsxYp82woAfcC2yLi9txD64HFaXkx8GCufJGkyZLOIZvI3piGrPZLmp+OeXVuHzMza4Eyh6HeCXwI2CzpmVT2ceBWYJ2k64DngSsBImKLpHXAVrIzqW6IiENpv+uBVcAU4NH0ZWZmLVJaWETE96k+3wBwaY19VgArqpRvAuY0r3ZmZjYRvoLbzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCjkszMyskMPCzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCjkszMyskMPCzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCjkszMyskMPCzMwK1RUWkjbUU2ZmZr3p5PEelHQqcBrwFklnAkoPnQFML7luZmbWIcYNC+DPgJvIguEpjoXFq8Dny6uWWWMGlz18dHnk1ve0sSZmvWXcsIiIzwKflfTnEXFXi+pkZmYdpqhnAUBE3CXpHcBgfp+IuL+kepnVlO89gHsQZq1QV1hI+p/AvwKeAQ6l4gAcFmZmfaCusACGgPMjIsqsjFktY3sTZtZa9V5n8Rzwz8usiJmZda56exZvAbZK2ggcOFIYEX9QawdJ9wGXA/siYk4q+yTwH4Gfps0+HhGPpMduBq4jG+b6SER8K5XPBVYBU4BHgBvdw+kP7k2YdY56w+KTDRx7FfA5jp/X+ExEfDpfIOl8YBFwAdlput+WdG5EHALuAZYAT5CFxQLg0QbqYz3KoWJWvnrPhvrriR44Ir4rabDOzRcCayPiALBT0g5gnqQR4IyIeBxA0v3AFTgszMxaqt6zofaTnf0E8AbgFOCXEXFGA8/5YUlXA5uApRHxc2AGWc/hiF2p7PW0PLa8Vj2XkPVCGBgYoFKpNFA9GJ08ncp5twCw9PDBo+WNHq8bjI6Odlz7ll54sHijcdTTnk5sd9n6sc3Qn+1uZpvr7Vm8Mb8u6QpgXgPPdw/wKbLg+RRwG3Atx64M/5WnHae8Vj1XAisBhoaGYnh4uIEqQmXNHQxvXw7ANa89cLR85AONHa8bVCoVGv15leWaExxeyv++al3Z3YntLls/thn6s93NbHNDd52NiL8A3tXAfnsj4lBEHAa+wLHA2QXMym06E9idymdWKTczsxaqdxjqj3Krk8iuu5jwGUmSpkXEnrT6h2Sn5AKsBx6QdDvZBPdsYGNEHJK0X9J84EngasC3Hekxvp+TWeer92yo/5BbPgiMkE1K1yRpDTBMdsfaXcByYFjSRWRBM0J2o0IiYoukdcDWdPwb0plQANdz7NTZR/HkdkfqxBf8WmdJ5ctXLTi9VdUx62r1zln8yUQPHBFXVSm+d5ztVwArqpRvAuZM9PmtfToxOMzsxNQ7DDWTbPjnnWS9gu+TXRy3a9wdre/VCo563vWbWeeod4L7S2TzCtPJTl3936nMzMz6QL1hcXZEfCkiDqavVcDZJdbLzMw6SL0T3C9J+iCwJq1fBfysnCpZr/IQk1n3qrdncS3wPuAfgD3Ae4EJT3qbdZrNL77C4LKHHWRmBertWXwKWJxuzYGks4BPk4WImZn1uHrD4m1HggIgIl6WdHFJdbIu4XfjZv2j3mGoSZLOPLKSehb1Bo2ZmXW5el/wbwP+VtLXyK6zeB9VLqAz62a+mNCstnqv4L5f0iaymwcK+KOI2FpqzczMrGPUPZSUwsEB0ef6ZZ7CvQyzX+V5B7MCDg6zBj/PwszM+ot7FnacfhlqMrP6uWdhZmaF3LOYAI9dm1m/cliYTYDfMFi/8jCUmZkVcs/CrEHuZVg/cc/CzMwKOSzMzKyQw8LMzAo5LMzMrJAnuM2awJPd1uscFmYlGu/WKQ4V6yYehjIzs0LuWZg1mW/EaL2otJ6FpPsk7ZP0XK7sLEmPSfpx+p7/XO+bJe2QtF3SZbnyuZI2p8fulKSy6mxmZtWVOQy1ClgwpmwZsCEiZgMb0jqSzgcWARekfe6WdFLa5x5gCTA7fY09ZlsMLnv46JfZifLfk3W60sIiIr4LvDymeCGwOi2vBq7Ila+NiAMRsRPYAcyTNA04IyIej4gA7s/tY020+cVX/GJlZjUpew0u6eDSIPBQRMxJ67+IiDfnHv95RJwp6XPAExHx5VR+L/AoMALcGhHvTuW/C3wsIi6v8XxLyHohDAwMzF27dm1D9R59eR9TD+wGYPPhcwq3v3DGmxp6nk6y7+VX2PuP7a5F6w1MoePaXfbf0+joKFOnTi31OTpRP7a7kTZfcsklT0XE0NjyTpngrjYPEeOUVxURK4GVAENDQzE8PNxQZSpr7mB4+3IArnntgcLtRz7Q2PN0kru+8iC3be6UP4fWWXrhwY5rd9l/T5VKhUb/N7pZP7a7mW1u9X/JXknTImJPGmLal8p3AbNy280EdqfymVXKzXqWL/CzTtTq6yzWA4vT8mLgwVz5IkmTJZ1DNpG9MSL2APslzU9nQV2d28fMzFqktJ6FpDXAMPAWSbuA5cCtwDpJ1wHPA1cCRMQWSeuArcBB4IaIOJQOdT3ZmVVTyOYxHi2rzmadxr0M6xSlhUVEXFXjoUtrbL8CWFGlfBMwp4lVsyT/QrT0wjZWxMw6XmfN7HWpWqeb+p2gmfUKh0UH8FCDmXU6h0WLNPNiN4eLmbWaw6KDORTMrFM4LDqMb7dhtfjNg7WTw6JEfuE3s17hDz8yM7NC7ll0uVpDEx6yMLNmclh0iWYNaXlorDf4zYC1msPCrMs5OKwVHBY9pFavwb0JMztRDguzHuJehpXFZ0OZmVkhh4WZmRVyWJiZWSGHhZmZFXJYmJlZIZ8NVWDk1D8+ujz42gNtrInZxNQ6ZXrVgtNbXBPrBe5ZmPWZzS++wuCyh339jU2Iw8LMzAo5LMzMrJDDwszMCnmC28yO8u1CrBb3LMzMrJDDwszMCnkYyqyP+fRZq5fDwsyq8vyF5bUlLCSNAPuBQ8DBiBiSdBbwv4BBYAR4X0T8PG1/M3Bd2v4jEfGtNlTbOkT+qnrwlfVmrdDOnsUlEfFSbn0ZsCEibpW0LK1/TNL5wCLgAmA68G1J50bEodZX2dplbEDUs51DpHncy7BOGoZaCAyn5dVABfhYKl8bEQeAnZJ2APOAx9tQRytZvaFwovuY2cS0KywC+CtJAfyPiFgJDETEHoCI2CPprWnbGcATuX13pTLrUH53b9Z7FBGtf1JpekTsToHwGPDnwPqIeHNum59HxJmSPg88HhFfTuX3Ao9ExNerHHcJsARgYGBg7tq1axuq3+jL+5h6YPdx5ZsPn9PQ8brBwBTY+4/NOdaFk3YeXc7/zGqV19r3RNXz+2pmu7tFU3/XM97UnAO1wOjoKFOnTm13NVqqkTZfcsklT0XE0NjytvQsImJ3+r5P0jfJhpX2SpqWehXTgH1p813ArNzuM4HjX8mz460EVgIMDQ3F8PBwQ/WrrLmD4e3Ljyu/poffJS+98CC3bW78z6HWUFD+ZzZy6vKq5b96nON/7o0azi0P/ko9jtX1rtn3n1C7u9GJ/q7zRj4w3JTjtEKlUqHR14Ru1cw2t/y/RNLpwKSI2J+W/x3wX4H1wGLg1vT9wbTLeuABSbeTTXDPBja2ut7WmFoh4nkGs+7SjrdUA8A3JR15/gci4i8l/QBYJ+k64HngSoCI2CJpHbAVOAjc4DOhOkMvvOBfOGnn0d6M51fMamt5WETET4C3Vyn/GXBpjX1WACtKrpolvRACY9XTploT856wN+usU2fNuopDxPqJw8LMGuaL9fqHw8Ksil4cimslh0jvcVhMgIcdbKJzH2P18t+N72Db2xwWZlYq9zJ6g8PCrAk8bGW9zmHRoGYOSXXC8Fb+egNrjU74vZvVy2Fh1kL1XNHey8HhIanu5bAw6zC1AqXXQsTB0V0cFi1yomPaZbyA5I9Z4ZaGj2Ot0S+9D+tMDosmaObkZrNeEPzCYmbN5LDoYBMNoX4fD+8nvfY79ZBU53NYmHU53wDRWsFh0Wd8PUBv64Xfr3sZnclh0eV64cXBzDqfw8Ksz3TTBz65l9E5HBZmfaDe06Q9z2G1OCzM+th4w5idNnE+9q627mm0lsPCzAp14tyYh6hay2FhZg3zsFX/mNTuCpiZWedzz8LMmqKdN0D0kFT5HBZm1lMcHOVwWJhZqfrlluu9zmFhZh2lmZPm+V7GqgWnn9Cx+p3Dwszaop7TcX22VedwWJhZVxgbLhMNj80vvsI1Yy7sA89r1MthYWZdqVm9Dk+I16drwkLSAuCzwEnAFyPi1jZXycw6RD1DWndxf+E2Do7auiIsJJ0EfB74PWAX8ANJ6yNia3trZmbdIn+33VryPZSx96I6ol9DpCvCApgH7IiInwBIWgssBBwWZtY09fRQBpc176aK3RQ8ioh216GQpPcCCyLiT9P6h4DfjogPj9luCbAkrZ4HbG/wKd8CvNTgvt2qH9sM/dnufmwz9Ge7G2nzv4iIs8cWdkvPQlXKjku5iFgJrDzhJ5M2RcTQiR6nm/Rjm6E/292PbYb+bHcz29wtNxLcBczKrc8EdrepLmZmfadbwuIHwGxJ50h6A7AIWN/mOpmZ9Y2uGIaKiIOSPgx8i+zU2fsiYkuJT3nCQ1ldqB/bDP3Z7n5sM/Rnu5vW5q6Y4DYzs/bqlmEoMzNrI4eFmZkVcljkSFogabukHZKWtbs+ZZE0S9J3JG2TtEXSjan8LEmPSfpx+n5mu+vabJJOkvR3kh5K6/3Q5jdL+pqkH6bf+e/0erslfTT9bT8naY2kU3uxzZLuk7RP0nO5sprtlHRzen3bLumyiTyXwyLJ3VLk3wPnA1dJOr+9tSrNQWBpRPwmMB+4IbV1GbAhImYDG9J6r7kR2JZb74c2fxb4y4j4DeDtZO3v2XZLmgF8BBiKiDlkJ8UsojfbvApYMKasajvT//gi4IK0z93pda8uDotjjt5SJCL+CThyS5GeExF7IuLptLyf7MVjBll7V6fNVgNXtKWCJZE0E3gP8MVcca+3+Qzg3wD3AkTEP0XEL+jxdpOd6TlF0snAaWTXZfVcmyPiu8DLY4prtXMhsDYiDkTETmAH2eteXRwWx8wAXsit70plPU3SIHAx8CQwEBF7IAsU4K1trFoZ7gD+C3A4V9brbf6XwE+BL6Xhty9KOp0ebndEvAh8Gnge2AO8EhF/RQ+3eYxa7Tyh1ziHxTF13VKkl0iaCnwduCkiXm13fcok6XJgX0Q81e66tNjJwG8B90TExcAv6Y3hl5rSGP1C4BxgOnC6pA+2t1Yd4YRe4xwWx/TVLUUknUIWFF+JiG+k4r2SpqXHpwH72lW/ErwT+ANJI2RDjO+S9GV6u82Q/V3viogn0/rXyMKjl9v9bmBnRPw0Il4HvgG8g95uc16tdp7Qa5zD4pi+uaWIJJGNYW+LiNtzD60HFqflxcCDra5bWSLi5oiYGRGDZL/b/xMRH6SH2wwQEf8AvCDpvFR0Kdmt/Xu53c8D8yWdlv7WLyWbl+vlNufVaud6YJGkyZLOAWYDG+s9qK/gzpH0+2Tj2kduKbKivTUqh6R/DXwP2Myx8fuPk81brAN+jewf7sqIGDt51vUkDQP/OSIul/TP6PE2S7qIbFL/DcBPgD8he6PYs+2WdAvwfrIz//4O+FNgKj3WZklrgGGyW5HvBZYDf0GNdkr6BHAt2c/lpoh4tO7ncliYmVkRD0OZmVkhh4WZmRVyWJiZWSGHhZmZFXJYmJlZIYeFWYtJGszfJXQC+/1tbv8/bn7NzGpzWJh1uCN3Bo2Id6SiQcBhYS3lsDAbI71z/6Gk1ZKeTZ8FcZqkS9PN+DanzxGYnLYfkfTfJG1MX7+eyldJem/uuKM1nut7kp5OX+9I5cPKPnPkAbKLJ/P73wr8rqRn0uc2fC9deHfkmH8j6W1l/XysPzkszKo7D1gZEW8DXgX+E9lnB7w/Ii4ku0Hf9bntX42IecDnyO4CUK99wO9FxG+RXXF8Z+6xecAnImLs56osA74XERdFxGfIrs6+BkDSucDkiHh2AnUwK+SwMKvuhYj4m7T8ZbL7C+2MiB+lstVknxNxxJrc99+ZwPOcAnxB0mbgq2QfvHXExvS5A0W+Clyebg55LVmomTXVye2ugFmHmuh9cKLK8kHSG7J0Q7s3VNnvo2T39Hl72va13GO/rOuJI/6fpMfIbsv9PmBoQjU3q4N7FmbV/ZqkIz2Eq4BvA4NH5iOADwF/ndv+/bnvj6flEWBuWl5I1osY603Anog4nI5Zz8dc7gfeOKbsi2RDWD/o9pvjWWdyWJhVtw1YLOlZ4CzgM2R3a/1qGjI6DPz33PaTJT1J9hnfH01lXwD+raSNwG9Tvadwd3qeJ4Bza2wz1rPAQUl/L+mjAOlDnV4FvjSxZprVx3edNRsjfdTsQxExp87tR4ChiHipzHoV1GE6UAF+I/VSzJrKPQuzLifparLPIvmEg8LK4p6FmZkVcs/CzMwKOSzMzKyQw8LMzAo5LMzMrJDDwszMCv1/tJ4IKz9pkvEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x_train, x_test, y_train, y_test = data_train.drop('popularity', axis=1), data_test.drop('popularity', axis=1), data_train['popularity'], data_test['popularity']\n", "data_train_v, data_valid = train_test_split(data_train, random_state=42)\n", "x_train_v, x_valid, y_train_v, y_valid = data_train_v.drop('popularity', axis=1), data_valid.drop('popularity', axis=1), data_train_v['popularity'], data_valid['popularity']\n", "y_train_v.hist(bins=range(100))\n", "y_valid.hist(bins=range(100))\n", "plt.ylim(0,3000)\n", "plt.ylabel('count')\n", "plt.xlabel('popularity')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Baseline Train: 21.871953894117897\n", "Baseline Validation: 21.81376756490111\n", "Baseline Test: 21.850896002858516\n" ] } ], "source": [ "baseline = mean_squared_error(y_train, np.ones(y_train.shape)*y_train.mean())\n", "baseline = np.sqrt(baseline)\n", "print(\"Baseline Train: \", baseline)\n", "baseline = mean_squared_error(y_valid, np.ones(y_valid.shape)*y_train.mean())\n", "baseline = np.sqrt(baseline)\n", "print(\"Baseline Validation: \", baseline)\n", "baseline = mean_squared_error(y_test, np.ones(y_test.shape)*y_train.mean())\n", "baseline = np.sqrt(baseline)\n", "print(\"Baseline Test: \", baseline)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "linear regression" ] }, { "cell_type": "code", "execution_count": 145, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scores: [17.11772943 17.21971926 17.17786019]\n", "Mean: 17.171769626803712\n", "Standard Deviation: 0.0418593087184971\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABif0lEQVR4nO29eZhcxXno/avunl2aRfuOJCNAEgIJBiQsLHMtwBjE8jkOyHIMISbYIb7BvvEiEjuY4Bjy2d8N3HvtOBhHF2ywTcABIYNtUEJkNmFhCYQkQKB1tKCZ0cxo9pnuru+PU+fMe6qnW63Zumemfs8zz9vTfbq7+vTpeqveVWmtcTgcDodDEsn1ABwOh8ORfzjl4HA4HI4UnHJwOBwORwpOOTgcDocjBaccHA6Hw5GCUw4Oh8PhSCGW6wE4HEOJUmofcAtwITBXa31LbkfkcOQnTjk4RiVa6+/kegwORz7jzEoOxxCilIoOxrEOx0DjlINjVKKU+pZS6qfm9myllFZK3aSUOqCUqlNK/a04NqKUWquUel8pVa+UekwpNU48/m9KqaNKqSal1Cal1ELx2P9VSv2zUuoZpVQr8N8yjCnlWKXUNKXUE0qpWqXUXqXUX4njS5RSDymlGpRSu5RSX1NK1Qz0uXKMTpxycDh6uBg4E1gJ/J1Sar65/6+A64CPAtOABuD74nnPAvOAScAfgEes110D/AMwFnjxJGOQx74MPA28AUw34/qSUurj5tg7gdnAXOAy4E+y/aAOx8lwysHh6OEurXW71voNvAn5XHP/54G/1VrXaK07gW8Bn1JKxQC01v+qtW4Wj52rlKoQr/uU1volrXVSa91xkjEExwKLgIla67/XWndprfcAPwJWm2OvB76jtW7QWtcA/6vfZ8DhMDiHtMPRw1Fxuw0YY26fBvy7UiopHk8Ak5VSR/FW+n8MTAT8YyYATeb2wVMYgzz2NGCaUqpR3BcFfmduT7OOP5X3cTgy4pSDw3FyDgJ/prV+yX5AKfVZ4FrgUmAfUIFndlLisFMpfSyPPQjs1VrPS3PsEWAGsNP8P/MU3sfhyIgzKzkcJ+eHwD8opU4DUEpNVEpdax4bC3QC9UApMJAhsq8BJ5RSXzfO56hS6myl1AXm8ceAO5RSVUqp6cAXB/C9HaMcpxwcjpNzP7Ae+K1Sqhl4FVhqHnsY2A8cwlvBvzpQb6q1TgBXA4uBvUAd8CDe7gTg74Ea89jzwON4isrh6DfKNftxOEYGSqm/AFZrrT+a67E4hj9u5+BwDFOUUlOVUstNHsaZwF8D/57rcTlGBk45OBxDiFJqh1KqpZe/z/Th5QqBfwGagf8AngJ+MJDjdYxenFnJ4XA4HCm4nYPD4XA4UhgReQ4TJkzQs2fPzvUwHA6HY1jx+uuv12mtJ/b22IhQDrNnz2bLli25HobD4XAMK5RS+9M95sxKDofD4UjBKQeHw+FwpOCUg8PhcDhSGBE+h97o7u6mpqaGjo6TVUge2RQXFzNjxgwKCgpyPRSHwzGMGLHKoaamhrFjxzJ79myUUid/wghEa019fT01NTXMmTMn18NxOBzDiBFrVuro6GD8+PGjVjEAKKUYP378qN89ORyOU2fEKgdgVCsGH3cOHA5HXxjRysHhcDhGNAdfg5980pMDjFMOw4TZs2dTV1fX72McDscI4oV74f2NnhxgnHJwOByO4YTcLVyyFj600pMDjFMOg8i+ffs466yzuOWWWzj77LP5zGc+w/PPP8/y5cuZN28er732GsePH+e6667jnHPOYdmyZbz55psA1NfXc/nll7NkyRI+//nPI6vn/vSnP+XCCy9k8eLFfP7znyeRSOTqIzocjqFG7hZmXgif/aUnBxinHAaZ9957j9tvv50333yTt99+m0cffZQXX3yR733ve3znO9/hzjvvZMmSJbz55pt85zvf4cYbbwTgrrvu4uKLL2br1q1cc801HDhwAIBdu3bxi1/8gpdeeolt27YRjUZ55JFHcvkRHQ7HYPLcnfD34z0Jg7pbkIzYPIe+8Pr+Bu5//l1uv/QMzj+takBec86cOSxatAiAhQsXsnLlSpRSLFq0iH379rF//36eeOIJAD72sY9RX19PU1MTmzZt4pe//CUAV111FVVV3ng2btzI66+/zgUXeD3m29vbmTRp0oCM1eFw5AlP/DlsfwwWXQ87fgnJOLzyf+Cyu3p2C4OMUw6C+59/l027PYfuw59bepKjs6OoqCi4HYlEgv8jkQjxeJxYLPUr8MNPewtD1Vpz0003cc899wzI+BwORx6y/bEeufxLnmK46ItDOgRnVhLcfukZrJg3gdsvPWPI3nPFihWBWeiFF15gwoQJlJeXh+5/9tlnaWhoAGDlypU8/vjjHDt2DIDjx4+zf3/aqrsOh2O4sOX/wj/O8eSi6737Fl3v7Rb+rt6TQ4jbOQjOP61qwHYM2fKtb32Lm2++mXPOOYfS0lIeeughAO68804+/elPc9555/HRj36UWbNmAbBgwQK+/e1vc/nll5NMJikoKOD73/8+p5122pCO2+FwDDAb74L24578+l74ox/ldDgjood0dXW1tpv97Nq1i/nz5+doRPmFOxcORx7ywMfg8Osw7Xy49T+8HcPGu2DlnVD9p0MyBKXU61rr6t4eczsHh8PhGCoOvuaFoF6y1lMM0COr/3TIlEI2OOXgcDgcQ4WfowDejsHfOeQhTjk4HA7HYPJPi6DpAFTMgk/92LvvkrWDkrg2kDjl4HA4HINJ04EeOUQ5CgOBUw4Oh8MxkHyrCkgCEfhWg7dj8HcOwwinHBwOh6O/fPcMaP0AyibjKQZ65Je352pU/cIlwQ0ijY2N/OAHPxj093nyySfZuXPnoL+Pw+FIQ+sHQvrT6vCeXof36POcU1UOWmuSyeTJD7RwysHhyAHfquj5K5vs3Vc22TMlfavJk8OYnCoHpdSXlVI7lFJvKaV+ppQqVkqNU0o9p5TabeTAVMDLAWvXruX9999n8eLFfPnLX2blypWcd955LFq0iKeeegrwynrPnz+f2267jfPOO4+DBw9y9913c9ZZZ3HZZZfx6U9/mu9973sAvP/++1xxxRWcf/75fOQjH+Htt9/m5ZdfZv369Xz1q19l8eLFvP/++7n8yA7H6OSr73oK4avv5nokA0bOfA5KqenAXwELtNbtSqnHgNXAAmCj1vpepdRaYC3w9VyNsz/ce++9vPXWW2zbto14PE5bWxvl5eXU1dWxbNkyrrnmGgDeeecd1q1bxw9+8AO2bNnCE088wdatW4nH45x33nmcf74XB33rrbfywx/+kHnz5rF582Zuu+02/uM//oNrrrmGVatW8alPfSqXH9fhGPl8qyLXIxgycu2QjgElSqluoBQ4DNwBXGIefwh4gaFSDjJ7cYBjkLXW/M3f/A2bNm0iEolw6NAhPvjAs1OedtppLFu2DIAXX3yRa6+9lpKSEgCuvvpqAFpaWnj55Zf54z/+4+A1Ozs7B3SMDofjFPhWU65HMKjkTDlorQ8ppb4HHADagd9qrX+rlJqstT5ijjmilBq6ZgUye3GAY5EfeeQRamtref311ykoKGD27Nl0dHQAUFZWFhyXrtZVMpmksrKSbdu2Dei4HA5HBuROYYQrA5uc+RyML+FaYA4wDShTSv3JKTz/VqXUFqXUltra2oEZ1AB3WBo7dizNzc0ANDU1MWnSJAoKCvjP//zPtGW2L774Yp5++mk6OjpoaWnhV7/6FQDl5eXMmTOHf/u3fwM8JfLGG2+kvI/D4egn0tGc8lhTz98IJ5cO6UuBvVrrWq11N/BL4MPAB0qpqQBGHuvtyVrrB7TW1Vrr6okTJw7MiAa4H+v48eNZvnw5Z599Ntu2bWPLli1UV1fzyCOPcNZZZ/X6nAsuuIBrrrmGc889l09+8pNUV1dTUeFdpI888gg//vGPOffcc1m4cGHg1F69ejXf/e53WbJkiXNIOxyOASFnJbuVUkuBfwUuwDMr/V9gCzALqBcO6XFa669leq2RVrK7paWFMWPG0NbWxooVK3jggQc477zz+vx6w/lcOBxDQjpH8wjfIeRlyW6t9Wal1OPAH4A4sBV4ABgDPKaU+hyeP+KP07/KyOTWW29l586ddHR0cNNNN/VLMTgcjlNkhCuEbMlptJLW+k7gTuvuTmBlDoaTNzz66KO5HoLDMbIZxY7mbMl1KOugorVGKZXrYeSUkdDpz+EYEDLlKDgFkcKILZ9RXFxMfX39qJ4ctdbU19dTXFyc66E4HI5hxojdOcyYMYOamhoGLMx1mFJcXMyMGTNyPQyHIzeMUkfzQDBilUNBQQFz5szJ9TAcDke+4BTCKTFilYPD4RiFOEfzgOGUg8PhGN44R/OgMGId0g6Hw+HoO27n4HA4hh/O0TzoOOXgcDiGN04hDApOOTgcjvzHOZqHHKccHA5HfuIczTnFOaQdDofDkYLbOTgcjvzBOZrzBqccHA5HfuIUQk5xysHhcOSWTL4FR85wysHhcOQPbreQNzjl4HA4hhYXljoscMrB4XAMPi4sddjhQlkdDofDkYLbOTgcjsHBhaUOa5xycDgcg49TCMMOpxwcDsfA4BzNIwqnHBwOR99xjuYRi3NIOxwOhyMFt3NwOBynhnM0jwpyqhyUUpXAg8DZgAb+DHgH+AUwG9gHXK+1bsjNCB0OR0acQhix5NqsdD/wa631WcC5wC5gLbBRaz0P2Gj+dzgcueJbFT1/jlFDznYOSqlyYAXwpwBa6y6gSyl1LXCJOewh4AXg60M/QodjFOMczaOeXO4c5gK1wDql1Fal1INKqTJgstb6CICRk3p7slLqVqXUFqXUltra2qEbtcPhcIwCculziAHnAf9da71ZKXU/p2BC0lo/ADwAUF1drQdniA7HKMI5mh2CXCqHGqBGa73Z/P84nnL4QCk1VWt9RCk1FTiWsxE6HKOVPFAIr+9v4P7n3+X2S8/g/NOqcj2cUUfOzEpa66PAQaXUmeaulcBOYD1wk7nvJuCpHAzP4RgxvL6/gRt/vJnX91tBf3nuaL7/+XfZtLuO+59/N9dDGZXkOlrpvwOPKKXeBBYD3wHuBS5TSu0GLjP/Dxr3PrOL0//mGe59Ztdgvk36H6jDMchkPcl+q6nnLw+4/dIzWDFvArdfekbG4/Ltt5Vv4+krOVUOWuttWutqrfU5WuvrtNYNWut6rfVKrfU8I48P5hge+N0e4knNA7/bM5hv41ZBjpwRmmSz3C0M5gT36OYDLPn73/Lo5gMZ3+v806p4+HNLOf+0qozjkb+tTK/dl8+U7XPkcSPlt57rnUPOSeqwHCyuOHsqVaUFXHH21MF9I4fD4vx1s3n44OWcv2526P7Xb97HjTN/y+s370t5zmBOcPc8s4uGtm7uMbv1dO8lJ/pM45HK77u/eZuGtm6++5u3U1777qd3sGl3HXc/vSNl0k+nBOz3TXfc2ifeZNPuOtY+8WbWO558Z9Qrh6Hi128doaGtm1+/dSTr59irIIejL2hL+mSa+OQEl2n1nOkaTbdqLy70ph1fLphaTiyiWDC1PPR6cqK3J1z5enKHsWi6tyPypXxtlPIGphR3b9jpKYoNOwFY+/gb3uT++Buhz2C/r/08n6NN7YGU4xnOOOUwRGT7Y5PYq6DhxEixuw5LLNNRAtDak3K3kDLxiZW1nOAyKRF5jdrfuZxw5Wt0dCUAAvmLLQeJJzW/2HIwtKv46sfPoqq0gK9+/KyUCVeOVSqUl96rAwjkw6/sJ57UPPzKfmaPLwXwpDaq0sijJzoDKT/HO0eb2X6oiXeONoeOR+vQcZ9ZehqxiOIzS0/L+mvK99+IUw6CdCudgfgS5cVtrz7Svb78cQw3RorddbAYyonhE2OfYk7no3xi7FOhay9lhStW1nJ8tklUvsYN1TOJRRQ3VM9Mua4PNXYEUr6GPZHK61zuKg7Ut9LcEedAfWvKZ2o1iqW1K8Gd69+ioa2bO9e/RVHMe74vO+OJQK7fdhiA9dsO882rF7Ji3gS+efVCAO64cj5VpQXcceX80LVrL9CWzR1PLKJYNnd86LidR04QT2p2HjmR9fciTVGQ/prIdK0M5nXkqrIK/C/bp7fbD39uadr466zjsq1Vi3zfhz+3NDhszdJZrFk6q9eXyPcYcH81Otztrv0l3feU7jvv62ufu242UbzdQcqPWkz69spXju2bqxYE/3/hJ1uobeli15ETTK8soaGtm8d+f4A1S2fR2tENQGtHNxu2HyGe1GzYfoQJZYXBawNEzdIzGoF1L+2loa2bdS/tpb07ETxn7ZXzQ0OVu4oHNu0hCTywaU/KcWWF0UB2J7z3607o4HZbdxII+xQjESAJqpclsf1b236oiSvOnsqCqeU8+OJebqieCcDDr+wzO5F9/OSWZUD4Gr/90jMCk9hXP35W2t8vhE1RkP6auHvDTrYdbORER5wn/3J56DUG4jpKh9s5COQ2O91tSL8qzrRalhreXrX0xYHV35X5YK9cR4rd9VSxz2u67ynTd57trvXcdbN56MDlnmLQoICoJmNI6vUXzKKqtIDrL5gVMs3Y1LZ09UipXICy4oJA1jR4E1tNQ3toVQ3Q3JkI5CFz3KGG9tBtgG9v2EFDWzff3rAjtKvwJ3EVSfVtyPfyJ7EIUFXqjc2XE8YWBjIW8Y6MRSIZP/tjWw56ynDLQV7dU088qXl1Tz0A3UbbdCd1yOQkr3d7t5HOL3PHlQvMbmUBkOGasBaTksF0frudQxr8L9tH3parYrn6yrRatjW8fD37vbKhLytzOdbBXHGMZuzzesXZU4NVqL1ST3fe1z7xJruPtXCkqYOyolho1Shf4zy8+ToKJBIQjXrS/lHLVbac+OxJX469IKroTmgKoorrq2eyv76V683qedmccbx1qIllc8ax7WBj8D7rXvZW1ete3sfaK+ej8JzgCigritLWnaCsKEoiqelMJCk0W4uEt8gnkYSNuz4gntRs3PVB6DPc88xOmjsT3PPMTtYsncUjmw8QT2oe2XwA83SSQFlRjIa2bsqKvLNQFIsGcuKYCDWNHUwcU5jy2UOIybiu1VOSvoyYTxVB8e0NO2jrTvLtDTtCO4SvfvysYOcAYd+hPM7eraS7Jr559cLgO7fpy9yRLW7nIMh2NZ7Of2CvltNFf2RLplVjX1bm8vONlHC7fECuDO3zKqPUsr2+pLnhUGMbQCDlbiERN47mOFwy9t+Z0/kol4z995TXk6vs1s44AK2dca6vnuntIsykLyN7Fk4tB2Dh1PKwQiGsBCJmbo0o6Ip707QvZZRUY7tnimps7+YTi6YABHJieVEgpZ9CLphjRpH4UpqsJE1tXSF5xJzLI03tlBR6CqOkMJby2SVyd2W/3izj1Pakr1jCCmbN0lls/bvLg4m/v77DXO3CnXIQyB92tiF60v5qIyeD/k7m9vv29/ONVrNPX8kUF58pqkye80y5LvL1Vs6fDMDK+ZM5bsw7voxqs1vQcFHJ48zpfJSLSh4P7P0TygpTrl25yq5t9ibf2uYO/um5d2ho6+afnnvHHLffHLefbTWeSWpbTVNIoQB0msm/M54M2fSLC4wzuSB1WpF+AX9X4Msu4zTuiicoKza7nOIoF58+AYCLT5/ACaNcAtkRD2RB1JucC6IqdO4gvCuR2sZWePL8y8ds5/nKsyYRiyhWnjWJb6zyzELfWLUg5fNKbGWRjnyLXnLKQZDJbiiRk7a0v9r0N/0/2xjrbPMhnELwyPZHmCkJS/4fitixbNnynMtdhD0G+d3KyfOdojXsLVrDO0VrAEgYn3JCwfSKEsCTcndwzzM7TTiod53ICKDGdm9SbWyPh/0KQIkxP5UURkMTblO7WT0bmY524wT2ZWVpLJDm5YgqSBiN4stjzV2BbGwzO4y2bl7Z45m4XtlTx9XnTgMI5HijDMeXFfK55XOIRRSfWz6HZ7d7eUS+lGOQpiR7URf6foUSsaOQZNjtQE/6+Rbh55RDGuQP3kZO2t9ctcBzLveyekg3GWfrtEx5fhrH1HDOh+gvfVltZfsjlOfVXvXL/+UEIkMsbeRz7DDGOrOir2vuYKu6gb1Fa9iqbiBKj18BYIn+BXM6H2WJ/gWzJ5QBMHtCGT9+aS/xpObHL+0lamZiX8pVt3TY2kaRFrMab+mIh8xK9UZ5+LLKTLhVpbHQaxSZ9/NluzkH7V0JzMaBhO6JJPKlJBx55N8H++o9s5oviwqigZTnv9M835cTy4pC0sde1MnvRpqV7AVapnnBJ5Piz0S+mXqdchDILzVT3LKctLNdjWeqvZLuorAvMjvKyWc450P0l0wTfbodVShrluzyTNa9uMcLxXzRq8H13d/sMopjV2hiaTczmi/lGOTO4VCD8SUYeby1O5DSdCQT2CAc4fKUidt/atvh0KR6wuwOfNkV14GMGztLPJFM8cmOG1MUSGlWWm7MO75sMVFILZ2JkF/BnpijJtwoqiJprPMeUmEVGCeGL33slf4HJzoCmWlSbTcmMF/62Is6+d089vsDQeiunQQn54V0UWUp12SGaCNJvu3sXbSSQEZrZIoy6e9r25FG6SIO7MgXeZwcU6Z8iJFOpqitdFEi0ga/ViQ9Qfo8E78OkJ9J29AWD6ScWGwHpoyyuePKBcE1daSpg93HWphe5Tk434zeQDTimYsS8Z7Io7OSPyOe1MQiiveA1/bW09DWzWt769OWxSgvidHYFqe8JBZ6XBMOL10xbwKbdtcFtv10bNl3PCSlIiotiNDWnQyk5PKFk3ly22EuXziZLfuOU9PYwfTKYj440UF3EnzXhIwwKiuMUtPYweTyImqMcxpSV/rSNJUpYud4S2cgfeXX3p1IeY78va97aS/g7f7sa0heb+nyouRrQeZoo3zG7RwEcgXSlyiTTE7LvvgfMjkw+2KfHGiH12BWuewL9k4h3Y5qiomO8WW670aWc5cZtEDIhj7O2L/HlRWmxK7LCJl/et44gJ9/h5uXz6GqtICbl8/xXoce89EZ8UeZ0/koZ8Qf5cMf8nIGfPmk2S08ue0wK+Z5k/qKeRPCUUNmkvalzAOQ47Yn/drmzkDOrPL8GTOrSugyysCXchcg/QwTx3jnwZfSd+JP9DWNHZQVe+fEl9JJ3mV2Nl2JZMjvYUcXSWe1/N7tMfjKd3pVaUhR2KX65e9dhv7a15Bc3afLhbKd3QO9Ixgqx7VTDoKfvLKPTbvr+Mkr+0ITc7YTuz1hf+nnW9m0u44v/Xwrz+04ysvv1/PcjqMZJ3b5WKZifdmaotK9diZFli19UVCZxpAOe9JP5yi2fS/pHIb3fupcVsybwL2fOhdIXxr6wRc9O/6DL+5NGdPciWMC+fQb3oT99BuHOXPKWBZNr+DMKWMBaDDx8Q2tXdQax2ttcxfXP7uIPyT+mOufXQSEzUfTzcQ8vaqEzXu95CtfTjRJXRPHFnKkyZtUfeljT77Fxj5fXBBlrvFTzJ1QRqeZiDuFqcmX/kR2/mlVxM0q3ZcysUzuSuREDIR8H1IpNZpdly+TZsORTBI6R1ct8hZFVy2ayg9eeI+Gtm5+8MJ7gJfB7Mtvb9hpkuh28uXLzqSqtIAvX+b1ELv3j87xvus/Ooeo0aDRiOJHplT/j0yp/nQ+B/saSlfwT962o7sGmqFyXDvlIJCrMlv7p0NOVPZKX2aPyovRPk5ecNIeLlek9nulI111SQgrlJSqlMJBmm2Gbl+KCcrnZHuR2yWe5WQgz9dHz5gIEEg5JnnuMuWjyDHJVbs9BhnSOLWiGICpFcUpjuaEsTMntOa9mBd59F5sTYqj+XsXvsq87p/xvQtfRZvnaK1D/gKAP1oyg1hE8UdLZoT8FnIlfdwoJF9OrywOpFSMclL2xtgj1xuFt/6Nw8TMpOpLRY+Uk/6yOeO8iKk54wBoMpN/U1s8pExtkkbFJNGYkkjEIvDs9qOAJw83er8lX542rjSQ3QnPVNadSKT8buWiTJrUxhsTky+lnyHToizd4iZ0/WfpY8hEtr+7wcT5HARjCqO0dCUYUxgNRY9kqm0iV6u+7fQHL7zHmqWziES8+OpIBMYWe3bgsSWx0IW4ZumskO1y64GGINbc37JvePMI961ewj3P7KK5M849z+xiyazKkA/Dt2nuO26iOoxMl5Vrr25kSYN0ttSHP7eUe5/ZxYMv7uWWi+dw2cIpwTGZzpFda8Yfg+0vSOfbqSgtoLkzTkWpb29OBlL6D/z7f7vDm1S+9POtHGxoZ29dK41t3cG5s3cSax9/g921rRxpbGfl/Mm8/H49C6aW8/Ar+wHYsq+BcWVmDMaOL2vsXL5wCjXbDlM9exzPvuW99wFz/m/9yNzgfEU3G4Vg/AlRc33ECPtB2rq87+RIUwcTxxZxrLmTiWO9SWzdSyYB7aV9lJfGaOvuoqw4xtYDDcH1E4rtB3bXtgZSOlgrS2M0tMWDcE+JnN+S5p9kEHraGZLgKZR1JmJq3Ut7M9ZCspHjHTe2kNrmLirLCqkzu4iuRJKKkhiN7XHKzW5IOsx9M1c8GY76AtLu/gqNVvNlvVGk9a1dXH/BrLT+xmx8Dhmzr7MkUwWDwcyKljjlIJAJPR+YC/8D8QPwLzjJDdUzg8Jc/7LJ26L6E20sokgYZ6JZ3JBIwGGTtenLBVPLgwlpb10rzZ3tVJYWsmRCGZt21wUrWFlhUj5HlluIm+WfL9NdZPaPdXplMbtrW5leWRz6AfiTib/L+dHv9pDQnty464NgUvV/CL6ykT8qqUDPnDI2bQmJtD8IayVWUVrIseZOKkoL0WiaO70Y/tYOf6XmjUXu3KZXFocmd4nMyu1N2SSSyZDvANKvsoOJysx4X3ltGV8vhMRrnrM5anIULip6nNqWLiaOKeT3eIljzZ090n/tdqMofClt8jLEtLdJ10eWsfjmU9tJJD3p4yeUSaS5yL+dGngaxo5Wkq8hJ/Oq0gIa2nrCauX45K7HrxOoFCk7qHRjlVFf4PmVaho7AunTZCK5fFlv/BH1LZ2hyLSOeDJYYPzu6x8LdiILph4NOZ59M+Ltl54R7BpPRqZAl3woXOnMSgKZnSkjMuxkIbnlk4W5YmYV4kuZVLRy/iQAVs6fFEr6gXBmaoOJcmlo6wqtBoGQY1A+R5oX/MnPl9LsIsct7aoAN18813OQXjw3dE7sLfa0ypJAyhr46SrN3v/8uyFzjzRn2VtnaW6Tj9k/ZBmPf8IkTZ1o607JWJXfx4SxnmllwtjilPcdV1YQSHn+Zo337PO+lJSaxLLSwnCYpt1ZMGrujwIXRP6NOZ2PckHk3zhuvudAiklRrmqlKQSgwqzyK0pjofeSx0nnNEChsdUUxiKhVbq9w5AmIunEHgjk67WYcFRfys8kxyQ/n/xtZqKwQIWkdITLkFn5e/Ret8dPc8AsKg70UiRQ7kTkb0OaKjOFM0v6GugyVGTcOSil/kemx7XW/3Ngh5Nb7GQfH7tmzO0/30pNQzt76lqZYGyWdjlkIBRv/tsdXuSGLyXFhVGaOxMUF0YDh1xLZ4KJYwuD+8H7YSWNnFJRQvOxFqaYLFk/LNI3Z/gmqXUvm63+y3vZeeREsDI/0d4dMm3JC33dS3uDncjKsyYFOxSAv7jkdL77m7f5i0tO59dvHWHT7jqWzKrscYqaHYRc+fzpv24GvKiVD/k2Z61TdgpyDP5rg1drXxYyk7sc74ese93CV5YWeCYKE+XiF4+zTWD2rsC/fe8fnROs7OzVoHSqFsYiJOJJYtEIO1gdmI2gKRSWWjYm6oVsFnoSxAQtdiIJKzpI0t6VDMlsSJodkC/TIccQPDfrd8mMMtsDpcCPePWlPJdR5b2/L33s8hnpsJ3dMyqLqWnsYEZlMRPGFNHQ1sRp40oD06MvZWY2gRktyfgxhdS2dDHeRD+tOmcqT247zKpzpgYK3UZGRQEhc7A0aWZbqBNIa2IaTE62MBhr/qqBvwCmm78vAJkLigxD0vWTtuPJpblCdpeyL3ppupEmIZsT5kI+0RbHBJZQECUlmWmaiWKZVlUScojKsEh7Iki3HbczeaXzWxZ+kzsUCO8kXjQX7Iu761LMVHIlVVHqvXZFaWEokc92rMldjtxF2BFAK+dP9j77/MlBLH95SSxU+tk7nz27itAOKIPD0K/mWVYUC5dJEfdDeDVeYnYRJYURotEevwLA6SYs9fT4o6FVbF+RdY3SYV/H9nXZXzIltKWjN8XT62unMddnMitlQpoMw7vl8KeQloKISd6LqEgoExtgh4mS2nGoKZiw5SQOqVFbdui0T6YQ10wtA4aKjMpBa32X1vouYAJwntb6r7XWfw2cD8wYigHmOzLCyabVbPVbO8PlA+ya8zJaQ5YMiFshhiXmAi0piIZqvEgHt/3rmmBWPBPGFKa9mMFzevtSFi/zdya+lBO4DFW0a/lLSsxEWhKLZMwuly0dZdSJvf2Wn721w5zjjkTqBCTOhVx52mOVik3G08vzZUfi3Hn1QqpKC7jz6oVs6bqevUVr2NJ1PYmECUk132NfJtJ8J13y3UDg6zxb99nvme682uYw+TzZcOjGi7yCejdedFrKGEqLooG0Cx8eON4eSBlWLJHhs5AaOp0NfanCMNBka1KcBcg9VBcwe8BHM8IYby6a8WMLWTyjAoDFMypSJv10JQPsya7JTHBN7d0hO77cBdivVWlW7ZWlhaEEoUZTRM2Xq86ZGsj/ercWgP96tzblQpcO29kmnHD2uNLQhA1hO2mm4oShzyscwHJ1b6+cZGJSYczYmGMqJQGqxKTglhREQg5Re6wSmagmJyCpuAAvTyHp5SnI3YLcKcDgTqSjGXlepUKQvR2wHpO+ObuJj5+tXRAJ/85sX4csFf7lS01OxaVnZhxrvpXFyJZslcNPgNeUUt9SSt0JbAYeHrxhjQymV5YG8g0zOb1R05TiZLzchIReLkJDIewghHAG68ZdxwDYuOtYaKK3X0uuimWCkL0ikoXNMjV2lzH40oltZ5LK1X662vm2o21ieXEgbYe5RJqZmo1zurkjHnI6Q7isszyXdj6EVBwyCUtuwmwno3Q027sFx9AiFcJYs+r3pVQiMrfBbuJz17WLqCot4K5rF4V2263mGvLljRfNNjuO2eEduyBTl7nhRFbKQWv9D8DNQAPQCNystf7OII5r2JDJbCBjrjOtIGWyjyQl8kWsWmTtfDmhSaUBUF5SEEi5rf7zj8wlFlH8+UfmpoxV1u+xIy1azC6lpSuccGRnkkqfQbqEQjsRT55L+cOzj5P/y6JwtunHdyKOH1MYygx+1kRe+TLcZrKn4qg8/7tNAtvumCmdLRrtzDO7hXlmt+AYfKSpUtJhlLcvZVKdXNjIhRbAgfpWmjviHKhvpdB0jyuMRUPFCIHsKvBapt18KzOTLacSqVYKnNBa3w/UKKXmDMQAlFJRpdRWpdQG8/84pdRzSqndRg6bvZgdQigdkPMmepOTLyXdxpzSnUxSZMwkRTEVCvGD8Cqow3gXO7qToUnVDmWVdnPpaL5s4RQ+/KHxQSKbjA+XfhS7JMV1i6f1SKtZvbyYpQM4XTkBu9JmownrbGwL9y2uM1EfvcnNe726QJv3Hg91KPNet2fVJx3Kncap6Uu58mwzu7m2zkRot5HJ0exMR0OPLOkhr3/bZyF9ZqEcCCsoQYaoymgjPxrRl9LEmS6xz6742t8yM7kiK+VgTElfB+4wdxUAPx2gMdwO7BL/rwU2aq3nARvN/8MC2YDERkbY2JwzvSKQnzDJZp84e2rKllbGgH9m6SzToWoW5xp/xrkzKlJMK7J4mR9G+qGJY1IuvjKzDS8rioYUgG0uum/1EvbdexX3rV4SijyyXy9UIiSdErFWWLLrltwF1JryzL48YkooHGlsD0Xv2JE8sm+ANB1lQiZyvRM1jXaia5zpKM/oNsqhO6lDZiB5G8J1pWQZETuHRfrcxhjf2JjighSTqDSzpiuhb5ti+xJtlKno5lCRbYb0/wMsAf4AoLU+rJQa2983V0rNAK4C/gHwcyquBS4xtx8CXsBTTHmJXDXK6CQbmVk8tsjLa/Dtom8dPhHIdz/w6sb/dsfRlBDEiPJMHBEV3t7K5//9tWeHmsHfdc3ZQY7A3/y7lxW7raaJJ/7iw0BPjLUc+2cvms3x1i4+e9FsgFAYqURmONsx26HQUaEEZPy2vfKSzeWPnugIQmhtJ2O2YZF94b3Ymp7yFmK3MKfzUTAbn30D/7aOfiCTVBfPrKS2pSsIIw1Fol0wi+/+5m1uvnguB+pb2VvXysqzvCS4LWbHu2V/Qygr3TadStKV0Lcdz30pdyF/P7kqx5+tWalLewY7DaCUSrWN9I37gK8RzrWZrLU+AmDkpN6eqJS6VSm1RSm1pba2doCG0z/GmIiGMb1kccp4fNshPcfkSszJ0LQcwjthGVJ6y8Vem8RbLp6TsWhYyCRkISuByl2A7VxLV8zObooiV0vyxybHLf0hQKgulKzXL2PQBxupENxuIbeUGr9aaUGEMWYh5ctJptbUpLFFjDEKYExhNJR3BIQCG+Rvw45Yk7vRUNn1LIvoDXQJ/XzoCpetcnhMKfUvQKVS6s+B54EH+/PGSqlVwDGt9et9eb7W+gGtdbXWunrixIn9GcopI9shhkLgTNKVLyWy5pE9/cvCaLIEhP2DkKWSZXKa9B/YF5XsJyxNQvakv3BaeSBlQpztdJPPk/4IWSkVwltraeuV47bzLqQSyNRKcqCR1VKlQrDDUh0DgwysyPSYdAbbu3JZMVcGSaw3/jJf/rMp9f3PL7wXWpjY5lIZoCGj4dKZjmz6MplnUij5EP6alVlJa/09pdRlwAngTODvtNbP9fO9lwPXKKWuBIqBcqXUT4EPlFJTtdZHlFJTgWP9fJ8+IU0/zZaZqDAWoTORoDAWCR7rTkJU9TjJwIt4aWiLU1Ua46NnTOLJbYdZOX8yL7x7jMa2eOBolu8lL0y7pHJlialYWVIIJQTlM+5+egfbapo40d7Nk1+8OLSFlWU2ZEVVe9KXPQn8BfqT2w6zeGYl0JMZLE1EX/34WYHJ6q71bwE9uQqS6VUlprxHCR3diaCwYEtne1BwLZekMx85BoeIUiTQRHopeTKtooSDDe1MqygJytgcb+kiFvUSQ00gUYoS8IlGFcmEDhI0ZalvuVuwG0CtvXJ+UEn2uu+/FCqvko1JqC+mo3worpeJbB3S/6i1fk5r/VWt9Ve01s8ppf6xP2+stb5Daz1Daz0bWA38h9b6T4D1wE3msJuAp/rzPn1F9sm1kWYhv9xxZWksxRbe2a0DKUNMZeE4GxmmOc441Xwp7aeh5DQxYdtbVVlaQ0Zk2OUgppqCer70sSMv/JLJ5cWxkCKTOQoQ3jLLUh8ynDBXUT5ypwDOfDTU2JWDJUdNja6jTR2hInqTy73r0pcyO7/SmGwrS2LMNg5mX8odgdwt2KVWBrofQzbkw+4gE9malS7r5b5PDORABPcClymldpv3vXeQ3icj2U5cY4oKAiljqiHcZEXWV7HD7dLZOGW5DCDtFldO4PZWVdpZpW/Czgm47ZLTqSot4LZLTk8xZ0mkKUi+V0unqbRp5GcffJVNu+v47IOvhpRSb6XQh4JQo50MYamOU6Mv5UEy/bZkFJJsFmTXJptsfA6TxxbxtSu8Fq5fu2J+SvvVtVfO573vXMnaK+dbNbrCI5fXciZTUj7kHwwVGZWDUuovlFLbgbOUUm+Kv73A9kzPPRW01i9orVeZ2/Va65Va63lGHh+o9zkVpF8h0w9AZhrbk77MIJYrc9sxLC9a6UDLVMxO2v6lM9i2fcqQOOmbsB1yMulMmrPW/OgVNu2uY82PXkn57LJekV0NU/oMZEz6UDqXJc7RPDhku4iSvyE7818mIcquc4XGAVEYjaRUTG40115je7ioYrqsZQgrALu2kvRHZMJOyBzJnMzn8CjwLHAP4XyD5lxN2kOFjHe/bvE0ntx2mGt7ifIpK4rS1p2grChKYYGiUXTWkmFw2w42At6K23cK+8jwzj11rUE3udsuOZ39x9/utYSENCXd88xOmjsT3PPMTrbfdUXI9hn64ZhxnOiIh/wFEK7SGjfaIZ5MBmWjO3uphplt7kCukGGpfmiq72h2YalDi1Qi0YgikdBBT+dpVSXUNLQzraokiBryyrN4ptCbl89mw/Yj3jFmkSXNvrLx1asmKVJmJ/shpnYXNz8UHMI1w2Rp+xQ/QhqTU6ZQ1uHKyaqyNmmt9wH3A8e11vu11vuBbqXU0BUWzzEyBhrCKx8ZRfHjmy5kxbwJ/PimC70DxIUk7aI2crUvHWiZ+lhLU5IsiW0jdw6yRIZd7kJmT8umQsOZTAXxHAOPbVa1qw/72NeXNJ9KJfLq3uNecby9x7l/9RJWzJvA/WJR5SN3wXbSmuzpLXfedpKZNPtmijxKZ3LKh4zmgSZbn8M/Ay3i/1Zz34jCLtrlI2OgIVzzSOYH2EgT0USTsexLiWyCLjut2eUiZF6BvNDT1ZmB8M5BhpTe+8wuTv+bZ7j3GS853c69GI44R3Nusc2qshRJuvLWEG6FeqtxIN/6kbmhxZWdR/OFFd5xX1gxlxuqZxKLKG6onpmS5yMXPdJfYC+8ZFntTI5i+Zh8vXzISxhoslUOSuuefZTWOskI7D+dboKUcf8QdjTLSBy5SoHwxGwXBJNIh61cIdkdpew6Rz6yJLbtMJMXrYx++tHv9hBPan70uz39OWU5xzma8xdpnpSlYFKqDVtteH3k4uqu9V500V3rvegi6WjesP0I8aRmw/YjKZO07E0SWt1b5qG+RA6NxN2CJFvlsEcp9VdKqQLzdzswvGeVU8C+eFedM41YRLHqnGmhLe2+em9z5Ut5ocoG5vaqXSb0yIvUrggpV0gSmRWa6YKV23fZ33o44xzN+YsM7ZYBCrGIN+34Mmm24kmzWPEXLXJ132UKi/lSLoLkzt6e5Dfu+iCQ8veYbXJbJuTrjURFka1y+ALwYeAQUAMsBW4drEHlG3a00rqXTF/ml/aGJmy7YbtENjCXOwWALfuOh6SPXRFS1lOSPw7Zxc1eOcmLVvYkyFQHKt9xGc1Di4zcs7EbLEnSlWuRpWQA/IwXjWZqhbcrn1pRHKrmK6sDQPi6lmXbbWRV1my7q/UlXFX+7kZKuGu2/RyOaa1Xa60naa0na63XaK1zkrk8mMhSGLL8tl2KW8Ziy2JxsroqhC9g2cA8XEsJ0kWL2861UF/Zn29l0+46bv/5Vs42pS98KZHPkWaq4dy+0jma+45t0kmH/C1UGIeyLwvNkwujKrSrlv3PAS6cM56q0gIunDM+VB3YXpjIRZXclUtfRGWJ6WhopHQobz3gTcJbDzSkTMx2J0OfTBN4trsAeZxUNiNlF5HRb6CU+prW+v9VSv1vegll1lr/1aCNLAf01og9KT61v02+9SNzgzIUvs1+T11rcILeNE3Irzh7KtsPNXHF2VP5nQmNiyd0qJYSwDdWLQiFlfrIlpVrls4KpejLrbR/e/uhJm7/+VZqGtrZU9fKi1//WMiRN72q1JSxKOX92hbyonZFFsiQVGgKhaU6Tg27gVQ65G/hmGkm5ct0uSp2uZe/e2o78aQnoya0NAIUFSjauj0JnpP6WHMXE8cWhsy0fgZ1U3s8MIn6PgJpcpIlYtY+8Sa7j7VwpKmD5/7HR0Pjk+Gmd2/YGSqRIcm2rEW64/K9LEa2nMyp7PdZ2DLYAxlOyDosP9zkKYeE9lZFSRG/LS9g+QPwf2S9IS9g2eHN5s+Fgtrw5mFqGjuYWlHMoQZPUfjyzvVv0Z3Q3Ln+La5aNJXdx1pYOK2c9q44NY0dTKtIjZ7KN3pzNLv6R32jMKbojGsKY4ruhA5KwNtElXdN+1KSLvHNLh8jo5fi9OQNdVkJkxUl3m+ioqSQm5fPCS2U/Nt+VFHQh1w4lFeeNSkov/3IZq/Htx+lJHOIoCfDP1OJjGzrJKU7ri91lvKRjMpBa/20kQ8NzXCGB7KAnWT2uFJ217Yye5xnLpJ5BUWmYlhRLEpVaQENbd1B/LeMQjptXGlQRK+kIEJ7d5ISs8d/dPOB4Mcya3wZY4tjzBpfRvXscdRsO0z17HF8sP0I3QlNzGzj5SpPFivzN0d+t7p8I10C24gLkRtiZBe8goi3g5CZyklOrT2k7DFSWhilpTPRa9kVia1cpPlIVgs4/7SqUC8D2afk+gtmBQmi3/3N28Fu444rw7twuXv3e5JIf9xwX90PJiczKz1Nhsx4rfU1Az6iPEQRtsD8y6Y9aCMrS2I0tsepLImxcHoFu2tbWWh8DjKvoNvYQI42tVNpQmL9CfyG6pk8+KLn3P7Vds+5XN/aRZdZevny2xt20Nad5NsbdlBUEA0Uil/G4uk3DjN3QllIQUUjni03KI+cBOXPAnmGa7QzOMjrV/6YbTNqQTRCZyIZSOi9odKMymJqGjuYUVnM4aaexYVtVpo41qsiPHFsIcdbu4LrsKQgrETk70Su9NNl+q9ZOiu0K5fZ/uH6SanPk68pb8uFV7bNdUZiVrTkZIuE7wH/H7AXaAd+ZP5agLcGd2i5RdZ7sVc6Uja2my1yezwUNQTh1pvyh1hnzES+3Pj2Mc+p/faxUB/lq8/1ojx8KR13Hz3D62Hx0TMmhvIX7OqqoeJ9uSqDmiUuLHVwyPZrtx3P6ZC90WUQhh24IXfLU03U0NSKklByHIQTSdO1x7Sj8GQkk8z2t53B2SanpcshysRAN/jJN05WPuO/tNb/BSzRWt+gtX7a/K0BLh6aIeYG2ZrSvujTRfrIqqcAx81E70sff8fgy0MNbYGUfZR3GMe2LyeZFP9J5UU8+9ZRAJ596yjdZmfRHU+mNNCRNWgGs71mX8iU0TzSo5ByFS2W6X1bOrpDMhu2m2tz+6GmUNMdCAdNyEWKrYRkJVW50pcVAWxkWLbEVi7ZJrfJkPRsJ/CBbvCTb2Rrwp2olJqrtd4DoJSaAwxt+7UhJrQVt3xXciUmba6XLZzCziMnuGzhFCC80pd+hgljith9rCWoOV9WHKOtu4uy4hhPbK0hntQ8sbUmCH/122fKZulSIXSa2/4uRpLJsZhrRrOjOVebuIi5DiK9XA9+IEU0opg30TNP+lJSZMxORdEIBTFFS2eCEuNvkMjFiKwwvEdU84Ww6UdG+tzy0O97fHHjy0LRRTIsW5qEZFVW2zyUyQwkc4gyFd6zX2OkNfiRZOt7+jLwglLqBaXUC8B/Al8arEHlA/LHm+mHXGB+UAURxdrH3/DKZzz+BhA2TbWZbXBbZzyl5rwsLSAjlFJCBoWWusYkFl3TS6VYST7vFpzpaHCIWFLmGGS6HmT5mKMnTNOdE6kBC59YNCWQMmfB3mHL38bsCaYJz4SylDHIFbhc6YdaeVorNFk9QLbCtTscyl1AplW73HFkSmjr78o/3xv8SLJtE/prpdQ8wA/Ef1trPbTdWoaYdE48m9KiGJ1t3ZQWxYIVvi8l0UgEEgmikQjrXtxDQ1s3617cw5qls0L5B7uP9dQ3tB3hsky3rBQ7yYTHTjpJmGyucI7mwUHuRhtE3/KkJStLCqht6Qqkj9xVQjhaSZo+YxEvHNWv6/jbHUcDGYuqIDouYSVPXHXOVJ7cdpirzpnKetOGdv0bh1kxbwKbdtexYp6X0SxzcdJNmt+8emEoukiaqboKvTa7JYXRFHOTdHBnWrWnc1zf+OPNoV3EcFr595ds24SWAl8Fvqi1fgOYpZRaNagjyzHZbvtlwxv/x+FLubq/fKFXAOzyhZM5cNyzxfpSFu+TnD6xLCSPmNjtI03toXyGXDXQyRbnaB4c5G5UlrjItrBdyi5COCSajImyqT3OGNNK1peyQoAfFTd7XGlKhYBnTeTds9uPhMa0y/RQ8KVc+Us/g3QS2ytuaaZqN7uE9q4ETca/50u5I8i0ak/nP7DvH04r//6SrVlpHdAFXGT+rwG+PSgjyiHpSgtkKjkge9RebGq7+FKu7uXKSVarhHCtJomdSZ2ur7W/apSrx1zj6h8NPnKHIJtT2ZN+utpIi2dUhKSc3MebCLjxYwppNmZPXyaNaSepdajU9Rum6ZMv5ZhkjSNbWcnHpKJIV2gSwn0VZJvdUMtdSCnhnY50k/5A12AaTmTrkP6Q1voGpdSnAbTW7UqpXqbK4U06e2wmO61MRnv4FS87c8s+72KRq3v/qb2V40jXXCdTUlKeR6WmNR+NZuT3GbFMNdkytsgzoYwtivaUf+8ly1dSXlpAbXMX5aUF1DV39ZgqhZkSCE3ulSaSKJ7QoWx8CAdaSKesfU1Kc9T4skIONrQzvqyQjngiyH8Agqzom5fPYd1Le4NSGLJumV+RwEe+r50sJ28PphkoXU7GSCHbS7NLKVWC+d6VUh8CRpzPIV2zH/t+uRKTK50O0/zcl9mGK8pCZhLbdpzPuEY7vSOdtPL7tBvjZEtFSUGPFJO7vNbs61UGOfitbq9dPC2lmZSc3LPdjcrVs12hVeoeudL/8qVnUlVawJcvPRMIl5mRwRqHTD7FoV6y+NOt2odyNT8SG/xIslUOdwK/BmYqpR4BNgJfG7RR5QjpM5CdpuytqlzpFxvbZ3FhNKWoWbaTu9x+Dydco52Tk6GET1bYCwyZgFZg+iEURCKh49rMjqKtl8ZS++paA2l3OJTIid4uMS+5++kdbNpdx91P72B6led/8GXETC8Ra5pJMfWIkySDNWRyXLZRQ/b9g5lXMNL9DydVDkqpCFAFfBL4U+BnQLXW+oVBHVkOGGN6LowpjnHZwil8+EPjuWzhFP75hfdoaOvmn194D/BMAr6sN3bT+paulFC+kY5zNJ+cvpj/imIqkJmeXz27KpByIWL3FZETfV2ryc5v7cpoLpU9Elad4yWU+TKE2B7YJeZl0qZUIvaKW+4qjp7wdjFHT3SGym3bk/yCqeXEIooFU8Nl6u0kuHxe3ee7z+KkysG0BP2i1rpea/0rrfUGrXXdyZ43HGkyW+imtm5u/9kfvH4JP/sDB43vwJf+Oi2CCu0Wsi2HPJxxjubBRxbHs02OlaWxQPpl4H+3O/PPUTqAZTSPH0rqSxl4IUvByN2GPH7FvAl8c9WCQNo7gvGmhtj4ssJQ/oG94pb/f2bpLFMhYFbofnuSl6W9JXZv6Hxe3ed7tnS2ZqXnlFJfUUrNVEqN8/8GdWQ5IGq2BNFIJKO9M2nWccm8dQcPHq7RztDix334ckxRQSDlrkIqjZnGHONLGZX0oYljAPjQxDEpZiVZl0vuFuzEsnSdC+1Vu+wBXWbCYH2ZDpmpLLEn+VCCnKS/drwhJJ93NZB9tNKf4V2Dt1n3zx3Y4eSWsqIobd0JyoqidCUSxE0VSdtpKLftMgJlODiOTxXXaCe32JV55cpfRi6NKSqgsS3OmKIC7lu9JJQw9n5tSyD9LOhtNU2UmkQyfwFUYkKnSmIRjhvz0/HWrl7qGPV4OO5+ekdQYh6lglX7mqWzQjuJb65akFWJbFliOxNrls7qtXqqnSyXz+R734dsdw4LgO8DbwDbgP8N9L0zN2B2If+plNqllNqhlLrd3D9OKfWcUmq3kUO2H5Tbb7kqkz8am+EUUZQtztE8ONhlLSTSzyCxfQ6yMKNcpMhaQz95ZR+bdtfxk1f2AVBZWhhI6biW1Xy9O3v8B+OMSWhcWWFKYtmNF3ljuPGi08K7CmvVnq4shm1rl/9nm5cgkc/PZzPScCNb5fAQMB/4X3iKYb65rz/Egb/WWs8HlgF/qZRaAKwFNmqt5+FFRa3t5/tkjXTcyR9eu1m1+TJd6OlIwTmaT06miV4i6xp9aJIx6RgpkX4Gfw0SixC6DfCr7UeIJzW/2n6EcWWeiWlcWQFFZhdQVBDlSdPUyZfS9i9DWSeY+30pkT4HqZAgbPqRjXqkYxnS2/szRRSN9Eqnw4lslcOZWutbtNb/af5uBc7szxtrrY9orf9gbjfjtSSdDlxLj+J5CLiuP+9zKtSZnUOdVWbAJl3S2nDGOZpPDdmrw+/oV1VaELL9A1y1aGog05VJsZELEzsfosYERdQ0tFNS6L1HSWEsqODb2Nad4miWtn/pXLYnc1mSQpaft/0A0rcgy2zYyiBdNI6tALLdYaQjU6E8R9/J1uewVSm1TGv9KoBSainw0kANQik1G1gCbAYma62PgKdAlFK9/pKUUrcCtwLMmpVd56aTke9Zx4PJaM5ozqbIYlFU0ZnQQQKkrGAaVd7tE+3dQaRak+mPvHHXsUB2JZJemZSX96UWVRRETPe+SARKC3r8CkCo0J0k3f1g5RUI05Ft87bt9X75eb8EvX+/fL07rpwfasspSZdBnK2tPdsMZPl6dqE8R9/JVjksBW5USvldN2YBu5RS2wGttT6nrwNQSo0BngC+pLU+kW1VDq31A8ADANXV1aNxPu8XztHcQzaLgky7xd7yBfybxYURmjuNbPYURmc8yXWLp/HktsOBmecLK3pKVKx7eR+JZJJYJJJSzHFyeTE1De1MLi8OrfQrTYmMytKClJIRdh9lXwFk6m9gT8xyopWvl84xLN//ZCaidEpAPj/blpyjqWrqYJOtcrhiMN5cKVWApxge0Vr/0tz9gVJqqtk1TAWODcZ7j3YyNdrJtlx5vmGvxgujiq6EDmR/iEUU3UlNzGQ4yv7Ija1ddCehIOI5fWtbugL/lezVISPb7NyBtVfOD+oHbXz7GLuPtTDLVDz1y7mD5x+oaWhnQllhaKW/5kevAN7uxV6Zy9j/J/9yedpV9trH32B3rZc5fe+nzgVOXt5aKpt0RetORroJvS87gnyPABpOZOVz0Frvz/TXlzc2hft+DOzSWv9P8dB64CZz+ybgqb68/mgi28zsbBvtZFpJjzGrVV/mE/a405Uyt0tSZHP+pI8BvG5ovrzr2kVUlRZw17WLUmoSjTdNacaPKQqPzyp6J0tVy8xguzGU9B+EP7wKy9Bjvcf+27Z/mZ2cyfYvnzcQzuBsIowGOifA+SZOzinWhBxQlgOfBT6mlNpm/q4E7gUuU0rtBi4z/zsyYM0zIdKFpfbV0SwTpfKddEru86Zu1udXeGk6MrM9XXlrvwWrL9P1SLBLTRSbMKPiWCSodFpZWsDs8aYPgpGygKOcLO3QTrkLkBPzRFOqYmJ5UcrEZzuefexJ+Y4r55saYuEKqLYCSJe5PJgT7kCHqLoIp5OTrVlpwNFav0j6gqUrh3Iswx0Z3WKbVuyw1Gz8CpUlMRrb44GUHDBd7g700u0uF8jPW1kao6EtTlVp6mUtTTqyzDqEO6LFjaaIJ3WoP7hdEiVqNHFUKb751HYSSfjmU9uD/ICX3jclLYTmjpsvKp5IhkJF71u9hCkVJUGpakmKyUXsAqTt/7EtBz1z05iiFBt+tqaWdP4Dewzp+igPtDM4Wz9DX3C+iZOTy53DqCLb8t3+xNbbBJcNu81OYXcvpbPPMLuFM3rZLZQWRAJZYFa7Bb0l/elkSA4k2Z4jyUdMuOZH5k2gzUQQtXWmaj+ZrHjX+h00tHVz1/od3n1i5yCbN8n77YZPMhFMKmdZHhsIZRfL6r4yVBRIMR/52CvmZXPHE4sols0dH9pVLJszzrt/zrgUE0x/y1vbY0i36s5k+unLrsJVVM0tTjn0EzuuPR3Zhsk2dyQCmc7Ekel9M2U0Z8rmbutOBrLOTGx1vfSjNq0qAjmQ9CWUePOe44G0I4rSJap1mtncl2OMH2FMUTRUjVf2RfAd0b58de9x4knNq3uPh/IKCszjvqw90RHIM6eMZdH0Cs6cMpa1V87nve9cGTihH/v9Ac9c9PsDoYnUnlRlwTmZb/DI5gPEk5pHNh/IejK/e8NOr1Lqhp1A9hN4OiWQacLty0TfFz+D8yUMHDkzK40U2s0qtb2X1Wq2SNOINGv4Bh2/z0NJQYT27iQlBRFWV8/iwRf3srp6Fl95eVlgLpKmo8H4cuUEPlR1peTntrEnejlGqQznTSxjd20r8yaWsbe+NdSFrdV8d62dCe7esJNtBxs50RE2p000IaQTy4vNsfFAPvmXy4Pj7n1mFw++uJfPmR1BNBKBRIJoJBKqQ/TkFy8OfxBhfpJmoRPt3aHnfPXjZwV5BXLnMKW8iObaOFOM70GSrl6R/AzQt7yCbOmLGacv7zPSu7MNJW7n0E+ybdTjT2y9TXBywpWrVbtMR7tZ3bd3J/nKK8vYXfBpvvLKstBuYb7+GXM6H2W+/hkQLr+QbVRTtit4Ofma4J1AZkOmyCf52f0+Z+okBqd5E8tCUpqpZB8D24E/3rSrHD+2MDRhyrIRnWar5Etp+5erVTub+BurPFPSN1YtyBg5IEtfh6qbWs9Zs3QWW//uctYsnRVaWctezjbp6hXJPAkY+EzjXNQ8yvdKp8MJpxyGCDmxZ8LvC9zRnciYeBWNGIUQCfsVkmbn4ctbLp5rbNtziRqtEO1HN6J0CsZuMJMNLaZomy+lXV/uoGSze0jvmzhkSk/7Us6rslm93XejOBYNpKwVJHsYHzdRSb6ULy7NM3bZajmZS7+ATboIJak0ILsJN1PoqSRTLaRMZqBsFUcuIoKcL2HgcGalfiJNQmWFUVq6Ev3KAcjUW1hmNUvzkUxg8/H1yS+3HiKe1Pxy66E+j0mSbUOjFfMmsGl3XSB7Y0xRlJbORGDzj0QUiYQmElEUxSK0dCYoLYxSbIrK+XJ6ZTE1jR2B9LFNTLd+pCfr+NU99Z6PYE89SXNufXnM+AWOnegIenocb+0GvFyFQ40dXH2ul9F89bleRnNTe1ePNLuI1o7u0MRuR/5Iv8BaK1xURuZIE4xtWklnNpH3A1lFK2Uy22QyA2VrunERQcMbpxz6iTTB2CvhvlBRGqOxLR5IiTQfLYk8FoSbEu85zrbPH2vuDGRg0dKaiWPCmbx9IZPPYcu+hpDsFct+VRCJ0J1IUBCJ0G7OYXtXIsX8IfsoSyXkd0TzJ/3LFk4J6gM9sbUGgENN7UyvKqGmoT3oUSxV/PSqEpORXEJTezdt3QnGFMdC/Q2AkNO+0Ow82uNJFkwt5+X361PaVwIZ/QJyws00maabcHu7vz+Tcl8VR7av4ch/nFlpAJHhoKeCrOrZbPIKmtvjvFdkEtiKUsNS7aQsn4zmK2EKkSWe+0qm6KdOk0zRmSGpwlamly+cHEgZUmpnBUvfwh5TfmJPXSvF5rz7UvYtlmah+1cvYcW8Cdy/egkQ7nUss5NbOrydQ0tHd0rP4gljiwIp+x3Y7SulCSaTXyBd1rFtwklnNpH3Z1sdta84083owCmHLMjWkTvdZA1P7yV72J+De5uLW0xkTEtHnHeinkJ4J7qGKGanYI6TeQp9yQmIG1tTPKFD/bIHAhkOCul9EHa+gOS/3q0NpExUu+/5d2lo6+Y+Y7uWiXiy1aWtGGUjmuWne+Gmy0+fkDK5ySxm+diYYtOSs7ggZdKvKCkIpMxf+OgZEwECKRVUtpNqtuUp5KQvy2/YuGxgR19wyiELplUUh6RETtJNZqXpS4nfYbG7l4V0tzHgdyd1xkY7cqVuT8Y+RWai86Ucn7Ti2Kvs/mLXMZLvKxWC9FnYfQek0/iup02i2tM7QqYxCFdIlTsMO1pJOve3HvBWzVsPpOYOpIsiks5pu2dxo/E5NLZ3hZzOG3d9ABDIjLVNBHICT1eewkY6wr/7m7dpaOvmu795O+U4F8HTd0Zz3oRTDllgN3mXuwA5CR4zduhjvSSPZaIvjXZkPwHJLGNH92W6sNR0tYH6jPVGIaUk6r4Zfy+RSKpfQiaWdRuPfHc8GerQBzDDfLYZVSWhZLK99d6Owpf1pnVmfUtnUJZiSkVJykpa+jTkClzuCGQCGxAyU8kJRL4PwPXVMz2TWPXMjKcvXRhpxt2GOLG28pJkG9XkSGU077qccsiCY6ZapS8LzAxXEIlktLtnym2QDERBPJ/dta0hKbFbTvYF/6PYH6nA9D72pTwv8nZR1K9qGiVFo4jJ7lZTHO/WFXNTFNlVi6YSiyiuWjQ1NJnbJSlkRVTZhc1eScuSFHetf8uU1ngrpBDsSULuWORj0mcB4cxnSaaJOdsJSYaiyt1LttgZ0o5URvOuy0UrZUGXMZz7sqw4Rlt3VyDTkc45nKtGO30pT2EzpriAhrbuQPq0mB1MSy+Z4otnVLCtponFMyqYPaGMJ7cd5vKFk5lSXsyDL+7lxotmA1456v3H3+b6C7wCcH645w837Qm93iOb95uQ0P0kkpq27iTf3rCDn9yyLIhOAtBG2WitU8JIZRSN9CdIE5/MlvbzDPxJQkZCyU5pKRE6wqwkw1XtcFCZPe3nHQx6NFCaUt4nYzAL4uUbozniyimHLLAn1ZSEqCyQCiFTo53BJFP11gLTZtKXPkWxCJ3xZODDkP0KJo0t5FhzVyAlUdPqMhqB92tbAE/uN87k/3q3lgljirwks7ePsfbK+aFV9oH61iBHQTbWAagoLaS5s52K0kI+MDkK9mT+5F8uD/U3zhRGekP1TB58cS83VM/k6IkOntx2mGvOncaOQ02Al79wsnyDdBPIN1ct6FUhpISDpmnfOdATsXw9uy1otrgSFaMDZ1bqA721hTwZmRzNmQrspSOdeSdbbIW30IRoLpxaHorOuvnDs4lFFDd/eDbglfP25ZcuPZOq0gK+dOmZKSa0mOqRMVNTIxaNsGh6BQCLpldwtMmLNPLl4aaOQD6waQ/xpOaBTXuYbuz3viwxTp+SgihJs+pNap2yEv7M0lmm/MUsbr54rlf19OK5KedClryQ+QxlJlrJl5JszQ3pnMu2H0BmQkuT00DbvNM5vk+FwTS1OD9I/uB2Dv1E9gKwlUU2Gc37CJeKyNRLQeJbqk5SjSNrttU0hSR4EUUb3z4WWt1PHFtMY3sLE8cWh7KBO40D2ZeTyos42NDOpPIiahq8yb+xrZuX3vNWnC+9V8fd1y0KNaevM9FIdc2dRKOKZEITjaqUFa50IEt9YB8nJ/2dR06kzVy2eyxDz4o+3cq6L+aGbJ+TcYfRT/rSl9lmME0tbleSPzjl0E8y7SLkbmFOZ3rTkXwNWSE0E9IslO0GpigaoTORpCgaoTCmaO5MBIX+0mU726v7RpPw1djWxc3L5wST6vZDjTS0xakwOwtZ8iJmTFWxqGJKeTEHG9qZVlmS0lxmmimHMa2ymJLCGLuPtTDbNOSRSCXw3I6jgfnJnrSyzRqW3dV83wIMrb05nUIY6DEMZnOegcCV3MgfnFlpAJEhqZBqPsoGuYuwq7JKpFnousVevZ/rFk/LmGS2dO64QNoO5HTOalmZFKDemF3qW7tCPoK2LtMPwki5pJ9iylxPKS8ORRrZ3Pbf5lFVWsBt/21eKOpn7RNvsml3HWufeBMIm2pk/4VMZBsSmqvQxYE01fS3L0MucdnX+YNTDgNIpkY72SIn6ZNVZfXljsNeeegdh09kLIz38vv1gYwZ7eHLMrODKCuKhpLJNmw/Qjyp2bDdK/csK6RKRZGilISDVe4iZKSRjVQ27xxtZvuhJt452swhY5bypSTTZJ6pDIVEhoTmasLMtiJqNmT7fDcROzLhzEr9JJ1fYbBP7NRyzwQztbyYAybp60B9GxPHFnGsuZOJY1OjcladM5Untx1m1TlT2XH4RMhsIwvdyd4HfnmNw2ZirizxIocqSwpDpqbLF04xIapmBd9bmKTWVJpIo8rS1IJ/styFzPgdV1ZAW2OCcWW9O4alTPdYJlu2bbrJtYmlv6YVZ5pxDARu59AHpPko2wS2vhTlKzHho76UrzFhrGeq8aWPrPkDMMmEf04aWxiKxLGTtfxS1FefOy2UbetXLvVlWVEskCvne4XyVs6fHKqLBIQifeTt8WVm51FWmLKal68tx5Dus0Lm1W+2ZSiyYSijaPq7onc7AsdA4JRDH0gXlmqHpErzTMLYeRJJzeIZXjinLyVyMh9jnLu+9Fflly+cEgp9nDXOlMwYV5KyYp9WWRpIOUFKsw3APlPddF9dayjb9j5TwfQ+U8FUloPYuOsYABt3HUsp3yCPk2OVJhzb/CGPk2OwG970hf5OmKO5jIJjdOLMSlmQKaP5z+b8Nugn0GnMFn7L0H3HWwPp9xiIJ3VK795JxhQ0aWwR0yqKOdbcxbSKEt40SVj1JtlOrs7vW70kMH/c+6lzexrF/Hwr4PUWACgvjoWkz7c37Agyi9csnZV1gTgZvlpcEKG50yveZ0cerXtpLw1t3ax7aS/P/Y+P9mq2sc0ffWlKM1Q4U41jtOF2DlmQydG8eY/n5N28pz7U/xnClVhluOpRU6PJl59cMp1YRPHJJdNDK2u7PaZcnacrzmZnb/t2dn/V27P6DRf9lqtzWa/IXjHL3UemsFs7BLY3BsL8Ic/DYJp+nKnGMdpwO4c0vFe4Jkhssx3NJbEI7fFkIMHbLXQl0tcXkqycP4kntx1m5fxJAKx7eS/xpGbdy3tDIZnTK0qobe4KMoPl6vy6//NiqBaPv3MoKojQ1p2gyPgnrlvstbe8bvE0PmtqGPlmJZmAJlfntzz0+8AZ/OBNFwTPAULmqOmVxeyubWV6Zaov4I4rF4Ref7DI1B7T4XD0nbxVDkqpK4D78XrdPKi1vnew3zNU/0j1NNqZY2c0G3t+3CpYlqmw3RdW9PQz/vFLewH41fYj3Ld6CV1xE7Ia16HJbtnc8bx1+ATL5o5PfUFhBpLPOdHeHZKfvWg2x1u7+OxFs0MK4PzTqtJW8Pzqx88KJnbbpCOjiB686YK0GcS2mWmwGOj2mA6HwyMvlYNSKgp8H7gMqAF+r5Rar7Ue1NrCtqPZl5Wmn3NlqXe6ZEe1bFl75fyUKqN+gbsZVSUcbGhnRlVJaLL77IOvEk9qHn5lH2uvnM+Xfr412AVcXz2T/fWtQZ8AP1N5XFkhT247HEQfrX38DXbXtnKksZ3n/vqSYDyZSidkmtgzKY5ckG9hqA7HSCEvlQNwIfCe1noPgFLq58C1wIArh2zqH00q8Uw0hSbzTDaor+klMas35GQsS1gD3Ld6SfCYNNvYrTaf3HY4kMdbuwLHMBDcPmFaju7zcx/M+A5Y4+xrDZuh2hGMprLQDkc+kq8O6enAQfF/jbkvQCl1q1Jqi1JqS21tbZ/fKJs8BbvDm92gPhiTJWXHuLWPv+GVgHj8Dd43jXje76UhjzTblJsQVl/KtppXnD2VqtICrjh7auh2q2lR6ksZ2iodtnbcf7bO3P46fbN9frbZzQONqwrqcHjk686ht3jKkA1Ha/0A8ABAdXV1n/vXDGSjHdvnEDFl8SIoDjV65agPNXYwvbI41FvgSz/fysGGdvbWtbJoegWbdtexaHpF0D7TjwY6YkpaH2nqCIWUvn3Uqzh63/PvUFFiMo+NT2JieTE1De1MLC/O2IPALvwmfQlyBd/fqpmyqc2TX7w47XHZZjcPNK4qqMPhka/KoQaQTXdnAIcH44360mhHTnATxxRS29LFxDGFnGjvpjOhgyS4aCQCiQTRSCQURbRy/mT21u8NMoxl7SDfTPW73XVMryqhraGdcSaUVZbJkBVR/cnsWHNXj3IwyN4Hmco1y7LVmSKA+hLvL98r23wK6UsYyhwDl8/gcHjkq1np98A8pdQcpVQhsBpYP5QDkIXtbGTBuR9+tpoV8ybww89W8wlTadSXN17kVTS98aLTQlFEsi0lwHiTFe1LHzmx22OSZaZlVda6FtMTwch0rSDt/AVZ9E6aqWzzU1/i/eV79SXbeShzDFw+g8PhkZfKQWsdB74I/AbYBTymtd4xlGMoN/WAyosLQp3RAOrNxFvf0hmaTDbu+gAgkK/uPU48qXl17/G0tYvAK2bny8+v8BrXf37F3FBTG4BvrFpIVWkB31i1MDTp37d6CfvuvYr7Vi8JtfEEQit12VA+pdaQOE6arAZisszUAc3hcOQn+WpWQmv9DPBMrt5fTrK+6cgvGje9qpTdx1qYXlUaMpnI3sZAaAKXtYumlBfT3BHnQH1rynEy5DVkjiEcKXTmlLHBY49uPhCEl9q9oRvbuwLpKxm0TgkBlb2O/YipK86emmJ+ShdFlCm6KB9CXh0Ox6mRlzuHfMMuE3Hz8jleP+Llc0ImkwljPAezL6+/YJZXfO6CcO2iH/3O64/8o995+Q6yamm6shiZuOeZXTS0dXPPM7tCOw8gVE4jNB4L+V5y52Cbn9IVoHOF6RyOkUXe7hxyzUyTmDazqgStdaifgJw8bQemXOnL42TS2qHGNmqbuwJHs1y1p4saslft8rgp5UVB9NNlC6ew88iJoAzHn3+kJzNbjidTrkKmrON0DlvnyHU4RhZOOaRBG1OP1poJY73GOn4/gXQTYaYexndv2Bk4kO2aSZJMIZzyfxldJE1MdqiobabyX/tUzEDydj5XTnU4HAOHUw5pqDF5CTWNHdz/6fNCOwKZxfzrt45k12FM+BVkoTxIja1PF8JpKw65CwjeJ0OoaL43l3d4uOxwRz7glEMfsIvPwclX41IhZNphSOzjson9lyaqTDgzUP7iEvEc+YDSus/JxXlDdXW13rJlS5+eO3vtr056zIp5E4KGPg9/bmkoOkja7v3VuH+cw9EX3M7BMVQopV7XWlf39pjbOWSBvcpOV3xO+gEcjr7i/DeOfMCFsqZhRlVJILMNKZXRQAOBKwI3snDfp2M44ZSDoMCkQBdEFLddcjpVpQXcdsnpGZ8jf/Cy7ESm4/pSmdQx/HHfp2M44cxKgtnjS9ld28rs8aVZ5wTYRerSPacv7Sxtc5azRQ9vXBCAYzjhlIPg3k+dmxLp05eon96ek+1xtgJIV1bb2aSHH86X4BhOOOUgkD/ebO3C2T4n23aWmRSAW3k6HI6hYtQrh4iCpO6puOrTl1X6QKzsMykAt/J0OBxDxahXDtMrvRpK0yvDpSz6skofiJW9UwAOhyMfGPXKodn0WvalT18m6aGc2J1z2uFwDCajPpS1sT0eyHQhpvkYn+7CIh0Ox2Ay6ncOknQ+g3yMEnLOaYfDMZiMeuUgO6cNp14FzjfhcDgGk1GvHKZXlVDT0M50USbDxk3EDodjtDHqfQ73r17CinkTuH/1klwPxeFwOPKGUb9zcLsCh8PhSGXU7xwcDofDkYpTDg6Hw+FIwSkHh8PhcKTglIPD4XA4UsiJclBKfVcp9bZS6k2l1L8rpSrFY3copd5TSr2jlPp4LsbncDgco51c7RyeA87WWp8DvAvcAaCUWgCsBhYCVwA/UEpFczRGh8PhGLXkRDlorX+rtY6bf18FZpjb1wI/11p3aq33Au8BF+ZijA6HwzGayQefw58Bz5rb04GD4rEac18KSqlblVJblFJbamtrB3mIDofDMboYtCQ4pdTzwJReHvpbrfVT5pi/BeLAI/7Tejle9/b6WusHgAcAqqurez3G4XA4HH1j0JSD1vrSTI8rpW4CVgErtdb+5F4DzBSHzQAOD84IHQ6Hw5GOXEUrXQF8HbhGa90mHloPrFZKFSml5gDzgNdyMUaHw+EYzeSqttL/AYqA55RSAK9qrb+gtd6hlHoM2IlnbvpLrXUiR2N0OByOUUtOlIPW+vQMj/0D8A9DOByHw+FwWORDtJLD4XA48oxRrxzysT+0w+Fw5JpRrxz8/tD3P/9uroficDgcecOob/aTj/2hHQ6HI9eMeuXgOsE5HA5HKqPerORwOByOVJxycDgcDkcKTjk4HA6HIwWnHBwOh8ORglMODofD4UjBKQeHw+FwpOCUg8PhcDhSUD2tFIYvSqlaYH8/XmICUDdAwxnOuPPg4c6DhzsPHiP5PJymtZ7Y2wMjQjn0F6XUFq11da7HkWvcefBw58HDnQeP0XoenFnJ4XA4HCk45eBwOByOFJxy8Hgg1wPIE9x58HDnwcOdB49ReR6cz8HhcDgcKbidg8PhcDhScMrB4XA4HCmMauWglLpCKfWOUuo9pdTaXI9nqFBKzVRK/adSapdSaodS6nZz/zil1HNKqd1GVuV6rEOBUiqqlNqqlNpg/h9150EpVamUelwp9ba5Li4apefhy+Y38ZZS6mdKqeLReB5gFCsHpVQU+D7wCWAB8Gml1ILcjmrIiAN/rbWeDywD/tJ89rXARq31PGCj+X80cDuwS/w/Gs/D/cCvtdZnAefinY9RdR6UUtOBvwKqtdZnA1FgNaPsPPiMWuUAXAi8p7Xeo7XuAn4OXJvjMQ0JWusjWus/mNvNeBPBdLzP/5A57CHgupwMcAhRSs0ArgIeFHePqvOglCoHVgA/BtBad2mtGxll58EQA0qUUjGgFDjM6DwPo1o5TAcOiv9rzH2jCqXUbGAJsBmYrLU+Ap4CASblcGhDxX3A14CkuG+0nYe5QC2wzpjXHlRKlTHKzoPW+hDwPeAAcARo0lr/llF2HnxGs3JQvdw3quJ6lVJjgCeAL2mtT+R6PEONUmoVcExr/Xqux5JjYsB5wD9rrZcArYwS04nE+BKuBeYA04AypdSf5HZUuWM0K4caYKb4fwbeFnJUoJQqwFMMj2itf2nu/kApNdU8PhU4lqvxDRHLgWuUUvvwzIofU0r9lNF3HmqAGq31ZvP/43jKYrSdh0uBvVrrWq11N/BL4MOMvvMAjG7l8HtgnlJqjlKqEM/xtD7HYxoSlFIKz768S2v9P8VD64GbzO2bgKeGemxDidb6Dq31DK31bLzv/z+01n/C6DsPR4GDSqkzzV0rgZ2MsvOAZ05appQqNb+RlXj+uNF2HoBRniGtlLoSz+YcBf5Va/0PuR3R0KCUuhj4HbCdHlv73+D5HR4DZuH9UP5Ya308J4McYpRSlwBf0VqvUkqNZ5SdB6XUYjynfCGwB7gZb/E42s7DXcANeBF9W4FbgDGMsvMAo1w5OBwOh6N3RrNZyeFwOBxpcMrB4XA4HCk45eBwOByOFJxycDgcDkcKTjk4HA6HIwWnHByOHKGUWmzCqU/1eS8opUZdw3vH0OKUg8OROxYDp6wcHI6hwCkHh8OglPoTpdRrSqltSql/UUotVUq9aWr6l5k6/2crpS5RSm1SSv27UmqnUuqHSqmIeY3LlVKvKKX+oJT6N1O/CqXUBUqpl5VSb5j3qAD+HrjBvN8N5j3+VSn1e1MA71rz3BKl1M/NWH4BlOTsJDlGDS4JzuEAlFLzgf8X+KTWulsp9QPgVeAMoBhvQq7RWt9jsql/jdcHZL+5/S/AC3j1eD6htW5VSn0dKALuBd4GbtBa/96UyG4D/gSvd8AXzRi+A+zUWv9UKVUJvIZXMffzwNla6z9TSp0D/AFYprXeMsinxTGKieV6AA5HnrASOB/4vVdWhxK8Amt/j1eHqwOvEYzPa1rrPQBKqZ8BF5tjFgAvmdcoBF4BzgSOaK1/D+BXwDXHSC7HKwT4FfN/MV7JhhXA/zLPfVMp9eZAfWiHIx1OOTgcHgp4SGt9R+hOpabg1dYpwJusW81D9pZbm9d4Tmv9aes1zunl+HRj+COt9TvW83t7P4djUHE+B4fDYyPwKaXUJAj6SJ8GPAB8E3gE+Edx/IWmom8Er1Dbi3hmqOVKqdPNa5Qqpc7AMylNU0pdYO4fazqNNQNjxWv+BvjvpiIoSqkl5v5NwGfMfWcD5wz4p3c4LJzPweEwKKVuAO7AWzR145VmXqy1/qTpOf6yeTwJ/B1e97RFeJP3bVrrpFLqY3hKpMi87De01uuNYvjfeOaqdrzeAYV4CqEAuAevNPR9eD0EFLDPVIktAdbhmay2AacDf+V8Do7BxCkHh+MUkeW9czwUh2PQcGYlh8PhcKTgdg4Oh8PhSMHtHBwOh8ORglMODofD4UjBKQeHw+FwpOCUg8PhcDhScMrB4XA4HCn8/9wUEXzczG8HAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model = Pipeline([('attribs_adder', ColumnDroper(['artists', 'id', 'name', 'release_date'])), # drops text inputs\n", " ('std_scaler', StandardScaler()), # scales data so it is consistant across parameters\n", " ('reg', LinearRegression())\n", " ])\n", "train_and_vis_model(model, x_train, y_train, x_train_v, y_train_v, x_valid, y_valid, name='linear_reg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "random forest regression" ] }, { "cell_type": "code", "execution_count": 146, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scores: [12.64133415 12.56643406 12.5658911 ]\n", "Mean: 12.591219769571682\n", "Standard Deviation: 0.03543690943113567\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9+klEQVR4nO29eZhU1Zk//jm19L4v7DTdKCqCCBEFAyEmRJMQRCdmCMFEhxljvpNkRuc7yQzmSUYZmchM8pvRWbIYHcZMNMbRfIkSkrhMDIKKwYAgoKJ0syPdTXfTe9dyfn/cc26/51Sfy6W6qru66nyep5+3uuoup27d+573vMvnZZxzWFhYWFjkDgKjPQALCwsLi5GFVfwWFhYWOQar+C0sLCxyDFbxW1hYWOQYrOK3sLCwyDFYxW9hYWGRY7CK3yLrwRi7hzH2Ex/b/RFj7ChjrIsxNm8kxmZhMRqwit/CYhDfBfBVznkJ53zXSJyQMVbPGOOMsdBInM/CArCK3yIDMYpKcBqAfcnsyBgLpngsfs5pJwuLpGAVv0VGgDHWxBj7W8bYHgDdjLFvMsbeY4x1Msb2M8b+iGz7J4yxbYyx7zLG2hhjjYyxT5LPGxhjvxP7Pgeg5hznzmeMdQEIAniDMfaeeH8mY+xFxlg7Y2wfY2wF2ee/GGPfZ4xtYYx1A/gIY2wSY+wpxlizGNNfku2vYoztZIydZYy9zxj7Z/HRViHbhYvpao9x/gljbDtj7F8YY2cA3CPG/l3G2BFx3B8wxgrJPn/DGDvJGDvBGLtNrC4uPPcvYpHNsIrfIpPwOQCfAlAB4G0AHwJQDmAdgJ8wxiaSbReIbWoA/BOAhxljTHz2GIDXxWf3ArjV66Sc837OeYn493LO+QWMsTCAZwA8C2AcgL8A8Chj7GKy62oA/wCgFMDLYvs3AEwGsBTAnYyxj4ttHwDwAOe8DMAFAJ4Q7y8RskK4mF7xvELO9z4kxvQPAP4RwEUA5gK4UJz77wCAMfYJAP8XwMfEZx8+x7EtcgRW8VtkEv6Vc36Uc97LOf8fzvkJznmcc/4zAAcBXEW2Pcw5/xHnPAbgEQATAYxnjNUBuBLAt4RC3wpHIZ8vFgIoAbCBcz7AOf9fAJvhTE4Sv+Ccb+ecxwFcBqCWc/73YvtDAH4EYJXYNgLgQsZYDee8i3P+ahJjAoATnPN/45xHAfQB+CKAv+Kcn+GcdwL4NjnnSgAbOef7OOc9cCZQCwur+C0yCkflC8bYLYyx3cLN0g5gNlSXzSn5Qig1wFHUkwC0cc67ybaHkxjLJABHhVKnx5k81HjhxAcmyfGKMX8DwHjx+Z/BsczfYoz9njG2PIkx6eesBVAE4HVyzl+L993vYNjXIodhg0MWmQQOAIyxaXCs5aUAXuGcxxhjuwEwj30lTgKoZIwVE+VfJ499HjgBYCpjLECUfx2Ad/TxChwF0Mg5nzHUwTjnBwF8jjEWAPBpAE8yxqqTGBfdvgVAL4BZnPPjQ2x7EsAU8v/U8zyXRZbCWvwWmYhiOAquGQAYY2vgWPznBOf8MICdANYxxvIYY4sBXJ/EGHYA6AbwN4yxMGPsGnGcxw3bvwbgrAhQFzLGgoyx2YyxK8V3+DxjrFZMIu1in5j4jnEA0893gOJYPwLwL4yxceI8k0lc4QkAa0SQugjC929hYRW/RcaBc74fwP8H4BUA78Pxn28/j0OshhMEPQPgbgA/TmIMAwBWAPgkHMv6ewBu4Zy/Zdg+BmdimAugUezzEJzgNAB8AsA+kT30AIBVnPM+4ab6BwDbhbtm4XkO9W8BvAvgVcbYWQDPA7hYjOlXAP4VwG/FNjJw3H+e57DIMjDbiMXCIjfAGJsJ4E0A+SI4bJGjsBa/hUUWQ9BQ5DHGKuGkfj5jlb6FVfwWOQPG2M2iSEr/S6paNx0QBVhDjfEHSR7yS3DiCO/BiSn8ecoGazFmYV09FhYWFjkGa/FbWFhY5BjGRB5/TU0Nr6+vH+1hWFhYWIwpvP766y2c81r9/TGh+Ovr67Fz587RHoaFhYXFmAJjbMiqdevqsbCwsMgxWMVvYWFhkWOwit/CwsIixzAmfPxDIRKJ4NixY+jr6xvtoYwqCgoKMGXKFITD4dEeioWFxRjBmFX8x44dQ2lpKerr6zHYfyO3wDlHa2srjh07hoaGhtEejoWFxRjBmHX19PX1obq6OmeVPgAwxlBdXZ3zqx4LC4vzw5hV/AByWulL2GtgYWFxvhjTit/CwsIiq3H0NeC/P+3IFMIq/gxBfX09Wlpahr2NhYVFFuHFDcB7LzgyhbCK38LCwiJToFv416wFLljqyBTCKv5hoKmpCZdccgluu+02zJ49GzfffDOef/55LFq0CDNmzMBrr72GM2fO4MYbb8ScOXOwcOFC7NmzBwDQ2tqK6667DvPmzcOXvvQlUJbUn/zkJ7jqqqswd+5cfOlLX0IsFhutr2hhYTGS0C38qVcBX/i5I1MIq/iHiXfffRd33HEH9uzZg7feeguPPfYYtm3bhu9+97v49re/jbvvvhvz5s3Dnj178O1vfxu33HILAGDdunVYvHgxdu3ahRUrVuDIkSMAgAMHDuBnP/sZtm/fjt27dyMYDOLRRx8dza9oYWExUkiTha9jzObxJ4PXD7fhgeffwR0fuwhXTKtMyTEbGhpw2WWXAQBmzZqFpUuXgjGGyy67DE1NTTh8+DCeeuopAMBHP/pRtLa2oqOjA1u3bsXPf/5zAMCnPvUpVFY643nhhRfw+uuv48orrwQA9Pb2Yty4cSkZq4WFRQbiubuBV/4duPqrwLXrHAs/zcgpxf/A8+9g60EnOPrjP1uQkmPm5+e7rwOBgPt/IBBANBpFKJR4iWUK5lCpmJxz3HrrrbjvvvtSMj4LC4sMxyv/DsSjjrx23YicMqdcPXd87CIsmVGDOz520Yidc8mSJa6r5sUXX0RNTQ3KysqU93/1q1+hra0NALB06VI8+eSTOH36NADgzJkzOHx4SGZVCwuLsYqnvgjcU+7Iq78KBEKOHCHklMV/xbTKlFn6fnHPPfdgzZo1mDNnDoqKivDII48AAO6++2587nOfwwc+8AF8+MMfRl1dHQDg0ksvxfr163HdddchHo8jHA7jP/7jPzBt2rQRHbeFhUUasfeJQXlPx4hZ+hJjoufu/Pnzud6I5cCBA5g5c+YojSizYK+FhUWGY+d/AS+sA5beDcz/E8fS3/sEcNlK4KYfpe20jLHXOefz9fdzytVjYWFhMSp4YR3Qe8aRgKPs7+lIq9L3glX8FhYWFunAgx91/PgPftSx9AurHJkByCkfv4WFhcWI4cTrg/L2/3VcPBkCa/FbWFhYpAqUcmHSFc57UmYQrMVvYWFhkSpIygXAsfIzFFbxW1hYWCSLf7kM6DgClNcBf7V3kGohzZQLw4V19SSJ9vZ2fO9730v7eTZt2oT9+/en/TwWFhZJoOOIKtNEqpZqWMWfJM5X8XPOEY/Hz/s8VvFbWGQY7ql0snXuqXQsfWBQjhFYV0+SWLt2Ld577z3MnTsXH/nIR7Bnzx60tbUhEolg/fr1uOGGG9DU1IRPfvKT+MhHPoJXXnkFmzZtwo9//GM8+uijmDp1KmpqanDFFVfga1/7Gt577z185StfQXNzM4qKivCjH/0IZ86cwdNPP43f/e53WL9+PZ566ilccMEFo/3VLSxyHPFB+Vd7R3UkycIq/iSxYcMGvPnmm9i9ezei0Sh6enpQVlaGlpYWLFy4ECtWrAAAvP3229i4cSO+973vYefOnXjqqaewa9cuRKNRfOADH8AVVzgR/9tvvx0/+MEPMGPGDOzYsQNf/vKX8b//+79YsWIFli9fjs985jOj+XUtLCxcBOAo/7HrMMktxX/0NSfqfs3alPrgOOf4xje+ga1btyIQCOD48eN4//33AQDTpk3DwoULAQDbtm3DDTfcgMLCQgDA9ddfDwDo6urCyy+/jD/+4z92j9nf35+y8VlYWAwT37kI6H4fKB4P3NM22qMZNnJL8dNUqxRyXj/66KNobm7G66+/jnA4jPr6evT19QEAiouL3e1MvEjxeBwVFRXYvXt3ysZkYWGRQnS/r8oUIh19Qs6FsbtWSQYp7G5TWlqKzs5OAEBHRwfGjRuHcDiM3/72t0Ya5cWLF+OZZ55BX18furq68Mtf/hIAUFZWhoaGBvzP//wPAGeCeOONNxLOY2FhMUK4p3zwD3AsfSpTCNkn5IHn30n5sU3ILcWfwlSr6upqLFq0CLNnz8bu3buxc+dOzJ8/H48++iguueSSIfe58sorsWLFClx++eX49Kc/jfnz56O83LmxHn30UTz88MO4/PLLMWvWLPziF78AAKxatQrf+c53MG/ePLz33nvDHreFRbbg9cNtuOXhHXj9cPpdL6+v3IFbpj6L11fuSPmxR6NPSFppmRljfwXgNgAcwF4AawAUAfgZgHoATQBWcs49f7lsomXu6upCSUkJenp6sGTJEjz44IP4wAc+MKxjjtVrYWExHNzy8A5sPdiCJTNqUtNnQ1r3Ce93pP5cIwQTLXPafPyMsckA/hLApZzzXsbYEwBWAbgUwAuc8w2MsbUA1gL423SNI9Nw++23Y//+/ejr68Ott946bKVvYZGrkBZyWizlezqM5xoNn3yqke7gbghAIWMsAsfSPwHgLgDXiM8fAfAickjxP/bYY6M9BAuLrEBKOuqZrHyPc0nrH0hd7+6RRtp8/Jzz4wC+C+AIgJMAOjjnzwIYzzk/KbY5CWDcUPszxm5njO1kjO1sbm42nSMtYx9LsNfAwiI1eH1Nk+PHX9Pkud1o+ORTjXS6eioB3ACgAUA7gP9hjH3e7/6c8wcBPAg4Pn7984KCArS2tqK6uhqMsdQMeoyBc47W1lYUFBSM9lAsLMYODFa+zK4BvC350ejdnWqk09XzMQCNnPNmAGCM/RzABwG8zxibyDk/yRibCOB0MgefMmUKjh07BtNqIFdQUFCAKVOmjPYwLCzGDDgAJiXx5d8hsoPGsiXvF+lU/EcALGSMFQHoBbAUwE4A3QBuBbBByF8kc/BwOIyGhgbPbbIhCGNhYTFMUAv/ng7EAAQ5EGOqAswGS94v0unj3wHgSQB/gJPKGYDjutkA4FrG2EEA14r/04LRKIywsLDIbLyxpgm31j2LN87hy89mpDWrh3N+NwC9u3A/HOs/7UhrupeFhcWIwO/KXdluY71xu1yy7E3Iaq4e+wNbWIx9+A263vvMPuw+1oGzvRFsIu+/vqZpcEJI71DHDHKLssHCwmJE4ZdWwWs7U/pkwj4yu0/L8vPr8qXHG0k6iNFAVlv8FhYWo4t7N+/H7qPtONsXxaavLDJu52XV05U7defo+zzZvAzBAiDWDKXy1m+2Dl0xlBWGx3yRlhes4rewsEgfZIHhOQoNveJxJmWv7yOVma7UfLt8yYphJOODo5F9aBW/hYVF2vCt62e5Ss0LXsqZKvuq4jxXXrGxHj8GgI0A7ulAFEAQQAz+FRtVut9afqmigOl40qmc/cYwUgnr47ewsEgbpAIdjrKkPv7Ne04CgCsp/nTqs2joewx/OvVZ38e+d/N+bD3Ygns37/ccqylO4BUL8Bsn8KKASFeswVr8FhYWw8ZIuSveyvucW3ylw+Se0cdG/x+uK0rJJPrqYuWzVFBApGs1YBW/hYXFsJFKBaUr6rVPvoGDzd042d6LZ+G44oNAAnWySYHqAWY61pVX1uHwmbew8so6zzGZAsymTCIgNVTO6Yo1WMVvYWExbKRSQVFF/9xfX4Nftd+AYD4QawdiwaHpFrzQ3RdRJB3rvc/sQ1tPBE/8/ggunlDqSznTiYPGBXSkgso5XbVIVvFbWFgMG0aLGDhvS/fU2X5FBoMOqVowCPzjVa/ioW2NuG1xA7w6Z9MxFBeEAcCVdKzdAzFX+l210InDr2LONBYBq/gtLCxSCqpAAZy3pbuLrXTy8QEAglQNzv/7T55FNM6x/+RZT/cJ9b17ZRYV5wVd6Vc5J2OFZxqLgFX8FhYWKcVQCvR8LF09Hz8kfPkhAJ/YcQR7j3fgE7MnJljoJt+7l9I1TQpJ8QOlYLuRglX8FhYWKYXu9vEFQp3slY+/cXsj2noi2Li9EWsWNbiTAODf925CMpW7ft1Do5Gr7wWbx58hyHZuEIuxieFy7dA8eb/Q8/Ef23EE8/7+WTy24whOdfQCAE519OLXb55EW08Ev37Tyemn+fB+6weU/HytctdPbv0nZk9EZVHYnXxMyLR2jVbxjyLoDWR7B1hkIvwWLtHtlM985slT6Mr0O795C209EXznN2/hrmWXorIojLuWXYpLJ5YhFGC4dGJZ0t+PKuRvLb8US2bU4FvLL/VdzKVPPhT0OqSikC2VsK6eUYQX74iFRSbAdF/qrotPzJ44pO+d+tB1P3f0nvJBlw7Jyf/1wztcZbp6QR2+/vFL8J3fvIWvf/wSXDyhFJdNLsfFE0px35YDiMY5Ht1xBGuXzfQspjKBuqUeE/GDt091eipovzGMTHPvUGS14s+0gIqOZNLCLCzSCf2ZMd2XVNEDwBO/P+Lmw6+8ss79zCuXPQiRpqkd+9KJZXj5vVbXkl+9oA6rF9QlHKO8MITO/ijKC4UaI66aZJ79dc/sQ380jnXP7HPPNxT0a2J6bjPZmMtqV0+mu08ybflnYXHvM/scn/wz+zy3S3BxEKVrcn/859Hr0FiwGv959DoAjqXPuUzbHMTPdh5FNM7xs51HE85LXTM1pQUA4MqV86eisiiMlfOnJvXsR6JxRQ4Xmfx8Z7Xiz7SAioVFpoMWNAFqYJVC969TpWt67nQL/8K+x9DQ/xgu7HtM8Yd//eOXoLIojK9//JKE8VFlSs8JAE/sPOqsOnYeTYr47PYl0xEKMNy+ZHrCNtmWfJHVit/CIhuRjBLyuw8taAKA+7YcQFtPBPdtOaAc48evHEY0zvHjVw4DUFcAb5/qdH3l0XvKwe8pR/SecsS4sPBFnLdCuGgqCkNK9s/qBXXY9XfXue6WOx/fhfq1v8Sdj+9SxkBTOwEYA8l+A9HXzpqAD15QjWtnTUhYMWS69+B8kdU+/kwOrlhYJItk7mu/++gFTRPK8tHZHMWEsnzlGJF4XJHUL79+8z70ROJYv3kfPhcctPJ/umyvG6RdDaC0IIz23ihKC8IKn47un9+0+wQAYNPuEzjTPeCO4XhbryIXTq/GmyfOYuH0as/qYYWrhxC4lRWEjMkWmeyvTwZZrfgz/cfK9OCzRWYimfta34fee2+f6hxUyAvqlIlhzeLp+M5v3sKaxdNx8YRS9xg7H3oVkRhHOOD49h/dcVhk2BzGHr7KIVWLOf57SapGM3IA4PTZPlfOnOQUcBUXhBMmqRvnTsKm3Sdw49xJ+MLV9e4YJJnb5ArHx09jAw/demXCNZKvFa6e/qgrv7X8Unc7PYCbbckX1tWTIiSz/M625aPFyCAVQUN679E8eR00W4e6cL65fBYqi8L45vJZAIAJ5YWuDAYFdXIQeOKTe/GB4P/giU/uTbjfg4GAKxc2VCEUYFjYUJWQx3//qnlo2vAp3L9qnjK2DZ+5HEtm1GDDZy4HAHx2/lSEAgyfnT9VuUZe14u6tjI5GJtqZLXiH0nFmkyFog0+W4wU9GeBKlcaTE0wYEi2Dp0gdD/8r86uQGPBavzq7ArEmPDlM9X3T9smAsB1s8a7klrrelYQHZNXx6xXD7UiGud49VCr7+uy8so6J0Cs8fFnWzBXR1Yrfr/l1Mkg4cZIokIxlywMi9GFbmRQ5UqVuD5B0GpWrwkiBMeXHwLwmdotaOh/DJ+p3YKzvY7v/mxvJKFt4rP73nclPbb+3NIUU+qa0TOOaEYSHZ9Xho4p9dTLaMyGSSGrFT9dpqYaCQ/I9bOcB+T6WSk/12ghG27wsYRUpxB6UQaYVpv6+9S9Q330l2+sxyNHrsPlG+sBOMRqXEiqnHcfcypydx/rwG2LGxAKMNy2uAEAEInHXEmPTdMyAahdroiBpbuoqNuGThb6s0pXDSbj0Gs17rfWIZOR1Yrfqy3acKHfGNlovdsYxMjCS0ElMwl4KSh6v9JjU0UPAPdt2S/SOfcr4wty4ccXepgSq1EFXJrvvC7ND6KuuhilBSHUVRcDAAJC/QQQUF2l2uqZrjroM63n+yvGF9kuQbmT41OL3y+3jmllcT4YbaMqqxW/XuCRSoyWoh/JG8bGIJKH1+9k+izhehMFZZqETQVWAHwbPn4Dvf959Do05juVt9SPD6hu1YXTq51A7fRqTChzMm4mlBUokwgAjCvLdyVN59RXz3QyopOKHmegzySdLHR3Dj0+veZ+DR06hmSNo9E2qrI6nVP3Y2YDRrI2IdtS2EYSXr+T6TP9eg/VJESfhPWAK03TpJz0euow/Z+metLUTgDo7I+5Mpg/aOX/4wK1BSJ91vYe73ADtaGgMzO090VQXpSHzv5elBc5wV0ZDeMAegVNQu8QdAn3bdmPzv4Y7tuyH//1pwuMPPuP7TgyZFqqzitk4trxmyZL6wWunTXB1z46RjvVPKst/nQGd1MNv5a8tcKHxmgvnXV4/U5+f0NTSiL9rjSFETBnl3lVolKL+rXGVrT1RPBao5MZExIaIhSAYuU/tK0R0TjHQ9saE74TdcG0dA4AAFo6B1BT4lj4UjaLPP7ms33o6HG26+gZSPgONFXUC/qKQsIrS8h0vb3uJy8uIb8YbddwVit+L65sv0hlgM0Lfpd+o33DZCpGe+msw+t3Mn3mN7hLvyvtQQtAcQ9RH78+2VCuHbpqoFWyAPBW3mo05q/GW3mrcXG/w61zcf9jCYFa+p2oCyYkCrxCAYb66iIAcCV1Rd28YBpCAUdStw8ALL1kHEIBhqWXjDPz/gPuSkJKCZ1XyM+94rUNndgy7b7zi6xW/HrecDIY7g/rd39ryQ8P2XD9/PLDUEWmf+/6mmJX0iCkPtnQSlu6ahCemUEJ4d4BsOjCGkDItctm4t1vL8PaZTMBqJMUfT2hXPj4ywsS0jlrS/JcqUxgWmyCWtj0+659ag+2HmzB2qf2AABqxHNeoz3vuoVuulfouL3uJzqxjdX7Lqt9/M+8ccKVetWfXwzXF+d3f+tPHx6y4fr55YehimztspnK96b3fJVQrO29A9iw5cCgT37ZTFQIf3tFkap0385f7VIsAB0O5QIc6oWdTWcAIilo3OJQcxeOtffhUHMXCvMcFVMQDmL5nInYtPsEls8Rrlet1aH8rtLFU5zv7PvZ+VPx0LZGpSIXAI639SiS+t4paCMXwHyv6LEXP/eT132XyZQsWW3xT6ooVGQySMa1kskt1yzGDkz3jhdtcZlgvCwrDKFV+NdbOwcSfPIFwnlfEAooK2Nq4QOiGKvPKcZySrRA5CBoPO1kh+O7l1KiqaVbkdSvT6GkbwKJ7iyBkoKwIiljKH0G9ewfE1JtvWeyGyitip8xVsEYe5Ix9hZj7ABj7GrGWBVj7DnG2EEh06YR//yaC1FZFMafX3Nhuk4xJDL5B7cYffjx3XuBKjL9WFHBeRyNcUyudAyeyZWFCT755u5+V373zWvQmL8a333zmoTmKMfbe1w5v955VOfXJwY/adEVdQkpNM+aC4f69el3f27fKbz8Xiue23cKgKqQ6Xm7RAxASponlEzlrZeRlkysL5PdQOm2+B8A8GvO+SUALgdwAMBaAC9wzmcAeEH8nxaks3LXC5n2g2daxksmIp3XyC8fvJ6FZhoTfV9XcLQZ+f2r5mHJjBrcv2peQvFUe0/UlSZSNQBo7Rpw5UvCDfKSOB89L50g9h53qnX3Hu9Qcub1uhpqydPvrq9O6ERAzzu50gkSS0mJ40yThX79/SKZfTJ5tZ82xc8YKwOwBMDDAMA5H+CctwO4AcAjYrNHANyYrjHo3YRGCqm2HIYLuwI5N9J5jbwI0uhnOlWBHrwc6nj6ZEGpD2iapl6Y9W6Bk63zbsFqJU1Tb25icpfqxs0ZMUGc6RowuqL070fHTjPw9NXJD7ceQjTO8cOth5R91ixqQGVRGGsWNSRcc/oM6tffa1IwgZ43GwypdFr80wE0A9jIGNvFGHuIMVYMYDzn/CQACDluqJ0ZY7czxnYyxnY2NzcnNYD23gFFjhS8bgyTgknnzZRpK5B0YLjXz2+rvlRU5FIlp6QaalQFpzp6FSlB99FTlun9te7pN9HWE8G6p99MyPenvvzQPR1g6zoQuqcDR1od/7uUXxbu0i9fcyEqikTHrKJQgjuGunfo5EPHQzl8AHOrRH11Qgu96PfVvzud3LxWUl6Tgum3pOfKBkMqnYo/BOADAL7POZ8HoBvn4dbhnD/IOZ/POZ9fW1ub1ACoFTKS8LoxTAommZsp3ZZHplk2yUyofuG1SqPH9jqP3zFQxb3x5SZE4xwbX25KoCqgPnD63Wkqpp6yTO+vAeHvH4hxfO21hTgY/hy+9tpCAGqjc3rsmJh0pKQrABo/+NFLjhX+o5cOAYDi3ln75BvOSuXJNxSl2zvgKHwpTYy2eiFWfjDgSvr9dIVOJzf6W+gTxIYtB3DhN7Zgw5YDxiJPvYiMnjcbDKl0pnMeA3CMc75D/P8kHMX/PmNsIuf8JGNsIoDT6RrAFz803U1hG0l4pXCa0r+SSRv1S9+QLM1DMvulM4XNazzpLIEf6thD0SCYxnDvM/uw+1gHzvZGsOmri/HjV5pE9kkTIoKiIDIEVcGrjWccfvnGM/jl3pM42taLxpZuTCgvROfpLkwoL8TTIn3zaZGyLC3xSyeeQijIEIlxhIIsgVTtor7HEIdj+U1+fJd7bDkMKY+c6Xblmg824KFtjbh5wTQ89YdjaO4acCccmnK58eUmZ5+2XsWqbxZZRlKuvLIOh8+8hZVX1mHtU3tw8HQXTnb0Kd8PAO5eMctNx6TuKxrDW72gTrletJuW3EcqdxpDmD253B2fkvWjTUommoexirRZ/JzzUwCOMsYuFm8tBbAfwNMAbhXv3QrgF+kaw1hCMoEgv5ZHshZKMvulcxnsNZ50BtJM1An6dzWNQY81RYTlHIlxrJg7CQCwYu6kBCvz3dOdrqT9ZalvW0+wpJb4gfDn0Ji/GgfCn0MsJix8Ee4Ki3TOcCiAY+LYx9p6kS/el1K01EU8rgZjK0R1rJT0s2jM2Skaiyu59jHuvC8lnRTodhtumuN01rppTsJvQZu/69dVr/iV0C1+JYZgWHVkI806Rbqzev4CwKOMsT0A5gL4NoANAK5ljB0EcK34Py2gQSEvpNqlMVzl53c8fpVdskoxnZNRMkinck8Jm6ZPcOG15uA40y3ckd0DaOl08t6l7BIEaV39MVSXOgq2ujQPG7cdctwv2w4l6K3SgpArqR//wqhDt3Bh9DEAQJ1I9ayrLITwpCAYABY0VAEYlAFBuRAIqPTG7SL3XkrqvhLzGmIcaBFu1pauAYj5wJV08DRDR/+dqe++vMjJ2S8vCquponD69UpJJ1HdHUarjk0duDI5IycVSKvi55zvFn76OZzzGznnbZzzVs75Us75DCETywBHGKm2Uoer/MZy8GisPjBeHDCmz3x/V007U3cKvVd0V0iFKMaqKAyholBY2IV5ON7uTAzH2/swZ4rTpFzKnZGVaMxfjZ2RlYofPyw4GKQ82NztSho83SZcaVIWhgOupJYzVeiAWjylfHUia0sdcjYpKX2zl5VPffeUlkG3ypXCL3LNqTtMx3D5vFLBxz8asbSsrtytENaBlCZkWrAm08aTC/DiZffL2W56gKklCgD5IaZIibhQk1LOmVLhSpqhViKs+pKCEPaIDldS0pz8efxnaOh/DPP4z1BRKJ4FIWmDFOrOCYqJQcqzfVFXUqs+TywTpIyIg0TicWWSmSpWFlMrCzFJ8PZISYPU1HevX8cX3jqNaJzjhbdOKxa618RLtwuLpu5SUugEbueLVPDxj4ahl9VcPdTX6IVU8234DYqajp0NvDNjDfSaXzqxTARIHWWgd6WS0Pnf7928H7uPtuNsXxQr5091P6O8+ADwydkOZ80nSR7/UJDv08+bOwcgjHC0dfcrFjXg5OJLrp3OvkEuffkIdAv3UWFeEJ39MRTmBREKMrT1RFFRFEJJfhhH23rdBiqhAMNAjCMUYNi4XWQgbW9SAq4AEAADwBEAS/jsO795y62el8FcQJ1kqDtnWlWREgyn/n+vHhv6tZTb6eOhoLxH186acN7PerJJBaaEgZFCVlv8S2eOV2QySGY29muxZ2IKZy7BdC0f3XFEWKJOxTcNKFJlTPPkASjuhXVP7xOf7UuYOChLpeIbF85xKU3MOJH4oDwYcgqxDoZWAwCuKfg5GvofwzUFP1f2oasEQK3I7RlwDtgzEE+YSGhKKLXqdd5+2k1L6Z9LMm/0Aq6zvVFXUndOq4h7SFkt+PurS/I9C6lMqZ5eXD202MzUy8ALyRZrmhIGRgpZrfhfOPC+IpNBMm4Xvz9kpmXN5BpMD/oEocSGkpXCbVhZFEa/UIpSlgk3SllhGP3CxO6PxRPy0qNx7kqa2inXpW7sk8h8YR1LKUFdOwBwTPj/j7X3KRTLXcJlI+X1l08alOREzSKwLCXFYlGktfjCmgTe/r5IzJW04pgqcT3rplqwh1aX5OGFA+877pwD7+P0WYdHSEp6bL+FVKZeujropKAXmFEkY3Bl8rPq6ephjP1fr8855/+c2uGkD8nml6fa7aKPQx7ba3z0s9Fu2ZYO6C6T4cLvtTSl/234zOWKa4b+v/apPWjriaCmJB9tPep+Q7lmACAUDACICamiT5jvfZE4CkMB9EYdCTgKO8YdSS3vd0OrEQw6qZmxGNzX+sNMJ47JFQU42NyNyRWOC4cyZYrEHQTYYOA5PoR3lBZpMXFcOQ3RYK90Jx1v60VMTHKnz/Zj5iTHdSZjHRUFYTR3DqCiIKwErKGtO+jkQd1wettD6uqhz4lf16ueJUSRTE1LJj+r57L4S8XffAB/DmCy+Ps/AC5N79CGD9ovVJ99/RBgpQMmK4B2S/LaZ6xmzXjBq8G3X3gRl1HQz2jQlTYt16+xqdm3nilDLWwaPJUThJRKYFWMKw6gT2hdKYXOdKUEtfL1NE0Kuv/SmeOdLlbC7dkilGlL94Da79bMvIzLJpe7UncJUeSFmSujYgaJxuMJHbjo9Ze9A6pK8jBOxBekpBTSpuwhQF1B09/Q78qaZgnpTezTufIfDXgqfs75Os75OgA1AD7AOf9rzvlfA7gCwJSRGGCqoJdmm5SD3+VZshOE0UepUdZSZHKWTyomSi9+eb/nor+b1/Wi15+m/9HJR3/oqauGpiD+2SKnEOjPBEkYLX6SVq+UFH3RmCIldJ1bK3L3a0vzFF9+LC7SNIewymmPXAoamAWA5s5+V8pNA4DyWse2d1sUSUEngg7B/NnRE1UmH909tLChyrmWDVVKmqY+qfSIVVFPJK4UgXn55P2m3Zq2042RTFbiycCvj78OACW8GQBQn/LRpBj0JtbzdU0cHekMzAJmsie9+cRYgddKxS/8Nsrwy4Hk1TSbXn+63YcvcvigPnxRbcJDT3u5UgX6+E4nCPz4TmeCuGh8qSuLhVVfnB9MUOjCZY1IDIqbRffxdwp/fGefSp18YURY+ZFEK1+nXJAYELOElPG4KiUkMZqUFNQ20Vs0UoTEm6EgU76fDprOSXGmq1+RYbFzOMBQVyXGV1WMFvG5lMmkSJq282uMjFX4Vfz/DeA1xtg9jLG7AewA8OP0DSs1oA+SruhNhRt+Z3a/3Ok6TJkHfknCMg4eK5VUIxnKBt0qNE34v9p7ypU6k6X0uReGAkrQlnLaA8BukUu/+1iH4makRVA65gj3iZQUe/kqNOavxl6+KoFy4XwRCqqSPhv09USRYy8lBSVL061yOrmViEmvJD+IkMidDwUCmCuKzKSUXDwTyguVa1csMo+kXHfDbFQWhbHuhtkKXYXewYv+tn7ZVk3b+TVGxip8KX7O+T8AWAOgDUA7gDWc82+ncVwpAb0Z9VSy4RZu6BOHX8uXKii/VYOZ7OrxWqkk4wbS3Sx+YaqE1DM16DWn56IWsW6JUl80pTfwC7oS0EEVng4/vvw8YV1LWSmok6WU0Ll1KH0CjVXoAWpabDa/3qFxmF9flRB/oMqeTog0zVPn1ll6yTgn7nDJOMyodSz5GbXF6BYrHSmV9FDyHOvp2vS39SoIo89qtrlw/OJ80jmLAJzlnD8A4BhjbGQpL5OAEqXXyuZNy0y/SFDGBsvXS/n5Veimm1M/tl9Fm8py8VSvVLwCvV7Ho5Y9TSfUMzWoVbh+s+O7X795v2IRU2sdAMqE5VlWEEJA/L4BxhR+ei/oyt0UP31X+PHfFTn5JiufrkBotg8AtAml29YTVSgfvCjKZwnjZ9YQRtBAlLvSlLUEqNeMunq4eN445wrRHAAllZUGm6tE3r6UJk7/X+11DCYp6fNE7yP9vjE1aMqlGhlfil+4d/4WwF3irTCAn6RrUKlCl/hhuwZiCWRM1G/rBdPNoCs8k+WbTjeN7sZIxq85WmyaJnj5Vr2OR1MzaQMTnc9FXWUNOizGlzluh/FlhZgiUh6lNCk8WoDkBWoNe0HPyTdZ+TQLx+vY7WJc7b1RhThNB52YpDdKStMkpW9HUZIfcuX7Ioj8fmc/8sTqQUrqNqO/e2HY+S5S0t+9VwRIeiOxhEmPPpP0eCb3no6MdqmmGH4t/j8CsAJOMxVwzk/ASfMcM6CMhgBQI6yJmpL8lDT4MAUUvZSVFzGYH+jBrWRomv0+FMkgmWW07ls1ZV3o14umQtIGJnrVLGVqpD1aqRV9ptuZRKSkoM1ITOmWgOo+6REGSM8QLUCple/Xj0+TFiaKlEcphwtaFQzoGfWD0CuBqQusQ6StdvREFArqDjERSUndTdSdo4P+7jQbqUZkPUlJXXf0eAkuVQMVcya7VFMNv1w9A5xzzhjjACBaKI4pnBJVgFJS/hS98MNPcw2vIiG92MNU8PGJ2RPdBhHJFIjowS2/xWZ0uweef8fIfZIJoPw39Dej72/6yiLFyt+85wSicY7Ne07gTHcEPZEY1m/ej9UL6hIal8jvLHvMgrEE3ngKr/x1CqrwJOQEQY9BrfyG/scAsXho8jg2DcZSF0k6EBBFZFJK6IHt6+dMwqbdJ3D9nEn43TvNaOuJoLwojK7+KCIxjnCQIQCnyjlviFQghWdHU8wbthxwGyrRbKLJ5YVo7hzAZBEkpu6dyyaXu8fTuZdozMZUUKkjnQ2GRgN+Lf4nGGM/BFDBGPsigOcBPJS+YaUG9Ca5eUGdsAKdB91U4OG3uYbf1EIvS97Uc9Qv7lp2KSqLwrhrmXdgNRVxhmRWJCnZhygBxbXlQXVMq0Bl5aiU1HVx5+O7UL/2l7jz8V3K8cLCfJXSxKapB1ZN0HPjk7HyTdCLw1INU9KWPgH+6s1TruwSfviu/qjCkHv3Cic75+4VsxPOQ+/DDuG2k5J2zLrl6nqEAgy3XF2f4Maj2Vg0eYPGEgC1fsD0HHtRc2cDfFn8nPPvMsauBXAWwMUA/o5z/lxaR5YCXDa5HLuPdeCyyeUKtevaZTOV7ehMT61wL3iVY9Pj3fLwDrMlT5RNMtQQqxfUGa10namQjsGvlWM6nt9xeu1jomnQ96H8NwdOnQUAHG/vwV997GKF6bGmJA/NXQOoKclDa9eASydQW5qHY+19bjEU9XXTgqJxgiO+oy+qNEABgH4R4JRSQvcxm8ACAOJCwmzljxbCQaemIBwEojGVisFUF6CjX2zQH40P7hvjSobOkdZudAoJOHn5kThHOMAUlxwlkAOA5XMcNtPlcyYq7RXXLpup3Fe0C9je4x0u66Ye36CMnA/deiWAxFaa+ooyk+kXkoHf4O4/cs6f45x/nXP+Nc75c4yxf0z34IYLGrSi1K6AOW3Qb4qlvhIwWdhePvRk2rv5taK9cpqTqU5OZkXitfIxZe/o56GBVdqoRP+dKPEZdYUU5jm2jZSmYGWL8B1LmUronaeSsfJpMNVUnXs+oBlJtKDMy5XlweaggHL105x8vSMeLXKj94NCIAegqbXHlSZ+JUC9d2hwl3YbA8wJBEr2kHaebEv79OvjvxZOVg/FJ4d4L2MxubIIB093uS3e7tuyH539Mdy3ZT+OtHa7PkQvi59aqRdPKFWsZpOFDSClPnS/lrfOW0639Wu9mGIVfknQ6Grixn/fpnCsf/3jl7jXku6jgxKVUcNab6dncnlQ3z9gVmzlRWHXL51qtwklVQM6nCyd87Ty9aArcG4r3AuUVsEL+SGG/ih3JeBcO7pK0EH579c941BWn+2NJFx7Guy9sLbYIb8rzlPaUQJqxpbe1IaCNppfu2ym+7zRZ1X+LwO/JmI3mSk31HmyAedi5/xzAF8GcIHomytRCuDldA4s1dhw0xzlx6eNKH700iHEuNOoetGFNUZFTa2SmuI8HGzuxsn2Xjz319ecs7GCfE0nj1+/eTJtjH9+XVHJHMMrGK4vkSX03GnqpqLusEMt3TjW1otDLd3Y9rcfRWFeEF3id4rFuMteSd0096+ap0wQATboQtBz8k1oF8q+PQ2+cj1NMxNgCtoWhgPojcTdKuMFDdXYerDFlRJ0lQA4K5FI3JH0t12/eT+AGIIsgFAghmh8cKUSCDiroEBAbQW54TOXAxi876iyXzl/Kg63dmPl/KkJRgZ9jqk7V7/fTcqebqc3z8k2nMvifwzArwDcB2Ateb8zE3rlng/0H5/yk1eV5KG5cwBVJXmeFv+HL6rFpt0n8OGLavHsPofjXwYSvc5FX9PJ4+sfv8RXPMHr2OmEiTbak/LWkCqnw3S8m77v2BPHRJGP7m8HBvPYKWhq5aSKAqeLVLkj/cBvto5f+KVOHi1QvzedNHvFkkLKl8Rv+xJR+kOBrkjufHwXNu0+gRvnTsL8+kpsPdiC+fWV2HHoDKKII8gGqR964nHkBwPoRxyxuJMOSi33K6ZVJmRzyYSIsoKQcu9NqijE0bZeTKoo9FyVmpQ9RbZ3wTsXO2cH57wJwAMAznDOD3PODwOIMMbG9FWhXX0mVzjun8kVRZ4+ftrYpaRAFM4I6bd7D/Uv+m0WYUIq6g+SOZ4X5a0pbqFX0NKyeVNrw/MBVdxtIr1VytGAX+rkTACdBCgjKJDchEhXY9sFk+f2d1tQmCdqJYSkFBD33nAZKovCuPeGy5QsHkDzrxPDQr/37l81D0tm1OD+VfMyIgsnkyuB/Rog3wfwAfJ/9xDvjSlUF+fhaFsvqovzlOWjLCCRNxO1HCaUF6LzdBcmlBe6PuNeWZTj09Kly2B6Li/fvcl68donmSyEZI6nW0YmS+lb189Sls7U9UPjLakAXSXoDUPSCZOVn+mYUlGAY+19mFJRgPn1Vdi0+wQWXeB02xIJSa40YcmMGmw92IIlM5z95OvfN55BbzSOvGBAYRsFoEwKd3zsItfvftviBjfmBqju0YXTq/HmibNYOL06YQz03vO6/5PJUEsGI3WeZOBX8TPOBzUa5zzOGMuUVWtSWHllnZsO6BUIpT8ejRM8t+8UHtrWiJsXTAMA4w3pteRM5kalPvVU+PEp9EKXVEIfD10BDAjXzcBwopUGpNqF44VMS9OkCDDHDTYUPfLJjj5X/kJY678QsROdKtqEnU1trqwqdnzyh5q7FHqJG+eKIi+RrVNdkofTnQOoLslT7vFPzJ6I0oKQSw2tGwaSY+vVxjNDxpPOBerOTaYwy+8+mZwC6jch7BBj7C8ZY2HxdweAQ+kcWKqhp2/SJtBeaYf0M7rkpDnDgJobTJEMa6cOmpqZim5cpiWo6TsAwy9g8WLd1HvXjhX4JVXLBND+tjryRLQ1L5RIt0xBCyJ1jqCI+NKRWEwpoCsRE3xJXhD7TjjPipTlImhbXhBWnjO9R3GhOEZhXlDl2PJYZXs9d6aeGH6LHpOhcck0+FX8/wfABwEcB3AMwAIAt6drUOlAQt44KUmkP5Dfyl3dv2gkF0sBXz29Ub3y6f22kzTd7DoPPYWxc5jHGOjr+7YcEA/zAQDedMRjBX5J1UYSNNeeNkHRi6Io9ICun4PrlBQBEbANsIByXrrdkTNOPr6UpmdDr73o6I24knJs6fEkalxQKgsvY85Ute8Vs8sGTh+/lbunAaxK81jSCpo3DkDx61N4Lc+8Kl5NVbReaWGmJaP+vp8sBMDsU9TfN2XlAFBWMRQbtzc6JHfbG1GcF3Rz8qnv/opplbj3mX3uZwDc1+VFYXT2R1FeNLbzojM9W4da7NIQpiRyQxHK+YVSiCZ4jKLizXFl+Tja1otxZfku7TLnQFRux+Ouv0juQ9199D7sEnn7UtLiPPo80aQAvV2iJNPr6Ikk3P96tpqEkscvVwpDrCayIePnXHn8f8M5/yfG2L9hiNUf5/wv0zayFENXzLpfXyIZxQr49/vR7fwq6uHm3evvm2ILg2l0iT5+Wvksi+C6B2KKot/01cU4IfzFJzr6MKnCqZQEY2gVDKJSjlUkQ6qWjdBpEDr7I668fcl0Nzj7A1GlS/sDy31onI0mOtzx+C70tPW6fPyyO6TWJVJR9KsX1CUYd7TYUh5bh37/yueCji0bcS5D5YCQO9M9kJEGVXjJBGv0ffQbSEJX4jrbJD3uUOc5H5jy7v1OHLQ5jc5nVF2Sj562XlSX5KNY8K0X54cGG2OILJ3TgvLgdGc/LhEPXFlBKMGdUJIXRNdAzJWZjLGareMFmu2UisgKZeusqy5WgrNDnRMwV5frfPxTKp38/CmVhVj71B4cPN2Fkx19CYqeGnevH24z0jwrleIGd5PJMMwWeCp+zvkzQj4yMsNJH3RSMC86ARM8ydcMN5CuxGkHoXQWj5gqaL22Ky/KQ2d/rxtAow8ItehknjRdEstlO324vTo20SY5mY5Mztbxi5J8pwJaBmOpS6iiMIT23qgr/YCmeQJO3wFJv7zumX3oj8ax7pl9bibPjXMnYWfTGRxr78Nk0eCGZpHRe02v+aD325/85w4AgxQcJtAJYmJ5gfKsUmPM5IrN5IycVMAzuMsYe4Yx9rTpb6QGmQromQJKX1aSU64HgmjAiL5OKFwydODSg8P6TT0ceBaIkIwHv9vRwBkArH3yDaeF4ZNvKBaddAk9t++Uwp4JAJeLRtpSSvgl+MpEZHK2jl9UiN9HSoo80XdSSgpKKU2by+jZP1eLNOarp1cr6blXNVSjsiiMqxqq8eWPzEBlURhf/sgMAOoK887Hd2HrwRaHKrvGWSlISUGpyL3adFKOJv1Z9ROczeSMnFTgXK6e7wr5aQATMNhu8XMYY25NWnwFJNIWS+iuGf3mkq93/d11vgqXdOiFTMOBPlZqNdHz6G4oup1ef/Dm8Q4sbHAqKmlaXqUgL6ssCuOHWw+BA64EBq36N0SWzhtats5I5tMPF6kgVcs06N2vKKh7TgfN4w8SI6G8KIT2nijKBcsnpXaoEPdKRVEY655+E/0xjnVPv4kF06sV9wldYZ5odxT1ifZet65g856TuH/VvIT7l7peqKuHQk4MX//4JZ5Fhp606VmMc1E2/I5z/jsA8zjnn+WcPyP+VgMw+0QyEBtumoMlM2qw4aY5ANRZn/qsvdI0vfrBUiRTqu2V526CPlZTjr9OkEZT1X78ymHRpOKw8hoAqkTOd1VJHmoEC6aUJowlBW9CJpKqDRdLZ45TpAleKzPKx6NX4dLfnWbl0J4FOkU59eUvutCp+F10YQ1uW9yAUIC5lbvUjUqfLa92jXoLTxOSSc3MZCoGv/CbhVbLGJvOOT8EAIyxBgC16RtW+kFn/frqIuw+2o766iJPy92r8QmFl3/dlMmjZyiY4BW0NQWf6cQGqHGGmEiViMXjCLplnc7DSvvQtouHub0vgsunOA1upKRIddBwpJDpaZrDBeWZ8oLfiVvvMUB/d5rxUyxiC8X5wYSAae+Acx/2DkSx64ijRHcdcXo/7D95FtfOmgBATb2mz5ZO0uYXySQ+UPiNn2Uy/BZw/RWAFxljLzLGXgTwWwB3pmtQ6YBXtd0zog+rlBRefkQjPCoKTVXCflcTXt/DVIhGW80BUB64WtGku7asANeJB01KWm5Pm6B4FV+NVYt/LJGqpRO00hYAigQ9c1E4oPj46fs6FgvrffGFNQpvkm7x03tKumAnlBcqsSVAbVFKny2vJkepJjBU4JOXKxmM1GrCl+LnnP8awAwAd4i/iznnv/GzL2MsyBjbxRjbLP6vYow9xxg7KOSIRE/0m4ReYL2pB0Uy7h1aUaj/kCblTJemyfbIpfvRnqM6FQN94OhyW1JNS3lSBMhOniODYqwilb1vMx1++xL0RmOK/ObyWagsCuOby2chIBxAATD0CL+PlDWCzbOmNA87mxzGdiklEphvGXflrElO7cisSWVoEpW9UtJGLPTZ8mLS9dsTOxl4Pd/DxUixivpayTLGigD8XwDTOOdfZIzNYIxdzDnf7GP3O+DUA8iqoLUAXuCcb2CMrRX/p72TF+XmWb2gTnG5TK4sQnPXgFuYRGFy7+jLRVO3Kq/gkSllLFlWP7of7Tn62flT8dC2RpeKIS7s8Ti4otwjwu0Tcd0/UGS2IRvSNJPFjNpiHGzuxozaYhTnh7D7WAfmEted/M2pHz0cZOiPwZUUFYVOT4uKwjycEbQQ/YSY7ca5k/CFq+sBDN7vdVXFOHi6C3VVxdi8x1Hem/ecRFxU6saEz4g2YqHVul4pl6lOxzS5h1IdHB6pNFK/rp6NAAYAXC3+PwZg/bl2YoxNAfApAA+Rt28AIOsCHgFwo88xDAt6gJNaxPXVjsKXksI0o+szs8mK8FqO+uUBMp3Xi4OErlRoo3kAiuWmNDpJ4xI2U5BLVj5Fqcjfl5J2vDosLGspKSjZmVftBU1Tpk1xvnB1PZbMqMEXrq5P6Luw9JJxCAUYll4yDsvnOM/H8jkTsWKuw94pJU2Vpq5Xr5RLr8+SsapN+6Sat2ek0kj9Kv4LOOf/BCACAJzzXvhLyb4fwN9AZXUdzzk/KY5zEsCQaQaMsdsZYzsZYzubm5t9DtOMXtEjTkrq/qDWhg4TWZNfl4vXctQ0qXg1cjeRSg21n8QR0axayiLx8BflBzGj1smVnlFbDC5+Uj4ms+39IRt8+V6ZNzprpsSA6JcrJYWpXzGgGky1IsurtiRPeQ04tOShAMPC6dUoEEkBBaGA8vys37wPbT0RrN/sFP3RZ7CpxZmImlq6E3ru0vuaGjTJulm8jDETTM/7WM3396v4BxhjhRAxO8bYBQA8SVcYY8sBnOacv57MwDjnD3LO53PO59fWDj+B6IzgiJGS3kA0fSzhZjJYwfoPTpUwfa3fMPT4JivCi02TntcrbqGyYaohV/qgHxIP3KGWboUMK1swlqiTvUCVvVcAfahWlQAQEb6byHn67fqEodQXieEHX5iPJTNq8IMvzEezcOdI+eNXmkQqcJOSFHC8XXA8tfdAn7IoGyzlePIyqmgszK/lrj9PXsaYCWNVwZvgN1vtbgC/BjCVMfYogEUA/uQc+ywCsIIxtgxAAYAyxthPALzPGJvIOT/JGJsI4HRyQz8/VAmuGUn8RHHtrAlu+pjuX/dL1jSUb87LVQPA2N/Xi02TQk+Po/tNKMtHZ3MUE8ry0dLdj/6eqGvpU+hkW9mGoaiTx6Ivnyr7UABu03K/vWv8NlQpzQ+isz/muoROn+1zpVeLTEq/THv4tohEgpbOAXxJkLfdcrXTvOjVxjOIxjlebTyjkPjpKZYmLi0vfzilaPn1myd9PU+5hHMqfsZYAEAlnOrdhXCm6zs4557dlznndwG4SxzjGgBf45x/njH2HQC3Atgg5C+GMX7f0Imf1m/eh55IHOs378NF40vdysCF06sVhkqqXC+eUKpU3dKb0dRgXQ/+UGVvIoLyYtOk0LfTpRzfH//gZQBDV21mI7I9J18q+6GUvt9WiSbQgivnHIPyvi0H0NkfdXsqUHAxNXFw5IeC6InEkB8Koi8aA+fO5EsVPaDWk3zxQ4OMnrqip7w7z/3fDxvHTvejsYCHbr0SwLmfp2S6cY1VnPNZEG0Wv8o5fwLAL1Nwzg0AnmCM/RmAIwD+OAXHPCd0jhzF0iWVgTpDpc7RLSeIssKwkS4BGFS6ujKmyt7U6tBvUYlfCumgaLsXzF7XvYJcok6m1j8ATBZMlpMrC3G8vddtt6h774IBJ3MnGHDojmXxld4GkwZqoyLbKxqPK316nffgyr+/YZAu4Zub9g6eVHebGtyo+oqX8u7Q50wvpKL7UeZOv8+T32y6bJgg/BpBzzHGvgbgZ3AarQMAOOdnzLsMgnP+IoAXxetWAEvPa5QpgM5JU1dVJFLJihSGvjse36UwVCogE8RQ1rW8ac72Robk+Kbb3/Gxi3DbI793g1t11cUKe2gyoBOTTMujfETnarA0lpGN1Mkm0CpZ3frvFDnvnX0RRWnroDo3ICYBKYFB1xJjcC12Sq1NeZy8cDux5OuqixW3KU3TfPClQ4hz4MGXDmH9jZcpLlDKu0OVvT5x0GfrimmVxufIj+tIZ/OlyOQm6n7hN7j7pwC+DOB3cLj55d+Ygc5Ds2ZRAyqLwlizqEHZbkAUrkhJA0g0rUz3d9L0UK92i6YMBa8KYVP2woYtB3DhN7Zgg1h66ymruYRsyNbxC6/grqRVPhe9Mp0UaHqvnjFkmjz0MeSJ5WRekCW02ZTQg6r0eQoHHFUUDgSwcdshp9vbNqeJy5HWbnT2RXGktVtxD9FMIkB9trz655qCwnR//Xmkx0gmKyjT4FfxXwrgPwC8AWA3gH8DMCtNY0oLYqIFnJTfe/FdtPVE8L0X31VuhBaRpSAlzTDwujFoahq9ofWbzkQy5ZWmRsdHydwe3HoI0TjHg6LLEaViGMs0yMlgrGbrZAJoQZ9Xi2ive4rGBmQgPRgEHtrWiGic46FtjapxBCjG090rnArhu1fMwqmzTqBXSnoMauXrFekUpiw7wF/uvV6xT4+RTFZQpsGvq+cRAGcB/Kv4/3PivZXpGFQ6UFYYRnPngMsbf1LQwJ5s78UDq+YBcG6Ivcc70NYTQbnYzuQf1Lv/mHyKepMXnQ5avr7jYxe5k4BOQ6u7h+SEEwgwxOMcAUGudqY74sqxypnjF9lInZwM9K5WyWCoCm1p4dNgcZlo1FJ+joYttHeDrNxdPmeikvK5dtnMhACsvP+XzhyHTbtPuEyiH7ygGlsPtuCDF1Q7Lh447qE1i6cbaZlpEoVX60UT9Ip9v1l7YwV+Ff/FnPPLyf+/ZYy9kY4BpQt9wv0hJc0ioJCNoKPnyHfWbwy97ZuptZvphlSalGv70ImETjDrnn4TUQwGbUsKnGwKKbMZ2UidnAy8Jniamnkujh4J2o0LAILCuAgGGHoHhI9/II7aUoeioVZw9JiyiWhhlp46TO9lahBJpk7JJLqzqc2V180a7zLpetEym9o6Av589HocwJS1N1bh19WzizG2UP7DGFsAYHt6hpQe3LxgGkIBhpsXODnEa5fNxLvfXoa1y2YqZen6dib/ul/2P70zF70hqeuoVVQptnYPGLt5AWoBi+xpKmWvmNR6s9THn6t0C8liQBgvA7G40kkLAG4UdAg3zp2kvNZjBOFgwJVx4WaJc47Jgk1TSrqdNESCTI071VU620pJFTd1v1CmTgAKhxRl0vVLxOZFbWLCSJGljRb8Kv4FAF5mjDUxxpoAvALgw4yxvYyxPWkbXQqh89UoNwOxsPXt6KRA4fem04PAphuyVcQUWrsGEvYxNWmhXCdA4uSWbcilAG6ymCtaXs6dUo6IoGeIRHlCAVeToO9oau1R+HR0uuVbrnbuKVl0JaEHVusEz1VddZESEKZp1Bs+c7nTDOkzjvPA9GzpiRd00soTeat5oYCnAqdGlU67YqrCNVGjZCP8uno+kdZRjABoLjCgNmPecNMcd1m3+kevAgCOSEpYQ6aM7vPT07/kUpD65PUm77S4q6o4jJ72GKqKw1i/eT96IjGs37wfqxfUKb7Q1xpbXbbDZ/e972YqrV02E68eanUKZA61pu06jjRyKU0zFdh38qwrvap1Wzr7XLn2yTdwsLkbJ9t73WLGi8Y77pP9J88iGufYf/KsYvE/vN0JuD68vRFrl83ErEllOHi6C7MmlaG9dwDNnQOoKc1TKt8T4mXE4KLul0PNXU7ixW8Puivbg6e7XAk4KaVe+fnUVUNpnb1gYtjNRvjl4z/s9ZfuQaYCMlgr5fG2HkVKSEpYKU1Ny3WrwZSO6cXnT9PCCvOcOdiRquf2wxfVunLTbmep60h1uxbhLpIyG5ANVr7OjJlOUOoEinGl+YqkPXhpTj7lmgfUe5T66PXzPC3uy6d3n8DkCsf6n1xRhI3bG53UzO2NCenH1KVJLWzZc1dKurKlbikd9PlUVhNeqUoE2W7lU/h19Yx5HBM3t5TFBSFX3vH4Lmw92II7Ht+VkLNGi0xMTJ2ASjhFb0Cv3p/0oaATDG1+AZjb5t1ydb1YhtcDAN4XvCpSjkVkC6kaRYFwd0hpgu6HTwamY3Bxf0k5r67ClXkhkYMfSlSMtI8FhQzqShkUjv1gkGHl/KmoLApj5fypioGlpGV64Isfmo5QgOGLH5oOAEo1PXVL6VDcr0TZ61X7fllx04nR7tubLfQl54ReYk6zfGTjiJPtvcgPBRGJxdyCEqWq96d/ADC4TKagS+JXD7W6GTorr6xTXEB0CUrdTxeMc5bWxQXhhIyhgjwnK6MgL4gJZQVuAw0aj1i7bCaikl9lDDOuZSKp2nD7CNOOZ4BKl6CkUGoyGYRDAfRH4wiHAhiIxt1x6/Up299tcaVc3Hb0RhMzXogC1ZuqUIqS8aX5ONbeh/Gl+bj/+bfR1hPB/c+/jcmVToX85MoiLL1knJJJZ6JA+cTsiSgtCLlJCxPKC9F5ugsTyguV8Ulqcpl5Y+KqGuq16RgjhdGu/s0ZxU+XtoATCH1oW6MbCKVl5TQ3mPoRaZ68DnrTrX3KiXd3D8QSmqjTknNaig7AbSitp5J194k4Q59DfAU4lLdywjre5kwgtaV5OC1S7E53jh13T6aTqvmtifBLkCaSVBCPO0HUnkgcReEAggGmMGPmBRkGYhx5QYZpVUXuhC+bqACJBg2lImlq7UIkBohbRnldVeKkY1aV5KG9J4JIjCMUTKQioYYP4HDkf+Hqevz3K03YerAFVcV5uGJaJWpKnXHUlBZg99F2AMDpzgF8//PzVcK1ZTMHLwSZVGias/7M0BicBO1HAcC11E0plybalNGaBEabITRnXD39goJBSsoUeO2sCfjgBdW4dtaEhNxguiSbLB6uyRUFxkwbQM1k0H38NKhG3UA0zXPtU3ucZtNiAqHnlUr+eFsvigvEeYTsEbnaPT5ztjMFY8mPT1MVdfieINigpL1r9UKqkFh1hgIBpWMWjRnoLswNN81xMmdumoMKwTdVUZSH8WVOaqSUEUHuE4nGUSHiXlKaQF2daqwJWNhQ5WT5NFQluIFMoD5+ev9TtykAPLfvFF5+rxXP7Tul7J+sT566dLwaG6UTo83vnylGVdqh081Snzq1wssKQooVQS0CWSkoJbVK6Hbfun6WYqHQiYQu+6llT5k6d4isnCOtzsO+dOZ4NLY2YunM8Xiv+ZC7fJcWv5RerfEyDWM1W8dLuYcCDhGelCYEAgyxGHelRF6IoScy6GuvKskTPSTykNcfQXtPFBVFIZTkhdDZH0N5YdizMKtbVLl290VRUOJMFnK+ovn6RYKqvLs/lsB4SbPf5DPT3RdJKPSifvj/+tMF7n3t5dKgFjq1+J8QVAySvpnGBvafPJvSzBs6htG2wkcSOWPx6/nJNA+5RTSBaOnqT+AToRaBl1Visj4SrAgSPKYW1EaRHrdxeyOCwtKTcuPLTqn7xpebFD+wVxOVVAQK04lMs/LFbeFKE/JFHnl+KJBwjaWyj8SBfLEkyB9iaUD3o/dlp1DUUlLjpLbEWfXVlhQobks9y2Xtk284q8Un31ASGGhDFQBYMqPGlXRFqTNe0jhUhxhXR18UtaViPEJKNtshWW0NMLYo1cZA+/HSLKNkA6SZENwdbWSqXkg5ZF6ylJTgqaPHsZg7egYUPhHAvCzUc+Zp0ZVX60Xaq5QyDdIVyXWzxgOAK3WOdD9IRaAwlcj0bJ2rL6hRpAmUmjjZa0x7Hl80wTEwLppQhkUXOueWkip4apzctWwmKovCuGvZTKUQCwCOnOl15VnRYtORarra2d6IK9csnu4UTC2ejpVX1jkZOYI6+a5ll4pzXap0ySrOF5OKkDWis11NSb5y/0vrnPJTSVDDhz4nenEY7cFLJ4hkXTPZXpXrBzmj+PWb6bLJ5a6cV+fM8I70yWup5QZT14+X77FGWEg1pQVoFxNOe88AwsIyDAcZnhW+TCmpT3isYqhsnZGw8oUXw5XKmAKD8iWhmF4aQkFR69gLMsA6paJAuT90nzclMaN+7r3HnR4KUkqSsqUzxxkbotMJwTkfXEknptoyRzFLSQsTacqmTolM41A0zZL69AEoKZz0/qcxEa9+1tTA0lk36fGoxe+XHlk/bzbQKg8XOaP49Zvp5fdaXUlT2765/FKRQ+/w5NCiE1oUQm90QC2yotCtC7ofTbGjFr/uwsmGvrijZeFLrrqhOOvyhebPDwY8ffe7jrS7Una6CgWgvAaADmFFd/RGFH76ApFKI2VIfBbS3EB6IgCt36AKlBoZZ4TCl5KuKClqivMU2SsuSG8kpkwCOiUyBeW3oj59wMxBVS1WAtXaSgCAsrqgyRL6daDHo5OUTo9scuHo580GWuXhImcUv34zUb/hxAon02FiRWFCVg/lvKeVsXphy+/eaXall6vniZ1Hnf12HlUseaooykTATEr60NPXmb4SoO6dZC38iqKQIiVKhLuk5DyrYWUwsqIwpLj/qI9f98+Xi33KC0NuqxIGltD9ipKLyaBrZ39M4WECgMqisCtp8aB+79Hj0dgCjS/liYFLSSvAaXMTvSKXujep5X3zgjrB9zTINDuUMtWJ1EwcVLRHhP4s0AJGPVnCVPSop4BSy93kwtHPm0sVuibkjOJ/rbEVbT0RvNboWPrUb/jAqnlYMqMGD6yal1CdSysSlYdFc/XQh9HUvAUAmlq6XMnEvowxpQRe9c2qFj8lwPJqrZcJSAV1cm9/3JXUldIvLNb+c9BP6467UlGJXVoQdttT7j7WgQLhCyoIB/HJyxxFIqVCp0EOqFv8lFyMuoeqip1zStkhXD0dPVElPVcnLaPHo9XcNL50VsQBpFQrwNXVKwX13feJmasvGsfmvScRjXNs3utYw1SZUoVO00YBMykaJQ7UnwUaOPaiNqGgK2ZqRAH+FXouBXFNyBnFr+cdG5WzllFQL6oH66uLlZtYp06mlbs00KtbTDSNjvICqct/c5yBuiSojzpT4Jc6OSSWKaFzLFdodyjKKaNb26aV0A0i20VKmt1CmSyphU5XbwDQ3jvgSvqb6WMw0RuoPEwA/RXp5EGpuQHge7896JKVUdCV56RyZzKUklKMUOgGDV1d0FjTCdGgSEpTnruuPJW6FvIM0XoZHXTy8bTyCbyyf0wK3W8wN9U0CqNNy+CFDFIZ6YVX4Q29afUlMSWIospdB31A1m/eh7aeCNZv3mekngWA25c4wbLbl0zH+DLnwR1fVqBQ3AKqe4JCu+8zAn7TNCnTo1c4PSYUbSzOlUlP3yckZr+QNgvSWA6gBjwPCNrrA6c6MaPWmeBn1BYrgX9ArZegq6+wmGGkpKtAPS2Yolb81rVlBagQPveK4ryElEs60al+/cHxfPkjM1BZFMaXPzIDgFpIdd+W/aL37f6EIDC9L6kC1t2M1Iih30lXanR8yjNEblK96NGvsqegz5n+rPrZxwupzvbJ5OyhnFH8NMgEqDc+fUB0bNwucui3Nyk3vv6jqtbGoFo6ICaJA0NMFrRimLouJgrrTUpTA+1McPV4pWmaAo2AOnavwKrpOyakUhIFc7vIPrn9Q9NxutNRdFJSi52myTaKdMjG1h4l2A8A118+SZES626YjcqiMNbdMBuA6oagwU8aSAWAQmHmF4YCCmeUXr9Brwt1JVaJ61lVkpcQqKRJDLRyVw8CmxgrZUGZlFShP7rjiPhORxLuf1NyA1XO6zfvFwaR85wN1yL2ctl4MemakGrffybHEnJG8beIB1/KE8K/eKKjV7EWdQuddv+hD1WVsNSkpDca9a32iwdISupe+POfvI6tB1vw5z95XQkAeuU+Zxq80jSbxXdq7hrwXHHRYKqeOkkDoZSqQD8etaIpqCUPqBNJraAori3NV4L9si+zlLR9IB2PbrFSVw8NfiawphKlu3SmU6uxdOb4BJ88pVKmLhOaoaMrFzpB9Al6kr5oDJMrBVWykNRVSZW73syHHm+CSAWdUJafcF7qHqPPkKp01Sk+GYvYFHPw2s4v/E4QfiesTI4l5Izi1y1Eqmg7RBC1oyex3y21HulDQFvAAWrFJFUISm43gAMnO11JrVGax++lJDMBybRA1IuTqKuGTo5vnXJWRlJS3qMLaksAwJUU9Hi0xP89wXEjJa1SpVTFVLn3iyItKek9QXsy664L6qOnwU8v1lSasqln9VD/PW0mohdZUdDAL3UJ6d3aqFKi97XuzqTHox20dKWmWPzkelElqdOIm/LpvRSrX26d4VrbXlxcmezC8YucUfy6AqbFKEVCuRTlBRPy82nuMn0odHcMzX+mNw0t2AKAfqE4+rVm7lT5ZaLvnsLLj69TY0jovnaTe0eyikpJGVGpwtNdQDQ7hlrvYeFWkZL6xKmipq+LxcpCSmodU3+43nyHVrZSlItUVClpMJWuDPQArKLgiTKlRVa6EqI5+dRFpdex3Pn4LtSv/SXufHyXQu+tK2N6PC8Lllr89HrR8emTip6VI6FfB9NE4Lf1YjIwNVY613nHCnJG8etdfeqqi13Ob3pzf+/Fd51MihffTTgGfSjm1zsVi1LSxhbrnnaCu+ue3oemVpG+KaQJ1O+baXQLgH8rn7JNUlBlrINy11BXGACUCObRkoKgkuWi5/fTa7bvhGg/eOIs7r7eSYO8WwQAqTtmkqjfmFRRiNNi4j59th99Yux9QzCt0dWcztcUFEHeYIDhjp/+wcnP/+kf0CsyhqSkqcR0ZUApPAAkVNFKUCNDV9Q0nkBXMXq6JM1yo5Omroz1JiYSujI2pWNSJZmgME0WjvY+nTy8MotSCa/00kx24fhFzrBzVpc4HPXVIjB235YD6OyP4r4tBxAKMpePnD4EgNpLlz6I7wrXwS92n8D9q+YN6Zfvj8XR3+MoD1mmb0KvCDT2ngcfT6pBueF1UCu/oX+wOUp+kKE/xockI8sXTUHyQwFFCQFOqmWcD0rAUdrvvO9MkFJSN1xUbHiyo89dpUn3CWWLlKymUlIcF7Gd4x29uGneFDy0rRHLL5vocDPFnNTYmxfUiV4NjivFxNmuW7A0JbRbvD7R3idWG9y12hddWIOtB1tct5cJVMFL/zo4x9KZ47Bp9wksnTlOUdSrF9QptSbyF2ntHkho7jNO9GwYV5qH8oIwDjZ3Y3JFQUL2j840K6GzbtLj3/gf2xWGTxMvvunY+vtDsWam29rWr1e2IWcsft24oNWY40UQbXxpPvJEoFdKmvFD0+v8cq+nAj7Zg4YN3Vr3Y+XTtEwdn5w9wZV6jjp11dCYRkwcR0pKZUFdFzQoCgCrrnQqTlddWYeo2DfKOe7bckD8fk6f1xbhQmrpVAn5aIEUdX0AULK5aOBST9kcJ7h4xpXmoUbcUzWl+airEum5QlJOHtp7QbeuKRkbdfXQuIDeSJxeF+p60n3W3//8fCyZUYPvf36+4rvXqb5N8HR3GCx5fZVgspz19+n/2WBtZwJyRvHriof63unrNYucANSaRfUAtLJ5YQnnhwMJ2SImpCJQO5KTDIWfnHxKRazjl6L685d7TypVmjpoqq2eAkq/O3Xh/OpNh8BOSurDph2u6AQPqNQYtGKVunCOnJFMl45UeGmIAtb5au782MWoLArjzo9drARm9SpX6iKiK0ydSJAGeykbJr0n9ZXis/ved2WVuK5VJfmeKcsUCkUzoFBK+E2RNOXXZ0NQNFuQM4pft6ZoAKpeFErVVxfhl6JkXSotWjZPGRLfEy4LKU0YSwRrqaBOpimXlIZCnyBodS1151AaC0Bd7dDG3f1C0Ump8NeQVZteNbtmUYOY2BuMNQL6ZE0VLS2Q0vlqaPyAKj9dSdIVBaVz0CcSqijp/UrvSYVGBEBMzHqxeFyhStb58umx6SqGWv+A04daSq9USq8sGIlUBEUzuRp2LCFnFL/0uXYP0bHoaRHoenr3iYSS9fuff0c0jlatFEP9y5hGMtTJOlFcjwiU9wzElM9ouiqgBkIp9QQNsgJAngh654UCigWrUz7QPPe7V4iA7opZaO5y3HNSUr88rRmgiktPO6QWO1XOuiVPbwqq7HVlRWMQdLWpK2eqKGWP2/9+pUkp2tJdXuNEHcO4sgIlQ61QcBFJqShhw7gBNfvNK5WSZsGYLPtUuGm8Vg3DnRRyaVLJGcVPfa6AWrnLxFVggcQqTb3yUyIVHa4yrUuWbuGbUjMpdKuZXj/q6qVxFGf7wdgAZcmU7U2kpEVWVHnpVrmplzHlvgfMuePUFfLCgfcdi1z40il0K59CTwWWSOzCNqhoqSVPLXQdNAuHfgfq7wdU15gXrw2FzjtFQdOZKXTrnWbBeNFVUPhVtHQ7r1XDcF1JueSKyhSdk3aUizZ0UtIUzoB4EAOMKX5kL6Qi5TIT0ja9qJNNqZleePGd066sEcHOmtK8hHoG2licsmTq+qmrP6JICb1Sl3ar8lIo1B1DlQi1tmkQH1AVArXyvXje6Rh0RUjjGJQLR1fA1Dih6av0PPpERF0/9Lw6eZtJydH+E4CqdOk+dAUCqPEIvWbABL+K1pTCqf/Ow3UlZUN+vl/kjOKn/UIBoE/kO/dFYorl7RWEpKCKayyDuneSyR7SVwXUws4XjUfyQ8GEjk3UYi+UXPLhQALjJT0eddvorgvarYpWUevdr+iET0GPpxdwmSxYffVgcoXovnsad6BZR7orhLJw1lc71cr11SXKeam/H1AZL6kC1lcj9Bh0rLT/BGBuj6iz3dJJilr/VDknq6j99rMerisplzKG0pbHzxibCuDHACbAMWof5Jw/wBirAvAzAPUAmgCs5Jyn3ammV1XS6snasgIca+tFbVkBll82UeRwO1wlQ+Wbj3W8G1qNYNBx6cRicF8HmBOEHoopmebr95NItVex0/uiWO79jj6lYfzaZTMVF5EeqKUIwLl5AlAngZK8wQYfAJR2lZLk7NTZfkwoL0Bz5wAqChOJ4u58fBeOtvWisaUb1YL/pjgviCNnBMe9MBKo4n618Yybo15WEHIt79UL6lzFAai553c8vgud/b3uqoImGhSEA+jsBwqGcKfRoPcDq+a5ue33CrIzWWRF8/hp/vmR1m48tK0Rn50/VVklrF5Qp+T/L2yowsvvteLSiWV45VAr4jHu9qEYqj0i4HAVtfVEXO4i6r6iY7jl4R1KbQvN/afH84Jpu6Hy+/1Arl4kJXsuIp0WfxTAX3POZwJYCOArjLFLAawF8ALnfAaAF8T/aYfuuzfxvuhN1KllOlL59OmGKU3TiypCJ5uT8HJXRYR2j8R5gnIXuhmBANyiuuqSvITKXakQC8IB5bdoFvn4UtIVmN5FioJ2hDKmUmr5s4o7hVwkvxarvjqhVAxeE6eSx0+g5O5rPxoNUtNAtj5Wegw6sVESOsCcmjlN1CRIaYpveFbuJoFkWDd15JIv34S0KX7O+UnO+R/E604ABwBMBnADgEfEZo8AuDFdY6DQfffUr9wsArfNnf0JroCAiPwGWACXC2Uk5ViB3zTNZGIOelaPn4AwAATE9BkAU9oZUo58ALhu1gRXhsRsEQoEEgq9aA8DqvD0NF7K/VMulFt5kZpKqbuHqDtFz7WnMPnDdVDr22uSon5zejzqr9cVM82u8VK09BhKXYC473sHvHN49fOa4hupKL7ye139BotzyZdvwohQNjDG6gHMA7ADwHjO+UnAmRwYY+MM+9wO4HYAqKsbfum0TsXAQBp6EAuPFsoAQF6IoT/mSDpZjCUMlaYJbwYJT9SW5qG5cwC1pXkO78wgG4HRbaNcb6hZPXTilZ9HxP40a6UwL4D+3jgK8wJubwJJ47BmUQO+85u3sGZRg9tes0rQFtPy//wwQ0/EkbQHQnFBCJ39MRTkBRNy/6lS23u8w/Wb7z95VnFd6NQOUkqKbzn50M8eeP4dd5LSXRD3PrMPu4914GxvxFWwcl+6HXWDfHb+VNe9Qz+jLpcf/9kCl0Dtjo9dhLdPdbrXDoBLUQJAGcOmry52z6OfV/9O9FwSXi4Wr89M11WH6bw6/LqYshlpD+4yxkoAPAXgTs65d6oMAef8Qc75fM75/Nra2nPvcA7kh5kiaR4+7TqkL1kp/8pYQjLUyX7RLXzf3X1RpUoWUAvWaNBcrz6m29Fq2sUit17KAqEsC/KCrs/9bF9UaT4OqMp58x6n+E5KCtqjllYMK32ONfcJtRC90hZNqaL6KoFavl7NfUzFInR/yrIJJLoqJfSx0mPofD9KV6wkClZMwXAva50Gkb2CwF6rBmvJ+0daFT9jLAxH6T/KOf+5ePt9xthE8flEAKfTOQYJPZ+b8uxTP6vOTpjp3Pgm+G2BmAxomifNyAHUxik0KEIregH1utLm5ruOOA+7lJQ7htIgUB4gQFU2lAlUb6xDYz00s0vpfqUpO5pySRWjnq1DJx81q2ewc5UOegxdcdFMKJPS1LNrTIraawx0otOVLk0x9crQoeOj2UQ05uClmCkzabLZOrmUlTNcpE3xM6fm/mEABzjn/0w+ehrAreL1rQB+ka4xUNBgog4liKZZezTHP9OgB5tTbeX7CWbruf60OxSdXCeIfHspaUCXZuTobha6Mlg+ZxJCAYblcybhV4JSQ0qqbJpEG8Wm1p4ERUgpkenrW66eJqp1pyV8RxPPjV5pSy1+quQK8kSAOi/x5qP+dV1xURI5k9K8UTSRl9JUjEW7Z+mg/npKGgeoytREj6x/d7oqojEHL8VMYzGmldO5MJYqb0d7rOm0+BcB+AKAjzLGdou/ZQA2ALiWMXYQwLXi/7RDV+B6vrKE3t1otAjS/EAfWzJWvpdyp5w3dDv6Wm9wQ4OGtOqTEqIBQJdw2zhy8Ig69wzN8qHKnbJ2AipXD528vfLXKR2B32pd+sDqlbZ0tUiVHO2rC6gPfQLtg4JzT733r5qHpg2fwv2r5gFQFbVyHo2Dx8St41XH4pWho6eLmnoWmEAnH72PMIXfdoujrVjPhdHOLEpnVs82zjnjnM/hnM8Vf1s4562c86Wc8xlCnknXGChiIggopcxTDgaZ0gT6+6IRy/dFIxYZPIxmYBJ/KkjVvCY2milDi5pC4tqFggzHRHWrlHqhlgStmwCg8O5Qa5umgAJQLHba3k/PvKFcPV5KhP5PJybKfa9nAtGsHuo60q1r6q6giocWVQHmSlQdtAevX6VmyoDRz2Pi1tF77lLQY1D3F6BOqHQMes8CE+ixk6Vl8NuWcbhIxaQy2vGInGnEonPKjBdFW+PLClwGwv5oDEdF1o+UmYxUZ+vQYikAWHrJODS2dGPpJePw4EvOyqhnIIZJ5QU41t6H8aX56B6Ioq0nikpBKUDdE5Tf5eYF05TCOAqqtBNbKg4ych4W5Ga/e6cZNcVOI5FyscIwFSHoWSCfmD0Re493uApKZpLctWymm80i0yeHsmaHIjSToBPGUI1KJOgYKPTMFloIJfvwemXNAP4zYKQbRn5femw/ippOHKsX1CnX6NdvnvQ1BhO8sm78Hu/SiWVuUZqO4RZw+c0e8sJoZxbljOLXQVP5TPS8gMP+GI1zhAIMcc5HpIpXT300gVbdpuKHXDF3EjbtPoEVwl+8cbvTtHzj9kbkhwLojTjdtGpKHcVfU1qAwv4o2nq6UFOSyMFDoVt+Z0QF9ZmufjcuAM6VVFFA7aNw+4emu6mKrzY6C0XpWlp5ZR0On3kLK6+sw72b97vVtbqv20tByZx5r1RFAMqkQDFUR6mhtqNjoJOMX4XipdTopEK/h5eyo9vpk5JpPzpxDHWN5OtUKziv49HrR9NudYK54SruZCuGMwk5o/jDor2ipAVuEdkiLV0DqCgKoa0n6kqKCWX5ONbe50og/dQNuvuFWuLvELoFauE3ASjJD6KrP+ZKCb8TCQ12Amr3Ky5e90biSg74HSKNUPZ6LS8K43Rnv1scJaErlJKCMHoi/SgpCCtKW7e2a0TLzJqSPNWdQ8YAmJko9YecPrTP7TvlKlA6WWz6yiLjNRouzYA8t5TJ5Kh7KTW/k4pusQ+1/+oFdUYl6dWa0PTd/VrayVrk9PrJ2oSheuYOV3GPtrWeCuSM4tfDZJSXRvZtjcY4akvy0Nw14DIo0uKiVCMYcCxjKX3tQ907mlsnEuWKlPDy41MuoipheUupcPewwbFKZsaq4ryEYCylRKAP8MbtjU6/4u2NWL2gDl2CMqCrL6IERXULfVJ5IU53DmBSeWFCM3IKk1UufdFywqEP7W2P/N5VoJJ6QKY0UsXj10JMpoCIjtvvZOFXqXlNKrrFLqFP0H6VpH6uoRS31/Wh1zxZi5xeP+kqO9d2uYqcUfx6Fgh1CS+dOV40rx7v5kM3ixWBiaMmFfDL8PmOgVRNR1yo9vg5cpCosp8zuRy7j3VgzuRyPPOG892fecNpIB8IMMRiHIEAw4SyAhxt68Wk8kIld/zbf3SZokDuWnap+z99gPVskcmVRTh4uguTK4s8LXS6Gnji904GSnFeMMFC1x9m+fqB599RLFgK3c9tUjx+lZ/f7fSJ5XxXEF5KjQZdvSYVk8WuW/x+4ady1++KJtnraOEfOUPLrIPy0lCFly9cQfkZVLFFrfyLYk6a5kWxxDRNSoOgF0xRhEUxQzgQUGgoqsQqR0rKpyPZK6uL85TOVXqlJ/2fFlXp2SI0jZGm0OpVn1QRKfwwXoxyBF7ZEwlVqj728Wox6LeAKJkMHb8w5c3r4zYdW//uyWTHmPLwva4P3UffzjTWVGTuZHraZ7qQs4qfkovRIiHdwqdtASnSydTplabpFYimKwhKdaA3MK8VRTy1ZfnK9ygQ/PlS0pRJqnTP9gp6g96IZ+9VmnfvldZHlbvexMNUrq+ThJkUcjLKWN+HfkYVqxe8FIop7dCrGtYvaPEUhT5u03n1707H6jeH3isP3wTaIMfr2BSpSIkc7Xz60ULOuHp0FOcF0dkfc1PwOvtjKM0PJnDyUC6awlAAvdG4K4HzL+yigdYScT79vMmmaYYDTjPzcABoEXTFLZ0DbicsqeVpVyvq/9dz7Wnjc8VVQFIa9WX9fVsOoLM/ivu2HFBSJAEovmO6H81S+cTsico+JleI/r4pWKnD5B7wci/49a9TePmpTVk0ybqYKEwuHK8sHC//PB3rjf++bUjCNv14+nsm0N/CixPIdB38usm8XELZkKGTDHJW8VPytQpB0hYMMEV5Ag4HjeSkkbQEvUM0DEkGMvOmqz+mNkchAd/z+YEqRW57ZXEeOnoi6I9x5AWZwncD6F2yGPqjHPkhpvjngcTmNRI6syNV6BPK8tHZHMWEsvyEhhzUd0wV3n1bDrg8Mv/1p1e5aZXnA8pK6QWTQvZSIn796xReCoUqImod6/v4UWx+/dyU4hkwxwI8A6seytkUY/ECPZeepeV17POF30k4l5Czrh7q4pAUv+29Uch+GFIm03fWCxUizbGiKKxY29TKnxn7KRr6H8PM2E/P69g05/3uFbNRWRTG3StmY9GFjk9eyhLh9y/JD2LNBxsQCjCs+WBDgs+7ROTISylB3QH6sn7N4ulOlevi6co+esaQ0jeW8Mgku/Q2uZK8mB5Hy79Lv6PJleUXOgmdn3MC5liA7j6h18irKXsyGO53T+Y8Fg5yVvGPFgcPLRwzkaol0BYYoAeiqY//SGs3OvuiONLajV1H2gHAlXQMVGHqjbZpqib9jCoD/aEy+XdpAB1Qg3mURybZh9Sk0L2YHk2TjFfcwi/8Ugv4VXjGSUqzwv0GbU2xAK/4htdYTef1mlxHik3TsnYmImddPbQoysuWNxVF+UVQBI9lkhAtXAoODFr5F0d/ioF+Lrjp/U1HXqmmP3rpEGLckdNril33C6AGs+kyf+UPXnb3WbtsplAmHGAMP9x6CBzAD7ceSmhA4idlb2JFIY619WJihUN4pk8Q0u1wvi4eCcUX/R/bEyp3z+W798ojp9YxTfv0UiRerp5k3AsmP7zuIvHryvIqwDJ9D7/NUuh5TI1cLEYXOWvx03ROajnTpiAA0C2UfXd/DKLnhyspSkSQWEoJPevw5d6b0Ji/Gi/33qRY+bTOQG9nSKVOw2sCTc3UmRkXC5fP4gtr3OrV5/adSkjnrBNFTXVVRcoKibptdGvYZF19+ZoLUVkUxpevuRCAaoFS2uOUZFn4TPU0Wf9e1rHf8SVjZXpZx3SF5GWFp9qt4WeF5HneJBq5eCFX0y9TjZxV/BTUck4o9BLbcHjrky5Buds1EFPiB3ofWxN1Mk0b1dMq6fEo17yepqmADFxnUqTNTh58SdBTv3QIkwX9sJQ0157WBdAOVzpXvenB9Erxo7z2Xj5mv6Cpnn4VtZf7hcY+klGsfr+DPlY6qepBYNMYTBOO1xjoefymofo9b6rjApmeuz9WJqacdfUkA+oi8QKdLGi2DtBhrLwtzQ+hvTeK0vwQrrl4HDbtPoHrZo1POG+3oDro7ou41cVSUrcS5d1Zv3k/eiIxrN+8P2F5Hw4w9Mc4wgGG+ppi7D7WgfqaYgAgXDanlAykLy1xyNJuW9yAF946jc7TXS5nvckloVMB0O0Kw0FX6i6JZMr3TZQIOoZbQesXfr+DPlbqYnro1iuN32O4Y6DnuWxyeUozYFKdNZOK9MtUsGuOxrFTCWvxI7n2il6VscqxtZz8mVxk7HA1Y6dTNCbp7IsqDcZ1tAvF394XSRjDdKGwp9cUY6JoU+hINZRNU1lp9o/eq/ahbQ4750PbGpUxXDtrAj54QTWunTUhoZGIySWhW/x0O53/nmK4rgsvl0sy1qNX+0HTdn6/gz5W6mLy63IxwWsM9DyZngGTTIBZRzq/Y6ZfP4mctfhDASAaH5TAuS15ih7h2pHSBJ06ORRwWEKllLj+cocS+frLJ2H7ey3o7I+51beUzI0WZl0+tQK7j7bjgnFOQHTN4un4zm/ewprF0/GN/7cXgNMg5UZBt3zdLKc/bUVRCO2CjfS1xla09UTwWmMrblvc4FryAJT/ZUD3QzNqEqwaatnQCkxZVTtUUY9OxZCuHO5UF+/Q7w7gvHjxzxemAGwy4/a6jvp5MtlS9UIyJHmpxlipC8hZxS+VfbK1WF5un3c9qJN7ZRGYVhfw4junXXlW1BW0ChdOfjCAnngc+cEA+nncZcxcOX8qDrd2u20F/+X5t9HWE8G/PP+24vZ5dp+zcpCyvqoYu3s6UF9VnEC4VloQQl21s3JYu2ymS/s77++fBeBk33i6HQyNSoZKLxzqGKmm7k118Y7fClXfRVFJIJlxJ0toNpaI0HK1CjcZWFdPGqC7d/yAVtPqfDymIjJKZwwAzWI10Nw5oLh6IiKgICUlRaOEa/dtOSACtQcSxmdyO+jLa1MwzyufnhYh+XVj6Nv5zV9PJt/cxGXj5XbwKooaDXhdVy/3VTq5bFIdCLX5+v6RsxZ/qvGuT+rkKZVOPruUQ0FvnDJ3ikOdLCXgWPMtnU5jGCmp+4r2wi0KBxGJxxAWMxF1s8i2kyfbexW6BR205H/DlgMJLiAA7kM3lDXqaY2RVYJfq03fzm++uKnhihdfjcli92sNZ8Ly3+u6ermvTG0iU4GxEgjNRliLP0UwpWnqoAFYE/RaghaRodPSPaCkdp7pdgK9UsrMGiklaNNuQA2sHhGTz5G2XiPdAqBafjToq9MoJ4OV86c6K5D5U31bbQnbGfLFEyxWkpNrCsDq+5gs9rHE7Oh1Xen381uJ7YVMCLJaeMMq/iThRZ3sBWnhUAsLcJg/pSzKdxZiUsqVwbG2XkW/6QVX9BhetNG0G1Zc0I/G43HPh5w+pB+8oBoA8MELqvHojsOCYO1wwj5UAXhxytCAcLLLfzp5mMYNqG6u4dL9plpx+f3u6cwV91sQ5pei+XzOZTFysK6eJJEsdbIJkvGzNxrHgCDdkbz3FLLh+G2LG7B5r6agDVavTll8vM0pAjve1oNAIADE4wgEAgnuAFOe+86mNldWleShs7/XLcIyUR90i+wnKU2UvMku/02do3Q3i4kN0ytTKRlGz2Tg97un2kWSTADcax8bZM18WMV/HjD58c/nIlIa5P7o0PmjNLVTR111sZt503zW8eNL2d474MqQoJcOBRK52JW2hwAOnu5CXVWRZ/EU9XvTuoCa4jwca+tFjaBxoD70lfOnuv5h2jZRP7YXzbNfJBMb8FvoNVKKLNn4xkid1+8+mRDTsPCGVfznAWrlN/SraZp+IZV9f5QrKZeMDQZm951wqIWllHn4N86dhG9t2osYB761aS9CwQAkiRoAhXd/em0JDp7uQn1NScIYZk0qw8HTXZg1qQxfuLremENPH24aPL1u1gS3LuCqhmq3Jy6gVhZ75eqbFPADz5t75HphuJW3fvn404l0Vg+n+nhe+5iC3mMpNTTbYX3854CJOjkVoD562ulLb0w+oawAIdHwnNYPhAV7m5SUd3/NogYnULuoAes370NbTwTrNzv+dVqh65WaqfhgiTvmd+80AwB+905zQkppseDuLy4Ie/ZRNfl3Tf1agbHDg5KtSJZz6FzvW4w8rOI/B/xm65gwpaJAkRS0CpeSuU0oc7aV8odbHSK1H2495P5gAajEcIDqe1d7mKqh3tsWO81XZIWuhNeDSYOnCpe7xlxH8/iTyQjR9/Hi1qewk0L6kQzhnZ/3LUYe1tWjwS+pml/QfHoAbn9d2meXQyVYO9jcDWBQUoSDAfTH4ggHA4iDIxLjCLskQ4STh1jo31yutlS8dtYE7D95FtfOmqAsv/WcbfoZnUg2fXWx4oahrh7qAqC9dHUowV3Afa27goaiPjhXLrr1LztItWvFbywgGXeaxcjCKn4Nqc7W0WHi+KkqyUNz54ArKW4QPv4b5k7CvhNnnWBsdREmlhdg68EWXD3dSa+85ep6PLStEbdcXY9rZ01QHnqqqKm/Hoy5wVhw7ir31QvqFGWqZ+VImLJpAOBnO48iGuf42c6jLvWDhKloaCgrcaj3daSz0MiETPdZZwJVRKYj03/DdMG6epBePz7l2QfMHD/tPRFXFolO71K+/F6LKykb5svvtYr3HfnCW6cRjXO88NbpBA5+BWQ1oFT/aumgytLc0IzAyydPXUJevW/p63s373fy/Tc7/P5+WSlNbqV0uoD8uj70Mfhl+Bwust21koprl6txB6v4MXw/PpDYLUuCx1U5d0q5IiWiYiaIxjiqSxzKBClPixXA6c4BRaEvn+MoWylpUJg2SNG7ZFE/PK3+9WqaQYO29IHz8snTBiZeXD1KoNej242XIjNNQOl8sP3yAOljoP/T1375gvwi2wukUvHbZvvkaIJ19cCbW8cvdGI1931NlhWGFSlRLHr6FucH0drVDwCupHGBv/vFm4jGOf7uF2+iQKwInhe8/TcvmIaHtjXi5gXTlAYpegEXXbJPrijAweZuTK4o8Mzjp7n2Xn53E2eOX5dNshTNJpdTOnPw/TaNGSqFVR/TuVg8bQwjEan4bbPRfeUHOav4TdTJ6QbtV0tBO1xNqSxET1svqoTFPyBy/weiHFExs0TjXNkHAPafPItonGP/ybPYcNMcV4E+t+8UHtrWiM8KOgNKskY5/HX4KXZKeHAM1cP6dibfarIPokkJjOSD7XcMJrrqTCgiSydS7U/PVaWdCuSsqycZ6mS/CGiSQu9yNRRqhMKXkmbrzKh1yN2kpDDlzdMJAQB+JPrs/uilQ54pl6Y4QTK0zDp0X76Elz/cC37dGiPJc+MH1F3hl+Z5rCJX/emZiFFR/IyxTzDG3maMvcsYWzsS50yWVC0ZUPeOTpZG/fJ64FdCJxwbJ/L5x5UVKEydOqgS92r9N7Gi0JVePk7qIjJh7VN7sPVgC9Y+tQfAeSgogy9fVw6mCSJZZJryySUfcy5910zHiCt+xlgQwH8A+CSASwF8jjHmbR6mAEOlaZ5vEDdf5Mvnn6M5L1X2ardboKml25X5QuPnBwOoKHK8bhVFoYRq2GrhFqouzlOLpzTQB8vLknxg1TwsmVGDB1bN8/wen50/FaEAc11EQ0GvMvYLypLpNUl190cVOVxkmvIZS5b8cFdLY+m7ZjtGw8d/FYB3OeeHAIAx9jiAGwCkxqQjSAWpGkW/yLzpP0dz3rwgQ3+MIy/IUJgXRHtvFBWF4qzEB07z7iWtcSzGE6thScCT5uSve2Yf+qNx5As6Zr+kY3S7G/99m7GBie4iGgp3LVOLw/z6cenq5NdvnjQyY3o1Yk8G1i+cPGyAOXswGop/MoCj5P9jABLuIsbY7QBuB4C6Ov9kXRTJkKoF4Lho5FKINjoHBl+HmKPcpfVPu2R1D8REkVUxivND2H203SVL07NjpGKlCvTiCaVKZotJWd19/SxF6VL4VnCGYCzgL6CoN+r2qxxMmS06vLJ8LEYW2RBgtnDA+BD50mk9IWN/DODjnPPbxP9fAHAV5/wvTPvMnz+f79y587zPFf1muZq5I9C04VO45eEd2HqwBUtm1KCqOM9lv7yqodpVpqsX1OGxHUcU5TqUctYtWxMdgdd2o7X8TfUYMuE7WVhYOGCMvc45n5/w/igo/qsB3MM5/7j4/y4A4JzfZ9onWcVvYWFhkcswKf7RyOr5PYAZjLEGxlgegFUAnh6FcVhYWFjkJEbcx885jzLGvgrgNwCCAP6Tc57YiNXCwsLCIi0YlcpdzvkWAFtG49wWFhYWuY6crdy1sLCwyFVYxW9hYWGRY7CK38LCwiLHYBW/hYWFRY5hxPP4kwFjrBnA4SR3rwHQcs6tsh/2OgzCXgsH9jo4yObrMI1zXqu/OSYU/3DAGNs5VAFDrsFeh0HYa+HAXgcHuXgdrKvHwsLCIsdgFb+FhYVFjiEXFP+Doz2ADIG9DoOw18KBvQ4Ocu46ZL2P38LCwsJCRS5Y/BYWFhYWBFbxW1hYWOQYslrxj0ZT90wAY2wqY+y3jLEDjLF9jLE7xPtVjLHnGGMHhcyJTimMsSBjbBdjbLP4P+euA2OsgjH2JGPsLXFfXJ2j1+GvxDPxJmPsp4yxgly8Dlmr+EerqXuGIArgrznnMwEsBPAV8d3XAniBcz4DwAvi/1zAHQAOkP9z8To8AODXnPNLAFwO53rk1HVgjE0G8JcA5nPOZ8OhhV+FHLsOQBYrfpCm7pzzAQCyqXvWg3N+knP+B/G6E85DPhnO939EbPYIgBtHZYAjCMbYFACfAvAQeTunrgNjrAzAEgAPAwDnfIBz3o4cuw4CIQCFjLEQgCIAJ5CD1yGbFf9QTd0nj9JYRg2MsXoA8wDsADCec34ScCYHAONGcWgjhfsB/A2AOHkv167DdADNADYKl9dDjLFi5Nh14JwfB/BdAEcAnATQwTl/Fjl2HYDsVvxsiPdyKneVMVYC4CkAd3LOz472eEYajLHlAE5zzl8f7bGMMkIAPgDg+5zzeQC6kQPuDB3Cd38DgAYAkwAUM8Y+P7qjGh1ks+I/BmAq+X8KnGVdToAxFoaj9B/lnP9cvP0+Y2yi+HwigNOjNb4RwiIAKxhjTXBcfR9ljP0EuXcdjgE4xjnfIf5/Es5EkGvX4WMAGjnnzZzzCICfA/ggcu86ZLXiz9mm7owxBsefe4Bz/s/ko6cB3Cpe3wrgFyM9tpEE5/wuzvkUznk9nN//fznnn0fuXYdTAI4yxi4Wby0FsB85dh3guHgWMsaKxDOyFE78K9euQ3ZX7jLGlsHx8cqm7v8wuiMaGTDGFgN4CcBeDPq2vwHHz/8EgDo4D8Efc87PjMogRxiMsWsAfI1zvpwxVo0cuw6MsblwAtx5AA4BWAPH8Mu167AOwGfhZL7tAnAbgBLk2nXIZsVvYWFhYZGIbHb1WFhYWFgMAav4LSwsLHIMVvFbWFhY5Bis4rewsLDIMVjFb2FhYZFjsIrfwiJNYIzNFSnF57vfi4yxnGr+bTGysIrfwiJ9mAvgvBW/hUW6YRW/Rc6AMfZ5xthrjLHdjLEfMsYWMMb2CE72YsHTPpsxdg1jbCtj7P8xxvYzxn7AGAuIY1zHGHuFMfYHxtj/CD4kMMauZIy9zBh7Q5yjHMDfA/isON9nxTn+kzH2e0GWdoPYt5Ax9rgYy88AFI7aRbLICdgCLoucAGNsJoB/AvBpznmEMfY9AK8CuAhAARxle4xzfp+o8v01nD4Oh8XrHwJ4EQ6/yyc5592Msb8FkA9gA4C3AHyWc/57QYPcA+DzcLjfvyrG8G0A+znnP2GMVQB4DQ5z6pcAzOac/yljbA6APwBYyDnfmebLYpGjCI32ACwsRghLAVwB4PcOTQsK4ZBx/T0cXqc+OE06JF7jnB8CAMbYTwEsFttcCmC7OEYegFcAXAzgJOf89wAgmVDFNhTXwSGN+5r4vwAOTcASAP8q9t3DGNuTqi9tYTEUrOK3yBUwAI9wzu9S3mRsAhyuljAcRdwtPtKXwlwc4znO+ee0Y8wZYnvTGG7inL+t7T/U+Sws0gbr47fIFbwA4DOMsXGA23d3GoAHAXwLwKMA/pFsf5Vgdg3AIfXaBsc1tIgxdqE4RhFj7CI4bp5JjLErxfulosNTJ4BScszfAPgLwQwJxtg88f5WADeL92YDmJPyb29hQWB9/BY5A8bYZwHcBcfgicCh353LOf+06NH8svg8DuDv4HStugyOYv4y5zzOGPsonAkiXxz2m5zzp4XS/zc4LqReONzveXCUfRjAfXDof++HwwHPADQJttBCABvhuJF2A7gQwF9aH79FumAVv4WFBkrhPMpDsbBIC6yrx8LCwiLHYC1+CwsLixyDtfgtLCwscgxW8VtYWFjkGKzit7CwsMgxWMVvYWFhkWOwit/CwsIix/D/A7g+FDQF/FVQAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model = Pipeline([('attribs_adder', ColumnDroper(['artists', 'id', 'name', 'release_date'])), # drops text inputs\n", " ('std_scaler', StandardScaler()), # scales data so it is consistant across parameters\n", " ('reg', RandomForestRegressor())\n", " ])\n", "train_and_vis_model(model, x_train, y_train, x_train_v, y_train_v, x_valid, y_valid, name='rand_forest_reg')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Linear SVR" ] }, { "cell_type": "code", "execution_count": 147, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scores: [18.40440173 18.6122362 18.55633373]\n", "Mean: 18.52432388589412\n", "Standard Deviation: 0.0878152039772878\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABnVUlEQVR4nO29eZxU1Zn//zm19L7QGztNN4qyKIu2AYUhJohJCKKTGDWa4DA6Zv0OZiaZdPwlURNGyJjXjM5iEsXhqxFGHc0XERk3JgZRQ2wCsitb0zQ09ELvay3n98c99/ZzTvW9XKqruqq7zvv14vV013LrdHHvc5/zrIxzDo1Go9GkDp5EL0Cj0Wg0Q4tW/BqNRpNiaMWv0Wg0KYZW/BqNRpNiaMWv0Wg0KYZW/BqNRpNiaMWv0Wg0KYZW/BqNRpNiaMWv0cQZxpgv0WvQaCha8Ws0F4Ax9kPG2GnGWDtj7GPG2F2MsW7GWCF5zVzGWCNjzM8Y+yvG2HuMsX9hjJ0H8FDiVq/RRKItEY3GAcbY5QC+C+AazvkZxlgZAC+ADwB8GcBT4qV3AniJcx5gjAHAPADPAxgNwD/U69ZonNAWv0bjTAhAOoAZjDE/57yac34MwEYAXwUAZmj6O8RjJmc45//GOQ9yzruHfNUajQNa8Ws0DnDOjwK4H4a7pp4x9jxjbDyAlwBcK35eBIADeJe89dQQL1WjcY1W/BrNBeCcb+ScLwQwGYaC/wXnvAXAmwBug+Hm+S8ut7rVbW81SYv28Ws0Dggf/wQA7wHoAdCNfoNpI4AfAigFsDghC9RookBb/BqNM+kA1gJoBHAWRrD2AfHcZgBTAZzjnH+UmOVpNBcP04NYNBqNJrXQFr9Go9GkGFrxazQaTYqhFb9Go9GkGFrxazQaTYoxLNI5i4uLeVlZWaKXodFoNMOKXbt2NXLOS9THh4XiLysrQ1VVVaKXodFoNMMKxtjJgR7Xrh6NRqNJMbTi12g0mhRDK36NRqNJMYaFj38gAoEAamtr0dPTk+ilJJSMjAxMnDgRfr9u+a7RaNwxbBV/bW0tcnNzUVZWBjH4IuXgnKOpqQm1tbUoLy9P9HI0Gs0wYdi6enp6elBUVJSySh8AGGMoKipK+V2PRqO5OIat4geQ0krfRH8HGo3mYhnWil+j0WhGNKf+BPz2S4aMIVrxJwllZWVobGwc9Gs0Gs0I4p21wLFthowhWvFrNBpNsqBa+NdXApcsNmQM0Yp/EFRXV2PatGm49957ccUVV+Cuu+7C22+/jQULFmDq1Kn405/+hPPnz+OWW27BrFmzMH/+fOzduxcA0NTUhBtvvBFz587FN77xDdCBOM899xw+9alPYc6cOfjGN76BUCiUqD9Ro9EMJaqFP+lTwNd/Z8gYohX/IDl69ChWrVqFvXv34vDhw9i4cSN27NiBX/7yl3jkkUfw4IMPYu7cudi7dy8eeeQRrFixAgDw8MMPY+HChdi9ezeWL1+OmpoaAMChQ4fwwgsv4L333sOePXvg9XqxYcOGRP6JGo0mnrz1IPCzIkPGycJXGbZ5/NGw62QzHn/7E6y64TJcPbkgJscsLy/HlVdeCQCYOXMmFi9eDMYYrrzySlRXV+PkyZN4+eWXAQCf/exn0dTUhNbWVmzfvh2/+93vAABf/OIXUVBgrGfbtm3YtWsXrrnmGgBAd3c3Ro8eHZO1ajSaJOSDfwfCQUMuediw8ONMSin+x9/+BNuPGMHRZ++ZF5NjpqenWz97PB7rd4/Hg2AwCJ8v8is2UzAHSsXknOPuu+/GmjVrYrI+jUaThLz8N8C+F4ErbwOu/a6h9K/97pB9fEq5elbdcBkWTS3GqhsuG7LPXLRokeWqeeedd1BcXIy8vDzp8f/5n/9Bc3MzAGDx4sV46aWXUF9fDwA4f/48Tp4csLOqRqMZrux7sV8ueRj4aZMhh4iUUvxXTy7As/fMi5mbxw0PPfQQqqqqMGvWLFRWVuKZZ54BADz44IPYvn07rrrqKrz55psoLS0FAMyYMQOrV6/GjTfeiFmzZmHJkiWoq6sbsvVqNJo4UPV/gV+UGxIwLH0qhxhGs0mSlYqKCq4OYjl06BCmT5+eoBUlF/q70GiSnF+UA93ngcxC4IcnhuxjGWO7OOcV6uMpZfFrNBrNkPHkZ4GH8g25+EFD6S9+MNGrApBiwV2NRqOJK6f+ZOTgX18JnNllPHZmF3Df/wIVf5XQpVG04tdoNJpYYRZgAcD4qw2lP/7qxK5pALTi12g0mmj5lyuB1hogvxT43r7+wqvrK2NebRtLtOLXaDSaaGmtkaXZYiHJ0Ypfo9FoLoaHCgCEAXgMS9+0+IcROqsnSlpaWvDEE0/E/XM2bdqEgwcPxv1zNBqNW8L98nv7gIdaDTmM0Io/Si5W8XPOEQ6HL/xCBa34NZok4NHLjNTMRy9Dv9ocvupTu3qipLKyEseOHcOcOXPwmc98Bnv37kVzczMCgQBWr16Nm2++GdXV1fjCF76Az3zmM/jggw+wadMmPPvss9iwYQMmTZqE4uJiXH311fj+97+PY8eO4Tvf+Q4aGhqQlZWFp556CufPn8fmzZvxhz/8AatXr8bLL7+MSy65JNF/ukaTenSe65cPtSZ2LTFAK/4oWbt2Lfbv3489e/YgGAyiq6sLeXl5aGxsxPz587F8+XIAwMcff4z169fjiSeeQFVVFV5++WXs3r0bwWAQV111Fa6+2kj1uu+++/DrX/8aU6dOxc6dO/Htb38b//u//4vly5dj2bJluPXWWxP552o0qcVD+eTnViB7jKH0s8ckbk0xJK6KnzH2PQD3AuAA9gFYCSALwAsAygBUA7iNc94cz3VY0OKKGKZacc7xwAMPYPv27fB4PDh9+jTOnTMshMmTJ2P+/PkAgB07duDmm29GZmYmAOCmm24CAHR0dOD999/HV77yFeuYvb29MVufRqMZJD/4JNEriClxU/yMsQkA/hbADM55N2PsRQB3AJgBYBvnfC1jrBJAJYAfxmsdErS4IoYpVxs2bEBDQwN27doFv9+PsrIy9PT0AACys7Ot19n1RQqHwxg1ahT27NkTszVpNJqLhFr5I5x4Ryd8ADIZYz4Ylv4ZADcDeEY8/wyAW+K8hn5iON0mNzcX7e3tAIDW1laMHj0afr8fv//9723bKC9cuBCvvvoqenp60NHRgddeew0AkJeXh/Lycvz3f/83AOMG8dFHH0V8jkajGSIeau3/NwKJm+LnnJ8G8EsANQDqALRyzt8EMIZzXideUwdg6MZLxXB+ZVFRERYsWIArrrgCe/bsQVVVFSoqKrBhwwZMmzZtwPdcc801WL58OWbPno0vfelLqKioQH6+YWVs2LABTz/9NGbPno2ZM2filVdeAQDccccdePTRRzF37lwcO3Zs0OvWaDSEh/L7/6UQcWvLzBgrAPAygNsBtAD4bwAvAfh3zvko8rpmznlEg3zG2H0A7gOA0tLSq1Ureri2Iu7o6EBOTg66urqwaNEiPPnkk7jqqqsGdczh+l1oNAnBTsmPQOs+EW2ZbwBwgnPewDkPAPgdgOsAnGOMjROLGgegfqA3c86f5JxXcM4rSkpK4rjMoeW+++7DnDlzcNVVV+HLX/7yoJW+RqPRXCzxzOqpATCfMZYFoBvAYgBVADoB3A1grZCvxHENScfGjRsTvQSNJrVQUzOl50aele+GuCl+zvlOxthLAP4MIAhgN4AnAeQAeJExdg+Mm8NX7I9ywc8YcGB5KjEcJqhpNElFiip7Slzz+DnnDwJQR870wrD+B0VGRgaamppQVFSUssqfc46mpiZkZGQkeikaTXKRYsHai2XYVu5OnDgRtbW1aGhoSPRSEkpGRgYmTpyY6GVoNMmLtvAjGLaK3+/3o7y8PNHL0Gg0yYK28l0zbBW/RqPR2KKtfEe04tdoNMMTp2wdjSNa8Ws0mpGBVv6u0Ypfo9EMH7QfPyZoxa/RaIYn2sKPGq34NRpNcqOt/JijFb9Go0kudIuFuDN8pwVrNBqNJiq0xa/RaBKPkztHW/kxRyt+jUaTXGhFH3e04tdoNIlBB20Thlb8Go0m8Wgrf0jRil+j0QwNusVC0qAVv0ajSQxa+ScMrfg1Gk380H78pEQrfo1GMzRoCz9p0Ipfo9HEFm3lJz1a8Ws0mvihrfykRCt+jUYzeLSVP6zQil+j0cQWbeUnPVrxazSai0fn5A9rtOLXaDTu0I3URgy6LbNGo9GkGNri12g09thZ+drCH9aMaIv//ud3o6zyNdz//O5EL0WjGf481Nr/z4FdJ5ux4umd2HWyeYgW5kyyrScZGNGKf9OeM5LUaDSRSIrxofz+f1Hy+NufYPuRRjz+9icxWd/GnTWY+7M3sXFnTVzX4/Q59DsaCTeSEa34vUyWQ8VIODE0qYOTYty1shorJr2JXSurHY9Bz/lVN1yGRVOLseqGyxzfQxWtk9J9ePMBNHcF8PDmA1i79RAufWAr1m49FPEe+hxdz+evGIeCLD8+f8W4iLXSY6zZehDNXQGs2Xow4hr++ZaD2H6kET/fcjDmNzYnfREvXRJXHz9jbBSAdQCuAMAB/DWAjwG8AKAMQDWA2zjncdGQnMsynmzcWYNH3ziMH3xuGl7fX4ftRxoBAM/eM8/2PbtONuPxtz/Bqhsuw9WTC+K/SI1mAP7z1I3wZgChU0AQgBdACIZyMJUcIJ/L9Hy/c16p9LrPXzEO+0634uOz7XjrwFms23EC9y4sR2lRtvSeNVsPob03iDVbD8HnZWjuCuDRNw6jpqnTek/l0unoDYUBAL2hMJ569zhCHHjq3eNI93nRFQhh9ZaDuHNeqfTcwbo2az1t3QE0dwXw4oc1uHNeKX7+6gHsqW1FW3cAxxo60N4bwpqtB6XvJOLvJsrEvKFd6MZGr2/zmANd6z/fchB7TrWgrSeITd9Z4LyOGBFvi/9xAK9zzqcBmA3gEIBKANs451MBbBO/x4WwIu1we8d1eh21FqjF4/SeWFsOGk00+AAwIefyF1DesxFz+QsAgMLsNEtSi3r1FsMKX73lAABIVjV97jfbjyMY5vjN9uPSNQIAY/PSLXl7xST4PAy3V0yS3gOxNlN6PcZvXg9DbygEAJYszEmzJL0GO/uM500JxiyZn2W8Jz8rDe29xvPtvSHMGJcHn4dhxrg8AMD8KUXweRjmTymSvjunncrPXz1g7BJePSD9HIGDhep293SxxM3iZ4zlAVgE4K8AgHPeB6CPMXYzgOvFy54B8A6AH8ZrHW5wuqvS5wBYP6+64TLpDj42PxPt9R0Ym5/p+timZWRuQTWaoSL4UL5l2QP9Vr56Hm8W8bHNe86AMVgWNRPKsy9kKKv1751Ac1cA6987gYB4LBDiMFUZB+DzegCEhASy032W/OOJ8wiGOf544rz0HgAYleVDc1fQkvRzAUBsCBAUjwVDHB+fbbd2Hd19xntM+ZNlM6xrt/LlvQCATL8XXvH3eRnwQtUpBMMcL1SdQuXS6dLvfzzeZO0YPjnXIe06KPSGY/6t1k2H8JObZko7A8rVkwtiaumbxNPinwKgAcB6xthuxtg6xlg2gDGc8zoAEHL0QG9mjN3HGKtijFU1NDQMejFOlreThU6foz+r1vraL8/CoqnFWPvlWdJzTnfsF6tOGVvQqlOD/vs0qQm1wgH7Hap6XnshLGgAc/mLwsp/EYunjYbPw7B4mnFZekWAzOtlGD/KuBmMH5WJYFgoWSFPN3dbkipuv3i/X7hyAFhyT22rJTt7jMc6ewIYlWUoSVN29YUlaQc9/sOb91uytdtQ+KaUbgoBQzl3B0LS30d3IADwg89NQ0GWHz/43DRlB6HepvrJTvNa8ifLZmDR1GL8ZNmMiNeZyn0o3b3xVPw+AFcB+BXnfC6ATlyEW4dz/iTnvIJzXlFSUjLoxThttegX7+R+oa9TFTo9mehz6n+qdAEOZRAiTuhAdmJ56l3DLfLUu4ZbhAYhK1/ei+1HGlH58l7MXl+GZ2puxOz1ZQCAUNA47UJB2eWyYWcNgmGODcJ1keHzWLJIuH1MScnO8FqS3hTKCrMAwJJ2ZGf4LRkSlrsp7a6THKFYTZkubjLpXmbtCPpCHHfNK4XPw3CXsMipy+l8Ry8A4HxHLzL8xnEy/F788XiTsQM53gQAuHNeKXb/9MYIq/7Hy2aiIMuPHy+bGfE3/eSmmYayv2mmsx5IAPFU/LUAajnnO8XvL8G4EZxjjI0DACHr47gGiwg/H4H66VSFTm8ETv9ZDwoL48HN+x3XQS/G264pRUGWH7ddU+o6luD2hInF6+yeo4/HIk6R6IvgYojnWtVju/msIuHXNmWjUGSNHb0422pY4Wdbuw0LnxkWPgBcGtyI8t6NuDS4ETMnGKmbMyfkIz/TsLJNSf3e1EIfnWvcLEx5vrNPkiZHGjolaUdZUZYl75o3WSjqyQBkv76psDwAusS1bMpeoex7QxyjsowbyagsPw7WtSEY5jhY12b8bcSvn50h3E0ZPslCV/UF1RHUdWR3QwCcLflEx/fi5uPnnJ9ljJ1ijF3OOf8YwGIAB8W/uwGsFfKVeK2B0todkOTarYeszIENO2us7IJ9D39O8qlRP3zly3txpL4Dda09yE7zWn6+Td9dKPk1aZSe+hOvnlwgXYzULwrOcaShE3Ut3cjO8EtRfppB8cQ7R1Hb3I3jjZ3Y8cPP2v69NLagxiPcZiDR7IdN31044LHVOEU0mUrRZC6onzNUGVLxyrIY6Nj0PLqtYpKUEWOiGsPUgt3rvQPedCDEDP+9lxs/qxf9lr11lhyXnwEAlg/fjmljc1Hf3otpY3MB9PvZQ4o3hvrNQw4b21c/OmPJccKVtGVfHSqXTkdXQLh6Av0HDwPwMBgelgGW2iFcRx09gYhzNFPsYjJ9HrR2GTeqnr6Q5Gv/+RYjAG365h9947CVdWTGElq7g1Gfd24zg+JFvLN6/g+ADYyxvQDmAHgEhsJfwhg7AmCJ+D3uNLb3SnLdjhMIhjnW7TghbXVVXt9fh+auAF7fX4djDR0AgGMNHTh53rBgTFkgLIyCLL/kr1RdTD9aOgMFWX78aOkM6SZwosk4zommzoirmZ50Z1qM95xp6Y6wCKm/l2ZZqNYFPZ6a40yhVo9dXjT9fgD3OySK2ywoivo3DZUFFessC/r3qpkk1Hq3yzFv7OgTrzHkXu8dOJF+p6H0ubDyOTAz8DzKezdiZuB5AIBfXPl+D3DvwnL4PAz3LizH2dYeALAkhVrb5g2KJj4MxJTibEvS7ByVLGFtZ6V5pXiBE8KjZElKMNwvH33jkDjfjTjI2bYeSy6ePgYAsHj6GMlCn19eaGTxlBcCkH381HVEd/Aqsd6dx5K4Kn7O+R7hp5/FOb+Fc97MOW/inC/mnE8V8nw812CSJwJFprxifJ4l19462wjM3jo74n1UydETzcwuMCWlUWx3Gzv7pNQxQPYV0psAPVGpbxCAFGiiF4iq7OjN7Il3jqK5K4An3jkqpeSpx1MVN4VuaanvmL5HVYR2AXCnk5tecPRzAPt0OfWGFa+0NyC6C9jpPfRvot8RzRwBZOudQo2JNOHXNiV16YRCwo8fAvqEKW7KMSJrZ0x+JpbMHIvrLinCkpljI4K2lAkFmZJ0A3X12IdBgQ7hUuroDTm+buKoDEtmiruXKSnFuWmWVK9V6r7adugcAGDboXNY8fROlFW+hhVP78SzH5xEMMzx7AcnAcjX7bbD9QiGObYdrpeMNxUnY4Q+lwi3T8o0aesW/9mm/Ej4Kz+qbZVSptSt2/odxw13zI7jyE33or03ZEmKmrFg/vyDz03CyaZO3CayAyiXj83FlRPycfnYXCyaWoztRxqxaGpxRAoXDTR1is/t7A1FbGHvXVhuua/MYF9dSzdeFbuEVz86g8fumCv5POkx1L+9od24gTW09yFTBL46ewJWZgINXpvQ3+nNwKlIhdLZG5Qk3Z1QFwe9+dw5rzRuaW+AfUpvhGuM/I15GT7b163ecgBdgTBWbzmAG2eOBWDclD99WQk27TmDT19mJDMU5qSjq7kbhTnpqBXWb3tvSNqJHfB/FV6f4cIBWiWXziz2Arp6Q8jye1Gc60VDe1+/QhTHLM5Jxzefq0JDex8OnW1zVLpOz1GoB8Zt2oLHY7iJTGnH6ZYeSQJATyDyDRk+ryU9EK6hAdbnEzdMn5dJu5h0n/F4iEce+3RzlyVXXFuGdTtOWPEIilO6Nn3ucuEuG0q3z4hu2UChUX5APompdfbN56qw/UgjvvlcFQCg+nyXJelJoiJSky1p8uKHNVbVIJTPWvVff8b2I41Y9V9/RpuIPbR1ByKsRXqh+0Sgy+dhcoxAYcGlxZbME4E6U1KXAlWg33puF7YfacS3ntsl/pb+oBrduVAL3a0l7zqDSXkd3Z04tQWI53bZLqXXae30dequhcaDqG/7zQOG9WlKytSSbEtSF1BE0LZHBG17NuLGmYYb48aZY5AuFKEp6VrpDd6JOmFAmNIOuxsEtdadUFutLJpabEl6bKcbEbXE1UJO04jJ9HulVE+aJVRaaHzfpqQU5qRbUg0cU5x20/Q5t9dTLEkZxe90klAFrF4E9CKlW0Y115imutEtqJodQD+LWi/0darfsEUEoFq6+qRsBdUXSlP7qqqNE6equhntPWJrK+SzH1SLbWy1dBOoF/EPU6641siuWHHtZFvF7XabSjOYnKBpfQCkC8vt1jnWFw9N1XW6SOnfSN+jVrn6hXXg93qQKZSNIeWz9JxQXudajWA+ABxv7MSHfV/BifQ78WHfV6S0TECucn1FFF+9sucMGoRf25Q0Q8ctZnDWKUjrRLFQmKakhMP9UvXdV1Wfl6QdNM5GXac56UKhC0nPa3rdjhN5/ONGZUp1ORF/h3hPcXaaoyEQzXND5fZJGcXvBFXANIAFAH5h9fo9TMoGuP4yo8DFlNRy6BZbz+5AWEoRUz+LXuYnRXD3ZFMnqsVFbkoawKNpc9niRDYl9f9TJRLpt+1XD/QmoAbfaDUlVchOAUk73BarqYUubgvonJ6zw61PnrqbnFJZ6e5uzdZDIhh7CFC+2YqyAktS3/aKa8uEQioDAJgejEBYviV4vcLK9wKXhwwL//LQRgDyzpO+R93xDhaaM+8Wp5uNqpwpA2X1DAS9sRTnmC6tNDwgYmkPLDXOKeqjTxfWf7rfKxk3TqmY9Abv9LponotnrIqiFT/ky9IjvhFTZgjrPcPvQbcwI7qDYWwWW3RT2m0p1B4f4j4CDwMKxG6hIMsnXZgBoaBNSQ9NrS7Tt2lK6v+nhSVZ4m8w5Y+XzRDPzZD++pvnjAcAS9IL4baKScbJXjFJCi6qAUlbXLp61AuC/u5UQGf3nJNCd9txkWZ0VL70kbEbe+mjyIwo4g6jmWLSzgnA+8eaJGmyZV+dlcao8on3TpxIvxOfeO+UgraqFU4tXYpb/7xbaM58LKABV7drnSSCzKakRtYokas/KistwiVa09RlyfPCqDrf0ScZN049eJxcOINlqKp4teKH3MxNvXDoCUnxiovclCXiQi9RUkLX7TguMm2MYCu9ULt6hSXTK1+lYmNhyVxhBeWmeyV/p1qRaJd1od4gaFCZKqVqcUGYkmYXSRY7UXBUKTph1+TqYqBK3KkS0m0ltp1PXoVmdNQIt1pNc3dE/IbuVlYunIKCLD9WLpwSUQVKM8ooTj50auXT4qtkxCltM5Z86/pLUZDlx7euvxSAfI7Rm0BE5g3jlpwg4g0TRmVIxo28Y5PPL6cU6OGCVvwXwG5LS33tgFwUQrGzwIDIFDsT1eKhFYrP3jMP1Wu/iGfvmYcXqmqEtW0oHnohUPdEkcjkMOWq53cbcYbnd0vuHFp/EAFRklTBOVUuUlzvDBxwarthp+CdFLpdSb26S6DWn3TDV1J13zpwFu8fa8JbB85KN4Um4Z4zpZ3L40pRQWvKoz7Dyj/qk638ZMetxU53v26hu2TVkqfnGP2/pWnTAKTALU3lpv9nagUzPb/iafEPFVrxXwC6paU3gTbh0zcl3SbeIlwlprSDXiDUqqeBLgC4afZ4SZqo+cn0QqBKZFSm2PYKSYPCNENEVWT0ZHfqO0Kxc6243Rk4oqyPYufeiWbrrN5EVm85KIKzB6UdkhqP+LVoJ/zr7cdxRhRAnWntQX2bCJq39Q78gQL1hpAIK1+NccUTmnKp1iPYUZyTYckaUTxpSnqO0ZuwapzQwK10fpDzqzhXfI6QrjO7XJLoNiVa8V8A6h+nN4GwUNumpErg/WNGPvD7xxojeppQaGbQ2DzjBBublxHhslFdMCZq2hsNCr8rcpLfPdIYEWCmaalSkZDih7drNufWbx5r3HY4dBvcdbtLCIk7cCgclnZITjsQmiFFB4k4QS18ALZWfjSBVbe4nWERC2iQm8a41JvPaLFTHZ2bJnXTVA0k6sKkxYyqv97OGKDnl3quxdr3PmJ79YwUbDMKlP2saWHMGHcW9SIVtL69D1NH56C+vRf5mf6IY5dkp6OlK4iS7HTJ2nj8jrlSf261qMmkMCcNDe191gAKu6pLtd/3qCw/GtqN1NAMnxddzd0oykmPSKWkf9PHZ9td9fexcxet2XrQmnR0IbeQHW6LtNz2QaGvU4vX6OeUFmXjSH0HSouycbpFFO+0dFkpvxeTEukEtfABw8pHZGF4zAOrQ4XaWocaJ2mio2Ya6axpXnFpIlUpzdvfW6e1qw9+L0MgzK3Wz7TQjhYzqkWAtE9X5dLp1vrU/3e7cy0W/ZpGeq+eEUtIKFdT0hz6ORMNN8ucifkR1jZ16dBy9h5hyZiS0tDRY0lqvXT2iBuCkDQjqURYSSW5aVJOufH6kCVpHrNq5VCriV48jltdG3dMhvj7TTlY1D70FLfWmd0uQd3R0B71jULZN16g2Mktw9WPHw00xRKwTzelfnwAON8ZsCT116vpr/S8rFw6HUcfWYrKpdMjeuurE74Gwu38jmhJRA9+ilb8UaJuiYtEDnFRTjr2nTYswH2nWyMKl9Qbhkm9KKypb+uJ2Aa2CB9+S1dQUsC0ghCQ/bPjRS+W8fmZ0nsAuXe6U2HVslnjLEn9p+qNxA09YoiGKQfr46Q3pYuBfi7tzSL5cEnwGwA27DwpetSfjEj3jQaq7IdTts5gmVCQJUk7stP9kkwX7tZ0v0fy16tVs3bKVM2qotgZEG7ncgxXtOKH+/Qzp5LzNJHNk+bzSCmbvxLN0n71zlEAQI5wo5iyfxH9lrJaFEV9utR6oaXn6jFoMFa1eGhgmmYoqCc7jRnQC86uoAmAFCegz/1o6XRhqRlb68H6OGlHyYuB+uXtOkyqFdGZaT5L2rUfvhiosh/pVj5F7XipxqhMzgkjyJR27UycLG/pvFR2obRexc6AGKpCqkTh6ONnjP2d0/Oc83+O7XISg9v0s29/ZioefeOwJZu7AlaZuFoSb3JKKA9TtoombqY0KS3MMvzIhVmShVm5dLrk092y94xR5LP3jPVes4umhxleVA9jklW+7dA5o1Lx0DnDp6nkrwOyr9H62cZt84PPTbP8/XRGwVt/92k5VqHMBDADb/QzVP86ANvZATQ2ULl0uuSfpTj1SKeplTnpXnT0hpCT7kXlSx9Z8xBUX3SzeE9zZ3TuHdOyN5R7K0KhfqVv58cfSgbyr5vQBmdu73V2zQzV85q2Zsjye9AVCFsS6G+XsuBSo4HhgkuLI/zrbvzwdCYGIA+NobEASjyb/iUDFwru5gp5OYBrAGwWv98EYHu8FpWs0CKmDuFXN6XbkngxbxpeD+AJ9V9Ui6eNxonGTiyeNhqv7atDe2+3VX3oYcbF4WGQ0gTNdDjTB1pakIkjDZ0oLciUgqmmCjsr0glpsJKe4Bt31kg9aegFQxUwzZ5Qi2NoTIMqd/WCpZ+74umd1nNt3QFp+Itdd04Vquydgm+075Ff/Gf4vR4cFy0zjjd1Rrjx1Erqi8Vt0DZROJ279Lug56HTV9EjilZ6gmHp5pqflYb23m5rApbPyxAIcfi8TEqiULtp7q5ptuT//Wu586sd9NxTlbj6nJ0BEQ1DNRBosDi6ejjnD3POHwZQDOAqzvnfc87/HsDVACYOxQKTCZrz7tRWgTJKFICY0m5GJ+3/HXEs8gDttJkmWseakhajjBU+/rH5mREVvisXlBtVpQtkK0eNBdg9R900anGMXb6/24ZValM7Wo9A/bGqi4muyamykq6XttKmLhy1cjoaki1oS4eeR4vT4BOKOaEqGOLoFQq9NxBGX9D4AkxJe02ViIBvSU5ahO+VjkqMpoZEfTyePvpEp2m6xW06ZykAus/tA1AW89UkOQ3tPZKkpHuZVeRF0+zMEXampNbyrIn52FPbilkT8/HJOTNQyiMGcCyfMx6b9pzB8jnj8Zpw8XT2BK1qYLNB3G8/qMb2I40ozE7DygVGGtvKBeVYL9pGmK4eunO5fGyuZaFQFw4gj16kz1F3jRrgtdsiO22d6XPqd7zjaKMl3zvaiBA3Mqhe3l1r9ZD/8P9bIvU3/6fXD6GlO4h/ev0QXvywBntqWzFnYj42fXch/nSiCc1dAfzphBzoo5ap2ThtoGprt1Arv7y338Kvjv6Qg4Iq42ihLjCno+Rn+tDSHUR+ps86N4PhyPbPNGnhkb+8Eo++cRjfW3I5apo6JfcLnR3ghN3chLaeoO0siFhb6IlO03SLW8X/WwB/Yoz9Pxj/538J4Nm4rSpJoS2aVT+w18OAELekiTpcg56cNPvnygnGTeCyMbno7AvhSH2Hlf1AC7hoCwifFwiEDAkAm0Qb3k17zqC6qctS7urwCpprr7pFJHcK8dffOa9Ues5U1Pc+86ErV4wT9OJrEYrClF7hVvAyY1pUbXM3xo3KtAaTmEqEDsyhx1CrYel3RF0KXULZd/VGb5ZTXz714ycDsWjS5vYYtFkgvQm09wQR4gO3aFCnuh2sa8MSMaRmfnkh9p9utYLCdtgNN7EK7AZoEBjrGcrDJTbgajPLOf9HACsBNANoAbCSc/5IHNeVlNCtrnoR0FQ12oPkzQNnAfRL6oYoEtvbopw0SUGpvcCpoqbFLGVFOQBgSWm7TAK4Ec3biEJ3covQvP54tmJw2h6XFedYctmV4+DzMCy7MnKt1EfvFuq/jkXFaiqlZjpB3aDtIgbW3hOER1wYpqQtpKm7T62Ipm5Qt10zqTtHTVl2mxk0krkYL2YWgDbO+eMAahljF5dHNwKgU5BoIRYgF/nIyA5LuRGU8F1mpkkFVxEQRb1ygVG0snJBWcQN4tdfr8CiqcX49dcrpE6F6utoANap4RS9eOyGSrtt0uYEnQms9jmia5fy6cV7TTnYNEu7JntOuG2xkMrQ1OawuCGYcpyIQ43Lz7TtmWPQb2bRvkkqNA2a3iDUc5waGiMhJz8aXJ3ljLEHAfwQwI/EQ34Az8VrUckEtd6PiUrbYw2dUsAJAJ4UlbtPvnscy0UzteWzxyu97yGd1FQB//prQml/rSLC4qGvo0UrTr3raadC9XU0AOvW4nEaKh0N1Oqisw3UvkT0u/CaA8W9zNFCj6YtMJ214JaBsnWGu5VPjZtoofn5tAZFDQ7TSVb0fFAryM25xIbsvwmou1B6ztNkBHVXm6pWPsWtefOXAJYD6AQAzvkZ9Kd6DkvcdiGkfcuoIdIgmnCZkp7UNE+YBnMBSD2/7TJg1MwWar27PWndumDcWjxq9o4dbityqdVFFXWjCOqakrrAaDBQhR4jFv5sO5ItWyfW1IhB4qakilsd6GMHtfJpqqg6ZYue104N7/7wSYMl6U1A3YXSc57+rM5NSFUrn+I2uNvHOeeMGRMMGGPRmwNJglufLg3iShaL0smSBgqd8tfpttO8Gahkp/skSccjVi6d7ip4pAZjKT/fctA2yyGa41HcBstoIM58fYgDtSIAbUq3xFPZU5ItWycW0HO8NyiKBYNyw79gmCPIzULCyKvGLuOH5urToC8gW+iTi4RKUQr/nr1nnpRRZg5G2Xao3vokcxdKz9FdJ5v7DS6Hdt6piluL/0XG2G8AjGKM/Q2AtwGsi9+y4o/qo7eD3iDotB7aogGQ591Si8Jpm2nnN1e3ujSbiOJkXTvOk7VpqxAL3O5IaBZOsjPSrXynmya13p3iKLTFOK0ZGCPajY/Jy4gYCERbidBz3inhgA5IuWveZFGfMjnidXQH4dTOO1VxZfFzzn/JGFsCoA1GFe9POedvxXVlMYaWhANAn/Dl9ik+XVpuDhgjDrcfacSiqcX4/BXjrJYND/y/fQD6RzJ29PXLW/59h5U7npfptyz8O+eVSuledn5zNSXMI0olPUoenJN1bZfT/Ow986Q2zW4tdLf5zm7T2dQU02TGzsrX9EPrBMbkZaC2udtS+iYTRmWhob0PE0YZGXC0lUhpUbZVNU7rTNTeUGYuf2aaL6JJm9T6g1j5wyXFcihxG9z9Bef8Lc75Dzjn3+ecv8UY+0W8FxdLaBk5IFvyNKClWjVtIh2trUduaEZT0aAcg/qlVQuYZhs4WSyU0sIsSZo4WUZOE4PcVtTS3UA0FYlOlbZ0uEmykcrZOmrsiwZqnXz8NAbUKypze4MhaZg5jW8B/S1Ezrb1Ys3Wg2LG7cGImQ7UX08THdTznw4B0la+M25dPUsGeOwLsVxIvKGuGADwC+vZ72E4LrpQHm/stIaamJK2aaBKcpywZkxJe+tnigsj0++JCCRR68WpXSyFpjRSBRqL2Z9Ok7XctkGg0GPQzofqZK5kGyZi1yoZSI5snWgylZywy95RY180957201HbWtAkhiZRVNfU3ifVkFBLHoDUsZW2GFEHAtGUYZoQEXH+ExemDuA646j4GWPfYoztAzCNMbaX/DsBYN/QLDE2qIElOsQhN8PweOVm+CLyuenEH4pTY6vLx+ZJkkKtF5q94+RrtxsYorZvplAfp1trXVXO9EanZkbYUfnSR0bc4qWPpH7+x+qN1g6mTDaSvVVyrBV/zfkuS9q1RwaAkDi/Q8p5TivIAfncyRcda/NFPyizL5RqyVOFTl9XVmTsbE1ph7pbpTcFits4VqLn4A4lF/LxbwTwPwDWAKgkj7dzzs+7+QDGmBdAFYDTnPNljLFCAC/A6PVTDeA2znncv2mPx3DfmAM0XttXh2CY47V9degTGQx9QR7hErpr3mSs23ECd82bLPWuUdM5KWobWArNPDCVaHaaN6KFsZ0/nWbDPPrGYSsronLpdKmDJr2pmBeCnTvHWquSqST5RonP1KmNMvXdm1lJ1Y2dViykfRAtEWKNXYsF2j2zOqEr7CfWs3AH2nENtPminzs6Nx317b2WpJwRIynPtHShV0yR6w2EJKtcteQpdG5FnehAu2VvHR67Y670OnoNbvruQsl3b+fLdxvHinX7hmTmQt05Wznn1QAeB3Cec36Sc34SQIAx5vabWQWAjrepBLCNcz4VwDbIN5Qh40xLtyULs40TsTDbL7XtBSAFkBpFfn5jZ1/EVtduqLqTFUFLyakrxclCpxeSmqtP/aTUF+q07aWf5TSNi/pM6XvU/Gua+XS0oQMALJlspHKLBbqDoBa/Grui3WXzxc44P8MXUWFNR1LS9iV0V+rkd6fXo+OQnShSM91mmqVSYZdbH/+vANCrt1M85ghjbCKAL0JO/bwZwDPi52cA3OJyDYNCMWYxpTjbksW5hrIqzs2ICLhShUy7ZtIeMgBw3SVFlqTuDrdKXG1S5aaFsdougVYT2217AfteJW7bN0jrUy7ElQunGFv2hVOsLpcdSWblj+TUTDvoHGhATuH0CS3v83rgE1tiU+YK6zw3w49WkejQ2hOUprMBkFI1afsS2mbDyQC5SVS73zR7PEqLspGb4UNpUWS5UDRB22hmMI903Cp+xnl/azvOeRjuUkEfA/APkHeoYzjndeI4dQDU5jbGBzJ2H2OsijFW1dDQ4HKZ9iy8tFiSNBhLR8KpKWI0IEUtGbX/zZa9dZakbQeiybxxmmnrdHKaqW7FOemurXynmgN6g6DZSHR9ecIKNOXqLQdEL5XICsxkIJWtfDto1lhmmohxCdkkjJ2mjl40CvdOY3uvNBAIAEaJvlOjMtOkgsMMsfPMSPNG7H7p7/SaoTtXFbfKOZX89dHgVvEfZ4z9LWPML/6tAuBYecMYWwagnnO+K5qFcc6f5JxXcM4rSkpKojmERFX1eUmOFhbK6Nw0ySpRlV9nb9CSVNmrJyDdnobEPTLEeUQmAz0h7U5ip4EoTthZQ+pFYLejeEL4WZ8Q84HpDeLhzYZCf3jzAfz0lf1o7grgp6/sj5hbSzM/koFUS820TblUdmbU1UMDq62iHYYpc8QNPSfDhzxRpJWX5ZNuCADQLfz6huw/eqfYJXT2BKWdMKB0ZSVbcprhA0SnxJ1aQGjcK/5vArgOwGkAtQDmAbjvAu9ZAGA5Y6wawPMAPssYew7AOcbYOAAQsj6KdV806sSs+2+4HAVZftx/w+XSieaUIuZE5dLpOPrIUlQunY77/mIKfB6G+/5iSsT77Vw/9HG3fXacJgvR59RsHQq15NUh49Q/a5bp94bCUhl/spOMqZnRoPre7ZBGGJIGg2oOPW3v/S9vf4zmrgD+5e2P4RMOf1M2i1hXc1cfukXCQHdfSJqMBkDK179x5hgAwI0zx0i7ZJq3D8gGiFM32aimWuk2DY64rdytB3DHxRyYc/4jiG6ejLHrAXyfc/41xtijAO4GsFbIVy7muNHi9xg9Q8z8farg6bQqdRg4zURwm3mzZOZYa5DEkpljpQwYuwk96hzQwfbFoc+pjc/oczuPN6E3xPHw5v0wZ8iYCuPp94w8/KffO3HBtSQTdtk6bhtTJSPRtJ3OTjOq0LPTvHhMKPfH3v4Yd84rNbLbQkaWG52MlZPuRSAUQrrIWhC1WAiGjKHsAAc4w/4zhivUlBNGZeBIQycmjMqQZlCsuLbMmiUNQGTIGec2zcK595kPrQw1cwCLid01Q7PY1OvFKbNOc+E8/n8Q8t8YY/+q/ovyM9cCWMIYOwKjMGxtlMe5KNRZt26DmtR9Qt/jZIXQ51R/vZ17J5rAktsgsDmM3ZS0/z2tR6B9WQD7HkHJTir58dWOlxSaQlsvlLspu8XOoDsQltyeakCeBoFL8owYUkleekTmDQ3qU1cPbcSmxs8odJerXlvRuERjHah1GgAzHLmQEWSmYVYN5kM45+8AeEf83ARg8WCO5xa/hyEQNqx8p+6S1KJQ84SpVUJ9jE6zNWmu/ZqtB9HeG8KarQcHNaxkINzOsS3MSUNXc7dVjbxZjB/cvOcMMkUPI1NSvGIHYMpkJpnHHsYTp8wp2jFW3Sj4PUAgbMj7b7gcj75xGPffcDle319n9aZSof2t6K4WkHfQK641al9WXDsZpUXZ0hxn87pQoZW/6q7brk+UOiM6ntCbTKyv40RwoTz+V4V8ZqB/Q7PE6BkjLBRTUuyCP2ovfIrbyT30IlAHtlDsglZRd920eV2m37AGTUmLcpyCseoOIJlJJSvfLU5FX+Z/dyAsd0o1i6dMSVs7mEVb9e29jlXetBUJTTl2qv52urZoF9tYXxtuicWI0WTC0eJnjL0KhxbnnPPlMV9RDCnOzUBtS4+Vpy9Bgj/U5y1nJ8hQS94JuhswWy6bSpdS+fJeHKnvQF1rD9Z+eZarjplOXTepz/PFD2usnUtLtyhK65bbTgxnqIUPtCa1lU93Toliakk2jjR0DjhZq1q0bzAlAFSL2cW0aJH23FfjRr/9oBrbjzQabkS7Km+HgKvTDpp2saXn/77TrZIV7nRtUNxU6Kq7DLfzKIYLF3L1/FLILwEYi/5xi19F8lSz2+IU4BnouVU3XIa/+s+dACJ78wCyJe90ElA3C62gVbE7odWLgJ6EA10g5s90O0oHWzSJjAtTDleosh8oWydZ2yXHeufk5MK5Zc54bNpzxpImp0VlrCkptKWyuUQzrnN7xSSs23ECt1dMwsG6Nmw/0oi/mFqMqmrDWjbjRuZnbdpzBo/85ZU42dSJ2yomSa5T2g4cUNqFOPCjpTMsg4a6gT4+2y65epyuDYrTTcZEdflS3LYoT2YcFT/n/A8AwBj7Oed8EXnqVcbY9riuLAY4+cCphTI2LwPvH2vCjHFnsXj6GGzacwaLp4+JeA89YZwyCii3XVOKk+cPD9gGwe6EVtetWij0Ofqz6vM0L76j9e3o6A1ZnUmHK2ojtZGQrUNxuzNwGpzyqfIi/OGTBnyqvEhS/GqbN9p3JxAKo7krgFFZxuwICg3I7jtttBvfd7o1Im5E51ZILh2HvvhUuYIxayocNcoGsrbNY6jZb3bxOFVRu+rP77A7GQk9fdxeMyWMsSmc8+MAwBgrBzD4qqo449RMjFooPg+z2gebLhljtFvkSUPTz9wEe9ShEhS7E1rFjYWiHm/F0zut3Ukytk5wy3BqpDZY3O4M/F6GvhC3JGX1lgPoCoSxessByTXz42UzJKPgS3MnYN2OE/jS3Al4eoeRrtvRE5TeAxi1HIZRlIfC7DRs2nMGn76sBNVNXaht7raqxdu6A5akcbKVC8otA0S9lqR4mqhz6ewJOI4GdbqmKW7dPnY4eQvcXo/JjFvF/z0A7zDGzGrdMgDfiMuKYojTf/6cifnSlKztRxpx3SVFqGvpRntDEGNFQLjypY9wpKETdS3dWHvrbOtkUK1r2+2fywIwJ6KZIEQv2HePNEoX83BCT7+KxKkluN3Ng2bNAJCq1Wlx48SCTNQ2d1t99Gk6Zq+ICL954Bx+vGyGpdABoEnEApo6+5BB4lnUPbr+vRNWTOutv/u07AYVlnV2ht/xmnGr0J3cPm5cNW4z5oYrbgu4XmeMTQVghrQPc84j+xEnGfQ/38ynNwOzJ0Ug6yQJaO073Yp1d18j3elptaG6xaPWut32T/VrDhXr3zP6pax/rxqjsnxo7gpac1GTmeEUtE0UacLST/MaO9UwKbrLy/Shob0PeZk+NHX0gXNDp6o+68w0H9p7Q8hM86GjN2QZBo/fMVc6X6mP/9kPqsUKeES8i3a1NSvhAfka/Pq6PwIATjcb15x6bdj97DbGRVGVs5PrNBVxO3oxC8APAHyXc/4RgFLRi2fYoBZp0UHPTqladEqQ24KpwRKLBlO0xUKz6LtiSkqsB3wMlpHSYiEWqK2/TajFv1x0tTRlj3Cf9PSFYHbUCHPZIgeAVuHLb+0K4GbRWtmUFOrjrygrBABUlBVGnO92Y0RpaiZt36ASTVPBaIu0Uqn9sh1ue/WsB9AH4Frxey2A1XFZUQyhJ4z6n/3HE+eNXOMT56VcYzW/v6apE+09QdSI9DY77E5Ct31GBjvfVsUvIoT+C0QKnQKFQ0Wqtkq+EOqUq4GoEsaBKensW4o6Z4JyQLRdOHCmTcqZB2Ql+f4xY0SoKSk0d5+6cOh57bYHj/q4W0Xt1mBKpfbLdrjd+1/COb+dMfZVAOCcdzOW/N2P1P43dFtHZ+lS1AKup949jhA3pJnOBrjfIrrN/XdK53QL3RKXFWXjSH2HJZMZOz9+dUJXFT+c0jHtKBAZNwVK5g0dYALIvnxanatmq5UWZuJIQydKCzOV3vpc/GycM7TlyLJZ47BpzxksmzUuIgBL8/2XXTkO+8+0Yf6UIqlW5a2/+7R03did5+o189aBs1bWnZOy1i4c97i1+PsYY5kQZwVj7BIASe/jd8Julq6ad18k0tWKctJcDxynuB2ITq2aaC0SWk1Jh2EkI6ls5dOKWrNpoN/DItxuJaKHTkluGrpEe3BTmqjzEOg5QIcF/eETY6aFKWlvHRrcVYPDtDf+eaHcz3f2WX56U9IhRTQgrL7ODeo189S7xxEMczz1rmMneO3CuQjcKv4HAbwOYBJjbAOMkYn/ELdVxQgnl4ndllgdP5gvunPmZ/hdK3GK25MxFttPOsx6veisuT5JO2vqFgsGORleS44SQ8otmdEv7dovqF076U6W3vxpTAuAbfsEqaU4ILUsp+eyWhRYKNI6C3PSpZgZfVyFXp+0CZp6zYwflWlJJ3eOduG454KuHsaYB0ABjOrd+TAMklWc80bHNyYBTi4TuxJsNVuBtmWOxgUT69Qvp1Q0ulZ1/kCi0dk6/eSmG+2Sc9O9UuA9XcRjLKueFBGFxf9jOMylXPsfLZ0upRU3tPVYkqZsjs3LQDDMse3QOVQunS4dm7qRKpdON54X0Jbl9FyeUJCJUyTtk/aDotfWi1WnpHx/Cr2eaF3M7p/eKF0zj5FMI6eKWo17LmjxizGL3+WcN3HOX+OcbxkOSh+Ibkybam3QtszJYFE47WLosI3x+UZ/IlMmmlTI1pGGljP5MQptl0zdOzQLBwAaOnosSZ+jOwN17jJ11YwSjQFHZaWhRgzXMSUdN1os2nQXZ6dh7dZDuPSBrVi71WjMS3cG9Dr51vWXoiDLj29dfykA2AZ06TnpNDiI7hIcg7R6wEpMcBvcfYsx9n0AL8AYtA4A4Jyfj8uqhhinlgiJKNZQrfoL5TGb0N1KbYuhNEyZCEbiQBQnBiqeulAVbo6w/nPSvegx03eETmsRu4EWUYPR0hVEfpZPqpKNWIO4Q4TCHBkiDzTD54koiqJzca30SsakZAZ1Z3D/87txqrkbJxo7UZSdZt0Q7pxXKuXkS60YAKl9g11FLt0l3PLvOySrngaS3Q5YcVvhm6q4vQb/Gsbu8tvK41Niu5zEkGwl2OqNyO7GtHbrIazbcQL3LixH5dLpUjYErW4cSuwaqY3EbB21vYEdNLtGhWaRmTo2LJRzupehN8SR7pVn19IbjNozqjg3DQ3tfSjOlbtk5melob69l7QHH7iCY1y+0dF2nNgpUkV726/fB2BkEJnVuQO1Lx+otXlnX6i/UeGFqthVqz6K6vdoWjaMhOZrbnEb3J0B4D8AfARgD4B/AzAzTmsacpLBhUNR3U12AWI12yGa4HOsURupjeRsHbc1ELT3vYo54jDd54kI1PYKDd8b4tIxJo4ylPLEURlS1g0AZPi8lqTul+4+48ZhyhXXGgVXK66dLL3u8a9ehUVTi/H4V6+KWOvfiMDv3/xFpL1Hs4my0w17MjvdJx37JzfNNNymN0WqDjv3ECAnXLgdok6vGbfZeNSNGosiymTGreJ/BsB0AP8KQ+lPF49pBNEMVbFDvRHZDVHPyzR8vaaMJt10sNC0TEBW9iPRjx8LPETSEYgqZosNtdUGdeNlphnPmZLm9VOFaebvm5IWMNJB505DUJbMHIvrLinCkpljI24k1CqncTGq7NUxpBSqdNe/d8IYDCMy0iSDxqWPn/4d0aRUx6KIMplx6+q5nHM+m/z+e8bYR/FYUKKJdrtnVzyiPj7Y7SQ9XpcIEppSvWCGguHUFz9ZcJqMRclJ96OlK2hJE6/H2BV4PUCDmIplSuoGeuKdo2juCuCJd46iQfSc+p99Z/HYHUrq7/uir9P71Vgyc6x0ftKZEaue343a5m4cb+zEOfF5pqQ+flpwVbl0uquOtnR3a87EMD+bujAvH5t70b2v3LpyaTwv2dy/scatxb+bMTbf/IUxNg/Ae/FZUmKJ9k5v545RH49mO0lfN2NcHnwehhnj8qA6G8ypSdUXaC8xWFK5+Coaou2HRJV6gcjkKcjyo1D46Quz0hzdTadFBs/p5m4EwsZtxpTUcu4VQeXeYDhipCKtd5GOJ+4wgQGi13YFV2pPLHpeUwtd7ftDW5tHQzSu3GRz/8Yatxb/PAArGGNmtUcpgEOMsX0AOOd8VlxWlwCivdPbZf+oj9Pjq20a7LIQaNn76eYuKxsjzedBbyiENOEndroYY8lID9rGGrexgJKcNDR09KFEVItT90mvGAXaGwgh6DH+v3sC4YgAMx2IYp5bHMClxcboxUuKjcls1Pee7vWgNxRGuteDTlFDYEqabfPg5v0IhDh8XgYPmPUeQO7+mZdp1AWYLkgTtXbG7vynfX/U78Euw2ekKuh44dbi/zyAcgCfFv/KASwFsAzATfFZWmKI952eHt/Op6juOmjZO93K03zweKOt/PjzvSWXoyDLj+8tuRwAkJnutWSOaMmQk+GTOsYWi5uEKek5NVEUV00sMPryALAk9euvXFAGn4dh5YKyiGZutKJ2TK5RhDUmNx0PLp+Jgiw/HlxuBGppr56giE6b0g4ak5LOecWPLwWFyU0gFn74kR7EtcNtP/6T8V5IsuDkg49FupfdnFHVjwn07w4mFGThSH0HJhRkoaWrDw0dfcjL8KFhCGfoptJAFKc0TfqcasHbPWfm4A80D4EOBKIxmjvnlaK92/iS27uD8Akrv7UrKDVi6xQ3fVNSK3rZleOwbscJLLtyHM629VizeAF5wMrkwizLwlZbMazZehDtvSGs2XrQKghjjEVY77T3FR0p6gQNuqo7bXqN0F0zjSWoMzaiIVUbu7m1+Ic9bu/sTlZELCyMVc/vxvYjjVj1/G7peE6ZBzPH51nSVPZDofRT1cqfPTFfkhTqtqGpmOpzo0WDtdG5aQiJbVpoABfcftESef+ZNtSIoUCmpOmTIW5YzyEellIazZm3hQNY/M9+cFK4BU/isTvmonrtF/HYHXMByPMoqIVdLKx6U9Lq33rRDqK+rUfaCQByLECd9mWiXoPU4nfbZz+abB0nUrWxW8oofrdKO9bDVtSTnabb0UBtoSibL8xOi+iJTucDU+I9RCVVG6l9VNsqSQodjjKv3BhMYkpKmvB9p3k9uKTE6JJpSjor4bpLigDAkEqhUmlRNnIzfCgtypZy/GmBFG23EIl9dIH60Wn6Zb7wy5uySBy3KDsNXrHr8Ho8ePSNw1aGDiC3g3bbZ3+wijsWSnukB3HtGKnV8xFEk9J1Mc/ZofYtz0rzoqM3hKw0L57eYXTQNCUAvLLnDMT1heONzn30Yz1ERTdSM3D6XulwFNNFMFCVdEN7nyXNvPs94kaS4fMgEAohw+fB7poWAMDumpaIYP3qLQfRFQhh9ZaDyE43zpvsdK+cM6+ML6RB1htnjsWmPWdw48yxERW+9OYhndfKzUdN01y34wRWXDsZpUXZkjvHbp4EdW2qffbpXOhoGAmzbxNFyij+oTxJ6MmuDnzpEL7YDhKQpR00OSJb7Q4VOif/wkwcZbQ0MCXF72EIhLnRY5+J/1PGpcErgByUL8lJQ3svkOH3WO478/lAqF+GxP9DV19Ics2oQ0qoQqc9+N88cBZdgTBWbzmAO+eVSgVY9KbgVCBFxzBWLp0u+fipsqeFWq/vr7NuCG3dAam/D40z0I6gTqRSW4V4kjKunngjdfgkfvzz4mI+fwGffKJm36aqH/9ioDn0p4WyP93SgyzRfMeUNPMmS6RLZqV54RduH1MumlpsyTYRwG3rDkpxAeP1XkvSnvQ0FfM3242c+d9sP249ZsrJhUbztcmFWRFtulvF57Z2B+W2D4rF7zS+lEJdJtQNRN+j9vBxmnVth9uWDYPN1hnp2T5xU/yMsUmMsd8zxg4xxg4wxlaJxwsZY28xxo4IOWxu2/c/vxtlla/h/ud3RzxHL5BaUehS29xtuW08F/imh3L2LVX2qerHV3Fqo7zu7muwaGox1t19jfT/pLZbaBXdKFu7A5JizRc3DlPWtfZYUtwL4PUA999gpHPef4ORzvnjZUbA9MfLZmDZlePg8zAsu3KclIqpQlMfTdfSntpWqZ8/ACyePtqSdNiKavFHMxmOKnT6HnW6ndpS2hUuWzYMNhFjpLdsiKfFHwTw95zz6TAGuHyHMTYDQCWAbZzzqTAmeVXGcQ0XjXqnp7/TIKvat5wGZykDuXYSzUhvpOZRJCVX5MbnpnuRIxRQTppXqo9QLXnTnfLWgbPS+2mgF4Bk5edlipGImT60ihm5pqwRldU1TZ348bKZQrnPjAh2UsVIM3Soi8QchGJKipm6ecuc8RGGBXUDrVxQboxhXFAecYxoZlrQddPHnZq0uUVt4GbHYAO/sQgcJ/OuIW4+fs55HYA68XM7Y+wQgAkAbgZwvXjZMwDeAfDDeK3jYnFqiUz5zfbj4EJWLp2OV8RN4RUl8yYZcArajkQ/vtPuSc17B4TfnNAlLHhTPvnucYS5Ic3ul6EwMCrbaIE8Stzsu8VxuvtCSBev6wtwKRUTAILCjRLkXMqHV+s3qD+b9tm/vWIS1u04gdsrJllB1m+LgShqkPV8Zx++fm0ZxuZlWC28AcMqN/36brNrnHrc21XhOs26iMZfr07Is2OwMb1YxASTuUZgSIK7jLEyAHMB7AQwRtwUwDmvY4wNOA2cMXYfgPsAoLT0IraCUeCUeWDX415VLkPpqrlYkj1o62HGZClTRkNOmhcdfSHLiu8Q/d99PiYVT9EGaV5RacUYMGdCfyHVHiWN0+thCIc4vB6Gwmw/ulpCKMz2W8FY00+/4FKjTcKCS4txvLETXc3dKMxJs1x/ZkaQ2/byVHGU5KahtqUHJblp2Ha43hijeLge4/IzJEVIz1dV8dAAqt0NZ5VwY3YHIreA9Hht3QFpWIpTKxIqKWrGmxuGU/O0ZF5r3IO7jLEcAC8DuJ9z3ub2fZzzJznnFZzzipKSkvgtEHLASB1CnYiOl7FgOAVt1ZGD0dAhrO2OvpD0c0664Vc3JYW6d06LTpCnW7sjAu20VQETvmXGmDUwxZT7TrdakubXq8dbPnu8JWkhlOpXpgVOfSLFqy8Uljpmyk37IqthTXeFWnBl1yDtnCjSMiVFcn84+NpdxwWiGLAynEjmGoG4Kn7GmB+G0t/AOf+dePgcY2yceH4cgPp4rsENTaLPSFNnn/QzIPfJGU4kW9CWDg+JB5nCH5+pjLmiw8dVzJf6PXLevbp7o0qXVq/6PaIQS0ga1KS98FU/fHVjpyXXbD0kMmoORfiVqRKnrRRolSwdqA7Yx5rUgiu74KVTlTFVZKqvnRpPbhWenc/fyTeeSsNS4kk8s3oYgKcBHOKc/zN5ajOAu8XPdwN4JV5roCeG00nSJHLsmzp6I5pU0RS9ZCeZrfxoZwBTa1lVtBS7XUNIWJOmTBdpO+leJv3fmocc4NDSTYFaujQwCxjB2vaeIGqaOiWl/W0xmNz0w9NjZIi7T4bfEzGohN4IaPsGWiUrZeQAePWjM5akSlJNnbQLXt63yPic+xY5T1WNiAu4yLZxGrZOccqoSaVhKfEkntpsAYCvA9jHGNsjHnsAwFoALzLG7gFQA+Ar8VqA2irWbiBKUU46upq7UZSTjqsnF2DTnjPWpCI1IyOZGYmN1Kj17RMFUj4Pwz0Ly6VgpZquaEIrbQFlnCFJuXSqo0jzMfQGOdJ8DPmZPtS39yE/M/LSWScqsNftOIGf3XyF5WtXA5JlRVnYc6oFZUVZOCR69bSJfHqzIZoauFwycywO1rVhycyxkm988bTRONHYicXTjFDZuFGZqG3uxrhRmRE+Zto/hwYv6bVAP0d9jipo9dhuhqC7DXY6+cZTaVhKPIlnVs8O2NcjLY7X51JOimZXJ8934faKSVJ5OL14zMHRGX4v3jxwDgAsSRWFlxn+YFMmmuHUYkENvtpB+8mrdAvtbUoK9bc7BYvp9KosvxftvUYQ2KyWHej/dV55EbYfacS88iLsFD3iW4XbhE6UupfcjKiyVxMGtuyts6TX3GIww2pvr++wrHc6h2FcfkZ/cgHxjavVr4/fMVdS1KaSXPH0Tlul6zSY3C4Aq2a9uMmCiUXblGhep4lkRFfuNgsrvbkrgA07a4QvVMySIRcPde/0Ca3ZN4D2pMHAZGCgbJ1E+/LtGCcqT01ph9u5wWrFKv2/oTFDmncPAEXZ6ZakNRY54vmcdK/0MwDsONrYL4lLQ+pwCaBy6XQcfWQpKpdOl/4OdYLUslnjLFkq/P6lBZkR+fTS2EPi4qC+cafqV6ma3CEvna414vuPYQA22mCn9uXHnhGt+CkZaR5J0uAbDeiqroFkI5n9+E7Uia6kprTjwc370dwVwIOb90c8R4OxTumzdAAJzX8HgA4xa7ajJwCf8Pf7vAxMbE4Z5J+Nz/NYslS0QSgtzJJ616jQbDB1qlV1U5cl1946G4umFmPtrbMj/OY0iEuhClStfrUb6KMqXZrlQz9XXYPboqt4Kmfty489yR+xjBEtwvo35T+9cQgtXUH80xuHhlVW2XAae0gHk9AUSxU6jMTMoTfHR9JjlBXn4Eh9B8qKc3CisRNB4e9XeYy4O1Y9v1vk0xuWPh1qA85xpKETZYVZWDx9DNbtOIG75pVGdJ5cuaAM63acwMoFZdZzplVuNwiEWutmi2OzMRo94dz6rO3846oPfqBjDHQ86qZad/c1tu9x606JZ7GS9uXHnpSx+NV5tC1dQUsmc/EVMLysfJpWqbpMbHHICLlZtB24ec54LJ42Gj4Pw+JpoyOCsd8U2SjfXDRFsm6LhcI3JR1qs3LhFMO1snCKZL2rVvS2Q+eMgqlD5yRL3mkIOLXWz3caxoYpqRVtl08PyMrZzgWmWsNuB5rY9dOJ1h0Tz4EmyZwPP1xJGYt/OOM2W8dpLOBQ0St8ZL3BMHrFIjoH6FOUm24EVHPTvTjdImolWrowqSATp5q7MUm4aw6IrJcDZ9rw5oFzVr8av1e0QBbumsql063KVNpm+LaKSTjZ1Gnlm28WLTU27zmDqpPNaO4K4Il3juJxMZlK7SF/9eQCqSOn2VTtbGu3NVhloK0irYxdv+M4jjR0YoKoYXAbdKWtGexaFThZw04tFtTRiYNFB1qHFylj8Q8nqIUPuG+kFuudC7Wq1cZlJmpDNNqBkXalVMcUUt97o8iTb2zvs6w6U54W7Q5ON3cjFBY9b8LhiBx66rOmlvL6HccNC32HEQT2i8/3+zzSNDTKz7ccNIqRthwEAEthTxiVIVnyqv/bzs9N/fgqTpYy3YXYWfxO1jD9O9z6yXUgNTXQFn+SQFMzk6W3Ds1f7xXVq73KdBivBwiL9EgASqaM8VgwFMbK64Sf/LoyAEChqJ0ozEnHubYeBEIcPi+TUh0fu2Ou1BunL8RR396L/Ky0CIuVKntqKZtZXGfbjCK9B2+aae0GzDhPXqZPTmlUgj5rb50dYS2bUCvXrlGZag2r07DsLGW1/42b5mSUThHI7uwJ4CfLZkjHtCOZG4tpYoe2+JOEZGyV3BvklqRTwWiVq4d5xM8e6zFT3jVvMnwehrvmTZZmvKqMEsHPUZl+eQYtgOLcDEvSjBy1LfanLyuxJLWUf7R0urDQDTcQ9d/T9gTU8qYZX4B7H7PbqlJ6k3KysOnnRuNDz87wWzKav0EzctGKP4HYBW3d5uOn+5gkB4tdvxsVOlFKHTJC47Q0KKpOX2oQFnhDWy/OizqK8119qKo2FKAp55cXGkNHygutzJzCnHSpShYAth2qtyRVXrS9gQp121DFqKY0RuP+oGtQ308Dq9Qd4/Ym4BY6RN0tTp+j3UAjB634E8hgG6lRizxaaO8ac+C7KWmmDMVsV5Cf6ZNmtxrvhSVN98rZtl40dIhmaULSyVN0N0H9+ACkJmQ0Q+feheXweZjVsmFsXrolqfJSLW8aC7C7KahWr1v/uF3evDouUMoaIm4lNbYQDU5ZQoNF59OPHLTiH2KSLTWTtqRQOzPSSlSKXadIQB5hSN0sNH0WACrKCi1ZImbMluSmIT/L+NmUo4ikFuySmWNx3SVFVk8ZuwCq2raYulnsOj2qCtOt+8P2dQ7pqlKAOAYFJfFUztoNNHLQwd0hxk1qJu01Ewv8XoZAqD/1sSQnDQ0dfSjJSUNjR5+VArp8znhs2nMGy0XuPE0HzPJ70BUIWxIw2iOoQdZ0nxddAWMCFbWoR+emob69zxok/p5og/De0Ua8+M3rrM/5+rqdAICOHuOLKcpOw6nmbhRlpzmmQdqlE6q9bGjg17xpDDQpijLY3jFqSqnde35y08wLNjq7EPEsdtIpmyMHbfFfBDR10ambIyWa1MxoB5PQnvdyO+P+lgMArMlRDR19+AvRDO0vphZLfeIB2Xqk+flzJuYDMCpu1QEfK641Arorrp0svf9XX6vAoqnF+NXXKgDY942nqZMAUFacLUkTtz191F42NMg82OCpW9RCLztfeTTzbVXsjqH98xqKVvwXgCpQOrZPVVB2DGUjNVohSnP6b5xptJg2Jf2bdte0AEKeEW0GTEmV601iatRNs8fjWEMHAOBYQ0fEgA+aUeM0iSlddERN93sl3zatpgXk/vIUtwFYtQrXzu0S1+pQxYUzWHeMGjNwg/bPayja1XMB7IqinAaL0Jx82ipZ/bLtKm39HiAQ7m9KRlsJK2n0Er1iG9GrbCfUVtP0b8rwe9Dea0jquwdk5drWbdxUqhs7pfbBi6eNtlwngDyj2Mk10CoyeVq7+qwxheA8okKV9penqC4Nt/nnbvrGxxrVhTNod4yLoScqut+NhqIt/jjglK1Dp0ilidQWU5oIF7olb5o13pJ2mTaAUUhFZf/xwpKkAViznUJnb0ia8gTI7hiajrn2y7OMQOqXZ0Xk50dMZhKoFrldBazqwnn8jrlYNLXYaqlgolrodq4ft1Of4on6mYNdQ6zTNDWph1b8McJtts4XRS/2L84ahzyRFpmX6ZOUsTmExJTbDp2z5LbD9UZu/OHIUcVmp0rzxtB/g5D3LXmiYCov04/CbOPnwmx/RBYPraKlrRikEYGK9WnnK1dTFakLximH3q3CsrvhxCJFkpIMvvJUVuLJ8P2PBLSrJ0a4baRGlbjptunsDUmDRNpERospqWuFtvtVKSvOFm2Ls1FalI3cDB9Ki7Lh93gRCIXg9xjKm46TnFyUjdqWHqtClkInSi2ZOdZyV9z7zIeWX/8Hn5smZazYundcpipG65KwfV+Me27rlgaJRX//sUFb/FESbSM12pyMWtsUdXAHncxE2yCoOwPatnj1lgNo7gpg9ZYDUqYNABTnplvSyW2g5sqb0EwZt0FWtwM9orVm7d7n9nPdEuvsH23BXhy6liA2aIv/IohFIzUzB74rEAbE5K/znX3SMBJT4ZtWKu0BPy4/Q+rYSAeB0CpXWg37xxPnDT/8ifMAgPH5Gahv78X4fOeMJLuZr9SPrq7BziJLVA64289VG6cN9nhucWvB2g09TzV0LUFs0Bb/ReDUSI22IKCo7Yxpfx16E6Apkj0iZ96UdrNX1VRKWuVaWiRGBBZlRbg7aBOyypf3YvuRRlS+vDfi760Rw+prznfZfq6ao+42v56SDFav+l0OFW4tWJ2OqYklWvFfALeN1OwKkiQLH3J/HZpPnymCp5lpXmn4OwAsnj5Gkia0IyVgVLmakmbeqN0mqXvmdLMYgiIkhQacqStFGjKu3FRe/LDGuBF8WHPhL1eQDErNaWh5PNFdMxNLMhgdiUAr/gvg9Qkr3wdMFcp+6gDFV23dQUmaqH54Cs3CaRYB1+augOTHB+SAMLXQ1fz8+VOKjE6WU4qkz6GuIkBWIkWi8ZkpKSuuLROxgTLpcZrCGeFDJ1k+bi+qaHYJscapi2cykMqZPPEkGYyORKB9/ArUjw+0IhTsd+2keT3oDYWR5vUgEAojDHLntMkeqWvtkeSiqcXYfqQRi6YW413h2w2GuZVwGQhxqZ1x5dLpUlYPdb+Y6ZkhHtnJ8o/Hm7CnthVt3QFpihUg+0lpLxwVWoUrQZS76nOlBVI/f/WAtYZN311o+51Td1EsxwFeDDpbJDVJ1cI2bfErOLVYGC1a/47OS8cEMRPWlHSkH7Xkq5tE/xshKXZVwXTGKyBn64SFkg/zMEpECqYpx+Zn9kuinJ3aSzhlvdj1lHfKBJIsU5cVpnRSlIrdriHWW/ShdKWkqnshGUnVnZRW/HBffNUuFFN7TwBcWPampCMHaV/7gEjQN6VdLIBSlJMmSWrJm7n4fo8XmeJmY0qa9kmVs9r/hkJPfKcqV9ofxuk9FNcVpg43CLuteLQzZAfbIC0WpKp7QZM8aMUP9wNRWoT/vqU7KDVEAyB1rHTq3Ll5zxlJmtDOmhlCkZuSBn6lnHxFYdLAqlM1LIUqQkeFZKOcnSpj3SpTWhWsKmY7SzzabBg3SjfeFrkO1GoSTcr6+O0aqanQ3vheT39f++x0o+98drqhtGg65s2ir70pKX6fB73BsCVNppTkoLalB1NKcnBCtEU20zm7RZ+c7r6Qvd8dsFXOTn5MdUC43etsm5vFoDKWNjFTfe12edtu87ntGqM5Kd1459brXHRNokmIxc8Y+zxj7GPG2FHGWGUi1mBn5ecI69OUtDf+PQuMcX/3LCiXmpsBckVudZMRgK1u6rI6bJpy5XVGpszK68qk3H+a2aKmc9KGZvR11FIG7F0rTpa3U+tkN8eIRWVsLPriu3XhuNmF6Nx6zUhnyBU/Y8wL4D8AfAHADABfZYy5bzMYJW5bLDzwRUPJPvBFY0nUbbNlXx2CYY4t++oiAqY0X58GK8eIgKspaZO1QlFwVZiVJqVcqnn7NNXwsbc/QXNXAI+9/UmE0nXre0+G4CJdg9PYQ7drjaUS1rn1mpFOIlw9nwJwlHN+HAAYY88DuBlAbNon2uC2xcKarQfR3hvCmq0Hcee8Uslts1kMAznT0o3Vt1yJR984bAVMaW/97Ayj9052hh/ZnKO2udvqOS+lY4rdRFt3ED0B4w50trUbjR3GkPI/fNIAAPjmb6vQ0NGHQ3Vt1vSs+vZeR5cBdVd8/opxUjsC+hyAQbk1ok2DdLsGt8dPRFqedtlohiuJUPwTAJwiv9cCiMvV43YgCqVduG5M+d6xRktmp3nR3htCdpo3Ivc802/4/DP9XswvL8T+062YX16Is2092FPbao0OpNWw1maDGe4cUzkDkH6moxL9HoZAmMPvYVi79ZDVPbNy6XRJOVNFSLtp3jmvdEAl6datYb52oM+5GNyugb7OyaceTyWs++RoRhqJ8PEPlOwSERlkjN3HGKtijFU1NDRE9UFO2TrUv54rArS56V4puwYAGtr7LElTNtXcc5pts/79agTDHOvfr47I4vnxspkoyPLjx8tmokSka5bkpEnuHKcq0pnj8yz51LvHEQxzPPXucQCyu8O2xQJkV0Y0bg271M6Lwe0a6HOJ8qnbfW4yuMw0mmhIhMVfC2AS+X0igDPqizjnTwJ4EgAqKiqiShlxytah3StNN0tPIIQ+kUnT0G64W0py09DQ3oeS3DQ0dwYQDHN4PQytQuGb8oWqGgTDHC9U1UiDyf1ehnCIwytM/TvnlVrVqS9WnbJ64Tu5PujoxT21rQAMmZtu7ECyRHCXdsqk3SYdM4FcIlnUUYz+U4nGik5UlaXd5+pqX81wJRGK/0MAUxlj5QBOA7gDwJ3x+CC3rZLpEJSAyM7pFQ9+74bL8egbh/G9Gy7Hg6/sB2BsWerbTV+7IZu7gpakirqsSAxHKcqO+NzbKiZJQ0xMpW1a+qaimVKUjSMNnZhSlI1xozKtlg/vHTWUTpdI96T5+vtOt1runXV3XyMdjxKNAo7F3NpolGaytXZO1XJ/zfBnyF09nPMggO8CeAPAIQAvcs4PDPU6KMtnj7ckbZsMyH1k/MJq93tZRJEWLeDyeYyv1efxSF0yAdk9QBW1U1fLtbfONo5x62zp8ZvEuk1J3TG026RTpgx1Y7jNBHKbPeTESMiISdVyf83wJyF5/JzzrZzzyzjnl3DO/zERa6CcJwNR5pUbnS1NaWbYNHb0St0q1XROOoy8VPTvKS3IlOfTQvYXS10pifvEyZdN30PrBQBZEdGZtir0+FQBO33uYFsnqCSD0tQ+ek2qkrKVuzT9krJDuB9MeV4o/vMdvVI74m9/ZioefeMwvv2ZqQCAGtGEraapExvvu3bA+bRqRs3jIif/9f11kttHdfVQt0hda4+V728Wbl1s1SxdA3VjOLku7J4bzu4O7aPXpCopo/hp6wVAVvzmxb/9SCPSSUsFwGjTYEpq1avpnF6PBwiF4PV4JGV6e8UkrNtxIiKjBpCDsdTtc+e8UkkRUeX69XV/BGAMTvntvfOj8rVH0wZhsK0TkpHhfNPSaAZDyjRpo60XAGD5nPGSNKEtFQAlr5/2pVF61KgDzU2cMmqosnfyeVO3yIQCY6TihIKsCDdSPBmJbpFkcDdpNIkgZRS/ilkV+4dPGqxdgIfJ06UAZYIW8cOr7RLsFLyTQnfbJ4dCg8Vrth5Ec1cAa7ZeXNGzXbsEJ+Wuc9k1mpFDyrh6VOioQ5Mwh2OOOs33V10c1G1DiYUrRE25NI9HJ3NdDHY1A/Rndc06l12jGTmkrOKnTC0x8uSnlmRH5KhT+Vf/uRNAf9dMSjTjA90qTbvXLZ42GicaO7F42mhXn2dCb1JqIFn92UTnsms0I4eUdfVQjjZ0WtKpjS8dgq66OOzGBzq5QuxGGzq9jvJC1SlRLXwq4j1O0NjCYP3c0XbTTGX0d6RJNFrxQ559u3FnDeb+7E1s3BlZSEX9+KrPm3bkpKivsyuEcsqHt1POtEhLPXY0N5JY9MLRPeovjP6ONIkmZV09WX4PugJhS5qs3nIQXYEQVm85GOGyUf349Geah2/XJROwd9u47UJJn6N9f9RjA/b++ni6bbTr58Lo70iTaFJW8dPBKZMKMnGquRuTCjJRL5qzhQYoiqJ+/LwMn5R3T90n6987gSP1Hahr7cFbf/dpWwVPocp4xdM7bZX2z7ccxJ5TLWjrCWLTdxZIz7ltdWx3Y4lFIHo45/UPFfo70iSalHX10F4737r+UhRk+fGt6y+V2i1EQHL3VXcJbaVwtrUbACxJGfToP4cZt25bHWtXg0aT2qSM4i/JTZPkzaJw6+Y54yVr3a4hGiDPl1UVKz0GnZGr4iaw56S0YzHjdiQ0SNNoNNGTMq6eX3+tQkrTPHCmzZJm58wLKUKnLbra/8YupXOwee/aHaPRaAZLylj8anuD081dlnTKrnGbeue2VbG2tkcuOk1TM1xIGcW/Zush0d7gEACgMCddkiZSq2TI/nCnVE+7Hvcqsehlr0lOdOxEM1xIGVdPfqYP7b1B5Gcaf3Km3ytJE7VLptPQcoo6jJxKO3S7g5GFTtPUDBdSRvEX52ZY820BWL3srZ72AvXipf7wH3xumjXHVsWux70TdooimnGImsSjYyea4QLjFznEIxFUVFTwqqqqi35fWeVr1s+P/OWVltK+c15pUitXM49/0dRirUg0Gk3UMMZ2cc4r1MdTxuJXXTjJbJ1pl4FGo4knKaP4h5MyTeabkkajGf6MaMU/Ojcd9e29GJ2brpWpRqPRCEZ0Omd3X1CSGo1Goxnhit+pdYJGo9GkKiPa1aO2LdZoNBrNCLf4NRqNRhOJVvwajUaTYmjFr9FoNCmGVvwajUaTYmjFr9FoNCmGVvwajUaTYmjFr9FoNCnGsOjOyRhrAHAyyrcXA2iM4XKGK/p76Ed/Fwb6ezAYyd/DZM55ifrgsFD8g4ExVjVQW9JUQ38P/ejvwkB/Dwap+D1oV49Go9GkGFrxazQaTYqRCor/yUQvIEnQ30M/+rsw0N+DQcp9DyPex6/RaDQamVSw+DUajUZD0Ipfo9FoUowRrfgZY59njH3MGDvKGKtM9HqGCsbYJMbY7xljhxhjBxhjq8TjhYyxtxhjR4QsSPRahwLGmJcxtpsxtkX8nnLfA2NsFGPsJcbYYXFeXJui38P3xDWxnzH2X4yxjFT8Hkas4meMeQH8B4AvAJgB4KuMsVQZxRUE8Pec8+kA5gP4jvjbKwFs45xPBbBN/J4KrAJwiPyeit/D4wBe55xPAzAbxveRUt8DY2wCgL8FUME5vwKAF8AdSLHvARjBih/ApwAc5Zwf55z3AXgewM0JXtOQwDmv45z/WfzcDuMinwDj739GvOwZALckZIFDCGNsIoAvAlhHHk6p74ExlgdgEYCnAYBz3sc5b0GKfQ8CH4BMxpgPQBaAM0jB72EkK/4JAE6R32vFYykFY6wMwFwAOwGM4ZzXAcbNAcDoBC5tqHgMwD8ACJPHUu17mAKgAcB64fJaxxjLRop9D5zz0wB+CaAGQB2AVs75m0ix7wEY2YqfDfBYSuWuMsZyALwM4H7OeVui1zPUMMaWAajnnO9K9FoSjA/AVQB+xTmfC6ATKeDOUBG++5sBlAMYDyCbMfa1xK4qMYxkxV8LYBL5fSKMbV1KwBjzw1D6GzjnvxMPn2OMjRPPjwNQn6j1DRELACxnjFXDcPV9ljH2HFLve6gFUMs53yl+fwnGjSDVvocbAJzgnDdwzgMAfgfgOqTe9zCiFf+HAKYyxsoZY2kwgjibE7ymIYExxmD4cw9xzv+ZPLUZwN3i57sBvDLUaxtKOOc/4pxP5JyXwfj//1/O+deQet/DWQCnGGOXi4cWAziIFPseYLh45jPGssQ1shhG/CvVvoeRXbnLGFsKw8frBfCfnPN/TOyKhgbG2EIA7wLYh37f9gMw/PwvAiiFcRF8hXN+PiGLHGIYY9cD+D7nfBljrAgp9j0wxubACHCnATgOYCUMwy/VvoeHAdwOI/NtN4B7AeQg1b6Hkaz4NRqNRhPJSHb1aDQajWYAtOLXaDSaFEMrfo1Go0kxtOLXaDSaFEMrfo1Go0kxtOLXaOIEY2yOSCm+2Pe9wxhLqeHfmqFFK36NJn7MAXDRil+jiTda8WtSBsbY1xhjf2KM7WGM/YYxNo8xtlf0ZM8WfdqvYIxdzxjbzhj7f4yxg4yxXzPGPOIYNzLGPmCM/Zkx9t+iHxIYY9cwxt5njH0kPiMfwM8A3C4+73bxGf/JGPtQNEu7Wbw3kzH2vFjLCwAyE/YlaVICXcClSQkYY9MB/BOAL3HOA4yxJwD8EcBlADJgKNtazvkaUeX7Oow5DifFz78B8A6M/i5f4Jx3MsZ+CCAdwFoAhwHczjn/ULRB7gLwNRi9378r1vAIgIOc8+cYY6MA/AlG59RvALiCc/7XjLFZAP4MYD7nvCrOX4smRfElegEazRCxGMDVAD402rQgE0Yzrp/B6OvUA2NIh8mfOOfHAYAx9l8AForXzADwnjhGGoAPAFwOoI5z/iEAmJ1QxWsoN8JoGvd98XsGjDYBiwD8q3jvXsbY3lj90RrNQGjFr0kVGIBnOOc/kh5kbCyMXi1+GIq4UzylboW5OMZbnPOvKseYNcDr7dbwZc75x8r7B/o8jSZuaB+/JlXYBuBWxthowJq7OxnAkwB+AmADgF+Q139KdHb1wGjqtQOGa2gBY+xScYwsxthlMNw84xlj14jHc8WEp3YAueSYbwD4P6IzJBhjc8Xj2wHcJR67AsCsmP/1Gg1B+/g1KQNj7HYAP4Jh8ARgtN+dwzn/kpjR/L54PgzgpzCmVl0JQzF/m3MeZox9FsYNIl0c9sec881C6f8bDBdSN4ze72kwlL0fwBoY7X8fg9EDngGoFt1CMwGsh+FG2gPgUgB/q338mnihFb9Go0BbOCd4KRpNXNCuHo1Go0kxtMWv0Wg0KYa2+DUajSbF0Ipfo9FoUgyt+DUajSbF0Ipfo9FoUgyt+DUajSbF+P8BRdlbH1AMOvwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model = Pipeline([('attribs_adder', ColumnDroper(['artists', 'id', 'name', 'release_date'])), # drops text inputs\n", " ('std_scaler', StandardScaler()), # scales data so it is consistant across parameters\n", " ('reg', LinearSVR())\n", " ])\n", "train_and_vis_model(model, x_train, y_train, x_train_v, y_train_v, x_valid, y_valid, name='svr')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "DNN" ] }, { "cell_type": "code", "execution_count": 191, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 268.5053 - val_loss: 214.0056\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 799us/step - loss: 201.9977 - val_loss: 230.7723\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 194.2946 - val_loss: 191.0064\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 3s 963us/step - loss: 186.9409 - val_loss: 192.6567\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 184.9141 - val_loss: 186.6240\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 185.4256 - val_loss: 217.4153\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 183.2480 - val_loss: 183.9954\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 182.6634 - val_loss: 195.3992\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 184.2679 - val_loss: 187.1319\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 181.3701 - val_loss: 192.9539\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 182.1882 - val_loss: 182.8108\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 180.6733 - val_loss: 182.0006\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 178.2755 - val_loss: 183.7970\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 176.1810 - val_loss: 182.4324\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 177.2439 - val_loss: 191.7303\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 175.3762 - val_loss: 181.1240\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 174.5472 - val_loss: 183.0036\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 774us/step - loss: 174.3164 - val_loss: 197.3319\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 175.7538 - val_loss: 185.9117\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 176.0127 - val_loss: 188.9454\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 175.6074 - val_loss: 179.8903\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 173.7360 - val_loss: 193.3974\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 174.2437 - val_loss: 186.0600\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 170.6757 - val_loss: 178.3316\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 171.5715 - val_loss: 183.4106\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 171.6685 - val_loss: 187.6023\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 173.0641 - val_loss: 178.6063\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 171.7878 - val_loss: 180.7239\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 171.5942 - val_loss: 179.8827\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 174.4075 - val_loss: 188.6239\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 170.5947 - val_loss: 178.4017\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 3s 858us/step - loss: 172.1028 - val_loss: 185.7219\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 169.6804 - val_loss: 180.9576\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 170.4834 - val_loss: 181.4182\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 171.3891 - val_loss: 179.9903\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 773us/step - loss: 170.0883 - val_loss: 185.3131\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 762us/step - loss: 168.5136 - val_loss: 176.3581\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 790us/step - loss: 170.9642 - val_loss: 180.9141\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 171.7031 - val_loss: 186.8844\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 168.4241 - val_loss: 179.2618\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 170.5717 - val_loss: 180.2281\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 3s 970us/step - loss: 168.4069 - val_loss: 178.5975\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 788us/step - loss: 167.6267 - val_loss: 179.6414\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 3s 863us/step - loss: 169.6155 - val_loss: 180.5791\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 168.2596 - val_loss: 186.2692\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 779us/step - loss: 170.3816 - val_loss: 177.8900\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 3s 832us/step - loss: 171.0990 - val_loss: 179.7686\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 167.7964 - val_loss: 183.7141\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 3s 828us/step - loss: 166.6668 - val_loss: 176.2485\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 168.5570 - val_loss: 178.2888\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 806us/step - loss: 168.2539 - val_loss: 179.7077\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 807us/step - loss: 167.8168 - val_loss: 190.9170\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 3s 839us/step - loss: 169.3217 - val_loss: 177.2175\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 169.0177 - val_loss: 174.8593\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 168.4526 - val_loss: 177.4994\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 166.9629 - val_loss: 175.8582\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 168.4185 - val_loss: 173.3032\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 787us/step - loss: 166.2996 - val_loss: 179.6841\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 779us/step - loss: 169.0986 - val_loss: 181.2408\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 167.3179 - val_loss: 180.4496\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 168.0271 - val_loss: 176.2262\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 167.1796 - val_loss: 177.9328\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 168.1001 - val_loss: 174.0803\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 166.9694 - val_loss: 179.1957\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 754us/step - loss: 169.5166 - val_loss: 178.3961\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 168.0403 - val_loss: 183.8948\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 165.2271 - val_loss: 177.1111\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 165.4734 - val_loss: 180.9416\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 166.7740 - val_loss: 200.4919\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 165.9980 - val_loss: 174.6598\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 165.7586 - val_loss: 176.8995\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 166.5434 - val_loss: 180.7424\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 165.5124 - val_loss: 181.7362\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 167.5089 - val_loss: 182.9187\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 166.9324 - val_loss: 175.3643\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 165.9340 - val_loss: 178.1247\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 161.6975 - val_loss: 185.0328\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 168.4247 - val_loss: 180.1459\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 167.0083 - val_loss: 182.7520\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 166.9092 - val_loss: 194.2298\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 165.2272 - val_loss: 177.5706\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 167.7325 - val_loss: 183.3525\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.6968 - val_loss: 177.7311\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 163.2018 - val_loss: 176.0008\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 779us/step - loss: 165.2039 - val_loss: 176.4149\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 799us/step - loss: 168.2270 - val_loss: 186.4269\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 167.5228 - val_loss: 178.4254\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 164.9627 - val_loss: 189.0359\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 165.3581 - val_loss: 179.8752\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 164.3687 - val_loss: 176.3165\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 166.7900 - val_loss: 181.9074\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 164.6160 - val_loss: 175.6587\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 164.4631 - val_loss: 184.7847\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 167.6002 - val_loss: 183.8141\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 166.1944 - val_loss: 175.9538\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 166.8227 - val_loss: 177.7425\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 164.8938 - val_loss: 177.4818\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 165.2728 - val_loss: 182.7082\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 165.0115 - val_loss: 177.2888\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 164.1520 - val_loss: 176.6978\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 168.0069 - val_loss: 176.8813\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 165.1463 - val_loss: 182.8840\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 162.1448 - val_loss: 178.7564\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 164.6521 - val_loss: 185.5315\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 166.0366 - val_loss: 177.2963\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 165.4083 - val_loss: 174.7040\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 165.6738 - val_loss: 175.1236\n" ] } ], "source": [ "data_pipeline = Pipeline([('attribs_adder', ColumnDroper(['artists', 'id', 'name', 'release_date'])), # drops text inputs\n", " ('std_scaler', StandardScaler()), # scales data so it is consistant across parameters\n", " ])\n", "# scale data for ANN\n", "data_pipeline.fit(x_train_v)\n", "x_train_v_scaled = data_pipeline.transform(x_train_v)\n", "x_valid_scaled = data_pipeline.transform(x_valid)\n", "\n", "# make ANN\n", "model = keras.models.Sequential([\n", " Dense(30, activation='relu', input_shape=x_train_v_scaled.shape[1:]), \n", " Dense(30, activation='relu'), \n", " Dense(1)\n", "])\n", "optimizer = keras.optimizers.SGD(lr=1e-3)\n", "model.compile(loss='mean_squared_error', optimizer=optimizer)\n", "history = model.fit(x_train_v_scaled, \n", " y_train_v, \n", " epochs=1000, \n", " validation_data=(x_valid_scaled, y_valid),\n", " callbacks = [EarlyStopping(patience=50,restore_best_weights=True)])" ] }, { "cell_type": "code", "execution_count": 192, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAEvCAYAAACQdGKzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABueklEQVR4nO2dd3xb5b3/34+G94pjx0nskL33IATCCNCSUsroBgqlhZYyWqC/3g466O1t6W0vLbeLMi5QCmWWQqFAKVBwQiCQkEX2Xnac2I73tqXn98ejYx3LkiXZsi3L3/fr5Zeko6OjR8fS+Tzf+SitNYIgCIIgxAeOwR6AIAiCIAh+RJgFQRAEIY4QYRYEQRCEOEKEWRAEQRDiCBFmQRAEQYgjRJgFQRAEIY5wDfYAAPLy8vSECRNieszGxkbS09NjesxERs5X9Mg5iw45X9Ej5yw6htr52rBhQ6XWOj9we1wI84QJE/jggw9ieszi4mJWrFgR02MmMnK+okfOWXTI+YoeOWfRMdTOl1LqcLDt4soWBEEQhDhChFkQBEEQ4ggRZkEQBEGII+IixiwIgiAMLdrb2ykpKaGlpWWwh9JJdnY2O3fuHOxhdCMlJYWioiLcbndE+4swC4IgCFFTUlJCZmYmEyZMQCk12MMBoL6+nszMzMEeRhe01pw8eZKSkhImTpwY0WvElS0IgiBETUtLCyNHjowbUY5XlFKMHDkyKs+CCLMgCILQK0SUIyPa8yTCLAiCIAxJMjIyBnsI/YIIsyAIgiDEEWGFWSk1Tin1llJqp1Jqu1LqVt/2nyqlPlRKbVZKvaaUGmt7ze1KqX1Kqd1KqZX9+QHC4vXA/rcGdQiCIAhC/6G15tvf/jannXYac+fO5emnnwagrKyMs88+mwULFjBnzhzefvttPB4PX/rSl5gzZw5z587lf//3fwd59N2JJCu7A/iW1nqjUioT2KCUeh24S2v9IwCl1C3AHcANSqlZwOXAbGAs8IZSaprW2tM/HyEM+96AJz4HN70Ho2YOyhAEQRCE/uO5555j8+bNvPvuu7S2tnLqqady9tln88QTT7By5Up+8IMf4PF4aGpqYvPmzZSWlrJt2zYAampqBnfwQQgrzFrrMqDMd79eKbUTKNRa77Dtlg5o3/1Lgae01q3AQaXUPmApsDamI4+Uxgpz21o/KG8vCIKQ6PzkH9vZcawupsecNTaLH188O6J916xZwxVXXIHT6aSgoIBzzjmH9evXc+qpp3LttdfS3t7OZZddxoIFC5g0aRIHDhzgG9/4BhdddBEXXHBBTMcdC6KKMSulJgALgfd9j+9USh0FvoCxmAEKgaO2l5X4tg0OLbXmtqN10IYgCIIg9B9a66Dbzz77bFavXk1hYSFXX301jz76KCNGjGDLli2sWLGCe+65h6985SsDPNrwqFAfqNuOSmUAq4A7tdbPBTx3O5Citf6xUuoeYK3W+i++5x4CXtFa/y3gNdcD1wMUFBQsfuqpp/r8Yew0NDSQkZHBhINPMuHwU2yZ959U5y6M6XskEtb5EiJHzll0yPmKnng+Z9nZ2UyZMmVQxzBmzBjKysp48cUXefjhh3nmmWeoq6vjnHPO4c0336S1tZWxY8ficrm45557OHLkCN/5zndwu91kZWXx4YcfcuONN/LOO+/0+1j37dtHbW1tl23nnnvuBq31ksB9I+r8pZRyA38DHg8UZR9PAC8DP8ZYyONszxUBxwJfoLV+AHgAYMmSJTrWS3V1Lv/V/CochvmzZ8D02L5HIjHUlkuLB+ScRYecr+iJ53O2c+fOuOiylZmZyZVXXsnmzZs566yzcDqd3HXXXUyZMoU///nP3HXXXbjdbjIyMnj00Uepra3ly1/+Ml6vF4Bf/vKXA/I5UlJSWLgwMuMwrDArUxn9ELBTa323bftUrfVe38NLgF2++y8CTyil7sYkf00F1kU+/BjT6ot7eNoGbQiCIAhC7GloaABMA4+77rqLO+64o4vIXnPNNVxzzTXdXrdx48YBG2NviMRiXg5cDWxVSm32bfs+cJ1SajrgBQ4DNwBorbcrpZ4BdmAyum8etIxssMWYRZgFQRCE+CeSrOw1QLB+Yq/08Jo7gTv7MK7YYQmzR5K/BEEQhPgn8Tt/dQqzWMyCIAhC/JP4wmzFmMWVLQiCIAwBEl+YxWIWBEEQhhCJLcxaQ4uVlS0xZkEQBCH+SWxhbmsEKyHc0z64YxEEQRCECEhsYW619W6VlpyCIAjDmp66qB06dIg5c+YM4GhCk9jC3GJrfyYWsyAIgjAESHBhtlnMEmMWBEFIKL773e/yxz/+sfPxz3/+c37yk59w/vnns2jRIubOncsLL7wQ9XFbWlr48pe/zNy5c1m4cCFvvfUWANu3b2fp0qUsWLCAefPmsXfvXhobG7nooouYP38+c+bM6VwLui9E1Ct7yNLFYpasbEEQhH7hn9+D41tje8zRc+HCX/S4y+WXX85tt93GTTfdBMDzzz/Pa6+9xje/+U2ysrKorKxk2bJlXHLJJZju0pFxzz33ALB161Z27drFBRdcwJ49e7jvvvu49dZb+cIXvkBbWxsej4dXXnmFsWPH8vLLLwN0W6iiNyScxXy8toUvPryOHSc9ATFmEWZBEIREYuHChZSXl3Ps2DG2bNlCTk4OY8aM4fvf/z7z5s3jIx/5CKWlpZw4cSKq465Zs4arr74agBkzZjB+/Hj27NnD6aefzs9//nN++ctfcvjwYVJTU5k7dy5vvPEG3/3ud3n77bfJzs7u8+dKOIu5w+tl9Z4KpsxJgpYaszE5SyxmQRCE/iKMZduffOYzn+HZZ5/l+PHjfPrTn+bxxx+noqKCDRs24Ha7mTBhAi0tLVEdM9RyyFdeeSWnnXYaL7/8MitXruTBBx/kvPPOY8OGDbzyyivcfvvtXHDBBdxxxx19+kwJJ8wpbicAbR78Meb0PBFmQRCEBOTyyy/nq1/9KpWVlbz88su88sorjBo1CrfbzVtvvcXhw4ejPubZZ5/N448/znnnnceePXs4cuQI06dP58CBA0yaNIlbbrmFAwcO8OGHHzJjxgxyc3O56qqryMjI4JFHHunzZ0pcYfZqE2N2uMViFgRBSFBmz55NfX09hYWFjB49mi984QtcfPHFLFmyhAULFjBjxoyoj3nTTTdxww03MHfuXFwuF4888gjJyck8/fTT/OUvf8HtdjN69GjuuOMO1q9fz7e//W0cDgdut5t77723z58p8YTZZcLm7R5MjDklG1zJUscsCIKQoGzdahLP6uvrycvLY+3atUH3s9ZvDsaECRPYtm0bACkpKUEt39tvv53bb7+9y7aVK1eycuXKXo48OAmX/OVyOnA7lc+VXQspWeBMEotZEARBGBIknMUMkOJy+lzZPovZmQTtTYM9LEEQBGGQ2bp1a2fGtUVycjLvv//+II2oOwkpzMluJ+0ej7GYk7N8rmyxmAVBEIY7c+fOZfPmzYM9jB5JOFc2QIrbQZsXf4xZXNmCIAgxJ1RZkdCVaM9TggqzkzaPDogxS/KXIAhCrEhJSeHkyZMizmHQWnPy5ElSUlIifk1CurJT3U7a2vDFmHNMoxFZxEIQBCFmFBUVUVJSQkVFxWAPpZOWlpaoBHCgSElJoaioKOL9E1KYU9wOmpvaob3RxJjbm6RcShAEIYa43W4mTpw42MPoQnFxMQsXLhzsYfSZhHVluz3NvgfZ4EwWi1kQBEEYEiSkMCe7nCR5G82DlCxwuiXGLAiCIAwJEtaV3e7x1S1bnb8kK1sQBEEYAiSkxZzidpKifRZzsi8rW3vB0zG4AxMEQRCEMCSkMKe6naTYLWZnkrkvVrMgCIIQ5ySkMKe4HaRqe4zZEmaJMwuCIAjxTYLGmJ14tC0r22UJs2RmC4IgCPFNwgqzUwXEmEFqmQVBEIS4J6wrWyk1Tin1llJqp1Jqu1LqVt/2u5RSu5RSHyqlnldK5dhec7tSap9SardSKrYLVUZAsstBJs3opAxwOE0dM0iMWRAEQYh7IokxdwDf0lrPBJYBNyulZgGvA3O01vOAPcDtAL7nLgdmAx8D/qiUcvbH4EOR4naSRSPepCyzwek2tyLMgiAIQpwTVpi11mVa642++/XATqBQa/2a1tqqP3oPsBqBXgo8pbVu1VofBPYBS2M/9NCkup1kqmY8yT5hdvksZnFlC4IgCHFOVFnZSqkJwEIgcEXpa4F/+u4XAkdtz5X4tg0YlsXc4c40Gzpd2ZL8JQiCIMQ3ESd/KaUygL8Bt2mt62zbf4Bxdz9ubQry8m7rgimlrgeuBygoKKC4uDjyUYdhb3kH56smKptSOVBcTE71DhYAmza8T+3+xpi9TyLR0NAQ0//BcEDOWXTI+YoeOWfRkSjnKyJhVkq5MaL8uNb6Odv2a4BPAOdr/6KcJcA428uLgGOBx9RaPwA8ALBkyRK9YsWK3ow/KO59lWRtayJt5DxWrFgBR1JgCyycOwsmx+59Eoni4mJi+T8YDsg5iw45X9Ej5yw6EuV8RZKVrYCHgJ1a67tt2z8GfBe4RGvdZHvJi8DlSqlkpdREYCqwLrbD7pkUt4NM1USry3Jl+5K/OiT5SxAEQYhvIrGYlwNXA1uVUpt9274P/A5IBl432s17WusbtNbblVLPADswLu6btdaemI+8B5KdDrJootqRYTZIuZQgCIIwRAgrzFrrNQSPG7/Sw2vuBO7sw7j6RJqjDZfy0uKyhFl6ZQuCIAhDg4TslZ3qbQCgWaWZDS4RZkEQBGFokJjC3GGEudERYDFLHbMgCIIQ5ySkMCd7fMKMz2KWOmZBEARhiJCQwpzks5jrsSxmqyWnWMyCIAhCfJOQwuxsM/1P6kg1G1y9zMrWGu4/Gz78awxHJwiCIAihSUhhpqUWgFrtc2U7elnH7O2Asi1wYlsMBycIgiAIoUloYa7TPovZ4TDiHK3F3N5sbiVpTBAEQRggElOYW+tox0l9h9u/zZkUvTBbgiyxaUEQBGGASExhbqmlgTRaOrz+ba6k6C3fDrGYBUEQhIElQYW5jkbSaWm3dQJ1JvfeYu5oid3YBEEQBKEHElSYa2lSabS02yzm3riyJcYsCIIgDDCJKcytdTSpNJrtFrOrDzFmEWZBEARhgEhMYW6ppdmRFuDK7k2MuaXrrSAIgiD0MwkqzHU0O9Jp7Qh0ZUfZkrNTmMViFgRBEAaGBBXmWlqDWczRlj2JxSwIgiAMMIknzJ4OaG+kxRmQle1Kjt5ibheLWRAEQRhYEk+YW02f7HZHYFa2u/cxZmkwIgiCIAwQiSfMvnacbc50mts9aK3N9l7VMYvFLAiCIAwsiSfMaSPhs49wOHUWgD8BzNmLXtkSYxYEQRAGmMQT5pQsmP1JGpILAGi13NmuXljMEmMWBEEQBpjEE2YfSb5P1tLhSwBzJkW/7KO4sgVBEIQBJnGF2WluOzOze7W6lE+YtcdkewuCIAhCP5Owwux2KgB/ZnZf6pgD7wuCIAhCP5Gwwmy5sjv7Zbv60PkLxJ0tCIIgDAiJK8ydFrPlyk6OXlzbbcIstcyCIAjCAJC4wmwlf9ljzNoDXk/oFwUirmxBEARhgElYYXZ3Jn9Z5VJJ5jaaBDBxZQuCIAgDTMIKc5LDuLJb7eVSEJ3A2vcVi1kQBEEYABJXmIOVS0F0CWDtzYAReLGYBUEQhIEgrDArpcYppd5SSu1USm1XSt3q2/5Z32OvUmpJwGtuV0rtU0rtVkqt7K/B94SV/NXcFijMUVrMKVn++4IgCILQz7gi2KcD+JbWeqNSKhPYoJR6HdgGfAq4376zUmoWcDkwGxgLvKGUmqa1jiLrqu/4O3/ZWnJC9DHmlByzMIYIsyAIgjAAhLWYtdZlWuuNvvv1wE6gUGu9U2u9O8hLLgWe0lq3aq0PAvuApbEcdCS4u7my3eY2mracHS2Qku2/LwiCIAj9TFQxZqXUBGAh8H4PuxUCR22PS3zbBhSHUiQ5HbbOX721mC1hFotZEARB6H8icWUDoJTKAP4G3Ka1rutp1yDbdJDjXQ9cD1BQUEBxcXGkQ4mIhoYGnEqx/9BhiouPk3tyF/OADevXUp9VFdExzmxpoLqhnXxg1/YtHK/Kj+kY44mGhoaY/w8SHTln0SHnK3rknEVHopyviIRZKeXGiPLjWuvnwuxeAoyzPS4CjgXupLV+AHgAYMmSJXrFihWRDCViiouLyUjtIK9gFCtWzIMDwFZYPH8ujD8jsoOs7iB/3BSofI8ZUyYw49TYjjGeKC4uJtb/g0RHzll0yPmKHjln0ZEo5yuSrGwFPATs1FrfHcExXwQuV0olK6UmAlOBdX0bZu9IdTu7Z2VH6pL2esDbDsniyhYEQRAGjkgs5uXA1cBWpdRm37bvA8nA74F84GWl1Gat9Uqt9Xal1DPADkxG980DnZFtkeIOFmOOsI7ZSvaS5C9BEARhAAkrzFrrNQSPGwM8H+I1dwJ39mFcMSHF7aSlIyArO9I65vZAYRaLWRAEQeh/ErbzF0CKy+kvl4q2jtmykN0pvVuZShAEQRB6QUILc3IXV7YVY45SmF2p4EoRYRYEQRAGhIQW5hS3M0iv7AgFtlOYk83KVBJjFgRBEAaAhBbmVHcwV3aUyV9usZgFQRCEgSOhhblrVrbVkjPK5C9XsvmLZvELQRAEQeglCS7M9qzsXiZ/uVLEYhYEQRAGjMQX5m4x5l4Is1NizIIgCMLAkNjC7DKubK01OBzgcInFLAiCIMQ1CS3Myb61H1s7bCVTkQqstZ87xcSYRZgFQRCEASChhTnVEmZ7LXOkWdntzea202IWV7YgCILQ/yS0MKf4hLnZHmeOuI7Zt59LLGZBEARh4EhwYTYfr0stc8R1zHaLOVksZkEQBGFASHBhNhZzl4Usoo0xW3XMYjELgiAIA0CCC7NlMduWfow0K7u92VjLSplbaTAiCIIgDACJLcwun8XcbrOYIy6XavW38RSLWRAEQRggEluYkwKE2RWFxdzRbFaWAt+yjy2gdT+MUhAEQRD8JLYwd7OYk6NY9tFuMaeA9oK3ox9GKQiCIAh+EluYu8WYo3Flt5iVpcAv0OLOFgRBEPqZBBfmYK7sKFaXslvMIMIsCIIg9DvDS5id7ihc2S3+GLMryb9NEARBEPqRBBdmnyu7oxflUh3BLGYRZkEQBKF/SWxh7pb8lRSlMPsEWWLMgiAIwgCR0MLscCiSXA5/r2xXFMLc3mJWlgK/QEuTEUEQBKGfSWhhBrMmc5fVpSJuySkWsyAIgjDwJL4wu50BruxIF7GwCbMz2b9NEARBEPqRYSjMvbGYpVxKEARBGBiGgTA7/A1GXMmme5fXG/6FHa22GLO4sgVBEISBIeGFOdXt7LrsI4RPANNaLGZBEARhUEh4YU52O2lus/XKhvDC3LkWsyXM0mBEEARBGBjCCrNSapxS6i2l1E6l1Hal1K2+7blKqdeVUnt9tyNsr7ldKbVPKbVbKbWyPz9AOFLcTluDEZ/AhhXmZnPbzWIWYRaEIUdrg1lfXRCGCJFYzB3At7TWM4FlwM1KqVnA94B/a62nAv/2Pcb33OXAbOBjwB+VUs7+GHwkmHIpWx0zRGExJ3e9jbQGWhCE+OGZq+Gl/zfYoxCEiAkrzFrrMq31Rt/9emAnUAhcCvzZt9ufgct89y8FntJat2qtDwL7gKUxHnfEdM3KjjCJy5pdd64uJRazIAxZqg9DXclgj0IQIsYVzc5KqQnAQuB9oEBrXQZGvJVSo3y7FQLv2V5W4tsWeKzrgesBCgoKKC4ujnbsPdLQ0EBxcTHVla3UNngoLi5m1Im9zALWrX2HpvTDIV+b1niEpcD2PfupqCkGrVkBHNq3m0Oe2I4zXrDOlxA5cs6iY7DO1+kNVbR0uNg0BP9X8h2LjkQ5XxELs1IqA/gbcJvWuk4pFXLXINt0tw1aPwA8ALBkyRK9YsWKSIcSEcXFxaxYsYK3arextfoYK1asgJ31sBOWLp4Po+eGfvGxzbAeZs9bDDN841qTzISi0UyI8TjjBet8CZEj5yw6Bu18vdNKcqp7SP6v5DsWHYlyviLKylZKuTGi/LjW+jnf5hNKqTG+58cA5b7tJcA428uLgGOxGW70pHTJyrayq8PFmH0uayu2DMadLeVSgjC08Hqgvcn8CcIQIZKsbAU8BOzUWt9te+pF4Brf/WuAF2zbL1dKJSulJgJTgXWxG3J0JLudtHZ40VpHkZXtE2YrxgxGpEWYBWFo0dbguxVhFoYOkbiylwNXA1uVUpt9274P/AJ4Ril1HXAE+CyA1nq7UuoZYAcmo/tmrbUn1gOPFGtN5tYOLymdwhwu+UssZkFICFp9wizlUsIQIqwwa63XEDxuDHB+iNfcCdzZh3HFDPuazCmdZU9hFrLodGWn+Le5kiQrWxCGGq315lZc2cIQIuE7f6W4LWH2+ltyhrN8gwqzWMyCMOSwXNne9shXlhOEQSbhhTk1yXzElnZPFC05gwlzcuQrUwmCEB9YFjOIO1sYMiS8MFuu7OZ2T+SLWLQHS/4Si1kQhhwizMIQJOGFeXS2sXqPVDVF3lozaLlU8tCKMVcdCF8WJgiJjuXKBokzC0OGhBfmmWOycDoU20trbXXM4WLMAatLgXGDDxVhbmuEP54Omx4b7JEIwuDSahdmsZiFoUHCC3OK28mU/Ay2Hauz1TGHy8puBocbHLa1N4ZSHXNjpZlEVB8c7JEIwuDSJq5sYeiR8MIMMLswi612izlcEldHa1drGYZWjLm52tw2VAzuOARhsOkSYxZXtjA0GBbCPGdsNhX1rZQ3+Vp2h7OY25vBHSjMQ8hitoS5UYRZGOaIK1sYggwPYS7MBmDb8QZQzshizN0s5iEUY26uMreN5T3vJwiJjiR/CUOQYSHMs8ZmoRRsK/XFmcNmZTeHEOYhZjGLK1sY7rTWgzvN3BeLWRgiDAthzkh2MTEvnW2ltaa1ZlhhDhFj9rSC7raCZfxhd2V7vYM7FkEYTFrrIT3f3BeLWRgiDAthBhNn3n4sQos5VIxZe8Hb4d9WtgV+uwAaT8Z8vH2iucbcag+01AzmSARhcGlrgIwCc18sZmGIMHyEuTCL0ppmPI6kCNZjDmExQ9c4c8kHpiTpxNbYDravWBYzQIPEmYVhTGsDZIwy90WYhSHC8BHmsSYBrE07IyiXaukuzFafbXuc2cp6rjkao1HGCLswSwKYMJxprYfUHNOXQFzZwhBh2AjzbJ8wN3tdkbXktLfjBP9juzBb1mjNkRiNMkY0V/vdd2IxC8OZtgZIyjQJYCLMwhBh2AhzdpqbcbmpNHocEbiyg1jMwVzZljVaG4cWc940c7+xcnDHIgiDhdbGYk7OMAvSxLswH10He18f7FEIccCwEWYw7uy6dkdkq0sFS/6CAFe2T/TizZXdVAW5E03NtriyheFKWyOgITnTJ8xxHmMu/gW89sPBHoUQBwwvYS7MpqHDQUd7mEYhQS3mZP9zFvHoytbaWMxpI02ZiLiyheGK1VwkKcPnyo5zYW4sh5bawR6FEAcMO2Fu0y6amvsizEGSv+pKwdNBXNDWCN52SB0BGfm9a8tZvgtO7Ij92ARhILHacXZazHHuym6oEGEWgGEmzLPHZtGOi9aWHn6gWvccY7YyuttboLUOck4x9cL1x/pn0NFiZWSnjoD0Ub0T5n9+G178emzHJQgDTWuduR0Krmyv1/xW25vC9/IXEp5hJcx5Gck43Mm0t/VQLuXtMI1EwsWYrdht4WJzGyzO/OFf4d0/9G3Q0dJFmPN715azoRwq9w2NLmeCEIpuruw4tphbaswEH6ClblCHIgw+w0qYAdJSU/G02VzZe9+AjY/5H1uz6nBZ2ZYlWrjE3AaLM79/L7x/X98HHQ12Yc7INxOIaAW2qQpaa7vWQwvCUKPTlZ0R/xazPRekVdzZwx3XYA9goMlIT4eGdmqb2sn2VsOz14LDAQuvAqX8FnG4BiOWJTp2obkNLJnyek2s1tNmhFGp/vlAgQS6sjtaTMlISlZkr9favzpV1UFIy+2fcQpCf9NpMWfGf/KXPeQkceZhz7CzmPNzMkminbf3VcC/fuC3DK0Za0coizmEKzu7yDTzCLSYaw5Duy8Rq6mqfz5MMCxRTc31tyKMJs7cWu/vB151ILZjE4SBpFuMOY5d2fayRhHmYc+wE+aR2ZkkKQ9HN7wKW5+B8WeaJyp2mttQFnOgK9sS8oxRJgEsUJjLbVnN9WV9H7jXA20RXFg6LeYcSM8z96MR5ibbghzVByN/nSDEG0PKlW23mCXGPNwZdsLscCWTrtq48PBd6BET4bI/mifKfcJs/XjDJn9V+FxkqZA9rrsr2y7MDcf7PvC198A9S8PHi5urwZVqxpXus5ijqWVutln3VSLMwhCmrQGUw7ixreSveE1oFFe2YGPYCTNON0m6lQkc4/Bp/2Ws3dQRfmEOaTEHNBhprDDJVWCOUVvSde3jEzv8cen6GAjz8a1G/Fvre96vudp8HrC5sqMQ5iafxe1KFVe2MLRprTeTZ6XMRBW6NgiKJxrLzW8O/C54YdgyDIXZiOVLnmX8o3Gm+dHmz4SKXeb5UDFmZ5LveSv5q9xvkeaMM0leDSf8+5fvhPGnm/uxcGXXHfO/b0801/iFOc3nyo6mZMqymMcuEFe2MLRpbTBubDAWM8SvO7uhAnInAUosZiG8MCulHlZKlSulttm2zVdKrVVKbVVK/UMplWV77nal1D6l1G6l1Mr+GnivGTEB0vN5Nu8mivf4BGvUDJNBrXVoi1kps81jc2VbMdzsU8yt5c7uaIOTe2HsIkjJhvoT9Jm6UnMbzi1ut5idLpME1psYc+FiM9Gw4nTC0OShlfDWfw/2KAaHtnpTwwyQZAlznCaANVYYD1dylgizEJHF/AjwsYBtDwLf01rPBZ4Hvg2glJoFXA7M9r3mj0opZ8xGGwsWXAH/bxfzZs5g05FqapraYNQsk51dX+Z3dQXGmMG4s+0Ws+UqzvEJs5UAVrnHZDYXzIbMMX23mLW2WcxhRL652iR+WWSMitKVXQUofxlY9aEoBirEFVpD2WY4sS3srgnJULKYG33Xk5QsSf4Swguz1no1EFjvMx1Y7bv/OvBp3/1Lgae01q1a64PAPmBpjMYaO5wuzpk+Cq+G1XsrIX+G2V6+07TahO4WMxg3eEeLaZnXXNXVlQ1+Ybbi1aNmQubo8GIajqYqv6Uezvpuru5aexxt96/mKiPsIyebxxJnHrq01pvv60CW68UTrfWmVAr8Mea4tZgrzW81JVssZqHXMeZtwCW++58FfMpEIWBPTy7xbYs7FozLISfNTfHuciOgYOLMlsVsJXvZcaUYi9ly91rJX0npZjWnTmHeDg4XjJwKGaP7nvxlubGhZ5HX2lyELVc29M5iThsJIyaaxxJnHrpYIYzmYSrMbQ1+V3anMMehxdzaYCYM6fnGlS3JX8Oe3nb+uhb4nVLqDuBFwFrgOFh7q6D1CUqp64HrAQoKCiguLu7lUILT0NAQ9pgzsr28vq2UN/OrOdOdzcktb1KfOYlpwDvrNtKe1NVaXNrmoeHYUY4Uv8ISYNuhCiobzXssduTQdnALW4uLmbvjbZJTC/lgzbtMqm6jqK6M1W+91evuXyMr1zPXd//4vi3scgf/XA5PK2d7WtlfVs1R32efUt3K6NrjrAlzLqzzNb90Hw6vk03vb2a5K5OKbe+wp31+r8ad6ETyHRtMsmt2sBBoqznOu3EwzoE+X8tqK6lRBewqLiardjeLgC0frKX6QHxlZqc0l7EM2FlSRX5jO8mtZWzwnad4/47FG4lyvnolzFrrXcAFAEqpacBFvqdK8FvPAEVA0GWXtNYPAA8ALFmyRK9YsaI3QwlJcXEx4Y5ZlVXC/3tmC3lTF5J0eB5jOmoZM/EU2AvLzz6vexvLnbmk5WQzauYpsAHmLF3hz7w+MRsqdpn33PQNmHiquZ+yC44+x4ql8yB9ZO8+zPr9xkeROZbRGYrRoT5XbSm8DZNnL2byYt8+jg+g9CVWLF8WPG7uo/N87dKQNdHc3zuNsUktjI3x/yZRiOQ7NqjsqIXNkORpYMU55wxcW9gQDPj5eq+N0eOnmt9L2QjYBPNnToWZAziGSDi6Dt6HmYvPgq0n4MiJzvMU99+xOCNRzlevXNlKqVG+WwfwQ8BaqeFF4HKlVLJSaiIwFVgXi4H2B2dPy0cpKN5dYeLMFbttDUZSu7/A5YsxWzFbK/kLfN2/jpr4UO0Rk1AGkFlgbvuSAFZ3DJQTRs/tOcZs75NtEW0tc1O1yeQGU74hruyhi1Va5+0IX/+eaGgd4MqO4+Qv6/+Uni/JXwIQWbnUk8BaYLpSqkQpdR1whVJqD7ALYxH/CUBrvR14BtgBvArcrLW1lln8kZeRzLzCbN7YecKUTLXWmWQn5TAx4kCsrOxG2w/JInucqYE+tMY87hTmMea2L92/6stMElnWmJ5jzMGEubP7ly0BrOYovPmzrg1ROo9R5U8eGzHRNE7paOu+nxD/2Gveh1ucuaPVTEiSA2PMcZj8ZV1PMkaZ5K/WuoHtUNbRCvcuh72vD9x7Cj0SSVb2FVrrMVprt9a6SGv9kNb6t1rrab6/72nt/xZpre/UWk/WWk/XWv+zf4ffdz61qIgPS2rZ3uHLUTu22XTgCeb2cyWb7OjGCpMIZmV8gr9kas+r5rbAEubR5rYvCWB1pZA11iSSNVWGXkg9qDD7Jg/2WuZ3fw+r74KT+7q+vr3ZXLgsYc6daNamDrakZX+x57XIeoIL4bF7SYbbEp7WylLJvnBUPFvMjZXmNi3PjFd7/eMfCOpKTUnd4XcG7j2FHhl+nb8C+Pyp48jPTOa3W3zl1pW7g2dkgy8r2+fKTh/VVbytkqk9rxn3mdV0JMMS5j66srPG+t3ioRqGBHVlW8JsuTW9sOMF33Ft2d7gL6uxu7Jh4NzZNUfgic/Ch08PzPslOnYvyXArmbIym7tlZcfhpK+hHFJywJVkLGYY2JIpy7NSFzQdSBgEhr0wp7idfO3sSbx2qJ221HwzWw1WwwxdXdlW1y+LbJ8wNxw38WqH79S6U8yPrrfdv7Q2SV1ZhWZ5SQhtfTcHCCt0X8ji6Ht+t3qgMFuvt7uyYeBqmasPBx+X0Dsay833BoafxWxfWQr8v+m4tJgr/J6tQRFm37WpVn538cKwF2aAL5w2nryMJPZ4i8yGUNnLTlvylz3xC0xTjmTfj8pyY1tkju69xdxaZ9Z1tlzZELpfdnO1GaM9cc2dYtxjlpW9/Xn/RSrwhxhoMWeMAnf6wK0yVVtibmOx6Idgvif508394WYxW65gy2JWyr/CVLzRaLueWJUgA5kAZhkNMiGOG0SYgdQkJ189axLrG30/jogs5vzuz1tx5lGzu27P7EOTEcu9lDXW/+MNlUhm9ckOjI+n55mLtNdj3NhTLzDjrysJeL1lMfvKupQyceZoLOa6Mnjvvt4lr4gwxw6tzf88zyfMwy35y8pCT7aVPMbrmswN5fFhMdcdi99lMYcZIsw+rlo2nhL3ePMgpDCnmJadjZXdLWbwx5mtTmIWmWGyqXvCmsVmFdqEuQeL2R5ftkgfZWblR94z45h9mTleYEzJ6mhmb+k5YkJ0MeZ198Or3+2+PnUkWK+JxfrVw522BlMlkDXGeHKGm8XcKcwZ/m3utPgUZrsr2/K6DWT3L+v35rF1NRQGFRFmH+nJLmbNPw2ABm+IviuuZLPYhfb4Y7d2rDhzQYDFnFFgrMDezEbtFrMr2QhvyBhzTXBhzsg3P/7tz5uM86krIbsoiCvbSh6zCXPuJLOQhTfCqrfD75rb3sSrrEmIWMx9p7M2dhSkjRh+FnOgKxt8FnOcubI72qClxubKHsTkLxB3dpwgwmzjAl/HmIM1IUTIbkkHJn8BLLgSVny/+3OZY8Db3jurpe4YoPzx5YweFsXoyWKuP27c2NMuMFZE1tjgyV9JGSY71CJ3ollrOpKMzbYmKN3oG3cvfuCWK7uxEjwd0b8+lqx/CF69fXDH0BesnIKMfDPRGrYWs62kMR5d2db/qdOVbcWYawZuDPXH/Wu3SwJYXCDCbCMzJ4/GpHyON8Jbu4O4i+2CFcyVPXYBrPhukAP3oWSqrtS8l/XeGaN6Icz55ofeWA6zLjPbsgqNu8yeZNJU1dWNDdGVTJV+YCYg4BfZSNHavMadDujoFt7oDz58GjY/Prhj6AtdLObc4WcxtwazmNPjz2IOFGZXsjEAYp381dHmX7I2kIZyKFxk7ovFHBeIMAeQdMnd/CPj0/z0pR20ewI6Y3WxmIMIcyj60mTEqmG2HyuUMDdVGbdlIFYtsysVpq0097OL/MfvfP3Jrm5siK5k6vC7gDLvE21NZEuNcT9aF4i+rmHdF7Q2S3e21PZPmVHJBtj379gf1471HckYNTwt5rYGI8QO2yUuni1m+0S/P5Z+fPEb8PRV3bd7PWYSXDDHdDuUWua4QIQ5APecS7js0s9woKKRR9ce7vqkXZiDWcyhsIS5N0lNdcf8tajW+9af6B6vbm82yT6hXNlgRDkp3dy3xN6emd0cxGLOLgKHO7KSqcPvwOg5JmEs2pm35UIrXGxue1v3HQvqjvmTb6oPxf74b/wYXv5W7I9rp7ECUMZFmZY7DOuY67u6sSG+hdke/uqPpR9PbDddDQNpOml6N2SNhcwg4S1hUBBhDsK500dx9rR8fvPGHk422Nw/Vkcwh8s0DYmUvnT/stpx2o/lae0+o26uMbfBhHmEL9t87mf82yyxt8eUmqq6W8wOpykDCydQHW1wdD2MXw7ZhdG7sq39i5aY22DnqrHS37WsPynf6b8f6xpurU37w7rS4L3KY0VDuSl7c7rM/7S1LnQr10Sktb5rRjbEZx2zPeRg0R8Wc32ZsYwDJyaWFy+jwJd3IhZzPCDCHASlFHd8YiZNbR5+/foe/xNOnzCn53d1kYWjt92/WhvMD9RaCAP83b8C3dnB2nFajJkPN6yBGZ/wb8saC6iuP8TmKn8Ns50RE8ILc9lmY7GPX+4rxYrWYvaVSo1dZMYVzF3/wcPwzBejF/1oqbAJc6wt5voy87/ytPW+hC4S7E0rLC/IcLKa7StLWcSrxexO6zqJiLUwd7SZHvvQve+9NTHIKOjdhHoos/aPsOWpwR5FUESYQzBlVCZfPH08T607wrZS34/EspiDZWSHI3NM9Baztb/dlZ3ZC2EGs2SkvfGI021+jD5XtvJ6zMUg0JUNxuIOJ1BWA/zxZ5jxNlaETjYJRm2JcZlnjjETn2Dn6uR+c1vyQeTHtWiuNivoWFnjPVG+05yb9PzYC/OJ7f77van1jhR70wrrOzGc4sytDUFc2XFoMTdWdL+exHrpR/u1opsw+yzmTJvFPFyajLz7e/jgT4M9iqCIMPfAbedPIzc9ma8++gFHTjb5Y8zRJH5ZZBZEn/zV2VzE7sq2+mVHKczByBrb6cp2dfjKSwJd2WAs5pYav7s8GIffNV2m0vPMzNs+/kioKzWvczh85yqINWkloJX2QpiPro98BZ3ynaZJTCSegmixC3N/rtrVWB7EYh5OwhwqxjyAwtxcDQ9dAOW7Qu/TUN79ehJri9l+3Qn8PncmCRaYCbWndXhM4FoboP7YwK6cFwUizD2Qnebm0WuX0tzu4Yr/e4+KFt8T0SR+WfSm+5e9uYhFb1zZocj2d/9yt/uEOajFPMHc1hzu/hyYzM4j7xlrGYLHr8NRW+Jv0JI5JniinFWyFYnVG8jxLZGNyeuFil2Q34/CbE1++ttitr4r1vsNhwuuRVt9EFd2mlmjeaBi7aUb4Oj7sOul0PvYQw4WsU7+sv+WAoWo/oTpNuZO9f9uA1v1Rstjn4JXvh15U6LBoMrnfasvi8v15kWYwzBrbBZ/ue406lva+fErvvWLg/XJDofVLzuahJ9gFnNKtol1BwpXryzmIvMeWvcszDm+5LHqEMJ8Ypu5kIxfbh53lmJFKczWhSEjiHehtd5cxJxJcGxT9A1Iyj70jSnMRaf2iLGqLIu5tiS2F/IT26HoVJNzUNNPwtzaYD6D9T0dlhZzQ5DkrwFe+tEKvRzbFHqfoK7sbLNYTntL8NdEi/VbSsnpPrluOOGfGHQKcx8SwDwdcOAtWPcAPP+1wW8UFIrOteh13yci/YAIcwTMKczmsetOo6rFxGjrXEHEKxwZo03zjWgujnXHjLVjXy1KKePqDeyX3VxlYrSBVkJPZBeaJJmW2vCubAhtPVptOMefbm47LeYIv/Bej/mslqBnjjEXLPuP2sqOnnqBubBW9OAeDMbxrb4xhZksWBnZo2aZz609sUuI6WiDyj1m9bGccf1nMVvNWawL7rC0mIPFmC1hHqAEMEuYSzcEf97rNZUGwVzZEDurub4MlBPGLgwSYz7hL+fMjvJ3G4yG46b8qnAxbP0r/PWa6HJNBgrrfwP9N0HuAyLMETJ/XA4/+tSpAPz2/VpKa6L8cUfSZCTwubqyrolfFsEsylArS/VEZy1zKe5230UgmMWcmmNm2yGF+R1jVVvCmpRmxhLpzLv+uBHATmEuMD9uq8YT/PFlq+QrmjhzS63fDR7OireEOX96+AlJtJzcayZnBXMg+5T+uyA0WLWxvgt+UrrxNCSKxdzaAKvuCu2C9LQbizMpSPIXDKDF7LPK6svMbzmQ5mpf3/0AD1xnv+xYCfNxc/0ZMaG718tuMafn973JiPXac74HH/ulceM/dWX8ZcNX7vVX2cRhnFmEOQpmzzuVw2f+khdbF/H5+9dytCqKH7hV8hRKmPe8Br+eDm//2r8tsIbZIiOYxRyiHWdPZPm7f3W6soNZzGAys4PFmLU2FrPlxrYfO1JXtjVDt2LMnetO25NWfMI6+XwzSQhlhQTj+DZzO3aROW89xZTKd5pxpGTFXpitxK+C2cZirjkSPgO2/jjcf7a5kERKp8Xsu+ArlVjdv3a9BG/9DA6tDv58sJWlYOAt5qr9ZgIGcCxIXkTg/8ki1gtZ1Jf5hHm8mZxZ5wd8uQi+35vDaa5TfRFm67ecNRaW3QAX/xb2vQFbnuz9MfuDk/tg3FJQDhHmIY9SjP/IDTz8lXOob+ngc/ev5WBlY2Sv7SxzCiLMnnb41/fN/Td/5ncNB7bjtMgoCB5jjlaYba4rd3u9saqszmCBhEqEqtxjugdZiV/2Y0ea/GW5dK3xBJvEVB0wM/qULOMmK4lGmH3x5ekfB7TJxgxF+U7In+EfhzMpumUve+LEdhNuGDnFNG1pbwxfW7znVSjbAofejvx97LWpFonU/csKS9jdkXaCrSwFNot5AIS5o9Vc8GdfatzIwRIWgzUXAf8a0q0BwrzpL71zM9cfN99la714S4haG8y5sief9aYHgR1L1K3f8qJrzHmv3Bf6NQON1ua7kz/DdDvrzyTMXiLC3AvmFmXz5FeX0drh5fP3r2VrSQQz2566f33wsHFzfupBI4DPXme+4E2VwV3ZmaPNRdYeu+mNMGeMNjNGy5WdNjK0KzxnvPlBByavWTXF45Z23Z5VGHlSRecs2xJmqyTMLswH/X27i5aYJiDWQgXhKPvQXPwKF/reL8SFx9NhJhrWetqRdj2LlBPbzcXA6fZ7B8LN1g/6rMJoxtBQTmc7TotEsphP+DwgJ0Nc7IOtLAUDm/xVfciEYwrmmpyCoBZzwAIWFsEs5voT8MLN8P790Y/FsphzJpjH1nfOquywwmwQfNW5aKgrNUJsdUZUyvyGQlV0DAaNFWbSM3KK33MVZ4gw95JZY7N46vpluJ0OPnPfu7ywOcyX2er+FTjjba6G4v+GieeY+OlnHzGC/OTl5vmgFrNvhmvNuFtqTewo0CUWDqfLiLPlyg7lxgYzYfC0dZ9YlG02lsnIKV23Z401n60tgotgXam5GFlL3gUrCas66F/pqnCJueiVbQ5/bDAW85h5fjEMdeGpPmjqOC1hBjMZiKUwW2t15/jG0tNsXWs46LOUo2kN2lhuLGSnbV3xRFmTWWubxRxKmH0TtmAtOaH3FrPWZinQv98cfl/Lmh852YRQSjd2D1sEW8ACggtzuS8MYq+Dj4T2FvM7zBztt5itOLN9oRMLq4Syt01G6krNBNs+wc8ZH7qiIxye9t5ndpd8AH+/qXvZlvW9yfN5riT5K7GYVpDJC19fzvyiHG59ajO/fHUXHm8PX+iiU2Hjo/DuH/xf/FV3mcYdK39uvsxj5pv7Zb6626DCbMVgfcL8zu9MBueS66L/EL42fK6O+uCJXxah4q3HNsPoeca67HLcKEqmakv88W4wFmVann8S0N5ijpPrs5itFagi6QDW0WoyuEfPC58t3pmRbRfmCbER5qYq40IvmGUeW7HHni4KFbuNyCpHdO70YE0rUhPElV1/3IROlCO0e7TNZzF3S/7qo8W85m5474+w88XwwmVd/HMnme9rS033FdoqdpmV2AL77neuyWxL/jqxw3cbpTB3dvYaY8qy3GndLeYMu8VcaBLneutdqQ2SF2Plp/RG7J++2pRd9Yatz5qlW62JnIX1vxk5xUzW60rjrqxLhLmP5GUk85evnMaVp53CvcX7+eqjH1DfEqLu9bN/ghkXwWs/gOe+ar4w6x6ARVebVZksTv0KzLzE3LdmuXY6LebjJttz7T0w5zNmPeho8cWU3O11PbvCgzUZ8XSYzxDsfaMpmao96hdyi8wx/u5fNYcB7beY0/PMeCJJACvfaZpKjJlnLKiU7NCThfKdgDIdzCxGTIjN8o/lvgurZTGn5ZqLZE8Ws+XGnroSqg5FfmFrrOjuPUnzubKHertFy4094Sxz7oJZv50Wc4AwJ/XBYt72HPz7v0y4p7Uu/Pehar+ZDKXl+vq/07Weua0Jtj0Psy7p3nc/KcNMPLpYzL7vT8NxU2IVKVY4KHN0d7ey9fuy5yLYKjV6hb3s0SJnfGTnLBCv1/wGosmvsGOds8Buf1ZGdvY4cz60J+5W1RJhjgFJLgc//+RcfnrZHFbtqeCz960NXk6VnAmfewzO+5GZzT1wrum/fe4Pu+6nFHzyPrjiKeMKC6RzGckTsOoXRnjO+2H3/SIhyyRpudvrgy9gYZE9DlBdrcfKPWbhijELguwfRVvO2pIgwlzgt5gtN64VYwaTABaJMFuJX6PnmdusotAx5oqdRoitCzjELjPbsnRG+YRZKXNOe4pvHVxlLhyTzjFWYNPJyN7L3vXLIjXXlGq1RRiXj1es/+esSwEd3MUfMiu7l+VSR9fB8zfAKafDx39ltoXzYJzc7w/vjJppLGN7AtjOF02cc9EXu79Wqe7dv05sN+tLg39yEgnWb8hKqMyxVVc0nDDJiPYJeVYEni6vN7iF6ekwE4dgFjNEH2eu2m8SJBtO9G4ZWKvXwaEAYT6530zyHc7IQkqDgAhzDLl62Xj+/OWllNY0c+kf3mHz0ZruOykFZ/8HfOGvxno774f+ZCc7Sekw/cLgb5SeDyg4tAY2PganXud380ZLdiF0NJPUHmIBCwtXkhFPu0BZFkBPFnO40os2X2ZyoDBnjPa72iwXoP0zFi4xF49g9aF2yj40Lk1L1LN7SEor32kai9iJpTCn5nZNtOmpyYjXY/6/E8/2jz3SOHMwV7b1vx3qCWDHt5kwgLVu98kgZWQhs7J7US5VdcDke2QXwucf92fsh/s+nNznF2an23hs7AlgGx814hBYZmhh75ft9RiRmelbHS4ad3a9zZUNvmRGmys7Y1RXiz0Si/ntX8O9Z3TfbjUXCUxYDdc5MBRWOA/gxNbQ+wWjqco/8Tjybtek1ZN7/QaPNbY4SwATYY4xZ07N4/mbziA1ycHn71/LK1tDCMfUj8K398GyG6N/E6fbWLfb/masgLO/3fsB239EPSV/QfckjrLNZhYfmPgFxhOQnh/elW1Zr90sZp8wez3GOknO6mrRW+s2263mmqPdhef4hyZMYF18skKUcXW0mYvpqBldt1uz/VgIc8Hsrkkx2eNCx5iPbzVxyYnnRDc5aGs0VkagK9v63w71BLAT28xKadZ3LlgCWChXtitKYT65Hx75hBGbK/8K6SP934eeJkmtDcZSHTnJv23sIpOP4ekwsfHD78DCq0NXQdiFueqgiftOPNt4QqIS5jJT8mdZxSPGG0u9ucYnzAFGQcYo02Skp1LHg6ugcjc0BnhwOnv7Bwhzby3msi1mLNA9ThwOK19k1iVm4m+5tT0d5nxa3x/ruhNnCWAizP3AlFGZ/P2m5cwpzOamxzfyf6sPoIPF9qLp0hWIZXktv6V3y1Ba2H9EPVnM0D0R6thmk6wWmPhlP3Y4V3ZnDXMQYda+loVVB8x728/X6LnmR1v6gVk56umr4DdzzWo+Via412MsLMuNDcbyaa7qni1+cp8JCQRazMmZJhEtmqzoQLxec6Gw4ssWOeN8YwlSC2/FlyecZZscRDCGULWx/b30o6cD3vmtv5lLf9DWZP5Po+cYN3XmmOC1zK11ZiU4p7vrdqfLiFQkruzKvfDIRUYQr/mHyeAF48nKKOh5kmR5eOwT1sJFJuxTsQs2PWZqmxdcGfoYKdn+5C8rI3vULPMdisqVfdwfXwZbLfNh4x4OFOZwTUa09k8MKnd3fa6zUVCAMKdk+zoH9kKYR881HpJohdlaU/3Ur5pbK85ce8SEdPKmmseuZOOdE4t5eDAyI5nHv3IaF80dw52v7OQn/9jRc8Z2tGSPMxffZTf18Th2Ye4hxgxGIBqOG4ujp8SvzmP3EM+16PwxBxFmMDN+e6mUhTvVtLZcew889BFTVrToanPhfu0HZp+qg8Z6HGMTZlu3sy5YP+T8AIsZ+p6ZXXPIjCNQmHvKzD70NuRNg6wx5rNmjo1schCqBKdzIYt+ysx+74/w+h3w4Ef6b/H58p2+2mBfouTIKcE7orU1hO4Z704NbzGX7zKi7O2Aa14y4mAn3PfBWrnILsxWAtjR92HzEzDtY13DGoHYLeYTOwBlvpsFs834Is0iri/zu7Ghq+u24UTwMFpPtcz1ZX6vS0WAMAdbDc8iVOfAUGjtE+Z55vxHbTHvMiGsU5aZ39mhNWa7lclv/9/knGIEO44IK8xKqYeVUuVKqW22bQuUUu8ppTYrpT5QSi21PXe7UmqfUmq3Umplfw18KJDidvL7Kxby1bMm8si7h7jp8Q00t8VoKbSLfgXXvto9wSVaMgr87qJwruzOzOwjPSd+WQT7gW97znQwsjwIdaWA6nrxAH8JR90x84MOFkOf/UkTf73wf+Cb2+GS38MZ3zANW3a94l/q0X5h7UxKC3CxH99mzoM1kw783H0RZnsrTjuhEk887ab728Sz/dtyJ0ZpMYdwZfeHxXxyP7x1p2mXWrTElLe8/K3YL6dnxRmt/+fIKcFd2TVHQi/N6k4L7qHofO1RI8oAX3rZX95mJ1xtu71UyiJ3khHbd35jSuCCJX3ZScn2J3+VbzevT0ozDUs8raFruAOxLGYLy2KuOuDL3g8mzD14uuxu9G7CXGpCW4HlXxC8T3dP1B41oZwx883/u3Jvz/+3QCp2mbCUUjBhufk9ad21VMoiDpuMRGIxPwJ8LGDb/wA/0VovAO7wPUYpNQu4HJjte80flVIh/JzDA4dD8YOLZvGfF8/itR0nuPLB9zjZEIPVVrKLgmdsRz1Ap18UI3Flg7koWc09erKYswrNxcVyyTVWmoL/F26GF79hLty1Jb7WlwFuR+tiUvqBsVwCLWaAM2+Dr6+D077mn6Cc90Mzy37x67D3DZP8kW+rSw61VnTJevM6V3Lwz93b5R87Wk2ij3J2t8ZDdf86tslYfXZhHjExQos5SDtO8LuyYx1j9nrN/9KZDJfeA1f/Hc64BdY/CI98vGtf5r5yfJuxgiyrb+QU83nsk42ONnMRnnBm8GOEs5i3PWsa/HzxBbOQSTCs70OoicfJ/cbDYW9v63D4V3fKHANTPhJ6DGByKuwWszVBsCZ3kbqzrXacFqkjzLFLNwA6hDCPDd1kxLJccyd1X+HN6u0fLERnZYNHuuytlfg1ZoFvIqb9ceNIKN/h/72NX27+pxW7jTCn5HT1DuacYv6fcbR+dFhh1lqvBgJ/zRrwVcGTDVh+wUuBp7TWrVrrg8A+IKBX4/DkS8snct9Vi9lxrI5P3/suhyLtsT0QWK6ncC097dmVxzaHTvyyCGwy8t69Jma36BoTZ3v0UjMDD3Rjg/+CcXituR0RxGIOhisZPv2giUduecLMml1J/uc7s8VtwuzpMBeqwLaiFoHLPzbXwPM3MqJqc89jaa2Hxz8Le18zTWMC+5BnjvYl2gRYzAdXmdvxNnEZMcGEEcJ1Uuu0mAPyDpwuSM6OvcW84WETv1v5M+N2d7rggp/CJ+83k53dr8buvY5vNcJkJfIFSwArWW9iyBPPCX4Md1rPwnxglZnI2ZvMBDJiAqBDW1kn9wefNFvu7AVXdu3KFgyfxezsaDbWrVVmlzfNfGciSQBrbTATY7v4WrXMR9ebx8GEObvI/E6DhT1ObDeu4aKlxmtmp7a0e3zZYsR40zkw2FoBwSjbYiazBbP8HhKrVC4cDRWmtND6H07wZb4fXuPLyJ7SPQnT29Hzyn8DTG9jzLcBdymljgK/Am73bS8E7FeZEt82AVg5ezRPfHUZtc3tfOred9l0JE46MWUVonEEd0HZyRhlMlurDxmrbkyQjl8BxwXMD7alFtb9H8y8GC75HXz6IVM+UrY5uDC7koz71cq6DmYxhyJ/Oqy809wfPb/rc+4Uk8xlzxYv324u5kWnBj+e5UavPmSs/j9fDFueYMau3xiRDkbjSfjzJSa2ddl9ZqWdQBxOc44CY8wHVxuXZbptVm+NIVycrqHcnLdADwTEvi1nzVF4/ccwaYXJMLYz97PGMgts7tBbvF4jCvawhBV2sAvzwVWmOUePFnOIyU17CxxZaz5PT9i/D8E4uS+4ME/9qPnfhHNjQ2f3r6y63YD2W8yuJNMAJxKLubMXdkCYKOcU/0IuweLc1kQ9WEXFiW1mcpQ/zUxu7d3J6o4F7+0P/j7dkbqzy7aY37E71Yw3OTvyOLOVL2IJ84iJ5hwceqdrfXnn2OKvZCrMtC0kNwLf1Fr/TSn1OeAh4CNAsDTjoBlPSqnrgesBCgoKKC4u7uVQgtPQ0BDzY8aK7y52cfeGFj5/37vcsiiFOXmD6+0f2zaK3MwZbFu9Ouy+pybl07x3HSOqt3Bs7Er293COk1vKOR3Yvf5N3O8+z6TWWj5IO5eG4mIgj8x5P2PmzrspacvnWJDjLHFkkuGpwqvcrN64G1QUSx/qSYybdA3VzgW+9/Oz2JFN26GtbPVtH1v6CtOAtaVeWk92H0dySwWnA4dWP0V+xddJaSnn0KRrmHTgUUofu4G907qKblLrSeZvuYOUlnJ2zP4eJ2vGQIjzNJ9MHEe2scn3vKu9jjMOraW08MIu5zazrorFwNbVL3IyL3SzhbkHNpOi0lkf5P0WdbjpKNnHhzH6XczZeicjOtpZn38lLatWdR9L+lRSdr7B+kzzfn35TaY0H2dZWz27a5Mo8x1DeTs4Szk5uvHfHKwxYrJw0wuojClsfH9z0OPMb2jF4W3oPN92cqo/ZEFHC1sbR3Kyh3EmtVZxBrBn3b84Vtr1Eupqr+fM5ir21ShKgh3jtD/BlkPAoR4/7+iyMmYAqRXGpfv+oQaay83xZpJH9pENvBfmXGbXbGchsOXACapr/PtOaXBiTYXXbjtA676uTWcy6k+yBNi56jlOjPZP5ByeNs6q2MPhtHnUn+hgLrDhtaeoz5qG8no4u/44h6vbORRkXKlNxzkN2Ln2VU4cDB/KO/3weqpHLGCX71gLUsah9rwT9P9mp6Ghgb3vrGIq8O6+atqOmv1npk4ld/fruDvqOVDv5IjtOGmNZSwFdrz3L8ojGNuAoLUO+wdMALbZHtcCyndfAXW++7cDt9v2+xdwerjjL168WMeat956K+bHjCUV9S36Y79Zrefc8aree6JusIcT+fl6/HNa/2yM1j/O0nrzUz3v29Gm9Y+ztf7XD7T+5UStH/t0dIN69DLzPn9YGt3rwvHEFVr/4TT/42e/ovVd07T2eoPv7+nQ+r/yzFjuHKv1wbe11loffeAL5vMdWefft+641r9bpPWdhVofXBN+LM/doPWvZvgf//N2rf8zR+sTO7ru13jSvP+7fwh9rN3/Mvv864fBn3/sU1rff074MUVCR5vWP8nV+tXvh95n9a/MeBoqtdZ9/E3ueNEc6+gHXbf/bpHWT11l7jfXav2fI7R+479CH+fxz2l975nBn3vjJ+b1zbU9j8Xr1fqnBcE/+9H1Zpw7X+75GOHwfd6q/z3TvJenw//cmt+Y92g82fMxPvyr2e/Ezq7b373HbP9xltbtLd1f5/Fo/ctJ5ndhp3STec2257Su3Gfub/yLea7mqHm8/uHgY2lrNs+/9Yuex6y11nVlZt+1f/Rve+W7Wv9sdNfzEIS33npL6xdv1fq/x3X9Pa9/yP+Ztz3X9UWtjWb7qv8JP7YYA3ygg2hib13ZxwAriHMeYJkyLwKXK6WSlVITganAul6+R0KTl5HMg9csIdnt5Lo/f0B1Y4wzWPuLERNM6Q+E783tdBtX2Qd/MjGfs/8juveyXHCRxpcjJTsg67RkHYw7NXRducPpz6r94gudbtKDE680Y3zpNpMY1lgJj15iupFd9aw/ttUTOeNMCUpHm3Hzrf8/E4MMjHGmjjDuvFAJYA3l8MJNppTo3B8E3yeWSz9WHTRxucBSIjtWV6sja6M//vM3wL9/6i8LOr7VuKgDz8vIqf5a5sPvmFyAnlzRPSV/HSg2WeXWIhKhUCp0pn6wrN/ekGxzZedP7xoyshLArKYZobD3ybZj1cWn5ARPdnQ4YMr5sP/fXZO1OqsL5hj3rzPJX8tsJVOGcmW7U8xvJZKSqbKANrpgvmftTd0XAglGxS5T823/PdvzNQL/N0lppoohjlzZkZRLPQmsBaYrpUqUUtcBXwV+rZTaAvwcn0taa70deAbYAbwK3Ky1jp9UtzijMCeV+69eTFlNCzc+voF2T4QZi4OJFY8Jl/hlkVVoMozHLzc1hdFgJaZEE1+OBHu2eEOFucAWhclR/MzDcP0qf8cxwONKgwt/aeJuxf8Nj15mjnXlU5F/1uxxgDYThbd+bsRnxfe776cU5E4ILgZam2z31nqT+OZOCf5eaTFcYcq6IAcrL7MYu9Bkax9+N7pjN1bClifh7V/BXz5pHh/fZr5v9j7mYGK5VfuNgBwoNjkQoZL4IHTyV3ONyZsIlTQWyIgJwSdJJ/eb/6FVwdBbfEs/Or2t3cvsrDrucAlg9WW+1auyu263SqZ6qqOe8lEzmbYvvHFimzle7iSTvDZyqr9kyprohkr+gsiXfwxW5tiZABYmzqx92duBFRB5U/1Nd3KDxP976sI3CESSlX2F1nqM1tqttS7SWj+ktV6jtV6stZ6vtT5Na73Btv+dWuvJWuvpWut/9u/whz6Lx4/gF5+ey3sHqrjjhe3UtbTjjWUjklhjXXDCJX5ZWIkkZ30r+veyLObe9gEPhT1bvMTn0OnpYg7m4hhsHDMvhmkXmv7Blbvh8ie6ljmFw6pl3v1P+PBpOO2GHjJbJwSvZX7/ftj3Olzws56ziVNzzYSkN2VfgVgX5LxpofdxJZuEuiNRCvOxzeZ2ybVmAYn7zzGNOSxBsjNyiskgrisxwjz+9OBWoEWo5K9Da0zzknCJXxa5vlrmwJKik/uM8NkrAXqD3WoP7EaXUWDKfcKJVGDXLwtLmEPVegNMPg9Q5ntlcWKb+X5Zv/v8af6SKUuYgzUXsYi0yUjZFiOe9nOQP8OUPob5zElt1ab+OfB3oJT53+ZO7j65A9+qW/FjMfc2+UuIIZ9aVMSeEw3ct2o/T647gkNBZoqb/Mxkzp2ez8fnjmHBuBxUX1p4xopOYV4Q2f6zLjVuucnnRf9eVleiWLuy7dniR9eZH3yknycQpeDjdxnBW36bcQFGg1XL/OZPjWVz5m2h9x0x0TRO8Xr8F8cT203HrWkXmuVCe8Le/auni3IkVO4x5zGwH3Ug4083k5Zo6pnLfFbaR/7TlNY9fbWpQx0dQpjBZNxW7Oq5zSWEdmUfKDbWdKjM/ECskE5jRddzaV+8oi/YKyQCm5wo5WvNGc5iPt49IxvM9yx1RPDnLNJHmoVC9r4OK75nJiDHt/kX0gAjltv/bs5n3bHQzUUscsbD1r+aiWGwqgGLsi3+RUosXEnm/cIIc3rjEf/YAvn4XaGblOSMM5Njr7f7MpyDgAhznPDtldOZX5RNaU0zdc3t1Da3c+hkE4+8e4j/e/sgY7NT+MziIm45fyou5yB+cUZONjPP2Z+MbP+5nzF/vWHy+XDO92DiWb17fSjs3b9K1hvrP5T7NxJyxsGXX+nlWHzWe3sTrLi951ry3Immz29dqd/q+df3jThe+ofwvdft/bJjIcw9WcsW48+A1XeZCRA2D4vXY2LUwazbY5v9Mf2xC+Brq0zLzwVXdd/XcqV/8JC5DWfxutNNx7rAC/DBVWaskVq61mSx+pD/XHo9JgY6PsjKS9GSbLeYZ3d/vmCu6XBnn6QFUl9mOmcF41MPBi9TtDP1o1D8C1P652kzpXZ2r0XeNECbrly1JaGbi1iMGG+8ErVHQ4enmquN5brk2u7PjZ4L+9/sccidwhzoZQBIzTF/wcgZbzqqNZb37OIfIESY4wSnQ3Hh3O4z2Nrmdv698wQvfVjG797cx87j9fz+ioWkuAepxMqVbBKgBoLkDDj39vD7RUvmGMza0ofNGrmLvxT794gUV7IZj3LC0ut73te+/GPOKXDkPWPpXXBnZAuZdFrMfUwA076L8YIvhN+3aKn5bIffBadtgvXiLcY9/fX13S/mZR92ieWTlht6vfGMAtMXu2S9cdUX9JCMBv6lHzta/C7N2lIz0YikvtjC3gXPCoMcXG3yKcadFvlxQuF0gTudNpwkBZtEFcw2E4yqg/4FNuxobSzmaYFNG31MDdN5DEycufi/jRhagmYXZssqrdxjLOae4svQtUGRJcwtdSbJrHCx+U5biV/BJhSj55qmQQ3lISeWaU1HjJs/cHW1cHR24TsaF8I8+Da70CPZqW4+taiIh790Kj+5ZDZv7DzBFx9eR11LDOKEwxUrW3zva+biNi5C92V/8Yn/hc89Gt5qD2xsUfwLk00azLoIRrh+2c3VZgGKYK0Y7dSVGgHKj8BiTs4wF1l7Zvahd2DzX0wXpsBFKJqqzIIC4TL+LZTyN/OYdE54N6TbJ8Z2d7bVaS3SxC/weSxU1wSwLU+azPnpH4/8OD2Rkk1j+vjgVujYheZ2+/PBX9tab1ztfRGZsQuNyO173d/QxO5WHznZTLoqdvnacYYR5s5e+7Y48z+/A3/9klkZ7rfz4Y0fm+2BjYEgogSw9MYjXVvwRop91a04QIR5CHHNGRP4zecXsPFwNZff/x4V9XFSDD8UySr0X2zCZWT3N9MvhKLF4ffLKjTx8OqDcOR9OPCW6UsdLJklGOEs5rd/bRag2Px4z8exWjHmheglHcj4M6DkA5S33ZQ/vfJtf69iSxQtrCzgUC7YYIz0ubMjSdyyLGZ7AtiBVWY8wZLLQh4nxbhurUlSaz3s/AfM+WTfwiJ2lt1IaeFFwZ8rmGUSD9fcHbxDV2epVA9x5HA4HCactO/fxpLNKuoaanElm8niie3m/cIJc9ZY3/f3kHlcutFMZhZdAx/7pXHZVx0w/wd71zsLK8dg9yvB+1prTXrj0Z4TIENhJWGKMAu94dIFhTx4zRIOVjZy4W9X89h7h4dGmVW8YbndMseEj7XFCw6nmdlXHYRVvzCtRU+9LvLXp48y5Uv2EhgLT7t/ucbXfmTiiqGo8AlzqEUeAhl/Bnhayarba2LB5duNlyDnFOOKt2MtjhKNMFtx5kgs3k5h9lnMWpsxTDw7+qQfe5b8zn8YsZ9/RXTH6Inlt1CZf3ro5y+408RsX7+j+3P1Zea2r27ZqR81iXe7/xk8+S5/hvGAoHvOyAbz/c0uMq5srU1+RHq+qSZYdgNc8QR85yB8LUQHwtQRMPMSs0DKA+d0L8OrLcHlaTL98aMlOdNM8Pa8Fv1r+wER5iHIiumj+OsNpzMpL4Mf/X0bK/93Na9uO251WxMiwVqXuaiHxiLxSO5EYynvfxOW39J9YYyecKeYRLwtT3fv8b33NZNhfP4dJsP8jSAXe4vK3SYxK3BpyVCcYsQlv+JdePNOmHSuucBOPMeso223fsq2GMELt6CKnVO/Ap97LLKyuk5Xts9iLt1oFlaYdG7k72dhX/5xy5Nm3LGIL0f8/uNh+a2w7W8+cbQRC4sZjMWMMiGfwHpqMAlgrb5VsCKZ4FolUzteMOGNc3/QtSzK4ey5DPNzj5qeAk3V8KcLTcb+8zfCfWfC732LhETj+bCz8Co4+l735SwHARHmIcqcwmye/toy/u+LS3A4FDf8ZQPXPrKe2maJPUeEZTGHq1+ON0ZMNAuCpI0MXx4VjNO+ZmKPge7qjY+ZRKozboXTbzZrZodqDFKxx7ixI53QpOVC/kyKSn1W5YX/468rba311y2DuR9t6Vp6Hsy6JLJ9Ay3mtX8wGdCRVhnYGTHBWKaV+8wEY/4VAz/JW36bSVz653f8XdLAP2GwSg57S/pIKOxB8OxlSeEsZjAJYFUH4PUfmeNFk3AH5vzO+bRJGjzne7DvDTNJTR8Fy25k+6zv9H5ytOBKs3LXxkd79/oYIsI8hFFK8dFZBbx661nc8YlZvL23kk/e8w77yhvCv3i4Y9WaxqK0ZSCxrMIzvhGdtWwxZj6ccgase8BvqdYfNxbz/CtMNvA53zVL+730zeBrDlfuiSzxy854n0v29Jv8r7VczweLzW1TlbGmIk386g12i7n6MOz4u8nKD9eGMxhWMtPq/wE0zPt8bMYYDUlpxhV8Yhusux+2Pgt/+jgU/zyyOvNImHqBuQ3WftUezggXYwZjMVslUSvvjKxJUTCS0kzFxu2l8B+74ern4KP/RcWo5b2fHGWMMvkeW54Mvdb2ACHCnAC4nA6uPXNi55KSn7znHf69M/QKRAKmFOSrb3ZvZBDvTL/QuNxO/Wrvj3Ha14xFtedf5vGWJ02P6YW+OuGkdNOMoWKXsSjtNFebWs9IE78s5l9B5cilcPa3/dsy8o3VZMWZy3ytGKOJL0eLPfnrvXtN+8zTgizJGQnWJGnrX81kJ9Yd6iJl1qUw4SwTs/3bdSZD+qP/BV97OzbHX3ajWaY1WPtVa5s7vXvrz2BYJVPTLoy8y1pPxLoZyKJrTCvS3b3sSxAjpI45gVg6MZcXv3EmX3vsA77y6AeMzkoh2eUgxe0kI9nFskkjWTl7NHMKs+Kji9hg4nAMPVEGU/956T19O8aMTxjr5v37jNBv+ouJA9svvNM/ZvZb/SvjMrcsSivxK5LmInbGLWXb3B+wItCCm3iOSeZpb7Ylfi3ozaeKDMtiriszLss5nwlffxsKy2LWXph/eUyG1yuUgot/C+/+3mRqTzo3toKVkh26SVBSuq8FaUpklur4M8wkwlovPd6YfJ7JP9n4KMy+bNCGIRZzglGYk8pfv3YGt54/lTOn5DGvKIdTctPQwB+L93HxH9Zwxi/e5Cf/2M6RkyEWjBcSG6fLiO3BVbDhT6aNpGUt21l+m4lHb3vWv80qlYrWlR2KSStMx6Wj7xuLOecUf1lXf2BZzO/fZz7bGV/v/bHSRkJSphGlQbyIA6am+OLfmJawA91ScuYlxgMVCVlj4Usv+WvP4w2H0/wW9r85qL2zxWJOQFKTnNz2ke4XzqrGNt7cVc5r24/z+HtHeHTtYS5dMJabVsSgt68wtFj8JVj1S3jlO6Zz1qzLuu9TtMTUlm74s7+JSeVuU3JluST7yvgzTMLNgeLeJX5FiyXMVfuNZdnTspXhUMokD+aMi8yNm6jEq/XbWxZ+wfw2Nv0FzvWt9HZsE2x63HzWnhZJiREizMOI3PQkPrO4iM8sLuJEXQsPrD7A4+8f5vlNpSwa5aQxt4xzZ+STliRfi4QnLRfmfc7nsrvcdOgKRCkj4P/8trkwjV3oy8ie2vuknUCSM0zJ2s5/mJrgYJZ7LLFc2WAS6PrKVX8L3ylNGFrknGJc2pv+YsIV6x+E0g3muzP/8q7tYvsJcWUPUwqyUvjRJ2ax5rvnceM5k9lb7eHmJzay+KdvcPPjG3l1WxmtHbKUdkJz+tdN9nVPPbrnfc64ajf82Tyu3N3zGsy9YeI5xp0O/ZuRDT5rRxlPQG9WPAtEqbhYjUiIMYuvMUl0f7/RdHW78H/gW7sGRJRBLOZhT15GMt/52AyWJJeRcspcXtlaxqvbjvPy1jKyUlxcNG8sn1pUyJLxIyRhLNHInw7fDLOmb2qOqfHd+iyc9yNTYjQvxolOk1aYTmYAYxbG9tiBKAVnftPEYuX7LIRi+kXw0Z+aieKEswb8uyLCLADgUIozJudxxuQ8/vPi2byz/yTPbyzh75tKeXLdEeYWZvPDi2Zy2qQgPWyFxGbxl0xJlVWvG6vEL4uiJSbOnToieI/kWPORH/f/ewhDG6fLdNYbJESYhW64nA7OmZbPOdPyaWzt4KUPj/GbN/by+QfeY+XsAr534Uwm5nVtbqG1pry+lV3H63EoOHNKnljYicK400yHp/UPmsfR1jCHw+k24m+P/wrCMEaEWeiR9GQXnz/1FC6ZX8hDaw5wb/F+PrpzFQVZKaQmOUlLcuJQioOVjV3agf7ssjlctSxGmbvC4GIlgb36PUD1T6lLomX2CkIfEGEWIiI1ycnXz5vK504dx5/fPcTx2laa2ztobPXQ7vFy0bwxTC/IZProTO4t3s9P/rGdWWOzWHRKFIsRCPHLvM/D6z+GrDH+kiNBEPoFEWYhKkZlpvDtlT0vqzZjdCYX/2ENN/1lIy/dciZ5Gf1f9yf0M2m5pp2mhCcEod+RPH8h5uSkJXHvFxZT3dTG15/YSIfHS7vHy3sHTvLLV3fx0JqDtLRLKdaQ45xvw9n/MdijEISERyxmoV+YU5jNzz85l2/9dQufuvddDlY2Ut/SgdOh8Hg1j7x7kNsvnMmFc0ZLkpggCIINEWah3/j04iJ2ltXxytYyPj5nDOfOyGf5lDy2HK3lpy/t4KbHN7J0Qi7Lp+TR0uGhtd2LRvOF08YzZVSQTlSCIAjDABFmoV/54Sdm8cNPzOqy7cypebx8y5k8/cFR/vf1Paw7VIXbqUh2OWnzeHluYykPXrOEUyd0X8yguc1DQ2sHLe0emto8jMxIkhi2IAgJhQizMCi4nA6+cNp4rjj1FLxa43KadIejVU1c8/A6vvDg+/zu8gV8bM4YtNasPXCSP761nzX7KrscJ8np4MtnTuDmc6eQleIejI8iCIIQU0SYhUHF4VA48MeYx+Wm8eyNZ/CVP6/nxsc3cv1Zk1h3qIpNR2rIz0zmG+dNIT8zmVS3k7QkF2/uKuf+VQf46wclfPOj07ji1HGdIm9R29TOQ2sO8NT6o1xzxgRuWjFZ4tqCIMQtIsxC3JGbnsTjX1nGrU9t4v7VBygakcpPL5vDZxcXkeLuuqrRRfPG8KUzJvCzl3fwo79v4+7XdpvWolNGsnj8CP617QQPrjlAfUsH0woyuOtfu9lZVsddn5lPalKMVkgSBEGIISLMQlySmuTk3qsWs/loNfOKcnA7Q1f2zS3K5qnrl/HmrnJe2Xqcd/ZV8vLWss7nV84u4NbzpzFzTCb3rTrA//xrFwcrG3ngi0sozJFmGYIgxBdhhVkp9TDwCaBcaz3Ht+1pwGqYmwPUaK0X+J67HbgO8AC3aK3/FfthC8MBp0OxeHz3BLBgKKU4f2YB588sQGvNgcpGNhyqZtbYLOYU+hexv3HFZGaMzuSWJzdx8e/X8P8+Oo3PLRlHkktK+gVBiA8iuRo9AnzMvkFr/Xmt9QKfGP8NeA5AKTULuByY7XvNH5VS4i8UBhSlFJPzM/jcqeO6iLLFuTNG8fzNy5mYl84P/76N8+8u5m8bSvB4gy9439DawcsflvHyh2VU1Lf29/AFQRjmhLWYtdarlVITgj2nTAbN5wBrxfFLgae01q3AQaXUPmApsDY2wxWE2DBlVAbP3nA6xbsr+NVru/nWX7dw9+t7WHBKDrPGZDFzTCb1LR28srWM4t0VtHZ4O187KT+d0ybmUuj1cLZX43B0TSTbfLSGD0tquGxhYUSZ4lprSUYTBKGTvsaYzwJOaK33+h4XAu/Zni/xbROEuEMpxbkzRnHOtHxe3X6c5zeVsuVoDS9/6I9Pj8pM5oqlp/DxuWNwOxXrDlax7mAVL31YRn1LB88dWsUXlo3n4vljWLW7gsfeO8yHJbUA3L/qAL+5fEHQemwwgvzqtuP89z93MXVUBr+7YiHpyZL2IQjDHaV1cPddl52MxfySFWO2bb8X2Ke1/rXv8T3AWq31X3yPHwJe0Vr/LcgxrweuBygoKFj81FNP9fGjdKWhoYGMDOkeFSlyvvw0tWuO1ntxKJic48ARxJpt92rWHGrknXIn+2r81vTYdMV5p7gZm+HgT9taqWzWXDTJzWVT3LhslvXRei9P7GxlZ5WX0WmK8mbNKZkOvrk4hezkxLSe5TsWPXLOomOona9zzz13g9Z6SeD2Xk/PlVIu4FPAYtvmEmCc7XERcCzY67XWDwAPACxZskSvWLGit0MJSnFxMbE+ZiIj5yt63MXF/OTaFWwrreX1HSc4bWIup08e2emW/uInOvivf2znmQ9K2HDSSXaqG6dDoRTsONZIVqqbn146kyuWnsLqvRXc/Pgmfr0F/nztqUzMSx/kTxd75DsWPXLOoiNRzldf/GYfAXZprUts214EnlBK3Q2MBaYC6/rwHoIQ98wpzA6aZJaR7OJ/PjOf82cW8MLmUjo8Gq/WeDWcfuZIbj53CjlpSQCcN6OAJ69fxrWPrOfT977Lskm5VDe2U93URl1zOy0dXtp8f06HYl5RNqdOyOXUiblMHJlOeX0Lx+taOF7bQpvHS2aKm6wUF1kpbto8Xqob26hqaqOuuYMzp+SxfMpIiWsLQpwSSbnUk8AKIE8pVQL8WGv9ECb7+kn7vlrr7UqpZ4AdQAdws9Za1vcThjUrZ49m5ezRYfdbMC6Hv914Bt96ZjN7TjSQk+qmaEQa2WPdpLgdJLnMX2u7l41Hqrl31X7+8Na+qMbiUHDfqv3MHpvF186ZzMfnjO7WKU0QhMElkqzsK0Js/1KI7XcCd/ZtWIIwPJmYl85zNy2PaN+G1g42H6mhtKaJgqwURmenMCYrlWS3g7qWduqaO6hraSfJ6SA3PYkRaUkoBX/fVMoDbx/glic38cucVC6eP5aPzipg4bicLhnm7R4vHq/u1m1NEIT+RVJABWGIkpHs4sypeUGfS3E7GZUZ/HWXLz2Fzy0Zxxs7T/DYe4d58O0D3LdqP/mZySwZP4KTDW2UVDdxvK4FgGkFmcwvymHBKTlMzs8gO9VNdqqbnDR3xKKttXHjC4IQHhFmQRiGOByKC2aP5oLZo6ltbqd4dzmvbT/B1tJaRmelsGzSSIpy0wD4sKSGf+04ztMfHO12nFGZycwtzGZ2YTZzC7OZPy6bUZkpnc+3dnj4x5YyHl5zkD3Hm7iueSc3nycrgQlCT4gwC8IwJzvVzaULCrl0QeiWA1prDp9soqS6mdrmdmqa26hpamd/eQNbS2t5a3c5VuO0wpxUFozLoSArhRe3lFLZ0MbUURksKnDywNsHeHZDCf/vgml8fkn3lcAEQRBhFgQhApRSTMhLZ0KIMq6mtg52HKtj89EaNh2tYfORGo7VNnPu9FFcu3wiy6eMZNWqVYycspCfvrSDHzy/jXuL93P2tHyWT87j9MkjyUh2cehkI/vLGzhQ2YjHq0lPdpGZ7CIt2UlLu5f6lnYaWjpo6fAwKjOFsTmpjM1JYUx2Kjmp7m5d2OwcqGjgifeP8OKWY8wem8UPLprJlFD+fkEYRESYBUHoM2lJLpZMyGWJrctZa4eHZFfXGPTcomye/toyXt12nL9uKOGFTaU88f4RlAKHUiH7lQfiUBC4q9OhGJHmZmR6MrnpSeRmJJGXnsSI9CTWH6rinX0ncTkUZ0/LZ/2hKlb+5m2uXjae2z4ytbNsTRDiARFmQRD6hUBRtlBKceHcMVw4dwztHi8fltTw7r6TtHm8TBmVweT8DCblp5PkdNDY6qG+tZ2mNg8pLicZKS4ykl24HIqTjW0cq2nmWE0zZbUtVDW2cbKxjarGVk42tLHzWB0nG9uobW6nMCeV/7hgGp87dRyjMlM42dDK3a/v4dG1h3huYwnTCjLJSjW13xkpLtxOB06lcDoVOalJnDF5JHMLs7tZ5F6vRiliXhPe1uFlX3kDFU1e6aU+DBFhFgRh0HA7HSwenxtyec/sNAfZacETxfIzk8nPTGb+uJwe36Pd48XlUF3EbWRGMnd+ci5Xnz6eB1Yd4HhdC+X1Lewr76C+pZ0Or8bj1XR4NW2+BUxy05M4c0oehSNSOVjRyP6KBg6fbCIt2cmCcTksGJfD/KIcGts62FfewL7yBo5UNeF0KDKSXaQlOcnPTOa6Myd16+ymteZf20/w+o4T7CirY195Pe0e4xL49eY3WTJhBKdOyOVjc0ZTkJVCJGitaWrz0NDaQX1LB/kZySHPpRBfiDALgpDQuHtIMJsxOou7P7+gx9dXNrSyZm8lq/dUsHpvBTVN7YwfmcbEvAzOmzGK2uZ2Nh2pYdWevVgVYUpB0YhUJow0AtzQ2kF5XSur91Ty9PqjXLt8Il8/bwqZKW42HK7m56/sZMPhakamJzGnMJsV0/OZOSaL9Vu2U+vOZf0hs3DKT1/awSfmjeG6Mycxt8h0m6uob+XDkhp2HKvjcFUTR6qaOHKyifL6li7u/lS3k2vOmMD1Z08iNz28694S9sqGVqqb2mlq66C5zUNzu4eWdi8dHi/tHi/tHs3E/HTOmZrfY4xfiBwRZkEQhB7Iy0jmsoWFXLawEK2NJR0sm7y+pZ0dx+rITHEzKT89aI13eX0Ld726m/tXH+BvG0uZV5TNm7vKGZWZzC8+NZfPLC7qcuys6j2sWLEQMMlrj713mGfWH+Xvm00CW3VjG8dqWzr3L8hKZnxuOsun5DE2J4XMFBcZyW7Sk528uauc+1fv57G1h/jy8omcMXkkrR1eWjuM2B6raeGoT9iPVjdRUd9KS7u322cIxeT8dL5y1iQ+ubBQmtL0ERFmQRCECFFK4XIGtwozU9ycNmlkj68flZnCXZ+dz1XLxvNfL+1g3cEqvvmRaXz17ImkJfV8OZ6Un8GPL57NNz86jb9+UMLLHx5j8YRcri3KZl5RDrPHZvW4bOilCwr5+rlT+M2/9/KHt/YFbeeal5HEKblpLDplBKMykxmZkUxeRjIj0tykJblITXKSluQk2eXA7TR/Lodi9d4K/u/tA9z+3FZ+9a/dnDtjFFNHZTC1IINJeRl4tKamqZ3a5jZa270snZjLyIzkbu/f7vGy+3g924/VsrW0lu3H6hiZnsw1Z4znzCl5IWPt1Y1tvL2vkn/vbWPyvCbG+WrwhyoizIIgCAPMfF9f9N6QleLmujMnct2ZE6N+7dSCTO65chH/cUEj5XUtJLudJDkdJLsdjM5K6fV64JcuKOSS+WNZe+Akj7xziNV7Knh2Q0nI/R0Klk7M5cI5Y5hTmM2mI9W8s6+SdQeraGwzyytkJLuYNSaLzUereeOhE0wZlcE1Z0xg4sh0qpraqG5s40RdC+/uP8mWkprOMMKrd6/ixhWTueGcyTGx3D1ezcnGVsrrWpkyKmNAvAEizIIgCMOMiXnpMV9aVCnFGZPzOGOyaRNb29TOvop6DlQ0kuRydLZy1UDxrnL+ue04P35xe+frJ+Wn88lFhZw6IZd5RTmMz03D4VC0dnh4aUsZf3r3ID/6+7Yu7+lQMK8oh1vOm8qK6fns376J4uocfvPGXv62sYSbV0whNclJiy8ufrKxjUOVjRw62cjBykaa2jy4HMpY/k7VOUlJcTlxOR1UN7ZR0dDaWcb3z1vPYuaYrJiet2CIMAuCIAgxJzvNHTLjftEpI/h/F0xnX3kDe0/Us/CUEYzODp5tnuxy8unFRXxqUSHbj9XR1OYhN93NiLQkslPdXWLytQcc/OHCRVy5tJIfv7id7z23tcuxHAoKfUl5n1xYSGaKiw6Ppt2j6fCaZVWtuHtbh2bO2CwKslIYlZXc2dBmIBBhFgRBEAaFKaMymDIqI6J9lVJB1z0PxhlT8njl1rPYX9GA2+kgxe0kxeUgM8VNkiv+28CKMAuCIAgJh9vpYMbo/nc79wfxP3UQBEEQhGGECLMgCIIgxBEizIIgCIIQR4gwC4IgCEIcIcIsCIIgCHGECLMgCIIgxBEizIIgCIIQR4gwC4IgCEIcIcIsCIIgCHGECLMgCIIgxBFKW2tlDeYglKoADsf4sHlAZYyPmcjI+YoeOWfRIecreuScRcdQO1/jtdb5gRvjQpj7A6XUB1rrJYM9jqGCnK/okXMWHXK+okfOWXQkyvkSV7YgCIIgxBEizIIgCIIQRySyMD8w2AMYYsj5ih45Z9Eh5yt65JxFR0Kcr4SNMQuCIAjCUCSRLWZBEARBGHIknDArpT6mlNqtlNqnlPreYI8nHlFKjVNKvaWU2qmU2q6UutW3PVcp9bpSaq/vdsRgjzWeUEo5lVKblFIv+R7L+eoBpVSOUupZpdQu33ftdDlnoVFKfdP3e9ymlHpSKZUi56srSqmHlVLlSqlttm0hz5FS6nafFuxWSq0cnFFHT0IJs1LKCdwDXAjMAq5QSs0a3FHFJR3At7TWM4FlwM2+8/Q94N9a66nAv32PBT+3Ajttj+V89cxvgVe11jOA+ZhzJ+csCEqpQuAWYInWeg7gBC5HzlcgjwAfC9gW9Bz5rmmXA7N9r/mjTyPinoQSZmApsE9rfUBr3QY8BVw6yGOKO7TWZVrrjb779ZgLZiHmXP3Zt9ufgcsGZYBxiFKqCLgIeNC2Wc5XCJRSWcDZwEMAWus2rXUNcs56wgWkKqVcQBpwDDlfXdBarwaqAjaHOkeXAk9prVu11geBfRiNiHsSTZgLgaO2xyW+bUIIlFITgIXA+0CB1roMjHgDowZxaPHGb4DvAF7bNjlfoZkEVAB/8rn/H1RKpSPnLCha61LgV8ARoAyo1Vq/hpyvSAh1joasHiSaMKsg2yTtPARKqQzgb8BtWuu6wR5PvKKU+gRQrrXeMNhjGUK4gEXAvVrrhUAj4oYNiS8ueikwERgLpCulrhrcUQ15hqweJJowlwDjbI+LMO4gIQCllBsjyo9rrZ/zbT6hlBrje34MUD5Y44szlgOXKKUOYcIj5yml/oKcr54oAUq01u/7Hj+LEWo5Z8H5CHBQa12htW4HngPOQM5XJIQ6R0NWDxJNmNcDU5VSE5VSSZjA/4uDPKa4QymlMLG/nVrru21PvQhc47t/DfDCQI8tHtFa3661LtJaT8B8p97UWl+FnK+QaK2PA0eVUtN9m84HdiDnLBRHgGVKqTTf7/N8TO6HnK/whDpHLwKXK6WSlVITganAukEYX9QkXIMRpdTHMfFAJ/Cw1vrOwR1R/KGUOhN4G9iKP2b6fUyc+RngFMyF4rNa68BEi2GNUmoF8B9a608opUYi5yskSqkFmGS5JOAA8GWMMSDnLAhKqZ8An8dUTWwCvgJkIOerE6XUk8AKzCpSJ4AfA38nxDlSSv0AuBZzTm/TWv9z4EcdPQknzIIgCIIwlEk0V7YgCIIgDGlEmAVBEAQhjhBhFgRBEIQ4QoRZEARBEOIIEWZBEARBiCNEmAVBEAQhjhBhFgRBEIQ4QoRZEARBEOKI/w92gL00nf8hEwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plot_history(history)" ] }, { "cell_type": "code", "execution_count": 195, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1010/1010 [==============================] - 1s 514us/step - loss: 184.0632\n", "13.566989419333122\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACv+ElEQVR4nOy9eXxV5bU3/t1nyhkyj0AICQmQMAdEHFBBEYda0XqrqLe/l7f3rdX2vW0Vr9p6ax3aawerrb23t9b2vr32WquiVuygFVFQUFSEMBNIIGQg85wz5Ez798fzPDvr2Sd7ewwJBLK/nw+fFZJz9tnnnL3Xs561vuu7FFVVYcGCBQsWJg5sp/sELFiwYMHCqYXl+C1YsGBhgsFy/BYsWLAwwWA5fgsWLFiYYLAcvwULFixMMFiO34IFCxYmGCzHb8GCBQsTDJbjt2CBQFGUOkVRgoqi9CuK0qMoyvuKotyhKIqN//2/FUVRFUVZSp4zQ1EUlfx/s6IoIUVRisjvLlcUpe6UvhkLFgxgOX4LFhJxraqqaQCKAfwIwH0A/ov8vQvADz7lGH4AD4zN6VmwcHKwHL8FCwZQVbVXVdXXAKwBsFZRlHn8T88AWKAoynKTp/8CwC2KoswY6/O0YOGzwnL8Fix8ClRV/QhAI4CL+a8CAB4F8G8mT2sC8BsAD43pyVmwMAJYjt+CheRwAkA2+f+vAUxTFOVqk+f8EMC1iqLMHdMzs2DhM8Jy/BYsJIdCsNw+AEBV1UEA3+f/lOGeoKpqO4D/APDIqThBCxaSheX4LVj4FCiKci6Y49+q+9PvAGQA+ILJ0x8DcCmAc8bm7CxY+OywHL8FCwZQFCVdUZTPA3gewLOqqu6lf1dVNQqWw7/P6BiqqvYAeBzAvWN3phYsfDZYjt+ChUT8WVGUfgANAP4VwBMAvmzw2D8CaP6U4z0JIDZ6p2fBwslBsQaxWLBgwcLEghXxW7BgwcIEg+X4LViwYGGCwXL8FixYsDDBYDl+CxYsWJhgcJzuE0gGubm5aklJyek+DQsWLFg4o/DJJ590qKqap//9GeH4S0pKsGPHjtN9GhYsWLBwRkFRlOPD/d5K9ViwYMHCBIPl+C1YsGBhgsFy/BYsWLAwwXBG5PiHQyQSQWNjI0Kh0Ok+ldMKt9uNqVOnwul0nu5TsWDBwhmCM9bxNzY2Ii0tDSUlJVCUYVVxz3qoqorOzk40NjZi+vTpp/t0LFiwcIbgjE31hEIh5OTkTFinDwCKoiAnJ2fC73osWLDw2XDGOn4AE9rpC1ifgQULFj4rzmjHb8GCBQtnNfydwLYnmR1FWI5/nKCkpAQdHR0n/RgLFiycRah6Ftj4PWZHEWdscdeCBQsWzjr4O5mTr/wS4MthFhiyowQr4j8J1NXVoaKiAl/5ylcwb948/OM//iPeeustLFu2DDNnzsRHH32Erq4uXH/99ViwYAHOP/987NmzBwDQ2dmJK664AosWLcLtt98OOhDn2WefxdKlS1FZWYnbb78dsZg1vMmChQkBfYTvywGWfYvZUYTl+E8SNTU1+Na3voU9e/bg0KFDeO6557B161b89Kc/xaOPPooHH3wQixYtwp49e/Doo4/if/2v/wUAePjhh3HRRRdh165dWL16Nerr6wEABw8exAsvvIBt27ahqqoKdrsdf/jDH07nW7RgwcJYov5j4D+WMFv5JWDVI6Me4esxoVI9Xf4w1u9owI1LipDtc43KMadPn4758+cDAObOnYuVK1dCURTMnz8fdXV1OH78OF5++WUAwGWXXYbOzk709vbi3XffxSuvvAIAuOaaa5CVlQUA2LRpEz755BOce+65AIBgMIj8/PxROVcLFiyMQ7z2NaDjCLP/vINF+GOMCeX41+9owA9fPwQAuH152agcMyUlRfvZZrNp/7fZbIhGo3A4Ej9iQcEcjoqpqirWrl2LH/7wh6NyfhYsWBjnWP0r5vRX/+qUveSESvXcuKQI37m6AjcuKTplr3nJJZdoqZrNmzcjNzcX6enp0u9ff/11dHd3AwBWrlyJl156CW1tbQCArq4uHD8+rLKqBQsWzlQcfgv4SRmz085lkf60c0/Zy0+oiD/b5xq1SD9ZPPTQQ/jyl7+MBQsWwOv14plnngEAPPjgg7jllluwePFiLF++HNOmTQMAzJkzBz/4wQ9wxRVXIB6Pw+l04pe//CWKi4tP6XlbsGBhDPHq7UCgg9l7a0/5yyuUTTJesWTJElU/iOXgwYOYPXv2aTqj8QXrs7BgYZyj/Qjw5v3AFY8CeTNZpP/q7cD1vwZmXT5mL6soyieqqi7R/35CRfwWLFiwcFrw5v3AkTfZz/+4njn70xDpC1iO34IFCxbGAh8/A7x+N3D14yzSB4bsacaEKu5asGDBwinD63cD8QizeTNZpJ8383SfFQDL8VuwYMHC6IGKql39OGBzMjvOYKV6LFiwYGG0ICQXANaIde7a03s+BrAifgsWLFgYKd75CfBQJrPAKZNcOFlYjn+E6OnpwX/+53+O+eu8+uqrOHDgwJi/jgULFkaALY8CULnFmImqjTYsxz9CfFbHr6oq4vH4Z34dy/FbsDDO8P8+DzyUwezy+wEo3J45sBz/CPHtb38btbW1qKysxF133YWVK1di8eLFmD9/PjZs2ACAyTbPnj0bX//617F48WI0NDTg+9//PioqKrBq1Srccsst+OlPfwoAqK2txVVXXYVzzjkHF198MQ4dOoT3338fr732Gu655x5UVlaitvb08X4tWLDAUf/ekL30XuChHmbPJKiqOu7/nXPOOaoeBw4cSPjdqcSxY8fUuXPnqqqqqpFIRO3t7VVVVVXb29vVsrIyNR6Pq8eOHVMVRVE/+OADVVVV9eOPP1YXLlyoBgIBta+vT50xY4b62GOPqaqqqpdddpl6+PBhVVVVdfv27eqll16qqqqqrl27Vl2/fr3puZzuz8KChbMef39QVR9MZ/a/rmE//9c1p/usPhUAdqjD+NSJxerRT7cZJaiqivvvvx/vvvsubDYbmpqa0NraCgAoLi7G+eefDwDYunUrrrvuOng8HgDAtddeCwAYGBjA+++/jxtvvFE75uDg4KidnwULFk4S7/9syD7Ue3rPZRQwsRy/nmo1SvjDH/6A9vZ2fPLJJ3A6nSgpKUEoFAIA+Hw+7XGqgS5SPB5HZmYmqqqqRu2cLFiwcBL4jwuBjv1A7lzgn98HLryLOf0L7zrdZzYqmFg5/lGkWqWlpaG/vx8A0Nvbi/z8fDidTrzzzjuGMsoXXXQR/vznPyMUCmFgYAB//etfAQDp6emYPn061q9fD4AtELt37054HQsWLJwidOyX7RUPsUj/iodO1xmNKsbU8SuKcpeiKPsVRdmnKMofFUVxK4qSrSjKRkVRjnCbNZbnIGEUqVY5OTlYtmwZ5s2bh6qqKuzYsQNLlizBH/7wB1RUVAz7nHPPPRerV6/GwoULccMNN2DJkiXIyMgAwHYN//Vf/4WFCxdi7ty5WoH45ptvxmOPPYZFixZZxV0LFsYSj81mbJ3HZrNIHxiyZxnGTJZZUZRCAFsBzFFVNagoyosA/gZgDoAuVVV/pCjKtwFkqap6n9mxziZZ5oGBAaSmpiIQCOCSSy7B008/jcWLF5/UMc/Uz8KChXGFhzLIz2d+Hh8wlmUe61SPA4BHURQHAC+AEwCuA/AM//szAK4f43MYV/jqV7+KyspKLF68GP/wD/9w0k7fggULowTfFNmexRiz4q6qqk2KovwUQD2AIIA3VVV9U1GUAlVVm/ljmhVFmVCTxJ977rnTfQoWLFgQ+PEMINgOePKA+2pO99mcMoxZxM9z99cBmA5gCgCfoihJV1UVRfmqoig7FEXZ0d7ePuxjxipNdSbB+gwsWDgJBNtlO0EwlnTOywEcU1W1HQAURXkFwIUAWhVFmcyj/ckA2oZ7sqqqTwN4GmA5fv3f3W43Ojs7kZOTA0VRxuxNjGeoqorOzk643e7TfSoWLJw5+MEUIOoHHD4W6YuIfwJhLB1/PYDzFUXxgqV6VgLYAcAPYC2AH3G7YSQHnzp1KhobG2G0G5gocLvdmDp16uk+DQsWzhxE/UP2uydO77mcJoxljv9DRVFeArATQBTALrAIPhXAi4qi/B+wxeFG46MYw+l0Yvr06aN1uhYsWDhb8VAegDAAF/BQO4v0RcQ/QTGmnbuqqj4I4EHdrwfBon8LFixYGHPEEYaN2Ika5VNMLMkGCxYsTAyQKD8AB7zxKAI2B1JP93mNE1iO34IFC2chwpoN39OOP+xowI1Lik7rGY0nWI7fggULZwdo5y1cEBF/ts+F25eXnaaTGp+wHL8FCxbOPjz02dl+Xf4w1vOdQbbPNQYnNX4wsdQ5LViwcEajyx/Gr7fUossfZhG++DcKWL+jAT98/RDW72gYleONZ1gRvwULFjSM96hXOGcAuF3/x5MUVrt8TgG2H+3E5XMKTuo4ZwKsiN+CBQsaRhr1SpH4CJDs8//xncU46r4V//jO6IsbvnWgFe9Ut+OtA62jfuzxBiviHycY75GWhYkBwXz5NAaM/np95v1jeHJTDQLhKO5aVZ7UcyikSN6kEJtKbNc97UPHS+7tmSLZ9342wHL84wTJXvgWLIwlkmXAJF6vQi/LWDdL/xy6EJg53YGHMuAFEAAkHn6y94x+wTFagCYS+8dy/OMEEynasDB+YRaVmznqtReWwOuyJ1y/Zs/RO24jp+sFy0l7IUf5QutFHK+2fQA/+MsBfPfzc1CWN7REPPN+HZ7cdASBcAx3rZo17oKs07Hbtxy/BQsTHNTxmDlF+jdaCM32yVx5s+PRYxoGO7pJWAFAi/hpSmnthbJW1w/+cgDvVLcDOIDffXkp+YsqWfq6I3G6o+2oT8dCZDn+cYLxFoVYmDig157ZzpP+7RvP7cS22k6Eo/vwh9vOlx5HnfPqykJtgdA7zO5AWFo8jPCbZR/jyU1H8K2VM9HNi7/d/kjCPfPdz88BcIDbIay9cDq8Lod2/nSR+t6Gffj9B8fR1BPEnZfP0s5PfC7DpYdG+149Hbt9y/GPE1ipHgujAaN0hxnotafPc+udtfjb3MIMbKvtxNzC4Tj0Q/n+16qa8E51OxZMbYLX5ZAcJo3QH7+pUnsdF6DL6Q9F7Ida+gAAh1r6cP2iQpTl+XBuCSvtluWl6iJ9BrP3tKWaNXptqW6H22HH0+8dRedAGDmpLulck10cR4LTUVuw6JzjBOLLtxg9Fk4Gwpn+4C8HpN8nS5esbR/Al3/3EWrbBwCw6P2Hrx/CM+8fk45xx/IyfOfqCtwxjMNaVJSJbJ8Ti4oyQReBy+cU4NLyPI0nf8OiQnicNtywqBCux/Jw26bFcD2Wh18s3Y7S0HP4xdLtAFjE/p2rK7D2wumomJQOAKiYlI5/f/sIatv9+Pe3jyScg9n7pZTVn62pRFmeDz9bU4kDzawP4EBzL25cUoTvXF0hOXnx/9G+V0+WCjsSnNWO/3R8oBYsnE589/NzcGl5XkK6w4yf/8z7ddy51w2zcAw57mQ5/t//6wF0+SP4/l8PYHXlFFxanofVlVMSePI/+Xs1gpE4fvL3albAtbFIf38Tc8DCyhiK/tdeUIJsnxNrLygBIN/vdMHSgzrxxcVZ2HT3CiwuzsLD183DpeV5ePi6eabvb7T9itnnOlY+7KxO9eir+RYsnG3Qp2KM0h369AR9HnWm37hsJuq7AvjGZTMByNF7UY5Xy8nrefv0eHeunIl7X96DO1fO1Jz9+aWtCefwevAL8LqAQBBSAffuK8rR8tJu3H0F6wegr1XV0AMAqGrowdGOALr8Efx26zGsqMiX7nczeqlRITrL68L5pTnI8rpMmUAARkQjNYJZ6misan9ntePXV/MtWDjboHdQyXLU6fNWVxZiT2MvVlcW4rWqE6ht92PL4XYsLs6SoveblhRpTjwYjgOAZp/aXKvlx4+09SMYieOVXU14/KZKAMM7NRrl/+bSnfjh64fwnasrgLou1Lb78XFdFxYXZ6G5JwQAaO4JoZNHvp3+MM4vzcHWmg7MmZzGzyWq2TtWzBiWXqrHU5tr8PR7x9A5MIic1BTi3I2ZQAKfdmx9XcBoETDL8Y9V7e+sdvz0grY6Yy2caUjumpUdVDIdtPrnPbOtDu9Ut6Moqw5upx0AEAzHAAAPXDMH69ZX4YFr5kgR/2tVbIqVx8Uev7uxW7OP3rAAgl1DndrAQxm4LQ4E3sEQTTMOBGyyg6vr8EtF2601HZq9aEYOXvykCcvKcrBm6TQcaRvAmqXTAAChSFyzyRZMDzT3a/YXt8zQzgGAxAQygtl3RCmvI43cx6rwe1bn+GlO8VQq742H2sJ4OAcLn45ki5BGoIVPhqEUBz22/nXo8949wpgt7x5ph8fFXIKw1a396PJHUN3aL91Pay8s4c8vAQCU86Jr+aR0KWVCi8U0wgcYTbM0/Bx+s+xj6T09sfEwatv9eGLjYQBApsep2UxfCvvZl6Ixhl6ragIAifFj9t4pHr5uLs/rz5V+ry/g0u+C1kTMviP6eemLxacbZ3XET1fcLC/7Akfrgx8N3ZGx3IVYfQFnBsy+p2S2+fqIcHXlFOxp7MHqyilJ56WfuKkS97y0G499cSEyvE5tlwwkKlYaqVdmeZ2apbuO27YtxX/FgcAvIUX4qZDrB/Q5pblebK0BSnPZEuHmuwq3yw6Pky9MThu6/REA0OzkDLdmR5KTN6sJ0u9iqGCsJt33MN7kIM5qx/9a1QnOIT6Bu1bNGtUPXn/DUv50snm5sSw+W30BZwbMukiTcRb65xgVU2mzFJCYf75pSRFKcn145v066Z6haaDCLI927EA4KqWUaJPUM+/X8bNTpCj/R+dux9PvHcVXLy7F/QAe2LAPXf4IHtiwD1fPmwyA1QyyeFQv7JKSbOys78GSkmwpffu9V/cBgEY9/fBYl2YfXD1P+nzpz/Qzo70EC6aKnoTEmiD9Luh7NfuOxpuzpzirHf9YFnf1jlXfLp7cFz525zeeLzoLQ6Df0882VieZnx8CLaref81s6brcdqQdP3/rMKZkuFHT7pcculH+WX9NvnWwVbP/cetiLff+xr4WAEPFXfo+btt2Lr7lBgLb5Cj/qnmTsOlQK66aNwkAkJeWgobuIPLSUhCKsppCKBrDHSvKpMLsHcvLkONzaYuKeB969o/KT11VE69/+jN9v/puX6OaoMyCGsKZWjs8qx2/vlV7NKG/sIzaxU/X+Vk49UjWCRg/zpiCaPQc2nQEQIrs7315D4KROO59eQ++ekkpfwbzjnQ3vLpyipQSpddkbmoKTvSGkJuagh+/cQi17X78+I1DKJ/EmDTCYVNQUbV3bz6Cdeur8MSNlXiGNFz97stL8c3LZmLd+ip887KZ+O3WowCAo+0DplIOougcDMfwsY79c+XcSfj99uO4cu4kw88eSEzBCPrrr7fUajsaAIadu/Rv+sedKTirHX9dhx8v7mjAuSXZo74aJ8ufNoMVlZ9dSLauYkTz0ytcJqMP8/B187QUIyDvPH/yDwtw78t78JN/WIA5hRlS7p5G9lRWgWrrZPtcqCzKxJ6mXlQWZaK6tU97zj7eXCUslU4GhqL83249yrn2R7FuVbnUI/Cb99jffvPeUdx9RTmae3dj3aryhN0zTYnS4rN+133nqlkozPIkBFJ6GQuj+86MsvlpdM7hgrfxvBs4q1k997y0G7Xtftzz0u5RP/ZEms9pYXjo2SLJMjeodAG9jvRMEsoeObckW0uzmLFUaOfuspl5uPPyWVg2My+ha3Z1ZSHvqC0E3WnoO3dpYfXRGxbg0vI8TteUU0I0yn9k7rsoDT+HR+a+izmTWd58zuQMvLGvGbXtfryxrxkAUJjp0SyN3vXdx5SfT9lIyUonGMlY6EGPpz+20d/MzmE8+4izOuKnHOTRhlU8taCPwo06QvVOwaybVcaQc6W6NOeX5mivu/1opxQd053nr7fUGgqL0XOgTKDVlVMgpSxJ4pwe+/dt17Cu2zYAkDn5HxztBMDskzcv0vL6P36DncvuRrZLON4V0Oy3PzdbOz+afgEAj8sh2WS/DwF9GvZkI/Fkn0/rKOMt+j+rHf/7tZ3o8kfwfm0nVlTkj+qxrTSNhZG22uu17I2uI1oD2nakHduPduKGRYVYNjNPe13G0hm+tmRGJ6Q7CLoI3L68LCmnOxwnX0gnL+4YQEN3EIunZUoLVnlBKj481oXyAqa5qf+/EWgKzKwb1mhYuj4Na/TdJKtsmmxKj36uwPiqBZzVjl9f+DpVGG+ru4WxwUhb7SWHMAeGzoYWOR/feBjBSByPbzysOX4AUrOUGfRO7fE3q1Hb7sfjb1bjkevnaa+jfxzdDSTk8TEknUw5+dt5xN/SN4j7rqrQ8vqCCeR2Mrfjdg3ZZDuOZT69TIemn2vZ8qHPUv+ejL4b40EuxudghpHIPJwqnNWOX1/4OlUYDw1cFk4vzBYFGpmaORv6t6Ul2ajrDGBpSbZ0fTV1B/D77fVo6g7gkevnS8+njnFPY4/0OlRPnzJ89I+jf/sWhvL4todYMCXc60N/3o8ufwQP/Xk/LpmZq0XyNHevB23G0ncc0/vCeIqXXGcwivj1n7HRd5MsMy/Z3b4ZpfR046x2/A2dAexu7EFDZyDpoRSjgeQbuJLVVbFwNoFGpmbOhv7tmW11AAC30y45uP/z30zu4N0jTM/GSHVT/zpXzZ2ETQdbcdXcSdhyuM3wcbdtOxffciVy8sM653zJzFzUddbjkpm5UgOWPkIHhvR9aDMWo5Hatc5Yel/Q90ujdz0dmi5Say8s0c4vWYc+EmbemYqz2vF/8/ld6AtF8c3nd2HPQ1eestdNPv9vzNu2cPaC5teThehOrW0fkBaOh66di3Xrq/DQtUxrhkbH1LHqnRrNvX/jspn4y55mLJ+VWAejufz/U7wR71S349LyPBRtPIzfbz+Opu4gHrl+HtYum46G7iDWLpsuOXGartLTVY076+X7gr7ftw+14cNjXQiE9+JXXzpHd7ZEeE63eND3PpIpZWcbzmo659Qsj2THG/RCVxbGJ0Zb8I463Qc37Mc71e14cMP+hNehNMTbLi5Fts+J2y4ulWijVEQNkCmlL3zcgHeq2/HCx4l0wm9cNhNleT5847KZ0vnoqY8BAHFuKc2SCrsBQ078taoTEsXx/lf24p3qdtz/yt6Ecxianyt/rnR4C6BfKIecu54uaURR1SMZeqfZd342CCCe1Y5/SXG2ZMcbzsZxi2fDTaHHaPOxqdMVQmSluV48xemXT22pBSA72mc+qEOXP4JnPqiTrhv9OEP6t6p6JpUsLMUb+1sYp35/i7wIHF+Fo+5b8e/HVwEADn+5DqvSNuDwl+uk5z907Vxk+5zaToNy7eVrYMhR69+faAirbpXVNOkiAsgLJe0l0O+caK+CfvGgMJpSJk/wGuqh0INeD2fq9X5Wp3rcvHjkdtqsQuopwtmoCnqyPRv6a2/L4TY+7KQNUHhEqijYUcfYMMJSrL2gBLsbe7D2ghLpePp0CUXltCx8VNeNymlZCcejr+Vx2rXhK5UYKuACwF0vVOF4VwB3vVCFSRluLc2ycGqmRJWmtE96DXxt+QwcaavC15bPwG/eY7IMYqRieUE6PjzWjfKCdFO9IJqjpykrJvc8JAFBawFGDB/AmAlldg4U9Ho4U6/3MXX8iqJkAvgtgHlgn+A/AagG8AKAEgB1AG5SVTUxJBkFtPYNavZM/YLONJztjW16sS7q0I1yx/prr7mXT5TqDeFETxAA06jRpyfu/ONO7D3Rj47+nfC4HOjyR/Cfm2uwcnaBoYOi57fm3CIcae3HmnOLsPN4tya9vLg4C047K7A67XbDAm4qgMqiDBzvCqCyKAMN3YzIGYnFNMqmsDR/TwepPLGxWpNseOR6Pctu6Nz11w0t2ho5av2YSOrsjRg+w30fAmbnQEFreGfq9T7WqZ4nAbyhqmoFgIUADgL4NoBNqqrOBLCJ/39MsJmzFTYfbku6nd7CyeFsTF/JQziGhnjrUxdGuWN9SuIjLh/80bEuacD3DL5YCHu8K6hZOl2KXsvLZ+WjLM+nFWbp+QlJ5We21WHdi1Wobfdj3YtVAID7rqpAWZ4P911VIRVwd9x8BEuc67Hj5iMAgI6BsGaXFOcAAJYU56Ctny1ewooibncgLKVmSnPZeynNTdWidbEoVrcOSFYgUbpi+MHpegkImvaiaR8zaQ06KGYkOFOv9zFz/IqipAO4BMB/AYCqqmFVVXsAXAfgGf6wZwBcP1bnsGJWnmSTwZmas7MwdpCDhqGofHcDHzfILc2VU1BVS4ANPinL83E75AyphAEAXFqep1kHC9DhsA+JD9Z1+PHExmo+raoaAPubsO9Us8Dnneo2XMKbvoSd9bsSbOy9DrN+V8IKuHEW7f/i7cPo8kfwi7fZ9CtaVL5jRRm+c3UF7lhRhimZbOiJsHTRo58D1frRo7wgTbNmOXU6cIU6aiH9IKzRxKunNtewBXpzDTsOWaToedMFRl/XOdv8wlhG/KUA2gH8TlGUXYqi/FZRFB+AAlVVmwGA22G1FBRF+aqiKDsURdnR3t4+ohMoSPdo1uzCohiNQt7ZdpFYGAItGi6cynLnwr66qwm17X68uqtJek5rX1CyJbk+bfAJdWTUEQLy9VuUxbLuRVlefO3ZT1Db7sfXnv0EOTzSFFbw+d890oG5U9g4xLlT0rF2WQkuLc/D2mUlAGSa5iPzuKjavHdR18EWHWFFquaJjdVSdPvda+aiLM+H717DirtrLyhBts+JtReUyE1bJBO1+VAbFn//TWw+xBakLJ9Ts9V8bGJ1S19CFL7vRK9mqaPWf17lBWnI9jm5HTpXOlcXkBcpudA7tKjrMwTjWXBtJBhLx+8AsBjAr1RVXQTAj8+Q1lFV9WlVVZeoqrokLy/5iJ2ivstPbGIudLiZnKOREkp2kRlLWIvPZ0Oys2/pnNc1S4twaXke1ixl1wqlOFIn18BTNsL+fGM1fvj6Ifx8Y7WO7ihfo6FIVLM763sAADvre9AXYhFwXyiCHcfZbkPYe68sh8Om4N4ry3GohTm6Qy39KPhlIf7r2CoU/JLJMtMo/93D/LwPt6M3yI4tbE3bgGQFpAI1gN9uPcZz+ccwJcMNj9OGKRluadG768UqdPkjuIunmyj98h2+GLxzqA3fe3Uf3qlu1yZsRWNxzRoxcgDg+389gC5/hNuh73Pdqlkoy/NhHS9+02PQ+gGlV+tTONQvnA331lg6/kYAjaqqfsj//xLYQtCqKMpkAOC2zeD5J41NB9s0q8+F0pvZTBp3ZDBmBJyqi+Zsi1DGGmafF73padpBL3VMKY7//Med6PJH8M9/3IkpXH5YWBqVUxrkjuM9AKBZmgOfO4VFtXOnpEHh15UCNSHi/9OuJkTjKv60qwm3X1IKh03B7ZeUJoiqnae+gNLwczhPfUGaXOWyM5cgrM2maPbPVU2Y/cDr+HNVE4K85iAspaV+d8M+BCNxfHfDPmziDn3ToTbMncx3INzSRbQsn+X9y/JTkZvKOn+FdfBzcdhtUmqMNrUBTI032+fEA9fMkb5PvWwEPUay9z7929lA5xwzx6+qaguABkVRhBbBSgAHALwGYC3/3VoAG8bqHOw2VbO04ATIN7OeC00xki+Waobrcaoc8qkqZp+pFz4Aw52e2Xui3HN90fb9o1wN9min5Ez1uHvVLHicNmZ57tvjsqO+mzkwYekA871N7HX3NvVpxdGyvFRUTGJOVFgasV/7+gIcdtyCa19fIEX4AODiDt1lU7Cc18CWz8qDL4Wdj7B3rpwJm8Lsv7zEJnr9y0t70NrLI3luqeBaQRpznAVprIMXALwuO/bylI2wtB7xg+vnoyzPhx9cP19z0MLOm5KhWfrd3H1FOcryfNroxV0N3ejyR7CroVv6PvX3Ak0ljeQ+oc85UwOssWb1fAPAHxRF2QOgEsCjAH4EYJWiKEcArOL/HxNoKoBOh+kW0YwBYMQoMHMOZpGD2SIzmjhVbIMz7cKn35tRtKdn69DHFWf7AADF2T5J4RKA1DA1j+fX501Jx/evm4dsnxPfv44NAP/d+8cQjMTxu/eP4UvnFcPjtOFL5xVjEa8VCPteTYdmfXzylM9lw91XVCDb58TdV1Sghke7wh7v9GuWRvkX29ajNPwcLratBwDYueO32xRkcppkpteVsDv57bY6xFVm3Q72HLdD4aJn0GwoEtNsqpsdL9XtwmLeQ7B4WhYuKGULpLB050MZOpMyWKQvLC0Q0+9iy+F2rf+AYShHbzYshXZLj+Q+oc85U9mCY+r4VVWt4nn6BaqqXq+qareqqp2qqq5UVXUmt4myfaOEAJ/PGQjHErjAT23mN/fmWily0zsy/ZZWwMzhmVHEzBaZz4rxEG2frgtf/96T/Szo92Z07nq2Dl2s67hjrev0Sw2CAFCS49NsVWMPAKCqsQd/29uMLn8Ef9vLaIcnekKa/cnfqxGMxPGTv1cnRMQR7kwjkRj8fKi5PxzHr7bUossfwa+21Eo0TwDYEb0FR123Ykf0FgQiPMqPALPy2bkJS9MnNA+vd/y9/pBmU3ggleJ0II9H9cLu5e93b2OPREvdf4LtVPaf6EN3gKW1hP2/K8pgU5ilDJ1vXjYL2T4nvnkZb0gj2yc57SZLPhhJoOivjTmT0yQ7HJK9niw65zhEOKZqVk/p2t3YrVmaBtI7A1k6dghmDs9MC4Q+j+4mRuLEz7RoezShL6An+1nQz9/optWzdaiEgOiCrZyWhW08Ihd2N3d+uxt7MDmDOc7JGR68vp85fGHdTrtm03hKJS3FjusXMnkBYaPc30VVYH4hS3fML8xAPy/u9ociaO9jjllYr4tH+S7gfOfzKA0/h/Odz2NXAzs3YSuLMjX7Nqd9vl3NBNAAaJbXVRGLA5ke5vgzPQ708FqHsH5eq/CHo9Iu5IJSxv2/oDQHxdnsMxH2mQ+OI64yS4ez/OLtI5xSytKytCuYfmc07QYYO2H9tXHHihmcljoDRjjb762zWrKBQs9+KM724cNj3SjO9uH2FWUQLeF6ZU299KuAmQKnvqPQ6Hl0NzGSzuLx0DV4+jqi5QJ6sp9FMsqpd6woQ06qixxr6LWonPGBpl5sre3UtKCOcod3tH0Ak7jjj8VVTM/xYU9TH6bzHUEzz4s39wZRXsBSQg67Hf/9QT0A4L8/qMdD183Hill5eLu6HStm5UkMnS4/60hv7A7gfaxhIxBjANCLQBTwOoBAFAiB7wbCcXicdoRjMaTwhgBJssFuRz9i8Njt+MmNC7FufRWeuLESAMA3GgjHga4A310FwtJuGgDqO4OanVXAgqRoLCbtivbx6L+mne2a8tJS0NAdRF5aiiRd0cj7GISlQ14oFk7NwofHurUF2gj6ayOZa2A83FtjibM64qdw2hXJnuA334neYEJHYTIwi9DNhk9IzzPYwiYL2ohyunC6Uj36AjqN9pLdPRk9Th850te65yXWAXvPS1U4xLnnwtL0yY3nFEIBcOM5hbjt4lJ4nDbcdnEpAGAlb8xiVqQQ5VQiAKS5HZqlDJ3+EHO2/aEYvHEe4fOnL1afQ2n4OSxWn4MvhT3fl+JIcNS9oSHbxt9/mz+M/lAEwXBM21XwtD4cChDkzw2GYwhH2QsKGyLWweUgHHa7FHAFB9kxhf3uNXN4L8AcVPOFrbqlX2ISAcADG/ahyx/hdug7ow1ln+X7NHoc/X2yKZzxkG4dCSaM46eqfgCwblU55/aWS1+ePj9vtOVLlv6nvzBobcFoC5sskpGXHWuMRo5zJDeP2evS4qz+2PT7pek/+nv9c+hrHW1nUejR9gC6A5zaye2UDLdmf7n5KFQAv9x8FA//mdEbH/4z46X/bX+bZrm/RDSeGJy8yWmibx5oxa/fPYpoXMWv3z2Kve5bcdR1K/a6b0XAxvP4/E5W+HMVuyLx3+M8xhC2kHfcFma6sYBTRRdMScO69bsRjMSxbv1uAMAlnPFzyaw8ZHp4EdiTWAQuyfFqlrJwGrtZgNXYHcQA3z4ISwOkhVPZcxZOzcAVcycBgGZzU12a/flbh1kPxFuHE773ZNMzI7mnP+uxxjsmTKpHP4iCXnRbDrdpQxv2NPZKY9qMtnz63+sVGMVW8tfcCQEsFUJrC7/60hJN2GokwyGSnSw03jHa6SLKrtEfm47hi/Aa0IHmfjy4YT+21nQgEtuP0lyfNGSEfjfLynKwtbYTy8pysKuhB/5wTMvZ9w/GNOu0xzEYBZz2OLoDzNGJomaWx4HuYBRZHgfauZBge98g7FARAWDnqSWaCizL9aGuM4CyXB+8/UNR/rz48whE4/A6bDgAIMbfUyymojjbi8NtfhRmelDT5oeKId5LmBcQwlEVbVG2cLX5I3AoQARDkX4LF5Rr6Q2hif/c1BvSahM9QbY4UtomxZLiLLxd3Y4lxVn4XxeUYN36Ko3dRBu9blxShJzUFE3kbVtNB66vZM1m31o5C+vWV+FbK2fhwdf2AwC2VLejMNMjfbfJpmeMBNySfT6918/UlJBpxK8oyjqzf6fqJEcD+ihOplUO0cDMaJ9mMGrq0KdCaOGQRpLJRu/02CNJUY02RmOrm2y6KNnhGLQAq6fPUh2Zr1w0Hdk+J75y0XSU5rL8e2muTxP9EvZr/7MD71S342v/swNzeJF1TmEGbjyHOSZhVR5Oq3EVnE6PYAQJ0XF3MKrZKH9ONK5K0T8A5HAef47XiSePr8JR16148vgqKcqP80s3PpQi1yxNPU3PY+9P2AU8wl4wNQNhzh4KR2Jw8RqAsI1cPbSxJwi3g+frHTbkpzGqpbD9oahmKaNJDIipbu2X+hwA4Luv8kavV/cZirwBkFhMP1vDdI5+tqYy4boxSvfprxt9491wMGPmjXbD5+lIF31axC/4TuUAzgVrvgKAawG8O1YnNRagg6fvWjVLknBdXTkFexp7sLpySsLOwCga1f/eTKObPo8WDmnkkGz0fiqLqcnMMBiN86E7JLPXNHutp7bU4ul3j6LTH8Ydy8uQwznW63c0SLrsdADJET696pkP6lCkTWlTJYYKANRy3ZrajgBm97KfW3sD+MueFgDA/2xnxdi89BS0+8OaBRgbpj/EfhaWooevED3BiFZCFmyeTp5C6gxE4HUPcfLnRP+IUFSF26HAprAH2/izBes4Eocm+XyiJ4hS7vAzODPnI15/+qiuC/5B/n4HhxaiAf67hVMz8F5NJxZOzcDB5j6EonGkptjRyQvMwt54TiF+9lYNbjynEM9uZ0Xqlp4gMr28zuCyYQd/TWELM93obRlAYaZb2onp74VwNKbZxcVZ2HT3Cu3zo9cBvXZkbX1I1w2lbxs9Z/vRTmnnT2Em+ZwsjF73VBEkTB2/qqoPA4CiKG8CWKyqaj///0MA1o/52Y0imnsCktU7auEcspa4JMdjtJXTf/nJanSbpYGSGfR8KreWyVyQo30+Zq9JX0ufGhPDPfY39UqfMRXuAoCtXFtm6+E23HvVbG24yff/ylII22o7kJfqhr8rgLxUlgevnJqOT+p7UTk1HZsPM+rm5sMdsKlADIBN1OjjcckK9ARjkqWg3CSnjTlswRy2KSwnb1OAQHiIrRPhzjkSVVGU40VdZwD5XNCNPqePR+F9oSjmTcnEzvpezJuSCQDo4jRMYQFgMDbUZix+/Jizfz6u60RxTio6/BHkpKbgMJeT6OXv6Zfv1LKaxju1WkOYoigYGOR5/cE4oET4z8zOm5qJAy0DmDc1EzefO01jwul7buYXZmJXQy/mF2aapkTptUOde4bXKd2rdEexYGqGluYVRIEblxTh3JJsQ2ae2ZCXZEHP9XSki5LN8U8DQMOVMNgglTMGHxztkiyFWbRuRP0y+/KTHbY+kpziaCDZaWTJnF/yg+WTQ7KL5tee3YEPj3UjEN6DF26/EHdfUY6Wl3bj7ivKJedw/5/2ossfwf1/2ov3v7MStdxh1bYOSCmEuk6uStkZgJOzSVp4Y1Mtlxao7fBjQSGLgBcUZmBrDXOKUX5+rVy7vnUgjCyPDd3BOLI8NvQE41J+3WFj6RwHT9nEwXKumR4X2v1hrYi6x34rvDYgEAcWRJ9DPMwe53YqCERUpDiVBOkEWsR1KuzYdiBBP58i3W1DXyiOdLcNiqKgNxhDhoelejiRB+EY0M6f294fgg180ePH8KXYMRiIwpdix/mlOdiw+wTOL81BitOGF3c04qKZufjrbpY6a+pix6EU1Tf28Z3YvhZ4XDZpUDpV8aS1mF/cssgwSLubzx/497eP4PzSHOlepTsKMd5RP5uX1gAXF8t00dFw1PQYo30PJYNkHf//APhIUZQ/gQUnXwDw+zE7q1GCAmg33AWl2Wj4pElrF39qcw2efu8YOgcGcWFZLn79bi3KC9ISInmjiUufVtxNBsl+4Wbb1pEg2a3l6bgg9a9JnTgA7ed+nicX9pn3j6K23Y9n3j+Klr6wNiIwyqNvYQe5YxxUgRPdzKGf6PZj+UzGmRcWAEI853LflRV4YMN+3HdlBX7wN1aD2dnQDaeN8dtFhE6bmkTM3x2MJ4z7dtmZ43fZAZvDhoFwHF6XTUsPCet18DGINiDOV5c4gECEnVcgomqOdzCqQg+V3wCqAkksDQDK8nyobWeTsvpDUfSFBuF2OtkTMMT3L8x0o6E7hMJMtzY5rC8URZrXgZ4AswAwNcuLrkAfpmZ5tUldDd0BTbrC7bAhzeOAPxJDGk83tfBUVEtPEAea2Y7tQHMv5nBWkChuL5+Vj7/sacbyWfno9kewtaYDpbm+hPQtvXZoL00Jr9+Ie5XuKGiaN9kofDTui9Nxb1Ek5fhVVf03RVFeB3Ax/9WXVVXdNXanNTqg2+jJmYxuJizV6H7xkwb0BKK488Vd+NryGVJ08PO3DuP3HxxHU08wgUVAvzi6kNx/jXGe3mx0nxGGuwhHK9oYb9AvoA9u2IetNZ2IxPYhEotrUX4/z0EL+wanSL6xv03rDO32D8LrcgAIcwsUZXrQ0BPULAA09Azi0gp2XUzN8sKXosA/qMKXwlz2Hz9qQDSu4o8fNUjDEWlXqxn0Wq208KvwJSIQjmOfciu8TiaxAPRK6R0KO1i0bQeg2BTE46rGeU+xA4MxZgvSPajvDmJKhgcdAyFEYkOLVAbvEchwOxDji6LXZYPLYUNbfxiZvLBM32OKw4ZoOI4Uhw0ehwM9iMLjYMeZkunGnqY+TMl0a5IU0Vhca9rad6IP//q52bj35T3418/NTviMHr5uaCzjCx/V8w+MfWJ02Mw5PPpmuwBjFVxay7lD52D1gZS43093FH4q8VnonF4Afaqq/k5RlDxFUaarqnrsU581TkBnggLAmiVT8cnxLqxZMhU5B13YsPsEls/MT4j4t/Dob0t1O/70f5cBQEJhdrhhD0YYSfSuvwg/6wWpP9eRXNSnalj9zzdW4/fb69HUHcAj18/HFN4BOyXDozVKBcMxrL2gGI++fghrLygGwGQADrf5UZztkSZZCUfdwlMhtFDodihakZQyUaBLZNS09WlWRNsidw3+SMDYDVH6JsCYMK39g8hPS8FAOAL/YByeFBu8Ki/gMp+LefHntATrjDwvatoDmhWv69AR9L0pDgwGovCmONAxwAqvHQODuGRWPt7Y34pLuCz5zoZezaZw9k9zz6CWVunjO6kFUzNwojeEBVMzsHxWHh7YsB/fvWYOUlMcuPflPbj/cxUAgPdruzQrOP16PPvhcQQjcTz74XFcW1mIqdletA2EMTXbqyNVyLOHS/NSsbWmE6V5qQmd9EZzcSml95n3j0mpI6NAKlmSwdmApBq4FEV5EMB9AL7Df+UE8OxYndSpwM83HUEwEsfPNx1BCdcSL8n1JlC9Hl7NNNYfXj1XopzpGzcevm4un5061/R1KQVNL+trhGQ6Dc1gpDD6WTCWjSr0fehTErQ7lg4meXLTEcRV4MlNjPI3m2u8z56crqU9BqMqHrx2Lhw2BQ9ey74XmoevnJoJAKicmoku/vuugTCyeVFR2CivdEZjiZElhZHj7+VF1l6N8jjE8vkwfDOOum7Fh+GbEQhzmuYwX6dw9sIKRHU2zEP0cCyuRfKxeBz7+MImLHWti4pYamVRUYa2OAlL5wP/z/bjiMZV/M/24/h/25jC6P/bxq4p2sBFaaRCzmJJcbbWNyHsYzcuxKXleXjsxoXym1V0lnywlD6p71w3ovTqD5gMBfNMbcxKFslG/F8AsAjATgBQVfWEoijG0nbjEPp84GNfXIh7XtqNx77ILjqRQ9TnA6s55a+6tR/PfFCnUbwev6lSepyeBmoEGlXQApTZc/URi0DyNDD9nfTZMZbpIfr+CtJT0NQTQkE644e39Q9qVqR1mnoHEYtx5Upu6YSquQU+7G/1Y26BD7vquxGNq9hV341bziuW6j5UTuCbK2fgZ2/V4KYlhXhyExPyE3RIqlfjUBjd0qEwSePBmIoU3i1L/0ZT7g4bK45yGjxUnnxXVQVe51CUXxoeivDrMJTm0ad70lJs6B+MIy3FhsFwHGEVcPGv9vySHGyqbsf5JTnaRLC4CjT2cn0fbt1OBcGICrdTwUHOtT/Y2q/JTjt5Cod2J4vJX4db+zUROjGM/baLS3Hvy3tw28WleOtgG3bW96AoyyvRl3++MYad9T1aZy/NtdMIWy+MeLRjQLObD7VpWkK/ee8ottV2Ihzdhz/cdr50P6w5twhHWvux5twiZHld0m4/GSrleE6HjgaSlWwIq6qqgq+9fHbuGQY5HsvwOjEt24sMr1Oid5mNXBtJc5dZVG40nDsRwzvuZBufjORqPw0j0S4ZCUTRsLk3lCDJSxuFPNxzehy2BAkCqgJ5jBcXj3UH8Ne9jGsvLAW9Iv797VrNisB+uABfVaiVrymqeEnB1wXNfqyyKP9j9WYEVB7lq4xdAwxZ4ez1OX5KkUzn34ewVNr5H8+bBgD4x/OmIYcXYYUtyvZqdgWXZVgxSx7qDsiKnPQq/Px8Jqcg7OMbDyMYiePxjYcllVIalYd4mk1YqrBKf9brMFF5FTq+cS5vphOW3g9mTVo0mjeaj3Gmyi0ni2Qd/4uKovwaQKaiKLcBeAvAb8futEYf+ovJeOCyDHoB0Agl2fSJ2ZbRTMyNgg74HglGehGP5exguqhQeeNfbanhFEsWdae7nZoV55/tc0k0QwBSPltR2GWtKDYp3QEMFTedNpn6qHHj44nenjpus4LuHt5LIKz2fC5aJqzXzqN8OzAvwkTV5kWeg93GTk5YiiVF6ZrlmRTYbYCHy0UIS8XY/oc3Uv3P9np08dVDWCGsYAeQwp+b4rRjXmEmAGiWLhDfuGwGFADfuGwGnn6PXffCLp2erVk6gvKu53finep23PX8Tmzlg1eEpQsnHUGpv17pwJXz+OucNz0ba87lM4/PTQx8qEPXX8fJLhAUZ6oYmxGScvyqqv4UbGbuy2BdvN9TVfUXY3lio40ExcULSpDtc2LtBSUJczyTadU2GtCihz6iGMlgd3px0vMbjTyk+QVtzJo4WdCb0cf1XXwuO/o55UXYbbWdmm3hPPKW/hCEJIywm/kUps2H27GI5+4XTc1EnDNDhFW4poGiKEm/O7oDoIuAfvGx8y5au6Iiy8tOLMtrx/bBNTjquhXbB9cAYBF8PJ4YyYuCqrBpbrtmdzSwWseOhj5p8aEiaABw0YxczdLxj/r32j4Q0ezbB9lu6O2DLZIsAwBU8NpJxeR0/P6DOqgAfv9BHfhb1SydMfD2oTZ0+SN4+1Cb1PU8iYvYCUuDMTpQRn8P0kWBpp5e+Kge71S3aywgek3Reb76dz+SCVpnW84/qRy/oig/VlX1PgAbh/ndGQF9x98zH9Rp7foLijK1nB9tHf/dl5dK+UBajBU6LsMOVSUQQzwWTD2Bu1bNSqg1JMMi0DemGNUZjDBSGQTKoBhtloMoyHUHwlKHaYxH3O08d+ywKYjEVThsCvp4l2hfMKaJiIkmWRq972xgO6idDV0JzpkO5xkJhksDaTTN6JAN8nRGdyAmDUcBgHPwHAbDQIou7NLP6Q1zZxiOxKWOXKhDdQoRdohzoPlwO4YauBx29hmIhXKQn99gNKZJKveGYmjlA12EpbIPdIKWeF3BaNrHdzn7mnrRwJvhXt/bjFSXA/7BGFJdDjx240KpJ4PWu6imzz3rd2NnfQ96g7vxyteXSZLP5QVp+PBYF8oL0hJmbMgOfigxxRh9w7N/RrvZ8kxBsqmeVcP87urRPJGxBp2zCcgRP13N9Xl3+jc6Y5VKKgNmkbM+1ho+zjSLKGiEMpI6g1nKxizioa+bbGor2S0xHdXn5KkNp82mtfMLS1MwdFqV2TBzmohP53x1YemnT9Md9OdkwVPxmqXYByadvA+3SiMQASDOdx3CasfTjXKki1QFH5lYke9DCl/1hKWobfNrVlb6l+tEC/muaOHUTHDZfqQ4gLc5m0rYh6+bx9lq8yTZ6XOmsecLq/IvQlVVKZd/5+Uz4bApuPPyxDoWvVbodK52XtAXtpozu6pb+qTPiMpOA/IOYiR1rZHO0T4TYRrxK4ryNQBfB1DGB6YLpAF4fyxPbLQxZ3IattZ0aHM2acQvnD2L5IdaxxcXZ0krfac/jG21nZhbmJHQF6CP5AX0vGOjiV7JRhSUPaTX+jGGcVIjeU5/cswgffej0S6BqkA28aiyqSeoRfKxYTpRadrGbmOpDvswTtfttCEQiTPLmUBhTgXNcNvQG4prFmBRq3hXcbCbIoqhm4M2TFG1Hf50zVJ43bzr1g2UhmS2jp7WKDA914v9zQOYzunFHt7M5XECB1qZQz/Q6keWx4FgNAq3045gVM4X0R2Jx2FDMBqHi1tgaDHZxecJ72roBvfTiEQBn1sBBgEn/yLo9UZpsge53IKwM/PTsKuhFzPz05DldeHt6nacW5KN/3inBtG4iv94pwbT97ZocgvPfuU86Vo5wdlGJ3oHce+V5bj35T2490rGYKOTtoQMdE8wIqWXAON+l59tPDzsvanH6Zsmd+rxaame5wC8DuCHAL5Nft8/lkPSxwJ3rJih6X0Dspb9D/5yQGP1RHj0IFrI6cVEVR/1oNOJKPQXo1mTyGe92JKVjTBabD4LaGu7GWgDHF0Ml8/K0+izi4uz8LXlZTjS1o+vLS/DsfZ+tA1EkJvqRBvPPYeHieQzPS74wyFkelyaNrygWlIqJdUmplRMAOjnXrpf563p0uhwKIhGVTi488v0OtEZiGjWCPtwKxuDGAYCIWg/ex0KAlEV3mEidIr9zQOSpakjihg/2xhUZLgd6A1FtU5cioIMN+o6AyjIcKNzYBD9gzFt10TrBJdWsOauSyvy8dGxTukDofTJuMqeFFfZospmEbCVl/ZbiDz8kbYBDHLJ58FIDKW5XmytAUr5wkavlXNLstHcG8S6VbPwxEY2gP6FHQ24trJQooTe8J/bALC+giduqsQ9L+3Gt69mncBG17/RvanHaKhunikwTfWoqtqrqmodgCcBdKmqelxV1eMAIoqinHcqTnC0oN+q0YIuTZ9Q6pjZMfSpGY/LptnkG6tOjjWjf09G6SL948wK2EZIlv0gP27Inf7zcztR2+7HPz+3EwAk9o5w9m0DEXDlAc1S0EEgCSCee4AXhgeCkQTap/GgwyEIjR5hqTwyhU1naS5/HjhbB88hwI8jLPe9mhXQ/94ondXPax39wZjE8AHkfVkbz9O39YUQ4ENihI3xHUAsGkd+Gkvh5Ke5pageAO58gdEn73yhCgo/ugIFNv6zsK18oExr36BErY3zLyauy7sD8rWy5XAbZ+60IZXnnoSl1y9lDFG2D2DcqEjvTTPQ8znbWDx6JNvA9SsAi8n//cP8blzDrDipT58YqfLRY+ijg9WVhdjT2IvVlYWm6Q5Zq2d0WTPJpov0Bezh3p9ZgZlC/xz948RO44WP2WIk0jWi8adjICynUnSOOllIHay6KD8Z2DCkkpns0/aQCF/T1nEldt667UAoxiwgs4FoQxn3yZr1ORX4Iyp8TgUOu6KlqAYG44jxQm+IR9TC+lLY330pNq04HI3F4XQoiEVVLYUjlrAIgOpWnkNv7cOk9BTGwOENdKW5Xuxs6EVprhehaFybNwAo/Ge2aBSkMxmKgvQUTecn0+tEgM/2DYRiUgEXkK+pp7bUAmAsuQ95t7CwO493a7vFXQ3d6PJHtFQVA7tYgvwLD+q+eP2ONxnhxWTTPmeqtEOyjl9R1aG4Q1XVuKIoZ9TYRv0XafSFmTlPI3GnsuWpkkyz2QVE/2+UgtGfW7IXV7LpIqOhL2YXu2jEEQudOB99bYM+TuipA6zG0tI3qNVY6rjUcV2Hn6UNeE7e/yn02NGEXRmiaMZ0O4JkoGfrLMJziISZngk9Nvd9mqWqnvE4W6zsGFq8BII86g5GVcS5RlBvKA6nDZrjdzpsQCTGLGR5CTqUJc/nRKg/jHSPUzsHof1Pc+h/2cNkigVNeXdjr2bncqVNh03R8uqpKULF04M9TX0ozPRI1EyRXImBDXX58NjQfF2K+k6/Zh9ZPRf3vrwHj6xmMhvrXqxCXWcA616swhVzWMNYMBzHHSvKpPvHwylLHt34R/19YaaXlcxMDYoztS6QrPM+qijKN8GifIAVfI+OzSmNDfS6OEYyCGbO00wl0+hCMfq7WV7fbLEYjYvLSF7C7GK//5U9mjLmZRUF2vlQWiYA3PX8Luxp6kPnwC6cX5qjKZbu4qJgwtIipHD2/khcztWPMfRpoGQg5fFJhJ8KOYoGeX966OsOQKLTB5ie/qDKbBRDCwl16AHexSssnaVLcUFpDjbsbtbSME67DZF4HE67DfML0+FxMtvQ5ceJ3pDmnN0uplTqdimI8CpwJBrDLUunYWd9D76wiI2d3HKkTbMz8tkCUdXYg8/NK8CG3S343LwCrFk6DUfaBrBmKesopvfgZi6GuLm6HeWT0hGMxFHTzhaDS2bmoa7zOC6ZmWfo3IFEIUaBT9uV6n8Gzn6aZ7J0zjsAXAigCUAjgPMAfHWsTmosoJ/jSRuwks3n0VyjPm9ulP83e5zRXFA9xTLZJpOThRlljRbI6Pls43owwh7lkfzRDj/e5PWANw+04uYlUwFAs0YQ/moYUs+oYySJNqM8/mhAn+MXAqCDcWijIYdGRDL4OJfUNwyntDTXo1mqkQ8Auakpmv3uBj77dsM+KcIHAM6qxWAEUvfvY29WIxpX8dib1QAAXveFGgdaeQ2mtTeEtReWoizPh7UXlg5TJxrK+V85l+0kr5xbIDVsAcBlFfnI9jlxWUW+1MWur2kZ3VtmjztZnKk0z2Q7d9tUVb1ZVdV8VVULVFW9VVXVtrE+udFEgi4OqZzRIutYDw83uiDpOSS7WJgh2cHk9Gezoi9VXKTnc4w36whLh5bTqVa/2VoHAJo9edm40wMzBc2ThZi8JSyFfv6ABt3qVcgXhsIsD5bNYBLMy2bkY4A3yQnbzAu/zX0hSRaD5ucBwMnnSjptqvS3e64oh8Om4J4r2G7ZxwuxvhSHdA5PbDzMtfQPJ+y6qRN/cPU8fOfqCjy4ep48MR7AQ3/ejy5/BA/9eb/UkWt2nz21uQY/fP0QntpcY6jHA4ytLMl4hqnjVxTlXm7/XVGUX+j/nZpTHB3oGQByA9bQ3ZNsa7besRoJmukfR48vX7jJxZ/Jnh99nP4cnuL8/6e21EpMiHvW78Y71e24Z/3uhON5eU7X67Rj5/FurHx8M3Ye70Yqbz8V9vLZ+VC4pRBDvIUdOzGI0QdtxhrtKJ+CSkbr0cmne3X6I9KiKWbeCtvPFTSZHfqUqRAeAKQ4Fc228RGTbX3BhC9mWk6qZns4q6knEMGrVU2IxlW8WtUEAJiS6dHsd6+Zg7I8H757zRzk+Lg4nM+RsOs2YoqFeKQv7CUz8zRrJpVCAxc6H8OckTb0hs92Jg/Fp+X4D3K7Y6xPZKzRzAdxCEt56Uy2lRWJ6jr8UlRiNNxZXyMwauDS5+eNcvyUFTQSdo0eZgVmOphcvKdufyShY5K+9+2cYbH9WBe+/odP0NI3iK//4RM4bIwH4+Ddtz/fVAOVW8pYORMcvBGkIu4Y+gT6eZlhuEVT/NzLSf+9QTlvXpTlxoEWP4qyGAsnxAsMoXAcl/Bxk8tm5GE/n5jVyZ0f1SYqSHdz5o47oQmtYlI69jT1oWJSujT96uO6HgDAx3U9+I9bF0sDzOkOgN5PdGoXANy5ahYKszxM2vmtw+y8I7GE65qy1R6+bq527QqSwXD3DCVYnKmF2pHA1PGrqvpnbp85NaczdviQD1kXdjgWDgD8+I1DqG3348dvHMILt19gSH1MjDyGj2H1jjqZ4e2BcHTYwrPZ8/Wgj9NTT2+7uBQHW/pw28WleGIjy9FWNXRjybQMNHQHsWQaK+zRgu5tF5XgV+8ew20XleC/t9UBAHr9YTg4m0Q4AMo9d9iBSGzIninYlyRNk9JQRwNmu6DhGEifdox6LtxW3x3EdQun4ECLHzML2HfrtCuIxlU47QpaOAe/pW8QGV4HWvuZBeSdxqJpXuxpAqZkpiDd48LO+h7MyGeBQw1PD9a0DyDUxBafrYfbkOl14kRvCJlep8TVX1ycJe0AFnAJCTlMSHyjtW0Dmr3zchZgiXuLztmlSrr6e8aocdIsqDpTaZtG+LRUz58VRXnN6N+pOsmRwsm7gJw2BT9bU4myPB9+tqYSgJyHf/i1ffjh64fw8Gv7tMEewtLmLroV1A+LWD4rH2V5PiyflZ90fp1CTvsklwE3SzdR6Le6VK6ihW/9W3pD+NNuptIoLOVFv7yTbelf3tmEKL8ho1CRw/O+wtJbVjj7M8npA4k0TaP0TkxnRwLBXvo0FhNlQVHNIv2VksrnBKemKODMTXicwPajrCNX2Om5qZo93sWc6fGuAanpCwAy+QKQ6XVgWw1XSq3pxCGeSjk0zKjRBr7gNHQHdbIK8tlSvawZeT54nDbMyPNJDWWAnLa87eJSZPucuO3i0oQJXFTm3CwlapQGNSvUnm21gE9L9fyU2xsATMLQuMVbwGRHxjWowNfi4ixsunuF9je60v+dO8S/H2jFTecUYWd9L+ZNyQQgUx+p5oeeg0+jl/NLcwx5wmbNXeJ8jGhpeiRL+9RH/DQy+ur/fAyAdVYW8FmwBXz4icqpGqoaRwdfTDr8YY3+GIkBdd3MQQhLQRUlP2tD1qmGGU3zZOGyKwjHVLjsid6dsphcOgVNI7BCewwOuw0qX3bEx+u0OwBE4LQ7EAxz+Yso4BBTwridmZ+KA839mMkj9gPNbPrWIa690xcSNYMha+eFXrtNleYfAIxtxKZueRAKR3GgZQBFWR4sKc7CzvoeLCnOSpD9oAFIVUMPgpE4vvfafq3J7wO+SOnVacVzIjFV0v6hj6P9JPp0Lb0fkk3v6JlGZzo+TbJhi6qqWwAsUlV1jaqqf+b/bgVw0ak5xdGBGWPlwc/PYXNZPz8nQfhJhvEWlLKGKItAzyig/09WYoGCRij6Y9NdA32ckIZ+rYo15zz/0XHUtvvx/EfHEeceOR5XEzjSAZ7GCkTihpx3s73JSHjypwtjSdNMVgpaiKVFP2ULQTXpxThHYek8A/r5/9v185Htc+Lfrp8PANhyuE2z83hj1rwp6Qk7kAWcz79gaoa0g5vNG/GE/biuW7NLprNegSXTc3DHihn4ztUVuGPFjISd5w2LCuFx2nDDokJcMpPNEbhkZq40EYy9z6HInu7AKYMMkO8b+lp06BIg74CTpUpTMsjZUAROtoErT1GUUlVVjwKAoijTAeQl80RFUexgxeEmVVU/ryhKNoAXAJSA7RpuUlW12/gIowOar37h9gulNvCWvkFE46qW6zQCjfL1xV2avwTANfibACiSHr9Rh69RG7mZfr54HdE9THcNVLmz2z8o2b/saZYswLosewKMflkvaJiku9YIZxI7Rw+jKP9UghZ0k9ER0kObR8Ct084E5px2Bba4qnUI/23vCXT5I/jb3hNYUZGPHs4C6gnGtEapmnY/HDYbwvGhYv2Ouk7NTsrwoLbdj0kZHmznYm7CprkdQC+zvfxD7A2EUdfhx4s7GnBuSXYCnfOnb7JxjT9987DG4y9Id2uBh5h//eCG/Vpk/4tbFmm5+ywfy2UJS0HvLRYYDXWqJ9NEqc/p0124EZHj044xnpCs478LwGZFUUS3bgmA25N87rfA2EHp/P/fBrBJVdUfKYrybf7/MR/oktBh+kIVjncFcNcLVbh+kVCcTIx66QKxuDhLu0i6edFLWFrs9Wi7hcRCldF29LWqJm0h8bochttPs65DIy0hQc8ULAmhQBqJxZHudiLAz9njsqPTH9FuJLPZs2cDaJRPB52fSiS7cFItIQVDRWWnw4YQl14GmGZOXRcbVt/hjyA8GIPLacfr+1jd5vV9LfjJjaxJbDDGLHXUU7I8qGn3Ywrn4ouUT18oBoedpTn8g1H4XE74Bwfhc7FrpYMzwTr6B/Eu//ndIx3Y3diryS1Mz/Vp6dDffXkpZk9Ow/GuANs1EO6+Po1KVT2p0zVTnaUOPdvnkogZZgq5AvoUkLxAyBTQkQw5Ot1IyvGrqvqGoigzAVTwXx1SVdU8PAagKMpUANcA+DcA6/ivrwOwgv/8DIDNOAWOv7knJNnl5Xn4/QfHsbw8L+ECovn1e17ajdp2P+55abdUI6AytACkYi+NDroDYY2mCcgX3Tf/uEuLZM7RBOEUU3lY/UVLQXchdKehx3nTc7C1thPnTc/BsQ4/AKZtHuU5BnFRuB1AKDpkzwacjig/WZqmGegCwRm0UGxAnIf6worJZe0DYfjDYih7DPmpLvQPxrSgpDjHh8NtfhTn+HCMj0es7woik1eEe3k66aIZOXi7ugMXzchBY08QLX2DSPc4UJqbijf2t2IxH8RCh6/86IYFmtbOq1VNqOsMoCzPh//v/BLsbuzB2gtKAECjju4/0YdpfLYvVDUhCnfzNItb13Ojh9GuuTsQlnL8NOf/WtWJYaN3M4ZPshTQ8SznkOzoRS+Y4y5WVfU2RVFmKopSrqrqXz7lqT8HcC/Y4BaBAlVVmwFAVdVmRVHyh3uioihfBZeFmDZtWjKnaYrJGW70t/kxmU8Ruqw8H3/ZcwKXledLkXdZXqr0Bd65cibufXkP7lw5U4r+K6dl4aO6blROYw6bXgz0wl2/o0FKx9CLc0oGK6JOyUiRFguz54hjDn/RDWXc6/gIvrqOAeTzYq2wh7k64uHWfrRxR0Gljlv5LkY4+7PF6QOnJ8rXuyoavdsVIML1eCJJ0jQdXLvHQQTghO6P08EU4JwOG2zhuPY65QVpaBvoRHkBuxVpJ7bToTJxOYcKhTPhhKVKolQXiDptAHA77PCH43A77Pi4rhvBSBwf13XjozpGn/6orgtxFVphdkVFPi4ozUHDJ424oDQnIYcuRdGEI0z7XfQpFxr40F3z9qOdEiWbUrQXaIJx8odvRptOlgI6khkbpwrJpnp+B+ATABfw/zcCWA/A0PErivJ5AG2qqn6iKMqKz3piqqo+DeBpAFiyZMlJJxvcTodkaRv41CyvlEOkF90LOxr5UIhGNHYHtG3rK19fJg1lMfqS9dE7ddbHu4KaNbuYjNQE9Y+jrIkv/JINrHinuh1RTk19l9cf+nh3p7BnM5Ll5I8lfC7AH2YWYLtCfyQOj9PG0m4qz3QkeZXb+fgxu90GJSYr3Qf4Kh0IReHictAuO/ARn0srLKUA86FWCIaB4iwH2voHkcNpnF+5aDoONPfiKxdNR38ogntf3oP7rirHe0c6NKcNsKEvnYEICjLc+Pt+llb6+/4W5KemoD8UQH5qCtZeIEf8kzPdmqXXbkJAQ9JAtEamX1JpunX5rKF6gj7HT8+jKMc7bOMkYFxnoxjPzt0MyTr+MlVV1yiKcgsAqKoaVBTl03auywCsVhTlcwDcANIVRXkWQKuiKJN5tD8ZwCnS/JEvkoVTM1HXGeAzR9lbmZKRgqc212iKkvdfM0ca2Zjjc/LnZEi7BLMLQz9snS4ETd1BbXA0hf5iSkZNEJCbwCalp6AvFGX66rx4N6gbMBI6FUpopxnDcfJPdS6fOlZAViMV+CyzA0QKxx+Ow2FjjVh2EaET5c/cVCdCAxGkepwoTHdj94l+bXZvfpoLLX2DyE9zoatvEGEwOWk/j+qF/c17R9Hlj+A37x1FNK4iGInj2Q/rUV7AaKBiAhdlF9FdAz3X3249hi5/BL/degwrKvKxfFY+/rKnGctn5Uv3yerKKVKwRCUcLj+3SJL9lmSZSbqV0qt/9+WlUo6f0kjPL80ZtnHSrM52NiBZdc6woigecK+pKEoZANMcv6qq31FVdaqqqiUAbgbwtqqqXwLwGoC1/GFrAWwYyYl/VuiHo1MeMp33qVcnXLN0Gi4tz8OapdOk4SF6iliyw9YplYwOjjYTSzNSBdXTQSm9M5ULb6W6nWd9kVYPadD5GIqq6XF5ea5kBWzcEdqGGytG4OB/F9brlK0AVfGcyiUYhKV0zAyer8/wOLH7BEvvCUsbuFJ5MT/V50Q9n38sbBnn+ZflpyLM8/jhaCxBVsFht2v2khlsF3DJjBzkpbJj56U6tVkMwj6xsZoLuFWD3id6+vFRXoM42hGQ7h897ZkOWzdqvATkpkyjxslTpYh7upBsxP8ggDcAFCmK8gewaP5/j/A1fwTgRUVR/g+AegA3jvA4nwl0xisgyxb0hyL45HgX1iyZio/rungUzi54GkXffUU5Wl7ajbuvKEeG1wm6fTQq8tCcJDD81CEoivR8fU7SCPqdwDPb6vBOdTuKsuoS8voTCUZ5/Loxft1N1R2SFXAoKs/Jm6+8PpcNvaEYfHxEYIAn/QO65D+d1EVn5wJAisOOaCSGFIcdTV3MYTZ1BaRmOgDSlCuRCozG2ExeOpuX9rXMLOAD1QvSUNMm98PQRq0QH+vodjmwqDgbe0/0Y1FxdsLc6zmTM7C1phNzJmck5O6BIQYeTTcBQLbPmbBLZr+Xd8qC9qmnXuvnUQzXOHmmpnCSxadG/Iqi2ABkgXXv/m8AfwSwRFXVzcm+iKqqm1VV/Tz/uVNV1ZWqqs7k9pQMbf/F20fQ5Y/gF1wZ8FdbavnM11o8vpHxiR/feFi7aIWlUTTl6tOZvYCxFPMLH7FC7QsfJbaO060pfT6NSABziWWKd7km/rtH2iWBromA0xXlUxjxTRwiHeI0v91UHnGqw/B/aKMclWL4+ooyOGwKvr6COanzSrM1S9M+d66cAQXMArKm0sCgYP8kNuqFeHU3FI5pzr6mLZEwQHfGR/lO9Wj7gLRwCE6/6AtZs7SIP6dIiuQPNXPGHLc0RURrc2agu2GjkYx60Eaxs6FJywyf6vhV1rf/z9xh/1VV1b+oqtrxac8bb2ji+iHCinb2YDiCpdPZzbJ0ejY+4pGQsPK207hP1ajbdndjt2TpBUm3phT6RcVoiLT+93evmgWP04a7V81KWMDOdoxl5+3JYiAUl6yYvSusQB8vzApLB8+n8UEraW6b1EH75KYjiMZVPLmJBTSUbZOXyq7FvFQXttZ0QgWwlevtCBrm4mmZKMlmnP2SbA+uWTAZADRL5/HSXPu2WuYChP31llq8U92OX2+pxZolRfA4bZoFWHCz7sUq1Lb7se7FKgAw1NYvyWF1CGGptDOVaDYDPZ7Z1C4Kmr5NVv78TEWyqZ6NiqL8C1jHrdbGeaqi9dFAJlcdFKJTNCdJB2A8cVOlRtkEZI2OO1bMMNTQMWrkoPNMAWP6lxkfWD8tTLyOPpJ5ZVcTgpE4XtnVNKLP6EzCeGDrUFrmZwGdwSsNmtc/0GAL4U2xoy8YgzfFjgE+mEVYMRpbVVV08Q+j0x9Gjo9F5mIQC83Rz52SjqOdQcyalI5vXz0bZXmp2vVZXpCOD491o7wgHZsOMamF3lAUOV7G1snxsuO+wRvE3tjXgq1HOhCMxPHD1w/hL9+8mEieBzRCBTCcwi3DcZ6iEnZnfa9mn7x5EbbVduD6Reby5SPRvtLPojbqpTkbkOw1+09gc3a3gMkviH9nDKhOOQAUZXmJHbrDMrxOTMv28hy+XBQ22woaTfGi21nAeESjWTGJRk1SJKLbgNAU0Zk64SpZJKugOabnwIfPCEuR7Oef7nFo1supMcL6+JbA57ZL6ZgoZ2NFo6pWixI2l6dectNS4OJcfZfdljDBaxZ//KyCVGytYVH71pqOhHQMTdWsrGAtNysr8tEZYIQIYS8tz9MsLQLT610v7Eava3r/iHm/wl5anq/Zx99kBeHH36we9aic7rTpbkSPsyENlKzjnwPglwB2A6gC8O8A5o7ROY0JROOWsLsbezRLJwvp2TrLZ+VxueW8T9kKDi0e9G9mF1CyzIHVlYV8RF2h/BxdREgvXDend7hPxdTy04CxzOMn67TD0bhkKfgkQs0aQWjiOGy2hBce5JHwYCQuSTF7eTDidTkShthHeZU3GotL1/y9V5bD47Th3ivZfIdP6rs1m8pPMjXFIXWqSx+CAqxdNh2Xludh7bLpWMr1doQtSHdr1sbfk7ACj1w/D5eW5+GR6+cBkK9rejHTegEArF1Wwl+3RGIZJXv/jGyBML4KzKbbnSlI1vE/A2A2gF+AOf3Z/HdnDP5p2XR4nDb80zKWT6f5cCH/+sHRTkkjHJDllo0UOAGZSpastr4ZNZPCaHRcfZdfsvQinJ7DdjTCng04VSMQk9XPoV2teph1PRekuTSbzfPw2akuSQYbAG7lu8RblxYhxcEcf4rDjmye8872OZDOdwXCUi18GtA8/3EDgpE4nv+YXV8/v2kRsn1O/PymRfjPfzwHZXk+/Oc/noM7V86Ex2nDnSvZlCya16dEhcOtrIArLH0t+v4oNZkORwHk+hm9f/TXOw2ezNRz6WvRe2Ek1Ew6D1gPerwztRaQbI6/XFXVheT/7yiKkjiYdRyDMneurSzECzsaeEduAxbzyVOLp2VIDSsrKvKlvN9rVU3DKnDetarcUEMn2fyimT6PRAElDWZ65s6P/nYAL37ShNq2fhxoZYuBsGcDTtUIxJEi1WXHQDimWSPQtIudR8X9oSgK0j2o6wqiIJ0VW//InfQfP25AcbYXbQNhZHqd8PNj+8NxNgu3sVebjRvjmj2xeBzhODt2OK5KA9ABIN3jRJbXhXSPEyW5Pty0pAgluT48sbFauy+urSxENXfswgJsl3xpeT5+v/24loah0gyXzMxjFM5p2Tp5hExJYoHWz8w612UBxMS0J5A4epHOxBgJF5/SuMuWG09lGKkez+lW7kw24t+lKMr54j+KopwHYNvYnNLYQL81pcOhW/qYF2npC2NuIcsrCiuDRu/JbQX1MIpKzFJCtLZAh0hfWMYaZYTdeLBNsmcDThVNkzJoRoohhxxDGo/A09x2+HgNQFhVDJyPq5KuvZhzK2waT8GkpTgwwMn7A4MxLOPf97KyHFTwXL2w915ZAZvC7GW8keyy8twEVhtN6TzFJbyf2lIr3RcAUJw9ZOnPNP0CAE/cxCbcPXFTpRSVy9Rk/V5q6B6i94J+spYsgDi0M9Dvuo0as0YSlZvtEujxzGZnmOF07xSSjfjPA/C/FEWp5/+fBuCgoih7Aaiqqi4Yk7MbRbg5lUvYE7wz8URPEOUFaZp0woWlOXjpkwZcyDVIqI7/fVfNxl/2nMDyWXkoyfVJkbyRJHKyUQmNavQTg+g5fOm8Yq3Z7He80aWHD9+4buFk/PcH9Zo9GzDaompc5kazApS/7nEAwSizeqSn2NE3GNMsBXVrUZ73j0bjWDA1Ex/WdWPeZBZM2BQ2Qcum2PB+LdutvV/bjqJsH/pb/ZqGzbIZOdiwuwXLZuQgw5OC328/jstnF2j+0u1yoKq+BwBwqIVF5H/b14y4yqyYIpfhScEXFhVpDYsA8MA1c7BufRUeuGYO/nNzDQCgqr5bk8U53sl2irSrXeBE76DULPjI9fPQF4ygOxBGXzCCEOebhiIxKb2jb2aksZNZA2OyAohGjVkjmaVr1sA1GqqbZjv8U4FkHf9VY3oWpwDVXD5Z2K9cVIoDzX34ykWl2NXACl1ZPqfUILK5Ih/06tTrf9ALw2hAiv4ioWMPM7xO7ct/hg8wD4Vj0uCJZ79ynjbIPBJT8eM32Fb8x29UIz9d7sp99sMGzboUIKxCs2cKRpumqZdEznA70BWIalaADjM3mxVMRxiWZLPUjODB0+5Yh90GRNl4xB1cGE1YPz+wPxLjc6FVRGOKXOgFcJDv7g429+NX/185GroDWLusBHc9vwsAc9RDcuMskGnvD2u2qoGlX6oautDQHZCUMd+v7USXP4L3aztRMTkdH9V1o2IyG5nx4bFulE9iP69ZMlULNAqzvGjuDWLdqln4Fj+Hd6rZ7vKbz+9CXyiKbz6/S9vFVLf2JShmUkdN6wc3EietF1Uzwmg44JFo5o9GV2+yqaSxQrJ6/MfH+kTGGpSPDMjdgL+4ZZEh1/jRG+Zr0TfD8BckXcFF8Wq4C/KNfc2obffjjX3N8LjsWp2ANsqUF6Rja02HNlJu3pQM7KzvwbwpGdgR6QJ6GP0vnxfRhL12fgH+tLtFs8CZ5fSBkYuq6SUJxM9uhx2ByJAOfZbPha5AVLMCVM/Il2JDdDCOFC6dQBcPP6/W+kNRXD5nEuq6GrGU7w6vmFOAN/a34oo5BZie48Wv3j2GL503DbsaerD9WDfOLWG9HOdPz8L2Y904f3oWWnpDqOsKojDTnTDo/BifhHasM6ClAhdMbZJGLxLhSgDAkzcv0vpQ7niWMa5b+gaxblWFpIxJWW0LizIB8IIp7wNwc0rpzzcdQTASx883HcGyslzUtvvx6q4mzJ2SjobuIObysY0ehx19iMLjsEu9K3Qnu/ZC2VFTDR6zwSm0rnXHihnDzqk2g16+mUb5p0sz/3Rr9X/W3pMzFvoxbVQL34xrTCmS+o5aCiPxKH13LRWBozeFiLDKJ6UnnCsVc6P5hG28C1PY1/a0aNbLn+N12iBmfA8z6/u0gQqNJZvHz+K5l6xhcjAz87yapdWXVXMYv1zYZj53oLk3JAma0c9Lr1BJhdDocHQqYQAw6q/DpmD5rDwtDfe79+vQxKNyYRfwoGLB1EypAUvfbZ3hdmiWXitUpmFSBtttCEsLtQr/JBQoUqADAMWc7VWc45Uib33t6oFr5iDb58QD18zBWwcZy+atg63aUHZhf/zFBcj2OfHjLy7AVfMmoSzPh6vmTZLy8/oega9cNB3ZPie+ctF0Kcevp0jSulayuXH5GHJtYTRy9CeL0/W6AhPG8cucYTl3SS+Su68oR1meD3dfwfjORkPa9b/XzxMdgnwjZfHO4SyvQxJMoePv9FIOIX7ThyJxtPXzqLA/hBQelQmbm5qiWTooPYs3owk7HkDTKWZyC6I3KsUGrakuY5j3Ud0W0KyXryreFHuCg4rz0D4eU6UonzpW6nDZOQ6l2r7FNW++tXIGBvg8A2Ef2LAP0biKBzbsk5qOqDwCIDcFBvkHEYzEpAYpALiMWJo3//W7TCL51+8eRSWP1oWlgcZy3lS1vDwvQRmTzlOmXbx6eYNdDd3o8kewq6Ebk3hfwKQMNx66di6yfU48dC1r56lu7UeXP4Lq1n5JdZNey3rJBiqPTJ0xbeYCWLqJSUBMHRF3X38/6YvCExETxvHrucHrVs1CWZ4P61bNki6SLYfbOWWTFd1o0xZdIPSNXjT/T7H2whJ+0ZUAYPlTYakD2Mxfb/Ph9gRWw74TvZqlUSFtvAGgteh3BcLSckM54OMFe3iUv+dTonwedGMwDjR2s0WvsTuESbxDVVjKHaeNT9WcziqsyqM+FSqm8iLq1Ew3hIyLyw4UZrJjCpuf5tbsR3U9UAF8VNeD+i4xsjCQcN5FfJRgUbYXx/g0NGFpU2Axf1xxtlcbLi4sHR60l6dm9jb2YClPGS0tyUrgtdMFbDLfBUzO8OCOFTPwnasrcMcKJtImJsdVTstClC9s0ZiawF+nx/vuNXNQlufDd6+ZI9UIANmZlnLJ59LcVCmypZpYgDELh9I8ATndlGykTAMx/XOM+mImEiaM49dH5DTXXl6QRqRe5W0hvTjpAqFX0KT/p7sB/UX3yOq58DhteGT1XMkBiElGF5Tm4K7nd+Gd6natiEe7MefxnOq8KenauERh83jEn5eagqmcjjc105PwuFMFsw5YoyifOmA9opx6E42r6PazHZuwEf63SFxNoO5S2G12zVKnlsbnF6S5nXA4uJ4Tt5U8Uq+climlCBMG2giWUFx+92284CosjYiXlLDvfUlJTsKuVOwma9sHEOPvLxZXMTmTLRaTM73SrFsA0uVr1oS05lwuJXJuETy8luFx2fDCR/W8SYuxwmiqht4zO46zwrGw1Jlm8Ws9S+ec9d3zNHVK7xP97IzHvrgQZXk+PPbFhUl3yhoFYkDyHfNnM5Jl9ZzxeGLjYX6zHcazXzlPyhtuOtSGLn8E3//rAay/40Jpqo9EEZsDaTYvLUBR2trdL1YZ6unXtA8gGImjpn0Av9pSi9p2P7776t6hqN0fxlG+DReWFvMO8m35J3Xd8KTYEImp8PBBHe28KNjeF9JuusFobFSGfY8EdAk1Y+v4+ChCn9PGHZwKGz9bX4oC/6AKX4qCwKCqvQ8hUS9sD58T3OOPYE8T21XtaeqG16kgEFG1YSaTM1NQ2x7A5MwUjRETCEdRkuNFhz/CZIZ55+yQHUrJ0XGZ6y6fgZ+9VYO7LmdRtCgVRwG08u+itS/Ee0UGNW58aV4qttZ0ojQvVWoPpgXcu1aVS/MfvvvqXnbsuCo1BX7zjzsBQJNCpk6cHk8/UYr+7dEbFmgEhgc3MLljcX9QKuXXnv0EAKtPObkOkLD6YqU4P0pNpscCkEBbFtA3PdK6RbIsHMqes5CICRPx5/BCqbA01UMLWGYw2yLS3QCVdtBHKBJfv43dXLVt/dqOINvnwjS+/Re2kTfdNHYH4eD5fIfDhpjKnJmwXp6T9rodCPCccCASS1qCYLRBi8pmomp0R6NnqXD1bIQjjHsPcKt7U0IWxmYD+rj8cV8oro2bFNbPuff+wVhCqkyAKrcCkLpXfXwr4nPZMTDIPlvRXHUxnzx18YwcvF3NrpG3q1vxzctmItvnxDe5E6LsnX0negAA+070oJsvXsJ+XNeF2nY/Pq7rkiQRaHT88HVM/+bh65j+Dc1n02stsQY1/H7s4evm8uOx3D19LdrAdd9VFSjL8+G+qyqgB33Ogxv24Z3qdjy4YV/C7lefLh3u+YB8b9Fo3Sz6p5+dHkYy58niTNXnoZgwjl/PpaYXBs1X6gtLFGYXHf0brRPoWQg9/PE9/jCWTmeOYun0HHzAc6Uf1HZiSTHLvwq7eFqGZgVVNMvrQh5fxIQNcoZIcDAqdXrq4dBZAbPUjJgKJWwyz9mtsjz+bvVWBFSex1cTz4FG7/pGu0k8tTIpIwVCCy0aB6ZxJySskG5x2gEf/4/PaU9QeqQL7GLx+RZnoZfTNHtDUcybwh4r7CTeLzEpPUXSoddfU7N5g9bsyRmYzrXkp+f4EoYAvX2ojdihT/AQ7zERlubNL5rBunAvmpErXXt6/RvJaZKdij71QdNA96xnO9R71lclHI+CEiL0jtXImc7hn4mwFFQXy4hEAcj3lpm+Ff1cjMkWgPlV++k43V23o4EJk+rJ8bnQ1BNCjk/m2LMtLOM7727sxvk81z5cfEwHrL9WdULiBlNOcXNvULO3Ly+TOvTolKw4z9tWt/TjnOIsvF3djnOKsyQWD8B42MJSOqKXO+F2PguYTlzyuQB/eMhSRHVWwCwlpPAQXFEUSYdepLWH203QKH+R7UX0hljj1G4AKS47ouEYUlx25KW6UNcVxLQsD1r4+wvyBUssrF3+MHwpjGrpS7FJjhoAePMyghFATJu02WSuOCAPBaeMnyXFWWjqacaS4iyZPgugiitfVjX0YmlJNt6r6cTSkmwM8pXIMYzOw0Or5+Gel3bjodXztGan9n72Paa7HejwR5DudkgjC6Eo+KiuWyu80nSM6OadnOmW0h2BcEy6DnVfmmavmFOA94504Ap+HdIGItr09fONh/H77cfR1B3UVDQFHr5urpaa0feq0N3FzuPdQ70EK8qQk+oaNp9OWT0ADNOjRnx9fXpJ3/1Lmy0pVldOwZ7GnmFrH8ngdHPwRwNndcRvI7aQ51eFpRBDUhZOzUqgftFI5MEN+/m2dT/0uQYabdDoXZ8eivO8cVyNS1Q+6oTe4RGhsBlc9yXDbZdeVd/pSeFxOTXLZ3BoVtRN9fXTuM5SVHLueeXUTNPHGXHyA3w3IiyNotO5E0n3urRhJMJ6ObOF2aFIjaY+AKCIi48VZXnw6Bfmw+O04dEvzMf3r2PF9O9fJ1TEh64KqtDawRfPjoGwlJ8HgJ+tYTo0P1tTKalf/vAfFuDS8jz88B+EYsnQt0PHdH7/unnI9jnxfZ6O+dz8KZqlEsS04Crep7C08EvJCN18YeweJu1A+fmPvVmNaFzFY29WA5Cj6CdvXoSyPB+evHmR1okrLAUtxuqZZ/TCTJB2NgAlROjJEslAnxIyGl+q352fLKsnWWbReE4JndWOnzqobdwZC0tTOnesKONUt8SoguYhKRdav0DQ7d9Mrhk+Mz81gTM8iSsvTkr3SDztNJ6fT3M7EIhwJ8mtmztxYQX005foBjbMB2iHYzH4nOwCFVbvXI3g4R1OHocidXpS0AgaMGbriPcvLBU0o8e4mKc0hJ3PUzTzp2agkLNBhKW4lH+Wl1bkSwX0vU2sUW5vE4vaqeQCnVhG+zfe4guusIuLs7Dp7hVYXJwlLRb6hj5paA/J1+9q6OFcePbZ3blqFr5zdQXuXDVLckJ6h0SpwPRv3//rAY2MQDu+9ajizYJVjb14+Fq2AD58bWLunhZPKbsMMHZeNHfP3vNQUZnWzOh9YZbOMWuOpDBzpvQ90ePpUzPJsHpGw2mP55TQWe34KWZPSpNskDueYFieEqTP8dPIgXKh9as+dfDiBt/V0JNwMws9lIrJ6dLwin6esugPRaEoLHwSdgZfSIQV0NPmfClDTJiBIJ/YFIwjWYV5feYzyAuiwaiawOIQqOJ5/Cr1VgDGA1LowgZA0pGfV5gJAJhXmAk/j1KFpQNDRErFYVOkn6W3pmvG0ufhl/Cc75KSbKkIL+WsdVuazYfasPj7b2LzoTZpsdA7B5o3l/P18udPrx163egdEo2q6eMovZF2fOtBdwM17X6+GDKmGHXCND+fya+lzGEKqxT63P3yWfmcmpwvNXPR96Qv5uoXj2RgVoMzgv5zTSZiHw2nPZ5poxPG8VOpBIahm5HewHRBAJKPRKis8r1XlsNhU3DvleWwK0wzRjBcjnP9leOdASmlIHRczi3JQpAL7AirHwAvoC8Cx+OKZqnvahtg0aewFNTZi3reMHW9REfL4U3hET5PIy2y/RGl4eewyPZHKdX27hFWFBW2jw+e7QvFJL84iS+GwtIItJNH0Z3+CD43fxIAaJY2udGipv6871jOd3fLyyRnTx3rNQvYMYVdt74KXf4I1q2vkhYLvROi10AFd8QVk9KxqCgL2T4nFhWx74k6XSOpD4Apw75T3Y77X9kjDS2hOxCzNZ2mcPQPvP+VvfzYe0GvAlm+wZjQoN8l0+KxUTFWn84xK/waw/gNG0XpZo7e6Dmj4bRPtyyDGSaM49c7Sbotf2pzDdMj31wjbVkB+cKgkZH+gqFb+7/ubUE0ruKve1vww9cPIa5CKzrxeiGcNmAj3wVsPNCKg80sQjzY3Jew3a7ji4WwAlV8ZyGsvigpUJLjkawRBiOylRcFLoPgsks1ggB4hM9/R+UJ6OJDKZsAGF+eW5qu+LhOsK6YpeykAl4XKEhPwfmlOXDYFK0YH+ENTJFoTCpqJubhh0CdPXXAt6+YgUvL83A773K95wq2kN9zRbmUuzfTl6ffBU3NAHL6kJ6D/pqiUhEil96t20rRJi89aApHv/jQc6cpJX0x3Eh3Su/UqFOnf6PvSR9E0cXDLLVC/6ZPsVKMJEo3es7pctqnqi4wYVg9tCgHQNcEw1gXB5r7JaVOQGYKUOeubySpbmXF2erWfpQXpGJrDVCa68W+Jjt6gkODOd4/2qVZEZgGI3Ec5Vvwo+1+bYZrY3eiFIBDYQJhDgXSUGs9qG58PW86EpZCKhbbFUSjqpYHt/PXsiuQun93K7fC6wQCEeAS24voCkWR7XVgJ4BD/HM41NqPkhwv6joDKMnxYkCbQciOXTE5HXua+lAxOR2ZXhdTcyzKQk8gDPRC+7wok+SnbxzCnqY+FGZ68MhfDiAaV/HIXw7glvOK4eRyFE6HPSFqpaAywcFwHO9Ut2NmfoMWud64pAjPvF/H2TQncNeqWXjzQCuicRVvHmjVBNYAhV9DQ9cKZYu8wKdnQVHw2BcXaiwXgNEYhVImZdcEwlHt3O5aVY4lJdmM8VOSjf28RlHbJjt42uQFyPrydCLbh8eY5s6Dr+3Hlop8qWmLsmbo560/Hk2h6XXs9Q2Nw33ed60ql/5GX/fXfBgMkNiYpb/XRlMnf7wxdEYiEz0STJiI/47lpXDYFNyxvDThb7SZyzR3X8+c9q76rmGKtkMsFdpwNS2bRTfCkiyE5HSpYFgdd9B1wzhqKqJFJYIBuWAqhoT0DcakISNmkBqkAOTzdEt+uhsuO3uyy65K6R3qDABgAZ9ctqAwQ9JmicbZ+QhLU16UzdIb5DRNbhs6A9jd2IOGzgC2cg791toO/OQfFsDjtOEnPJKn3Hta1NTnlYOc8xoMxyXZAfq9C217YWk0S2U2TDVgyJcrpWYA/HbrUa6UeVSnUROXzpGmpfSDygXkHQikaVp/5zvKvx9olQTbABjy9fVRuZTOIhevWXQtR63JcebNUivJpl2MdhrJPudUYixTTMlgwjh+qmgIyBe0WZcfza12cepgVyAi/R6QawhC4G3L4XZMz2XpFWGps6eqmaW5rEu3NNebIKNMUyv93KH3D8YkATMAUpcqlT3Wg+byXfw1XAoQ4DUFYalE9YdhVsT9MHyrlN7RF6J38mLszvpu7OMMoH2NPQjyLi1haReoiLCfeb8O2fwzEfbOF1h+/c4XqjCFi45NyfCgMMuLKZnMArLsNi1q0pw8APQEw5qlBWuJjnuU03G5pc7w8TeZzs7jnBZJId+0xrloo9y2XhmTFneNHLV+4RU7g/1NvVgxizGdVszKx52XcybR5Yzrb+S4E5k35H2QFJqZwqWsjCmLFBrBzAGPxDmfbHfuWON0p5gmjOO/ZGauZKkCoNkqS8XA5vNodn5hRgJ/+vZL2I7i9ktKJXnkD2rZYiIsxaKiDM1SJUX93NMpWUM2j18QecPeIE7N0py8Hpz9icEokMGPk+FzIZM7W2GpwqTXzaN8N/DN4o0oDT+HbxZvxOIiFtULS3P5jVwLp7EnhIeunQOHTcFD17IUgmCX1LT7NcbTWwdaoddsWD4rV7M+vor5Uuz41vO7UNvu15qjaA6b8ubf2NfChcXYrAJaKH/0hvm4tDwPj94wX6rzUEllPehMZsr20YPWkPTRHc1tUweld5J0t0IDFeqcqYgaAGlnUMKDiZJcb4JDoZ2t9Py+9ypj2nzv1X38cx9i69DXMuPCJxu1nmw+2/z5J9edO9Y43YyfCZPjv6yiAH/Z24zLKliEQm9Ms0k+tNh1mBchd9Z3YyqPNAWbhO4ouvhi0eUfZCP4APRzb0u7Xj/kBcwP67q1Lt0PjnVpypQdA5z1wzuBW3uDULlD7AklMnSWlmTjjf2tmgWA7mBi/j8eH7LpbgfaB8JIdztgtzEhuLxU5vg39F/HhNT6mdSCVwUCCvDhMRYJf3isU3t/e/nnQFNWS3g38pLiLBzrCCAaV3GMf550gcj0OnGiN4RMr1Pq1AWADI9Ls6xTthf5aW6EeForjS8GD2zYhy5/hGnhV+Sjyx/B29Vt2qjN3Y3ss7571Szc+/IeiYcPsE5PYf/7n85DYZZn2JvyjuVlyPGxTtSVj29GdyCCu16swq7vXSHlZ2kNSZ+3la83YwfF8uws3/5aVRP/rSrNbX78pkqpzkB3BnpRNArKwpmZn4an3zuKzoFwQqMjFTfU17+A4XPjI83dCxjNwdXDLB+uF3obbxiN8Y0ngwkT8VPHACTq5BuBilYN8LzzQDCawFKhUsCpKcxxpqY4EeYOXVg3z624XQri3APH43Hk8gs81+dKEBajUgx0SEgq5+0LS6NZMaRquIHhay+YplkqAdHDRxEK643zKD8OXJf2KkrDz+G6tFelqHzFLJYzFjadyxunu53Yz5VE95/oS5DxFQuGwy5PFUvXeP7MVvF5yFUN3VIKRno+gDzOEspLS8GWap5qq25P4Lk/+2E9gpE4nv2wXorYqQJqQlcqAY2cV81mOwJhafrDiKuf8F2Q61CfnqApJspmoekrM0EzCn0Kh9YtDjSzRftAcy9q+N+F1Q9w+awYSe7eLE1Do3yzY49nKuV4wIRx/NQxADC8ufXbR3rzpXJnlOp2JDj+Ph6B94UiUt5bXzCleXQxB9bjtKOT59M7BwYTirGUAtrBmUUd/ghUlf1BWOq8nPzYTqcdZXk+/l6Y3bC7WbMqL9ipqoq3o1/EUdeteDv6RXaOUZ7Lj0JqMKPdtSV86Iaw6R6nZmmWW98ANoMXD2fkpUr9DPqcNX1PV3LHyawcKdMhIf9yBeuu/ZcrZmmzY4UNcrnPYDgi8fNpekif7th5vBsrH9+MnbwJTODbn5uD71xdgW9/jqWvjNIf+t8bpyjk90QfRx2ZWU2KOkOaHtK/J7ozoAqf9HoAIDUt0kUlWerkyHL3xrugZMcmjme5hPGACeP4qWMAjCdrUVYEIEdKK7gswIqKfPTw6F/Yd3iU+U51u8TOMGPUhPmiEY7FJbaPHrQJic6G1csKU0fbz1M8/cEYlnFHLewiPqZvUVGmNMHJCx7h8+MstTPJhaX256Qo/yifJHW0YyBh2AfdQVCmE82nA8BxPrXqeFcAIf45hGJxXdMRcO+V5fA4bbj3ynKJX69fUGku/4UdDQhG4nhhR0OC4B2VXKb8/PdrO7hCa4eUxweS154x4uTrI1MjB6rfhdK/0ePR19FH8rIzHLoi9O+JHpsGN+dyxVhh6fHo+zCLtk/W6ZoNkEl2bOJ4lksYD5gwOf439nPHsL8Fi4uzpPwpzRXu4FGUsPe/sgcfHutGILwH5QUsXeB22HHRzFy8uKMRF/Fi8aQ0F453hzApzYVWrsKoQoUvxYHeUBS+lMSPmg71Tk2xoX8wDi+3FDQKE0094Wgcbfx1hHXZWDpIWHYOSOC17+PMj31NvXhPvYnl8VXGy/fagUAMSAX7P7idlG5DG4BUlw31nbwvoDOoMXKKsuvwCI8c39jfikvL85CfloI9TX3aPFiKhVMz8OGxLiycmoHuwCAOt/pRmJmowUMlEk70hjTO+/zCTOxq6MV8LvdA0xVzJmdga00n5kzOwH5eexCOcd6UDOys78G8KRn4695m3mjXDBFdHmjux8PXzcWR1n5NLE3PwxfQ55gpJx+A9Deaz6Xccar4qs/70sfR1wKgvc72o52SqiXNj+tz/KI2oT82fc5Vcydh08FWXDWXdS3r8+30/Izy8iPJ3dO/0c+xbLncMW/2N4rxxs8fb5gwjp/S3ADjyVp/2c2KaBGtKWpo20mbtATdsJ/rAfeGZCswyIXWhM30ONATjGoWAB/mwbV1BuOwKWyHINQRuLoBQjGWs49Gme58TNef5LDbEI7HNSugFx2jejhe21CUP1t9DoNhNti8Giy1FIkz28qle1v7w3jsiwtw78t78JN/WICf/J3RGt851AZcB0zjOvTCAoDb5ZAKkr/78lJcWJaLl3Y24sKyXN557Eemx4W7XqjC8a4A7nqhClvuvVRaoBs6A5oqZRPn2IuvZ92qcjT37sa6VeXoC0bw0s4GXFiWgwvLcnCwpQ+3Xcz6N2hHLZ2EtfbCEq1x6ZltfDHLqsMj189DhteJadnehCHvwzlRasXPeodHHegz7x+Tpm5R0MddPqdAkvcWP59bki1NmnpqSy2efvcoOv1h3EGcbl2HHy/uaNBm0BoVYPVyxtSJC6dOdy7iPekfp/8cxOPpgmC0WJg5baMFS7+QnO7i6XjHmDl+RVGKAPwewCQwIsvTqqo+qShKNoAXAJQAqANwk6qq3UbHGS2YdTgKTv6CqSekDlAA+NJ507CnsQdfOm8a3jvSjg+PMe75Bs7fF0M1+rl37ifaM5GoClVMkuJ+OMBz5YFQFOluB/qIBdhT83wutA2EtYIvRWGWDzXtfhRm+XC03S/p5+ekpiDQHUROagqC3UHtb128LiDsh7abWZRvY1x8b5z9rGeeO+0KInEVTruCGG+8isVjWDYzD3dePgvLZuZh7t5mNHQHMZfPAhZsm1A4pnHrPU6b1K0KAA/9eT+6/BE89Of9eOjauahZX4Wvr5iBP+1qxPGuACo51ZXmor/6+x2a9EEKz9mLnRlN9Ww61Ko9bnKGhzdLHcOKinzdPFeufuqwSa/z1kFOLz3Yikeun5fAoqHOzwjU8Tz614Maa+b+a2ZLIwf1TVtG0O8m6M8i37+4OAu7eTF8d0O35Exf3NGgpas23b1Cuv7posIWlqHOXbNdB3Xi9Bj0vdPXMdPPp38zc9rJMoYsmGMsI/4ogLtVVd2pKEoagE8URdkI4H8D2KSq6o8URfk2gG8DuG8MzwOAPHFrcXGWdNFRTv+8Kek8FcAc2c83HUEwEsfPNx3R+PnHu4KYnOFGHbcAG36+u6kP86ako6ZjAP7BONwpNqS6HGjtDyMvlTlxOm0qpuu8FfjqJaV49PVD+OoliV3GPbwY3RMIw+lQMBhV4eTyyWKISUtvCHYbm1RltwE+l0MbggLIbJ1Z0ecQjTNJZFGHELPDc1PdqO8OIjfVja7AIBBluwnahk+ZOwAk3Z37rpqNv+xpxvJZ+fjxG4fQ5Y/gV1tqsaIiHwunpqOuM4CFU9Px263HNOcc4N+FkNZ45v06bdDInStn4t6X9+DOlTPxrxvYDNrGHlYrEHTN3Y3deOCaOVi3vgoPXDMHbx9q1eQzAJnmJ8TVPC4Hfr6xGr/fXo+m7gAmZbhxojeESfy7NUoL6iUWjKJjvaQ1XUiEBIRnmH4LI6dJ00P6gSjlBen48Fg3ygvSpeecW5ItpauMUke3Ly+TpBeoozU6BwBS8EQHwpjJLSTr7I1gpXNGjjEr7qqq2qyq6k7+cz+AgwAKAVwH4Bn+sGcAXD9W50ChLwrR/4e4Nk4oGk8oBlJt8WLe0FSc7UUnd8DCHuAiawea+xDkaZvgYDyBl+7hdE6PSzEkL/zsrcOIq8zqEeARdSAc44PJoVmFWEqL3Ba/CUddt2Jb/Cb2XIWzdRSZ06+f9dvC2TYtfSGpHiGGlDf3hLQFUlhRBykvSMcTG6s5B7wa+v2E4PMf6whIXct60EX5hR2NvGjbiF+sWYxsnxO/WLM44XWpLLD+Q6ZsLlpEpMX5G8+ZCodNwY3nTAUgM7vMJBboNUWLi/rxj5SOaVbINGKwmCl6UqluI819QGb/jEQSIZHBNPT9GhWizY43HjCRmECnJMevKEoJgEUAPgRQoKpqM8AWB0VREtsj2XO+CuCrADBt2rSTPgd9UYj+fwdvSNpxrFOTRBCc8V0N3XyIRreksS6ldnTwpigYGFThTVEQ4eGzyNcP8pB/MKLCZVcQjA5ZgbDg73NLRyLa+YHsNgVT05kImmgmoyMVJ6W70RUYwKR0N7w9bIUXbvUC5UX0D0aR5nZAUaJaN362z4W6zoB2I6al2NEZiCItxY6oyvRz0j0ObK3hmjncAkOSFSFeGwlFY1KRdc3SIkn8i9I0s/hosCxfSsKOizru0lwfttZ0oDTXh6IcLxZOzURRDntXlJ1E0w7feI519go9/u+9ug/bajsRju7DkpJsLUq9oDQHDZ804oLSHGla1S3nFUvfLY1M9RIL9Jqi0Whdhx+bDrXhqnmTASQOAhfPyVriknLWRhGtPt9PQXc0dMdAd053rZolRexleamG0bZRHl1/bqsrC7GnsRerKwsNdxNmxdiRYLQFzU6VQNp4wJjTORVFSQXwMoA7VVVNHBNkAFVVn1ZVdYmqqkvy8vJO+jz0UQ39P1Xu1LfrU145dVbCkQtLB4ELUchwFBCzzoV18dy0y2GTpIkpRIpBWImmSbR6qO4MACm4fbFnNY66bsWLPasRCPEInwXqmMn5/DO52BgALJ+VJ40vBIAu3sjVFYgihdc8Uhx2Sdohl5+7sLSJ7Kp5k1CW58NV8yZBD0rbpFEvXQQA2blSPR6zCVA0Gq3vZmweYYX4WFleqjR7gc60feLGSmT7nHjixsqE85YlgmX6JZVBoNGsvPORdwZGuwSz16XvzyxKlY8n77iM6Mx6GDVT6aN1ql1F761k6ZcjwUiPfboF0sYDxjTiVxTFCeb0/6Cq6iv8162Kokzm0f5kAIlCJ2MAPW2ORm7Tc73Y09SP6bleXFaRj7/sPaGNRaT3y71XluPel/fg3ivLcf+f9qJ/MAYfd0xOTqF02oCwoFzG1IQB5pK0LWf1dAWjsIONQrQD6OhnHlpYu8IkEOwKy8UPxpj4Wi93zMIuLcnC9mPdWFqSBW/TUB5/nvN5BMJxeJ02HIA8kq+igDnClt4g9jWxG0HMDF57wTT89wf1WHvBNOys70Zb/yAmpbu0d+OwKagoSMUechwqiUAFzaJxFR8e60IgvBcv3H6BxJShLJrrFxXiL3tOSAuS+H9Jrk+jJ3YHIhojB8Cw8gQ3LilCbfsAXtzRiM/NY6kUunjQgip9frbPhZ0PXDHsdTRcQVKAyiDQPDllDwHGhVp9FE2jdK/LPmwhVC97bMaOoZ+PUd2C1iayfa6ki8/6AUYCydIv6c5CfM6fJtmQ7LH1MIrsJxITaCxZPQqA/wJwUFXVJ8ifXgOwFsCPuN0wVudA8S8vVmFXQy96AlX40/+9SLrQ1q2qwLr1VVi3qkIamrGiIh8hTsMMRaJ4/mPWGPT8xw0I8shbWLvdBsTjmhXQM2XoQuC2K+gnFmDOnw7gAJizj8X4XFuFH0FRMCnDhebeQUzKYNHxb5uvZmydZsbSEWydCL9pI7xRyg5Gs7IDqOe7HWEBIMCHwNe0BzQ7PTeVL46p2FXfA4ANOqdia4DMu59bmIFttZ2YW5iBKq7aKXoSaIHzWAd77rtH2nG0Y0CLjp/9yvn4zit7UNvux3de2YO/37VcuzGpsikg37Q0kvvcvMl462ArPsfTLMtn5WsF51d3NWrfLYUZTdCI5XL78jJ847KZErVSQH+uyfL4qTMVu4rEQqhcwxhu1yFAf6YsJvqcBP38pLXOhq70ZKmZFGaMISOMtLhrFYXHNuJfBuD/A7BXUZQq/rv7wRz+i4qi/B8A9QBuHMNz0NAxEJbsU5trNYrdkTZWDHzmgzqJEQIAO7iQ2o66bszkUW1uqgsOBx9aIgaSO20IRuKaFfA4WP5eDC6nC0E7p1cKK+By2BCNxLW0UJrbhUF/GGluFzq5UwtHVXRxmQdhKVvn6zM34Y39rbhqbgGmtTFnKrj1dDJWutuJgcEY0t1OnFuShQ27m7GS73ZKc70aI+atg2xj9nFdN05w9lB9d1BL8QjQSLI3ENGaga6aOwn3vLQb3756NgDgijkFeO9IB66YU4DJGR6sW1+Fh66di7cPtbHomEtA1PDBIzW6ASRmAmTUiTz3Yb00gIRG5b28B2PfiT7peghFYvj99uNo6g7ikevnSQsBddT6XLueOZbMuRqxYQAkTIMTkJu0ZDEy+v6++/k5Wl1FPzqUfkaUuz8zn2nyiAhfr/5pjKEVYiRsHfpZ6plKRtAfO1lxt5ON7JN9nfGMMXP8qqpuhXGcsHKsXtcIT968SKKzUdGwx25cCOGsWN6UMUJWVOSjnk/Bqu8OaB2y22o64XU5EIpG4OW8cJUT9oUVoAPL9cjyOtAdiCLL60BPIKrtBC6ZxbpfL+HpjimZbnT4w5oF2MJxbkkOttZ24twS1l4fCDON/UAYEs1SOA4hb+C0K4hFGT+fMnfo8HeANV4Jm+q2A71AqtuOErsbdV0hlGS7MSM/FTvre7RB8LQxjkkJMIeyYGomHxjSjsXFWfjh64cQjav44euHcH1lIVPTHEbe+IJS9h7FGEoBfaRMQZ1IU08Qv//guDaAhC5M//JiFf/OVIkO2trHvud3jzCmD3WS7x5u14rDl8zKk1INZkVXCnmq26BkKeiCYRYRUydG35++ac7oM6Lc/aHJYYnnQKF3frQWMxLHStM2ZlO2zHCqirNnQxF4wnTuiilIw8Fo2wsApbk+7GnqQ2muT6Ns9gTDWucuD8q16FFYAaeNN0HZEtfAbp6b7w5EMSk9BS19gyhIT0E917ERdjo/h+m5Puxt6tMWiKearmSOvgkAerFQeQ6xMKsFfH5aJhq6g1g8LRMbuURzI5da8DjtCEWj8DjtcDlV9AVjSHXb0cPPXdgQT/mEIjFJufOC0hzUdZ3AwqJsHO9kaRphdx7v1hbYGxYVYvvRTtywqBDvcSfazHn3bocNfdz+fT/Tyv/7/hZM4UXWvU09AIAIp6hG4qrkbB7csA9bazoRie3Ds185X/pcqRO58/JZKMwcklim3zWVfXA77Wz849QsXDVvkhQklBekSR3D22o7UZafmpAyoK9LGTp6R0GfJ8Z+CvlvimQ49HoHTN8fXQT0j9M7Wm1h0IlGGTlx/XtKRgY52RTaSHGqUjhnQ6powjh+/UU3I49HqnmpUl7zvSMdqG334wd/PYBXvr4MtyydhgMb9uOWpdPwozcOoTfIdHdy09xoG4ggN405Kpo+odCrHVJMSnehpS+MSekuSXenL8Si+rpOlt54j9Mm36vpkFJFelE1qoVPI3mFLzrCUofONIRicNls2HqE0zS5PcQXukPNfZKENNWuv66yUHOYALDuxSrUdQaw7sUq2G2K1vwm5gh/wGcOzyvMwNvV7ZhXmKEtqIoCrrk/ZKmmD/2e9AVTCqMuUkB2WLTQu/bC6chJHaJQUs477TK+rrKQPcfrSji2Uf5f7yiMZtzqr1GjFJOZJpDeIQuHru9yNXJecmezDLMuXCMko+Gj/0xGilNVnD0bisATRp1Tr7p5vMuvWTpEvZFH2cJSTnecR5/xuKpp+USGGXRuIzaHRzY5w+QCe3japscfllQ8U1PYY4Wlkgv7wEYg7sOtkmwyABTwASoFqU5M4umaSeluXMyF5ISlQ67CMXb+4VgsgZpZwmsCJTk+Sf9eVZlTVtV4AmWTziV47IsLUZbnw2NfXIgLStnvhf2Ic9g/quvCeXw273nTsyX5ZwC4at5kfvzJEsNEXzA1ojvqQXd0qysLOY20UHqMnlZ5ycw8zZo1XBkpWeqpj/RcaYSuf136f0q/NKKD6t8fhf5xRvNp9e+P/s1MJ99ISZT+fiLRJcc7JkzEv50P6hY2mxeQsr0uHOWsEmEp/vcFxfjZWzX43xcUY1tNJz6s68acyemo4u33lA0jQKP/Vl5MFpaCDlhxO4BQlNlZ+alo6x/ELJ43T02xY2AwhtQUO7wqj/JdwIXul9HSN4hJ6SnYDmCAF5UHInF8yPn0Hx7rQgbXyBfsmYJ0D451BjQLAH2hOKZkuLGnsRdTeP8AXRwrizLwxv42VBZl4ERPCG0DEUzK8Egc9We/cj4m88lNkzM9UnrtDZ7OyeT8fLfDhoHBGNwOm1R419diKCW0jH8eoWgMd6wok3LPw4mTDedg6ESpi2fmDhs566PZ6xcVYlttB65fVGiYzvksImE/+ttBvPhJI2rbBlCWn2r4ukZ5eFoQBlRJ5E3/fQiYUR/NGq7kvw0VcPXROz1X+jez3ZeF04cJ4/hFwU7YD3i37gfHOvH91fPwyfEurFkyFb97vw5tA2FM5bIFv91aB5XbQZ4iqWrowWBMnpJFFTWH094XcCpMp0dYgD1eyPWEotA6OoXdHlnDcvkRIBAfKuB+65qZeGDDfnxrJaMPptgV+Lm18bDepig4xiWJhW3jIx2FFdCnehYWZbE0TlEWXt/LhrfsP9GPS8vzudxylpY2EoPQV1dOwZ7GHqyunCJt86l4G8DmCXf4I5iS6ZEE9PS1mELeTFaY5ZHkpPVORJLTNnEucyanYWtNB+ZMTjPVnqGgi8+/37pYe46Z2qQZ22MjF4HbeLAVt68oM3xdozw8lbEYSsmw79soBWaWmhnub/rfDfUC2Id9HD1X6uxHyrW3MLaYMI6/MMuD1v5BzZHcd2UFHtiwH/ddWYHHNx5GMBLH4xsP46Fr52Ld+ip8k3Ox6RCUtNQUNPWGkJuagky3Hftb/ZhbwCmSJgNXKBx2IBJlNhYdmr/rc9vQH4ojzW2Dx2FH20AEGXxuotfFJRdcwMwwL+DagJy3DiMaV/Gztw7jlvOKpRTOPy0rwaOvH8I/LSvB+k8aUd06gOncGficdvgH4/A57QgMxrViscthA8IxjUZK58vWd/o1FU4qbSx07oVMslH+mQ5vAYCKSenY09SHiknphjRIADjBdYFO9IQSpnjJGKp+0FrA2gunS874jhUzkJOakuAAzfLmZXmprKD7Kc40WbbHz26qxLr1VXjixkrT1zV01uSL1hdV9SkwI1CFUL1kg1lTk9HP+vqGUVMaxdlAizxTMWEc/3evmYN7XtqtTeD6064mROMq/rSrCUunZ6OuM4Cl07Pxi7ePoMsfwS/ePoIVFflScZaqX3b62c1X25nIxjCDy2lHMBqDy2lHmtvO5JdTXXA6bOgPhZDuduHvPTewqH4AAHpZlA8moeyyAUE+bKWda+QLy4NvRGKy0Ns/nleM6tYBrRu2bSCi2UxOJc3wOiQdIEC+6ffwbt89jb3aeMWeYESTLR5OxpdG0VMy3PjkeDfW8L/TCVxmUe+aJVO13dicwgzttSh7aHFxFpYU52BnfS+WFOfALCUhyyUfwNPvHUPnwCDuWDFDOn/6M13oklWbpNA72RUV+Vpn8AI+pGa41zUEqfDrHTOlX5oVVs2kpo0KzMly45Pl8Z8NtMgzFROmuKsXxory0DwaV5HJHVmmx4kTPHIVlhYbKTsmxFM8oWH4+Q6dpfDzTl//YAztPLfdPhDGly8sgU0BvnxhCYvweR4fAOaF2QjEeeHn4OTRuNNhS+gK/s7VFXDYFHzn6gqJHUMLpABLMwlbxHPyRZkeKT2kB9UPEpIOH/AoWChXAsYKjv/2t4MIRuL4t78dZMdJd2mWPk4/SpDuxmghVD8Occ3SIlxanoc1S4skDR0zPRchLLe7sVc6b30xljJdRqI2SQuzZs9JdnC6UWOX/nj0+fqiLx22Th9nVmBOFsmqbiZb7J1IqpmnChPG8etvWCpIRod90+gOALxuu2bTUtjPaSl2pPPfC0tBVTIzvezvwnLVBMTi8g1888bFqHHeips3LkYgzNk6/DrnSs5wKYA/xOWRQ3HY+e+FffNAK6JxFW8eaAVvFIZDkQuaAJDKF7pUjxOLpjFHsGhaNs7njBthqRP+8oUl8Dht+PKFJQkMnWQ+8z4uJCfsx3U9mqWP0zvJhVPTNUuHh1PGECAPNDeTD6ZOpJx3YgtrBLqQmDGG6LHpz9TJfhYYLTJrL5zOz2d6glM0mvVLO3oBY6lpvTM2OofRcMbJLhAjWXwsmGPCpHp+8dYRvFPdjnT3ETx5yyJNpnfH8W4MDDJXvflwO/z850bO1qGOOifVhe5gFJleF2JxFX2hIDI95hdtWooLPYEg0jg1M8VhQygaR4rDhrXnF+NX7x7D2vOL4d0+JLdwWc6rqOsMoCTHi80AKqakYU9TPyqmpOFImx/BSBwupw0pDgU9wRjS+OJDG6b2NvYg5I8g1e2UCpoAEOWc/Gg8Li101a1D3H9A1tM52NzPI/ZDuITTQgElIY1hNDs1NcWJQCSM1JQhZc8TvSFkep3S42jTEQB0+qOazfAMdbnqi8BGaRb976nwmV4J1AhmIxApzLpraedssukTMwaR0RQqIxE5Ix0h/fsTxxnuHGhx9lSmaUa7YWosawtnSt1iwjj+v+49odknb1kEJw+TnXYFZbk+7GzoRVmuD7sa2PZfOHwhUeK0QaM+HiN5/eHonBSi6CmsN4U5fm+KDf936wW4xwUEtgIB15Comoufm7C3LC3mTWTF+M93atDQE0Kuz4XBaAxADC5e7Pzh64cQjMTxw9cPIcPrQoc/ggyvC/MLM+Bx2jC/kA0CubgsB3/b34aLy3KkwTPF2T58eKwbxdmsYE2d8PW/3AoA8Icj2qyCD452oqZ9ADvre9Ab3I1Xvr5M0ry5Y8VQzrepO4jfbz+upZvS+KCYNLcj4cYW6RxAbnB6cMN+AKzLVb/gGCExxzyUIGP5cPNuUz3MWCrJsoSSdZp0kUkQTxvmNfWWPsfrchgW0M2Q7IJKMdrOb7S1dcZy0TpT6hYTxvFTvXxgKKJv7A6inksZVDX0ojTPi9r2AErzGJ2zJxiT7GeFnu1DlTe9Dh7lO4DLvH9CXVcQJdkedHHKaQu3j75+ENG4ikdfP6jRIVv6QpiW7UXbQARpbhZFh3kzWTga06QjWnpDuP/VvQhG4rj/1b24trIQf9vPNHH+tr8Ni6exxWDfiR6IomhNuyyIBgD/fvNijYnyp12NmhzEdt6J28Q/T6p5Q2/YO1fNQmHWkHTCfVfNxj0v7cZ9V82WC65/O6jx8e//3GxJ+0deBGTJhmRvODowxGg2LGAsC2zm8OjxKLMl2QEretBFhjYZGr1m4v+HF07Tv9+RCJolW7QVheXhXudURcdmkhmjjTNFzmHCOH49XHYbovE4XHYbAkKOAEAtlyIWlsKGIfqlCllnfzh+/nD4IMQ5+SE+6Jxz8ukwmOWz8vB2dTuW8MiMUkozvE50DESQ4XWihcs8CGuz2TSbl+aEvzOAvLQUBMIx9Idi8DjZ1+0EEOE2yhciZnkKiHfz3vV8FfY09aJzoAqvfeMijYny261HAQCd/jAyvE609g8ig9MHKfefQu8oaLE9w+vUHLqQbxaWgi4CdLoXIN9wZg4lmdQFAFN+fjKRnJF8g55ZlOwxvvHcTgDQit7JgFI99a/51OYaidH0WbXwkz1vswV5JNHxSBYLvTMey0ayM6VJbcI6fo/ThgCXUQ4QGWXaiKWHw64gHFM1CwwlDugQdQr9IBavm3Py3cCM0HOIh/mCQnR2DrUwdX5hg5xZFAxFsWJ2Ad7Y34olxdn4pK4b/sEYvHw6lpB+9jgUdHCp5o6BQaysyMeG3c1aMTbD52RpIJ9T4oRriwD/OGra+jQrzy8oR3PvbqxbVY5vPc9ExoR2/FVzJ2lSzMmKcn3zj7uwtaYDkdh+VExOx0d13aiYnA4z3LGiTNLWoTfczzZWD5sW0b/up/1+uLqAXjqZwmiBMIu2AWNHS49Bm9zMkOwiRRlNI9HCN4PZe6cYSXQ8ksXiTHHGpxITxvHTCVcA0MkFboQVoFE9AGR5HOgORjULDE3YSgZ73bdquXugl0X5/P96OqYA1QQCgChfPqJQsJMPQdlZ34MFRRnYdKgdC4pY1NvC+fwt/WFMzXJjoD2AgvQUHONNU8Lmp7nR4Y8gP80t6a3X8WapTn4cu80GIAa7zSbl7j0uuyaxrJdYoJIBF8/MS0qUSyo+84VIzNA1yuWb38zG00OScQJmdQEzGC0QZkJxAJJKi5g1uVEk6xgXFmUy8buiTNNF72RhlE7TT8FLFmdKKmW8Y8LQOWM6awRByxdWOHthjUCpnhR6Bc1/LX8bpeHn8K/lb4PXN+F2DHH2vS4kpHC4D4TTDgxw5c6BUBjbueyEsMvKcjTbz8+3PxjFiR52HGHTOJ0zzePEfVfNRlmeD/ddNRsFXBJZ2Ee/MB8epw2PfmE+dhxnr7HjeKekIS/YNcIZCamAUh1N0Iz+J/UZ6GSBzTjwRtDPwqXQ9wkIUKpo4vGG6JNmoFIKZqCfS7Izd5PlvBs9bufxbqx8fDN2cjbbHcvL8J2rK3AHST0N10tAYURXTRajQctM9vwsmGPCOH4z0PiQKmsCgJd3OwkrIHT4haWNWZKCJjgnnz9v06F2zdJB7GL6XySauIgUcLXMgrQUOPgLOhw2TeNfWKqnb+O/s9mUhHmoX1tehmyfE19bXiZFkhWTGN1T2L0n+hCMxLH3RJ/0/qpbmdOsbh1IcKRGkgFmyo6UY66XBaYc+GRvbDPnYDxk3DiqT5ZvLmlmEOjP26jPYCTNYWbHptA3vCX9ngjMGr3MzklgLAev68/PgjkmTKqHFjQBFj1HYkMWGCrYAkRhk7ByaBpIzxJy2oBBPmxdY+u4gPnx5+EPx+Fz2bAfMlVTcdnQP8j+1j/I5+LGgdlk8AoAdHAmR4c/otEvA4NxLU0jqKchHmmGwlFUFmXijf2tqCzKRH2nHwdaBlCcw5rWvrdhH7r8EXxvwz78/OZFWkfnu4fZoiQYOh/zncTHxzolWqpIExTneBOmPBlNjTIb2q3n7guRN0Au6Oo560Ywy6HT16KpGbPxiEkPAjdYO8zSL/pCqBFV1KheYnZs+pzHvrhQSskl89klw2ga7vMyOqfXqpokJdHRhpUGSh4TxvFHdFZRh6wDrMtWWOl5POcTiaqS3LK+aOty2jE4yDR4AjGurRMH0rxO+MODGuWSyiJQRo3PZdMWiIrJXMCMFzhzfSkYGAwg15eClr4AonHAYVNxbkkW3q7uwLklLM1CF4jeECve7W3qxcqKAhxoGcASPqKRDlj/8RsHUdvux4/fOIivLZ+Bgy19uO3iUgBAjK96sbgqTSI7zvsYjncG8OgN80GdNs3bUpkAIcs83DBOvXNPhidvBup4AuGYlHenr0U9tVm+mS4QXpfd0NEaSSkke95mjzNypp/lOUYT6JJ5HcC80Su595H05PYRwSriJo8J4/j1oFr4AsNlZo1qA14X4A8P5eY/GOQ0zUFgqfOPCIRVeJ0K1l00HY++fghfuYjlh22KTbM0QCzO8eFAcz+Kc3yoaWNsHmE7eE69wz+I1BQnQtEIUlOc2H+C/V1YlTtqNa7C52FpIp/LphVKhV1clIGdDb1YXJQhpYF+taUGXf4IfrWlBisq8qW0y31XVeCel3bjodXz8OquJnx4rAvlBWk6RyqDyhkv4YvTpw3tTpYnrweNVGnj02tVTeRT1g8qN47yZQx9U2adu0YCaZ9FqOyzOlOzY4+kyUr//oyK62Y7A6OCbjLjGS2cGlg5fh2SjUkGI7L1unl6xw3kp7OUSn66B09uOoK4Cjy5iWmkZHodmqXRP3XOYqiXsAXpKZqdwkXVpmR6EkYqTuZF2cmZbmm4SYgfSFgR+TNL37H87h+9YT4uLc/DozfMxxv7WlDb7scb+1qkkYVmWjHCUZTlpSZMuzLKA48k9wzINQSaN9cXZmkeONnXoscw0+oxEkgzQ7JFW6OJWck+Rw+j89O/P6Piuv75RudEv5eRfrcWRh8TNuI3ghlxL8PjQG8wigyPA9uCN2nNV3qaZjOXb27uDcGuiHQJ21r0cU5+XyiKGfmp2NPUhxn5qSjK8mJnfQ+Ksrxo6GapFAevBwyEYppdVpbLh6BkojcYxobdLTivJBMAWwz2NPVhSqYHB04wDn5fMIp9fHC5sPRdRmOiaSuOR2+olCSWaTR/oLlXs7+4ZbEW2dJGoPuvmSNFsHSBoFOj7lo1yzClMPJuzuG7VPURcTJpl9EYCp7s40aSnhgNWYBk+xmoxo/ZzF3jcxrb9I6FkWHCOv65BT5tkMr+1sSRiwJ2hTVV2RX5EtZLJy8KP4cIL+5G4kOSyJPSUhCIDCLdzR6Y7nagpW8Q6W4HfnbzIs3Rfuk3HwIAPjrWhYWcl5/P2Tw5qS609g8iJ9UlMUcautkCI6yQT9h+tAtpbtZ3kOZ26LpzgZ5ARLN0ITJL29CmLapDc6CZpZmE1TsEsUAMsXnUYR8nkGyzlB5mXaoUyThavRMzSsckm+7Q42SlCszSTckiWSkGyvr6uK7rM88isNI74xMT1vEf41H1se6AVFgdjMQRVaHJGoterZgKbBVRflCWW0gFE3uLxFU47QocChCMqfDYlQROfh+P3vtCMfQGIqjvCqA3EEG6x4HmPiDd45Dm5QKQ0kDVLSySF5bivqvK2VSxq8pZaikYRYrTDn3URUXWfnD9PKxbX4UfXD8v4XjUQVEHsP1op8bkofo5gHEBkGrkDPc4gWS58HqMZmFP78SMnNpII++TjdhP5ThD+t7NhOeMYBVcxycmbI4/FFY16+cVXn84jlQucSws1bynUf7Vma+gNPwcrs58BQAQ4FoNgYiKEF8tQsN0+OanuTT7jT/uRG27H9/4405089xotz+Me68sh8Om4N4ry/ljUzQrlDOLs32YwXPowlI9/vOms2LqedOzEtgmi6dlavb92k50+SN4nw9XoaB5XJqL/sZlM1GW5xtW4lffKCRglhun0PP4Twf0uWij3LRZft6s2SnZvL7R8Uby/JHCbLYBxWhy6K1GrLHHhHX8Rrn8KO8YFXa3jTVj7bbdikCEN2NFhjTrhaX8fHpsOvAFAKbnejVLUzCUOvnHj+oR5RaA5pTfr5X59EJFU1jqkKmO/aM3LOBF2gX8dxHN7m7sYe+TWwracEMdwJbDbVyyoS2h+EcbhWhzl755x+jmNuu6NUOyzmI0nYp+QaDHNmt2OtnmqdNVJDVrwBrNxchqxBp7TNhUj8vOOmaFFaATrgDAax+SXJgRSxRVE/puqSl2dAWiSE2xY3J6Cva3+DF3kg8NXP+ml0+e2lnfq9m5U9LRWt2OuVPSsY8XY+12G452sJqDsFOzPDjQ3I+pWR5pxu0963dL72nL4XZNQ2fdqllo7g1i3TB5cpqeeeGjeqbZMjUj4XG04YYOLQ/yNx2MxBOar2ijEG3uOr80R0pPjLZuebLHO1Va7KOtfzMempPMUkyjqZk/Ht7r2Y4J6/ipXAJFgqhaeCiX73YqCERUuJ0KwhFVa/oC5J1CTQeLyms6gtrsW5Hbn5mfiobuIGbmp0pTwLI5A8brsiHX58GBlgFM47uEmfmpONDcj5n5qVJdoCjLjZ31QFEWo3HS/PirVU2obffj1aomVNV3Y09THzoHduG1b1wsza69Y8UM5KSmGNxkww8tp8JuepTk+nDTkiKU5PoSFgWaHzYqUI7UMSdb8DxZVk+yx0622SnZ1x0PufKxdMjJ9jNYGB1MWMdPQbtwvfGhEYgAMA/PASIrQPL4AqIEOcAHtQwEY/C4FAyCddfaHEAwCnj4J03VNfNSnegLRZGX6kR9F9sZNHWHcMvSaVKnLX3OvhNDqZQQ15rYcZz9nU7T2nSI5WE3HWxFDx/eK/R0qNLmmqVFmsPUO5vVlVM0+YTeQETrws3wOrVC7YMb9muSys9+5byEG9ioI5dGj5gDbQeidy4jGVNoVvAcCasnWYzEOdP3N96nN43l4mNF+acWEzbHT7GXi6rtxa0Jg86TBZVz8PPCsT+sggf6mv3nS8tgU5ht6ed1gv4hvj+zcgWCFmPvXDkTHqcNd66ciQxegBZ2+9EOzWZw6c8MtwMezgoSlnLyjUXLoHHvX6s6IQmp0SKfmOMrLJVpoNDnh40GrOvz12bibhRGOWazBrPPeqyxAM1nJytidjYWP0dStzgbP4dTBcvxQ2brzMNzKA0/xyL9zwC9qqeATmUY/7m5BnGVWf8gXyAGVUkaguXFh+wHtR2a/X/bjiEYiXPLni9sbbtfs4O8cDwYU5Gdytkp3K5ZUgSP04Y1S4qwrCwHNoVJOT+1uQY/fP0QntpcAwCo4/r9dR0DkkrmlAym4z8lwy1LKgP48RuHuPbPIenG1DNC6KJCzyGRFXRyDUD6QqFR4dDMiZysgzFbfKizN2PNGBWOR3oOo/E+TjesIvDIMWFTPftwq5a7p3n8kSKus0bo4oNfunQDYIRCaCQmj2EEgLaBiGbDUebcj7X70cObr8Twd9pzUN/FflffFdCi/y4u4/DTNw8jGInjp28eRmtfCHGV/W5hUSaAoelMdAG6fDbLoR9o6sUDr+1DMBLHA6/tQ2luKmrb/fjBXw/gla8vQ4SPbYzEYtKwbyGZIKLoZs5Oau4J4uk9JxBXgcc3HkZuagoauoP41vO78N59l0npJulz1KWAjBq/9Ll/mlKgx3hqS6026zfH5zJs4BIpmU9V6iQwawgTn+/5pa1JC66NJC0yGmmk8ZCKsorAo4MJ6/hplF8aJnn8cQ7h7IWluHhGDt6r6cTFM3LQOTCIAy0DmJnn09Q4Q7zQfN70bBzvCuC86dmoauzG4VY/puV4sHAqn8o0NRMAMCk9BX2hKCalp+Cel/YgFI3jnpf2YHXlFLy4oxFXzJmELdWylPO8KZnYWd+LeVMyQaN1fX74o7ouzX7v83PwwIb9+N7n52D9Jw1o6A4ij/c7JDMjlx13eIKu/vn0PKjM8/6mXs3++62LAQzfwCUrf0YNRzxSJNMQ9mkdx2aF42QwGk5yPDja0S4Cn6qB7+MNp8XxK4pyFYAnwSYh/lZV1R+N9WvSCF/P1jmVyPY60RWIaFaAFpjTPHb0BWNI5wqb4jz156sfEzk9LxXv1XRiel4qHrpuiPb56821ePGTRnyOp2PcnI3jdtpQOTULh1v9qJyahTVLi3CkrR9rlrIbO8uXAsCPLF8KZk9Ox4bdzbhybgG+ffVslPEJWzVtA2jtH0QhZyDRLmOzdv0nbqrUaJ8f13UhGlfRF4risRtlvSAasZtFe0ZKm2bOiv5N1Bq++/k5CY7VaIbs0LQu8zSU2fGA5KLnky2sjkZh9mxkFo2HXczpwCl3/Iqi2AH8EsAqAI0APlYU5TVVVZOfrTcC6LV1JLbOCJCgx29jEs8uG5DqcaDLH0W2j1mKy2cX4MVPGnH57AK8trsJoagKt0NBXqoLDT2DmJqZgnAU6EMMHjv7eqgSaGqKHQODMc0CQ+ml2rYBzVLK5rc/Nxtl+anazSJ6Bvad6IOTN54d7/InRMeP3jBfc4ZZXhfmTMlIiDgfu3Gh5KiT1bintM8SPnBGHJvqBUnsH8Aw2ktWe8ZILln/ukagz7F0aE49RnvxGQ+7mNOB01HcXQqgRlXVo6qqhgE8D+C6sXghaQTiCNk6s/J9mqUF3NI81oErrJ3/0W4DHFxz36HYcD6XThCWRtuzChgTZlZBGqZksdeZkuXD8oo8ABiys4ZsKXeSpbk+ZHCOqLB3X1GOsjwf7r6iPGk53IVFWZrVM3KEaFtZXqrhMehjgOQlF5LtRKUMm9Fg24xmQdCsc9cM461IOpExUaWiT0eqpxAAvesaAZynf5CiKF8F8FUAmDZt2oheyCiPX2fynGyfE13+iNZQdX5pLg63+XF+aS6gAIdb/ZhR4MOKWfmobT+GlRWsaOiw24FoDA67HZMyUtA2EMakjBTYbczRC3u0I6DZyqJMTWJ57bLpWuT8WtUJAMDkDJY+mT81E29Xt2P+1Ex0B8LsOdOy4LDbsLO+R3O6VEjNjA2zpDgLO+t7sKQ4C3csL0OOz4UblxTh7herNMpmMtHvcEg2Ch6pbPHJRnunsgnpZB9nwcJY4XQ4/uESoglqZqqqPg3gaQBYsmTJcPL4nwqzPH5RlgcN3UEUZXmQn+bCJ/W9OOf/b+/+Y62u6ziOP18CFy5XUywlBZRbKnkjuigo5o/dSdMMF81yN4rN1ZptZZrlCuzHyq2w1sx0ZTDFsem0NFusmMYopwXBvSJRgpK7YEKElKsY1cTx7o/PB+65l3ud/Ljni+fzevxzz/dzzvf7/Zw3nPc5532+3/f3tOP58qx39rk2aW1P+Y5JY9m0o4eOSWNTwqw54/XOOefw+YfWcdvV7azs+Qfrt+1ixttPonP6hD6lkNp2CfsS/JiWkX1aIvdPnrXL++rKY0Y3HVBmObAl8sAJuPZs3drE2v9M20Pxer+KV1UvPhpOQiq1vGBHD0UcUk499B1KFwBfj4jL8/J8gIhYMNg606ZNi+7u7oPe18R5v9x/u21sCxt27KZtbAvLbuygc+EqVm9+mfNbT+SuuecO+sv+677Q9iDrHInHHe46ZlYmSU9FxLQDxitI/MOBTcBMYBvQBXw0Ip4ZbJ0jkfivvbiVRU9u5tqLW7l5Vtug1xI1M2sUgyX+upd6IuJVSdcBj5EO51z8Wkn/cGy5ddb+299bvgno/dHxta42ZWbWyCo5jj8ilgHL6rlPH3pnZpYUc+bu0XDyiZnZ0cBN2szMCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDBO/GZmhXHiNzMrTN1bNhwKSTuBFw5x9bcAfz+C03mjchx6ORaJ45A0chxOj4iT+g++IRL/4ZDUPVCvitI4Dr0ci8RxSEqMg0s9ZmaFceI3MytMCYl/UdUTOEo4Dr0ci8RxSIqLQ8PX+M3MrK8SPvGbmVkNJ34zs8I0dOKX9D5Jz0l6XtK8qudTL5ImSPqNpI2SnpF0Qx4/UdJySX/Of8dUPdd6kDRM0tOSfpGXi4uDpBMkPSzp2fz/4oJC43Bjfk38SdIDkkaVGIeGTfyShgE/AK4A2oA5ktqqnVXdvAp8ISLOBmYAn8nPfR6wIiLOBFbk5RLcAGysWS4xDt8HHo2IdwDvJsWjqDhIGgdcD0yLiMmkS79+hMLiAA2c+IHzgOcjoiciXgEeBGZXPKe6iIjtEbE2395FepGPIz3/JflhS4APVjLBOpI0HpgF3F0zXFQcJL0JuAS4ByAiXomIf1JYHLLhQLOk4cBo4K8UGIdGTvzjgBdrlrfmsaJImghMBVYDYyNiO6Q3B+DkCqdWL7cDXwT21oyVFoe3ATuBe3PJ625JLRQWh4jYBnwX+AuwHfhXRPyKwuIAjZ34NcBYUceuSjoW+CnwuYj4d9XzqTdJVwIvRcRTVc+lYsOBc4C7ImIqsJsCyhn95dr9bKAVOBVokTS32llVo5ET/1ZgQs3yeNLXuiJIGkFK+vdHxCN5eIekU/L9pwAvVTW/OrkQ+ICkLaRS36WS7qO8OGwFtkbE6rz8MOmNoLQ4vBfYHBE7I2IP8AjwHsqLQ0Mn/i7gTEmtkppIP+IsrXhOdSFJpHruxoi4reaupcA1+fY1wM/rPbd6ioj5ETE+IiaS/v1/HRFzKS8OfwNelDQpD80ENlBYHEglnhmSRufXyEzS71+lxaGxz9yV9H5SjXcYsDgivlntjOpD0kXAk8Af6a1t30yq8/8EOI30Irg6Il6uZJJ1JqkDuCkirpT0ZgqLg6R20g/cTUAP8HHSB7/S4vANoJN05NvTwCeBYyktDo2c+M3M7ECNXOoxM7MBOPGbmRXGid/MrDBO/GZmhXHiNzMrjBO/2RCR1J4PKT7Y9R6XVNTFv62+nPjNhk47cNCJ32yoOfFbMSTNlbRG0jpJCyWdL2l97snekvu0T5bUIekJST+TtEHSjyQdk7dxmaRVktZKeij3Q0LSdEkrJf0h7+N44BagM++vM+9jsaSu3Cxtdl63WdKDeS4/BporC5IVwSdwWREknQ18B7gqIvZI+iHwe+AsYBQp2W6NiAX5LN9HSddxeCHfXgg8TurvckVE7Jb0JWAkcCvwLNAZEV25DfJ/gLmk3u/X5Tl8C9gQEfdJOgFYQ+qc+ilgckR8QtIUYC0wIyK6hzgsVqjhVU/ArE5mAucCXalNC82kZly3kPo6/Y90kY591kRED4CkB4CL8mPagN/lbTQBq4BJwPaI6ALY1wk1P6bWZaSmcTfl5VGkNgGXAHfkdddLWn+knrTZQJz4rRQClkTE/D6D0ltJvVpGkBLx7nxX/6/CkbexPCLm9NvGlAEeP9gcPhQRz/Vbf6D9mQ0Z1/itFCuAD0s6GfZfd/d0YBHwVeB+4Ns1jz8vd3Y9htTU67ek0tCFks7I2xgt6SxSmedUSdPz+HH5Ck+7gONqtvkY8NncGRJJU/P4E8DH8thkYMoRf/ZmNVzjt2JI6gTmkz7w7CG1322PiKvyNZpX5vv3Al8jXbXqXaTE/OmI2CvpUtIbxMi82a9ExNKc9O8klZD+S+r93kRK9iOABaT2v7eTesAL2JK7hTYD95LKSOuAM4DrXeO3oeLEb9ZPbQvniqdiNiRc6jEzK4w/8ZuZFcaf+M3MCuPEb2ZWGCd+M7PCOPGbmRXGid/MrDD/BzjGVN4aimNMAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "loss = model.evaluate(x_valid_scaled, y_valid)\n", "print(np.sqrt(loss))\n", "visualize_model_preformance(model, x_valid_scaled, y_valid, s=1, name=\"DNN\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tuning hyperparameters" ] }, { "cell_type": "code", "execution_count": 206, "metadata": {}, "outputs": [], "source": [ "def spotify_pop_model(n_hidden=2, learning_rate=1e-3, n_nodes=100, input_shape=[14], activation='selu'):\n", " model = keras.models.Sequential()\n", " model.add(Dense(n_nodes, activation=activation, kernel_initializer='lecun_normal', input_shape=input_shape))\n", " for n in range(n_hidden-1):\n", " model.add(Dense(n_nodes, activation=activation, kernel_initializer='lecun_normal'))\n", " model.add(Dense(1))\n", " optimizer = keras.optimizers.SGD(lr=learning_rate)\n", " model.compile(loss='mean_squared_error', optimizer=optimizer)\n", " return model\n", "\n", "# store logs for tf\n", "root_logdir = os.path.join(os.curdir, 'spotify_pop_logs')\n", "def get_run_logdir():\n", " import time\n", " run_id = time.strftime('run_%Y_%m_%d-%H_%M_%S')\n", " return os.path.join(root_logdir, run_id)\n", "\n", "def get_model_save_name():\n", " import time\n", " run_id = time.strftime('run_%Y_%m_%d-%H_%M_%S.h5')\n", " return os.path.join('models/', run_id)" ] }, { "cell_type": "code", "execution_count": 213, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\n", "\n", " Model: 0/36, hidden: 5, nodes: 15, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 819us/step - loss: 247.0785 - val_loss: 194.5202\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 194.1039 - val_loss: 205.0695\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 187.4657 - val_loss: 194.6877\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 189.0851 - val_loss: 201.1288\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 186.4330 - val_loss: 186.3714\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 187.7521 - val_loss: 197.6459\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 185.6384 - val_loss: 190.9823\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 183.9522 - val_loss: 183.3021\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 181.4818 - val_loss: 187.5681\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: nan - val_loss: nan\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: nan - val_loss: nan\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: nan - val_loss: nan\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 798us/step - loss: nan - val_loss: nan\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 822us/step - loss: nan - val_loss: nan\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 3s 869us/step - loss: nan - val_loss: nan\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 803us/step - loss: nan - val_loss: nan\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 3s 912us/step - loss: nan - val_loss: nan\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: nan - val_loss: nan\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: nan - val_loss: nan\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 3s 970us/step - loss: nan - val_loss: nan\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: nan - val_loss: nan\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 3s 995us/step - loss: nan - val_loss: nan\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 3s 981us/step - loss: nan - val_loss: nan\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 3s 967us/step - loss: nan - val_loss: nan\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 3s 975us/step - loss: nan - val_loss: nan\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 3s 978us/step - loss: nan - val_loss: nan\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 3s 965us/step - loss: nan - val_loss: nan\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 3s 933us/step - loss: nan - val_loss: nan\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 3s 953us/step - loss: nan - val_loss: nan\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 3s 972us/step - loss: nan - val_loss: nan\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 3s 948us/step - loss: nan - val_loss: nan\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 3s 965us/step - loss: nan - val_loss: nan\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 3s 972us/step - loss: nan - val_loss: nan\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 3s 935us/step - loss: nan - val_loss: nan\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 3s 927us/step - loss: nan - val_loss: nan\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 3s 925us/step - loss: nan - val_loss: nan\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: nan - val_loss: nan\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 3s 903us/step - loss: nan - val_loss: nan\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: nan - val_loss: nan\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 3s 911us/step - loss: nan - val_loss: nan\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 3s 895us/step - loss: nan - val_loss: nan\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: nan - val_loss: nan\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 3s 857us/step - loss: nan - val_loss: nan\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 806us/step - loss: nan - val_loss: nan\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 3s 837us/step - loss: nan - val_loss: nan\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: nan - val_loss: nan\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 3s 948us/step - loss: nan - val_loss: nan\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 3s 923us/step - loss: nan - val_loss: nan\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 3s 955us/step - loss: nan - val_loss: nan\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 3s 948us/step - loss: nan - val_loss: nan\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 3s 930us/step - loss: nan - val_loss: nan\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 3s 964us/step - loss: nan - val_loss: nan\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 3s 952us/step - loss: nan - val_loss: nan\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 3s 924us/step - loss: nan - val_loss: nan\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 3s 920us/step - loss: nan - val_loss: nan\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 3s 948us/step - loss: nan - val_loss: nan\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 3s 951us/step - loss: nan - val_loss: nan\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 3s 930us/step - loss: nan - val_loss: nan\n", "1010/1010 [==============================] - 1s 558us/step - loss: 183.3021\n", "\n", "\n", "\n", "\n", " Model: 1/36, hidden: 5, nodes: 15, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 292.5442 - val_loss: 197.3418\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 3s 921us/step - loss: 193.0976 - val_loss: 190.2085\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 3s 931us/step - loss: 186.6580 - val_loss: 193.0035\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 184.1844 - val_loss: 191.4097\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 3s 940us/step - loss: 179.1619 - val_loss: 190.2465\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 181.2236 - val_loss: 188.2130\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 3s 946us/step - loss: 179.9596 - val_loss: 183.6181\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 3s 952us/step - loss: 177.4405 - val_loss: 183.8646\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 3s 945us/step - loss: 176.2490 - val_loss: 185.4873\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 3s 923us/step - loss: 176.2513 - val_loss: 184.8482\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 3s 933us/step - loss: 177.3704 - val_loss: 186.9757\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 3s 933us/step - loss: 174.7174 - val_loss: 181.8864\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 3s 925us/step - loss: 176.0068 - val_loss: 181.9552\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 3s 923us/step - loss: 172.9243 - val_loss: 180.3575\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 3s 928us/step - loss: 176.4992 - val_loss: 184.7685\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 3s 922us/step - loss: 176.8850 - val_loss: 182.2665\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 3s 910us/step - loss: 172.4462 - val_loss: 179.0062\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 3s 907us/step - loss: 173.5711 - val_loss: 180.0276\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 3s 893us/step - loss: 173.8608 - val_loss: 180.1677\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 20/1000\n", "3028/3028 [==============================] - 3s 886us/step - loss: 174.2865 - val_loss: 178.4234\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 3s 833us/step - loss: 172.5634 - val_loss: 179.4382\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 787us/step - loss: 170.1740 - val_loss: 178.6716\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 172.4800 - val_loss: 177.8633\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 815us/step - loss: 172.4737 - val_loss: 175.5005\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 797us/step - loss: 172.1256 - val_loss: 179.1642\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 170.6209 - val_loss: 178.8778\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 170.1295 - val_loss: 178.5206\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 172.5824 - val_loss: 179.3043\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 169.5297 - val_loss: 184.3631\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 169.1820 - val_loss: 176.3135\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 169.4780 - val_loss: 176.6552\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 169.3388 - val_loss: 176.6701\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 170.3639 - val_loss: 184.9504\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 170.4052 - val_loss: 175.7552\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 171.6289 - val_loss: 179.6780\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 170.7972 - val_loss: 176.0799\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 168.5568 - val_loss: 181.9178\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 170.9618 - val_loss: 175.2980\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 169.2036 - val_loss: 176.0864\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 170.1674 - val_loss: 182.1729\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 171.2086 - val_loss: 176.2704\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 169.1247 - val_loss: 175.9899\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 167.4549 - val_loss: 175.6688\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 169.2800 - val_loss: 178.5106\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 785us/step - loss: 170.6867 - val_loss: 177.2363\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 166.5217 - val_loss: 176.4863\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 170.0697 - val_loss: 178.9021\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 168.4651 - val_loss: 176.5689\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 164.3799 - val_loss: 178.2379\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 166.3175 - val_loss: 175.9933\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 164.8859 - val_loss: 177.0869\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 167.9471 - val_loss: 175.4753\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.9397 - val_loss: 175.9570\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 164.1899 - val_loss: 174.9731\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 167.0630 - val_loss: 174.2038\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 165.1540 - val_loss: 177.1300\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 166.7230 - val_loss: 177.8116\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 166.7212 - val_loss: 177.2679\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.6601 - val_loss: 175.5716\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 163.0033 - val_loss: 176.5636\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 167.5016 - val_loss: 174.2115\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 168.4034 - val_loss: 174.5835\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 166.0967 - val_loss: 177.2031\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 166.5134 - val_loss: 174.5274\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 167.2900 - val_loss: 177.2283\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 168.6276 - val_loss: 175.1273\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 165.0893 - val_loss: 174.5529\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 167.1066 - val_loss: 174.4175\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 165.3311 - val_loss: 173.1671\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.0373 - val_loss: 174.5030\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 163.8957 - val_loss: 175.7685\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 165.5024 - val_loss: 175.5927\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 165.0612 - val_loss: 176.2253\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 167.9039 - val_loss: 173.3515\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 168.5648 - val_loss: 175.0549\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 165.1577 - val_loss: 175.1012\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 166.6159 - val_loss: 174.0707\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 167.2325 - val_loss: 177.9475\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 166.6032 - val_loss: 177.9656\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 165.6936 - val_loss: 174.6562\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 163.7824 - val_loss: 176.5672\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 163.1317 - val_loss: 173.9582\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 164.3785 - val_loss: 175.1740\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 793us/step - loss: 167.8934 - val_loss: 172.1059\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 165.2507 - val_loss: 175.4632\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 164.4989 - val_loss: 173.8001\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 163.9192 - val_loss: 172.1525\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 165.2799 - val_loss: 173.8846\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.6754 - val_loss: 175.2705\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 164.4831 - val_loss: 172.8158\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 162.8417 - val_loss: 177.0572\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 164.4735 - val_loss: 172.8356\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 163.7008 - val_loss: 172.5931\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 163.8147 - val_loss: 173.2069\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 163.6517 - val_loss: 173.6367\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 166.0221 - val_loss: 178.5185\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 163.6416 - val_loss: 173.3438\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 164.9941 - val_loss: 173.4480\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 165.8993 - val_loss: 174.7813\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 163.6486 - val_loss: 172.8513\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 164.6453 - val_loss: 175.2543\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 165.6844 - val_loss: 172.2659\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 163.0646 - val_loss: 172.0025\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 163.1890 - val_loss: 176.5682\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 164.9506 - val_loss: 174.2991\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 165.3716 - val_loss: 174.7841\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 162.1380 - val_loss: 175.7301\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 164.7584 - val_loss: 172.9528\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 164.4677 - val_loss: 173.3006\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 161.3529 - val_loss: 173.1246\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 163.2335 - val_loss: 175.2856\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 163.2014 - val_loss: 172.8365\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.2383 - val_loss: 174.3034\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 165.0191 - val_loss: 178.5545\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 164.3742 - val_loss: 173.0185\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 162.8366 - val_loss: 172.5299\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 3s 833us/step - loss: 163.8837 - val_loss: 174.3875\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 164.7652 - val_loss: 173.3124\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 161.3811 - val_loss: 174.6342\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 163.8671 - val_loss: 172.3589\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 161.4802 - val_loss: 174.4918\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 162.8224 - val_loss: 171.8668\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 163.6020 - val_loss: 175.7015\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 161.6154 - val_loss: 172.3368\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.7696 - val_loss: 173.9336\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 162.9677 - val_loss: 177.4086\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.8670 - val_loss: 175.3584\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 162.8798 - val_loss: 173.5849\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 161.4675 - val_loss: 172.5598\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.8871 - val_loss: 173.9944\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 162.4367 - val_loss: 173.7926\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.9786 - val_loss: 175.2576\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.0070 - val_loss: 172.8692\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.3601 - val_loss: 179.8445\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 164.4795 - val_loss: 177.3862\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 162.4860 - val_loss: 173.4434\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 160.7363 - val_loss: 174.4238\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.2824 - val_loss: 174.4808\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 161.6717 - val_loss: 171.9290\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 163.0728 - val_loss: 172.9862\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.1273 - val_loss: 171.9032\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.3380 - val_loss: 176.3745\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 162.0586 - val_loss: 175.1588\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 159.7780 - val_loss: 171.4399\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 161.5937 - val_loss: 177.5317\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.8090 - val_loss: 172.6615\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 161.2718 - val_loss: 175.2400\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 160.8146 - val_loss: 173.9055\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 163.6090 - val_loss: 175.1236\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 160.1423 - val_loss: 173.6232\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 161.3854 - val_loss: 171.6572\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 159.2197 - val_loss: 175.6339\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.7608 - val_loss: 173.0101\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 160.9862 - val_loss: 175.7220\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 159.1317 - val_loss: 175.5758\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.3323 - val_loss: 171.6838\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 160.1115 - val_loss: 173.6816\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.8655 - val_loss: 177.3105\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 162.0623 - val_loss: 171.5434\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 160.5221 - val_loss: 173.1155\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 160.9521 - val_loss: 172.7410\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 159.9777 - val_loss: 172.8132\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 160.8541 - val_loss: 171.7029\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 158.4773 - val_loss: 172.8930\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 160.9358 - val_loss: 171.7917\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 162.4101 - val_loss: 172.8788\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.7052 - val_loss: 172.8576\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.8403 - val_loss: 171.9936\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.3615 - val_loss: 175.8603\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.3247 - val_loss: 178.0640\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 158.0634 - val_loss: 174.4531\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.3614 - val_loss: 180.2070\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 158.9314 - val_loss: 173.3616\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 161.9206 - val_loss: 172.8074\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 161.6338 - val_loss: 171.3858\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 158.8537 - val_loss: 172.3047\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.4412 - val_loss: 176.8640\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 160.8348 - val_loss: 172.6983\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 160.7359 - val_loss: 171.6822\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 159.2226 - val_loss: 172.6590\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 160.3719 - val_loss: 175.5399\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 160.9747 - val_loss: 171.7240\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 160.7148 - val_loss: 173.1403\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 160.8981 - val_loss: 173.6346\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 157.6037 - val_loss: 174.7957\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.0478 - val_loss: 175.1869\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 161.3230 - val_loss: 172.4180\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 160.5948 - val_loss: 175.8663\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 160.9600 - val_loss: 174.1817\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 818us/step - loss: 158.4592 - val_loss: 172.3292\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 162.3842 - val_loss: 173.5591\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 161.2744 - val_loss: 174.2206\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 160.3738 - val_loss: 173.1312\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 160.2833 - val_loss: 174.5390\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 160.7946 - val_loss: 174.4658\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 160.0958 - val_loss: 172.2798\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 159.8680 - val_loss: 173.6593\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 161.0244 - val_loss: 174.8462\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 159.7623 - val_loss: 173.5224\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 160.2002 - val_loss: 171.6394\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 161.8760 - val_loss: 174.1429\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 160.0286 - val_loss: 173.2412\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 159.2352 - val_loss: 175.5094\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 158.0255 - val_loss: 175.4019\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 160.2342 - val_loss: 172.7063\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 159.3474 - val_loss: 174.7242\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 159.5572 - val_loss: 172.3140\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 161.8319 - val_loss: 173.7140\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 159.7256 - val_loss: 172.8846\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 161.0515 - val_loss: 172.9563\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 159.5467 - val_loss: 172.3811\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 157.9773 - val_loss: 174.1287\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 158.9546 - val_loss: 175.8829\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 159.1660 - val_loss: 172.5617\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 157.2340 - val_loss: 174.4101\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 160.0494 - val_loss: 173.3907\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 157.8931 - val_loss: 173.8321\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 158.3487 - val_loss: 173.7686\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 160.5022 - val_loss: 173.1561\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 157.8465 - val_loss: 173.2828\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 158.7415 - val_loss: 172.5493\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 158.0375 - val_loss: 173.7328\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.0186 - val_loss: 172.8987\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 158.3971 - val_loss: 171.6438\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 159.9720 - val_loss: 173.4818\n", "1010/1010 [==============================] - 1s 532us/step - loss: 171.3858\n", "\n", "\n", "\n", "\n", " Model: 2/36, hidden: 5, nodes: 15, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 879us/step - loss: 574.6902 - val_loss: 243.8658\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 238.6120 - val_loss: 224.7363\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 220.6075 - val_loss: 214.2116\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 210.6896 - val_loss: 207.8312\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 203.5972 - val_loss: 203.9504\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 200.0934 - val_loss: 201.1191\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 196.5480 - val_loss: 197.7521\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 193.2519 - val_loss: 195.1730\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 190.1551 - val_loss: 193.9622\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 190.4732 - val_loss: 192.8602\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 187.1658 - val_loss: 192.5529\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 783us/step - loss: 188.0701 - val_loss: 189.4894\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 185.9110 - val_loss: 188.1405\n", "Epoch 14/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 710us/step - loss: 187.4391 - val_loss: 188.6820\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 184.1033 - val_loss: 187.0764\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 182.5747 - val_loss: 186.1643\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 181.4532 - val_loss: 187.4375\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 180.9422 - val_loss: 185.0575\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 181.0225 - val_loss: 184.5255\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 181.4074 - val_loss: 184.6348\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 181.0096 - val_loss: 184.2786\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 181.4382 - val_loss: 184.5783\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 180.8411 - val_loss: 183.2745\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 179.9835 - val_loss: 182.7547\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 179.6322 - val_loss: 184.1944\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 177.0767 - val_loss: 182.5428\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 176.2821 - val_loss: 184.3867\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 174.9325 - val_loss: 181.5618\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 177.7131 - val_loss: 181.3680\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 178.8840 - val_loss: 182.8872\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 176.4414 - val_loss: 183.2021\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 177.3602 - val_loss: 182.5025\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 177.7137 - val_loss: 182.4037\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 176.0138 - val_loss: 181.8048\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 175.8629 - val_loss: 181.3338\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 179.0282 - val_loss: 180.7577\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 176.4091 - val_loss: 181.1967\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 175.6382 - val_loss: 179.8354\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 174.2491 - val_loss: 180.7778\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 174.2987 - val_loss: 181.6638\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 175.7679 - val_loss: 181.7399\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 174.1260 - val_loss: 179.3719\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 175.6394 - val_loss: 180.6620\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 174.9561 - val_loss: 179.7805\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 173.3952 - val_loss: 179.7685\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 173.8784 - val_loss: 178.5741\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 176.1182 - val_loss: 178.5760\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 173.7272 - val_loss: 181.0162\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 176.2315 - val_loss: 180.0663\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 173.7104 - val_loss: 179.0182\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 172.0585 - val_loss: 178.5449\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 174.2948 - val_loss: 179.6188\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 174.9845 - val_loss: 178.5183\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 172.8947 - val_loss: 179.3248\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 172.9136 - val_loss: 178.3107\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 172.5262 - val_loss: 178.5500\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 172.2863 - val_loss: 178.9706\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 173.3864 - val_loss: 177.6948\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 173.0102 - val_loss: 180.5741\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 171.0493 - val_loss: 177.2222\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 173.7644 - val_loss: 177.2206\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 171.1163 - val_loss: 176.9740\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 171.9244 - val_loss: 177.6909\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 172.3241 - val_loss: 181.8532\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 169.9006 - val_loss: 177.8990\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 172.7471 - val_loss: 177.8973\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 173.1300 - val_loss: 176.3056\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 171.1151 - val_loss: 176.9501\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 171.0356 - val_loss: 178.1724\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 170.9147 - val_loss: 177.0617\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 170.2095 - val_loss: 177.4200\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 172.7565 - val_loss: 178.1335\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 169.7567 - val_loss: 178.1277\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 170.3856 - val_loss: 177.2021\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 172.4321 - val_loss: 178.3680\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 172.3835 - val_loss: 178.9700\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 171.9701 - val_loss: 175.7039\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 170.1696 - val_loss: 177.3979\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 170.1799 - val_loss: 175.4403\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 169.3710 - val_loss: 175.8174\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 171.5608 - val_loss: 176.6026\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 170.1671 - val_loss: 176.3586\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 172.8586 - val_loss: 178.3130\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 172.3334 - val_loss: 176.5580\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 170.8708 - val_loss: 176.3167\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 169.1447 - val_loss: 177.3513\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 170.9514 - val_loss: 177.2427\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 169.9832 - val_loss: 176.5521\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 168.5560 - val_loss: 176.1701\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 172.8883 - val_loss: 177.1780\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 172.3119 - val_loss: 176.8362\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 168.6424 - val_loss: 176.2740\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 170.1187 - val_loss: 176.8654\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 171.0504 - val_loss: 178.4113\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 171.0940 - val_loss: 175.0396\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 169.9326 - val_loss: 175.2906\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 170.6587 - val_loss: 175.5295\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 169.0229 - val_loss: 174.4110\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 171.2682 - val_loss: 176.0833\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 171.9796 - val_loss: 176.1808\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 170.0142 - val_loss: 178.0169\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 170.6753 - val_loss: 177.6573\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 168.7346 - val_loss: 178.6501\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 170.3297 - val_loss: 174.7938\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 170.9624 - val_loss: 175.2424\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 3s 893us/step - loss: 168.1691 - val_loss: 174.6598\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 794us/step - loss: 168.3040 - val_loss: 178.5161\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 812us/step - loss: 168.9983 - val_loss: 175.9259\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 167.8368 - val_loss: 175.5644\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 167.6985 - val_loss: 174.1578\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 167.2130 - val_loss: 179.1140\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 168.0690 - val_loss: 174.3517\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 168.8506 - val_loss: 174.6893\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 169.6232 - val_loss: 176.0975\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 169.8895 - val_loss: 174.4801\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 168.3247 - val_loss: 175.3411\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 168.6013 - val_loss: 174.9133\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 167.7483 - val_loss: 174.5043\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 168.4184 - val_loss: 173.5731\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 166.5660 - val_loss: 176.8600\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 169.1495 - val_loss: 174.1850\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 167.2573 - val_loss: 173.7044\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 168.0585 - val_loss: 174.1286\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 167.7694 - val_loss: 174.1218\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 166.8866 - val_loss: 175.4946\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 166.3732 - val_loss: 175.4968\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 166.6065 - val_loss: 175.1785\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 166.5435 - val_loss: 174.2553\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 168.9392 - val_loss: 173.2621\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 167.1601 - val_loss: 174.3867\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 168.3048 - val_loss: 174.5450\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 166.0763 - val_loss: 175.1692\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 168.1922 - val_loss: 174.1682\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 167.5959 - val_loss: 174.3778\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 167.7537 - val_loss: 173.9203\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 168.0426 - val_loss: 174.0586\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 769us/step - loss: 166.8319 - val_loss: 173.8230\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 169.1154 - val_loss: 174.7770\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 166.1519 - val_loss: 174.5392\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 168.7809 - val_loss: 175.5652\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.6526 - val_loss: 173.5219\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 166.4330 - val_loss: 174.4416\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 169.6098 - val_loss: 174.5343\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 166.4620 - val_loss: 174.0811\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 167.4827 - val_loss: 175.7546\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 167.4087 - val_loss: 173.2774\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 165.6046 - val_loss: 173.6118\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 166.3133 - val_loss: 174.2659\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 168.5803 - val_loss: 173.7252\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 166.4321 - val_loss: 174.0053\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 167.2374 - val_loss: 173.8193\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 170.3100 - val_loss: 175.1299\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 168.0633 - val_loss: 173.2683\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 166.4397 - val_loss: 173.6906\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 166.5206 - val_loss: 172.7243\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 167.4026 - val_loss: 176.1132\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 168.0992 - val_loss: 174.3962\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 165.0584 - val_loss: 173.4319\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 166.1619 - val_loss: 173.1176\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 166.8021 - val_loss: 173.2512\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.6922 - val_loss: 174.0949\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 164.7322 - val_loss: 173.6136\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 167.1677 - val_loss: 173.2626\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 165.8762 - val_loss: 174.1024\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 166.4335 - val_loss: 173.0667\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 167.2121 - val_loss: 174.9579\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 166.5178 - val_loss: 174.2980\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 165.3370 - val_loss: 174.0246\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 168.3477 - val_loss: 173.1996\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 167.2909 - val_loss: 175.8538\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 166.6647 - val_loss: 173.9199\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 163.7421 - val_loss: 173.4258\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 165.9914 - val_loss: 174.9273\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 164.9209 - val_loss: 173.2564\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 163.8050 - val_loss: 174.5224\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 167.7183 - val_loss: 174.4059\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 163.4133 - val_loss: 177.1864\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 166.7755 - val_loss: 172.9774\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 164.8044 - val_loss: 174.8749\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 167.2989 - val_loss: 175.1507\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.3981 - val_loss: 172.8852\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 164.9396 - val_loss: 174.0977\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 165.2310 - val_loss: 173.6866\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 167.3976 - val_loss: 172.9566\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 164.4227 - val_loss: 172.8942\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.6379 - val_loss: 173.6131\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 165.9599 - val_loss: 176.0321\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 167.3102 - val_loss: 178.0583\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 166.7617 - val_loss: 173.5451\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 165.1539 - val_loss: 173.6928\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.6045 - val_loss: 173.1742\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 163.1524 - val_loss: 173.2633\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 166.9372 - val_loss: 172.1720\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 163.6503 - val_loss: 174.4600\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 168.3495 - val_loss: 172.7843\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 164.7943 - val_loss: 173.5052\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 163.6582 - val_loss: 174.1593\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 165.9548 - val_loss: 174.7413\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 166.4456 - val_loss: 173.4596\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 167.2562 - val_loss: 173.6322\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 164.1673 - val_loss: 173.3661\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 163.7926 - val_loss: 172.4532\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 163.1733 - val_loss: 173.7769\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 163.0203 - val_loss: 173.3043\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 165.6690 - val_loss: 174.3374\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.0910 - val_loss: 173.0048\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 164.7406 - val_loss: 172.7993\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 166.2068 - val_loss: 175.3929\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.4530 - val_loss: 173.7510\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 167.3500 - val_loss: 173.6896\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 165.2303 - val_loss: 172.3406\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 165.7679 - val_loss: 172.0469\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.0283 - val_loss: 173.0265\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 163.7387 - val_loss: 174.9625\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 164.1707 - val_loss: 174.0835\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 163.9337 - val_loss: 175.1959\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 163.4845 - val_loss: 174.4382\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 165.4277 - val_loss: 172.6227\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 164.0147 - val_loss: 173.3181\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 166.0375 - val_loss: 173.0349\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 165.4666 - val_loss: 172.9503\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 164.3141 - val_loss: 173.3477\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 164.6385 - val_loss: 172.0206\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 165.5645 - val_loss: 172.8899\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 163.3647 - val_loss: 174.4057\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 163.5960 - val_loss: 173.2392\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 166.4616 - val_loss: 173.0307\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 164.5330 - val_loss: 172.3071\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 162.6664 - val_loss: 172.8540\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 164.6515 - val_loss: 172.7379\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 166.5405 - val_loss: 173.3961\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 161.9676 - val_loss: 173.1004\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.5065 - val_loss: 173.5474\n", "Epoch 234/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 687us/step - loss: 165.1404 - val_loss: 172.9173\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 162.7424 - val_loss: 172.1968\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 164.5116 - val_loss: 171.9171\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 163.8459 - val_loss: 174.3448\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 164.6493 - val_loss: 172.5391\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 165.6387 - val_loss: 172.7385\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 160.7988 - val_loss: 172.7159\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.7838 - val_loss: 176.1068\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 165.7934 - val_loss: 172.6938\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 164.1230 - val_loss: 174.0831\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 162.0296 - val_loss: 173.3824\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 164.0899 - val_loss: 172.3385\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 164.5816 - val_loss: 172.8255\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 164.9584 - val_loss: 172.2717\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 161.3147 - val_loss: 173.0568\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 164.7310 - val_loss: 172.1066\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 161.5612 - val_loss: 175.1535\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 3s 868us/step - loss: 161.8957 - val_loss: 171.9342\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 3s 860us/step - loss: 163.2270 - val_loss: 172.1479\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 163.7826 - val_loss: 173.9082\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 164.9620 - val_loss: 172.2134\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 163.8674 - val_loss: 173.0459\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 163.5063 - val_loss: 172.2469\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 159.7688 - val_loss: 172.3495\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 162.5823 - val_loss: 172.6245\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 165.0080 - val_loss: 172.5986\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 165.8739 - val_loss: 172.4742\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 163.1057 - val_loss: 172.3455\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 162.6469 - val_loss: 174.0290\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.0170 - val_loss: 172.6145\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 162.7553 - val_loss: 173.2034\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 164.7935 - val_loss: 172.4346\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 163.5955 - val_loss: 171.8072\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 162.9845 - val_loss: 172.9983\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 162.0716 - val_loss: 171.7370\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.6348 - val_loss: 172.3816\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 162.2705 - val_loss: 172.3954\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 163.1930 - val_loss: 171.5930\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 162.0495 - val_loss: 172.0667\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 165.8110 - val_loss: 171.5037\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.3266 - val_loss: 171.7345\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 163.8020 - val_loss: 172.8268\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 163.8347 - val_loss: 171.9990\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 163.0494 - val_loss: 171.9002\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 164.0471 - val_loss: 173.7878\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 163.9541 - val_loss: 171.8813\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 160.6463 - val_loss: 172.3969\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 161.9241 - val_loss: 173.8552\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 162.7672 - val_loss: 171.9832\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 159.7335 - val_loss: 173.2174\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 164.6496 - val_loss: 172.2891\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 3s 998us/step - loss: 160.8208 - val_loss: 173.7898\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 161.9643 - val_loss: 171.5011\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 161.5956 - val_loss: 172.6292\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 163.3832 - val_loss: 171.8199\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 159.5395 - val_loss: 172.5901\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 161.8063 - val_loss: 172.1105\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 163.5026 - val_loss: 171.5983\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 161.3776 - val_loss: 173.2908\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 163.8213 - val_loss: 171.0384\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.5146 - val_loss: 170.9306\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 164.6093 - val_loss: 172.1247\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 160.8088 - val_loss: 172.0663\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 163.0557 - val_loss: 173.7882\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.9875 - val_loss: 172.1927\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.4000 - val_loss: 172.1251\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.7397 - val_loss: 170.9610\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.0940 - val_loss: 171.6460\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 164.6162 - val_loss: 171.9802\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.0627 - val_loss: 170.8865\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.1073 - val_loss: 171.9927\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 161.0576 - val_loss: 171.2843\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 165.2799 - val_loss: 172.1791\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 163.6396 - val_loss: 170.7856\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 161.2639 - val_loss: 171.8661\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 160.7443 - val_loss: 174.1461\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.4333 - val_loss: 174.1357\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 158.2885 - val_loss: 170.9801\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 161.1610 - val_loss: 170.9173\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 162.8007 - val_loss: 170.8273\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 163.5665 - val_loss: 170.8386\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 164.7372 - val_loss: 171.7062\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 161.6565 - val_loss: 171.8139\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 161.6400 - val_loss: 172.6967\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 161.6743 - val_loss: 171.2377\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 163.4691 - val_loss: 171.3387\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 160.7795 - val_loss: 171.9910\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 160.8704 - val_loss: 172.0172\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 162.2563 - val_loss: 173.4074\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.8149 - val_loss: 170.6663\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 163.4287 - val_loss: 171.3814\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 162.7861 - val_loss: 171.1992\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 160.4448 - val_loss: 170.9412\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.7137 - val_loss: 171.2766\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 162.9278 - val_loss: 170.8701\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 162.6426 - val_loss: 170.9755\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 161.0370 - val_loss: 171.1733\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 161.3015 - val_loss: 170.8822\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 162.1246 - val_loss: 171.5406\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 159.5948 - val_loss: 170.0794\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 161.5062 - val_loss: 171.2123\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 160.4923 - val_loss: 170.2485\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.1244 - val_loss: 171.3543\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.6207 - val_loss: 171.2007\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 162.7271 - val_loss: 174.5397\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 161.3723 - val_loss: 170.6072\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 159.7187 - val_loss: 172.8883\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 159.6713 - val_loss: 171.2376\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 161.3956 - val_loss: 171.4650\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 161.4219 - val_loss: 171.9191\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 159.8017 - val_loss: 171.2484\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 160.0254 - val_loss: 171.3646\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 160.2830 - val_loss: 170.5665\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 161.4359 - val_loss: 171.4125\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.6860 - val_loss: 172.4250\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 161.8783 - val_loss: 171.2986\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 160.0416 - val_loss: 171.6133\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 161.7752 - val_loss: 171.2804\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 160.6828 - val_loss: 170.6256\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 162.1641 - val_loss: 170.8067\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 160.3368 - val_loss: 174.4975\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 160.1073 - val_loss: 170.9503\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.9088 - val_loss: 170.6111\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 164.4173 - val_loss: 172.2128\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 162.9929 - val_loss: 172.8209\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 162.4537 - val_loss: 171.0144\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 161.8756 - val_loss: 170.5540\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 159.0014 - val_loss: 172.0029\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 161.4378 - val_loss: 170.7397\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 160.6424 - val_loss: 170.9584\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 160.2201 - val_loss: 171.7925\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 163.8969 - val_loss: 171.5539\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 160.9548 - val_loss: 170.4508\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 160.5156 - val_loss: 171.0274\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 162.2354 - val_loss: 170.1688\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.4525 - val_loss: 171.3286\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.9202 - val_loss: 170.4301\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 161.9550 - val_loss: 172.3469\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 160.6938 - val_loss: 171.4125\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 162.9706 - val_loss: 170.5679\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 159.7539 - val_loss: 173.1405\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.6897 - val_loss: 171.7751\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 160.8951 - val_loss: 170.1268\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 3s 832us/step - loss: 162.7685 - val_loss: 172.4336\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 160.2370 - val_loss: 171.2269\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 161.8670 - val_loss: 170.9715\n", "Epoch 380/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 674us/step - loss: 164.3137 - val_loss: 170.5121\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 161.4680 - val_loss: 171.0931\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 160.4975 - val_loss: 170.7074\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 160.1010 - val_loss: 171.1862\n", "1010/1010 [==============================] - 0s 475us/step - loss: 170.0794\n", "\n", "\n", "\n", "\n", " Model: 3/36, hidden: 5, nodes: 20, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 792us/step - loss: 245.3652 - val_loss: 208.2170\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 193.8588 - val_loss: 210.8834\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 192.0503 - val_loss: 197.2349\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: nan - val_loss: nan\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: nan - val_loss: nan\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: nan - val_loss: nan\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: nan - val_loss: nan\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: nan - val_loss: nan\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: nan - val_loss: nan\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: nan - val_loss: nan\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: nan - val_loss: nan\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 3s 872us/step - loss: nan - val_loss: nan\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 3s 831us/step - loss: nan - val_loss: nan\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: nan - val_loss: nan\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: nan - val_loss: nan\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: nan - val_loss: nan\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: nan - val_loss: nan\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: nan - val_loss: nan\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: nan - val_loss: nan\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: nan - val_loss: nan\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: nan - val_loss: nan\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: nan - val_loss: nan\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: nan - val_loss: nan\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: nan - val_loss: nan\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: nan - val_loss: nan\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 759us/step - loss: nan - val_loss: nan\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 821us/step - loss: nan - val_loss: nan\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: nan - val_loss: nan\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: nan - val_loss: nan\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: nan - val_loss: nan\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: nan - val_loss: nan\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: nan - val_loss: nan\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: nan - val_loss: nan\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: nan - val_loss: nan\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: nan - val_loss: nan\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: nan - val_loss: nan\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: nan - val_loss: nan\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: nan - val_loss: nan\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: nan - val_loss: nan\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: nan - val_loss: nan\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: nan - val_loss: nan\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: nan - val_loss: nan\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: nan - val_loss: nan\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: nan - val_loss: nan\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: nan - val_loss: nan\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: nan - val_loss: nan\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: nan - val_loss: nan\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: nan - val_loss: nan\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: nan - val_loss: nan\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 3s 826us/step - loss: nan - val_loss: nan\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 812us/step - loss: nan - val_loss: nan\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: nan - val_loss: nan\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: nan - val_loss: nan\n", "1010/1010 [==============================] - 0s 444us/step - loss: 197.2349\n", "\n", "\n", "\n", "\n", " Model: 4/36, hidden: 5, nodes: 20, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 782us/step - loss: 301.5181 - val_loss: 204.7046\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 195.8895 - val_loss: 203.4764\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 190.2651 - val_loss: 189.3803\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 183.7087 - val_loss: 183.9417\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 183.5825 - val_loss: 184.9874\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 182.8078 - val_loss: 187.9996\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 181.6246 - val_loss: 185.2099\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: 180.0761 - val_loss: 186.6837\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 178.9039 - val_loss: 180.1952\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 176.1655 - val_loss: 178.7848\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 176.9986 - val_loss: 181.7370\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 175.3319 - val_loss: 180.8753\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 173.1069 - val_loss: 181.3216\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 173.4456 - val_loss: 177.1266\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 172.9584 - val_loss: 177.9752\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 170.7165 - val_loss: 176.7156\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 168.5820 - val_loss: 184.9547\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 170.7716 - val_loss: 181.4452\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 171.2490 - val_loss: 175.3432\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 172.4629 - val_loss: 173.5651\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 170.4256 - val_loss: 173.2427\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 170.2294 - val_loss: 176.6512\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 168.6435 - val_loss: 176.0836\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 167.2166 - val_loss: 178.0571\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 167.9577 - val_loss: 173.8611\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 164.9216 - val_loss: 182.8476\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 169.4486 - val_loss: 172.7287\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 167.6835 - val_loss: 173.9561\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 167.8527 - val_loss: 176.4097\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 166.0711 - val_loss: 173.6620\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 165.2728 - val_loss: 172.2450\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 166.5894 - val_loss: 175.6824\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 168.5093 - val_loss: 173.3406\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.1738 - val_loss: 173.0291\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 165.1354 - val_loss: 171.9923\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 163.2020 - val_loss: 174.4039\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 164.8511 - val_loss: 178.0527\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 164.9282 - val_loss: 174.0782\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 160.8727 - val_loss: 172.1947\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 165.1413 - val_loss: 172.0452\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 164.0233 - val_loss: 174.4605\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 163.4327 - val_loss: 171.1010\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 164.7924 - val_loss: 171.1233\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 163.7311 - val_loss: 172.9928\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 166.1495 - val_loss: 172.9866\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 165.7919 - val_loss: 170.8376\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 162.9469 - val_loss: 173.1120\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 162.5251 - val_loss: 173.4304\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 164.2686 - val_loss: 173.6419\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 163.9878 - val_loss: 171.4201\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 162.4141 - val_loss: 170.5600\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 162.3982 - val_loss: 171.9029\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 159.8323 - val_loss: 170.6440\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 161.4678 - val_loss: 176.7240\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 161.7373 - val_loss: 171.0835\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 158.7427 - val_loss: 170.2122\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 161.5951 - val_loss: 171.6634\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 160.8320 - val_loss: 173.6033\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 162.4936 - val_loss: 171.6812\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 161.5297 - val_loss: 171.6328\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 161.4140 - val_loss: 170.8027\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 158.5477 - val_loss: 171.0140\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 160.3788 - val_loss: 172.9844\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 158.9812 - val_loss: 175.4106\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 160.3217 - val_loss: 169.5250\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 160.3456 - val_loss: 169.9301\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 157.9859 - val_loss: 171.5741\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 161.5789 - val_loss: 169.1077\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 159.6691 - val_loss: 171.4176\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 161.7982 - val_loss: 175.4590\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 156.9327 - val_loss: 170.4301\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 762us/step - loss: 160.7069 - val_loss: 174.8849\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 753us/step - loss: 159.0406 - val_loss: 170.5675\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 157.9597 - val_loss: 173.4416\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 160.1350 - val_loss: 171.9021\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.7102 - val_loss: 171.2516\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 160.5651 - val_loss: 178.8317\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 158.6548 - val_loss: 173.9043\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 157.8707 - val_loss: 171.3801\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 157.9106 - val_loss: 171.9008\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 157.5513 - val_loss: 172.8302\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 158.4125 - val_loss: 171.9908\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 157.6429 - val_loss: 174.1592\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 159.5977 - val_loss: 172.1630\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 157.5166 - val_loss: 171.9043\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 157.6935 - val_loss: 172.1422\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 156.6705 - val_loss: 171.4415\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 159.5524 - val_loss: 172.2803\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 158.8031 - val_loss: 170.8104\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 157.2957 - val_loss: 170.1727\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 3s 857us/step - loss: 158.4334 - val_loss: 172.9734\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 154.9988 - val_loss: 178.3180\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 157.3983 - val_loss: 170.4798\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 158.8066 - val_loss: 171.6964\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 158.9268 - val_loss: 170.6825\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 155.5229 - val_loss: 171.8087\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 157.6053 - val_loss: 172.0037\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 788us/step - loss: 156.2204 - val_loss: 171.9775\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 3s 843us/step - loss: 155.1939 - val_loss: 171.7291\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 3s 835us/step - loss: 159.2054 - val_loss: 171.3596\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 157.9549 - val_loss: 170.0504\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 157.9590 - val_loss: 174.8931\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 160.5760 - val_loss: 171.5402\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 154.8456 - val_loss: 172.0941\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 157.9391 - val_loss: 172.2698\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 156.3010 - val_loss: 173.1749\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 156.2695 - val_loss: 171.6072\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 155.1663 - val_loss: 171.1923\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 154.5990 - val_loss: 175.3537\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 156.5535 - val_loss: 170.9280\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 154.4567 - val_loss: 170.7541\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 154.2650 - val_loss: 170.4576\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 157.3884 - val_loss: 174.6231\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 157.2645 - val_loss: 172.7994\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 154.2060 - val_loss: 174.6976\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 154.6523 - val_loss: 172.4731\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 154.6253 - val_loss: 172.8911\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 154.3559 - val_loss: 175.2325\n", "1010/1010 [==============================] - 0s 438us/step - loss: 169.1077\n", "\n", "\n", "\n", "\n", " Model: 5/36, hidden: 5, nodes: 20, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 789us/step - loss: 707.6275 - val_loss: 246.5081\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 237.5395 - val_loss: 227.8401\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 221.8608 - val_loss: 217.0973\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 210.9429 - val_loss: 207.5404\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 202.2122 - val_loss: 202.3532\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 197.1999 - val_loss: 198.3277\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 190.9729 - val_loss: 195.7129\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 191.0384 - val_loss: 194.2266\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 186.4702 - val_loss: 193.7922\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 187.5989 - val_loss: 190.9370\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 186.2858 - val_loss: 190.2894\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 186.3426 - val_loss: 189.3130\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 185.8401 - val_loss: 189.1778\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 184.0780 - val_loss: 188.1458\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 182.6850 - val_loss: 189.6331\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 183.2935 - val_loss: 187.7035\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 769us/step - loss: 181.5576 - val_loss: 188.0108\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 180.9360 - val_loss: 185.7819\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 181.8179 - val_loss: 186.8265\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 179.1921 - val_loss: 187.8425\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 180.9409 - val_loss: 184.9097\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 177.7397 - val_loss: 185.2667\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 177.9855 - val_loss: 185.2477\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 179.7386 - val_loss: 183.9981\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 180.1532 - val_loss: 183.9476\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 181.4851 - val_loss: 184.3379\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 175.5785 - val_loss: 181.8359\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 176.1266 - val_loss: 182.4293\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 176.7561 - val_loss: 181.0523\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 180.1133 - val_loss: 184.0671\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 176.6635 - val_loss: 182.6923\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 175.6246 - val_loss: 182.1930\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 174.6408 - val_loss: 184.7766\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 176.4758 - val_loss: 180.8042\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 175.9384 - val_loss: 182.3505\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 176.6438 - val_loss: 180.9790\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 175.8534 - val_loss: 180.9259\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 177.0067 - val_loss: 182.4056\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 173.2706 - val_loss: 179.7863\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 174.5955 - val_loss: 180.7142\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 173.6067 - val_loss: 181.0684\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 172.7974 - val_loss: 179.5817\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 174.0609 - val_loss: 180.1805\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 171.7531 - val_loss: 179.4613\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 172.4497 - val_loss: 179.4304\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 172.8642 - val_loss: 179.4730\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 172.5791 - val_loss: 178.2631\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 171.1762 - val_loss: 178.2231\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 170.4601 - val_loss: 178.6403\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 171.9080 - val_loss: 178.3179\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 170.8018 - val_loss: 177.6716\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 169.9465 - val_loss: 178.2456\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 172.0209 - val_loss: 177.3206\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 171.1901 - val_loss: 180.8777\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 173.2514 - val_loss: 177.6565\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 171.2094 - val_loss: 182.0041\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 172.7619 - val_loss: 181.9145\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 171.3516 - val_loss: 178.8242\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 170.0786 - val_loss: 177.1906\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 170.6897 - val_loss: 179.9762\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 168.7937 - val_loss: 176.8213\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 170.3959 - val_loss: 177.9562\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 170.6798 - val_loss: 179.5801\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 169.9808 - val_loss: 180.4773\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 170.6187 - val_loss: 176.5549\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 169.5323 - val_loss: 176.3280\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 171.1330 - val_loss: 180.3104\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 168.8985 - val_loss: 177.1835\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 171.1796 - val_loss: 176.3119\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 165.5613 - val_loss: 177.2152\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 169.5489 - val_loss: 175.2405\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 167.5834 - val_loss: 177.2221\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 169.2841 - val_loss: 175.6007\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 169.1002 - val_loss: 175.8657\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 170.8464 - val_loss: 176.3525\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 167.7627 - val_loss: 176.5965\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 167.8028 - val_loss: 175.0280\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 168.3774 - val_loss: 176.4483\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 166.9763 - val_loss: 175.5102\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 168.3982 - val_loss: 175.4303\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 170.5574 - val_loss: 177.0485\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 167.8628 - val_loss: 177.7232\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.4487 - val_loss: 177.0600\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 169.2635 - val_loss: 176.5526\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 169.7601 - val_loss: 176.4493\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 168.3490 - val_loss: 175.7203\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 166.8894 - val_loss: 176.3992\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 166.7520 - val_loss: 175.3778\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 166.9017 - val_loss: 174.7356\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 168.1583 - val_loss: 175.0890\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 165.6366 - val_loss: 176.2519\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 167.4701 - val_loss: 175.2857\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 169.7643 - val_loss: 174.5160\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 166.2955 - val_loss: 174.6310\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 167.8732 - val_loss: 174.6421\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 168.5469 - val_loss: 173.5811\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 166.1893 - val_loss: 174.4405\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 166.3036 - val_loss: 176.4395\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 165.7512 - val_loss: 174.7196\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 169.0100 - val_loss: 175.8835\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 169.0601 - val_loss: 173.8491\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 167.5457 - val_loss: 174.4355\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 166.6865 - val_loss: 174.8601\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 165.2595 - val_loss: 174.6768\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 166.7040 - val_loss: 175.3601\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 167.3374 - val_loss: 176.0087\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 167.5286 - val_loss: 174.7657\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 166.8478 - val_loss: 174.1857\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 166.7098 - val_loss: 174.1695\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.5692 - val_loss: 174.8844\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 167.5604 - val_loss: 175.8759\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 163.4488 - val_loss: 174.3431\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 165.1523 - val_loss: 176.1520\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 799us/step - loss: 166.1274 - val_loss: 173.4586\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 165.4128 - val_loss: 173.2725\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 163.5890 - val_loss: 178.1430\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 164.2426 - val_loss: 173.8206\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 164.9158 - val_loss: 172.9346\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 165.5402 - val_loss: 173.6527\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 165.6894 - val_loss: 173.2925\n", "Epoch 121/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 780us/step - loss: 167.5598 - val_loss: 174.8075\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 814us/step - loss: 163.8827 - val_loss: 175.2816\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 795us/step - loss: 161.5084 - val_loss: 172.9906\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 164.2730 - val_loss: 173.9380\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 165.0823 - val_loss: 175.1330\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 166.9677 - val_loss: 175.7865\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 163.9068 - val_loss: 172.8954\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.0579 - val_loss: 173.2439\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 163.5487 - val_loss: 174.4029\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 161.3098 - val_loss: 172.7042\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 165.8006 - val_loss: 173.5270\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 164.1394 - val_loss: 175.2657\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 164.3554 - val_loss: 173.6456\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 165.5254 - val_loss: 173.2381\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 164.8504 - val_loss: 173.2880\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 165.0556 - val_loss: 172.2351\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 165.1166 - val_loss: 173.1270\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 163.2201 - val_loss: 172.4471\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 165.8222 - val_loss: 172.5277\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 163.6069 - val_loss: 173.1108\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 165.5045 - val_loss: 172.4292\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 164.7196 - val_loss: 172.4124\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 161.5094 - val_loss: 173.8524\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 164.0517 - val_loss: 175.1125\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 163.7926 - val_loss: 171.8611\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 164.5136 - val_loss: 173.6523\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 165.6602 - val_loss: 173.0229\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.8467 - val_loss: 172.8101\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 162.9627 - val_loss: 174.6270\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 161.7956 - val_loss: 173.2545\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 798us/step - loss: 165.0651 - val_loss: 176.9357\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 163.0525 - val_loss: 172.6440\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 165.4083 - val_loss: 171.7781\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 163.9522 - val_loss: 172.3993\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.3427 - val_loss: 174.2322\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 164.5706 - val_loss: 173.4964\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 161.2459 - val_loss: 171.6455\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 164.1141 - val_loss: 171.9835\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 163.7797 - val_loss: 172.4641\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 164.1151 - val_loss: 176.6632\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.7200 - val_loss: 181.1325\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 163.0332 - val_loss: 175.2796\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 164.7162 - val_loss: 172.9885\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 161.7451 - val_loss: 175.4031\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 161.9959 - val_loss: 172.8078\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 162.4489 - val_loss: 172.2880\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 164.7370 - val_loss: 173.2202\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 164.9151 - val_loss: 171.7198\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 161.8994 - val_loss: 173.9135\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.5827 - val_loss: 174.6526\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 165.3341 - val_loss: 174.1367\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 163.2555 - val_loss: 170.8776\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 163.0015 - val_loss: 174.9727\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 162.2012 - val_loss: 172.4864\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 162.1495 - val_loss: 172.4215\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 744us/step - loss: 161.5765 - val_loss: 170.8174\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 163.5994 - val_loss: 171.2989\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 165.0345 - val_loss: 172.1807\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 161.9164 - val_loss: 172.5261\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 162.0902 - val_loss: 171.0826\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 161.0182 - val_loss: 171.1059\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 163.3222 - val_loss: 171.2844\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 793us/step - loss: 164.0424 - val_loss: 172.8322\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 769us/step - loss: 162.3036 - val_loss: 171.7140\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 165.9254 - val_loss: 170.6525\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 163.8274 - val_loss: 171.2854\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 162.8897 - val_loss: 173.2603\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 164.4504 - val_loss: 174.6905\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 162.4643 - val_loss: 173.1885\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 163.6512 - val_loss: 173.2858\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 161.0399 - val_loss: 175.2735\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 161.5838 - val_loss: 171.2444\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 162.7573 - val_loss: 171.6945\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 162.4259 - val_loss: 170.6485\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 162.8681 - val_loss: 171.7541\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 160.0210 - val_loss: 171.1381\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 162.0257 - val_loss: 171.3276\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 161.9655 - val_loss: 170.1377\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 163.0049 - val_loss: 171.8453\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 161.7331 - val_loss: 171.8064\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 162.6132 - val_loss: 173.7985\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 163.7229 - val_loss: 171.5471\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 163.0387 - val_loss: 173.1971\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 163.5825 - val_loss: 171.5146\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 162.2154 - val_loss: 171.6239\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.6233 - val_loss: 170.8305\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 162.0094 - val_loss: 171.2918\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.2673 - val_loss: 175.8899\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 160.9753 - val_loss: 171.5051\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 161.6292 - val_loss: 170.4769\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 162.5814 - val_loss: 172.5160\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 160.9159 - val_loss: 171.6452\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 162.1916 - val_loss: 174.8243\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 158.6187 - val_loss: 170.7608\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 160.5438 - val_loss: 170.9031\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 161.5545 - val_loss: 171.3259\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 163.7172 - val_loss: 172.1327\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 162.3723 - val_loss: 171.2379\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 161.6326 - val_loss: 171.6303\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 159.4330 - val_loss: 170.8072\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.1721 - val_loss: 176.7639\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 160.5923 - val_loss: 171.7497\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 160.1181 - val_loss: 171.3564\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.1005 - val_loss: 171.1542\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 161.0863 - val_loss: 171.9711\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 159.7460 - val_loss: 170.7466\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 160.1429 - val_loss: 170.3282\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 161.5243 - val_loss: 171.3320\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 160.1951 - val_loss: 169.7453\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 771us/step - loss: 161.5590 - val_loss: 174.9532\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 161.6541 - val_loss: 169.8135\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 161.8080 - val_loss: 170.4542\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 163.4282 - val_loss: 170.1188\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 161.1428 - val_loss: 171.6265\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 161.0311 - val_loss: 170.8309\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 161.4959 - val_loss: 169.8608\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.0263 - val_loss: 174.8456\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 161.9129 - val_loss: 170.2496\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 161.0344 - val_loss: 171.0884\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 160.6622 - val_loss: 170.6619\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 162.7983 - val_loss: 170.2170\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 160.2090 - val_loss: 170.1362\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 160.5581 - val_loss: 169.4188\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 161.6526 - val_loss: 171.1426\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 160.6364 - val_loss: 172.2354\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 160.8993 - val_loss: 171.3166\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 161.5199 - val_loss: 169.4628\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 160.6354 - val_loss: 169.9731\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 159.7788 - val_loss: 170.2022\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 159.7433 - val_loss: 171.0807\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 161.0260 - val_loss: 171.5897\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 160.6593 - val_loss: 170.2755\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 159.1332 - val_loss: 173.8291\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 159.3736 - val_loss: 170.8708\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 159.3511 - val_loss: 171.1020\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 161.0611 - val_loss: 169.1185\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 768us/step - loss: 162.6827 - val_loss: 170.1872\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 158.2766 - val_loss: 171.9151\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 162.4660 - val_loss: 169.8106\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 158.3642 - val_loss: 169.7452\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 159.0871 - val_loss: 171.8428\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 791us/step - loss: 158.9955 - val_loss: 169.8191\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 160.8743 - val_loss: 172.1130\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 161.4413 - val_loss: 169.6100\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 823us/step - loss: 161.1372 - val_loss: 169.0240\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 160.8411 - val_loss: 169.3255\n", "Epoch 267/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 687us/step - loss: 158.9569 - val_loss: 170.0482\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 159.8786 - val_loss: 173.6712\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 158.1328 - val_loss: 169.8670\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 159.5681 - val_loss: 170.5194\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 160.2224 - val_loss: 170.5298\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 160.2726 - val_loss: 170.0101\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 159.8063 - val_loss: 170.5541\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 159.9320 - val_loss: 168.6902\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 159.7962 - val_loss: 170.1537\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 159.2947 - val_loss: 169.7937\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 161.1230 - val_loss: 170.4118\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 159.1980 - val_loss: 169.7758\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 157.8458 - val_loss: 170.4559\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 159.4003 - val_loss: 168.6910\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 157.4916 - val_loss: 169.5440\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 160.3974 - val_loss: 178.4031\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 159.9857 - val_loss: 169.2212\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 157.7693 - val_loss: 169.2170\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 157.9397 - val_loss: 168.6513\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 157.1344 - val_loss: 172.8643\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 159.4507 - val_loss: 169.7749\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 158.1465 - val_loss: 169.3998\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 159.0939 - val_loss: 172.1717\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 158.9102 - val_loss: 168.9434\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 158.7606 - val_loss: 169.5631\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 160.4179 - val_loss: 171.2075\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 155.7112 - val_loss: 172.4938\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 159.2266 - val_loss: 170.0591\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 156.7550 - val_loss: 169.3122\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 159.8117 - val_loss: 170.4698\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 161.1139 - val_loss: 169.4082\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 157.6317 - val_loss: 170.0249\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 159.6197 - val_loss: 168.6863\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 157.8388 - val_loss: 169.9295\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 160.0954 - val_loss: 170.2667\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 158.5099 - val_loss: 170.1070\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 156.9295 - val_loss: 170.8132\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 157.1417 - val_loss: 169.1707\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 156.8220 - val_loss: 168.2179\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 159.7908 - val_loss: 169.9526\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 159.0987 - val_loss: 169.6461\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 157.4312 - val_loss: 168.7501\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 159.7995 - val_loss: 169.1001\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 159.4591 - val_loss: 169.2084\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 159.0314 - val_loss: 176.4781\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 159.6100 - val_loss: 168.9729\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 161.0767 - val_loss: 169.9081\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 159.6347 - val_loss: 169.5559\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 159.0877 - val_loss: 168.8901\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 157.8613 - val_loss: 170.3112\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 156.1237 - val_loss: 170.8006\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 158.0916 - val_loss: 171.9316\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 156.7144 - val_loss: 170.7248\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 159.6861 - val_loss: 170.4507\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 158.6730 - val_loss: 169.1107\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 158.5365 - val_loss: 170.3884\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 156.2018 - val_loss: 168.9861\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 158.1444 - val_loss: 169.5219\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 160.0114 - val_loss: 170.8302\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 157.0109 - val_loss: 168.9141\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 760us/step - loss: 158.8798 - val_loss: 168.6958\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 158.0275 - val_loss: 170.0848\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 798us/step - loss: 158.5299 - val_loss: 169.0767\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 158.0082 - val_loss: 171.1554\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 157.6198 - val_loss: 168.6641\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 157.3038 - val_loss: 170.1420\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 156.5153 - val_loss: 167.6069\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 158.3852 - val_loss: 169.8313\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 158.2382 - val_loss: 168.4211\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 156.9132 - val_loss: 169.4771\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 158.9281 - val_loss: 168.7041\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 158.6503 - val_loss: 170.4201\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 159.9427 - val_loss: 171.4215\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 156.6691 - val_loss: 169.2367\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 158.1179 - val_loss: 167.6985\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 157.4999 - val_loss: 168.6256\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 155.4509 - val_loss: 168.5686\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 158.3387 - val_loss: 167.8264\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 156.0600 - val_loss: 169.6801\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 155.0012 - val_loss: 170.0054\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 157.6118 - val_loss: 168.7188\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 155.5606 - val_loss: 169.3516\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 156.1018 - val_loss: 169.6606\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 158.3757 - val_loss: 168.3614\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 156.6949 - val_loss: 171.9162\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 159.5683 - val_loss: 168.0022\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 158.8636 - val_loss: 170.6151\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 158.1385 - val_loss: 169.0558\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 158.8610 - val_loss: 168.9126\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 157.8009 - val_loss: 167.9976\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 157.3548 - val_loss: 169.0209\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 158.2459 - val_loss: 168.3119\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 158.0552 - val_loss: 168.5195\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 156.2617 - val_loss: 169.0925\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 158.8052 - val_loss: 171.1947\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 158.3826 - val_loss: 169.9841\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 158.8831 - val_loss: 172.0911\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 158.2041 - val_loss: 169.7784\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 156.0324 - val_loss: 168.7417\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 156.5230 - val_loss: 173.6216\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 157.3332 - val_loss: 168.5784\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 156.1591 - val_loss: 168.5487\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 157.2639 - val_loss: 169.0489\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 157.2287 - val_loss: 168.3678\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 158.6477 - val_loss: 169.7444\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 154.8480 - val_loss: 169.2260\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 155.4156 - val_loss: 169.5598\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 157.9708 - val_loss: 168.1864\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 154.6912 - val_loss: 168.4570\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 156.4086 - val_loss: 169.0581\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 156.1203 - val_loss: 168.5845\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 155.4909 - val_loss: 168.0192\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 157.8545 - val_loss: 168.0309\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 157.5611 - val_loss: 168.9911\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 157.4023 - val_loss: 169.3327\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 155.0806 - val_loss: 167.9383\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 155.6527 - val_loss: 169.6222\n", "1010/1010 [==============================] - 1s 545us/step - loss: 167.6069\n", "\n", "\n", "\n", "\n", " Model: 6/36, hidden: 5, nodes: 25, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 879us/step - loss: 242.9696 - val_loss: 214.4997\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 3s 919us/step - loss: 195.6526 - val_loss: 200.2276\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 190.7380 - val_loss: 197.4748\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 187.7080 - val_loss: 202.8540\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 183.9096 - val_loss: 204.6812\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 182.2380 - val_loss: 185.3348\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: nan - val_loss: nan\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: nan - val_loss: nan\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: nan - val_loss: nan\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 781us/step - loss: nan - val_loss: nan\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: nan - val_loss: nan\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: nan - val_loss: nan\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 775us/step - loss: nan - val_loss: nan\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: nan - val_loss: nan\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: nan - val_loss: nan\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: nan - val_loss: nan\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: nan - val_loss: nan\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: nan - val_loss: nan\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: nan - val_loss: nan\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: nan - val_loss: nan\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 753us/step - loss: nan - val_loss: nan\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 3s 840us/step - loss: nan - val_loss: nan\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 825us/step - loss: nan - val_loss: nan\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 788us/step - loss: nan - val_loss: nan\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 753us/step - loss: nan - val_loss: nan\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: nan - val_loss: nan\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: nan - val_loss: nan\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: nan - val_loss: nan\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: nan - val_loss: nan\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: nan - val_loss: nan\n", "Epoch 31/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 706us/step - loss: nan - val_loss: nan\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: nan - val_loss: nan\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: nan - val_loss: nan\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: nan - val_loss: nan\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: nan - val_loss: nan\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: nan - val_loss: nan\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: nan - val_loss: nan\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: nan - val_loss: nan\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: nan - val_loss: nan\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: nan - val_loss: nan\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: nan - val_loss: nan\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: nan - val_loss: nan\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: nan - val_loss: nan\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: nan - val_loss: nan\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 787us/step - loss: nan - val_loss: nan\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: nan - val_loss: nan\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: nan - val_loss: nan\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: nan - val_loss: nan\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: nan - val_loss: nan\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: nan - val_loss: nan\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: nan - val_loss: nan\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: nan - val_loss: nan\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: nan - val_loss: nan\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: nan - val_loss: nan\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: nan - val_loss: nan\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: nan - val_loss: nan\n", "1010/1010 [==============================] - 0s 440us/step - loss: 185.3348\n", "\n", "\n", "\n", "\n", " Model: 7/36, hidden: 5, nodes: 25, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 770us/step - loss: 291.4079 - val_loss: 199.5767\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 189.6948 - val_loss: 188.1895\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 186.4399 - val_loss: 184.8146\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 182.0133 - val_loss: 189.4454\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 181.0976 - val_loss: 185.0520\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 179.2626 - val_loss: 178.5606\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 176.5985 - val_loss: 179.8700\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 174.6334 - val_loss: 178.7121\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 172.6723 - val_loss: 182.8169\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 175.9405 - val_loss: 180.6533\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 170.2812 - val_loss: 179.0175\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 171.8462 - val_loss: 180.7777\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 169.6034 - val_loss: 179.0329\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 169.8166 - val_loss: 174.8434\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 171.8423 - val_loss: 180.6913\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 758us/step - loss: 171.3993 - val_loss: 178.7427\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 171.4619 - val_loss: 174.3831\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 169.5028 - val_loss: 175.4568\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 169.3379 - val_loss: 175.9056\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 169.5590 - val_loss: 173.1613\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 168.9623 - val_loss: 174.9528\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 167.0822 - val_loss: 177.7267\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 169.6056 - val_loss: 174.1045\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 167.8144 - val_loss: 171.8233\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 758us/step - loss: 167.1105 - val_loss: 172.2678\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 165.4350 - val_loss: 174.4516\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 168.4766 - val_loss: 175.7433\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 165.6934 - val_loss: 171.8773\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 163.7004 - val_loss: 174.0949\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 165.3126 - val_loss: 175.5785\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 162.0690 - val_loss: 177.5750\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.2710 - val_loss: 179.4901\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 165.9756 - val_loss: 176.9964\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 164.5987 - val_loss: 171.8499\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 162.7475 - val_loss: 170.3078\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 163.8384 - val_loss: 170.9372\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 164.8668 - val_loss: 172.1897\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 164.0445 - val_loss: 174.3650\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 163.0727 - val_loss: 171.3806\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 744us/step - loss: 164.0097 - val_loss: 174.0986\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 164.7329 - val_loss: 172.9397\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 162.8290 - val_loss: 170.4901\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 163.2090 - val_loss: 173.7648\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 159.8000 - val_loss: 171.3945\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 161.0950 - val_loss: 169.8763\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 162.2685 - val_loss: 170.3787\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 160.6069 - val_loss: 171.8053\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 161.9270 - val_loss: 169.6454\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 160.3684 - val_loss: 170.7398\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 161.1409 - val_loss: 172.7963\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 158.4113 - val_loss: 172.3895\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 162.7355 - val_loss: 174.9172\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 159.5334 - val_loss: 169.8057\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 157.1113 - val_loss: 170.3583\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 162.1300 - val_loss: 172.9211\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 159.5361 - val_loss: 170.4076\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 159.4029 - val_loss: 177.4207\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 158.6579 - val_loss: 173.0280\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 159.6693 - val_loss: 168.8349\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 160.2191 - val_loss: 173.2374\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 158.7680 - val_loss: 173.9564\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 156.9708 - val_loss: 170.0461\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 157.4940 - val_loss: 172.9465\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 158.7094 - val_loss: 170.2194\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 157.4395 - val_loss: 172.5258\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 156.8426 - val_loss: 169.2257\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 157.1706 - val_loss: 169.1951\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 157.9207 - val_loss: 179.8095\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 158.5379 - val_loss: 170.3745\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 157.7675 - val_loss: 170.7991\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 158.0053 - val_loss: 172.5425\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 157.4389 - val_loss: 168.7785\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 156.9592 - val_loss: 169.9235\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 154.8177 - val_loss: 172.0043\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 156.4060 - val_loss: 171.0854\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 158.0502 - val_loss: 177.1564\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 153.5453 - val_loss: 169.2511\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 774us/step - loss: 156.3388 - val_loss: 171.3407\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 155.5431 - val_loss: 170.2170\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 155.8458 - val_loss: 173.1910\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 156.8506 - val_loss: 177.8512\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 157.2928 - val_loss: 170.6828\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 155.8160 - val_loss: 170.7147\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 154.6884 - val_loss: 170.3620\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 154.1789 - val_loss: 173.9941\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 156.8189 - val_loss: 170.4049\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 154.9187 - val_loss: 172.6045\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 153.9507 - val_loss: 170.4220\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 152.8729 - val_loss: 169.6946\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 154.4805 - val_loss: 168.6202\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 154.3772 - val_loss: 170.6656\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 156.7988 - val_loss: 174.1225\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 155.7243 - val_loss: 170.6490\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 153.2051 - val_loss: 169.5700\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 153.5213 - val_loss: 170.3880\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 150.7025 - val_loss: 173.2792\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 153.4368 - val_loss: 169.8928\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 152.7372 - val_loss: 172.6240\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 3s 891us/step - loss: 154.0929 - val_loss: 169.8536\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 152.3379 - val_loss: 172.7927\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 151.9854 - val_loss: 168.8700\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 152.7126 - val_loss: 171.3761\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 153.8490 - val_loss: 169.2549\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 153.4126 - val_loss: 171.3728\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 807us/step - loss: 151.0644 - val_loss: 170.8009\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 3s 829us/step - loss: 152.7126 - val_loss: 171.9132\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 151.9322 - val_loss: 176.2462\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 152.0777 - val_loss: 172.7156\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 152.0186 - val_loss: 170.2849\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 150.7695 - val_loss: 173.4280\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 150.7339 - val_loss: 172.0412\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 152.5669 - val_loss: 169.5308\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 148.5145 - val_loss: 171.0176\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 151.7027 - val_loss: 171.2812\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 151.8053 - val_loss: 172.4266\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 152.7278 - val_loss: 174.4149\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 768us/step - loss: 150.3616 - val_loss: 170.5851\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 151.5243 - val_loss: 174.6264\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 154.4152 - val_loss: 170.0908\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 151.7089 - val_loss: 169.2976\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 149.6464 - val_loss: 169.8808\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 762us/step - loss: 151.1919 - val_loss: 171.5449\n", "Epoch 123/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 689us/step - loss: 148.8915 - val_loss: 172.5855\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 151.2056 - val_loss: 170.7610\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 151.3218 - val_loss: 173.3508\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 150.1677 - val_loss: 171.8846\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 797us/step - loss: 151.4262 - val_loss: 174.5859\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 148.8282 - val_loss: 175.5083\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 152.5785 - val_loss: 173.2158\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 151.8185 - val_loss: 172.8579\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 148.8098 - val_loss: 173.6401\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 149.4255 - val_loss: 172.3679\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 150.7172 - val_loss: 175.1693\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 149.5671 - val_loss: 172.6574\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 153.2016 - val_loss: 170.6649\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 147.9948 - val_loss: 170.9403\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 149.1194 - val_loss: 172.0898\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 148.6805 - val_loss: 171.1987\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 150.4483 - val_loss: 172.1600\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 148.7086 - val_loss: 173.4769\n", "1010/1010 [==============================] - 1s 528us/step - loss: 168.6202\n", "\n", "\n", "\n", "\n", " Model: 8/36, hidden: 5, nodes: 25, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 812us/step - loss: 594.8009 - val_loss: 249.1607\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 240.4258 - val_loss: 229.3048\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 222.5314 - val_loss: 216.3902\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 211.9178 - val_loss: 209.1779\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 202.9822 - val_loss: 203.8685\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 200.5605 - val_loss: 200.9727\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 195.5301 - val_loss: 197.7158\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 194.0402 - val_loss: 196.5346\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 191.6423 - val_loss: 194.5079\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 189.5827 - val_loss: 193.5375\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 189.2282 - val_loss: 191.5603\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 183.8494 - val_loss: 192.2478\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 185.2834 - val_loss: 190.5067\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 186.0637 - val_loss: 189.2927\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 183.4106 - val_loss: 188.4998\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 180.8129 - val_loss: 187.6339\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 183.1018 - val_loss: 187.2431\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 182.7946 - val_loss: 189.5969\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 180.1257 - val_loss: 187.2137\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 181.7958 - val_loss: 186.3238\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 753us/step - loss: 182.1241 - val_loss: 185.7473\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 178.3902 - val_loss: 185.1598\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 181.2497 - val_loss: 185.0137\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 178.6066 - val_loss: 184.2101\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 180.1417 - val_loss: 185.6920\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 178.6395 - val_loss: 183.6981\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 179.7837 - val_loss: 184.4850\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 177.9485 - val_loss: 183.1954\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 177.1224 - val_loss: 183.5494\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 176.2686 - val_loss: 184.9066\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 177.5166 - val_loss: 182.2315\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 176.7627 - val_loss: 182.6131\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 176.5776 - val_loss: 182.0277\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 176.3233 - val_loss: 182.3313\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 176.6109 - val_loss: 181.0808\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 174.6874 - val_loss: 181.9068\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 754us/step - loss: 174.5356 - val_loss: 181.0331\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 174.9490 - val_loss: 180.2824\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 172.9243 - val_loss: 180.8938\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 173.0308 - val_loss: 180.8420\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 174.0719 - val_loss: 179.5697\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 174.0977 - val_loss: 180.1009\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 174.1988 - val_loss: 180.6076\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 174.4137 - val_loss: 179.7222\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 176.2515 - val_loss: 179.1855\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 174.1929 - val_loss: 178.9509\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 171.3591 - val_loss: 179.5776\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 172.6373 - val_loss: 179.8946\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 172.3865 - val_loss: 179.1192\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 797us/step - loss: 172.7210 - val_loss: 178.9363\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 744us/step - loss: 171.6874 - val_loss: 182.4603\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 172.6833 - val_loss: 178.4292\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 173.0227 - val_loss: 178.7745\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 174.2661 - val_loss: 179.0493\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 172.8882 - val_loss: 178.8395\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 171.5142 - val_loss: 178.2637\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 171.0665 - val_loss: 179.4399\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 170.9813 - val_loss: 177.9103\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 168.8177 - val_loss: 177.5538\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 169.9320 - val_loss: 179.3241\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 172.4873 - val_loss: 177.8647\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 173.1444 - val_loss: 177.7666\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 171.8642 - val_loss: 180.5642\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 170.3702 - val_loss: 178.4386\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 168.3687 - val_loss: 177.0634\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 169.6271 - val_loss: 177.4324\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 171.3931 - val_loss: 177.0217\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 170.6608 - val_loss: 178.0786\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 172.9569 - val_loss: 176.8272\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 168.4746 - val_loss: 178.7405\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 172.0540 - val_loss: 177.2613\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 170.2539 - val_loss: 176.5831\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 171.3610 - val_loss: 178.0203\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 168.3187 - val_loss: 181.3895\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 170.0505 - val_loss: 175.9085\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 169.8950 - val_loss: 176.5632\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 168.0083 - val_loss: 176.7798\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 167.6987 - val_loss: 175.5683\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 168.3205 - val_loss: 175.6343\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 168.2410 - val_loss: 175.7874\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 169.1683 - val_loss: 176.0136\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 166.7991 - val_loss: 176.6422\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 168.6863 - val_loss: 175.7475\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 168.2229 - val_loss: 176.4548\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 167.8812 - val_loss: 176.3230\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 166.2914 - val_loss: 177.5708\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 167.8012 - val_loss: 176.7896\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 168.5424 - val_loss: 175.3859\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 171.4563 - val_loss: 174.9197\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.2609 - val_loss: 175.1470\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 169.4928 - val_loss: 175.9925\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 167.8527 - val_loss: 175.4261\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 169.0845 - val_loss: 177.7114\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 778us/step - loss: 169.6093 - val_loss: 174.6267\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 167.2489 - val_loss: 175.2320\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 166.3800 - val_loss: 174.9406\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 168.3299 - val_loss: 174.5370\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.7178 - val_loss: 174.7635\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 168.1055 - val_loss: 177.9641\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.3513 - val_loss: 174.4116\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 165.1998 - val_loss: 174.0547\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 168.1213 - val_loss: 177.3437\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 165.1737 - val_loss: 174.6954\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 167.0998 - val_loss: 174.0772\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 167.0606 - val_loss: 174.4164\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 165.9620 - val_loss: 174.5269\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 167.0806 - val_loss: 173.9378\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 168.5950 - val_loss: 174.7166\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 165.9831 - val_loss: 174.3387\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 166.0677 - val_loss: 173.8351\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 163.5152 - val_loss: 173.3913\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 167.7361 - val_loss: 173.9619\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 164.2994 - val_loss: 173.1795\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 167.4292 - val_loss: 173.3963\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 165.0946 - val_loss: 173.6808\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 163.4030 - val_loss: 176.1530\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.3523 - val_loss: 173.5739\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 164.3017 - val_loss: 175.4317\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 165.0332 - val_loss: 173.8586\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 166.3559 - val_loss: 173.7489\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 3s 828us/step - loss: 164.0355 - val_loss: 173.9353\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 789us/step - loss: 164.6686 - val_loss: 173.9366\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 165.8390 - val_loss: 173.2236\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 3s 855us/step - loss: 164.5440 - val_loss: 174.5036\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 166.1261 - val_loss: 174.3400\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 3s 910us/step - loss: 167.0378 - val_loss: 173.1620\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 165.7329 - val_loss: 174.5606\n", "Epoch 128/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 728us/step - loss: 164.1518 - val_loss: 174.7110\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 163.4459 - val_loss: 173.1734\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 165.5918 - val_loss: 174.1672\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 163.3365 - val_loss: 173.3530\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 162.5615 - val_loss: 175.4354\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 167.0761 - val_loss: 173.2338\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 164.2743 - val_loss: 172.9213\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 164.1032 - val_loss: 174.1526\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 164.4589 - val_loss: 174.7489\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 161.9741 - val_loss: 173.2894\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 164.4551 - val_loss: 172.4635\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 162.0027 - val_loss: 173.4585\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 163.4805 - val_loss: 173.8136\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 162.4867 - val_loss: 173.1830\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 163.1391 - val_loss: 173.2416\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 162.9114 - val_loss: 173.3728\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 163.6789 - val_loss: 173.5681\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 162.3339 - val_loss: 173.4741\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 164.8581 - val_loss: 174.6546\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 163.4429 - val_loss: 173.5182\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.3659 - val_loss: 172.8994\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 162.7498 - val_loss: 172.5506\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 162.3682 - val_loss: 173.8744\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 165.1190 - val_loss: 173.3978\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 163.4327 - val_loss: 172.3858\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.5092 - val_loss: 173.6984\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.1389 - val_loss: 171.3309\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 166.0871 - val_loss: 173.3229\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 162.9055 - val_loss: 172.6123\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 164.5759 - val_loss: 172.0872\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 160.8176 - val_loss: 171.9014\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 162.0021 - val_loss: 172.0499\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 163.7181 - val_loss: 171.5493\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 164.4999 - val_loss: 172.0862\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 161.4084 - val_loss: 172.3629\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 162.8019 - val_loss: 172.4769\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 162.9091 - val_loss: 171.6356\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.6490 - val_loss: 171.6792\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 163.8560 - val_loss: 178.4877\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 164.0964 - val_loss: 172.7675\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 161.2100 - val_loss: 171.9154\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.7217 - val_loss: 171.2820\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 164.1415 - val_loss: 173.3222\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 162.6298 - val_loss: 176.9252\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 160.1276 - val_loss: 173.1080\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 163.3811 - val_loss: 172.6594\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 161.8261 - val_loss: 173.6570\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 162.7263 - val_loss: 173.0154\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 161.3707 - val_loss: 171.7248\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 158.2423 - val_loss: 171.7992\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 160.0402 - val_loss: 172.8134\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 160.0535 - val_loss: 174.1755\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 160.5745 - val_loss: 170.6070\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 162.0535 - val_loss: 172.3008\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 159.4130 - val_loss: 173.0894\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 159.2041 - val_loss: 173.9846\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 164.0615 - val_loss: 172.3559\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 160.3544 - val_loss: 172.0665\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 162.5395 - val_loss: 171.3662\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 788us/step - loss: 160.3178 - val_loss: 172.7897\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 161.3467 - val_loss: 171.6950\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 158.5102 - val_loss: 170.7314\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 160.4985 - val_loss: 173.5112\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 160.2018 - val_loss: 171.5687\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.7986 - val_loss: 171.4468\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 815us/step - loss: 161.4393 - val_loss: 171.1173\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 160.7606 - val_loss: 171.5586\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 159.9354 - val_loss: 171.0181\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 160.8514 - val_loss: 172.7480\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 3s 859us/step - loss: 162.5740 - val_loss: 174.6257\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 3s 965us/step - loss: 162.9950 - val_loss: 172.3472\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 3s 991us/step - loss: 158.8426 - val_loss: 171.6779\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 3s 992us/step - loss: 160.4191 - val_loss: 171.1514\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 158.9100 - val_loss: 170.5862\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 160.4111 - val_loss: 175.8501\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 3s 962us/step - loss: 159.2729 - val_loss: 174.6365\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 3s 993us/step - loss: 159.7105 - val_loss: 172.0920\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 3s 997us/step - loss: 159.3500 - val_loss: 171.6367\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 3s 998us/step - loss: 158.5404 - val_loss: 171.0756\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 3s 998us/step - loss: 160.0703 - val_loss: 171.1647\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 3s 987us/step - loss: 161.5291 - val_loss: 170.9079\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 3s 989us/step - loss: 159.2795 - val_loss: 170.7248\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 3s 979us/step - loss: 158.3661 - val_loss: 170.7632\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 3s 991us/step - loss: 157.7052 - val_loss: 172.1601\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 3s 974us/step - loss: 160.4449 - val_loss: 172.1313\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 3s 963us/step - loss: 160.5199 - val_loss: 172.1659\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 159.6154 - val_loss: 171.0081\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 3s 898us/step - loss: 159.5719 - val_loss: 170.6586\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 3s 910us/step - loss: 159.3899 - val_loss: 170.8382\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 3s 910us/step - loss: 157.7090 - val_loss: 172.5678\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 3s 904us/step - loss: 157.2353 - val_loss: 172.8829\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 158.5757 - val_loss: 170.6344\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 3s 932us/step - loss: 158.5001 - val_loss: 170.6724\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: 158.7010 - val_loss: 173.8020\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 3s 914us/step - loss: 157.4152 - val_loss: 169.9948\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 3s 881us/step - loss: 156.1708 - val_loss: 170.8894\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 157.6460 - val_loss: 171.0244\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 3s 867us/step - loss: 161.0366 - val_loss: 170.5358\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 800us/step - loss: 161.1812 - val_loss: 172.5316\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 159.3755 - val_loss: 172.1329\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 157.7307 - val_loss: 170.9563\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 160.3788 - val_loss: 171.4641\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 157.7454 - val_loss: 171.0464\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 158.1339 - val_loss: 169.8017\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 156.8976 - val_loss: 170.2017\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 157.8295 - val_loss: 171.7511\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 158.5301 - val_loss: 169.9054\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 158.9623 - val_loss: 170.7069\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 3s 847us/step - loss: 157.2808 - val_loss: 170.8257\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 776us/step - loss: 159.6399 - val_loss: 172.4216\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 3s 849us/step - loss: 157.5521 - val_loss: 171.4284\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 158.3438 - val_loss: 171.8129\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 824us/step - loss: 157.6364 - val_loss: 171.3981\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 157.7019 - val_loss: 170.6267\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 158.3377 - val_loss: 172.0231\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 158.8370 - val_loss: 171.1565\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 158.2744 - val_loss: 170.1484\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 157.8447 - val_loss: 170.7126\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 159.8578 - val_loss: 171.5390\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 158.8058 - val_loss: 169.8582\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 3s 862us/step - loss: 158.6901 - val_loss: 170.4720\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 161.2466 - val_loss: 170.1030\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 780us/step - loss: 156.0959 - val_loss: 172.7278\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 159.2740 - val_loss: 170.1744\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 761us/step - loss: 156.1014 - val_loss: 171.9269\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 778us/step - loss: 156.2001 - val_loss: 171.2374\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 156.1519 - val_loss: 171.1830\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 157.6892 - val_loss: 171.2298\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 791us/step - loss: 158.5290 - val_loss: 170.5962\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 3s 858us/step - loss: 157.3687 - val_loss: 170.8845\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 3s 833us/step - loss: 157.5858 - val_loss: 171.3074\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 809us/step - loss: 157.6498 - val_loss: 169.4915\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 825us/step - loss: 157.8116 - val_loss: 170.5928\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 158.7269 - val_loss: 172.6135\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 157.8080 - val_loss: 172.0177\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 3s 983us/step - loss: 157.4670 - val_loss: 170.4619\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 3s 957us/step - loss: 158.2214 - val_loss: 169.9675\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 3s 997us/step - loss: 156.4777 - val_loss: 170.4967\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 3s 959us/step - loss: 154.6763 - val_loss: 170.6074\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 3s 998us/step - loss: 157.7531 - val_loss: 169.5373\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 154.8003 - val_loss: 173.1954\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 3s 988us/step - loss: 156.8836 - val_loss: 173.7115\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 3s 996us/step - loss: 157.9848 - val_loss: 169.7805\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 3s 974us/step - loss: 156.4086 - val_loss: 177.4508\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 3s 978us/step - loss: 159.2161 - val_loss: 170.1153\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 3s 979us/step - loss: 155.2494 - val_loss: 171.5901\n", "Epoch 274/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 3s 996us/step - loss: 155.8743 - val_loss: 170.7055\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 3s 984us/step - loss: 156.2982 - val_loss: 169.6022\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 3s 977us/step - loss: 152.8041 - val_loss: 171.7491\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 3s 977us/step - loss: 154.0976 - val_loss: 170.6770\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 3s 888us/step - loss: 156.8285 - val_loss: 173.7812\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 3s 918us/step - loss: 155.3054 - val_loss: 171.0741\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 3s 899us/step - loss: 154.7213 - val_loss: 171.7364\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 3s 906us/step - loss: 154.7033 - val_loss: 171.8831\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 3s 888us/step - loss: 156.4625 - val_loss: 170.8687\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 3s 889us/step - loss: 153.7302 - val_loss: 170.8662\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 3s 915us/step - loss: 157.1486 - val_loss: 171.5531\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 156.6565 - val_loss: 170.7803\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 3s 891us/step - loss: 157.9967 - val_loss: 170.8086\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 817us/step - loss: 157.7440 - val_loss: 170.2195\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 155.8829 - val_loss: 170.7374\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 3s 881us/step - loss: 155.9610 - val_loss: 171.7499\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 3s 991us/step - loss: 155.3886 - val_loss: 169.5160\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 3s 940us/step - loss: 153.5949 - val_loss: 170.4663\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 3s 991us/step - loss: 155.2286 - val_loss: 169.8088\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: 155.7507 - val_loss: 170.0631\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 3s 937us/step - loss: 154.8739 - val_loss: 169.9665\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 3s 919us/step - loss: 155.7471 - val_loss: 169.9675\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 3s 932us/step - loss: 156.2323 - val_loss: 170.3925\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 3s 925us/step - loss: 155.7917 - val_loss: 170.8248\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 155.8330 - val_loss: 171.9697\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 3s 942us/step - loss: 157.3231 - val_loss: 170.3621\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 3s 979us/step - loss: 154.8606 - val_loss: 170.8278\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 3s 914us/step - loss: 154.6823 - val_loss: 170.8886\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 154.8192 - val_loss: 170.3774\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 3s 933us/step - loss: 154.3346 - val_loss: 170.0863\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 3s 930us/step - loss: 153.8473 - val_loss: 170.6209\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 3s 913us/step - loss: 154.8119 - val_loss: 171.1750\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 3s 919us/step - loss: 153.3235 - val_loss: 171.0299\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 3s 919us/step - loss: 155.0880 - val_loss: 169.2327\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 3s 929us/step - loss: 155.7391 - val_loss: 172.3385\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 3s 940us/step - loss: 155.1466 - val_loss: 170.4077\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: 156.1124 - val_loss: 170.1171\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 3s 907us/step - loss: 156.3917 - val_loss: 169.5923\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 3s 958us/step - loss: 154.2764 - val_loss: 169.9125\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 3s 967us/step - loss: 155.5111 - val_loss: 170.1599\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 3s 953us/step - loss: 154.5871 - val_loss: 170.1022\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 3s 922us/step - loss: 154.4782 - val_loss: 169.6917\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 3s 914us/step - loss: 158.3061 - val_loss: 172.2738\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 3s 922us/step - loss: 153.7013 - val_loss: 171.5824\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 3s 905us/step - loss: 152.7726 - val_loss: 169.9184\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 154.4023 - val_loss: 169.1742\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 3s 931us/step - loss: 153.6843 - val_loss: 172.1900\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 3s 835us/step - loss: 153.7328 - val_loss: 170.8553\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 155.4263 - val_loss: 169.9870\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 3s 848us/step - loss: 156.5585 - val_loss: 169.1846\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 3s 829us/step - loss: 154.2551 - val_loss: 170.2221\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 155.5448 - val_loss: 169.9196\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 154.8986 - val_loss: 171.1679\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 155.9537 - val_loss: 169.7848\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 156.9169 - val_loss: 169.6854\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 152.0672 - val_loss: 172.4233\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 152.9404 - val_loss: 170.1546\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 153.6550 - val_loss: 170.9863\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 153.5070 - val_loss: 170.5891\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 154.3849 - val_loss: 169.7948\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 153.7331 - val_loss: 171.0956\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 156.8595 - val_loss: 169.1470\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 151.9250 - val_loss: 175.7771\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 154.0111 - val_loss: 171.7089\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 155.5877 - val_loss: 169.5699\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 155.1498 - val_loss: 170.7822\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 822us/step - loss: 154.1607 - val_loss: 169.6551\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 3s 830us/step - loss: 154.1158 - val_loss: 168.9258\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 3s 862us/step - loss: 154.4406 - val_loss: 168.9118\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 3s 849us/step - loss: 151.3092 - val_loss: 171.0426\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 762us/step - loss: 154.7307 - val_loss: 174.4797\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 822us/step - loss: 154.1143 - val_loss: 172.0071\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 774us/step - loss: 151.6312 - val_loss: 169.0531\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 154.9840 - val_loss: 172.4659\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 152.6394 - val_loss: 169.4107\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 156.5124 - val_loss: 174.8579\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 155.0505 - val_loss: 170.0049\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 155.2544 - val_loss: 169.2698\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 155.2921 - val_loss: 169.5514\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 153.0606 - val_loss: 169.9415\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 153.3223 - val_loss: 169.7492\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 153.8178 - val_loss: 169.3327\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 796us/step - loss: 153.5298 - val_loss: 169.5881\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 155.6504 - val_loss: 169.3454\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 153.6572 - val_loss: 170.5159\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 780us/step - loss: 152.4490 - val_loss: 171.8614\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 152.6078 - val_loss: 169.3261\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 153.1316 - val_loss: 169.9757\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 153.6611 - val_loss: 168.2170\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 152.0235 - val_loss: 169.9706\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 153.5101 - val_loss: 171.0159\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 152.2620 - val_loss: 170.6990\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 152.5529 - val_loss: 173.4452\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 153.2362 - val_loss: 171.9995\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 153.7659 - val_loss: 170.5797\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 153.7576 - val_loss: 169.6944\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 754us/step - loss: 153.1708 - val_loss: 169.8857\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 153.0039 - val_loss: 170.8631\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 153.0245 - val_loss: 170.4176\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 153.1211 - val_loss: 169.8793\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 150.9114 - val_loss: 173.5066\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 154.0426 - val_loss: 169.3962\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 151.7422 - val_loss: 169.5215\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 154.6341 - val_loss: 170.0959\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 153.0592 - val_loss: 169.9579\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 151.9578 - val_loss: 169.3701\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 153.4028 - val_loss: 169.8301\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 152.9335 - val_loss: 170.4289\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 154.0789 - val_loss: 171.5881\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 154.5210 - val_loss: 172.0784\n", "Epoch 384/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 152.3586 - val_loss: 169.1765\n", "Epoch 385/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 151.6143 - val_loss: 168.5984\n", "Epoch 386/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 151.3511 - val_loss: 173.2456\n", "Epoch 387/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 151.9235 - val_loss: 169.4496\n", "Epoch 388/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 153.7012 - val_loss: 170.3631\n", "Epoch 389/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 154.4692 - val_loss: 169.2991\n", "Epoch 390/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 151.5917 - val_loss: 170.4028\n", "Epoch 391/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 153.5476 - val_loss: 169.9007\n", "Epoch 392/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 152.7418 - val_loss: 171.6559\n", "Epoch 393/1000\n", "3028/3028 [==============================] - 3s 833us/step - loss: 151.9626 - val_loss: 170.9519\n", "Epoch 394/1000\n", "3028/3028 [==============================] - 3s 925us/step - loss: 153.5234 - val_loss: 169.7410\n", "Epoch 395/1000\n", "3028/3028 [==============================] - 3s 870us/step - loss: 151.5717 - val_loss: 169.0268\n", "Epoch 396/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 151.5365 - val_loss: 169.1673\n", "Epoch 397/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 151.2089 - val_loss: 169.4384\n", "Epoch 398/1000\n", "3028/3028 [==============================] - 2s 783us/step - loss: 152.2577 - val_loss: 169.0859\n", "Epoch 399/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 150.4805 - val_loss: 170.6420\n", "Epoch 400/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 151.5932 - val_loss: 169.8491\n", "Epoch 401/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 152.4298 - val_loss: 169.1799\n", "Epoch 402/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 151.4442 - val_loss: 168.9960\n", "Epoch 403/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 150.3037 - val_loss: 169.5293\n", "Epoch 404/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 154.6285 - val_loss: 170.5291\n", "Epoch 405/1000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 151.9875 - val_loss: 171.1749\n", "Epoch 406/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 151.0006 - val_loss: 170.6812\n", "Epoch 407/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 152.7256 - val_loss: 171.3748\n", "Epoch 408/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 151.0242 - val_loss: 169.3679\n", "Epoch 409/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 152.2818 - val_loss: 170.4261\n", "Epoch 410/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 150.9833 - val_loss: 169.4795\n", "Epoch 411/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 151.6358 - val_loss: 172.0222\n", "Epoch 412/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 152.0948 - val_loss: 171.8710\n", "1010/1010 [==============================] - 0s 444us/step - loss: 168.2170\n", "\n", "\n", "\n", "\n", " Model: 9/36, hidden: 4, nodes: 15, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 243.5494 - val_loss: 194.6361\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 191.7892 - val_loss: 199.2880\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 190.7944 - val_loss: 191.9305\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 184.9089 - val_loss: 185.4251\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 184.9962 - val_loss: 188.4688\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 774us/step - loss: 183.8579 - val_loss: 188.0575\n", "Epoch 7/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 679us/step - loss: 181.0805 - val_loss: 181.0895\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 180.5243 - val_loss: 182.2497\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 178.0623 - val_loss: 187.4561\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 180.0745 - val_loss: 195.4480\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 179.6891 - val_loss: 183.8042\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 180.5292 - val_loss: 195.2469\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 178.2834 - val_loss: 188.6483\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 180.5854 - val_loss: 182.0526\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 178.9480 - val_loss: 183.1422\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 179.0974 - val_loss: 188.2650\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 178.0142 - val_loss: 183.2596\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 175.7191 - val_loss: 201.0234\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 178.2578 - val_loss: 193.3754\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 179.6452 - val_loss: 191.4128\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 177.5749 - val_loss: 205.2092\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 174.9109 - val_loss: 185.7907\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 175.2080 - val_loss: 179.6026\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 175.8473 - val_loss: 183.8320\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 178.2747 - val_loss: 182.5348\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 174.8660 - val_loss: 184.0065\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 176.0391 - val_loss: 181.2950\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 176.2716 - val_loss: 192.1564\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 176.9862 - val_loss: 183.8577\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: nan - val_loss: nan\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: nan - val_loss: nan\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: nan - val_loss: nan\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: nan - val_loss: nan\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: nan - val_loss: nan\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: nan - val_loss: nan\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: nan - val_loss: nan\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: nan - val_loss: nan\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: nan - val_loss: nan\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: nan - val_loss: nan\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: nan - val_loss: nan\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: nan - val_loss: nan\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 775us/step - loss: nan - val_loss: nan\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: nan - val_loss: nan\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: nan - val_loss: nan\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: nan - val_loss: nan\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: nan - val_loss: nan\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: nan - val_loss: nan\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: nan - val_loss: nan\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: nan - val_loss: nan\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: nan - val_loss: nan\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: nan - val_loss: nan\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: nan - val_loss: nan\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: nan - val_loss: nan\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: nan - val_loss: nan\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: nan - val_loss: nan\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: nan - val_loss: nan\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: nan - val_loss: nan\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: nan - val_loss: nan\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: nan - val_loss: nan\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: nan - val_loss: nan\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: nan - val_loss: nan\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: nan - val_loss: nan\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: nan - val_loss: nan\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: nan - val_loss: nan\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: nan - val_loss: nan\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: nan - val_loss: nan\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: nan - val_loss: nan\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: nan - val_loss: nan\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: nan - val_loss: nan\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: nan - val_loss: nan\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: nan - val_loss: nan\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: nan - val_loss: nan\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: nan - val_loss: nan\n", "1010/1010 [==============================] - 0s 444us/step - loss: 179.6026\n", "\n", "\n", "\n", "\n", " Model: 10/36, hidden: 4, nodes: 15, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 315.4418 - val_loss: 203.3130\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 194.4516 - val_loss: 192.5403\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 187.7200 - val_loss: 190.8715\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 185.5211 - val_loss: 190.4334\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 183.7869 - val_loss: 189.5452\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 181.7109 - val_loss: 183.9532\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 180.2028 - val_loss: 184.1123\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 177.5678 - val_loss: 186.1959\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 179.0012 - val_loss: 183.0009\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 177.8602 - val_loss: 181.0288\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 176.4713 - val_loss: 181.6537\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 176.7365 - val_loss: 183.6451\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 178.3973 - val_loss: 182.8161\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 177.1045 - val_loss: 183.6254\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 175.3100 - val_loss: 186.3390\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 823us/step - loss: 175.2939 - val_loss: 180.6082\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 774us/step - loss: 174.5085 - val_loss: 188.6906\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 173.7545 - val_loss: 183.5629\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 174.9679 - val_loss: 178.4272\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 175.6179 - val_loss: 180.8915\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 173.6229 - val_loss: 179.3329\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 173.0950 - val_loss: 184.8309\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 172.3101 - val_loss: 179.1952\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 172.6377 - val_loss: 179.1592\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 171.4269 - val_loss: 178.6714\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 171.3601 - val_loss: 181.1282\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 171.3240 - val_loss: 177.9483\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 172.1281 - val_loss: 178.5403\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 172.0904 - val_loss: 179.7290\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 172.2807 - val_loss: 177.9030\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 172.8070 - val_loss: 177.0064\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 170.0943 - val_loss: 176.3913\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 172.1206 - val_loss: 178.6516\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 172.6309 - val_loss: 178.1990\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 170.5534 - val_loss: 181.5566\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 172.4221 - val_loss: 178.6992\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 173.1400 - val_loss: 177.1729\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 170.5078 - val_loss: 176.6013\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 168.2657 - val_loss: 177.8132\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 169.8987 - val_loss: 176.0860\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 169.1776 - val_loss: 180.3851\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 169.4889 - val_loss: 176.3138\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 170.1189 - val_loss: 176.2078\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 167.5188 - val_loss: 175.4986\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 172.2715 - val_loss: 177.3800\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 169.1454 - val_loss: 180.5051\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 169.4603 - val_loss: 177.2374\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 167.5652 - val_loss: 174.5968\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 169.1558 - val_loss: 178.1419\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 166.5412 - val_loss: 178.5812\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 167.1571 - val_loss: 176.1310\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 167.1162 - val_loss: 173.8652\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 168.0767 - val_loss: 174.8482\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 164.8671 - val_loss: 175.3965\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 168.2889 - val_loss: 175.5262\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 168.0021 - val_loss: 177.8179\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 167.8949 - val_loss: 174.5890\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 167.4324 - val_loss: 174.0463\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 166.7778 - val_loss: 175.2010\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 165.9481 - val_loss: 174.4883\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.8564 - val_loss: 174.9243\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 168.9248 - val_loss: 176.7431\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 165.8242 - val_loss: 172.9816\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 164.9025 - val_loss: 176.8415\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 166.6268 - val_loss: 174.2706\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 167.2141 - val_loss: 174.8423\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 167.4722 - val_loss: 175.4973\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 167.7958 - val_loss: 174.7260\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 163.9044 - val_loss: 175.0409\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 166.8131 - val_loss: 174.9804\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 167.4281 - val_loss: 178.3523\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 164.1805 - val_loss: 173.6989\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 166.6653 - val_loss: 174.1980\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 166.1227 - val_loss: 177.0316\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 165.9128 - val_loss: 176.3035\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.0104 - val_loss: 173.6514\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.8573 - val_loss: 174.3223\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.0556 - val_loss: 172.7547\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 165.7508 - val_loss: 173.6330\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 166.1721 - val_loss: 174.3653\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 164.2429 - val_loss: 172.6932\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 163.3602 - val_loss: 175.2729\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.5667 - val_loss: 173.2110\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 162.6246 - val_loss: 172.8987\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 167.8447 - val_loss: 175.6465\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.8754 - val_loss: 173.4267\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.6559 - val_loss: 174.0014\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.5070 - val_loss: 175.6419\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.5660 - val_loss: 174.9790\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.8350 - val_loss: 172.4110\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 164.5442 - val_loss: 174.3649\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 163.1090 - val_loss: 173.7387\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 164.2004 - val_loss: 175.2465\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.0000 - val_loss: 176.4964\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 164.9928 - val_loss: 171.5099\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 166.4199 - val_loss: 174.3284\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 164.2722 - val_loss: 175.0695\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 165.7751 - val_loss: 173.3011\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 164.3462 - val_loss: 173.4429\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.6465 - val_loss: 175.7358\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.2054 - val_loss: 175.6258\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.0972 - val_loss: 174.8270\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.0490 - val_loss: 174.5624\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.4829 - val_loss: 174.2097\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.8199 - val_loss: 171.9266\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 166.1811 - val_loss: 173.5768\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.6157 - val_loss: 174.8301\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 161.1169 - val_loss: 173.3518\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.3808 - val_loss: 173.0996\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 163.9455 - val_loss: 174.1215\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 162.5311 - val_loss: 172.4181\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 161.6870 - val_loss: 178.6890\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 165.0631 - val_loss: 177.2112\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 165.3225 - val_loss: 173.3362\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.2856 - val_loss: 172.3615\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.4264 - val_loss: 174.0242\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.5148 - val_loss: 173.7466\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 162.9608 - val_loss: 174.0580\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 160.4413 - val_loss: 174.6800\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 162.6108 - val_loss: 172.9234\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.5290 - val_loss: 173.3685\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.6223 - val_loss: 172.2274\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 162.8673 - val_loss: 176.8336\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 162.3129 - val_loss: 171.8591\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 162.5414 - val_loss: 172.0245\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 163.3704 - val_loss: 172.6223\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 163.0481 - val_loss: 173.2208\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.7886 - val_loss: 172.6483\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 162.8284 - val_loss: 171.6124\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 164.2211 - val_loss: 171.6376\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.9681 - val_loss: 173.0967\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 162.7695 - val_loss: 174.9613\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 161.4282 - val_loss: 173.2491\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.7219 - val_loss: 173.6031\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 162.7641 - val_loss: 174.0615\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 163.5987 - val_loss: 172.6446\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 162.1639 - val_loss: 174.7263\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.4730 - val_loss: 172.1561\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 160.5805 - val_loss: 176.6947\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 160.8484 - val_loss: 173.3476\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.5705 - val_loss: 172.4465\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.1449 - val_loss: 172.5886\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.4525 - val_loss: 172.6938\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 160.6212 - val_loss: 172.6623\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.2391 - val_loss: 174.4747\n", "1010/1010 [==============================] - 0s 446us/step - loss: 171.5099\n", "\n", "\n", "\n", "\n", " Model: 11/36, hidden: 4, nodes: 15, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 669.5352 - val_loss: 262.2727\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 253.0615 - val_loss: 231.3455\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 224.4214 - val_loss: 216.2966\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 211.6491 - val_loss: 208.6221\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 205.9830 - val_loss: 203.9729\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 197.7396 - val_loss: 200.5090\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 196.6688 - val_loss: 198.5962\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 192.1894 - val_loss: 195.9161\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 191.9310 - val_loss: 194.9349\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 190.8318 - val_loss: 192.6447\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 186.5942 - val_loss: 191.6062\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 186.3739 - val_loss: 191.3880\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 189.4402 - val_loss: 189.8600\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 186.0815 - val_loss: 190.6071\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 185.1074 - val_loss: 188.8189\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 185.9465 - val_loss: 187.8305\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 184.4793 - val_loss: 187.6725\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 181.4423 - val_loss: 187.0834\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 184.5681 - val_loss: 186.5760\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 182.1639 - val_loss: 186.2991\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 181.7977 - val_loss: 185.5875\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 774us/step - loss: 183.3109 - val_loss: 185.9190\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 180.6891 - val_loss: 185.1113\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 180.8852 - val_loss: 185.0436\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 180.3457 - val_loss: 184.3768\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 181.4590 - val_loss: 184.4352\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 180.2700 - val_loss: 183.8360\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 180.7441 - val_loss: 186.3754\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 182.1820 - val_loss: 183.7609\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 181.8957 - val_loss: 182.9866\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 179.7597 - val_loss: 184.5082\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 178.7716 - val_loss: 182.9285\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 181.9606 - val_loss: 183.2045\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 178.7304 - val_loss: 182.8205\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 178.8249 - val_loss: 182.8316\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 177.7041 - val_loss: 182.7172\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 177.3516 - val_loss: 182.4229\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 176.7708 - val_loss: 182.1278\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 176.0501 - val_loss: 181.9294\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 175.8672 - val_loss: 184.1335\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 176.3504 - val_loss: 182.3685\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 177.9488 - val_loss: 182.8831\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 176.1475 - val_loss: 181.6967\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 177.0437 - val_loss: 181.7082\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 174.2803 - val_loss: 181.1997\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 175.9490 - val_loss: 181.0022\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 178.7233 - val_loss: 182.1592\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 178.4811 - val_loss: 180.5218\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 175.0462 - val_loss: 181.3888\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 175.0126 - val_loss: 180.6926\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 174.9750 - val_loss: 180.9104\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 176.4408 - val_loss: 180.8031\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 174.9155 - val_loss: 181.6737\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 172.6068 - val_loss: 182.5282\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 175.7172 - val_loss: 179.7605\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 175.0581 - val_loss: 179.8084\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 173.9306 - val_loss: 180.6863\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 177.0774 - val_loss: 179.9179\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 176.7088 - val_loss: 182.1271\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 175.5428 - val_loss: 180.4786\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 176.0144 - val_loss: 179.9762\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 175.2685 - val_loss: 179.3080\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 175.5579 - val_loss: 179.6220\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 175.4413 - val_loss: 179.9724\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 173.3574 - val_loss: 179.4019\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 174.6355 - val_loss: 179.8699\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 173.4357 - val_loss: 180.5782\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 175.2694 - val_loss: 180.6035\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 173.5124 - val_loss: 180.6574\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 173.9172 - val_loss: 179.2979\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 173.7685 - val_loss: 180.1398\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 172.7517 - val_loss: 179.4943\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 174.7016 - val_loss: 178.6656\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 175.2074 - val_loss: 178.7392\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 174.5925 - val_loss: 179.2476\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 173.9325 - val_loss: 178.9518\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 172.7164 - val_loss: 179.0176\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 174.6447 - val_loss: 178.9474\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 171.1518 - val_loss: 179.7920\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 170.1775 - val_loss: 178.1826\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 170.3149 - val_loss: 178.4053\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 172.8495 - val_loss: 178.6080\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 172.3700 - val_loss: 178.2381\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 173.6829 - val_loss: 178.6006\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 173.8737 - val_loss: 178.2663\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 174.3576 - val_loss: 178.1751\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 173.2517 - val_loss: 178.1466\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 173.2120 - val_loss: 178.5061\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 172.7537 - val_loss: 178.3353\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 174.3040 - val_loss: 179.6505\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 172.4048 - val_loss: 178.4711\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 172.4610 - val_loss: 177.8786\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 173.5150 - val_loss: 178.1572\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 168.4992 - val_loss: 178.0054\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 173.8350 - val_loss: 177.6955\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 171.8111 - val_loss: 177.4596\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 172.3679 - val_loss: 177.9211\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 170.7708 - val_loss: 178.7434\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 172.2153 - val_loss: 177.5103\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 176.6228 - val_loss: 178.3686\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 173.1340 - val_loss: 177.4619\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 171.4375 - val_loss: 178.9165\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 170.1249 - val_loss: 177.9328\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 172.2735 - val_loss: 178.3849\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 170.4731 - val_loss: 177.4915\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 171.2048 - val_loss: 177.5729\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 168.9602 - val_loss: 177.6513\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 170.0396 - val_loss: 177.1987\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 171.0524 - val_loss: 178.4480\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 172.4344 - val_loss: 177.3794\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 167.8641 - val_loss: 177.1096\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 172.0144 - val_loss: 177.0282\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 169.9869 - val_loss: 176.8449\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 171.8248 - val_loss: 177.3713\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 169.9344 - val_loss: 176.6188\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 172.7027 - val_loss: 177.0498\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 171.5961 - val_loss: 177.0588\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 170.5691 - val_loss: 176.4519\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 170.4339 - val_loss: 176.5717\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 170.4539 - val_loss: 177.9111\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 172.2052 - val_loss: 177.8503\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 170.9102 - val_loss: 176.7859\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 170.3261 - val_loss: 177.7878\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 170.2797 - val_loss: 176.6410\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 171.3684 - val_loss: 176.2290\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 169.6744 - val_loss: 177.6264\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 169.8408 - val_loss: 176.0084\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 170.2337 - val_loss: 176.5210\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 171.9488 - val_loss: 176.7309\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 168.6210 - val_loss: 175.8276\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 173.2619 - val_loss: 175.7218\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 172.0371 - val_loss: 175.9420\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 169.3697 - val_loss: 176.3466\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 170.5023 - val_loss: 175.9747\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 168.0976 - val_loss: 175.8629\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 170.4849 - val_loss: 175.7088\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 170.1422 - val_loss: 175.2562\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 169.4584 - val_loss: 177.9656\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 169.6415 - val_loss: 176.2647\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 169.5822 - val_loss: 176.0024\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 169.1721 - val_loss: 175.6533\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 170.4624 - val_loss: 175.8266\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 170.8348 - val_loss: 176.2671\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 168.9726 - val_loss: 175.8977\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 169.1170 - val_loss: 176.3025\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 169.5539 - val_loss: 175.9275\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 170.0543 - val_loss: 175.3677\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 166.8967 - val_loss: 175.8495\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 170.1707 - val_loss: 176.5606\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 167.6303 - val_loss: 175.9243\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 167.5998 - val_loss: 175.6138\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 170.0465 - val_loss: 175.8871\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 170.5425 - val_loss: 176.2213\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 170.7622 - val_loss: 176.1283\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.7346 - val_loss: 175.8150\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 169.5107 - val_loss: 175.6210\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.3818 - val_loss: 174.7045\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 168.4904 - val_loss: 174.8581\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 167.2007 - val_loss: 175.7160\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 169.8104 - val_loss: 175.0515\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.3513 - val_loss: 175.4633\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 169.6266 - val_loss: 175.1733\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 168.5921 - val_loss: 174.7396\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 168.0590 - val_loss: 174.8819\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 168.8159 - val_loss: 175.7406\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 169.4425 - val_loss: 175.1608\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 169.2850 - val_loss: 176.1546\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 168.6967 - val_loss: 174.5565\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 167.7976 - val_loss: 176.0442\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 168.3561 - val_loss: 175.9411\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 753us/step - loss: 170.0997 - val_loss: 175.6110\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 779us/step - loss: 170.1490 - val_loss: 175.4625\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 769us/step - loss: 168.1868 - val_loss: 174.6577\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 169.7220 - val_loss: 174.4945\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 169.2212 - val_loss: 175.7318\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 167.6558 - val_loss: 174.3503\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 168.0544 - val_loss: 175.1157\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.1982 - val_loss: 174.7789\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 168.3300 - val_loss: 174.8891\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: 167.9559 - val_loss: 174.8315\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 165.7701 - val_loss: 175.8452\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 170.6600 - val_loss: 174.7248\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 167.8506 - val_loss: 174.5220\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 168.8977 - val_loss: 174.6245\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 169.6338 - val_loss: 174.0885\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 168.3706 - val_loss: 174.1071\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 167.4743 - val_loss: 174.3751\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 166.7222 - val_loss: 173.7111\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 172.2511 - val_loss: 174.5230\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 166.1423 - val_loss: 173.8542\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 167.2474 - val_loss: 174.4549\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 168.9745 - val_loss: 174.1602\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 167.6608 - val_loss: 174.8280\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 168.6787 - val_loss: 174.0300\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 167.5182 - val_loss: 174.0212\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 166.5965 - val_loss: 176.1162\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 167.1294 - val_loss: 176.0223\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 166.3141 - val_loss: 174.6456\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 166.6078 - val_loss: 173.6183\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 167.0849 - val_loss: 174.5489\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 166.9282 - val_loss: 173.4573\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 166.0944 - val_loss: 174.6034\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.8089 - val_loss: 173.9900\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 166.3097 - val_loss: 173.5381\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 165.5069 - val_loss: 174.4288\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 167.4973 - val_loss: 174.2094\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.8422 - val_loss: 174.5698\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 166.0065 - val_loss: 173.9338\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 168.1269 - val_loss: 174.0390\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.3079 - val_loss: 173.3959\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.0092 - val_loss: 173.4318\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 165.9212 - val_loss: 174.3966\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 165.6029 - val_loss: 174.8264\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.9289 - val_loss: 173.0919\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 166.4302 - val_loss: 173.7298\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 166.6097 - val_loss: 174.2729\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 167.2335 - val_loss: 173.9925\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 166.6968 - val_loss: 174.5372\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 168.3876 - val_loss: 174.2700\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 166.9809 - val_loss: 175.0064\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 166.2663 - val_loss: 173.2683\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 167.2464 - val_loss: 173.9944\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 167.1944 - val_loss: 173.1978\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 168.4647 - val_loss: 174.3211\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 166.9026 - val_loss: 172.8586\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 166.9703 - val_loss: 173.1416\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.6680 - val_loss: 173.5682\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 167.8340 - val_loss: 173.4739\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 165.4169 - val_loss: 173.0230\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 163.5471 - val_loss: 172.8854\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 167.7072 - val_loss: 173.1981\n", "Epoch 232/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 666us/step - loss: 167.4593 - val_loss: 173.2414\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 165.1931 - val_loss: 174.4990\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 167.6681 - val_loss: 173.4952\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 164.5871 - val_loss: 172.7788\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 166.2006 - val_loss: 173.4846\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 166.7195 - val_loss: 173.9969\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 165.3332 - val_loss: 173.1288\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 167.2538 - val_loss: 173.7144\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 167.3300 - val_loss: 173.7357\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 166.2258 - val_loss: 173.0962\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 164.9374 - val_loss: 174.1731\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 167.8273 - val_loss: 172.3686\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 166.0140 - val_loss: 172.9103\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 168.6309 - val_loss: 172.8784\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 167.6160 - val_loss: 173.7137\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 164.2003 - val_loss: 172.7592\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 164.2921 - val_loss: 172.6015\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 168.8892 - val_loss: 174.6915\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 165.3591 - val_loss: 172.7699\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.7577 - val_loss: 173.1815\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 167.1379 - val_loss: 173.1449\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.7162 - val_loss: 173.7411\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 167.2588 - val_loss: 174.8831\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.7636 - val_loss: 173.4538\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 164.8661 - val_loss: 173.0359\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.6490 - val_loss: 172.2801\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 804us/step - loss: 165.1132 - val_loss: 172.8303\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 163.5186 - val_loss: 173.0703\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 164.8245 - val_loss: 172.6798\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 163.6151 - val_loss: 172.2787\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 162.4178 - val_loss: 173.3144\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.5675 - val_loss: 173.0838\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.4950 - val_loss: 173.2926\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 165.1490 - val_loss: 173.8564\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 165.6015 - val_loss: 173.4185\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 163.6161 - val_loss: 172.9210\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 165.8830 - val_loss: 172.6422\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 166.2858 - val_loss: 173.2468\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 164.7804 - val_loss: 172.1039\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 165.2707 - val_loss: 172.9081\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 165.3776 - val_loss: 172.5634\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 164.0385 - val_loss: 172.6960\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.8853 - val_loss: 172.2926\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 165.5070 - val_loss: 172.5269\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.2977 - val_loss: 172.0683\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 166.0647 - val_loss: 172.1551\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.4802 - val_loss: 172.2557\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 165.1338 - val_loss: 172.0138\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 163.4268 - val_loss: 172.5424\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 163.7645 - val_loss: 172.6147\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 165.9951 - val_loss: 173.2919\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.8657 - val_loss: 173.4238\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.4778 - val_loss: 172.4362\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.0617 - val_loss: 171.6776\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 163.0012 - val_loss: 175.6218\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.5986 - val_loss: 172.4569\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 164.7472 - val_loss: 172.1764\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 167.0825 - val_loss: 173.8325\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.0219 - val_loss: 172.3199\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.8572 - val_loss: 172.3374\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 163.5647 - val_loss: 172.2897\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 163.2433 - val_loss: 173.8355\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.4560 - val_loss: 171.8025\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 165.2478 - val_loss: 171.8082\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.7502 - val_loss: 172.1428\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.2156 - val_loss: 171.9010\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 162.7469 - val_loss: 171.6198\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.5910 - val_loss: 172.0495\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 163.5809 - val_loss: 172.1773\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.7924 - val_loss: 171.9965\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.2506 - val_loss: 172.1596\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 165.6848 - val_loss: 172.1305\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 165.7735 - val_loss: 173.0511\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.0590 - val_loss: 172.4505\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 163.9265 - val_loss: 172.5280\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.7425 - val_loss: 172.0236\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.7586 - val_loss: 171.6890\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 163.9507 - val_loss: 171.7004\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 164.4822 - val_loss: 172.2849\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 164.4472 - val_loss: 172.4557\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.6274 - val_loss: 172.2550\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 162.5339 - val_loss: 172.2372\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 164.0484 - val_loss: 172.4078\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.5248 - val_loss: 172.1037\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.9224 - val_loss: 172.5871\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 165.3895 - val_loss: 173.0720\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 163.6553 - val_loss: 171.5614\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 163.9998 - val_loss: 171.2585\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.6513 - val_loss: 172.8671\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 163.1243 - val_loss: 171.9822\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 801us/step - loss: 164.7613 - val_loss: 172.0248\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 807us/step - loss: 162.7885 - val_loss: 172.0713\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 163.0846 - val_loss: 171.7665\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.8145 - val_loss: 171.3119\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 164.4978 - val_loss: 172.1048\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 165.0120 - val_loss: 171.2752\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 165.1741 - val_loss: 171.8875\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 163.2322 - val_loss: 172.7334\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.3760 - val_loss: 173.4675\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.7780 - val_loss: 171.7481\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 161.7740 - val_loss: 171.6186\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.0158 - val_loss: 171.1163\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.1138 - val_loss: 172.4358\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.1521 - val_loss: 171.4772\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 3s 867us/step - loss: 165.2494 - val_loss: 171.3226\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.5841 - val_loss: 171.5376\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 163.5675 - val_loss: 172.2449\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.4006 - val_loss: 172.2686\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.2847 - val_loss: 172.9338\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 162.3917 - val_loss: 171.4395\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.7428 - val_loss: 171.0877\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 163.0678 - val_loss: 171.4739\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.6880 - val_loss: 171.4173\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 162.7687 - val_loss: 171.9411\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.9064 - val_loss: 171.1840\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 162.8382 - val_loss: 171.9030\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 160.9351 - val_loss: 171.1538\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 164.8020 - val_loss: 171.6577\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 161.8023 - val_loss: 170.6949\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 164.0615 - val_loss: 171.0246\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 163.0205 - val_loss: 170.7437\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 162.6672 - val_loss: 170.6526\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 164.9375 - val_loss: 171.4893\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 162.0691 - val_loss: 171.0862\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 161.8539 - val_loss: 170.7420\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 161.9796 - val_loss: 171.9942\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 161.2481 - val_loss: 171.6025\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 161.1462 - val_loss: 170.5797\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 163.0939 - val_loss: 171.8179\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 159.8178 - val_loss: 171.1990\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.1099 - val_loss: 170.5405\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.7172 - val_loss: 172.0430\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.9067 - val_loss: 171.1933\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 162.0584 - val_loss: 171.9439\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 161.2562 - val_loss: 171.4032\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 162.7280 - val_loss: 171.4312\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 163.1599 - val_loss: 171.1759\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 160.7519 - val_loss: 171.0240\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 163.6672 - val_loss: 171.5476\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 163.2396 - val_loss: 170.8381\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 162.2287 - val_loss: 170.9565\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.6699 - val_loss: 171.5113\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.0572 - val_loss: 172.7881\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 165.2074 - val_loss: 170.3142\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.1783 - val_loss: 171.8411\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 161.5500 - val_loss: 170.8860\n", "Epoch 378/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 649us/step - loss: 164.3645 - val_loss: 170.8506\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 163.1285 - val_loss: 170.7475\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 162.0967 - val_loss: 170.2916\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 162.9465 - val_loss: 170.6426\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 161.4832 - val_loss: 171.1457\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 162.4386 - val_loss: 170.7949\n", "Epoch 384/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 163.5317 - val_loss: 170.5168\n", "Epoch 385/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 161.9452 - val_loss: 171.2581\n", "Epoch 386/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.2210 - val_loss: 173.8781\n", "Epoch 387/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 162.7383 - val_loss: 170.3960\n", "Epoch 388/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 162.9883 - val_loss: 170.7817\n", "Epoch 389/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.8813 - val_loss: 170.5125\n", "Epoch 390/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 160.0214 - val_loss: 171.0611\n", "Epoch 391/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 162.7184 - val_loss: 170.4383\n", "Epoch 392/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 161.7960 - val_loss: 170.9814\n", "Epoch 393/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 161.7149 - val_loss: 170.4613\n", "Epoch 394/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 162.4915 - val_loss: 171.3107\n", "Epoch 395/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 164.9812 - val_loss: 170.7441\n", "Epoch 396/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.4458 - val_loss: 171.7006\n", "Epoch 397/1000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 164.3806 - val_loss: 171.0541\n", "Epoch 398/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.0307 - val_loss: 171.8178\n", "Epoch 399/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.6958 - val_loss: 171.1836\n", "Epoch 400/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 162.1200 - val_loss: 172.2226\n", "Epoch 401/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 162.8061 - val_loss: 170.5940\n", "Epoch 402/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 162.2788 - val_loss: 170.3529\n", "Epoch 403/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 163.9227 - val_loss: 171.5711\n", "Epoch 404/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 161.6580 - val_loss: 170.8977\n", "Epoch 405/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 161.5151 - val_loss: 170.5487\n", "Epoch 406/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 162.3470 - val_loss: 171.4790\n", "Epoch 407/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 161.9533 - val_loss: 171.7229\n", "Epoch 408/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 161.8355 - val_loss: 170.7327\n", "Epoch 409/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 161.4648 - val_loss: 171.5134\n", "Epoch 410/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 159.5079 - val_loss: 170.5336\n", "Epoch 411/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 160.8783 - val_loss: 170.6853\n", "Epoch 412/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 161.6545 - val_loss: 170.2328\n", "Epoch 413/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 162.2848 - val_loss: 170.5043\n", "Epoch 414/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 161.8728 - val_loss: 172.4576\n", "Epoch 415/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 162.4463 - val_loss: 171.0822\n", "Epoch 416/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 161.5060 - val_loss: 171.7823\n", "Epoch 417/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 164.7731 - val_loss: 171.3352\n", "Epoch 418/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 163.8309 - val_loss: 170.4264\n", "Epoch 419/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 160.9328 - val_loss: 170.8035\n", "Epoch 420/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 161.6091 - val_loss: 170.7517\n", "Epoch 421/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.4661 - val_loss: 170.5852\n", "Epoch 422/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.3628 - val_loss: 171.0270\n", "Epoch 423/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.6907 - val_loss: 170.1075\n", "Epoch 424/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 162.5157 - val_loss: 170.5953\n", "Epoch 425/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 162.4005 - val_loss: 170.6310\n", "Epoch 426/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 162.9203 - val_loss: 171.3316\n", "Epoch 427/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 162.9880 - val_loss: 170.0261\n", "Epoch 428/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 162.4589 - val_loss: 170.7092\n", "Epoch 429/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 163.4902 - val_loss: 170.6088\n", "Epoch 430/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 160.5845 - val_loss: 170.2470\n", "Epoch 431/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 161.7549 - val_loss: 170.0873\n", "Epoch 432/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 161.0154 - val_loss: 170.7981\n", "Epoch 433/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 160.9173 - val_loss: 171.2478\n", "Epoch 434/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 163.9301 - val_loss: 170.7749\n", "Epoch 435/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 161.5456 - val_loss: 171.5743\n", "Epoch 436/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 163.0414 - val_loss: 170.1611\n", "Epoch 437/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 162.3905 - val_loss: 170.7742\n", "Epoch 438/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 163.4847 - val_loss: 170.1596\n", "Epoch 439/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 161.9881 - val_loss: 169.8915\n", "Epoch 440/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.0205 - val_loss: 170.0232\n", "Epoch 441/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 161.5358 - val_loss: 171.0436\n", "Epoch 442/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.1095 - val_loss: 169.9261\n", "Epoch 443/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 160.9641 - val_loss: 170.8080\n", "Epoch 444/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 160.1905 - val_loss: 170.6828\n", "Epoch 445/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.4578 - val_loss: 172.0207\n", "Epoch 446/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 161.6833 - val_loss: 169.6855\n", "Epoch 447/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.9607 - val_loss: 172.2261\n", "Epoch 448/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 160.5003 - val_loss: 171.1335\n", "Epoch 449/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 160.7321 - val_loss: 170.1036\n", "Epoch 450/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 162.1197 - val_loss: 170.7261\n", "Epoch 451/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 162.0363 - val_loss: 170.5782\n", "Epoch 452/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 164.4041 - val_loss: 171.9231\n", "Epoch 453/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 165.1037 - val_loss: 169.8978\n", "Epoch 454/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.9288 - val_loss: 170.6672\n", "Epoch 455/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 159.4946 - val_loss: 170.2932\n", "Epoch 456/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 162.6635 - val_loss: 170.2365\n", "Epoch 457/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 161.9781 - val_loss: 170.7677\n", "Epoch 458/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 161.1652 - val_loss: 170.0240\n", "Epoch 459/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 162.2456 - val_loss: 169.6195\n", "Epoch 460/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 158.4444 - val_loss: 170.2304\n", "Epoch 461/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 160.0564 - val_loss: 170.1262\n", "Epoch 462/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.4890 - val_loss: 171.1624\n", "Epoch 463/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 159.3509 - val_loss: 170.8036\n", "Epoch 464/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 159.5315 - val_loss: 171.5222\n", "Epoch 465/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 161.3127 - val_loss: 170.9198\n", "Epoch 466/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 159.2587 - val_loss: 169.6559\n", "Epoch 467/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.8987 - val_loss: 171.1958\n", "Epoch 468/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.7400 - val_loss: 170.2254\n", "Epoch 469/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 161.0204 - val_loss: 169.7359\n", "Epoch 470/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 160.3308 - val_loss: 172.7429\n", "Epoch 471/1000\n", "3028/3028 [==============================] - 2s 781us/step - loss: 164.0517 - val_loss: 169.6970\n", "Epoch 472/1000\n", "3028/3028 [==============================] - 2s 777us/step - loss: 161.5470 - val_loss: 170.4748\n", "Epoch 473/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 162.1357 - val_loss: 170.9163\n", "Epoch 474/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 160.6899 - val_loss: 170.0224\n", "Epoch 475/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 165.2162 - val_loss: 170.0235\n", "Epoch 476/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 161.9448 - val_loss: 170.8610\n", "Epoch 477/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 161.4354 - val_loss: 169.4685\n", "Epoch 478/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.2905 - val_loss: 170.7872\n", "Epoch 479/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 159.3172 - val_loss: 170.6153\n", "Epoch 480/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 161.7555 - val_loss: 170.6228\n", "Epoch 481/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 158.0082 - val_loss: 170.0632\n", "Epoch 482/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 162.8462 - val_loss: 170.1277\n", "Epoch 483/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.8774 - val_loss: 169.9430\n", "Epoch 484/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 160.9850 - val_loss: 170.7772\n", "Epoch 485/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 159.2779 - val_loss: 169.5553\n", "Epoch 486/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 160.5809 - val_loss: 169.9384\n", "Epoch 487/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 162.6031 - val_loss: 170.5775\n", "Epoch 488/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 162.0102 - val_loss: 169.8469\n", "Epoch 489/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 160.6254 - val_loss: 170.0534\n", "Epoch 490/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 160.6654 - val_loss: 170.3736\n", "Epoch 491/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 162.6010 - val_loss: 170.8726\n", "Epoch 492/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 161.0501 - val_loss: 169.6398\n", "Epoch 493/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.3005 - val_loss: 170.2152\n", "Epoch 494/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 161.5625 - val_loss: 169.8066\n", "Epoch 495/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 159.9012 - val_loss: 171.3016\n", "Epoch 496/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 164.1091 - val_loss: 169.6806\n", "Epoch 497/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 161.4588 - val_loss: 170.6968\n", "Epoch 498/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 161.4317 - val_loss: 170.4243\n", "Epoch 499/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 162.2241 - val_loss: 171.5107\n", "Epoch 500/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 161.3213 - val_loss: 169.7536\n", "Epoch 501/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 161.3758 - val_loss: 171.2664\n", "Epoch 502/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.1064 - val_loss: 170.0341\n", "Epoch 503/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 162.2185 - val_loss: 170.1724\n", "Epoch 504/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 160.2173 - val_loss: 169.9436\n", "Epoch 505/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 161.5676 - val_loss: 170.7489\n", "Epoch 506/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 161.2920 - val_loss: 170.2045\n", "Epoch 507/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 158.8483 - val_loss: 170.1922\n", "Epoch 508/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 161.8739 - val_loss: 171.6415\n", "Epoch 509/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.6928 - val_loss: 169.9499\n", "Epoch 510/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 159.5788 - val_loss: 172.5722\n", "Epoch 511/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 161.3566 - val_loss: 170.0551\n", "Epoch 512/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 159.2185 - val_loss: 173.8577\n", "Epoch 513/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 159.6845 - val_loss: 170.0408\n", "Epoch 514/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 161.6032 - val_loss: 169.6719\n", "Epoch 515/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 162.4368 - val_loss: 171.0058\n", "Epoch 516/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 159.5772 - val_loss: 170.8064\n", "Epoch 517/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 160.3317 - val_loss: 169.1468\n", "Epoch 518/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 159.1634 - val_loss: 169.4660\n", "Epoch 519/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 158.4610 - val_loss: 170.1854\n", "Epoch 520/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.3247 - val_loss: 171.2425\n", "Epoch 521/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 159.4465 - val_loss: 169.7499\n", "Epoch 522/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 161.7330 - val_loss: 169.9523\n", "Epoch 523/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 158.9546 - val_loss: 169.6069\n", "Epoch 524/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 663us/step - loss: 165.3616 - val_loss: 169.5475\n", "Epoch 525/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 159.0580 - val_loss: 169.4217\n", "Epoch 526/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 159.6615 - val_loss: 169.4008\n", "Epoch 527/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.2736 - val_loss: 171.2641\n", "Epoch 528/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 162.4740 - val_loss: 170.1610\n", "Epoch 529/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.0996 - val_loss: 170.3023\n", "Epoch 530/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.3869 - val_loss: 170.2543\n", "Epoch 531/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 160.6625 - val_loss: 170.3263\n", "Epoch 532/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.4633 - val_loss: 170.3635\n", "Epoch 533/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 159.7433 - val_loss: 169.6794\n", "Epoch 534/1000\n", "3028/3028 [==============================] - 2s 797us/step - loss: 158.1243 - val_loss: 170.2812\n", "Epoch 535/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 158.1378 - val_loss: 170.5081\n", "Epoch 536/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.2489 - val_loss: 169.1308\n", "Epoch 537/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 158.7237 - val_loss: 173.3965\n", "Epoch 538/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 159.5503 - val_loss: 169.4328\n", "Epoch 539/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 163.3220 - val_loss: 172.7851\n", "Epoch 540/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 160.9591 - val_loss: 170.3790\n", "Epoch 541/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 161.1814 - val_loss: 170.7744\n", "Epoch 542/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.1117 - val_loss: 169.8085\n", "Epoch 543/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.1248 - val_loss: 169.5995\n", "Epoch 544/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 159.6198 - val_loss: 169.6694\n", "Epoch 545/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 161.5764 - val_loss: 170.3795\n", "Epoch 546/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 157.8242 - val_loss: 169.8531\n", "Epoch 547/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 161.9131 - val_loss: 169.4734\n", "Epoch 548/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.4278 - val_loss: 170.5014\n", "Epoch 549/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 158.5651 - val_loss: 170.0367\n", "Epoch 550/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.4996 - val_loss: 170.6045\n", "Epoch 551/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 160.3542 - val_loss: 170.7266\n", "Epoch 552/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.1105 - val_loss: 171.0107\n", "Epoch 553/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 162.2989 - val_loss: 171.0575\n", "Epoch 554/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.8215 - val_loss: 171.5197\n", "Epoch 555/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 161.7715 - val_loss: 170.2233\n", "Epoch 556/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 161.1212 - val_loss: 169.7045\n", "Epoch 557/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.2040 - val_loss: 169.6916\n", "Epoch 558/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 160.9013 - val_loss: 170.2941\n", "Epoch 559/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 163.2497 - val_loss: 169.7251\n", "Epoch 560/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 158.5049 - val_loss: 169.7038\n", "Epoch 561/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 163.4603 - val_loss: 170.6155\n", "Epoch 562/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 160.8145 - val_loss: 171.2468\n", "Epoch 563/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 160.3753 - val_loss: 172.4756\n", "Epoch 564/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 159.1215 - val_loss: 170.1090\n", "Epoch 565/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 162.6024 - val_loss: 171.2916\n", "Epoch 566/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 159.4641 - val_loss: 170.4279\n", "Epoch 567/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 157.3990 - val_loss: 170.4125\n", "Epoch 568/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.3894 - val_loss: 169.7474\n", "Epoch 569/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 158.8996 - val_loss: 169.5288\n", "Epoch 570/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 159.0813 - val_loss: 172.4910\n", "Epoch 571/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 157.4476 - val_loss: 169.7299\n", "Epoch 572/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 157.9963 - val_loss: 170.9155\n", "Epoch 573/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 160.2100 - val_loss: 169.7762\n", "Epoch 574/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 161.1867 - val_loss: 169.2218\n", "Epoch 575/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 159.0269 - val_loss: 170.2256\n", "Epoch 576/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 159.3707 - val_loss: 170.8130\n", "Epoch 577/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 161.2554 - val_loss: 170.2587\n", "Epoch 578/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.6622 - val_loss: 171.1265\n", "Epoch 579/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.0440 - val_loss: 170.3479\n", "Epoch 580/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 159.4722 - val_loss: 169.4632\n", "Epoch 581/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 159.1323 - val_loss: 170.0661\n", "Epoch 582/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 159.0389 - val_loss: 170.5264\n", "Epoch 583/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 161.9143 - val_loss: 172.6268\n", "Epoch 584/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 158.1952 - val_loss: 169.6511\n", "Epoch 585/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 160.7501 - val_loss: 169.5562\n", "Epoch 586/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 159.8957 - val_loss: 170.3545\n", "1010/1010 [==============================] - 1s 533us/step - loss: 169.1308\n", "\n", "\n", "\n", "\n", " Model: 12/36, hidden: 4, nodes: 20, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 905us/step - loss: 245.0353 - val_loss: 200.7615\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 193.2998 - val_loss: 209.0877\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 190.0551 - val_loss: 192.5759\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 185.3960 - val_loss: 214.6783\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 182.3209 - val_loss: 187.2655\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 182.4769 - val_loss: 197.9180\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 179.2469 - val_loss: 198.5496\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 178.8589 - val_loss: 180.8000\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 177.4424 - val_loss: 188.2696\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 179.1959 - val_loss: 197.3112\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 178.4785 - val_loss: 183.5319\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 176.0137 - val_loss: 185.9768\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 177.0030 - val_loss: 185.1535\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 177.1289 - val_loss: 192.3680\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 175.6467 - val_loss: 185.6102\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 174.3413 - val_loss: 186.0459\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 179.2788 - val_loss: 180.4092\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 176.0848 - val_loss: 183.2633\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 175.6800 - val_loss: 181.2765\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 176.1332 - val_loss: 187.5622\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 177.9102 - val_loss: 183.9026\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 179.0164 - val_loss: 186.1531\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 173.6566 - val_loss: 181.4073\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 174.7745 - val_loss: 182.4839\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 175.2015 - val_loss: 188.8458\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 178.4300 - val_loss: 178.6338\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 174.2995 - val_loss: 182.2136\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 175.7523 - val_loss: 185.4936\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 175.2427 - val_loss: 179.6539\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 175.9276 - val_loss: 179.7541\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 175.4702 - val_loss: 181.2798\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 800us/step - loss: 172.6382 - val_loss: 179.2984\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 780us/step - loss: 173.3160 - val_loss: 177.5634\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 801us/step - loss: 173.8919 - val_loss: 178.5645\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 170.8761 - val_loss: 189.5931\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 171.1798 - val_loss: 196.2599\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 172.8945 - val_loss: 191.5539\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 378.9703 - val_loss: 475.9441\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 480.9277 - val_loss: 476.3593\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 482.6409 - val_loss: 475.8367\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 477.8586 - val_loss: 475.8503\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 480.6354 - val_loss: 475.8529\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 479.0881 - val_loss: 477.0233\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 482.4779 - val_loss: 476.9924\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 479.5695 - val_loss: 475.8603\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 479.8138 - val_loss: 476.6443\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 481.7106 - val_loss: 476.3131\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 479.4730 - val_loss: 475.8820\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 480.6228 - val_loss: 476.6837\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 477.9235 - val_loss: 479.0930\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 480.6265 - val_loss: 475.8961\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 478.3413 - val_loss: 477.4467\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 479.4422 - val_loss: 476.6538\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 482.2925 - val_loss: 476.0604\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 480.7752 - val_loss: 476.3928\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 478.3479 - val_loss: 476.2638\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 480.9008 - val_loss: 479.0586\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 481.1668 - val_loss: 476.3710\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 483.9184 - val_loss: 475.8422\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 475.8274 - val_loss: 476.6918\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 481.3923 - val_loss: 475.8581\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 480.2499 - val_loss: 475.8378\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 480.6077 - val_loss: 476.3184\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 481.4909 - val_loss: 477.6759\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 479.3283 - val_loss: 476.0950\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 478.8127 - val_loss: 475.9500\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 483.9181 - val_loss: 477.2283\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 479.3202 - val_loss: 475.8459\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 477.6880 - val_loss: 476.0736\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 480.1524 - val_loss: 476.7271\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 480.2077 - val_loss: 477.1033\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 481.4629 - val_loss: 475.8518\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 479.2389 - val_loss: 475.9763\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 477.5078 - val_loss: 475.8436\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 479.1444 - val_loss: 475.9820\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 481.0451 - val_loss: 476.7844\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 479.3165 - val_loss: 481.3777\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 481.6297 - val_loss: 481.8110\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 481.0993 - val_loss: 476.0037\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 479.4011 - val_loss: 478.5440\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 480.7119 - val_loss: 476.4561\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 482.0261 - val_loss: 477.1381\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 475.9317 - val_loss: 475.8365\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "1010/1010 [==============================] - 0s 455us/step - loss: 177.5634\n", "\n", "\n", "\n", "\n", " Model: 13/36, hidden: 4, nodes: 20, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 775us/step - loss: 325.6898 - val_loss: 200.8510\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 195.3323 - val_loss: 191.0409\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 188.8927 - val_loss: 193.6093\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 187.7805 - val_loss: 184.9993\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 181.2019 - val_loss: 189.8842\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 181.5128 - val_loss: 183.8548\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 180.8049 - val_loss: 181.7211\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 177.6838 - val_loss: 191.8403\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 177.6486 - val_loss: 194.8170\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 816us/step - loss: 178.6639 - val_loss: 180.5619\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 175.6513 - val_loss: 181.0822\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 175.3823 - val_loss: 182.4455\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 174.9383 - val_loss: 179.0123\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 176.5594 - val_loss: 181.0323\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 172.8480 - val_loss: 178.8466\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 174.1103 - val_loss: 182.2334\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 171.9896 - val_loss: 182.2312\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 176.6983 - val_loss: 179.0633\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 172.8211 - val_loss: 178.2927\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 174.1424 - val_loss: 183.1545\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 170.3296 - val_loss: 176.5244\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 174.2583 - val_loss: 178.2938\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 171.7834 - val_loss: 180.4765\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 173.9758 - val_loss: 177.3571\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 169.2108 - val_loss: 175.8976\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 169.6598 - val_loss: 176.9590\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 169.9802 - val_loss: 177.5288\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 168.9286 - val_loss: 175.7323\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 172.1594 - val_loss: 176.8152\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 169.0815 - val_loss: 175.0165\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 169.9202 - val_loss: 175.6322\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.6461 - val_loss: 175.2827\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 168.2732 - val_loss: 174.9905\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 170.1696 - val_loss: 177.8267\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.8415 - val_loss: 174.4709\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 167.8368 - val_loss: 174.5780\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 167.7884 - val_loss: 174.7132\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 168.8916 - val_loss: 174.9047\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 167.7663 - val_loss: 174.9884\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 166.2947 - val_loss: 173.6412\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 165.4063 - val_loss: 176.8240\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 167.0031 - val_loss: 175.1539\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 167.3382 - val_loss: 174.7100\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 167.5450 - val_loss: 173.1188\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 165.4246 - val_loss: 174.1153\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 166.0478 - val_loss: 173.7814\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.6095 - val_loss: 172.7608\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 164.4327 - val_loss: 172.3396\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.2110 - val_loss: 172.3731\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.9983 - val_loss: 172.2292\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 166.3326 - val_loss: 173.9669\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 165.9641 - val_loss: 171.9612\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 165.7089 - val_loss: 171.9519\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 164.0904 - val_loss: 172.8668\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 162.0576 - val_loss: 172.3972\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.8682 - val_loss: 170.4774\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.1387 - val_loss: 172.9970\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.3510 - val_loss: 170.7722\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.3214 - val_loss: 171.1049\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.9017 - val_loss: 168.9215\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 164.9695 - val_loss: 171.2625\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 161.4917 - val_loss: 170.5262\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 161.6036 - val_loss: 170.0839\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.1963 - val_loss: 173.0673\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 163.0661 - val_loss: 169.9494\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 165.5250 - val_loss: 170.3774\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 161.7518 - val_loss: 171.4748\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.1121 - val_loss: 171.4196\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 160.8282 - val_loss: 174.3024\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.2589 - val_loss: 169.3053\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.7819 - val_loss: 170.6211\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 161.7033 - val_loss: 170.5314\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 162.0092 - val_loss: 170.9484\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.8843 - val_loss: 169.3888\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 162.3566 - val_loss: 170.6684\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 161.5661 - val_loss: 169.3566\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 159.6783 - val_loss: 172.2540\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 161.1596 - val_loss: 177.4670\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 161.9189 - val_loss: 169.2862\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 162.1117 - val_loss: 170.4245\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 159.2647 - val_loss: 169.9633\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 161.2256 - val_loss: 168.5137\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.0353 - val_loss: 169.7329\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 160.5495 - val_loss: 169.0209\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 159.8258 - val_loss: 169.5410\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 158.5782 - val_loss: 172.3957\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 158.7459 - val_loss: 171.5450\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 160.6737 - val_loss: 170.5116\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 160.1176 - val_loss: 167.9837\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.4954 - val_loss: 172.9955\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 160.4158 - val_loss: 170.0928\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 158.9463 - val_loss: 169.3703\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 159.8157 - val_loss: 169.1042\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 156.6892 - val_loss: 169.9568\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 161.7654 - val_loss: 170.6199\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 159.0093 - val_loss: 168.3208\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 160.8512 - val_loss: 169.1477\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 775us/step - loss: 160.9013 - val_loss: 169.8986\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 3s 831us/step - loss: 156.9787 - val_loss: 170.1475\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 158.2509 - val_loss: 168.5630\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 159.0955 - val_loss: 170.0063\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 158.1727 - val_loss: 168.2913\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 159.7026 - val_loss: 169.7537\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 157.8692 - val_loss: 171.8899\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 157.5626 - val_loss: 171.2506\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 160.2509 - val_loss: 176.6072\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 160.2457 - val_loss: 175.4345\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.3783 - val_loss: 171.9415\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 156.1259 - val_loss: 173.6582\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 158.3543 - val_loss: 170.0835\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 159.4051 - val_loss: 171.3275\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 157.3786 - val_loss: 169.9033\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 158.5465 - val_loss: 169.5949\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 159.3397 - val_loss: 170.5130\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 158.5728 - val_loss: 171.9520\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 160.3222 - val_loss: 168.7667\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.4958 - val_loss: 170.1839\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 159.0159 - val_loss: 168.9508\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 157.3456 - val_loss: 169.0124\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 158.0422 - val_loss: 168.6879\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 159.1379 - val_loss: 172.8869\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 156.2457 - val_loss: 168.5525\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 156.3334 - val_loss: 171.8317\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 159.2464 - val_loss: 169.9612\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 156.3268 - val_loss: 167.7888\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 157.2339 - val_loss: 172.6420\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 157.3657 - val_loss: 167.9630\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 158.1070 - val_loss: 174.1910\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 156.9393 - val_loss: 169.1935\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 157.0712 - val_loss: 168.1499\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 158.8191 - val_loss: 169.9639\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 154.0593 - val_loss: 175.2855\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 158.8978 - val_loss: 170.6717\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 155.4995 - val_loss: 171.9395\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 157.5135 - val_loss: 168.0918\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 157.1469 - val_loss: 169.5109\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 156.7670 - val_loss: 169.3538\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 157.5021 - val_loss: 170.8844\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 158.5991 - val_loss: 171.0533\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 159.1414 - val_loss: 170.6869\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 158.3288 - val_loss: 171.1211\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 158.1840 - val_loss: 171.4685\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 155.4753 - val_loss: 169.5439\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 155.3142 - val_loss: 170.1859\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 157.3587 - val_loss: 169.5828\n", "Epoch 146/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 649us/step - loss: 153.5781 - val_loss: 171.1385\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 157.3321 - val_loss: 171.7140\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 157.5733 - val_loss: 169.4460\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 796us/step - loss: 157.8968 - val_loss: 168.7950\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 156.5022 - val_loss: 170.2326\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 155.5704 - val_loss: 168.7339\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 155.6224 - val_loss: 170.9333\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 156.7022 - val_loss: 171.6003\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 155.6049 - val_loss: 169.3704\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 154.8849 - val_loss: 171.4267\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 155.9581 - val_loss: 168.7961\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 154.5562 - val_loss: 170.1484\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 152.0094 - val_loss: 169.2082\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 156.5946 - val_loss: 168.7023\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 154.5288 - val_loss: 170.1472\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 156.0885 - val_loss: 169.5658\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 157.6160 - val_loss: 169.2913\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 155.9099 - val_loss: 169.6670\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 154.6893 - val_loss: 172.0327\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 154.7478 - val_loss: 169.1631\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 153.5822 - val_loss: 172.8076\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 154.9146 - val_loss: 171.7186\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 157.4040 - val_loss: 169.9838\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 152.8117 - val_loss: 173.9589\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 155.7610 - val_loss: 173.3132\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 156.7445 - val_loss: 171.6487\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 153.4644 - val_loss: 170.6051\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 153.6331 - val_loss: 171.1373\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 155.2496 - val_loss: 170.8119\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 152.7805 - val_loss: 169.2766\n", "1010/1010 [==============================] - 0s 437us/step - loss: 167.7888\n", "\n", "\n", "\n", "\n", " Model: 14/36, hidden: 4, nodes: 20, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 773us/step - loss: 723.9679 - val_loss: 254.9099\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 249.8144 - val_loss: 233.1954\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 226.2149 - val_loss: 219.9760\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 214.5570 - val_loss: 212.2121\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 208.7147 - val_loss: 206.8520\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 203.5665 - val_loss: 202.0072\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 199.0596 - val_loss: 198.5372\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 194.4317 - val_loss: 195.4869\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 192.7062 - val_loss: 193.0489\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 189.1888 - val_loss: 192.4778\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 189.2066 - val_loss: 190.7642\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 188.2143 - val_loss: 189.7079\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 185.4546 - val_loss: 189.1409\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 187.0429 - val_loss: 190.3263\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 185.3285 - val_loss: 188.0485\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 183.8616 - val_loss: 187.3024\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 183.4306 - val_loss: 188.7751\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 180.9236 - val_loss: 186.8266\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 183.5179 - val_loss: 185.9037\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 180.9433 - val_loss: 185.3964\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 182.2946 - val_loss: 185.1640\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 181.8813 - val_loss: 184.8644\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 181.1904 - val_loss: 184.9216\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 179.9428 - val_loss: 184.3304\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 179.0985 - val_loss: 183.7243\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 177.7240 - val_loss: 184.0035\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 180.7956 - val_loss: 183.2757\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 181.5919 - val_loss: 183.2966\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 178.4710 - val_loss: 183.0907\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 177.3498 - val_loss: 182.5932\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 177.9022 - val_loss: 182.9378\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 180.9461 - val_loss: 182.1897\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 753us/step - loss: 177.2031 - val_loss: 181.9181\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 174.3463 - val_loss: 182.4319\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 179.4119 - val_loss: 181.9091\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 176.0975 - val_loss: 181.6631\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 177.4216 - val_loss: 181.6892\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 177.6431 - val_loss: 182.6156\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 175.9934 - val_loss: 181.2428\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 178.0631 - val_loss: 181.6940\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 178.6446 - val_loss: 180.4309\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 175.6283 - val_loss: 182.3208\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 176.5628 - val_loss: 180.8636\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 175.8712 - val_loss: 180.4379\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 175.3592 - val_loss: 182.8091\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 176.0766 - val_loss: 180.5978\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 172.4000 - val_loss: 180.5060\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 173.5209 - val_loss: 180.1329\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 173.5822 - val_loss: 180.1167\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 176.4234 - val_loss: 180.4858\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 173.7229 - val_loss: 180.9910\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 174.4313 - val_loss: 182.0994\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 175.4064 - val_loss: 181.3931\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 176.1145 - val_loss: 182.0671\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 175.9134 - val_loss: 181.0288\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 174.7789 - val_loss: 180.4084\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 173.6905 - val_loss: 180.0105\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 173.3870 - val_loss: 178.8836\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 173.3553 - val_loss: 180.5201\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 173.9032 - val_loss: 179.2723\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 175.3290 - val_loss: 178.7761\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 173.8607 - val_loss: 180.2159\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 173.1541 - val_loss: 178.3071\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 171.0690 - val_loss: 179.5238\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 173.4388 - val_loss: 179.5269\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 173.4075 - val_loss: 179.5279\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 172.5718 - val_loss: 178.3862\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 172.8810 - val_loss: 178.1979\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 174.4432 - val_loss: 178.8617\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 172.9753 - val_loss: 179.0725\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 3s 831us/step - loss: 173.5743 - val_loss: 177.5753\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: 171.3089 - val_loss: 179.7854\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 804us/step - loss: 169.4304 - val_loss: 177.4373\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 172.6644 - val_loss: 179.8688\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 171.9180 - val_loss: 179.8261\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 170.6277 - val_loss: 177.9981\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 173.6823 - val_loss: 178.3106\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 171.1493 - val_loss: 178.1098\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 170.5521 - val_loss: 178.6011\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 172.9865 - val_loss: 178.8779\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 172.8228 - val_loss: 178.5344\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 170.0755 - val_loss: 180.9246\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 169.7301 - val_loss: 177.5020\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 171.2806 - val_loss: 177.6536\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 169.8878 - val_loss: 178.4883\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 170.0920 - val_loss: 176.6758\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 171.4156 - val_loss: 177.3044\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 170.0918 - val_loss: 177.2287\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 172.8862 - val_loss: 176.9133\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 170.7775 - val_loss: 176.5844\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 171.0916 - val_loss: 178.4413\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 171.2984 - val_loss: 176.6656\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 170.9687 - val_loss: 176.5390\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 172.6468 - val_loss: 178.3989\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 172.0020 - val_loss: 177.5633\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 172.9227 - val_loss: 176.3511\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 171.6219 - val_loss: 176.0806\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 169.8039 - val_loss: 175.7553\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 169.5782 - val_loss: 176.8322\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 169.4412 - val_loss: 176.8416\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 170.0231 - val_loss: 176.3790\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 169.2643 - val_loss: 177.6040\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 168.4204 - val_loss: 175.8629\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 168.7372 - val_loss: 176.6815\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 167.6409 - val_loss: 175.9120\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 169.5176 - val_loss: 176.6361\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 167.7548 - val_loss: 176.2385\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 168.7415 - val_loss: 175.4191\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 168.2693 - val_loss: 175.1554\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 168.6461 - val_loss: 176.4187\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 170.6599 - val_loss: 175.9911\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 168.1013 - val_loss: 176.2694\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 170.0764 - val_loss: 176.7551\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 167.5023 - val_loss: 175.4169\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 169.9611 - val_loss: 175.1879\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 168.1057 - val_loss: 175.2551\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 168.6224 - val_loss: 176.3288\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 168.2602 - val_loss: 175.8877\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 167.1463 - val_loss: 176.2135\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 168.4115 - val_loss: 175.2570\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 168.6689 - val_loss: 176.0469\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 168.7995 - val_loss: 175.0097\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 169.6815 - val_loss: 176.6080\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 169.8754 - val_loss: 175.1908\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 169.0441 - val_loss: 175.1878\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 169.4929 - val_loss: 181.1096\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 169.4424 - val_loss: 175.3163\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 170.5022 - val_loss: 175.6991\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 168.6590 - val_loss: 176.2065\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 168.0632 - val_loss: 174.5071\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 166.1071 - val_loss: 174.8217\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 166.3328 - val_loss: 175.5719\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 169.6554 - val_loss: 175.4405\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 169.9191 - val_loss: 175.8675\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 3s 860us/step - loss: 169.3774 - val_loss: 174.0715\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 166.0897 - val_loss: 175.8339\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 167.4131 - val_loss: 178.5721\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 170.4401 - val_loss: 176.1535\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 166.7547 - val_loss: 174.0770\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 167.7803 - val_loss: 174.6571\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 167.6661 - val_loss: 174.8490\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 166.6327 - val_loss: 177.0407\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 166.0609 - val_loss: 174.4612\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 168.8218 - val_loss: 174.3166\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 167.6691 - val_loss: 174.3995\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 166.9931 - val_loss: 174.0757\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.7424 - val_loss: 175.0563\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.4208 - val_loss: 173.8470\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 168.8240 - val_loss: 175.4108\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 167.5931 - val_loss: 176.1712\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 166.5210 - val_loss: 174.0940\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 165.2866 - val_loss: 173.1881\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 168.5518 - val_loss: 174.7713\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 165.7279 - val_loss: 174.6523\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 167.8623 - val_loss: 174.1760\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 166.0856 - val_loss: 175.0386\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 168.3780 - val_loss: 173.8703\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.5697 - val_loss: 173.5276\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.0622 - val_loss: 178.1662\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 166.7175 - val_loss: 174.2548\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 169.2733 - val_loss: 176.8614\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 165.6883 - val_loss: 173.8956\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 165.6906 - val_loss: 174.5612\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.8547 - val_loss: 172.8646\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.9835 - val_loss: 175.2612\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 167.0895 - val_loss: 173.6758\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 164.5043 - val_loss: 173.1196\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 166.4691 - val_loss: 173.6942\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 165.8562 - val_loss: 173.2408\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 165.5844 - val_loss: 173.3638\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 165.8277 - val_loss: 173.4085\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 166.8525 - val_loss: 172.6117\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 165.0217 - val_loss: 174.7736\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 164.2961 - val_loss: 174.4520\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 164.1763 - val_loss: 173.0805\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 165.4852 - val_loss: 173.3895\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 166.0500 - val_loss: 174.1218\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 166.5898 - val_loss: 172.4069\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 166.1604 - val_loss: 174.5039\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 165.1195 - val_loss: 173.0757\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 166.0866 - val_loss: 173.3878\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 166.5404 - val_loss: 175.9701\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.3612 - val_loss: 172.5836\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 164.2813 - val_loss: 173.0258\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.5336 - val_loss: 173.0024\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 165.0853 - val_loss: 173.6671\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 165.3344 - val_loss: 173.3593\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 165.5419 - val_loss: 172.2889\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 164.2147 - val_loss: 173.5909\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 166.9364 - val_loss: 174.9962\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 164.6626 - val_loss: 173.3103\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 165.1836 - val_loss: 171.9863\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 164.5944 - val_loss: 174.0646\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.9638 - val_loss: 174.5203\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 165.9781 - val_loss: 172.4323\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.5263 - val_loss: 173.8130\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 164.7511 - val_loss: 173.5577\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 166.3752 - val_loss: 172.5579\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 163.1912 - val_loss: 171.8367\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 163.8669 - val_loss: 172.7345\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.4599 - val_loss: 172.5442\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.7955 - val_loss: 172.0447\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 163.8231 - val_loss: 172.5994\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 165.6637 - val_loss: 172.8646\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 164.7530 - val_loss: 173.3387\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 166.6869 - val_loss: 173.4545\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.9320 - val_loss: 173.6010\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.6451 - val_loss: 172.9314\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 164.5065 - val_loss: 173.5090\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 164.0359 - val_loss: 171.7295\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 163.5809 - val_loss: 173.8486\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 168.0447 - val_loss: 171.8970\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.7165 - val_loss: 172.9233\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 163.7689 - val_loss: 175.6401\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 165.8128 - val_loss: 172.5410\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 165.1164 - val_loss: 172.5165\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 161.9724 - val_loss: 177.7288\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 754us/step - loss: 163.5290 - val_loss: 172.4355\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 165.5433 - val_loss: 172.3382\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 787us/step - loss: 166.4562 - val_loss: 172.4435\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 777us/step - loss: 163.0584 - val_loss: 172.6488\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 166.1161 - val_loss: 172.7010\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 164.6707 - val_loss: 171.8536\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.1634 - val_loss: 172.3324\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 164.6549 - val_loss: 172.7056\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 165.1820 - val_loss: 172.1678\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 166.6766 - val_loss: 172.3734\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 163.9721 - val_loss: 172.2720\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 165.3441 - val_loss: 172.3791\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 163.2419 - val_loss: 173.1607\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 164.0617 - val_loss: 174.2814\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 164.2444 - val_loss: 171.4770\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 164.0815 - val_loss: 171.9179\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 161.0750 - val_loss: 173.0520\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.3328 - val_loss: 172.0066\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 162.2027 - val_loss: 172.6548\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 161.7426 - val_loss: 171.9146\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 164.3951 - val_loss: 171.6964\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.8183 - val_loss: 178.9727\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 162.6619 - val_loss: 171.5002\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.2928 - val_loss: 173.8933\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 163.7425 - val_loss: 171.6340\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 163.7745 - val_loss: 172.1936\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.7512 - val_loss: 173.2221\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 162.8725 - val_loss: 172.0387\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 162.8425 - val_loss: 173.1539\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 160.7643 - val_loss: 171.6790\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 164.2727 - val_loss: 171.0515\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 163.8053 - val_loss: 172.1782\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 166.2146 - val_loss: 171.4099\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.7990 - val_loss: 171.7465\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 162.6655 - val_loss: 171.5525\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 162.8847 - val_loss: 171.8490\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 163.4196 - val_loss: 172.0268\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 162.5364 - val_loss: 172.5289\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 161.5446 - val_loss: 172.7851\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 161.6837 - val_loss: 171.8267\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 163.1896 - val_loss: 171.6949\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 165.5875 - val_loss: 171.3616\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 162.2969 - val_loss: 171.9943\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 165.4536 - val_loss: 173.4782\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 163.7729 - val_loss: 172.5978\n", "Epoch 263/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 671us/step - loss: 165.1293 - val_loss: 172.8374\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 164.2285 - val_loss: 171.0482\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 162.7028 - val_loss: 171.4980\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 164.4049 - val_loss: 174.2240\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 162.9505 - val_loss: 172.1508\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 162.4217 - val_loss: 171.8671\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 164.6665 - val_loss: 171.3639\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 163.3704 - val_loss: 171.9066\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 164.3363 - val_loss: 171.7718\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 164.5703 - val_loss: 170.9464\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 161.7720 - val_loss: 173.2169\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 164.5741 - val_loss: 172.6360\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 162.4968 - val_loss: 174.1905\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 160.8823 - val_loss: 175.1020\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.3731 - val_loss: 171.2816\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 160.6233 - val_loss: 171.4772\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.3230 - val_loss: 172.5334\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 165.4074 - val_loss: 171.1590\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.2496 - val_loss: 172.1653\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 163.9140 - val_loss: 173.9163\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 162.5561 - val_loss: 171.9328\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 162.7229 - val_loss: 172.4733\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 162.5650 - val_loss: 170.9515\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 162.8424 - val_loss: 172.5598\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 165.8862 - val_loss: 172.1050\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 163.0541 - val_loss: 171.6266\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 164.2058 - val_loss: 171.1680\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 161.7607 - val_loss: 171.5675\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.1394 - val_loss: 171.4975\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 162.3225 - val_loss: 173.1897\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 158.8049 - val_loss: 172.4179\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 161.4201 - val_loss: 171.6762\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.9507 - val_loss: 171.2994\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 162.7909 - val_loss: 172.7923\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 161.5042 - val_loss: 171.5089\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 160.7033 - val_loss: 171.6227\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 159.5535 - val_loss: 170.8835\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 160.1302 - val_loss: 171.0604\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 161.6884 - val_loss: 172.0262\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 163.2314 - val_loss: 172.3580\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.2786 - val_loss: 171.0657\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 163.9302 - val_loss: 171.9041\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 814us/step - loss: 161.8423 - val_loss: 171.3417\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 165.2926 - val_loss: 172.8802\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 163.1691 - val_loss: 170.7543\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.2739 - val_loss: 171.1243\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.8233 - val_loss: 176.6169\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 163.2077 - val_loss: 170.9609\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 163.7241 - val_loss: 171.9989\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 158.9839 - val_loss: 171.2587\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 161.9996 - val_loss: 172.1340\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 160.2783 - val_loss: 170.8761\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 163.6500 - val_loss: 172.2085\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 161.8758 - val_loss: 171.4894\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 162.1895 - val_loss: 172.1106\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 161.3993 - val_loss: 170.9179\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 162.0743 - val_loss: 170.8436\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 162.0573 - val_loss: 170.8810\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 160.5215 - val_loss: 173.7701\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.5030 - val_loss: 172.1175\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 159.7107 - val_loss: 172.5226\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 163.2981 - val_loss: 171.8030\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 162.1700 - val_loss: 172.4176\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.6121 - val_loss: 170.2731\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 163.5825 - val_loss: 173.1577\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 162.7340 - val_loss: 172.4558\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 159.6163 - val_loss: 170.3354\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 162.7298 - val_loss: 170.4699\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 160.0221 - val_loss: 170.8997\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 161.9733 - val_loss: 170.9301\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 161.3661 - val_loss: 170.3985\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 161.9372 - val_loss: 171.2946\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 160.3249 - val_loss: 170.7754\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 160.4278 - val_loss: 170.8094\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 161.6163 - val_loss: 171.9167\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 161.2748 - val_loss: 170.3711\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.9466 - val_loss: 171.8946\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 159.5115 - val_loss: 171.0524\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 161.4108 - val_loss: 172.9127\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 162.6527 - val_loss: 170.0146\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 163.4086 - val_loss: 175.6825\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 160.3991 - val_loss: 172.8587\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.0089 - val_loss: 171.8617\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 161.8993 - val_loss: 170.7730\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 160.6458 - val_loss: 170.8251\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.2474 - val_loss: 170.3956\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 157.7469 - val_loss: 171.1436\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 163.3306 - val_loss: 172.4466\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 159.5953 - val_loss: 171.8031\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.4295 - val_loss: 170.0502\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 162.6131 - val_loss: 170.8722\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 160.7309 - val_loss: 170.9993\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 159.9529 - val_loss: 173.2560\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 161.0267 - val_loss: 170.1992\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 158.3659 - val_loss: 170.3339\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 160.6483 - val_loss: 171.6801\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 157.4284 - val_loss: 171.8849\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 160.7976 - val_loss: 171.5722\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 773us/step - loss: 161.9782 - val_loss: 170.4630\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 819us/step - loss: 159.4854 - val_loss: 171.0745\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.7668 - val_loss: 171.6726\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.2718 - val_loss: 171.3902\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.8847 - val_loss: 172.1968\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 161.8202 - val_loss: 170.8209\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 785us/step - loss: 156.6070 - val_loss: 170.3544\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 788us/step - loss: 159.2154 - val_loss: 171.5693\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 159.8146 - val_loss: 171.0285\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 159.9798 - val_loss: 170.9286\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 159.1631 - val_loss: 171.6257\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 159.7071 - val_loss: 172.4307\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.4583 - val_loss: 171.9274\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 161.2409 - val_loss: 170.6889\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 161.1010 - val_loss: 171.2059\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 159.9474 - val_loss: 170.8441\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.0471 - val_loss: 173.9661\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.1021 - val_loss: 171.3837\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 162.7180 - val_loss: 170.7640\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 160.9128 - val_loss: 170.9898\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 162.8692 - val_loss: 170.2040\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 160.4022 - val_loss: 170.3453\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 160.5047 - val_loss: 171.3439\n", "Epoch 384/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.7143 - val_loss: 170.7173\n", "Epoch 385/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 158.5163 - val_loss: 172.0115\n", "Epoch 386/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 160.2122 - val_loss: 170.2230\n", "Epoch 387/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 161.5501 - val_loss: 171.6067\n", "Epoch 388/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 160.6104 - val_loss: 170.0862\n", "Epoch 389/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 158.7125 - val_loss: 173.0341\n", "Epoch 390/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.9015 - val_loss: 173.4446\n", "Epoch 391/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 158.3610 - val_loss: 170.7486\n", "Epoch 392/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 159.9504 - val_loss: 169.8448\n", "Epoch 393/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 159.5760 - val_loss: 169.6935\n", "Epoch 394/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 159.9831 - val_loss: 170.4431\n", "Epoch 395/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 160.9572 - val_loss: 170.8864\n", "Epoch 396/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.3027 - val_loss: 170.7554\n", "Epoch 397/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.5919 - val_loss: 170.4791\n", "Epoch 398/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 158.8876 - val_loss: 169.8243\n", "Epoch 399/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 159.4015 - val_loss: 170.7185\n", "Epoch 400/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 161.2544 - val_loss: 172.9914\n", "Epoch 401/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 163.2773 - val_loss: 170.5601\n", "Epoch 402/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 162.6587 - val_loss: 170.2033\n", "Epoch 403/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 158.5380 - val_loss: 170.5199\n", "Epoch 404/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 159.2248 - val_loss: 170.3452\n", "Epoch 405/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 159.5463 - val_loss: 172.4469\n", "Epoch 406/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 162.1487 - val_loss: 171.2178\n", "Epoch 407/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 158.8853 - val_loss: 170.2922\n", "Epoch 408/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 160.6075 - val_loss: 171.8391\n", "Epoch 409/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 672us/step - loss: 160.8181 - val_loss: 170.5949\n", "Epoch 410/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 160.9546 - val_loss: 169.5752\n", "Epoch 411/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 158.7375 - val_loss: 170.1214\n", "Epoch 412/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 158.1941 - val_loss: 170.3913\n", "Epoch 413/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 158.9594 - val_loss: 174.5199\n", "Epoch 414/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 161.1038 - val_loss: 169.6859\n", "Epoch 415/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 158.0938 - val_loss: 170.8269\n", "Epoch 416/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 158.5551 - val_loss: 172.0057\n", "Epoch 417/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 161.9244 - val_loss: 169.9783\n", "Epoch 418/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 159.8115 - val_loss: 170.8932\n", "Epoch 419/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 160.5208 - val_loss: 171.4665\n", "Epoch 420/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 160.4116 - val_loss: 170.0886\n", "Epoch 421/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 160.3947 - val_loss: 170.6890\n", "Epoch 422/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 159.6717 - val_loss: 172.8544\n", "Epoch 423/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 159.3047 - val_loss: 170.1425\n", "Epoch 424/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 159.5518 - val_loss: 170.1708\n", "Epoch 425/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.6232 - val_loss: 170.5464\n", "Epoch 426/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 157.5062 - val_loss: 173.9107\n", "Epoch 427/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 158.9042 - val_loss: 170.5126\n", "Epoch 428/1000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 161.3660 - val_loss: 170.3654\n", "Epoch 429/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 160.7336 - val_loss: 169.9897\n", "Epoch 430/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 159.5060 - val_loss: 171.9411\n", "Epoch 431/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 158.9939 - val_loss: 170.3712\n", "Epoch 432/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 161.0736 - val_loss: 170.7471\n", "Epoch 433/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 160.6006 - val_loss: 170.6116\n", "Epoch 434/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 158.6865 - val_loss: 170.4029\n", "Epoch 435/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 158.0800 - val_loss: 169.8338\n", "Epoch 436/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 157.3447 - val_loss: 170.4072\n", "Epoch 437/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 161.8305 - val_loss: 170.7727\n", "Epoch 438/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 160.1380 - val_loss: 171.5406\n", "Epoch 439/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 158.9545 - val_loss: 171.9023\n", "Epoch 440/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 161.7840 - val_loss: 170.2895\n", "Epoch 441/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 158.8143 - val_loss: 170.7308\n", "Epoch 442/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 161.1412 - val_loss: 170.0378\n", "Epoch 443/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 159.5184 - val_loss: 170.6331\n", "Epoch 444/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 159.3102 - val_loss: 170.6438\n", "Epoch 445/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 162.6892 - val_loss: 171.7188\n", "Epoch 446/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 161.3685 - val_loss: 169.9725\n", "Epoch 447/1000\n", "3028/3028 [==============================] - 2s 780us/step - loss: 160.4307 - val_loss: 170.4590\n", "Epoch 448/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 159.2037 - val_loss: 172.8715\n", "Epoch 449/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 156.4639 - val_loss: 172.4973\n", "Epoch 450/1000\n", "3028/3028 [==============================] - 3s 838us/step - loss: 158.9182 - val_loss: 170.5710\n", "Epoch 451/1000\n", "3028/3028 [==============================] - 3s 903us/step - loss: 159.4582 - val_loss: 170.1631\n", "Epoch 452/1000\n", "3028/3028 [==============================] - 3s 944us/step - loss: 160.4242 - val_loss: 170.3974\n", "Epoch 453/1000\n", "3028/3028 [==============================] - 3s 946us/step - loss: 155.2175 - val_loss: 170.5632\n", "Epoch 454/1000\n", "3028/3028 [==============================] - 3s 941us/step - loss: 158.0095 - val_loss: 169.8825\n", "Epoch 455/1000\n", "3028/3028 [==============================] - 3s 929us/step - loss: 161.0526 - val_loss: 170.3661\n", "Epoch 456/1000\n", "3028/3028 [==============================] - 3s 929us/step - loss: 160.0216 - val_loss: 171.9726\n", "Epoch 457/1000\n", "3028/3028 [==============================] - 3s 940us/step - loss: 158.8164 - val_loss: 171.7305\n", "Epoch 458/1000\n", "3028/3028 [==============================] - 3s 921us/step - loss: 157.0239 - val_loss: 169.7868\n", "Epoch 459/1000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 158.3148 - val_loss: 170.6308\n", "Epoch 460/1000\n", "3028/3028 [==============================] - 3s 947us/step - loss: 158.9973 - val_loss: 169.1862\n", "Epoch 461/1000\n", "3028/3028 [==============================] - 3s 954us/step - loss: 159.5894 - val_loss: 169.8629\n", "Epoch 462/1000\n", "3028/3028 [==============================] - 3s 953us/step - loss: 161.0581 - val_loss: 169.9404\n", "Epoch 463/1000\n", "3028/3028 [==============================] - 3s 919us/step - loss: 155.5751 - val_loss: 170.5686\n", "Epoch 464/1000\n", "3028/3028 [==============================] - 3s 950us/step - loss: 160.7978 - val_loss: 170.5663\n", "Epoch 465/1000\n", "3028/3028 [==============================] - 3s 956us/step - loss: 159.3698 - val_loss: 169.2355\n", "Epoch 466/1000\n", "3028/3028 [==============================] - 3s 952us/step - loss: 157.5624 - val_loss: 170.0356\n", "Epoch 467/1000\n", "3028/3028 [==============================] - 3s 941us/step - loss: 158.6149 - val_loss: 170.0721\n", "Epoch 468/1000\n", "3028/3028 [==============================] - 3s 909us/step - loss: 160.3078 - val_loss: 170.6348\n", "Epoch 469/1000\n", "3028/3028 [==============================] - 3s 881us/step - loss: 159.9082 - val_loss: 169.7914\n", "Epoch 470/1000\n", "3028/3028 [==============================] - 3s 879us/step - loss: 157.5385 - val_loss: 170.9973\n", "Epoch 471/1000\n", "3028/3028 [==============================] - 3s 883us/step - loss: 159.9186 - val_loss: 170.8107\n", "Epoch 472/1000\n", "3028/3028 [==============================] - 3s 876us/step - loss: 160.5692 - val_loss: 169.6928\n", "Epoch 473/1000\n", "3028/3028 [==============================] - 3s 885us/step - loss: 157.4182 - val_loss: 169.1273\n", "Epoch 474/1000\n", "3028/3028 [==============================] - 3s 882us/step - loss: 159.2261 - val_loss: 170.7506\n", "Epoch 475/1000\n", "3028/3028 [==============================] - 3s 878us/step - loss: 158.0314 - val_loss: 170.4945\n", "Epoch 476/1000\n", "3028/3028 [==============================] - 3s 894us/step - loss: 157.1846 - val_loss: 170.1531\n", "Epoch 477/1000\n", "3028/3028 [==============================] - 3s 887us/step - loss: 159.4875 - val_loss: 172.2067\n", "Epoch 478/1000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 156.5424 - val_loss: 169.7900\n", "Epoch 479/1000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 159.9382 - val_loss: 170.0470\n", "Epoch 480/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 157.7170 - val_loss: 169.7450\n", "Epoch 481/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 160.3523 - val_loss: 170.0620\n", "Epoch 482/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 159.5586 - val_loss: 169.2088\n", "Epoch 483/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 160.5844 - val_loss: 169.4156\n", "Epoch 484/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 158.7707 - val_loss: 169.7233\n", "Epoch 485/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.6440 - val_loss: 170.0699\n", "Epoch 486/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 158.9872 - val_loss: 174.7128\n", "Epoch 487/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 157.7540 - val_loss: 169.5586\n", "Epoch 488/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 159.6959 - val_loss: 169.6950\n", "Epoch 489/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 158.1834 - val_loss: 170.6532\n", "Epoch 490/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 161.4902 - val_loss: 171.6024\n", "Epoch 491/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.3131 - val_loss: 171.4703\n", "Epoch 492/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 155.8170 - val_loss: 170.5659\n", "Epoch 493/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 160.0118 - val_loss: 169.7562\n", "Epoch 494/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 159.1196 - val_loss: 170.2666\n", "Epoch 495/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.4151 - val_loss: 169.6460\n", "Epoch 496/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 160.4842 - val_loss: 169.9039\n", "Epoch 497/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 156.2440 - val_loss: 169.6706\n", "Epoch 498/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 158.9269 - val_loss: 170.3908\n", "Epoch 499/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 157.4470 - val_loss: 170.8069\n", "Epoch 500/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 158.7007 - val_loss: 169.6799\n", "Epoch 501/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 158.3272 - val_loss: 174.7750\n", "Epoch 502/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 157.3973 - val_loss: 170.3752\n", "Epoch 503/1000\n", "3028/3028 [==============================] - 2s 797us/step - loss: 158.5737 - val_loss: 169.8899\n", "Epoch 504/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 158.9864 - val_loss: 170.0896\n", "Epoch 505/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 158.9706 - val_loss: 169.9129\n", "Epoch 506/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 158.0883 - val_loss: 169.1255\n", "Epoch 507/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 159.3167 - val_loss: 171.4312\n", "Epoch 508/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 158.7338 - val_loss: 169.7961\n", "Epoch 509/1000\n", "3028/3028 [==============================] - 2s 805us/step - loss: 160.4354 - val_loss: 169.5140\n", "Epoch 510/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 156.9053 - val_loss: 172.2654\n", "Epoch 511/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 158.5950 - val_loss: 169.6613\n", "Epoch 512/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 158.6693 - val_loss: 169.5087\n", "Epoch 513/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 159.1138 - val_loss: 171.8219\n", "Epoch 514/1000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 157.8405 - val_loss: 169.4444\n", "Epoch 515/1000\n", "3028/3028 [==============================] - 3s 851us/step - loss: 160.4712 - val_loss: 169.6357\n", "Epoch 516/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 157.8626 - val_loss: 172.1553\n", "Epoch 517/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 160.4583 - val_loss: 169.6506\n", "Epoch 518/1000\n", "3028/3028 [==============================] - 3s 835us/step - loss: 158.4100 - val_loss: 169.5218\n", "Epoch 519/1000\n", "3028/3028 [==============================] - 3s 972us/step - loss: 157.6024 - val_loss: 169.8157\n", "Epoch 520/1000\n", "3028/3028 [==============================] - 3s 964us/step - loss: 159.9196 - val_loss: 171.9463\n", "Epoch 521/1000\n", "3028/3028 [==============================] - 3s 952us/step - loss: 160.6956 - val_loss: 171.1755\n", "Epoch 522/1000\n", "3028/3028 [==============================] - 3s 933us/step - loss: 156.7866 - val_loss: 171.4252\n", "Epoch 523/1000\n", "3028/3028 [==============================] - 3s 972us/step - loss: 158.4775 - val_loss: 170.4094\n", "Epoch 524/1000\n", "3028/3028 [==============================] - 3s 958us/step - loss: 159.4179 - val_loss: 170.9579\n", "Epoch 525/1000\n", "3028/3028 [==============================] - 3s 938us/step - loss: 158.9166 - val_loss: 169.6526\n", "Epoch 526/1000\n", "3028/3028 [==============================] - 3s 934us/step - loss: 155.8337 - val_loss: 170.8460\n", "Epoch 527/1000\n", "3028/3028 [==============================] - 3s 935us/step - loss: 156.7803 - val_loss: 170.7734\n", "Epoch 528/1000\n", "3028/3028 [==============================] - 3s 922us/step - loss: 156.6305 - val_loss: 169.0010\n", "Epoch 529/1000\n", "3028/3028 [==============================] - 3s 960us/step - loss: 159.2290 - val_loss: 171.0302\n", "Epoch 530/1000\n", "3028/3028 [==============================] - 3s 909us/step - loss: 158.9056 - val_loss: 170.0153\n", "Epoch 531/1000\n", "3028/3028 [==============================] - 3s 927us/step - loss: 159.4444 - val_loss: 170.3004\n", "Epoch 532/1000\n", "3028/3028 [==============================] - 3s 908us/step - loss: 157.2767 - val_loss: 171.9272\n", "Epoch 533/1000\n", "3028/3028 [==============================] - 3s 921us/step - loss: 158.2567 - val_loss: 169.3350\n", "Epoch 534/1000\n", "3028/3028 [==============================] - 3s 949us/step - loss: 157.2811 - val_loss: 169.7843\n", "Epoch 535/1000\n", "3028/3028 [==============================] - 3s 929us/step - loss: 159.5583 - val_loss: 172.6339\n", "Epoch 536/1000\n", "3028/3028 [==============================] - 3s 932us/step - loss: 157.4917 - val_loss: 170.0497\n", "Epoch 537/1000\n", "3028/3028 [==============================] - 3s 863us/step - loss: 157.8943 - val_loss: 173.8554\n", "Epoch 538/1000\n", "3028/3028 [==============================] - 3s 914us/step - loss: 159.2655 - val_loss: 169.4216\n", "Epoch 539/1000\n", "3028/3028 [==============================] - 3s 918us/step - loss: 158.1189 - val_loss: 169.2966\n", "Epoch 540/1000\n", "3028/3028 [==============================] - 3s 908us/step - loss: 157.0345 - val_loss: 171.4261\n", "Epoch 541/1000\n", "3028/3028 [==============================] - 3s 912us/step - loss: 156.7616 - val_loss: 169.8527\n", "Epoch 542/1000\n", "3028/3028 [==============================] - 3s 913us/step - loss: 155.7479 - val_loss: 169.8645\n", "Epoch 543/1000\n", "3028/3028 [==============================] - 3s 916us/step - loss: 158.7409 - val_loss: 169.9514\n", "Epoch 544/1000\n", "3028/3028 [==============================] - 3s 912us/step - loss: 156.8720 - val_loss: 169.1160\n", "Epoch 545/1000\n", "3028/3028 [==============================] - 3s 916us/step - loss: 157.0532 - val_loss: 169.5077\n", "Epoch 546/1000\n", "3028/3028 [==============================] - 3s 844us/step - loss: 157.6127 - val_loss: 169.9882\n", "Epoch 547/1000\n", "3028/3028 [==============================] - 3s 833us/step - loss: 158.6978 - val_loss: 169.6768\n", "Epoch 548/1000\n", "3028/3028 [==============================] - 3s 838us/step - loss: 157.7439 - val_loss: 170.5936\n", "Epoch 549/1000\n", "3028/3028 [==============================] - 3s 915us/step - loss: 159.8361 - val_loss: 169.8961\n", "Epoch 550/1000\n", "3028/3028 [==============================] - 3s 946us/step - loss: 157.0432 - val_loss: 169.7386\n", "Epoch 551/1000\n", "3028/3028 [==============================] - 3s 919us/step - loss: 158.0079 - val_loss: 170.0652\n", "Epoch 552/1000\n", "3028/3028 [==============================] - 3s 956us/step - loss: 156.7500 - val_loss: 170.1218\n", "Epoch 553/1000\n", "3028/3028 [==============================] - 3s 953us/step - loss: 156.4186 - val_loss: 171.0353\n", "Epoch 554/1000\n", "3028/3028 [==============================] - 3s 950us/step - loss: 157.2764 - val_loss: 170.4171\n", "Epoch 555/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 3s 951us/step - loss: 156.9585 - val_loss: 169.1740\n", "Epoch 556/1000\n", "3028/3028 [==============================] - 3s 944us/step - loss: 157.7899 - val_loss: 170.1865\n", "Epoch 557/1000\n", "3028/3028 [==============================] - 3s 902us/step - loss: 157.3704 - val_loss: 170.4591\n", "Epoch 558/1000\n", "3028/3028 [==============================] - 3s 910us/step - loss: 158.1095 - val_loss: 169.4190\n", "Epoch 559/1000\n", "3028/3028 [==============================] - 3s 917us/step - loss: 156.7291 - val_loss: 170.1048\n", "Epoch 560/1000\n", "3028/3028 [==============================] - 3s 934us/step - loss: 156.8502 - val_loss: 174.1753\n", "Epoch 561/1000\n", "3028/3028 [==============================] - 3s 918us/step - loss: 159.2294 - val_loss: 171.0570\n", "Epoch 562/1000\n", "3028/3028 [==============================] - 3s 895us/step - loss: 158.3195 - val_loss: 169.5765\n", "Epoch 563/1000\n", "3028/3028 [==============================] - 3s 906us/step - loss: 155.6932 - val_loss: 171.0585\n", "Epoch 564/1000\n", "3028/3028 [==============================] - 3s 894us/step - loss: 157.9364 - val_loss: 169.7309\n", "Epoch 565/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 159.9239 - val_loss: 173.0945\n", "Epoch 566/1000\n", "3028/3028 [==============================] - 3s 911us/step - loss: 158.3510 - val_loss: 170.9159\n", "Epoch 567/1000\n", "3028/3028 [==============================] - 3s 908us/step - loss: 160.1026 - val_loss: 169.7583\n", "Epoch 568/1000\n", "3028/3028 [==============================] - 3s 894us/step - loss: 155.2130 - val_loss: 170.5183\n", "Epoch 569/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: 159.8977 - val_loss: 170.9691\n", "Epoch 570/1000\n", "3028/3028 [==============================] - 3s 949us/step - loss: 156.0625 - val_loss: 170.4842\n", "Epoch 571/1000\n", "3028/3028 [==============================] - 3s 915us/step - loss: 156.5603 - val_loss: 169.7602\n", "Epoch 572/1000\n", "3028/3028 [==============================] - 3s 920us/step - loss: 156.6904 - val_loss: 171.1310\n", "Epoch 573/1000\n", "3028/3028 [==============================] - 3s 929us/step - loss: 159.0397 - val_loss: 170.6531\n", "Epoch 574/1000\n", "3028/3028 [==============================] - 3s 906us/step - loss: 157.5273 - val_loss: 171.3866\n", "Epoch 575/1000\n", "3028/3028 [==============================] - 3s 900us/step - loss: 156.7372 - val_loss: 170.3516\n", "Epoch 576/1000\n", "3028/3028 [==============================] - 3s 882us/step - loss: 159.1787 - val_loss: 172.8395\n", "Epoch 577/1000\n", "3028/3028 [==============================] - 3s 878us/step - loss: 157.7452 - val_loss: 170.9509\n", "Epoch 578/1000\n", "3028/3028 [==============================] - 3s 898us/step - loss: 157.4064 - val_loss: 170.6556\n", "1010/1010 [==============================] - 1s 565us/step - loss: 169.0010\n", "\n", "\n", "\n", "\n", " Model: 15/36, hidden: 4, nodes: 25, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 974us/step - loss: 242.7726 - val_loss: 194.6849\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 3s 877us/step - loss: 192.0565 - val_loss: 192.4209\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 816us/step - loss: 185.1595 - val_loss: 198.2711\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 3s 832us/step - loss: 183.8202 - val_loss: 188.2464\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 789us/step - loss: 182.1175 - val_loss: 186.9506\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 182.9603 - val_loss: 185.9450\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 3s 857us/step - loss: 181.4231 - val_loss: 186.6191\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 816us/step - loss: 181.3699 - val_loss: 180.8285\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 178.7963 - val_loss: 181.2529\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 175.4051 - val_loss: 178.2974\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 175.4884 - val_loss: 180.8661\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 177.0707 - val_loss: 182.3813\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 173.5402 - val_loss: 180.4706\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 174.4808 - val_loss: 178.0106\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 173.3924 - val_loss: 182.5944\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 174.6901 - val_loss: 179.2725\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 172.8584 - val_loss: 181.0230\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: nan - val_loss: nan\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: nan - val_loss: nan\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: nan - val_loss: nan\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: nan - val_loss: nan\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: nan - val_loss: nan\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: nan - val_loss: nan\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: nan - val_loss: nan\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: nan - val_loss: nan\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: nan - val_loss: nan\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: nan - val_loss: nan\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: nan - val_loss: nan\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: nan - val_loss: nan\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: nan - val_loss: nan\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: nan - val_loss: nan\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: nan - val_loss: nan\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: nan - val_loss: nan\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: nan - val_loss: nan\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: nan - val_loss: nan\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: nan - val_loss: nan\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: nan - val_loss: nan\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: nan - val_loss: nan\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 802us/step - loss: nan - val_loss: nan\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: nan - val_loss: nan\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: nan - val_loss: nan\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: nan - val_loss: nan\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: nan - val_loss: nan\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: nan - val_loss: nan\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: nan - val_loss: nan\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: nan - val_loss: nan\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: nan - val_loss: nan\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: nan - val_loss: nan\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: nan - val_loss: nan\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: nan - val_loss: nan\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 802us/step - loss: nan - val_loss: nan\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: nan - val_loss: nan\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: nan - val_loss: nan\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 3s 940us/step - loss: nan - val_loss: nan\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: nan - val_loss: nan\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: nan - val_loss: nan\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: nan - val_loss: nan\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: nan - val_loss: nan\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: nan - val_loss: nan\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: nan - val_loss: nan\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: nan - val_loss: nan\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: nan - val_loss: nan\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: nan - val_loss: nan\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: nan - val_loss: nan\n", "1010/1010 [==============================] - 0s 430us/step - loss: 178.0106\n", "\n", "\n", "\n", "\n", " Model: 16/36, hidden: 4, nodes: 25, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 768us/step - loss: 343.2147 - val_loss: 198.1991\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 194.2751 - val_loss: 191.3448\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 187.3594 - val_loss: 188.3762\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 184.5632 - val_loss: 194.0768\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 182.8724 - val_loss: 186.6617\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 180.5299 - val_loss: 183.9492\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 180.3211 - val_loss: 182.0602\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 179.3525 - val_loss: 183.7815\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 178.0132 - val_loss: 181.6360\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 177.4928 - val_loss: 184.1745\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 176.7207 - val_loss: 179.6875\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 176.6499 - val_loss: 182.5485\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 174.4347 - val_loss: 181.7338\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 175.2588 - val_loss: 180.4019\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 173.9331 - val_loss: 177.9102\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 175.1587 - val_loss: 179.6282\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 175.1389 - val_loss: 181.4760\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 173.5905 - val_loss: 178.6095\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 172.7458 - val_loss: 176.7690\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 171.5728 - val_loss: 182.8540\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 170.0331 - val_loss: 180.1639\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 172.3515 - val_loss: 180.8252\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 170.6098 - val_loss: 175.6062\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 170.5495 - val_loss: 179.2323\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 168.5180 - val_loss: 176.9626\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 169.1597 - val_loss: 176.0073\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 166.9217 - val_loss: 174.6890\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 166.6185 - val_loss: 181.6306\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 167.1352 - val_loss: 178.4358\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 169.5533 - val_loss: 175.6249\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 164.2187 - val_loss: 177.0193\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 167.5566 - val_loss: 174.7412\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 163.8105 - val_loss: 175.9939\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 169.5337 - val_loss: 176.8633\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 166.7927 - val_loss: 175.3122\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 168.4525 - val_loss: 173.8669\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 164.1150 - val_loss: 175.9228\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 166.0813 - val_loss: 180.5083\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 164.0040 - val_loss: 175.0215\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 165.0308 - val_loss: 173.2686\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 164.9738 - val_loss: 173.3170\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 162.3389 - val_loss: 173.9608\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 163.8495 - val_loss: 174.2506\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 164.9826 - val_loss: 175.5260\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 165.3896 - val_loss: 175.4745\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 166.1023 - val_loss: 173.3663\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 163.5407 - val_loss: 173.4513\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 163.4163 - val_loss: 174.4064\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.1538 - val_loss: 174.2333\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 163.1745 - val_loss: 175.7410\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 162.5445 - val_loss: 174.2465\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 164.1313 - val_loss: 173.1162\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 160.4345 - val_loss: 175.8071\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 164.9484 - val_loss: 172.3647\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.4234 - val_loss: 174.2525\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.6917 - val_loss: 173.5572\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 161.3474 - val_loss: 175.5031\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 162.9146 - val_loss: 175.0860\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 162.4474 - val_loss: 172.8555\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 162.9985 - val_loss: 175.1622\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 160.8200 - val_loss: 172.4494\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 162.7160 - val_loss: 172.7582\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 162.1447 - val_loss: 172.1762\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 160.6473 - val_loss: 173.4478\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.1568 - val_loss: 174.5922\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 163.0526 - val_loss: 172.1910\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 162.8295 - val_loss: 174.9758\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 160.7335 - val_loss: 171.7478\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 161.1717 - val_loss: 173.6385\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 160.2951 - val_loss: 172.9432\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 158.7551 - val_loss: 173.3262\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.9712 - val_loss: 174.9394\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 159.2662 - val_loss: 175.8014\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 157.6606 - val_loss: 173.0865\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.9308 - val_loss: 172.1675\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 159.4983 - val_loss: 173.8218\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 158.1384 - val_loss: 170.9157\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 159.4343 - val_loss: 172.0230\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 161.1781 - val_loss: 174.9873\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.2640 - val_loss: 172.9394\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 158.5711 - val_loss: 176.9988\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 158.1247 - val_loss: 176.8901\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 158.4835 - val_loss: 171.3622\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 156.4730 - val_loss: 175.1925\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 157.7732 - val_loss: 172.5171\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 157.2678 - val_loss: 174.1750\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 158.9702 - val_loss: 173.3011\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 158.6053 - val_loss: 173.3140\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.7888 - val_loss: 173.9363\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 155.9938 - val_loss: 171.3350\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 159.9277 - val_loss: 174.6018\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 159.9968 - val_loss: 173.6860\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 159.1440 - val_loss: 174.6326\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 155.7130 - val_loss: 180.1351\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 160.1649 - val_loss: 174.2105\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 158.6399 - val_loss: 175.3126\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 157.0175 - val_loss: 172.5399\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 157.2567 - val_loss: 173.1906\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 155.8155 - val_loss: 174.0012\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 155.2474 - val_loss: 177.1673\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 158.8956 - val_loss: 172.8716\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 155.3885 - val_loss: 181.0991\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 157.8413 - val_loss: 173.4407\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 158.7714 - val_loss: 171.9455\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 156.0047 - val_loss: 175.8501\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 156.8721 - val_loss: 172.0191\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 157.7361 - val_loss: 172.3217\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 156.8345 - val_loss: 172.8217\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 159.1978 - val_loss: 175.2872\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 154.4580 - val_loss: 174.3502\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 155.3832 - val_loss: 174.7822\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 154.8906 - val_loss: 175.2732\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 153.9947 - val_loss: 171.7632\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 157.5259 - val_loss: 173.4843\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 156.8829 - val_loss: 172.0394\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 154.7831 - val_loss: 174.8313\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 156.4308 - val_loss: 171.5145\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 156.2847 - val_loss: 171.6667\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 154.2805 - val_loss: 172.9762\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 157.5093 - val_loss: 174.4292\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 156.4011 - val_loss: 174.6727\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 153.9269 - val_loss: 172.6526\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 155.6775 - val_loss: 172.5761\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 154.6629 - val_loss: 173.4343\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 155.7710 - val_loss: 172.2786\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 154.2859 - val_loss: 172.1980\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 154.3107 - val_loss: 174.2145\n", "1010/1010 [==============================] - 1s 537us/step - loss: 170.9157\n", "\n", "\n", "\n", "\n", " Model: 17/36, hidden: 4, nodes: 25, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 841us/step - loss: 643.7389 - val_loss: 250.5863\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 768us/step - loss: 243.0863 - val_loss: 231.4435\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 222.8781 - val_loss: 216.3450\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 210.2482 - val_loss: 209.1310\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 203.1144 - val_loss: 205.5257\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 199.8790 - val_loss: 200.6782\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 3s 837us/step - loss: 197.5050 - val_loss: 198.4684\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 194.1011 - val_loss: 196.1891\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 795us/step - loss: 192.1989 - val_loss: 193.9529\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 188.2532 - val_loss: 193.2541\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 188.0461 - val_loss: 191.3756\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 188.1787 - val_loss: 190.1163\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 186.5071 - val_loss: 189.2722\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 184.2273 - val_loss: 188.0680\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 181.1391 - val_loss: 190.7907\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 824us/step - loss: 182.5542 - val_loss: 186.5543\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 181.1524 - val_loss: 191.0864\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 180.2204 - val_loss: 185.1096\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 180.3703 - val_loss: 184.7429\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 181.7375 - val_loss: 185.3255\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 182.3465 - val_loss: 187.6466\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 179.6638 - val_loss: 184.4838\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 177.7891 - val_loss: 183.5882\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 177.9896 - val_loss: 183.3603\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 179.6597 - val_loss: 183.3442\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 177.5024 - val_loss: 184.1585\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 176.5671 - val_loss: 182.1167\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 178.1541 - val_loss: 184.8278\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 176.2636 - val_loss: 182.6638\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 179.3345 - val_loss: 182.1063\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 177.5774 - val_loss: 181.4604\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 177.5536 - val_loss: 181.9065\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 176.1726 - val_loss: 180.6091\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 178.0911 - val_loss: 181.1462\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 175.3965 - val_loss: 180.1350\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 174.8427 - val_loss: 180.6316\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 173.0927 - val_loss: 180.6027\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 175.7664 - val_loss: 180.5352\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 175.8027 - val_loss: 181.2623\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 176.3453 - val_loss: 180.9642\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 175.5396 - val_loss: 179.4703\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 174.0353 - val_loss: 181.6728\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 174.2563 - val_loss: 179.8351\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 174.3051 - val_loss: 181.0798\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 174.2524 - val_loss: 180.9158\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 173.4075 - val_loss: 179.2880\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 173.4863 - val_loss: 179.8926\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 174.0986 - val_loss: 179.1249\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 174.8878 - val_loss: 179.4591\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 172.9966 - val_loss: 178.7966\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 174.9331 - val_loss: 180.7474\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 175.5072 - val_loss: 178.3469\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 172.4662 - val_loss: 179.2166\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 172.8825 - val_loss: 179.0797\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 173.6135 - val_loss: 178.6125\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 173.6080 - val_loss: 178.6954\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 172.7094 - val_loss: 177.2677\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 172.6058 - val_loss: 178.3454\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 172.0997 - val_loss: 178.8814\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 171.2469 - val_loss: 179.5828\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 171.7179 - val_loss: 177.7531\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 174.1883 - val_loss: 177.6413\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 171.0780 - val_loss: 178.0229\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 172.2057 - val_loss: 179.3130\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 170.5577 - val_loss: 177.0999\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 172.7924 - val_loss: 178.3413\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 172.6350 - val_loss: 177.8802\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 170.7610 - val_loss: 177.4038\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 173.0131 - val_loss: 178.4515\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 171.8215 - val_loss: 177.3319\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 169.6475 - val_loss: 177.2078\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 172.5868 - val_loss: 176.8536\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 171.0691 - val_loss: 178.5318\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 171.4798 - val_loss: 177.0983\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 169.9634 - val_loss: 177.4079\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 171.2586 - val_loss: 176.9282\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 169.3490 - val_loss: 177.8807\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 168.5346 - val_loss: 176.1977\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 170.1059 - val_loss: 177.9154\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 169.6617 - val_loss: 176.0999\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 170.0041 - val_loss: 177.6680\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 169.4181 - val_loss: 177.5499\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 170.0520 - val_loss: 176.0168\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 171.8948 - val_loss: 176.5253\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 169.2868 - val_loss: 175.4388\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 167.9044 - val_loss: 177.5534\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 171.3390 - val_loss: 177.1342\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 167.9516 - val_loss: 175.9610\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 168.0135 - val_loss: 176.4679\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 169.5855 - val_loss: 176.8179\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 168.1670 - val_loss: 177.0118\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 170.2550 - val_loss: 176.5912\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 168.2626 - val_loss: 176.6761\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 168.2882 - val_loss: 175.4987\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 169.4739 - val_loss: 176.3784\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 167.2967 - val_loss: 177.6351\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 169.1685 - val_loss: 175.4148\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 169.6684 - val_loss: 176.7180\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 167.8358 - val_loss: 176.7546\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 169.5662 - val_loss: 176.1418\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.6260 - val_loss: 175.4104\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 167.3527 - val_loss: 177.5588\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 168.8757 - val_loss: 174.6872\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 167.3746 - val_loss: 176.4366\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 165.6585 - val_loss: 180.3651\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 167.1522 - val_loss: 175.7406\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 169.6847 - val_loss: 175.0971\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 168.8207 - val_loss: 175.9460\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 166.6838 - val_loss: 174.8236\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 166.8697 - val_loss: 175.1196\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 169.2513 - val_loss: 174.5233\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 169.2938 - val_loss: 175.3416\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 164.6075 - val_loss: 175.1013\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 168.3441 - val_loss: 175.6855\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 167.8508 - val_loss: 174.2491\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 167.8978 - val_loss: 175.2286\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 168.8061 - val_loss: 174.8782\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 165.6506 - val_loss: 175.0561\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 166.3958 - val_loss: 174.6269\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 167.2800 - val_loss: 174.2710\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 166.9058 - val_loss: 174.0045\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 166.2243 - val_loss: 174.5491\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 163.3958 - val_loss: 173.7370\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 167.1881 - val_loss: 174.5281\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 167.1734 - val_loss: 173.7471\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.3946 - val_loss: 174.1740\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 167.3533 - val_loss: 173.2563\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.7917 - val_loss: 174.4649\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 165.9151 - val_loss: 174.2249\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 165.8149 - val_loss: 175.5516\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 167.4373 - val_loss: 175.2610\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 164.7997 - val_loss: 175.4007\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 165.0228 - val_loss: 173.8331\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 166.8641 - val_loss: 174.8772\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 167.2237 - val_loss: 173.9647\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 168.4639 - val_loss: 173.6390\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 164.9840 - val_loss: 173.6055\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 165.1614 - val_loss: 174.1268\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 166.7920 - val_loss: 173.9447\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 165.9021 - val_loss: 173.1894\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 165.3207 - val_loss: 172.9735\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 167.9728 - val_loss: 173.2187\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 162.4614 - val_loss: 176.4002\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 165.6421 - val_loss: 173.2763\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 167.1555 - val_loss: 173.6594\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 165.6045 - val_loss: 172.8290\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 166.6578 - val_loss: 172.7746\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 165.3979 - val_loss: 177.5683\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 167.0387 - val_loss: 172.8274\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 164.4955 - val_loss: 172.3325\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 164.4274 - val_loss: 172.8209\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 163.3342 - val_loss: 172.5085\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 165.8441 - val_loss: 175.5366\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 166.8370 - val_loss: 173.0621\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 824us/step - loss: 168.5889 - val_loss: 172.3858\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 165.8057 - val_loss: 173.5920\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 164.9706 - val_loss: 172.7578\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 792us/step - loss: 162.6771 - val_loss: 172.6001\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 166.2150 - val_loss: 174.1355\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 166.1234 - val_loss: 173.8105\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 165.0093 - val_loss: 171.8772\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 162.2765 - val_loss: 173.9326\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 162.9512 - val_loss: 175.8280\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 166.4510 - val_loss: 172.5244\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 164.7709 - val_loss: 172.0903\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 163.8793 - val_loss: 176.2032\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.2374 - val_loss: 173.2337\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 165.4728 - val_loss: 172.1592\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 163.0317 - val_loss: 172.7783\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 165.3259 - val_loss: 172.1352\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 165.8945 - val_loss: 172.7481\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 162.2544 - val_loss: 171.6074\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 162.5565 - val_loss: 171.3042\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 164.5078 - val_loss: 173.4416\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.2918 - val_loss: 173.0287\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 165.8269 - val_loss: 171.5707\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 162.0400 - val_loss: 171.2105\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.1030 - val_loss: 172.1017\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 163.8802 - val_loss: 171.0923\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 163.7574 - val_loss: 172.7998\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.3653 - val_loss: 172.7668\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 162.0985 - val_loss: 173.5312\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.4659 - val_loss: 171.9514\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.3489 - val_loss: 173.0501\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 163.3579 - val_loss: 171.4461\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 164.4292 - val_loss: 178.8753\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 162.4372 - val_loss: 171.9589\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 165.1948 - val_loss: 171.6938\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 165.6236 - val_loss: 173.7610\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 163.5914 - val_loss: 172.8437\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 162.0461 - val_loss: 172.1538\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 163.7221 - val_loss: 171.2892\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 163.9047 - val_loss: 172.1095\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.9537 - val_loss: 172.5096\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 165.1057 - val_loss: 171.3992\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.2477 - val_loss: 173.2743\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 165.0766 - val_loss: 170.8017\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 164.4982 - val_loss: 171.8470\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 162.5239 - val_loss: 171.1065\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 162.7433 - val_loss: 172.8274\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 163.3853 - val_loss: 170.9269\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 164.8330 - val_loss: 174.0960\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 164.9294 - val_loss: 171.1935\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 160.6253 - val_loss: 171.5214\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 163.9699 - val_loss: 172.6790\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 165.7474 - val_loss: 171.4024\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 758us/step - loss: 162.5737 - val_loss: 170.6671\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 163.0488 - val_loss: 175.0301\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.6882 - val_loss: 174.5568\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 163.9876 - val_loss: 171.3042\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 160.9567 - val_loss: 170.9194\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 162.8588 - val_loss: 170.7447\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.3996 - val_loss: 171.5283\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 162.0195 - val_loss: 170.5808\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.5942 - val_loss: 172.3751\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 161.8488 - val_loss: 170.8811\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 163.3924 - val_loss: 171.9997\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 162.9265 - val_loss: 174.0206\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 161.4300 - val_loss: 170.9182\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 162.6589 - val_loss: 171.9776\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 160.4546 - val_loss: 172.8411\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 160.8423 - val_loss: 171.6046\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 160.7519 - val_loss: 170.9966\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 161.2998 - val_loss: 170.4100\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.9357 - val_loss: 171.4757\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 159.4005 - val_loss: 171.9288\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.4777 - val_loss: 170.6606\n", "Epoch 228/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 670us/step - loss: 161.3456 - val_loss: 172.5409\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 161.0446 - val_loss: 171.9567\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 162.8854 - val_loss: 172.8157\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.0915 - val_loss: 170.9720\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.4704 - val_loss: 171.3986\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 161.3305 - val_loss: 170.6616\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.5889 - val_loss: 171.9008\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 159.6882 - val_loss: 171.8509\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.6989 - val_loss: 170.7324\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 161.1953 - val_loss: 170.7605\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.1113 - val_loss: 170.3082\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 160.9543 - val_loss: 170.6985\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 162.5985 - val_loss: 170.9710\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.1330 - val_loss: 172.0854\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 160.7823 - val_loss: 171.3293\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.1874 - val_loss: 172.2298\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 160.6367 - val_loss: 170.3563\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.3319 - val_loss: 171.8804\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.6360 - val_loss: 172.2703\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 159.6531 - val_loss: 171.2150\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 161.8247 - val_loss: 169.6389\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 159.1488 - val_loss: 171.0457\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 158.7194 - val_loss: 171.0246\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.4676 - val_loss: 170.3583\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.6325 - val_loss: 171.0079\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 161.0922 - val_loss: 170.1025\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 161.3297 - val_loss: 170.3896\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 160.2735 - val_loss: 170.4716\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.0111 - val_loss: 171.1560\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 159.4289 - val_loss: 170.8008\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 159.6536 - val_loss: 170.0706\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 159.1005 - val_loss: 171.9613\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 160.2392 - val_loss: 171.3668\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 160.2872 - val_loss: 170.1599\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 159.3274 - val_loss: 170.2599\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 159.7367 - val_loss: 169.8360\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 160.3573 - val_loss: 170.3849\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 160.2701 - val_loss: 172.3384\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 163.2098 - val_loss: 171.2785\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 159.2596 - val_loss: 170.0131\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 162.4356 - val_loss: 171.1352\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 159.0550 - val_loss: 171.0157\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 157.0037 - val_loss: 170.7581\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 159.4986 - val_loss: 173.7788\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 159.8516 - val_loss: 171.0548\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 158.6143 - val_loss: 171.7968\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.3986 - val_loss: 170.8684\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 159.1051 - val_loss: 172.3530\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 159.1349 - val_loss: 171.1419\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.6644 - val_loss: 172.2747\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 159.4459 - val_loss: 171.1968\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.5765 - val_loss: 171.8938\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 159.4750 - val_loss: 169.7406\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 159.0766 - val_loss: 171.5693\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 160.2172 - val_loss: 169.8967\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 3s 983us/step - loss: 159.8115 - val_loss: 170.9327\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 158.7295 - val_loss: 169.8163\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 160.4362 - val_loss: 173.1069\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 160.2051 - val_loss: 170.3843\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 157.4577 - val_loss: 170.3498\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 160.4693 - val_loss: 170.2851\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 160.7021 - val_loss: 169.0910\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 157.1740 - val_loss: 169.7224\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 158.5227 - val_loss: 170.2254\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 161.3134 - val_loss: 170.3817\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 158.4458 - val_loss: 170.2714\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 159.7679 - val_loss: 171.5287\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 159.4315 - val_loss: 169.3022\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 160.1978 - val_loss: 170.6834\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 159.7070 - val_loss: 170.4342\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 159.1839 - val_loss: 169.9795\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 159.8489 - val_loss: 169.6405\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 160.4113 - val_loss: 169.2434\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 157.9392 - val_loss: 169.9759\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 159.7967 - val_loss: 169.7771\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 158.5633 - val_loss: 169.4772\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 3s 829us/step - loss: 158.0458 - val_loss: 170.0132\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: 160.7355 - val_loss: 170.2227\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 777us/step - loss: 158.1871 - val_loss: 170.8403\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 158.6371 - val_loss: 169.0544\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 160.0359 - val_loss: 170.3336\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 160.3449 - val_loss: 169.3521\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 160.5030 - val_loss: 170.1958\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 157.2222 - val_loss: 170.1292\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 160.0900 - val_loss: 169.3986\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 160.5651 - val_loss: 170.3346\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 158.8798 - val_loss: 169.2220\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 157.9103 - val_loss: 169.8641\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 158.0307 - val_loss: 172.0920\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 157.5924 - val_loss: 169.5915\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 158.5618 - val_loss: 171.8358\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 158.6935 - val_loss: 172.7211\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 158.6533 - val_loss: 170.2742\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 158.6965 - val_loss: 169.7892\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 156.4189 - val_loss: 170.4002\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 157.4626 - val_loss: 169.3916\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 156.2862 - val_loss: 169.3512\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 158.2948 - val_loss: 169.1175\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 158.0490 - val_loss: 169.0838\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 160.0843 - val_loss: 176.5856\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 157.5085 - val_loss: 168.8708\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.4197 - val_loss: 169.6712\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 156.1676 - val_loss: 169.0591\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 157.5697 - val_loss: 170.2216\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 158.7561 - val_loss: 168.8212\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 157.6075 - val_loss: 169.6846\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 157.1534 - val_loss: 169.6969\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 154.9907 - val_loss: 169.2297\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 158.6957 - val_loss: 169.1648\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 157.1663 - val_loss: 168.7281\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 160.3529 - val_loss: 170.3782\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 158.4585 - val_loss: 169.4875\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 157.6813 - val_loss: 169.1947\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 157.0162 - val_loss: 171.2558\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 158.7744 - val_loss: 169.5578\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 157.9914 - val_loss: 169.2028\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 158.6988 - val_loss: 169.5453\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 160.4715 - val_loss: 168.8988\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 157.0199 - val_loss: 169.2480\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 157.5128 - val_loss: 168.6041\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 156.7247 - val_loss: 170.0270\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 158.9569 - val_loss: 168.6189\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 157.5668 - val_loss: 169.0318\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 157.2562 - val_loss: 171.0182\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 156.6250 - val_loss: 168.7911\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 800us/step - loss: 159.7663 - val_loss: 168.7787\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 769us/step - loss: 156.1629 - val_loss: 168.9018\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 156.9971 - val_loss: 169.9511\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 157.8581 - val_loss: 169.3445\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.3289 - val_loss: 170.8751\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 158.2335 - val_loss: 169.6143\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 156.7925 - val_loss: 169.7690\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 158.4813 - val_loss: 168.8179\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 157.5767 - val_loss: 170.2202\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 156.7175 - val_loss: 168.4649\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 158.0613 - val_loss: 168.4104\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 157.0321 - val_loss: 169.6665\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 157.1260 - val_loss: 169.4208\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 155.4779 - val_loss: 168.6549\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 158.0682 - val_loss: 171.2455\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 157.8145 - val_loss: 169.1401\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 154.7187 - val_loss: 168.6250\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 158.4661 - val_loss: 168.6763\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 156.4031 - val_loss: 168.6674\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 158.3786 - val_loss: 167.7621\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 154.5603 - val_loss: 169.7350\n", "Epoch 374/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 659us/step - loss: 155.4285 - val_loss: 170.3597\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 158.1802 - val_loss: 169.1295\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 156.0742 - val_loss: 170.0508\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 158.1117 - val_loss: 171.3581\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 155.1287 - val_loss: 169.1273\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 153.6362 - val_loss: 168.4617\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 158.6815 - val_loss: 171.1370\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 156.7953 - val_loss: 170.3848\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 156.3625 - val_loss: 168.7495\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 155.6655 - val_loss: 168.7880\n", "Epoch 384/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 155.2116 - val_loss: 169.5402\n", "Epoch 385/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 156.8744 - val_loss: 168.3096\n", "Epoch 386/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 155.6378 - val_loss: 170.7175\n", "Epoch 387/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 157.6321 - val_loss: 171.9812\n", "Epoch 388/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 158.8125 - val_loss: 168.6522\n", "Epoch 389/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 155.8915 - val_loss: 169.8857\n", "Epoch 390/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 159.5838 - val_loss: 168.5726\n", "Epoch 391/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 156.2697 - val_loss: 168.0183\n", "Epoch 392/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 155.2563 - val_loss: 168.9014\n", "Epoch 393/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 158.9504 - val_loss: 168.5880\n", "Epoch 394/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 156.4694 - val_loss: 168.1971\n", "Epoch 395/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 157.7915 - val_loss: 169.5510\n", "Epoch 396/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 157.8954 - val_loss: 169.3939\n", "Epoch 397/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 155.7528 - val_loss: 170.2541\n", "Epoch 398/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 155.8624 - val_loss: 168.5085\n", "Epoch 399/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 156.0386 - val_loss: 168.0803\n", "Epoch 400/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 155.9388 - val_loss: 168.7485\n", "Epoch 401/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 156.6164 - val_loss: 170.3425\n", "Epoch 402/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 157.8249 - val_loss: 170.4228\n", "Epoch 403/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 157.3934 - val_loss: 168.4931\n", "Epoch 404/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 156.7025 - val_loss: 168.4241\n", "Epoch 405/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 158.5040 - val_loss: 170.2549\n", "Epoch 406/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 157.4031 - val_loss: 169.8192\n", "Epoch 407/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 157.1171 - val_loss: 168.7113\n", "Epoch 408/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 154.1656 - val_loss: 168.9441\n", "Epoch 409/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 157.4497 - val_loss: 169.3075\n", "Epoch 410/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 154.2176 - val_loss: 169.2147\n", "Epoch 411/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 154.6625 - val_loss: 168.5570\n", "Epoch 412/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 155.7113 - val_loss: 170.3548\n", "Epoch 413/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 156.1301 - val_loss: 169.5375\n", "Epoch 414/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 156.8524 - val_loss: 170.0302\n", "Epoch 415/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 156.5150 - val_loss: 169.1915\n", "Epoch 416/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 155.2486 - val_loss: 168.7325\n", "Epoch 417/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 155.1281 - val_loss: 169.8164\n", "Epoch 418/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 156.7534 - val_loss: 168.0366\n", "Epoch 419/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 156.1384 - val_loss: 169.6879\n", "Epoch 420/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 156.6939 - val_loss: 167.7605\n", "Epoch 421/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 156.5206 - val_loss: 168.9523\n", "Epoch 422/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 154.4715 - val_loss: 168.7430\n", "Epoch 423/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 154.6281 - val_loss: 168.0993\n", "Epoch 424/1000\n", "3028/3028 [==============================] - 2s 771us/step - loss: 157.0943 - val_loss: 168.6753\n", "Epoch 425/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 155.4301 - val_loss: 168.9716\n", "Epoch 426/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 157.7305 - val_loss: 169.0021\n", "Epoch 427/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 155.4919 - val_loss: 170.5629\n", "Epoch 428/1000\n", "3028/3028 [==============================] - 2s 788us/step - loss: 156.1539 - val_loss: 168.9701\n", "Epoch 429/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 154.6584 - val_loss: 168.4180\n", "Epoch 430/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 154.6980 - val_loss: 168.3825\n", "Epoch 431/1000\n", "3028/3028 [==============================] - 2s 804us/step - loss: 153.5978 - val_loss: 168.5241\n", "Epoch 432/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 154.3560 - val_loss: 169.2325\n", "Epoch 433/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 156.7471 - val_loss: 170.0469\n", "Epoch 434/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 156.2088 - val_loss: 167.8611\n", "Epoch 435/1000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 154.5911 - val_loss: 167.8772\n", "Epoch 436/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 152.8728 - val_loss: 169.7084\n", "Epoch 437/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 155.7436 - val_loss: 168.3234\n", "Epoch 438/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 155.5535 - val_loss: 169.2169\n", "Epoch 439/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 156.5786 - val_loss: 168.2037\n", "Epoch 440/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 153.1000 - val_loss: 169.0240\n", "Epoch 441/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 153.4777 - val_loss: 168.3416\n", "Epoch 442/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 153.8605 - val_loss: 168.6324\n", "Epoch 443/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 154.5475 - val_loss: 169.6921\n", "Epoch 444/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 154.4062 - val_loss: 168.6546\n", "Epoch 445/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 153.8276 - val_loss: 169.2342\n", "Epoch 446/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 154.9164 - val_loss: 167.6564\n", "Epoch 447/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 156.0547 - val_loss: 167.9100\n", "Epoch 448/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 156.4456 - val_loss: 170.8972\n", "Epoch 449/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 154.6667 - val_loss: 168.6099\n", "Epoch 450/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 155.8423 - val_loss: 168.5611\n", "Epoch 451/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: 155.8862 - val_loss: 170.2213\n", "Epoch 452/1000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 154.7992 - val_loss: 168.8825\n", "Epoch 453/1000\n", "3028/3028 [==============================] - 3s 871us/step - loss: 155.9478 - val_loss: 168.5317\n", "Epoch 454/1000\n", "3028/3028 [==============================] - 2s 725us/step - loss: 154.7745 - val_loss: 168.6205\n", "Epoch 455/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 153.7165 - val_loss: 171.6513\n", "Epoch 456/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 153.8656 - val_loss: 168.0596\n", "Epoch 457/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 152.9381 - val_loss: 167.8575\n", "Epoch 458/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 153.0533 - val_loss: 170.0264\n", "Epoch 459/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 157.2073 - val_loss: 168.2321\n", "Epoch 460/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 154.8678 - val_loss: 170.2239\n", "Epoch 461/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 154.6460 - val_loss: 167.7607\n", "Epoch 462/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 154.0692 - val_loss: 170.9272\n", "Epoch 463/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 153.1556 - val_loss: 168.7824\n", "Epoch 464/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 156.9550 - val_loss: 169.3040\n", "Epoch 465/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 155.0384 - val_loss: 168.2206\n", "Epoch 466/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 155.3950 - val_loss: 168.8279\n", "Epoch 467/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 154.4135 - val_loss: 169.0905\n", "Epoch 468/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 154.4971 - val_loss: 167.6080\n", "Epoch 469/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 158.0164 - val_loss: 169.0648\n", "Epoch 470/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 154.8548 - val_loss: 173.6008\n", "Epoch 471/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 154.7968 - val_loss: 169.2219\n", "Epoch 472/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 155.9284 - val_loss: 167.5475\n", "Epoch 473/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 152.4418 - val_loss: 169.2813\n", "Epoch 474/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 154.2609 - val_loss: 168.9255\n", "Epoch 475/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 153.5070 - val_loss: 168.3997\n", "Epoch 476/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 153.7258 - val_loss: 169.7123\n", "Epoch 477/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 155.3037 - val_loss: 168.0384\n", "Epoch 478/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 152.6467 - val_loss: 168.3658\n", "Epoch 479/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 155.1365 - val_loss: 167.8570\n", "Epoch 480/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 155.8530 - val_loss: 168.9094\n", "Epoch 481/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 156.9089 - val_loss: 169.0535\n", "Epoch 482/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 154.6744 - val_loss: 169.9267\n", "Epoch 483/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 154.3698 - val_loss: 168.1963\n", "Epoch 484/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 153.1012 - val_loss: 167.9265\n", "Epoch 485/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 155.2521 - val_loss: 168.3895\n", "Epoch 486/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 155.0438 - val_loss: 167.9488\n", "Epoch 487/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 154.7408 - val_loss: 168.9128\n", "Epoch 488/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 153.7928 - val_loss: 169.1324\n", "Epoch 489/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 153.6459 - val_loss: 173.0630\n", "Epoch 490/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 152.3785 - val_loss: 169.0204\n", "Epoch 491/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 154.1009 - val_loss: 168.5587\n", "Epoch 492/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 155.1739 - val_loss: 168.1321\n", "Epoch 493/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 157.1928 - val_loss: 168.9973\n", "Epoch 494/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 152.3454 - val_loss: 168.7021\n", "Epoch 495/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 154.8421 - val_loss: 169.3645\n", "Epoch 496/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 153.8124 - val_loss: 170.9270\n", "Epoch 497/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 154.3208 - val_loss: 168.8133\n", "Epoch 498/1000\n", "3028/3028 [==============================] - 2s 771us/step - loss: 155.1476 - val_loss: 167.8444\n", "Epoch 499/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 153.5834 - val_loss: 168.4194\n", "Epoch 500/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 154.5058 - val_loss: 169.0970\n", "Epoch 501/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 154.7804 - val_loss: 167.6026\n", "Epoch 502/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 153.0138 - val_loss: 167.8691\n", "Epoch 503/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 152.1260 - val_loss: 169.5378\n", "Epoch 504/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 152.4849 - val_loss: 168.3298\n", "Epoch 505/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 152.8777 - val_loss: 170.2296\n", "Epoch 506/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 154.6593 - val_loss: 169.0975\n", "Epoch 507/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 154.3115 - val_loss: 169.6774\n", "Epoch 508/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 155.0682 - val_loss: 168.1180\n", "Epoch 509/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 154.9320 - val_loss: 168.0645\n", "Epoch 510/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 152.7932 - val_loss: 168.2300\n", "Epoch 511/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 154.4968 - val_loss: 168.8636\n", "Epoch 512/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 154.8946 - val_loss: 169.2073\n", "Epoch 513/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 155.1229 - val_loss: 168.2289\n", "Epoch 514/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 154.8362 - val_loss: 169.8659\n", "Epoch 515/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 153.7567 - val_loss: 168.7581\n", "Epoch 516/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 152.4777 - val_loss: 169.5449\n", "Epoch 517/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 153.8427 - val_loss: 171.8508\n", "Epoch 518/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 152.3963 - val_loss: 169.2182\n", "Epoch 519/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 153.4264 - val_loss: 167.9444\n", "Epoch 520/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 656us/step - loss: 154.3231 - val_loss: 169.5485\n", "Epoch 521/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 154.1933 - val_loss: 168.3900\n", "Epoch 522/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 154.3295 - val_loss: 168.8536\n", "1010/1010 [==============================] - 0s 451us/step - loss: 167.5475\n", "\n", "\n", "\n", "\n", " Model: 18/36, hidden: 3, nodes: 15, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 241.7057 - val_loss: 191.0440\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 192.8161 - val_loss: 193.1930\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 186.8286 - val_loss: 188.3292\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 183.4766 - val_loss: 201.1283\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 182.9198 - val_loss: 191.9510\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 179.1143 - val_loss: 189.2150\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 180.5446 - val_loss: 183.2410\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 180.2197 - val_loss: 190.4914\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 179.9647 - val_loss: 182.8263\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 177.8445 - val_loss: 205.1776\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 174.6407 - val_loss: 184.3046\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 176.9399 - val_loss: 195.1996\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 175.8019 - val_loss: 183.1135\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 175.7013 - val_loss: 182.3349\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 174.6657 - val_loss: 185.6984\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 177.2913 - val_loss: 177.7953\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 176.0998 - val_loss: 184.7384\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 177.3375 - val_loss: 187.2932\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 174.0252 - val_loss: 181.1085\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 177.5171 - val_loss: 179.4057\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 176.3105 - val_loss: 194.7935\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 173.8485 - val_loss: 180.3629\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 174.5044 - val_loss: 184.8107\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 174.8781 - val_loss: 186.5184\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 174.1920 - val_loss: 179.0478\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 174.4394 - val_loss: 178.4298\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 173.8672 - val_loss: 189.8790\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 174.4960 - val_loss: 180.6620\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 174.8387 - val_loss: 179.3504\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 174.5587 - val_loss: 180.7178\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 173.5136 - val_loss: 185.2326\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 176.2992 - val_loss: 209.5748\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 173.0145 - val_loss: 180.0552\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 173.3494 - val_loss: 189.5611\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 174.1099 - val_loss: 185.2355\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 173.8679 - val_loss: 176.5242\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 175.9807 - val_loss: 177.8710\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 176.0491 - val_loss: 182.5788\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 171.3472 - val_loss: 177.4257\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 172.7155 - val_loss: 182.7734\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 171.8747 - val_loss: 180.9210\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 173.6158 - val_loss: 182.4516\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 171.8986 - val_loss: 188.4949\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 817us/step - loss: 171.4443 - val_loss: 181.9357\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 171.1186 - val_loss: 194.8893\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 172.3946 - val_loss: 176.7866\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 169.8496 - val_loss: 182.4949\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 172.9845 - val_loss: 193.9171\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 171.4989 - val_loss: 176.1651\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 173.6207 - val_loss: 183.0627\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 175.2767 - val_loss: 180.7575\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 172.2865 - val_loss: 180.3056\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 171.6668 - val_loss: 183.4341\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 172.5570 - val_loss: 181.2256\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 171.2146 - val_loss: 180.4651\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 173.9355 - val_loss: 180.7479\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 170.5523 - val_loss: 186.2895\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 175.1932 - val_loss: 185.0487\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 169.4633 - val_loss: 182.7254\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 173.8902 - val_loss: 177.0452\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 172.4869 - val_loss: 187.6728\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 170.6768 - val_loss: 184.8436\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 170.4296 - val_loss: 181.0979\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 169.4541 - val_loss: 182.0338\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 168.3825 - val_loss: 178.0492\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.0404 - val_loss: 181.7433\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 173.0738 - val_loss: 177.9102\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 173.3876 - val_loss: 182.2123\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 170.0886 - val_loss: 184.4085\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 172.1746 - val_loss: 183.6508\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 170.1191 - val_loss: 188.0703\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 170.8320 - val_loss: 177.9231\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 169.7376 - val_loss: 183.8241\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 169.4738 - val_loss: 184.5229\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 170.8405 - val_loss: 187.0401\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 168.7791 - val_loss: 187.2939\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 173.2105 - val_loss: 183.6646\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 170.6184 - val_loss: 179.9790\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 168.7267 - val_loss: 177.7876\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: 173.1728 - val_loss: 173.2710\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 818us/step - loss: 167.5288 - val_loss: 180.9936\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 168.1182 - val_loss: 177.6366\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 167.9506 - val_loss: 179.5524\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 169.6852 - val_loss: 177.1402\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.0368 - val_loss: 177.3478\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 170.5484 - val_loss: 177.3399\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.9504 - val_loss: 191.1035\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 168.7537 - val_loss: 175.2845\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 169.5348 - val_loss: 180.6107\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 170.8601 - val_loss: 215.2180\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 171.3696 - val_loss: 179.6251\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 171.3842 - val_loss: 180.5472\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 168.9354 - val_loss: 177.0168\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 170.0982 - val_loss: 185.3087\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 169.7353 - val_loss: 189.5411\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 172.8034 - val_loss: 183.1777\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 168.4637 - val_loss: 175.8154\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 169.1790 - val_loss: 184.8749\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 171.2875 - val_loss: 182.7539\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 169.7609 - val_loss: 184.7607\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 170.1714 - val_loss: 178.0647\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 168.2023 - val_loss: 179.5561\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 169.2068 - val_loss: 186.0622\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 172.6906 - val_loss: 185.1591\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 169.9565 - val_loss: 177.9033\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 169.8743 - val_loss: 183.3958\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 169.8220 - val_loss: 179.9620\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 170.2437 - val_loss: 174.8656\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.9874 - val_loss: 186.4288\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.9408 - val_loss: 177.1458\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.6507 - val_loss: 176.0190\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.9131 - val_loss: 185.5548\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 170.3022 - val_loss: 175.6878\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 171.8143 - val_loss: 191.5830\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 171.1619 - val_loss: 173.6158\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 170.3845 - val_loss: 177.8093\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 170.6166 - val_loss: 183.2318\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.0958 - val_loss: 178.5519\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 169.4491 - val_loss: 187.5305\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 168.7523 - val_loss: 174.4261\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 167.8960 - val_loss: 180.0585\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 169.8656 - val_loss: 184.3407\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 170.7465 - val_loss: 181.3169\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 167.3707 - val_loss: 178.0746\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 169.3801 - val_loss: 177.7052\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 167.2842 - val_loss: 185.2996\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 170.1072 - val_loss: 176.7937\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 168.6794 - val_loss: 180.1665\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.2090 - val_loss: 190.9067\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 167.0022 - val_loss: 190.7615\n", "1010/1010 [==============================] - 0s 436us/step - loss: 173.2710\n", "\n", "\n", "\n", "\n", " Model: 19/36, hidden: 3, nodes: 15, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 339.0322 - val_loss: 211.2630\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 198.4627 - val_loss: 194.1220\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 189.6972 - val_loss: 196.4091\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 187.1199 - val_loss: 188.5910\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 741us/step - loss: 185.5169 - val_loss: 194.7850\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 182.4093 - val_loss: 185.6341\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 182.5899 - val_loss: 186.2740\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 769us/step - loss: 184.6494 - val_loss: 192.5121\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 180.6672 - val_loss: 183.4736\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 181.3130 - val_loss: 184.5958\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 711us/step - loss: 180.7405 - val_loss: 182.4965\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 179.7274 - val_loss: 183.9516\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 178.6107 - val_loss: 182.5961\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 178.1546 - val_loss: 181.5919\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 178.3277 - val_loss: 183.8968\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 175.4894 - val_loss: 180.2889\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 175.7373 - val_loss: 181.2635\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 175.1081 - val_loss: 179.9142\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 177.3638 - val_loss: 180.9336\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 176.7543 - val_loss: 182.9179\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 174.9743 - val_loss: 179.7857\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 176.2555 - val_loss: 180.1230\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 175.3098 - val_loss: 178.7818\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 173.8998 - val_loss: 178.2087\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 175.1227 - val_loss: 179.9527\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 175.9458 - val_loss: 182.9036\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 174.8485 - val_loss: 177.4688\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 175.0402 - val_loss: 178.7923\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 174.6277 - val_loss: 179.1429\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 173.7972 - val_loss: 180.3224\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 172.1250 - val_loss: 179.8329\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 172.0378 - val_loss: 190.1934\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 172.1881 - val_loss: 179.9848\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 172.6844 - val_loss: 176.3529\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 173.3022 - val_loss: 179.8246\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 170.5175 - val_loss: 179.2371\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 174.0589 - val_loss: 179.1455\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 173.3916 - val_loss: 179.0598\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 169.5751 - val_loss: 176.5986\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 171.1612 - val_loss: 179.6306\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 171.5469 - val_loss: 178.1492\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 172.3004 - val_loss: 178.1545\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 172.2893 - val_loss: 175.2161\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 171.9899 - val_loss: 176.5303\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 172.5661 - val_loss: 175.3191\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 789us/step - loss: 171.2346 - val_loss: 175.4412\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 173.0419 - val_loss: 175.2369\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 626us/step - loss: 170.9293 - val_loss: 175.7866\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 169.9721 - val_loss: 176.0189\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 170.5141 - val_loss: 175.0531\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 172.2257 - val_loss: 180.6906\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.4690 - val_loss: 181.6989\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 626us/step - loss: 170.1226 - val_loss: 175.2244\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 169.6381 - val_loss: 175.3593\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 625us/step - loss: 168.2861 - val_loss: 179.0017\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 168.2655 - val_loss: 174.7418\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 169.4894 - val_loss: 177.8691\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 171.3342 - val_loss: 176.1232\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 169.7384 - val_loss: 176.2581\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 171.7113 - val_loss: 175.5445\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 168.3214 - val_loss: 177.7276\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 169.3678 - val_loss: 175.0179\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 170.3213 - val_loss: 175.1081\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 170.1275 - val_loss: 173.9737\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 169.0382 - val_loss: 174.9358\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 168.7612 - val_loss: 174.7977\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 168.0134 - val_loss: 174.8482\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 167.4738 - val_loss: 174.6514\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 626us/step - loss: 170.6969 - val_loss: 175.2924\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 625us/step - loss: 169.2327 - val_loss: 173.7842\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 169.0240 - val_loss: 176.4996\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 169.8751 - val_loss: 176.3152\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 168.8886 - val_loss: 174.1159\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.3637 - val_loss: 176.9793\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 169.7587 - val_loss: 176.3528\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 167.1658 - val_loss: 182.5494\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 169.9976 - val_loss: 174.1821\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.1926 - val_loss: 175.5781\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 169.3293 - val_loss: 174.5033\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 167.7236 - val_loss: 175.1690\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 165.4730 - val_loss: 175.7531\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 165.8894 - val_loss: 177.3861\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 168.7171 - val_loss: 177.4183\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 168.6199 - val_loss: 179.3709\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 169.1312 - val_loss: 176.4427\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 167.4501 - val_loss: 174.3348\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 169.9452 - val_loss: 174.2365\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.1876 - val_loss: 174.8786\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 166.9368 - val_loss: 173.5944\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.8613 - val_loss: 174.9238\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 167.9259 - val_loss: 176.7756\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 165.3440 - val_loss: 178.9245\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 167.3945 - val_loss: 174.2477\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.7379 - val_loss: 174.7508\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 168.3754 - val_loss: 174.2196\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 167.2908 - val_loss: 176.6736\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 168.5413 - val_loss: 174.4223\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.6320 - val_loss: 176.8260\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 168.6468 - val_loss: 175.2917\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 167.7767 - val_loss: 174.8707\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 167.0230 - val_loss: 174.2783\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 165.7755 - val_loss: 175.8245\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 166.6306 - val_loss: 174.1291\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 167.9332 - val_loss: 174.2802\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.5786 - val_loss: 174.3489\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 167.2832 - val_loss: 174.7697\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 166.6082 - val_loss: 176.1637\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 166.1075 - val_loss: 174.6709\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 165.5755 - val_loss: 175.5101\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 167.0427 - val_loss: 174.8071\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 166.4406 - val_loss: 174.8582\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.8666 - val_loss: 174.0446\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 168.5315 - val_loss: 175.0326\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 166.7997 - val_loss: 173.1735\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.0928 - val_loss: 173.8344\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 166.7134 - val_loss: 176.2832\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.1676 - val_loss: 174.2711\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 166.4568 - val_loss: 173.3088\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.0468 - val_loss: 173.3898\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.8509 - val_loss: 175.4052\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 167.6769 - val_loss: 177.1974\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 168.0658 - val_loss: 176.9491\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.1916 - val_loss: 173.1043\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 167.3358 - val_loss: 174.7306\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.8701 - val_loss: 172.3093\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 164.8704 - val_loss: 174.0145\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.3448 - val_loss: 174.2411\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 168.2379 - val_loss: 175.8476\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 626us/step - loss: 165.0469 - val_loss: 175.8335\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 164.8664 - val_loss: 174.6487\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.7175 - val_loss: 175.1727\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.9436 - val_loss: 174.8964\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 166.1795 - val_loss: 172.7503\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 168.7026 - val_loss: 173.6775\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 166.4573 - val_loss: 176.3122\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 166.9584 - val_loss: 173.9192\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 166.0324 - val_loss: 176.9370\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 163.6859 - val_loss: 172.0061\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 168.3234 - val_loss: 176.3400\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 626us/step - loss: 165.4216 - val_loss: 181.4304\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 166.0540 - val_loss: 172.4433\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.4730 - val_loss: 172.4623\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 166.6351 - val_loss: 175.3746\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.5330 - val_loss: 172.9138\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 166.0366 - val_loss: 172.3570\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 169.2725 - val_loss: 173.0364\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 164.9058 - val_loss: 175.6609\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 165.9687 - val_loss: 172.4108\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 167.3701 - val_loss: 173.9946\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 164.4533 - val_loss: 173.5268\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 164.4872 - val_loss: 173.8022\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.8105 - val_loss: 173.9645\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 167.3309 - val_loss: 176.5179\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 168.4700 - val_loss: 173.7302\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.4214 - val_loss: 173.0780\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 166.6569 - val_loss: 172.8566\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 165.0087 - val_loss: 173.0603\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 165.5948 - val_loss: 176.7091\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 163.2641 - val_loss: 173.8457\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 165.8126 - val_loss: 173.5278\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.0886 - val_loss: 172.3613\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.6125 - val_loss: 175.2423\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.0555 - val_loss: 174.6480\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.8370 - val_loss: 173.8663\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 165.9721 - val_loss: 173.5316\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.5986 - val_loss: 173.0297\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.8073 - val_loss: 171.8255\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.1026 - val_loss: 173.6409\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 165.7016 - val_loss: 172.6031\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.4805 - val_loss: 172.9858\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 165.1882 - val_loss: 180.2366\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.3187 - val_loss: 172.0266\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 163.5520 - val_loss: 174.9582\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 165.8741 - val_loss: 175.6234\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 165.4658 - val_loss: 174.0606\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.1561 - val_loss: 174.2676\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 164.5560 - val_loss: 173.1722\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 165.2083 - val_loss: 174.8655\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.4498 - val_loss: 175.5816\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 165.2535 - val_loss: 172.2719\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 163.3211 - val_loss: 172.7123\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 737us/step - loss: 165.1715 - val_loss: 171.8351\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 164.9278 - val_loss: 173.8069\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.4184 - val_loss: 173.5142\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 163.4889 - val_loss: 173.0627\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 164.5658 - val_loss: 172.2598\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 164.4643 - val_loss: 174.3960\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 164.2944 - val_loss: 175.1478\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.8473 - val_loss: 172.5684\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.7827 - val_loss: 172.9563\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.4157 - val_loss: 174.7947\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.5424 - val_loss: 171.3457\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.6155 - val_loss: 172.5909\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 165.3576 - val_loss: 174.4162\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 163.9456 - val_loss: 173.7984\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 626us/step - loss: 165.4496 - val_loss: 174.4471\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 164.0880 - val_loss: 172.9492\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.3591 - val_loss: 173.6732\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.8600 - val_loss: 173.6922\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 164.2682 - val_loss: 172.6280\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 164.5010 - val_loss: 172.4338\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 163.1986 - val_loss: 176.4480\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.6632 - val_loss: 173.9380\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.9426 - val_loss: 171.4003\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 163.6525 - val_loss: 173.3956\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.9149 - val_loss: 175.3470\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.2685 - val_loss: 174.6564\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 162.5089 - val_loss: 174.0629\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 162.9911 - val_loss: 175.2908\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.2710 - val_loss: 173.1659\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 163.6481 - val_loss: 174.3070\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.0569 - val_loss: 173.4620\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 164.7992 - val_loss: 172.9066\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 163.8973 - val_loss: 174.1386\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 160.9706 - val_loss: 172.7958\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.6710 - val_loss: 172.3762\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 162.3557 - val_loss: 172.4400\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 166.1362 - val_loss: 171.7148\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 161.4113 - val_loss: 176.0974\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.7347 - val_loss: 172.2719\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 162.0273 - val_loss: 173.4735\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 163.0787 - val_loss: 174.0520\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 162.4000 - val_loss: 175.3600\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.2456 - val_loss: 173.0945\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 163.7120 - val_loss: 174.1792\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.1816 - val_loss: 172.5369\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.5725 - val_loss: 172.8329\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 627us/step - loss: 166.2633 - val_loss: 172.0175\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.4336 - val_loss: 172.3753\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.1467 - val_loss: 172.7882\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 626us/step - loss: 162.5192 - val_loss: 172.5853\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 162.2144 - val_loss: 172.0248\n", "Epoch 233/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 687us/step - loss: 164.6170 - val_loss: 173.3849\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 163.8499 - val_loss: 171.2692\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 161.7026 - val_loss: 172.4551\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 163.1735 - val_loss: 171.7977\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 162.2373 - val_loss: 170.8080\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 3s 865us/step - loss: 162.3392 - val_loss: 172.8188\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 164.2301 - val_loss: 171.5605\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 163.3022 - val_loss: 174.4445\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 163.9033 - val_loss: 173.1651\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.4664 - val_loss: 173.4372\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 162.3003 - val_loss: 171.2175\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 773us/step - loss: 165.1516 - val_loss: 172.6380\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 163.2718 - val_loss: 172.6104\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 162.5641 - val_loss: 173.6008\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 164.2290 - val_loss: 177.0962\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 163.6713 - val_loss: 172.5002\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 162.6573 - val_loss: 172.4808\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 161.5397 - val_loss: 171.1053\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 163.0441 - val_loss: 173.0526\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 163.3703 - val_loss: 172.5386\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 163.7409 - val_loss: 172.4979\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 807us/step - loss: 163.6953 - val_loss: 171.3714\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 3s 848us/step - loss: 162.0370 - val_loss: 172.6421\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 160.4730 - val_loss: 174.6196\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 771us/step - loss: 163.4912 - val_loss: 172.2217\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 161.8710 - val_loss: 173.0970\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 162.6883 - val_loss: 172.9322\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 160.7033 - val_loss: 174.5956\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 164.3752 - val_loss: 172.9033\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 163.3592 - val_loss: 174.1003\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 162.8896 - val_loss: 171.9138\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 164.5600 - val_loss: 171.6035\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 760us/step - loss: 163.3960 - val_loss: 172.5433\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 162.4853 - val_loss: 175.1128\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 163.2227 - val_loss: 175.8450\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 163.7428 - val_loss: 172.3447\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 163.0195 - val_loss: 172.9328\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 754us/step - loss: 163.8623 - val_loss: 174.1131\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 164.6233 - val_loss: 174.0004\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 164.6904 - val_loss: 173.3164\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 163.4246 - val_loss: 175.9584\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 164.3650 - val_loss: 174.3311\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 798us/step - loss: 162.8399 - val_loss: 178.0205\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 163.7381 - val_loss: 173.1779\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 162.5823 - val_loss: 171.7658\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 163.0438 - val_loss: 172.0870\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 162.1157 - val_loss: 176.3605\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 162.0368 - val_loss: 173.3705\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 164.7537 - val_loss: 174.0947\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 161.0492 - val_loss: 172.2374\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 162.0932 - val_loss: 171.0981\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 161.7695 - val_loss: 173.5309\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 161.5984 - val_loss: 172.0605\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 163.5777 - val_loss: 173.6085\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.2986 - val_loss: 171.7123\n", "1010/1010 [==============================] - 1s 491us/step - loss: 170.8080\n", "\n", "\n", "\n", "\n", " Model: 20/36, hidden: 3, nodes: 15, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 764us/step - loss: 720.9356 - val_loss: 279.2817\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 274.8826 - val_loss: 258.8220\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 254.0399 - val_loss: 241.5311\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 235.7332 - val_loss: 230.8221\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 228.0106 - val_loss: 223.3204\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 217.6936 - val_loss: 217.7327\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 211.0230 - val_loss: 213.1261\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 209.3332 - val_loss: 208.8500\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 204.8506 - val_loss: 205.3801\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 200.7124 - val_loss: 202.8327\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 197.8418 - val_loss: 200.0912\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 197.3554 - val_loss: 198.0809\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 194.8059 - val_loss: 196.5949\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 194.2469 - val_loss: 195.0467\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 192.6540 - val_loss: 194.4938\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 189.6426 - val_loss: 192.7216\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 187.7024 - val_loss: 192.3315\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 191.6730 - val_loss: 191.6122\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 189.4192 - val_loss: 192.5425\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 184.4820 - val_loss: 190.9479\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 185.2142 - val_loss: 189.9307\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 185.6955 - val_loss: 188.6942\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 184.9914 - val_loss: 189.7019\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 185.3513 - val_loss: 188.3176\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 185.5224 - val_loss: 187.9763\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 182.3062 - val_loss: 187.7956\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 181.8718 - val_loss: 186.7438\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 182.5419 - val_loss: 186.4240\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 183.7337 - val_loss: 186.2563\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 824us/step - loss: 182.1722 - val_loss: 186.0501\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 181.1040 - val_loss: 185.2702\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 182.6685 - val_loss: 185.8258\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 181.7916 - val_loss: 185.5633\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 181.2662 - val_loss: 185.0017\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 182.1788 - val_loss: 184.5671\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 178.3988 - val_loss: 184.2918\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 180.5800 - val_loss: 184.9929\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 180.5593 - val_loss: 184.2621\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 180.8501 - val_loss: 183.6852\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 178.9786 - val_loss: 184.1813\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 180.1005 - val_loss: 183.5997\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 180.2845 - val_loss: 183.5111\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 180.3754 - val_loss: 184.6838\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: 178.5239 - val_loss: 183.2417\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 3s 852us/step - loss: 180.9021 - val_loss: 183.1110\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 178.3161 - val_loss: 182.5408\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 179.4695 - val_loss: 182.5165\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 179.9841 - val_loss: 182.6470\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 179.6163 - val_loss: 182.4821\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 178.2423 - val_loss: 183.2684\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 176.2166 - val_loss: 182.0532\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 178.6479 - val_loss: 182.5751\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 177.9836 - val_loss: 181.9492\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 176.7400 - val_loss: 184.1934\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 179.0145 - val_loss: 181.9242\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 175.8801 - val_loss: 181.9012\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 178.4078 - val_loss: 181.9814\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 177.6147 - val_loss: 181.4789\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 177.5965 - val_loss: 181.6998\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 179.8195 - val_loss: 181.2834\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 176.8479 - val_loss: 182.0830\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 177.0005 - val_loss: 182.1377\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 175.9256 - val_loss: 181.2106\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 177.2743 - val_loss: 180.9761\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 175.1027 - val_loss: 181.0129\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 177.4348 - val_loss: 181.8668\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 177.8739 - val_loss: 181.1653\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 177.4700 - val_loss: 181.2926\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 3s 869us/step - loss: 176.5280 - val_loss: 181.0013\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 174.1639 - val_loss: 181.0322\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 3s 933us/step - loss: 175.7598 - val_loss: 181.2839\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 175.5116 - val_loss: 181.7932\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 174.3008 - val_loss: 181.2366\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 177.5014 - val_loss: 180.5514\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 175.7185 - val_loss: 181.0065\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 174.1201 - val_loss: 180.6436\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 706us/step - loss: 174.4435 - val_loss: 180.8289\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 175.5518 - val_loss: 180.7040\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 176.3701 - val_loss: 181.8695\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 174.3275 - val_loss: 180.1870\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 174.4610 - val_loss: 180.8487\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 174.8391 - val_loss: 179.9330\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 175.5650 - val_loss: 180.2327\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 176.0107 - val_loss: 180.0443\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 173.6595 - val_loss: 180.0057\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 174.9305 - val_loss: 183.0476\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 174.7041 - val_loss: 181.2498\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 173.3039 - val_loss: 180.5033\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 175.5258 - val_loss: 180.8025\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 173.3878 - val_loss: 180.0667\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 173.5483 - val_loss: 180.2381\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 176.4760 - val_loss: 180.7884\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 173.7194 - val_loss: 179.9911\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 173.9616 - val_loss: 179.6060\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 175.4255 - val_loss: 179.2016\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 173.9631 - val_loss: 180.1436\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 174.1115 - val_loss: 179.7031\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 173.7002 - val_loss: 179.2022\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 173.7653 - val_loss: 182.3130\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 173.6297 - val_loss: 180.3938\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 175.2578 - val_loss: 180.8169\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 817us/step - loss: 173.3115 - val_loss: 179.6013\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 175.2103 - val_loss: 179.3832\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 760us/step - loss: 173.7236 - val_loss: 179.1774\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 761us/step - loss: 172.3598 - val_loss: 180.0525\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 174.9815 - val_loss: 180.2603\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 173.4224 - val_loss: 178.9353\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 3s 850us/step - loss: 175.5044 - val_loss: 179.4918\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 3s 830us/step - loss: 175.0563 - val_loss: 179.1367\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: 171.5943 - val_loss: 179.5956\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 174.2437 - val_loss: 179.3614\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 173.0946 - val_loss: 178.9065\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 173.4287 - val_loss: 178.9201\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 173.8210 - val_loss: 179.2635\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 174.0017 - val_loss: 179.6937\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 172.6112 - val_loss: 179.0098\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 174.2313 - val_loss: 180.6149\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 173.5350 - val_loss: 179.2372\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 172.8646 - val_loss: 179.2337\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 174.1660 - val_loss: 179.3742\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 171.8181 - val_loss: 179.3252\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 175.0509 - val_loss: 178.8288\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 173.2378 - val_loss: 181.5245\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 172.6260 - val_loss: 179.1697\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 172.4093 - val_loss: 179.0342\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 174.0251 - val_loss: 178.5129\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 173.6912 - val_loss: 178.5837\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 173.4696 - val_loss: 179.0361\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 172.5223 - val_loss: 178.7240\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 173.4270 - val_loss: 180.2390\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 171.6560 - val_loss: 178.8398\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 173.7146 - val_loss: 178.6903\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 172.7269 - val_loss: 178.6024\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 172.8616 - val_loss: 179.0317\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 171.2836 - val_loss: 179.3334\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 173.4302 - val_loss: 180.0431\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 171.9292 - val_loss: 178.9796\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 172.5697 - val_loss: 178.5016\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 172.9738 - val_loss: 180.8982\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 171.6071 - val_loss: 180.7966\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 174.7214 - val_loss: 178.9108\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 171.9080 - val_loss: 178.2866\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 174.3128 - val_loss: 179.6681\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 173.2860 - val_loss: 177.9681\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 172.6620 - val_loss: 178.4635\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 171.2560 - val_loss: 177.8079\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 169.3496 - val_loss: 178.9760\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 173.1899 - val_loss: 178.5819\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 171.6488 - val_loss: 178.7288\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 173.5573 - val_loss: 177.8651\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 170.6955 - val_loss: 178.2096\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 175.3798 - val_loss: 178.9410\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 172.5890 - val_loss: 179.0363\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 171.3591 - val_loss: 177.8754\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.1239 - val_loss: 179.7958\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 171.4062 - val_loss: 177.8372\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 171.9511 - val_loss: 178.3992\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 171.1887 - val_loss: 178.5814\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 170.4337 - val_loss: 179.0069\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 172.6795 - val_loss: 179.0876\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 168.3997 - val_loss: 178.2123\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 171.8911 - val_loss: 178.4001\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 744us/step - loss: 171.9923 - val_loss: 178.2847\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 172.5129 - val_loss: 178.2114\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 170.5131 - val_loss: 178.4291\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 172.5750 - val_loss: 180.3011\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 169.0746 - val_loss: 178.8811\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 171.2012 - val_loss: 177.6610\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 794us/step - loss: 171.8393 - val_loss: 177.5781\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 171.9361 - val_loss: 178.1625\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 169.8145 - val_loss: 178.0796\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 170.0383 - val_loss: 177.5725\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 172.3595 - val_loss: 180.2398\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 170.7606 - val_loss: 177.4516\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 169.0904 - val_loss: 177.3140\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 169.6595 - val_loss: 177.3509\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 169.4438 - val_loss: 178.0988\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 171.2277 - val_loss: 177.0986\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 173.3331 - val_loss: 178.8102\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 172.0960 - val_loss: 179.1749\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 172.7950 - val_loss: 177.8763\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.7400 - val_loss: 177.3412\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 170.2975 - val_loss: 179.3186\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 173.3679 - val_loss: 179.1029\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 171.1413 - val_loss: 177.3956\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.1653 - val_loss: 178.5553\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 171.8384 - val_loss: 177.4128\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 168.4547 - val_loss: 176.7751\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 171.2248 - val_loss: 177.3755\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 170.0721 - val_loss: 177.4587\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 167.4567 - val_loss: 177.0418\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 169.5803 - val_loss: 177.2487\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 172.0882 - val_loss: 177.2198\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 169.9576 - val_loss: 178.3911\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 171.0648 - val_loss: 176.2829\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 168.8179 - val_loss: 177.0682\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 168.8911 - val_loss: 177.9122\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 171.5144 - val_loss: 176.7923\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 168.0554 - val_loss: 177.3580\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 170.3346 - val_loss: 177.1950\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 170.5963 - val_loss: 177.1125\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 173.3218 - val_loss: 177.1350\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 171.4444 - val_loss: 177.2357\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 169.1755 - val_loss: 177.6439\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.8470 - val_loss: 176.7523\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.2112 - val_loss: 176.8431\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.9136 - val_loss: 177.0665\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 170.0352 - val_loss: 176.9900\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.2621 - val_loss: 176.4204\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.9672 - val_loss: 176.9747\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.7540 - val_loss: 176.9343\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.4112 - val_loss: 177.4389\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.5685 - val_loss: 176.7834\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 168.8383 - val_loss: 177.3672\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 171.5842 - val_loss: 177.9581\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 169.0296 - val_loss: 176.7713\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 168.5416 - val_loss: 177.7692\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 172.8694 - val_loss: 177.0923\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 169.1629 - val_loss: 176.5770\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.6466 - val_loss: 176.5459\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.5881 - val_loss: 177.1665\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.1895 - val_loss: 176.5983\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 167.6804 - val_loss: 176.6522\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 167.3888 - val_loss: 175.9375\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.8480 - val_loss: 176.1859\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 168.6880 - val_loss: 176.0819\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 169.5753 - val_loss: 177.5079\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 168.8841 - val_loss: 176.5881\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 171.7540 - val_loss: 176.8335\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.8429 - val_loss: 178.2054\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 173.7890 - val_loss: 177.7679\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 167.3710 - val_loss: 176.3274\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 167.9993 - val_loss: 176.5086\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 170.7453 - val_loss: 176.5382\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 171.0186 - val_loss: 176.5274\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 170.3427 - val_loss: 175.9480\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 171.9203 - val_loss: 176.5126\n", "Epoch 238/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 654us/step - loss: 170.3793 - val_loss: 175.8531\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 170.7455 - val_loss: 177.6829\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 169.7460 - val_loss: 176.4848\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 168.4069 - val_loss: 175.5867\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.3136 - val_loss: 176.6743\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.8482 - val_loss: 175.6102\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 170.5459 - val_loss: 176.2511\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.8879 - val_loss: 176.1463\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.9223 - val_loss: 177.2328\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 170.9963 - val_loss: 177.2861\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 168.3599 - val_loss: 176.2969\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 169.6414 - val_loss: 175.7155\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 167.2085 - val_loss: 177.4511\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.5769 - val_loss: 176.7407\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.5039 - val_loss: 176.4428\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.0551 - val_loss: 176.3357\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.5830 - val_loss: 176.2281\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.0665 - val_loss: 175.6143\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.7413 - val_loss: 176.6716\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 168.9478 - val_loss: 177.0713\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 165.9614 - val_loss: 175.9143\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 170.1008 - val_loss: 177.6800\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 169.1424 - val_loss: 175.7924\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 806us/step - loss: 167.5794 - val_loss: 175.8503\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 168.4901 - val_loss: 176.1218\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 169.0463 - val_loss: 176.1996\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.7696 - val_loss: 178.8152\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.9055 - val_loss: 175.1920\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.9033 - val_loss: 175.8820\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 167.7099 - val_loss: 176.6516\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.0858 - val_loss: 178.1882\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 168.0565 - val_loss: 175.7376\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 167.7561 - val_loss: 178.6365\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 170.8856 - val_loss: 175.2351\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 168.3626 - val_loss: 175.2932\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 169.0526 - val_loss: 176.1762\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.5916 - val_loss: 175.7529\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 170.4965 - val_loss: 175.3748\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.0648 - val_loss: 176.1741\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 168.7174 - val_loss: 175.4883\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 167.0299 - val_loss: 175.7645\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 168.7867 - val_loss: 176.8692\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.1324 - val_loss: 175.3929\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.3828 - val_loss: 177.1743\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.6549 - val_loss: 175.1159\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 167.6694 - val_loss: 175.3058\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 167.9264 - val_loss: 176.6197\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 167.0697 - val_loss: 176.8506\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 167.5616 - val_loss: 175.6356\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 164.7675 - val_loss: 175.1034\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 166.7689 - val_loss: 177.1995\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.4643 - val_loss: 175.6174\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 167.8231 - val_loss: 175.8500\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 170.6920 - val_loss: 175.2831\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 169.1726 - val_loss: 175.7207\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 169.1017 - val_loss: 176.5956\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.5062 - val_loss: 175.9377\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.4735 - val_loss: 176.7316\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 169.6739 - val_loss: 175.4603\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 169.3608 - val_loss: 175.1148\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 168.8580 - val_loss: 174.9319\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 167.7308 - val_loss: 175.1576\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 167.2079 - val_loss: 174.9221\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 168.5184 - val_loss: 175.4401\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 167.5359 - val_loss: 175.9044\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 168.7948 - val_loss: 175.2097\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.6472 - val_loss: 176.3940\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.7631 - val_loss: 175.8375\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 780us/step - loss: 166.2956 - val_loss: 175.8376\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 166.9193 - val_loss: 175.8616\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.3241 - val_loss: 175.7472\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 170.0701 - val_loss: 175.5040\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 166.3442 - val_loss: 175.1009\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.0408 - val_loss: 174.7436\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.8604 - val_loss: 175.3139\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.5239 - val_loss: 174.5726\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 167.4445 - val_loss: 175.2161\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 168.2061 - val_loss: 174.1081\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.1916 - val_loss: 174.7564\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.0197 - val_loss: 175.1181\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 170.3167 - val_loss: 174.8154\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 169.1417 - val_loss: 174.2599\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 167.7066 - val_loss: 173.9531\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 168.7462 - val_loss: 174.8992\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 166.3157 - val_loss: 175.7092\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.3473 - val_loss: 174.3427\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 169.6568 - val_loss: 174.9335\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 166.1903 - val_loss: 175.8435\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 168.3841 - val_loss: 174.3611\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 168.1308 - val_loss: 175.8088\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.7804 - val_loss: 175.0008\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 168.2771 - val_loss: 174.8263\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.7813 - val_loss: 174.5819\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.8403 - val_loss: 177.2631\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.2563 - val_loss: 174.7117\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 164.0828 - val_loss: 173.8273\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 166.3297 - val_loss: 174.1676\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 165.6107 - val_loss: 174.9603\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.1240 - val_loss: 173.5094\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.5997 - val_loss: 175.0111\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 166.4706 - val_loss: 174.5993\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 165.6567 - val_loss: 174.5523\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 167.3450 - val_loss: 174.4449\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 167.9166 - val_loss: 173.7328\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.4698 - val_loss: 173.6437\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.6247 - val_loss: 174.2167\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.9527 - val_loss: 174.8030\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.0081 - val_loss: 173.8455\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 3s 846us/step - loss: 168.0082 - val_loss: 173.6928\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 166.3719 - val_loss: 174.2214\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.9540 - val_loss: 174.4804\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 168.8738 - val_loss: 174.9590\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.9913 - val_loss: 174.8522\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 166.2628 - val_loss: 173.9323\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.2810 - val_loss: 174.2063\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 164.7467 - val_loss: 174.0024\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 165.7813 - val_loss: 173.5593\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.6389 - val_loss: 173.6611\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 165.7133 - val_loss: 173.9165\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 166.4083 - val_loss: 176.9073\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.9241 - val_loss: 173.7796\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 166.3423 - val_loss: 176.5874\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.1095 - val_loss: 173.6833\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.2686 - val_loss: 173.8140\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.4856 - val_loss: 173.4939\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.5096 - val_loss: 173.8085\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 166.4148 - val_loss: 175.0826\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.1557 - val_loss: 173.7752\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 164.7689 - val_loss: 173.9020\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.7672 - val_loss: 173.4382\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 167.5723 - val_loss: 173.7121\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 166.5856 - val_loss: 174.1905\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 167.4884 - val_loss: 173.4783\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 166.6450 - val_loss: 174.6202\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 167.8636 - val_loss: 173.9461\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.0628 - val_loss: 174.1335\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.4880 - val_loss: 174.5832\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 165.7262 - val_loss: 174.2285\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 166.8359 - val_loss: 173.9972\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.3594 - val_loss: 174.1993\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.1185 - val_loss: 173.6162\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.9172 - val_loss: 173.9232\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 167.7351 - val_loss: 173.9365\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.9553 - val_loss: 173.4079\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.9989 - val_loss: 174.7149\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.3098 - val_loss: 173.2213\n", "Epoch 384/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 651us/step - loss: 165.1020 - val_loss: 173.4315\n", "Epoch 385/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.7128 - val_loss: 174.2081\n", "Epoch 386/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.6269 - val_loss: 174.2650\n", "Epoch 387/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.9616 - val_loss: 173.3739\n", "Epoch 388/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.7484 - val_loss: 173.4592\n", "Epoch 389/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 166.6480 - val_loss: 174.3325\n", "Epoch 390/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 166.6915 - val_loss: 173.4035\n", "Epoch 391/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 167.0634 - val_loss: 174.8643\n", "Epoch 392/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 163.6763 - val_loss: 173.6222\n", "Epoch 393/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.7975 - val_loss: 173.7408\n", "Epoch 394/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.1228 - val_loss: 173.8808\n", "Epoch 395/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.9548 - val_loss: 173.8432\n", "Epoch 396/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.5971 - val_loss: 173.7249\n", "Epoch 397/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 166.7129 - val_loss: 175.7732\n", "Epoch 398/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 164.9082 - val_loss: 173.9669\n", "Epoch 399/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 165.4041 - val_loss: 174.2145\n", "Epoch 400/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 165.1909 - val_loss: 172.9907\n", "Epoch 401/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 168.2800 - val_loss: 173.4530\n", "Epoch 402/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 163.5570 - val_loss: 173.9794\n", "Epoch 403/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 166.7437 - val_loss: 172.7904\n", "Epoch 404/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 164.3617 - val_loss: 174.9183\n", "Epoch 405/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 166.5694 - val_loss: 173.5163\n", "Epoch 406/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.7372 - val_loss: 173.6891\n", "Epoch 407/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 163.9331 - val_loss: 175.3563\n", "Epoch 408/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 164.8242 - val_loss: 173.5734\n", "Epoch 409/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 168.7545 - val_loss: 174.9005\n", "Epoch 410/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 166.1424 - val_loss: 173.6963\n", "Epoch 411/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.4889 - val_loss: 173.3807\n", "Epoch 412/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 166.2677 - val_loss: 173.5597\n", "Epoch 413/1000\n", "3028/3028 [==============================] - 2s 818us/step - loss: 167.3081 - val_loss: 172.9967\n", "Epoch 414/1000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 166.3380 - val_loss: 173.9301\n", "Epoch 415/1000\n", "3028/3028 [==============================] - 2s 790us/step - loss: 165.9985 - val_loss: 174.4524\n", "Epoch 416/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 167.5090 - val_loss: 175.2623\n", "Epoch 417/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 165.6214 - val_loss: 173.2415\n", "Epoch 418/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 165.0689 - val_loss: 173.7916\n", "Epoch 419/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 165.7505 - val_loss: 174.2030\n", "Epoch 420/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 166.1374 - val_loss: 174.2580\n", "Epoch 421/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 164.0672 - val_loss: 175.1955\n", "Epoch 422/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 164.7115 - val_loss: 173.1355\n", "Epoch 423/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 166.1022 - val_loss: 174.7522\n", "Epoch 424/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.4378 - val_loss: 173.2559\n", "Epoch 425/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.0360 - val_loss: 173.8196\n", "Epoch 426/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.6947 - val_loss: 172.5531\n", "Epoch 427/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.6681 - val_loss: 173.7956\n", "Epoch 428/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.7863 - val_loss: 173.1251\n", "Epoch 429/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 165.3380 - val_loss: 173.7510\n", "Epoch 430/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 165.2694 - val_loss: 173.2819\n", "Epoch 431/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 166.7384 - val_loss: 174.0519\n", "Epoch 432/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.8915 - val_loss: 173.0299\n", "Epoch 433/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 162.6004 - val_loss: 172.9404\n", "Epoch 434/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.9878 - val_loss: 175.1820\n", "Epoch 435/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 164.4225 - val_loss: 173.0928\n", "Epoch 436/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 164.3517 - val_loss: 173.2346\n", "Epoch 437/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 163.9369 - val_loss: 174.7308\n", "Epoch 438/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 162.1861 - val_loss: 173.0882\n", "Epoch 439/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.1250 - val_loss: 173.1068\n", "Epoch 440/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.4503 - val_loss: 173.0226\n", "Epoch 441/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 166.8853 - val_loss: 173.5370\n", "Epoch 442/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.9802 - val_loss: 176.1681\n", "Epoch 443/1000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 166.3725 - val_loss: 174.5812\n", "Epoch 444/1000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 165.8468 - val_loss: 173.5445\n", "Epoch 445/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 165.8456 - val_loss: 173.3362\n", "Epoch 446/1000\n", "3028/3028 [==============================] - 2s 724us/step - loss: 163.7647 - val_loss: 173.3844\n", "Epoch 447/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 164.5018 - val_loss: 173.1900\n", "Epoch 448/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 165.7336 - val_loss: 173.5472\n", "Epoch 449/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 163.6572 - val_loss: 173.4837\n", "Epoch 450/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 166.1939 - val_loss: 174.1469\n", "Epoch 451/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 163.7203 - val_loss: 173.2820\n", "Epoch 452/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 166.5187 - val_loss: 173.5161\n", "Epoch 453/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 163.4823 - val_loss: 174.6448\n", "Epoch 454/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 164.5300 - val_loss: 173.5578\n", "Epoch 455/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 165.6923 - val_loss: 174.7337\n", "Epoch 456/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.3465 - val_loss: 172.3765\n", "Epoch 457/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 164.7629 - val_loss: 173.8500\n", "Epoch 458/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 163.4020 - val_loss: 173.6969\n", "Epoch 459/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 165.6964 - val_loss: 174.3037\n", "Epoch 460/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.5635 - val_loss: 173.6148\n", "Epoch 461/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 163.9196 - val_loss: 176.9425\n", "Epoch 462/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 164.8291 - val_loss: 172.7762\n", "Epoch 463/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 165.1987 - val_loss: 174.1781\n", "Epoch 464/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 165.9168 - val_loss: 173.9142\n", "Epoch 465/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.1966 - val_loss: 172.4554\n", "Epoch 466/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 164.2211 - val_loss: 173.1935\n", "Epoch 467/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.0806 - val_loss: 172.6948\n", "Epoch 468/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 164.6234 - val_loss: 172.7554\n", "Epoch 469/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 163.7866 - val_loss: 173.0529\n", "Epoch 470/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 165.9095 - val_loss: 175.4876\n", "Epoch 471/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 165.1257 - val_loss: 173.3705\n", "Epoch 472/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 163.8062 - val_loss: 174.1775\n", "Epoch 473/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 167.2672 - val_loss: 173.3643\n", "Epoch 474/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 166.1913 - val_loss: 173.1515\n", "Epoch 475/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 164.3912 - val_loss: 173.1441\n", "Epoch 476/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 163.4391 - val_loss: 173.0277\n", "Epoch 477/1000\n", "3028/3028 [==============================] - 3s 853us/step - loss: 163.9025 - val_loss: 173.7432\n", "Epoch 478/1000\n", "3028/3028 [==============================] - 2s 729us/step - loss: 163.4061 - val_loss: 172.5930\n", "Epoch 479/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 165.3712 - val_loss: 172.6272\n", "Epoch 480/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 164.5495 - val_loss: 173.0129\n", "Epoch 481/1000\n", "3028/3028 [==============================] - 2s 758us/step - loss: 165.4217 - val_loss: 172.7474\n", "Epoch 482/1000\n", "3028/3028 [==============================] - 3s 881us/step - loss: 165.0939 - val_loss: 172.7351\n", "Epoch 483/1000\n", "3028/3028 [==============================] - 3s 883us/step - loss: 163.8945 - val_loss: 175.0562\n", "Epoch 484/1000\n", "3028/3028 [==============================] - 3s 873us/step - loss: 164.4050 - val_loss: 174.1283\n", "Epoch 485/1000\n", "3028/3028 [==============================] - 3s 890us/step - loss: 164.1239 - val_loss: 173.7455\n", "Epoch 486/1000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 162.8796 - val_loss: 173.0011\n", "Epoch 487/1000\n", "3028/3028 [==============================] - 3s 889us/step - loss: 165.8582 - val_loss: 174.2506\n", "Epoch 488/1000\n", "3028/3028 [==============================] - 3s 898us/step - loss: 164.4624 - val_loss: 173.2217\n", "Epoch 489/1000\n", "3028/3028 [==============================] - 3s 893us/step - loss: 164.4658 - val_loss: 173.1727\n", "Epoch 490/1000\n", "3028/3028 [==============================] - 3s 882us/step - loss: 164.1845 - val_loss: 173.3450\n", "Epoch 491/1000\n", "3028/3028 [==============================] - 3s 907us/step - loss: 166.1501 - val_loss: 173.5436\n", "Epoch 492/1000\n", "3028/3028 [==============================] - 3s 882us/step - loss: 163.5631 - val_loss: 173.3873\n", "Epoch 493/1000\n", "3028/3028 [==============================] - 3s 899us/step - loss: 163.5270 - val_loss: 172.7328\n", "Epoch 494/1000\n", "3028/3028 [==============================] - 3s 881us/step - loss: 166.0616 - val_loss: 173.3627\n", "Epoch 495/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 166.1394 - val_loss: 172.3883\n", "Epoch 496/1000\n", "3028/3028 [==============================] - 3s 895us/step - loss: 164.5282 - val_loss: 175.2834\n", "Epoch 497/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 165.4174 - val_loss: 173.4753\n", "Epoch 498/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 166.6760 - val_loss: 173.4582\n", "Epoch 499/1000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 163.8048 - val_loss: 172.9103\n", "Epoch 500/1000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 163.6721 - val_loss: 172.8781\n", "Epoch 501/1000\n", "3028/3028 [==============================] - 3s 857us/step - loss: 163.7045 - val_loss: 173.3134\n", "Epoch 502/1000\n", "3028/3028 [==============================] - 3s 853us/step - loss: 163.2370 - val_loss: 172.6024\n", "Epoch 503/1000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 165.5730 - val_loss: 173.4368\n", "Epoch 504/1000\n", "3028/3028 [==============================] - 3s 848us/step - loss: 165.4521 - val_loss: 172.6376\n", "Epoch 505/1000\n", "3028/3028 [==============================] - 3s 841us/step - loss: 162.0496 - val_loss: 175.6664\n", "Epoch 506/1000\n", "3028/3028 [==============================] - 3s 838us/step - loss: 165.0049 - val_loss: 172.5000\n", "1010/1010 [==============================] - 1s 519us/step - loss: 172.3765\n", "\n", "\n", "\n", "\n", " Model: 21/36, hidden: 3, nodes: 20, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 914us/step - loss: 243.6585 - val_loss: 200.7118\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 797us/step - loss: 193.1222 - val_loss: 194.4124\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 189.3273 - val_loss: 185.8596\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 183.1725 - val_loss: 186.1409\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 181.4569 - val_loss: 185.8330\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 182.6595 - val_loss: 191.1720\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 180.8920 - val_loss: 181.6856\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 181.9144 - val_loss: 199.1659\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 178.6481 - val_loss: 181.9129\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 178.9053 - val_loss: 181.4188\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 177.3169 - val_loss: 189.2542\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 174.4857 - val_loss: 178.2275\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 175.9565 - val_loss: 176.9313\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 174.0760 - val_loss: 181.4447\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 175.3312 - val_loss: 178.9295\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 175.5518 - val_loss: 178.8899\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 174.7972 - val_loss: 185.9696\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 173.6362 - val_loss: 176.9887\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 174.6122 - val_loss: 183.4183\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 172.6792 - val_loss: 180.8511\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 173.6611 - val_loss: 190.0208\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 176.2123 - val_loss: 182.4870\n", "Epoch 23/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 717us/step - loss: 173.3604 - val_loss: 178.4270\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 172.7482 - val_loss: 180.0309\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 172.1738 - val_loss: 183.6644\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 171.5146 - val_loss: 183.8172\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.9881 - val_loss: 179.0822\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 171.2042 - val_loss: 176.0039\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 266.0526 - val_loss: 462.9093\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 460.3894 - val_loss: 458.9564\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 459.2227 - val_loss: 456.0416\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 459.5174 - val_loss: 457.1493\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 456.5398 - val_loss: 455.5412\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 457.4057 - val_loss: 455.3635\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 456.7775 - val_loss: 454.4283\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 454.9125 - val_loss: 453.6331\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 456.0525 - val_loss: 454.3679\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 452.8510 - val_loss: 452.6658\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 769us/step - loss: 450.2909 - val_loss: 453.0801\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 453.6966 - val_loss: 451.8443\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 438.0540 - val_loss: 214.7353\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 202.4372 - val_loss: 247.4828\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 187.2476 - val_loss: 215.5455\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 3s 883us/step - loss: 181.8063 - val_loss: 188.9135\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 3s 920us/step - loss: 177.8697 - val_loss: 193.2312\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 3s 918us/step - loss: 180.1479 - val_loss: 188.3429\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 178.9035 - val_loss: 182.0759\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 178.3437 - val_loss: 188.5829\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 179.3062 - val_loss: 187.2768\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 177.7011 - val_loss: 198.2453\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 177.7879 - val_loss: 179.7043\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 176.3309 - val_loss: 185.3504\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 3s 935us/step - loss: 178.9324 - val_loss: 184.9206\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 3s 911us/step - loss: 175.9211 - val_loss: 210.8333\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 3s 897us/step - loss: 174.8859 - val_loss: 193.3231\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 3s 898us/step - loss: 176.0753 - val_loss: 196.7198\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 3s 888us/step - loss: 175.1878 - val_loss: 190.0447\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 3s 909us/step - loss: 174.6918 - val_loss: 186.7265\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 173.6435 - val_loss: 184.0150\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 3s 908us/step - loss: 172.5509 - val_loss: 182.6048\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 3s 905us/step - loss: 175.6435 - val_loss: 182.9590\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 172.9198 - val_loss: 177.9422\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 3s 934us/step - loss: 171.5287 - val_loss: 192.3485\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 3s 903us/step - loss: 172.4014 - val_loss: 186.2052\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 3s 918us/step - loss: 170.8695 - val_loss: 181.6396\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 3s 888us/step - loss: 172.1084 - val_loss: 182.0194\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 171.2380 - val_loss: 177.8610\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 3s 850us/step - loss: 171.8703 - val_loss: 180.6745\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 3s 873us/step - loss: 173.1007 - val_loss: 181.8063\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 3s 872us/step - loss: 170.8098 - val_loss: 200.2979\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 3s 864us/step - loss: 170.9329 - val_loss: 188.3064\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 3s 979us/step - loss: 170.2406 - val_loss: 182.6633\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 3s 867us/step - loss: 171.9134 - val_loss: 178.9104\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 3s 864us/step - loss: 169.3016 - val_loss: 183.2855\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 171.6721 - val_loss: 181.8401\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 175.1569 - val_loss: 179.9021\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 172.8568 - val_loss: 180.3461\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 806us/step - loss: 169.8391 - val_loss: 182.0108\n", "1010/1010 [==============================] - 1s 519us/step - loss: 176.0039\n", "\n", "\n", "\n", "\n", " Model: 22/36, hidden: 3, nodes: 20, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 3s 944us/step - loss: 373.0095 - val_loss: 209.4831\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 3s 891us/step - loss: 204.7001 - val_loss: 195.2514\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 3s 910us/step - loss: 192.8163 - val_loss: 192.4828\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 3s 894us/step - loss: 185.3952 - val_loss: 190.3201\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 185.4623 - val_loss: 185.7713\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 3s 880us/step - loss: 184.8298 - val_loss: 186.4121\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 3s 879us/step - loss: 183.4793 - val_loss: 193.9140\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 3s 874us/step - loss: 183.1955 - val_loss: 183.9363\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 3s 893us/step - loss: 179.7250 - val_loss: 188.5309\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 3s 891us/step - loss: 180.6956 - val_loss: 184.1383\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 3s 886us/step - loss: 178.4414 - val_loss: 181.6641\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 3s 899us/step - loss: 178.5249 - val_loss: 182.1322\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 3s 885us/step - loss: 175.5282 - val_loss: 181.3244\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 3s 864us/step - loss: 179.0215 - val_loss: 183.9399\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 3s 865us/step - loss: 176.1558 - val_loss: 181.0073\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 3s 870us/step - loss: 175.4135 - val_loss: 180.4480\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 3s 871us/step - loss: 174.3704 - val_loss: 179.6054\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 18/1000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 174.7294 - val_loss: 177.7358\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 3s 882us/step - loss: 178.6215 - val_loss: 179.0525\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 3s 864us/step - loss: 173.9878 - val_loss: 185.0832\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 3s 890us/step - loss: 172.5086 - val_loss: 177.7951\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 3s 881us/step - loss: 172.2625 - val_loss: 178.3927\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 3s 881us/step - loss: 175.8317 - val_loss: 177.3757\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 174.6376 - val_loss: 178.3065\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 3s 864us/step - loss: 173.2589 - val_loss: 178.4533\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 172.9169 - val_loss: 179.0227\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 3s 856us/step - loss: 172.7137 - val_loss: 177.7531\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 3s 863us/step - loss: 172.4435 - val_loss: 179.2821\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 3s 868us/step - loss: 171.0554 - val_loss: 177.6764\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 3s 851us/step - loss: 172.7163 - val_loss: 176.1834\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 3s 851us/step - loss: 173.3726 - val_loss: 176.3836\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 172.1615 - val_loss: 175.1564\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 3s 872us/step - loss: 170.5474 - val_loss: 176.2256\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 792us/step - loss: 170.7546 - val_loss: 177.7121\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 803us/step - loss: 172.5810 - val_loss: 178.5480\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 780us/step - loss: 171.4897 - val_loss: 176.9884\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 169.7657 - val_loss: 178.6540\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 168.7169 - val_loss: 174.5028\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 170.0480 - val_loss: 179.2254\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 169.6624 - val_loss: 174.4491\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 171.2279 - val_loss: 177.6633\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 172.9950 - val_loss: 182.3631\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 168.9447 - val_loss: 175.6258\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 170.2566 - val_loss: 175.3376\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 171.3277 - val_loss: 174.9941\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 167.8758 - val_loss: 175.7727\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 166.5831 - val_loss: 173.8934\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 167.4991 - val_loss: 182.2400\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 170.5690 - val_loss: 174.1696\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 3s 850us/step - loss: 168.6025 - val_loss: 173.5675\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 166.6684 - val_loss: 173.7293\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 169.3863 - val_loss: 177.0441\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 790us/step - loss: 167.7515 - val_loss: 173.5737\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 169.2936 - val_loss: 181.4807\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 167.0196 - val_loss: 176.6285\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 166.1017 - val_loss: 182.9250\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 168.3765 - val_loss: 171.9145\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 168.4695 - val_loss: 172.5623\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 170.5229 - val_loss: 173.5754\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 164.9604 - val_loss: 177.4344\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 165.5335 - val_loss: 173.5922\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.6027 - val_loss: 174.2657\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.1944 - val_loss: 177.0441\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.4764 - val_loss: 172.6602\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 165.0167 - val_loss: 173.5369\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 166.0978 - val_loss: 175.2092\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 166.1860 - val_loss: 172.6080\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 164.8398 - val_loss: 172.6285\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.8500 - val_loss: 176.7248\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 164.8409 - val_loss: 173.7742\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 164.6519 - val_loss: 173.3381\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.0404 - val_loss: 174.4700\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.8298 - val_loss: 174.5731\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 165.7398 - val_loss: 171.9666\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.3028 - val_loss: 172.4308\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.7230 - val_loss: 172.9914\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.1672 - val_loss: 172.0472\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.4497 - val_loss: 174.1218\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.2835 - val_loss: 171.1718\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 164.3156 - val_loss: 171.7449\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 165.8098 - val_loss: 174.5293\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 164.4002 - val_loss: 174.2971\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.5172 - val_loss: 171.9998\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 165.5814 - val_loss: 171.5188\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 162.6360 - val_loss: 171.4592\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 161.3689 - val_loss: 171.2828\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 164.6758 - val_loss: 171.8065\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 164.5272 - val_loss: 171.5321\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.9892 - val_loss: 171.6545\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 163.6275 - val_loss: 172.1286\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 165.4328 - val_loss: 172.7616\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 165.5375 - val_loss: 172.3908\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.2524 - val_loss: 171.5096\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.5142 - val_loss: 171.0672\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 163.9220 - val_loss: 173.9906\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 161.4317 - val_loss: 170.6995\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 163.8361 - val_loss: 173.6749\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 166.1229 - val_loss: 176.2371\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 161.8982 - val_loss: 171.2635\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 164.1007 - val_loss: 175.3457\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 163.3756 - val_loss: 177.4016\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.2999 - val_loss: 171.0811\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 163.7367 - val_loss: 170.6645\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 690us/step - loss: 163.2226 - val_loss: 172.5185\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 163.7722 - val_loss: 172.1530\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 162.4707 - val_loss: 173.5257\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 744us/step - loss: 161.0503 - val_loss: 171.5449\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.6215 - val_loss: 172.9756\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 163.1101 - val_loss: 175.4196\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 161.7868 - val_loss: 171.4393\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 164.7817 - val_loss: 171.4274\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 163.4780 - val_loss: 171.6950\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 160.7410 - val_loss: 174.1488\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 164.3875 - val_loss: 172.8522\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.0864 - val_loss: 171.2378\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 160.1373 - val_loss: 173.2068\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 161.1366 - val_loss: 172.8156\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 162.3140 - val_loss: 177.2686\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.7405 - val_loss: 171.4980\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 161.3169 - val_loss: 173.2799\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 162.0333 - val_loss: 172.5860\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 159.9968 - val_loss: 171.0104\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.6970 - val_loss: 170.3735\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 162.0235 - val_loss: 170.6879\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 162.0482 - val_loss: 171.1644\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 162.4664 - val_loss: 171.3456\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 160.7173 - val_loss: 177.7621\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 160.7306 - val_loss: 171.6833\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 3s 860us/step - loss: 161.6939 - val_loss: 171.8697\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 162.2529 - val_loss: 171.0301\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 163.3141 - val_loss: 173.3855\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.5452 - val_loss: 170.8741\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 162.0124 - val_loss: 171.0062\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 161.4879 - val_loss: 171.0512\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 160.5219 - val_loss: 174.0147\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 160.2632 - val_loss: 172.6882\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.4035 - val_loss: 170.4041\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 160.9425 - val_loss: 173.4733\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 160.5158 - val_loss: 172.4349\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 161.1074 - val_loss: 171.6494\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 163.5935 - val_loss: 175.8241\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.2136 - val_loss: 172.0122\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.4579 - val_loss: 176.9970\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 164.7351 - val_loss: 170.8850\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 161.4770 - val_loss: 172.9667\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.5745 - val_loss: 170.5779\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 162.8813 - val_loss: 171.1013\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.2080 - val_loss: 174.9212\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.7196 - val_loss: 171.3983\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 161.1141 - val_loss: 170.8937\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.5730 - val_loss: 171.7618\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 161.4603 - val_loss: 172.3616\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 160.9536 - val_loss: 171.5550\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 796us/step - loss: 160.5617 - val_loss: 169.6822\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 161.5434 - val_loss: 171.0642\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.5955 - val_loss: 170.5547\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 161.0894 - val_loss: 171.5865\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 160.5159 - val_loss: 171.0319\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.4336 - val_loss: 170.7948\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 162.6084 - val_loss: 171.4836\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 162.4197 - val_loss: 170.4191\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 164.8239 - val_loss: 173.1455\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 3s 850us/step - loss: 161.5185 - val_loss: 171.9934\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.7649 - val_loss: 169.7868\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 162.3747 - val_loss: 171.1525\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 159.1688 - val_loss: 170.7252\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 160.7069 - val_loss: 169.4900\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 159.3535 - val_loss: 171.8838\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.3696 - val_loss: 170.9241\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 160.9472 - val_loss: 176.3078\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 160.8097 - val_loss: 168.8650\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 743us/step - loss: 160.6011 - val_loss: 169.1168\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.5470 - val_loss: 169.4706\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 160.7868 - val_loss: 176.0960\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 161.8206 - val_loss: 173.3333\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 160.4595 - val_loss: 169.6020\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 162.0705 - val_loss: 169.7162\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.9305 - val_loss: 170.4286\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 159.8319 - val_loss: 173.0619\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 158.6850 - val_loss: 170.0013\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 159.3082 - val_loss: 170.7031\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 160.8164 - val_loss: 169.0632\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 160.9458 - val_loss: 172.6109\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 159.9329 - val_loss: 170.4866\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 160.0562 - val_loss: 170.4388\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 158.5889 - val_loss: 169.3702\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 159.6022 - val_loss: 180.0316\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 161.2941 - val_loss: 171.1277\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 160.2468 - val_loss: 170.7305\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 160.2759 - val_loss: 169.3246\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.7635 - val_loss: 172.2595\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 160.5118 - val_loss: 169.8139\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 160.8287 - val_loss: 172.2954\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 156.7858 - val_loss: 171.8816\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 160.9880 - val_loss: 170.6769\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.1005 - val_loss: 168.6907\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 160.6876 - val_loss: 169.7582\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.7868 - val_loss: 169.8624\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 159.4566 - val_loss: 170.7748\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.4816 - val_loss: 171.2580\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.8208 - val_loss: 170.1041\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 158.3615 - val_loss: 169.4235\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 160.8431 - val_loss: 169.2908\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 158.8947 - val_loss: 170.1152\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 158.9424 - val_loss: 171.8533\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 159.9977 - val_loss: 170.2154\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 159.4750 - val_loss: 171.3424\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 158.7242 - val_loss: 169.0095\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 158.7109 - val_loss: 169.4701\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 159.6772 - val_loss: 169.8438\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 159.4402 - val_loss: 170.8362\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 158.1221 - val_loss: 169.3510\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 157.3165 - val_loss: 171.9863\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 160.3838 - val_loss: 170.6597\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 159.6536 - val_loss: 171.5016\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 158.9769 - val_loss: 169.2833\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 159.2814 - val_loss: 170.0809\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 157.7242 - val_loss: 169.8085\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 158.4326 - val_loss: 172.5472\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 159.9481 - val_loss: 173.5674\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 157.8479 - val_loss: 172.2791\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 158.5730 - val_loss: 178.1841\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 157.8661 - val_loss: 170.3796\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 158.4538 - val_loss: 167.8306\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 158.0429 - val_loss: 168.8211\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 160.8531 - val_loss: 170.5445\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.3351 - val_loss: 170.6307\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 157.3360 - val_loss: 171.5984\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.7434 - val_loss: 171.4666\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 160.1317 - val_loss: 169.6478\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.7857 - val_loss: 170.2330\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 157.8247 - val_loss: 169.8401\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.1372 - val_loss: 169.6723\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 159.2439 - val_loss: 168.0883\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 158.4619 - val_loss: 171.1935\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 159.2128 - val_loss: 170.5077\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 159.2001 - val_loss: 169.5739\n", "Epoch 238/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 632us/step - loss: 159.1625 - val_loss: 169.7640\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 159.2147 - val_loss: 168.2339\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 159.9285 - val_loss: 170.1822\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 161.8192 - val_loss: 169.3515\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 158.9868 - val_loss: 169.3229\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 158.8006 - val_loss: 171.1193\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 157.2781 - val_loss: 174.5775\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.4042 - val_loss: 170.1347\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.4494 - val_loss: 168.9732\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 158.5785 - val_loss: 168.1552\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 157.0689 - val_loss: 169.7264\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 159.1043 - val_loss: 172.1034\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 158.2676 - val_loss: 170.3299\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 158.1411 - val_loss: 168.6631\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 160.4430 - val_loss: 170.3460\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 157.8085 - val_loss: 170.5101\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 160.9587 - val_loss: 169.2989\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 157.2874 - val_loss: 169.1833\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 157.0794 - val_loss: 168.6663\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 160.6318 - val_loss: 169.0630\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 156.8190 - val_loss: 173.7652\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 773us/step - loss: 160.0458 - val_loss: 170.1939\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 158.3820 - val_loss: 168.0364\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 156.8996 - val_loss: 168.6884\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 159.9775 - val_loss: 172.0571\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 158.8753 - val_loss: 169.5453\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 157.8457 - val_loss: 172.3733\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 157.7727 - val_loss: 169.7152\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 159.8840 - val_loss: 169.8651\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 156.7123 - val_loss: 172.1027\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 158.8111 - val_loss: 173.4421\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 157.0996 - val_loss: 170.1207\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 158.6899 - val_loss: 168.4423\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 158.4197 - val_loss: 168.9458\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 157.4236 - val_loss: 172.3237\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 158.4092 - val_loss: 169.3730\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.1225 - val_loss: 169.9038\n", "1010/1010 [==============================] - 0s 435us/step - loss: 167.8306\n", "\n", "\n", "\n", "\n", " Model: 23/36, hidden: 3, nodes: 20, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 677.7772 - val_loss: 276.3388\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 267.8158 - val_loss: 248.9082\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 243.0764 - val_loss: 234.4875\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 228.7492 - val_loss: 225.8257\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 221.4489 - val_loss: 219.6402\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 214.4076 - val_loss: 214.3843\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 208.4712 - val_loss: 212.7481\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 206.1557 - val_loss: 208.5715\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 204.9181 - val_loss: 206.1823\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 200.5491 - val_loss: 204.4752\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 199.4386 - val_loss: 202.3514\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 199.3857 - val_loss: 200.6013\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 198.5893 - val_loss: 200.2524\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 194.8308 - val_loss: 197.5268\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 194.0094 - val_loss: 196.9070\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 193.5369 - val_loss: 195.9095\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 193.0065 - val_loss: 195.0109\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 191.5785 - val_loss: 193.9524\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 191.6950 - val_loss: 194.7551\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 189.4918 - val_loss: 193.2772\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 188.6043 - val_loss: 192.5123\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 187.2151 - val_loss: 193.2854\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 187.3716 - val_loss: 191.9173\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 188.5885 - val_loss: 192.5838\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 187.4435 - val_loss: 191.9882\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 185.8375 - val_loss: 190.5491\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 185.8803 - val_loss: 190.4357\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 187.1019 - val_loss: 190.0344\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 185.6679 - val_loss: 190.8017\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 186.7121 - val_loss: 190.2503\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 186.1971 - val_loss: 190.0413\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 185.5221 - val_loss: 190.0733\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 186.3972 - val_loss: 188.8443\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 186.5019 - val_loss: 189.8502\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 185.5591 - val_loss: 188.8860\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 185.1181 - val_loss: 189.9917\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 185.2000 - val_loss: 188.7903\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 183.1859 - val_loss: 188.1472\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 185.4616 - val_loss: 187.9704\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 182.0180 - val_loss: 187.5842\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 183.5721 - val_loss: 187.7035\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 182.4065 - val_loss: 187.1298\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 181.8151 - val_loss: 186.9664\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 182.9636 - val_loss: 186.3574\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 183.8337 - val_loss: 187.2815\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 181.5165 - val_loss: 187.7908\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 183.6321 - val_loss: 186.8504\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 180.0490 - val_loss: 186.0575\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 181.6746 - val_loss: 186.3272\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 180.5055 - val_loss: 187.0136\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 183.5098 - val_loss: 185.7800\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 180.0484 - val_loss: 185.6633\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 182.3900 - val_loss: 185.7691\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 179.1859 - val_loss: 185.7156\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 179.1847 - val_loss: 186.0181\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 179.6462 - val_loss: 185.2906\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 180.5789 - val_loss: 185.5041\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 180.8560 - val_loss: 185.1179\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 180.2387 - val_loss: 185.3359\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 179.5470 - val_loss: 185.4532\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 181.9457 - val_loss: 184.7069\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 179.6057 - val_loss: 184.4518\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 180.7268 - val_loss: 184.1208\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 177.9717 - val_loss: 184.7382\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 177.8485 - val_loss: 184.0900\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 180.2015 - val_loss: 184.2616\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 177.3294 - val_loss: 184.4193\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 180.3072 - val_loss: 184.1020\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 178.8602 - val_loss: 183.4255\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 179.0511 - val_loss: 183.7289\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 181.2998 - val_loss: 184.1910\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 177.6389 - val_loss: 183.8987\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 182.7472 - val_loss: 184.1683\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 177.3409 - val_loss: 183.8690\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 178.9888 - val_loss: 182.9897\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 178.5480 - val_loss: 182.8230\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 178.3665 - val_loss: 182.4919\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 177.2104 - val_loss: 183.3038\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 176.3694 - val_loss: 182.6890\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 175.5725 - val_loss: 182.5025\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 179.2823 - val_loss: 183.6278\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 178.9822 - val_loss: 182.4187\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 178.6370 - val_loss: 182.3994\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 178.5081 - val_loss: 182.4095\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 176.8978 - val_loss: 182.8894\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 178.2047 - val_loss: 182.0569\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 177.8121 - val_loss: 181.8622\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 178.2865 - val_loss: 182.2046\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 178.0898 - val_loss: 182.0704\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 175.6319 - val_loss: 182.1350\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 175.7329 - val_loss: 181.4987\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 177.1535 - val_loss: 181.5859\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 177.1858 - val_loss: 181.7432\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 175.7258 - val_loss: 182.1406\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 176.9892 - val_loss: 181.8453\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 176.6191 - val_loss: 181.7984\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 176.0759 - val_loss: 181.3832\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 176.6511 - val_loss: 180.8800\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 174.4418 - val_loss: 181.2588\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 175.9946 - val_loss: 181.2429\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 176.3527 - val_loss: 181.8470\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 174.3252 - val_loss: 181.8684\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 172.8696 - val_loss: 181.1003\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 176.7196 - val_loss: 181.1643\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 176.3853 - val_loss: 180.4600\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 174.1833 - val_loss: 180.4988\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 176.4326 - val_loss: 181.5310\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 174.6586 - val_loss: 181.3966\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 174.9006 - val_loss: 180.3068\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 175.2105 - val_loss: 181.1829\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 175.3551 - val_loss: 179.9722\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 176.5760 - val_loss: 180.5101\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 175.6263 - val_loss: 180.7671\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 173.5275 - val_loss: 180.5034\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 174.6702 - val_loss: 180.0718\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 172.6630 - val_loss: 180.4199\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 174.8676 - val_loss: 180.7940\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 174.7282 - val_loss: 180.0576\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 176.6595 - val_loss: 180.5093\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 174.0394 - val_loss: 179.7976\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 175.8067 - val_loss: 180.4855\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 175.1581 - val_loss: 179.4360\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 173.7517 - val_loss: 179.8346\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 785us/step - loss: 175.1971 - val_loss: 179.8649\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 174.3905 - val_loss: 179.6501\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 174.5936 - val_loss: 179.9064\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 173.8820 - val_loss: 179.6181\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 175.6273 - val_loss: 179.4235\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 173.6406 - val_loss: 179.7877\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 174.2181 - val_loss: 179.6056\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 172.4930 - val_loss: 181.8938\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 174.9589 - val_loss: 179.2339\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 172.3493 - val_loss: 179.2031\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 172.1235 - val_loss: 179.1219\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 173.5306 - val_loss: 178.8964\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 172.9617 - val_loss: 178.7743\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 174.9736 - val_loss: 178.6366\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 173.6650 - val_loss: 178.8824\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 754us/step - loss: 173.8267 - val_loss: 179.5188\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 172.6151 - val_loss: 179.2024\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 173.2138 - val_loss: 179.0959\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 172.8898 - val_loss: 178.8145\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 172.8987 - val_loss: 178.7406\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 172.7527 - val_loss: 179.0113\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 171.4921 - val_loss: 178.4324\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 171.1531 - val_loss: 178.1721\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 173.9275 - val_loss: 178.0916\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 172.2535 - val_loss: 178.7063\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 171.8722 - val_loss: 178.4203\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 172.3372 - val_loss: 178.0273\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 172.0028 - val_loss: 177.9514\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 172.3635 - val_loss: 178.2387\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 171.6585 - val_loss: 178.0105\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 170.4689 - val_loss: 178.3365\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 172.2974 - val_loss: 178.0925\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 174.1092 - val_loss: 177.7851\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 173.5946 - val_loss: 178.3206\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 170.7783 - val_loss: 178.0979\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 171.7018 - val_loss: 178.4009\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 170.8456 - val_loss: 179.7297\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 171.3302 - val_loss: 177.8757\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 171.9867 - val_loss: 178.3246\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 171.8961 - val_loss: 177.9454\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 169.6817 - val_loss: 178.0559\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 171.3989 - val_loss: 177.5834\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 173.8683 - val_loss: 178.3351\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 171.2991 - val_loss: 177.3796\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 171.8820 - val_loss: 177.9200\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 171.3976 - val_loss: 177.3517\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 170.3269 - val_loss: 177.6269\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 171.2972 - val_loss: 177.1388\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 170.4454 - val_loss: 177.4488\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 173.2231 - val_loss: 177.1212\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 170.8744 - val_loss: 177.4106\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 171.2847 - val_loss: 177.3758\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 171.3112 - val_loss: 177.1858\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 171.5203 - val_loss: 177.0713\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 168.7710 - val_loss: 176.9532\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 169.8619 - val_loss: 177.0562\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 171.5437 - val_loss: 176.9820\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 170.6427 - val_loss: 178.1838\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 173.1934 - val_loss: 176.9370\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 172.7273 - val_loss: 176.7112\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 171.6510 - val_loss: 178.5692\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 168.8448 - val_loss: 176.3702\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 171.4162 - val_loss: 178.4762\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 167.8138 - val_loss: 176.4576\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.7630 - val_loss: 176.1448\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 170.0252 - val_loss: 176.3548\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 168.4930 - val_loss: 176.9384\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 170.3398 - val_loss: 175.8738\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 171.4088 - val_loss: 175.9968\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 171.5935 - val_loss: 177.8248\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.5804 - val_loss: 175.6500\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 167.8719 - val_loss: 175.8178\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 168.8731 - val_loss: 176.4421\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 169.4619 - val_loss: 176.2592\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 169.2407 - val_loss: 175.4298\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 170.7184 - val_loss: 176.1161\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.0804 - val_loss: 175.9313\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 170.3617 - val_loss: 175.3248\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.3631 - val_loss: 175.7435\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.0388 - val_loss: 175.4686\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 168.3364 - val_loss: 175.9206\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 169.0455 - val_loss: 175.6955\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.2668 - val_loss: 175.3520\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 168.4138 - val_loss: 175.4616\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 168.7642 - val_loss: 175.3377\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 168.7293 - val_loss: 175.0984\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 170.0997 - val_loss: 176.1603\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 168.8801 - val_loss: 174.9687\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 168.0822 - val_loss: 175.3684\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 167.4035 - val_loss: 174.8952\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.7700 - val_loss: 175.3916\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 170.1252 - val_loss: 174.8838\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 169.5709 - val_loss: 174.5791\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 169.8607 - val_loss: 175.0665\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.6304 - val_loss: 175.1542\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 168.2112 - val_loss: 174.8598\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.2149 - val_loss: 175.2979\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 168.5218 - val_loss: 175.1478\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 168.4920 - val_loss: 176.2250\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.3917 - val_loss: 175.1760\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.0484 - val_loss: 175.0955\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.1666 - val_loss: 174.3619\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 168.0764 - val_loss: 175.3077\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 167.3370 - val_loss: 174.7729\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 167.9678 - val_loss: 174.3646\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 166.9562 - val_loss: 175.6912\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 168.0176 - val_loss: 174.3758\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.4520 - val_loss: 174.5770\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.9330 - val_loss: 175.2076\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 167.6950 - val_loss: 174.7396\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 168.7603 - val_loss: 174.1417\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 168.4707 - val_loss: 174.4891\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.4409 - val_loss: 174.0363\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.3246 - val_loss: 173.8629\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.4891 - val_loss: 174.4577\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 167.2333 - val_loss: 175.1722\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.4615 - val_loss: 173.7517\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 170.1917 - val_loss: 174.4570\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.1005 - val_loss: 174.7445\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.8632 - val_loss: 174.9473\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 163.9151 - val_loss: 173.8468\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.7566 - val_loss: 173.4009\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.2520 - val_loss: 174.7700\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 167.1633 - val_loss: 174.3018\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 168.4947 - val_loss: 173.3871\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 166.0430 - val_loss: 174.0386\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.8755 - val_loss: 174.2103\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.5276 - val_loss: 173.6037\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 761us/step - loss: 166.8479 - val_loss: 173.3667\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 3s 912us/step - loss: 167.7502 - val_loss: 173.6354\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 166.8571 - val_loss: 173.7428\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.3297 - val_loss: 173.5301\n", "Epoch 256/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 674us/step - loss: 166.0822 - val_loss: 174.6570\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 166.4396 - val_loss: 173.2442\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 165.1623 - val_loss: 174.2155\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.5373 - val_loss: 174.1133\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 163.9185 - val_loss: 173.1496\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 785us/step - loss: 165.1144 - val_loss: 173.7327\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 168.5053 - val_loss: 173.3831\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 165.8568 - val_loss: 173.8599\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 167.6711 - val_loss: 173.5436\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.6880 - val_loss: 173.1997\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 167.8464 - val_loss: 173.4527\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 164.2910 - val_loss: 173.9326\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.4540 - val_loss: 173.3155\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 166.3241 - val_loss: 172.8742\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 166.0542 - val_loss: 173.7829\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 166.9143 - val_loss: 174.1317\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 166.5289 - val_loss: 173.0411\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.9394 - val_loss: 175.1887\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 165.1701 - val_loss: 173.3174\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.3322 - val_loss: 172.9661\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.8794 - val_loss: 174.9612\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 167.0702 - val_loss: 173.4663\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 165.4012 - val_loss: 173.1269\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.3035 - val_loss: 173.5246\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 166.0696 - val_loss: 173.2159\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.6685 - val_loss: 173.9627\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 168.3018 - val_loss: 174.1525\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 167.1202 - val_loss: 173.3691\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 166.1538 - val_loss: 173.1872\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.1496 - val_loss: 173.5708\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.6130 - val_loss: 173.8423\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 167.2564 - val_loss: 173.2127\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 165.7392 - val_loss: 173.5305\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 167.3660 - val_loss: 173.2432\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 163.8055 - val_loss: 172.5576\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 165.5169 - val_loss: 173.2390\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 760us/step - loss: 166.5130 - val_loss: 172.7747\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 817us/step - loss: 165.8614 - val_loss: 173.0548\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 809us/step - loss: 165.3133 - val_loss: 176.4984\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 166.7131 - val_loss: 172.8814\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.1197 - val_loss: 173.6348\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.7018 - val_loss: 173.3702\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.3796 - val_loss: 172.8269\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 164.3460 - val_loss: 173.0448\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.3051 - val_loss: 173.0873\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.3998 - val_loss: 173.4887\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 164.1368 - val_loss: 174.2209\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 163.9551 - val_loss: 173.6016\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 167.3836 - val_loss: 172.6611\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.6688 - val_loss: 173.3174\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.5970 - val_loss: 172.7177\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.1559 - val_loss: 172.7703\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.3338 - val_loss: 172.8234\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.6477 - val_loss: 173.7349\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.4254 - val_loss: 172.3689\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 164.4948 - val_loss: 172.3232\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.0890 - val_loss: 172.2546\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 165.2363 - val_loss: 172.4467\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.1868 - val_loss: 171.9362\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 165.2297 - val_loss: 174.1710\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 164.3837 - val_loss: 172.3853\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 161.8927 - val_loss: 173.3401\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.7962 - val_loss: 173.4566\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 628us/step - loss: 161.9773 - val_loss: 174.2591\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.3734 - val_loss: 172.6989\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 164.6116 - val_loss: 172.1584\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 167.1952 - val_loss: 172.9676\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.4284 - val_loss: 172.7580\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.7392 - val_loss: 173.6784\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 163.9088 - val_loss: 171.9667\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.7513 - val_loss: 173.1980\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.9387 - val_loss: 172.9299\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.3342 - val_loss: 172.3463\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 163.8794 - val_loss: 172.5303\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 164.7142 - val_loss: 171.7860\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.2621 - val_loss: 172.1987\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.9372 - val_loss: 172.0208\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.7134 - val_loss: 171.9847\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.1379 - val_loss: 172.2420\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.0782 - val_loss: 172.5328\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 163.3783 - val_loss: 172.8360\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 164.7135 - val_loss: 171.7392\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 163.8901 - val_loss: 171.8454\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 163.7220 - val_loss: 172.6728\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 163.8590 - val_loss: 172.0096\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 164.0617 - val_loss: 172.0462\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 164.3602 - val_loss: 171.9087\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.5096 - val_loss: 171.6883\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.2791 - val_loss: 172.3226\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.2647 - val_loss: 172.3328\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 165.0329 - val_loss: 172.2066\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.4624 - val_loss: 172.0587\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.8998 - val_loss: 173.5903\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.6973 - val_loss: 172.4262\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 164.0069 - val_loss: 172.0272\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.7124 - val_loss: 177.0586\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 164.1710 - val_loss: 171.7098\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 163.5317 - val_loss: 172.5899\n", "Epoch 354/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.5008 - val_loss: 172.1295\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 165.6443 - val_loss: 171.7190\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.1091 - val_loss: 172.5554\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.8625 - val_loss: 171.8656\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.9559 - val_loss: 172.8917\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 166.7206 - val_loss: 172.6096\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 164.2468 - val_loss: 172.0361\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 164.5649 - val_loss: 172.2459\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.0666 - val_loss: 172.1781\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.9014 - val_loss: 172.3365\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 162.6556 - val_loss: 171.7868\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.6366 - val_loss: 172.4999\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 629us/step - loss: 164.1032 - val_loss: 172.0662\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.9020 - val_loss: 172.2278\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 162.0166 - val_loss: 172.1672\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.8533 - val_loss: 171.6158\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 163.2112 - val_loss: 172.7196\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.4254 - val_loss: 172.1372\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.1049 - val_loss: 172.3157\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.6437 - val_loss: 172.4646\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 163.9798 - val_loss: 172.0173\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.3085 - val_loss: 174.0000\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.0157 - val_loss: 172.8276\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 163.8071 - val_loss: 171.5026\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.3189 - val_loss: 172.2621\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.2517 - val_loss: 171.7063\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 164.8358 - val_loss: 172.8831\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.9824 - val_loss: 171.4026\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.4724 - val_loss: 171.1603\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 163.3247 - val_loss: 171.1251\n", "Epoch 384/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.7814 - val_loss: 171.6247\n", "Epoch 385/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 164.0683 - val_loss: 171.6933\n", "Epoch 386/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.6990 - val_loss: 171.7158\n", "Epoch 387/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 163.8432 - val_loss: 172.7421\n", "Epoch 388/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.1463 - val_loss: 171.5490\n", "Epoch 389/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.2897 - val_loss: 172.1375\n", "Epoch 390/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 162.0199 - val_loss: 171.7400\n", "Epoch 391/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 165.5299 - val_loss: 172.6476\n", "Epoch 392/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 164.9057 - val_loss: 173.2946\n", "Epoch 393/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.8215 - val_loss: 172.1734\n", "Epoch 394/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 163.5816 - val_loss: 171.7008\n", "Epoch 395/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 163.8478 - val_loss: 171.5404\n", "Epoch 396/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.5686 - val_loss: 172.0241\n", "Epoch 397/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.7912 - val_loss: 171.4923\n", "Epoch 398/1000\n", "3028/3028 [==============================] - 2s 778us/step - loss: 164.6631 - val_loss: 173.3547\n", "Epoch 399/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 161.3216 - val_loss: 171.3146\n", "Epoch 400/1000\n", "3028/3028 [==============================] - 2s 777us/step - loss: 165.3029 - val_loss: 171.3895\n", "Epoch 401/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 164.5468 - val_loss: 172.4102\n", "Epoch 402/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 637us/step - loss: 167.2649 - val_loss: 171.3271\n", "Epoch 403/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.5639 - val_loss: 171.6750\n", "Epoch 404/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.4086 - val_loss: 173.3421\n", "Epoch 405/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 163.1237 - val_loss: 171.7752\n", "Epoch 406/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 164.9381 - val_loss: 172.5936\n", "Epoch 407/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.7336 - val_loss: 170.9530\n", "Epoch 408/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 163.7117 - val_loss: 171.0558\n", "Epoch 409/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.3615 - val_loss: 175.2127\n", "Epoch 410/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.7750 - val_loss: 171.0585\n", "Epoch 411/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 162.5892 - val_loss: 171.6161\n", "Epoch 412/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 162.9152 - val_loss: 171.3653\n", "Epoch 413/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 164.0849 - val_loss: 171.1477\n", "Epoch 414/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.6048 - val_loss: 171.3491\n", "Epoch 415/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 162.6614 - val_loss: 171.4169\n", "Epoch 416/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 162.5087 - val_loss: 171.3676\n", "Epoch 417/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 163.5399 - val_loss: 171.5095\n", "Epoch 418/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.0949 - val_loss: 171.7383\n", "Epoch 419/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 163.3444 - val_loss: 171.6942\n", "Epoch 420/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 165.2249 - val_loss: 171.4642\n", "Epoch 421/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.9084 - val_loss: 171.3699\n", "Epoch 422/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 161.9887 - val_loss: 171.7439\n", "Epoch 423/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 162.7064 - val_loss: 171.6172\n", "Epoch 424/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 163.9717 - val_loss: 171.6977\n", "Epoch 425/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 163.2282 - val_loss: 171.2526\n", "Epoch 426/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 163.6235 - val_loss: 171.8470\n", "Epoch 427/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.0011 - val_loss: 171.2716\n", "Epoch 428/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 164.1069 - val_loss: 171.3277\n", "Epoch 429/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 164.0747 - val_loss: 171.0750\n", "Epoch 430/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.2771 - val_loss: 170.9120\n", "Epoch 431/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 163.6782 - val_loss: 171.5459\n", "Epoch 432/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 160.8432 - val_loss: 170.7644\n", "Epoch 433/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 161.3372 - val_loss: 171.6943\n", "Epoch 434/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 162.0910 - val_loss: 171.2606\n", "Epoch 435/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 163.3870 - val_loss: 171.6707\n", "Epoch 436/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.3697 - val_loss: 171.2381\n", "Epoch 437/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.3430 - val_loss: 171.4259\n", "Epoch 438/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 162.2481 - val_loss: 171.6306\n", "Epoch 439/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 161.7596 - val_loss: 171.4693\n", "Epoch 440/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.2378 - val_loss: 171.4958\n", "Epoch 441/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 163.3948 - val_loss: 170.9572\n", "Epoch 442/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 163.4610 - val_loss: 171.2874\n", "Epoch 443/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.2280 - val_loss: 171.5133\n", "Epoch 444/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.0434 - val_loss: 171.8088\n", "Epoch 445/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 160.7707 - val_loss: 171.0241\n", "Epoch 446/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.9761 - val_loss: 171.0833\n", "Epoch 447/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 162.9937 - val_loss: 170.9745\n", "Epoch 448/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 163.6736 - val_loss: 170.8887\n", "Epoch 449/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 162.6357 - val_loss: 170.9351\n", "Epoch 450/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 164.8092 - val_loss: 171.9611\n", "Epoch 451/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 162.6380 - val_loss: 171.3465\n", "Epoch 452/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 163.0104 - val_loss: 171.4744\n", "Epoch 453/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 165.0978 - val_loss: 171.9088\n", "Epoch 454/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.0323 - val_loss: 170.8768\n", "Epoch 455/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 163.1926 - val_loss: 171.0394\n", "Epoch 456/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 163.5413 - val_loss: 170.9573\n", "Epoch 457/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.3998 - val_loss: 171.0095\n", "Epoch 458/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 163.5444 - val_loss: 171.5473\n", "Epoch 459/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.0755 - val_loss: 170.7411\n", "Epoch 460/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 165.1681 - val_loss: 171.5598\n", "Epoch 461/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 160.8687 - val_loss: 171.4693\n", "Epoch 462/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.9482 - val_loss: 171.1995\n", "Epoch 463/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 160.5934 - val_loss: 171.4209\n", "Epoch 464/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.7057 - val_loss: 170.8115\n", "Epoch 465/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 160.8999 - val_loss: 170.8764\n", "Epoch 466/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 161.7384 - val_loss: 171.3241\n", "Epoch 467/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 162.3889 - val_loss: 171.0075\n", "Epoch 468/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 162.8984 - val_loss: 170.4497\n", "Epoch 469/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 162.9698 - val_loss: 172.0689\n", "Epoch 470/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 161.1801 - val_loss: 171.5880\n", "Epoch 471/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 160.6839 - val_loss: 171.4917\n", "Epoch 472/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 161.9177 - val_loss: 171.2018\n", "Epoch 473/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 163.3160 - val_loss: 170.6836\n", "Epoch 474/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.4308 - val_loss: 170.1587\n", "Epoch 475/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 161.7704 - val_loss: 170.8356\n", "Epoch 476/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 160.9334 - val_loss: 171.1223\n", "Epoch 477/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 162.2417 - val_loss: 170.1300\n", "Epoch 478/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 162.4294 - val_loss: 170.9483\n", "Epoch 479/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 163.4768 - val_loss: 171.3191\n", "Epoch 480/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.0026 - val_loss: 171.2290\n", "Epoch 481/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 163.5737 - val_loss: 171.3640\n", "Epoch 482/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 161.3872 - val_loss: 171.0097\n", "Epoch 483/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 164.1231 - val_loss: 170.8540\n", "Epoch 484/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 161.0800 - val_loss: 170.3712\n", "Epoch 485/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.6434 - val_loss: 171.9064\n", "Epoch 486/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 162.0662 - val_loss: 170.8630\n", "Epoch 487/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 162.6979 - val_loss: 171.6313\n", "Epoch 488/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 160.6551 - val_loss: 170.3465\n", "Epoch 489/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 160.4453 - val_loss: 172.0545\n", "Epoch 490/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.5901 - val_loss: 171.4948\n", "Epoch 491/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 161.8599 - val_loss: 170.8887\n", "Epoch 492/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 161.7482 - val_loss: 171.0860\n", "Epoch 493/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 163.0220 - val_loss: 172.1656\n", "Epoch 494/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 165.2786 - val_loss: 170.6534\n", "Epoch 495/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.0472 - val_loss: 170.6113\n", "Epoch 496/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.2214 - val_loss: 171.2161\n", "Epoch 497/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 162.1907 - val_loss: 171.1264\n", "Epoch 498/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 160.1329 - val_loss: 170.2057\n", "Epoch 499/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 163.6929 - val_loss: 170.5144\n", "Epoch 500/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 160.7234 - val_loss: 171.9501\n", "Epoch 501/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 161.3402 - val_loss: 170.3769\n", "Epoch 502/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 160.6044 - val_loss: 171.2143\n", "Epoch 503/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 161.6279 - val_loss: 171.1595\n", "Epoch 504/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 165.4855 - val_loss: 170.9935\n", "Epoch 505/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 162.7801 - val_loss: 170.8494\n", "Epoch 506/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 162.7782 - val_loss: 170.5014\n", "Epoch 507/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 162.4692 - val_loss: 170.2076\n", "Epoch 508/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 160.3685 - val_loss: 170.4033\n", "Epoch 509/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 162.1844 - val_loss: 170.8539\n", "Epoch 510/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 161.9788 - val_loss: 171.4015\n", "Epoch 511/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 161.8954 - val_loss: 172.9405\n", "Epoch 512/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 162.2644 - val_loss: 170.6810\n", "Epoch 513/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 164.1813 - val_loss: 170.8897\n", "Epoch 514/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 163.3035 - val_loss: 170.8468\n", "Epoch 515/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 161.5566 - val_loss: 170.9312\n", "Epoch 516/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.2459 - val_loss: 171.2030\n", "Epoch 517/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 160.8452 - val_loss: 170.4723\n", "Epoch 518/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 160.5432 - val_loss: 170.7621\n", "Epoch 519/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 163.0068 - val_loss: 171.2957\n", "Epoch 520/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 161.9974 - val_loss: 170.6475\n", "Epoch 521/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 160.1070 - val_loss: 171.1186\n", "Epoch 522/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 162.3875 - val_loss: 170.5498\n", "Epoch 523/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 161.3306 - val_loss: 170.5048\n", "Epoch 524/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 160.5438 - val_loss: 171.8994\n", "Epoch 525/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 158.3180 - val_loss: 170.7707\n", "Epoch 526/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.7359 - val_loss: 171.4362\n", "Epoch 527/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 160.8661 - val_loss: 170.6454\n", "1010/1010 [==============================] - 0s 434us/step - loss: 170.1300\n", "\n", "\n", "\n", "\n", " Model: 24/36, hidden: 3, nodes: 25, lr: 0.001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 242.0768 - val_loss: 195.0252\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 191.7216 - val_loss: 193.5023\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 184.9840 - val_loss: 194.0124\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 182.4969 - val_loss: 186.4469\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 3s 826us/step - loss: 178.2443 - val_loss: 184.1612\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 178.2884 - val_loss: 181.8389\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 178.8347 - val_loss: 183.3297\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 176.0333 - val_loss: 183.1505\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 178.2735 - val_loss: 189.9829\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 176.0281 - val_loss: 183.3289\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 174.4548 - val_loss: 184.4196\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 173.3754 - val_loss: 180.5998\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 174.8399 - val_loss: 190.2920\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 175.3094 - val_loss: 181.9662\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 175.6836 - val_loss: 183.8559\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 174.4293 - val_loss: 181.7095\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 175.3745 - val_loss: 185.1326\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 173.6762 - val_loss: 179.0069\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 172.4864 - val_loss: 180.7156\n", "Epoch 20/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 648us/step - loss: 171.6724 - val_loss: 178.9677\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.5707 - val_loss: 180.0865\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 172.4718 - val_loss: 181.4673\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.9445 - val_loss: 176.6502\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 170.6630 - val_loss: 177.0709\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.5965 - val_loss: 176.4151\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.5290 - val_loss: 183.7797\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 169.5912 - val_loss: 185.2915\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.3478 - val_loss: 180.5626\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 170.6235 - val_loss: 180.9132\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 170.3743 - val_loss: 177.0720\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.5631 - val_loss: 178.9831\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.8997 - val_loss: 195.6852\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.9737 - val_loss: 179.2373\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.6718 - val_loss: 185.8435\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 169.6465 - val_loss: 200.3648\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 168.0570 - val_loss: 178.2546\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.4518 - val_loss: 181.5282\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.9650 - val_loss: 188.4277\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 168.9470 - val_loss: 186.3544\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 168.7392 - val_loss: 181.6284\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 702us/step - loss: 169.5267 - val_loss: 180.7666\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.5467 - val_loss: 177.8895\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 169.0333 - val_loss: 177.5366\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 168.9189 - val_loss: 174.0066\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 167.1831 - val_loss: 191.1678\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 167.7766 - val_loss: 175.4585\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.3263 - val_loss: 179.3755\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 168.4769 - val_loss: 179.0197\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.7976 - val_loss: 177.4816\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 167.7365 - val_loss: 188.5087\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 166.6713 - val_loss: 192.6832\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 169.3845 - val_loss: 180.7715\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.0789 - val_loss: 176.6587\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.0942 - val_loss: 208.0172\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 167.2232 - val_loss: 173.0401\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 166.9353 - val_loss: 186.1666\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 168.7517 - val_loss: 181.8519\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 169.7350 - val_loss: 177.8234\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.8068 - val_loss: 175.4683\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.0590 - val_loss: 173.5439\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.8482 - val_loss: 179.7261\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 167.2407 - val_loss: 179.7363\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.0905 - val_loss: 181.6554\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.5609 - val_loss: 182.1880\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 169.5014 - val_loss: 181.2464\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 166.2273 - val_loss: 180.9614\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.5563 - val_loss: 188.5476\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 165.5817 - val_loss: 178.7448\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 164.8179 - val_loss: 192.5189\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 166.4572 - val_loss: 179.9852\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 166.0932 - val_loss: 183.3580\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.3172 - val_loss: 184.6635\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 165.8685 - val_loss: 180.8286\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 168.6527 - val_loss: 182.2976\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 771us/step - loss: 166.1983 - val_loss: 178.3629\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 165.4328 - val_loss: 182.0922\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 165.4765 - val_loss: 185.1328\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.8815 - val_loss: 182.2881\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.4775 - val_loss: 182.7271\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.7712 - val_loss: 179.1204\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 163.9418 - val_loss: 177.3885\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.8609 - val_loss: 178.5622\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 165.0061 - val_loss: 186.3654\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 163.7255 - val_loss: 197.7775\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 164.5081 - val_loss: 177.3062\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 168.5432 - val_loss: 185.1426\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 167.0071 - val_loss: 177.1157\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 165.3864 - val_loss: 180.2263\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 167.6567 - val_loss: 194.5812\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 165.3146 - val_loss: 179.2149\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.0482 - val_loss: 182.6255\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.1191 - val_loss: 188.3126\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 171.7582 - val_loss: 181.3431\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 164.4112 - val_loss: 182.2530\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 163.0621 - val_loss: 181.0949\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.6209 - val_loss: 176.0101\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.5419 - val_loss: 196.1778\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 162.3306 - val_loss: 176.9120\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.7397 - val_loss: 187.0291\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 167.9205 - val_loss: 174.6899\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 163.8009 - val_loss: 190.7738\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 163.9890 - val_loss: 180.6189\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 164.2506 - val_loss: 188.5762\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 164.9241 - val_loss: 176.3317\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 163.0080 - val_loss: 174.1554\n", "1010/1010 [==============================] - 0s 432us/step - loss: 173.0401\n", "\n", "\n", "\n", "\n", " Model: 25/36, hidden: 3, nodes: 25, lr: 0.0001,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 346.0562 - val_loss: 203.9825\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 197.0002 - val_loss: 201.7692\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 188.8138 - val_loss: 191.2502\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 185.6188 - val_loss: 186.3476\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 183.7299 - val_loss: 187.2635\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 181.4101 - val_loss: 183.7223\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 177.9463 - val_loss: 187.4372\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 178.2440 - val_loss: 188.2663\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 176.6858 - val_loss: 181.8950\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 177.9819 - val_loss: 182.8660\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 177.6003 - val_loss: 179.3034\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 174.4265 - val_loss: 182.5353\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 174.2174 - val_loss: 181.8283\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 172.6529 - val_loss: 184.3628\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 172.8144 - val_loss: 180.0942\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 175.3755 - val_loss: 181.5611\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 170.9608 - val_loss: 180.1426\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 170.8561 - val_loss: 183.5638\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 173.8256 - val_loss: 179.1672\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 170.7034 - val_loss: 178.8107\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 172.7465 - val_loss: 181.1875\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.2937 - val_loss: 178.8687\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 171.8691 - val_loss: 179.7714\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 170.4635 - val_loss: 179.0113\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 171.7915 - val_loss: 182.9211\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 173.3087 - val_loss: 178.7458\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 172.3172 - val_loss: 176.8212\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 170.2706 - val_loss: 180.6407\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 168.1264 - val_loss: 179.2396\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 168.5196 - val_loss: 179.1942\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 169.3017 - val_loss: 175.6259\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 169.8260 - val_loss: 176.5846\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 169.5632 - val_loss: 176.9006\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 169.7006 - val_loss: 175.9411\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 167.6911 - val_loss: 175.3623\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 166.1720 - val_loss: 179.2312\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 167.8219 - val_loss: 176.0425\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 167.1518 - val_loss: 183.7238\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 167.4999 - val_loss: 174.9450\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 167.7908 - val_loss: 175.3221\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 166.8801 - val_loss: 180.0377\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 168.5576 - val_loss: 176.2770\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 168.8855 - val_loss: 175.8676\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 168.1463 - val_loss: 174.5934\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.8964 - val_loss: 175.1728\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.9355 - val_loss: 176.8101\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 165.4320 - val_loss: 174.8391\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.1321 - val_loss: 174.9489\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 166.6883 - val_loss: 176.2061\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 165.6480 - val_loss: 175.1640\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 165.1511 - val_loss: 173.6598\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 164.8702 - val_loss: 173.6565\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 163.6572 - val_loss: 179.0954\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 167.2931 - val_loss: 173.6550\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 163.6620 - val_loss: 176.7555\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 164.3946 - val_loss: 174.2909\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 165.0804 - val_loss: 175.5144\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 165.9855 - val_loss: 176.8849\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.2304 - val_loss: 175.7763\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.8445 - val_loss: 176.7679\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.0367 - val_loss: 173.5393\n", "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 163.4011 - val_loss: 175.6638\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.2801 - val_loss: 173.5977\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 163.5749 - val_loss: 174.7699\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.6817 - val_loss: 172.8891\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 163.5580 - val_loss: 176.3507\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 788us/step - loss: 166.3723 - val_loss: 172.4958\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.5936 - val_loss: 172.0630\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 163.3332 - val_loss: 173.8896\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 164.8869 - val_loss: 173.7259\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 165.5900 - val_loss: 181.7790\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 163.1201 - val_loss: 172.4468\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 163.1973 - val_loss: 173.1521\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 163.4047 - val_loss: 175.3276\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.3061 - val_loss: 173.6132\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 163.5737 - val_loss: 175.6698\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 164.2319 - val_loss: 171.9069\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.3613 - val_loss: 175.3692\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 162.0215 - val_loss: 178.6907\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 162.4645 - val_loss: 173.9833\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 163.6847 - val_loss: 176.8602\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 162.8863 - val_loss: 171.9083\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 160.5048 - val_loss: 172.2487\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.2180 - val_loss: 173.4406\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 163.5187 - val_loss: 171.1094\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 162.3774 - val_loss: 173.7181\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 162.5391 - val_loss: 172.7253\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 162.6072 - val_loss: 172.7178\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.8468 - val_loss: 172.9955\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 162.6998 - val_loss: 171.7783\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 164.4297 - val_loss: 171.6852\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.4162 - val_loss: 174.1010\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 162.0600 - val_loss: 175.7376\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.3209 - val_loss: 176.6292\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.5253 - val_loss: 171.8615\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 159.9281 - val_loss: 171.4449\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 159.8301 - val_loss: 170.6522\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 162.6900 - val_loss: 173.8161\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 161.7036 - val_loss: 171.0075\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 162.3600 - val_loss: 171.0697\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 160.9922 - val_loss: 174.0716\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 161.3197 - val_loss: 171.3903\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 160.9024 - val_loss: 174.5050\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 159.9234 - val_loss: 171.9059\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 159.3071 - val_loss: 171.7849\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 162.3692 - val_loss: 172.6305\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 163.5774 - val_loss: 170.6745\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 159.4753 - val_loss: 171.0936\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 161.1518 - val_loss: 171.8185\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 162.3316 - val_loss: 171.0097\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.2571 - val_loss: 171.0329\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 161.3847 - val_loss: 171.1294\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 160.1529 - val_loss: 175.4295\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 158.3571 - val_loss: 172.5604\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 162.2731 - val_loss: 172.8010\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 160.5752 - val_loss: 173.7877\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 159.7625 - val_loss: 172.4263\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 660us/step - loss: 160.1762 - val_loss: 171.3665\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 162.5086 - val_loss: 171.5574\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.8219 - val_loss: 170.6597\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 671us/step - loss: 162.8848 - val_loss: 170.4814\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 793us/step - loss: 159.5360 - val_loss: 171.0890\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 787us/step - loss: 158.8611 - val_loss: 172.4030\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 815us/step - loss: 159.2207 - val_loss: 170.7762\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 697us/step - loss: 160.0806 - val_loss: 170.7439\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 160.7050 - val_loss: 170.8077\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 160.0049 - val_loss: 170.4641\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 160.9233 - val_loss: 171.5833\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 159.4248 - val_loss: 172.4322\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 158.7125 - val_loss: 171.5590\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 158.4789 - val_loss: 171.7452\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 157.3745 - val_loss: 173.9689\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 160.3203 - val_loss: 170.4351\n", "Epoch 134/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 639us/step - loss: 159.5998 - val_loss: 173.8814\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 158.1589 - val_loss: 175.2115\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 158.4201 - val_loss: 171.1158\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 159.2550 - val_loss: 172.5880\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 160.9872 - val_loss: 174.4418\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 160.1967 - val_loss: 177.1310\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 157.7702 - val_loss: 173.4369\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 159.8779 - val_loss: 170.8430\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 158.2973 - val_loss: 170.8257\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 157.1778 - val_loss: 172.8297\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 159.1198 - val_loss: 170.7505\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 157.2309 - val_loss: 169.5061\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 158.5263 - val_loss: 173.7490\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 159.2637 - val_loss: 172.2799\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 157.0301 - val_loss: 169.6572\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 159.1216 - val_loss: 170.2575\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 158.8524 - val_loss: 172.3630\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 158.8736 - val_loss: 170.8216\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 157.9824 - val_loss: 169.5600\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 158.3831 - val_loss: 170.6590\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 155.9506 - val_loss: 170.5047\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 159.0045 - val_loss: 171.7706\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 159.4745 - val_loss: 170.4394\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 158.0468 - val_loss: 170.9205\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 159.0511 - val_loss: 171.9624\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 161.5971 - val_loss: 173.3842\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.2844 - val_loss: 171.0663\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.8950 - val_loss: 172.2642\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 157.0278 - val_loss: 170.3071\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 157.8880 - val_loss: 172.8605\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 156.3551 - val_loss: 171.6677\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 156.2313 - val_loss: 171.1512\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 156.1069 - val_loss: 172.2446\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 159.3538 - val_loss: 171.2224\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.1756 - val_loss: 169.2605\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 160.7822 - val_loss: 172.5559\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 159.6220 - val_loss: 173.5899\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 158.4152 - val_loss: 170.3170\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 159.1091 - val_loss: 169.9867\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 156.1773 - val_loss: 169.9933\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 157.9432 - val_loss: 172.2902\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 158.2681 - val_loss: 170.7296\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.3148 - val_loss: 170.7302\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 157.3488 - val_loss: 169.2825\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 155.2924 - val_loss: 171.9949\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 156.8782 - val_loss: 171.3474\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 159.0616 - val_loss: 169.8277\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 157.0998 - val_loss: 173.3150\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 154.9220 - val_loss: 174.1183\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 158.0126 - val_loss: 172.2762\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 155.6879 - val_loss: 170.8731\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 155.9208 - val_loss: 170.5157\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 155.4824 - val_loss: 171.6164\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 154.4858 - val_loss: 173.4692\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 630us/step - loss: 159.5937 - val_loss: 170.3105\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 154.6959 - val_loss: 173.9681\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 157.3206 - val_loss: 177.2235\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 154.6468 - val_loss: 176.0034\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 155.9513 - val_loss: 171.6032\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 155.6415 - val_loss: 170.6067\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 157.5109 - val_loss: 172.3496\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 156.5947 - val_loss: 169.9546\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 155.9224 - val_loss: 170.7032\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 158.1535 - val_loss: 171.5034\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 156.7608 - val_loss: 173.2846\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 154.8133 - val_loss: 172.2777\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 157.6398 - val_loss: 170.5699\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 157.7145 - val_loss: 172.6116\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 157.3765 - val_loss: 171.5321\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 158.0586 - val_loss: 176.4273\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 155.4592 - val_loss: 170.3526\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 155.3476 - val_loss: 170.3128\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 155.2221 - val_loss: 172.0259\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 156.3230 - val_loss: 170.9725\n", "Epoch 208/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 155.4634 - val_loss: 171.3001\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 154.9155 - val_loss: 170.1350\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 156.2426 - val_loss: 174.4982\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 156.9477 - val_loss: 170.8667\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 156.0491 - val_loss: 170.2892\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 155.9688 - val_loss: 170.2042\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 156.7308 - val_loss: 174.9287\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 155.1577 - val_loss: 169.9392\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 155.9899 - val_loss: 173.7889\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 154.2667 - val_loss: 175.1281\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 157.2199 - val_loss: 170.4958\n", "1010/1010 [==============================] - 0s 427us/step - loss: 169.2605\n", "\n", "\n", "\n", "\n", " Model: 26/36, hidden: 3, nodes: 25, lr: 1e-05,\n", "Epoch 1/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 756.2694 - val_loss: 262.7598\n", "Epoch 2/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 253.0436 - val_loss: 237.0632\n", "Epoch 3/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 230.3665 - val_loss: 223.9251\n", "Epoch 4/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 218.9357 - val_loss: 215.9585\n", "Epoch 5/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 214.3651 - val_loss: 210.3706\n", "Epoch 6/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 205.7911 - val_loss: 205.8914\n", "Epoch 7/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 201.1887 - val_loss: 203.2560\n", "Epoch 8/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 198.8795 - val_loss: 200.8721\n", "Epoch 9/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 195.9912 - val_loss: 199.2349\n", "Epoch 10/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 196.5824 - val_loss: 197.3481\n", "Epoch 11/1000\n", "3028/3028 [==============================] - 2s 659us/step - loss: 195.6327 - val_loss: 195.8493\n", "Epoch 12/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 193.5984 - val_loss: 194.3476\n", "Epoch 13/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 190.2430 - val_loss: 193.5384\n", "Epoch 14/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 190.7693 - val_loss: 192.5597\n", "Epoch 15/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 190.1107 - val_loss: 191.2191\n", "Epoch 16/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 188.8416 - val_loss: 190.8017\n", "Epoch 17/1000\n", "3028/3028 [==============================] - 2s 795us/step - loss: 186.6761 - val_loss: 190.1265\n", "Epoch 18/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 186.1994 - val_loss: 189.4812\n", "Epoch 19/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 183.1308 - val_loss: 189.3451\n", "Epoch 20/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 183.6197 - val_loss: 188.6631\n", "Epoch 21/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 181.2920 - val_loss: 188.7510\n", "Epoch 22/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 182.6930 - val_loss: 187.8637\n", "Epoch 23/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 184.8433 - val_loss: 187.9988\n", "Epoch 24/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 182.0822 - val_loss: 188.1623\n", "Epoch 25/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 182.4105 - val_loss: 186.7378\n", "Epoch 26/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 185.3134 - val_loss: 186.4660\n", "Epoch 27/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 181.5469 - val_loss: 186.1765\n", "Epoch 28/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 183.1852 - val_loss: 186.4120\n", "Epoch 29/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 183.2318 - val_loss: 187.1807\n", "Epoch 30/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 181.6399 - val_loss: 186.4258\n", "Epoch 31/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 178.6102 - val_loss: 185.2304\n", "Epoch 32/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 180.3598 - val_loss: 185.1791\n", "Epoch 33/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 179.4330 - val_loss: 185.7566\n", "Epoch 34/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 179.3132 - val_loss: 184.5558\n", "Epoch 35/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 180.1757 - val_loss: 184.7321\n", "Epoch 36/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 181.8817 - val_loss: 184.2704\n", "Epoch 37/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 179.7061 - val_loss: 184.5369\n", "Epoch 38/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 179.2194 - val_loss: 184.5471\n", "Epoch 39/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 181.3542 - val_loss: 183.7068\n", "Epoch 40/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 177.7191 - val_loss: 183.4161\n", "Epoch 41/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 179.6797 - val_loss: 183.6008\n", "Epoch 42/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 179.5330 - val_loss: 183.0953\n", "Epoch 43/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 179.1207 - val_loss: 183.7052\n", "Epoch 44/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 178.5821 - val_loss: 183.1699\n", "Epoch 45/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 176.6369 - val_loss: 183.4489\n", "Epoch 46/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 177.1199 - val_loss: 182.6928\n", "Epoch 47/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 179.6598 - val_loss: 182.8208\n", "Epoch 48/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 176.9333 - val_loss: 182.2378\n", "Epoch 49/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 178.5455 - val_loss: 182.6595\n", "Epoch 50/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 176.9840 - val_loss: 182.5547\n", "Epoch 51/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 178.7631 - val_loss: 181.9715\n", "Epoch 52/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 173.9034 - val_loss: 183.3536\n", "Epoch 53/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 177.6730 - val_loss: 181.8316\n", "Epoch 54/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 177.5713 - val_loss: 181.6189\n", "Epoch 55/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 178.2265 - val_loss: 181.4991\n", "Epoch 56/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 178.5915 - val_loss: 181.3190\n", "Epoch 57/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 176.9624 - val_loss: 181.6896\n", "Epoch 58/1000\n", "3028/3028 [==============================] - 2s 717us/step - loss: 175.8357 - val_loss: 181.2243\n", "Epoch 59/1000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 176.7101 - val_loss: 181.3465\n", "Epoch 60/1000\n", "3028/3028 [==============================] - 2s 766us/step - loss: 177.0011 - val_loss: 181.6590\n", "Epoch 61/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 174.1562 - val_loss: 180.9988\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 62/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 173.7482 - val_loss: 180.8479\n", "Epoch 63/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 175.9172 - val_loss: 180.6814\n", "Epoch 64/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 176.0625 - val_loss: 181.3438\n", "Epoch 65/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 176.8953 - val_loss: 180.9687\n", "Epoch 66/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 177.4897 - val_loss: 180.5754\n", "Epoch 67/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 173.3448 - val_loss: 180.8630\n", "Epoch 68/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 176.5688 - val_loss: 180.2453\n", "Epoch 69/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 175.3417 - val_loss: 180.7553\n", "Epoch 70/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 174.9376 - val_loss: 180.7064\n", "Epoch 71/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 174.3026 - val_loss: 181.2783\n", "Epoch 72/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 174.3653 - val_loss: 180.2199\n", "Epoch 73/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 176.6385 - val_loss: 180.6163\n", "Epoch 74/1000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 173.0018 - val_loss: 179.8816\n", "Epoch 75/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 173.3919 - val_loss: 179.6911\n", "Epoch 76/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 176.5506 - val_loss: 179.4894\n", "Epoch 77/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 176.3954 - val_loss: 179.7915\n", "Epoch 78/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 174.6060 - val_loss: 181.1384\n", "Epoch 79/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 176.3190 - val_loss: 179.9322\n", "Epoch 80/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 173.5646 - val_loss: 179.4989\n", "Epoch 81/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 172.7091 - val_loss: 181.1671\n", "Epoch 82/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 174.1684 - val_loss: 179.2998\n", "Epoch 83/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 174.7810 - val_loss: 179.5555\n", "Epoch 84/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 174.5333 - val_loss: 179.4768\n", "Epoch 85/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 173.4059 - val_loss: 179.3402\n", "Epoch 86/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 172.5773 - val_loss: 180.2730\n", "Epoch 87/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 174.3733 - val_loss: 179.2761\n", "Epoch 88/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 176.1419 - val_loss: 179.1483\n", "Epoch 89/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 171.7590 - val_loss: 178.9382\n", "Epoch 90/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 174.6128 - val_loss: 178.6252\n", "Epoch 91/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 174.9742 - val_loss: 181.0385\n", "Epoch 92/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 173.2201 - val_loss: 179.5617\n", "Epoch 93/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 174.4123 - val_loss: 178.5744\n", "Epoch 94/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 173.7893 - val_loss: 178.9827\n", "Epoch 95/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 172.2576 - val_loss: 179.7677\n", "Epoch 96/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 174.3794 - val_loss: 178.7082\n", "Epoch 97/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 172.9952 - val_loss: 178.5927\n", "Epoch 98/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 173.4116 - val_loss: 179.4081\n", "Epoch 99/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 174.8573 - val_loss: 179.5246\n", "Epoch 100/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 173.8195 - val_loss: 178.8723\n", "Epoch 101/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 172.2886 - val_loss: 179.9087\n", "Epoch 102/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 174.2854 - val_loss: 180.3212\n", "Epoch 103/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 175.0644 - val_loss: 178.1757\n", "Epoch 104/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 174.1318 - val_loss: 178.8152\n", "Epoch 105/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 171.9987 - val_loss: 178.3325\n", "Epoch 106/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 172.5074 - val_loss: 178.1370\n", "Epoch 107/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 172.1648 - val_loss: 179.4277\n", "Epoch 108/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 170.4243 - val_loss: 179.0688\n", "Epoch 109/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 171.9726 - val_loss: 179.0241\n", "Epoch 110/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 173.3804 - val_loss: 178.4272\n", "Epoch 111/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 174.5598 - val_loss: 178.7271\n", "Epoch 112/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 173.3739 - val_loss: 179.1239\n", "Epoch 113/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 173.9725 - val_loss: 177.9948\n", "Epoch 114/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 171.9984 - val_loss: 178.2380\n", "Epoch 115/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 171.9441 - val_loss: 177.7564\n", "Epoch 116/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 171.0211 - val_loss: 177.9671\n", "Epoch 117/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 172.3265 - val_loss: 178.7430\n", "Epoch 118/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 171.7262 - val_loss: 177.8925\n", "Epoch 119/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 172.6056 - val_loss: 177.4264\n", "Epoch 120/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 172.5503 - val_loss: 179.4501\n", "Epoch 121/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 169.9085 - val_loss: 177.3950\n", "Epoch 122/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 170.2416 - val_loss: 177.9201\n", "Epoch 123/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 172.2401 - val_loss: 177.4706\n", "Epoch 124/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 170.8994 - val_loss: 177.4823\n", "Epoch 125/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 172.0139 - val_loss: 177.9449\n", "Epoch 126/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 171.1669 - val_loss: 177.5733\n", "Epoch 127/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 169.9428 - val_loss: 177.6592\n", "Epoch 128/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 170.2560 - val_loss: 177.0695\n", "Epoch 129/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 169.6469 - val_loss: 177.3642\n", "Epoch 130/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 171.6357 - val_loss: 177.4333\n", "Epoch 131/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 171.3153 - val_loss: 177.5159\n", "Epoch 132/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 171.5299 - val_loss: 177.5344\n", "Epoch 133/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 171.9660 - val_loss: 177.7712\n", "Epoch 134/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 170.2831 - val_loss: 177.3845\n", "Epoch 135/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 171.1399 - val_loss: 177.6876\n", "Epoch 136/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.5508 - val_loss: 177.9668\n", "Epoch 137/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 172.5599 - val_loss: 177.0774\n", "Epoch 138/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 172.2017 - val_loss: 177.6001\n", "Epoch 139/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 172.4150 - val_loss: 176.9198\n", "Epoch 140/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 171.9856 - val_loss: 177.4044\n", "Epoch 141/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 171.2417 - val_loss: 177.1133\n", "Epoch 142/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 171.7220 - val_loss: 176.9479\n", "Epoch 143/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.1634 - val_loss: 177.3229\n", "Epoch 144/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 168.3450 - val_loss: 176.6969\n", "Epoch 145/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 169.6068 - val_loss: 178.1392\n", "Epoch 146/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 170.3213 - val_loss: 177.1967\n", "Epoch 147/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 172.2433 - val_loss: 177.0091\n", "Epoch 148/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 170.9257 - val_loss: 180.8457\n", "Epoch 149/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.7096 - val_loss: 177.4606\n", "Epoch 150/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 171.1134 - val_loss: 176.5993\n", "Epoch 151/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 171.0499 - val_loss: 176.5790\n", "Epoch 152/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 171.0768 - val_loss: 177.2477\n", "Epoch 153/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.0211 - val_loss: 177.5767\n", "Epoch 154/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 169.9205 - val_loss: 176.8158\n", "Epoch 155/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 170.7549 - val_loss: 176.6846\n", "Epoch 156/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.0547 - val_loss: 176.7578\n", "Epoch 157/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 169.0995 - val_loss: 177.2912\n", "Epoch 158/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 170.5346 - val_loss: 176.9015\n", "Epoch 159/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.3546 - val_loss: 176.5896\n", "Epoch 160/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 171.2610 - val_loss: 177.0231\n", "Epoch 161/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 169.8080 - val_loss: 176.8550\n", "Epoch 162/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 169.0615 - val_loss: 176.3942\n", "Epoch 163/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 170.2909 - val_loss: 176.3467\n", "Epoch 164/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 167.9027 - val_loss: 177.6164\n", "Epoch 165/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 168.9751 - val_loss: 176.9167\n", "Epoch 166/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.6429 - val_loss: 177.4562\n", "Epoch 167/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 170.2137 - val_loss: 176.9622\n", "Epoch 168/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 170.7195 - val_loss: 176.4176\n", "Epoch 169/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.4276 - val_loss: 176.5664\n", "Epoch 170/1000\n", "3028/3028 [==============================] - 2s 631us/step - loss: 171.2001 - val_loss: 176.3557\n", "Epoch 171/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.3910 - val_loss: 177.6009\n", "Epoch 172/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 171.2281 - val_loss: 176.1553\n", "Epoch 173/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 169.8432 - val_loss: 176.6004\n", "Epoch 174/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 172.7987 - val_loss: 176.4230\n", "Epoch 175/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 170.1111 - val_loss: 176.1323\n", "Epoch 176/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 166.8181 - val_loss: 176.7423\n", "Epoch 177/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 171.3922 - val_loss: 176.5986\n", "Epoch 178/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 169.5160 - val_loss: 176.2769\n", "Epoch 179/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 172.4737 - val_loss: 176.6819\n", "Epoch 180/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 170.2867 - val_loss: 176.3298\n", "Epoch 181/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 170.5471 - val_loss: 176.3006\n", "Epoch 182/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.7257 - val_loss: 176.3404\n", "Epoch 183/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 168.9372 - val_loss: 176.2165\n", "Epoch 184/1000\n", "3028/3028 [==============================] - 2s 679us/step - loss: 168.5991 - val_loss: 176.1610\n", "Epoch 185/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 168.1351 - val_loss: 176.0006\n", "Epoch 186/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 169.6167 - val_loss: 176.3244\n", "Epoch 187/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 169.8001 - val_loss: 176.8563\n", "Epoch 188/1000\n", "3028/3028 [==============================] - 2s 700us/step - loss: 168.8209 - val_loss: 175.8246\n", "Epoch 189/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 168.8321 - val_loss: 176.8040\n", "Epoch 190/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 167.6810 - val_loss: 176.0844\n", "Epoch 191/1000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 170.5143 - val_loss: 175.7293\n", "Epoch 192/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 169.9172 - val_loss: 176.8810\n", "Epoch 193/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 170.9021 - val_loss: 176.9043\n", "Epoch 194/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 169.0313 - val_loss: 176.9387\n", "Epoch 195/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 169.9097 - val_loss: 176.4317\n", "Epoch 196/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 170.5746 - val_loss: 177.2291\n", "Epoch 197/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 171.4089 - val_loss: 175.7181\n", "Epoch 198/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 170.7833 - val_loss: 176.1958\n", "Epoch 199/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 169.1525 - val_loss: 175.6925\n", "Epoch 200/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 169.8731 - val_loss: 177.3552\n", "Epoch 201/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 170.0695 - val_loss: 176.0445\n", "Epoch 202/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 169.3795 - val_loss: 175.6487\n", "Epoch 203/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 169.3382 - val_loss: 175.4322\n", "Epoch 204/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 170.9887 - val_loss: 175.8548\n", "Epoch 205/1000\n", "3028/3028 [==============================] - 2s 684us/step - loss: 169.5980 - val_loss: 176.0707\n", "Epoch 206/1000\n", "3028/3028 [==============================] - 2s 701us/step - loss: 169.5354 - val_loss: 176.0306\n", "Epoch 207/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 170.2620 - val_loss: 176.7211\n", "Epoch 208/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 647us/step - loss: 168.2519 - val_loss: 175.7778\n", "Epoch 209/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 168.0159 - val_loss: 176.7543\n", "Epoch 210/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 167.9385 - val_loss: 175.8201\n", "Epoch 211/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 169.1664 - val_loss: 175.6766\n", "Epoch 212/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 168.7375 - val_loss: 175.5362\n", "Epoch 213/1000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 169.0574 - val_loss: 176.6157\n", "Epoch 214/1000\n", "3028/3028 [==============================] - 2s 736us/step - loss: 170.2823 - val_loss: 175.6027\n", "Epoch 215/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.6091 - val_loss: 175.5026\n", "Epoch 216/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.0294 - val_loss: 175.8553\n", "Epoch 217/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 167.4159 - val_loss: 176.6398\n", "Epoch 218/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 166.8217 - val_loss: 175.6592\n", "Epoch 219/1000\n", "3028/3028 [==============================] - 2s 661us/step - loss: 168.8535 - val_loss: 175.4496\n", "Epoch 220/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 167.7245 - val_loss: 177.3270\n", "Epoch 221/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.8032 - val_loss: 175.3948\n", "Epoch 222/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 167.2836 - val_loss: 175.8617\n", "Epoch 223/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 168.7300 - val_loss: 175.3834\n", "Epoch 224/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 168.2132 - val_loss: 177.7742\n", "Epoch 225/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 168.4712 - val_loss: 175.4308\n", "Epoch 226/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 168.4301 - val_loss: 175.6937\n", "Epoch 227/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 169.8024 - val_loss: 176.2845\n", "Epoch 228/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.3120 - val_loss: 175.1256\n", "Epoch 229/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.8481 - val_loss: 176.0689\n", "Epoch 230/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.4442 - val_loss: 175.6911\n", "Epoch 231/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 167.7350 - val_loss: 176.0443\n", "Epoch 232/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 167.3780 - val_loss: 175.8507\n", "Epoch 233/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 167.9941 - val_loss: 175.4868\n", "Epoch 234/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 167.4598 - val_loss: 175.7333\n", "Epoch 235/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 168.7951 - val_loss: 175.9054\n", "Epoch 236/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 169.3253 - val_loss: 175.4926\n", "Epoch 237/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 167.3984 - val_loss: 176.1646\n", "Epoch 238/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 166.5209 - val_loss: 175.3692\n", "Epoch 239/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.1122 - val_loss: 174.4357\n", "Epoch 240/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.2141 - val_loss: 175.3052\n", "Epoch 241/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 167.5948 - val_loss: 175.0823\n", "Epoch 242/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 169.0641 - val_loss: 176.4928\n", "Epoch 243/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.9354 - val_loss: 175.7552\n", "Epoch 244/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 168.5383 - val_loss: 176.6592\n", "Epoch 245/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.2693 - val_loss: 175.6745\n", "Epoch 246/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.8442 - val_loss: 175.0300\n", "Epoch 247/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 168.3649 - val_loss: 174.9135\n", "Epoch 248/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 163.7702 - val_loss: 176.0229\n", "Epoch 249/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.9165 - val_loss: 176.0468\n", "Epoch 250/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.9303 - val_loss: 175.5069\n", "Epoch 251/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 168.2544 - val_loss: 175.8878\n", "Epoch 252/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.5371 - val_loss: 175.4327\n", "Epoch 253/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 166.8488 - val_loss: 175.7785\n", "Epoch 254/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 163.6521 - val_loss: 175.6985\n", "Epoch 255/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 167.6571 - val_loss: 175.0922\n", "Epoch 256/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 166.1043 - val_loss: 175.8693\n", "Epoch 257/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 169.8267 - val_loss: 174.8718\n", "Epoch 258/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 167.2035 - val_loss: 175.5641\n", "Epoch 259/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 166.7674 - val_loss: 176.4606\n", "Epoch 260/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 167.4705 - val_loss: 176.5471\n", "Epoch 261/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 167.2432 - val_loss: 175.9871\n", "Epoch 262/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 167.5364 - val_loss: 174.9855\n", "Epoch 263/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 164.7373 - val_loss: 174.8563\n", "Epoch 264/1000\n", "3028/3028 [==============================] - 2s 680us/step - loss: 167.3721 - val_loss: 175.1870\n", "Epoch 265/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 167.1863 - val_loss: 176.0701\n", "Epoch 266/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 167.4324 - val_loss: 174.6711\n", "Epoch 267/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.9364 - val_loss: 175.5562\n", "Epoch 268/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 169.0257 - val_loss: 174.8825\n", "Epoch 269/1000\n", "3028/3028 [==============================] - 2s 689us/step - loss: 167.0515 - val_loss: 175.5608\n", "Epoch 270/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 166.6310 - val_loss: 174.6072\n", "Epoch 271/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 168.6175 - val_loss: 175.1333\n", "Epoch 272/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 167.9275 - val_loss: 174.3074\n", "Epoch 273/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 167.1551 - val_loss: 174.5823\n", "Epoch 274/1000\n", "3028/3028 [==============================] - 2s 677us/step - loss: 166.4839 - val_loss: 174.7088\n", "Epoch 275/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 165.7378 - val_loss: 175.3901\n", "Epoch 276/1000\n", "3028/3028 [==============================] - 2s 685us/step - loss: 165.8771 - val_loss: 174.8230\n", "Epoch 277/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 166.6112 - val_loss: 176.0774\n", "Epoch 278/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 167.3220 - val_loss: 175.3662\n", "Epoch 279/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.2215 - val_loss: 175.3211\n", "Epoch 280/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.3688 - val_loss: 174.5756\n", "Epoch 281/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.2619 - val_loss: 174.2625\n", "Epoch 282/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.7287 - val_loss: 174.8137\n", "Epoch 283/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.0263 - val_loss: 176.1479\n", "Epoch 284/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 167.2345 - val_loss: 174.0832\n", "Epoch 285/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.2357 - val_loss: 173.8960\n", "Epoch 286/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.9449 - val_loss: 175.8064\n", "Epoch 287/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.5804 - val_loss: 174.3258\n", "Epoch 288/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 168.3464 - val_loss: 174.1490\n", "Epoch 289/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 165.3684 - val_loss: 177.4065\n", "Epoch 290/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 165.8971 - val_loss: 174.8842\n", "Epoch 291/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.5874 - val_loss: 175.7400\n", "Epoch 292/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 165.0004 - val_loss: 174.4470\n", "Epoch 293/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 167.5673 - val_loss: 174.7297\n", "Epoch 294/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 166.4582 - val_loss: 174.1460\n", "Epoch 295/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 164.1768 - val_loss: 174.5596\n", "Epoch 296/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.5605 - val_loss: 175.4675\n", "Epoch 297/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.9406 - val_loss: 173.7819\n", "Epoch 298/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.4656 - val_loss: 174.4988\n", "Epoch 299/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 164.6227 - val_loss: 173.5688\n", "Epoch 300/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 166.8893 - val_loss: 173.9281\n", "Epoch 301/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 166.3081 - val_loss: 174.3979\n", "Epoch 302/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 164.3174 - val_loss: 173.9178\n", "Epoch 303/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 166.1895 - val_loss: 174.3008\n", "Epoch 304/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 165.7729 - val_loss: 173.7354\n", "Epoch 305/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.4424 - val_loss: 174.5511\n", "Epoch 306/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.1319 - val_loss: 174.4039\n", "Epoch 307/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.9392 - val_loss: 174.4684\n", "Epoch 308/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 167.0633 - val_loss: 173.2661\n", "Epoch 309/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.8782 - val_loss: 173.6479\n", "Epoch 310/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 166.5123 - val_loss: 173.5227\n", "Epoch 311/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.2327 - val_loss: 178.0486\n", "Epoch 312/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.7370 - val_loss: 173.7413\n", "Epoch 313/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.1551 - val_loss: 173.8818\n", "Epoch 314/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 166.0549 - val_loss: 173.5525\n", "Epoch 315/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 164.4720 - val_loss: 173.4263\n", "Epoch 316/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.4948 - val_loss: 173.3838\n", "Epoch 317/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 167.5518 - val_loss: 173.7297\n", "Epoch 318/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 167.9605 - val_loss: 174.3940\n", "Epoch 319/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.3499 - val_loss: 175.7436\n", "Epoch 320/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.6977 - val_loss: 173.7915\n", "Epoch 321/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 166.0759 - val_loss: 173.2499\n", "Epoch 322/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 166.2433 - val_loss: 174.8096\n", "Epoch 323/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 165.9238 - val_loss: 174.0294\n", "Epoch 324/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 164.5955 - val_loss: 174.1532\n", "Epoch 325/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 167.4127 - val_loss: 173.7868\n", "Epoch 326/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 164.5005 - val_loss: 174.5042\n", "Epoch 327/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 167.4491 - val_loss: 173.2839\n", "Epoch 328/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.8603 - val_loss: 173.6130\n", "Epoch 329/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.1780 - val_loss: 174.0840\n", "Epoch 330/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.0591 - val_loss: 175.5666\n", "Epoch 331/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.1681 - val_loss: 174.1427\n", "Epoch 332/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 165.9571 - val_loss: 173.8166\n", "Epoch 333/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 165.7289 - val_loss: 175.6136\n", "Epoch 334/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 164.1357 - val_loss: 173.5488\n", "Epoch 335/1000\n", "3028/3028 [==============================] - 2s 694us/step - loss: 164.5177 - val_loss: 173.9438\n", "Epoch 336/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 165.2567 - val_loss: 172.9950\n", "Epoch 337/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.9766 - val_loss: 173.1333\n", "Epoch 338/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 164.8100 - val_loss: 174.9489\n", "Epoch 339/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 164.9528 - val_loss: 174.1856\n", "Epoch 340/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 165.1533 - val_loss: 173.2067\n", "Epoch 341/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 165.2241 - val_loss: 173.1866\n", "Epoch 342/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 165.5067 - val_loss: 173.2156\n", "Epoch 343/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 165.2820 - val_loss: 173.0447\n", "Epoch 344/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 167.2984 - val_loss: 172.7511\n", "Epoch 345/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 166.8409 - val_loss: 172.9183\n", "Epoch 346/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.7504 - val_loss: 173.2544\n", "Epoch 347/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.5386 - val_loss: 173.2362\n", "Epoch 348/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 162.1964 - val_loss: 173.2990\n", "Epoch 349/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.9981 - val_loss: 172.9299\n", "Epoch 350/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.4569 - val_loss: 172.5468\n", "Epoch 351/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 165.2634 - val_loss: 172.4139\n", "Epoch 352/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 164.0057 - val_loss: 172.5191\n", "Epoch 353/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.0973 - val_loss: 174.1337\n", "Epoch 354/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 640us/step - loss: 165.3575 - val_loss: 172.0150\n", "Epoch 355/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 165.0005 - val_loss: 172.8271\n", "Epoch 356/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 163.9581 - val_loss: 173.6632\n", "Epoch 357/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 166.8435 - val_loss: 173.2240\n", "Epoch 358/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.7083 - val_loss: 172.6632\n", "Epoch 359/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 165.3868 - val_loss: 172.8043\n", "Epoch 360/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.9895 - val_loss: 173.6450\n", "Epoch 361/1000\n", "3028/3028 [==============================] - 2s 792us/step - loss: 164.6060 - val_loss: 172.3338\n", "Epoch 362/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 165.6471 - val_loss: 173.3484\n", "Epoch 363/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 164.5080 - val_loss: 172.4461\n", "Epoch 364/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.7694 - val_loss: 173.2558\n", "Epoch 365/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 164.9097 - val_loss: 172.4217\n", "Epoch 366/1000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 167.9239 - val_loss: 173.9937\n", "Epoch 367/1000\n", "3028/3028 [==============================] - 2s 745us/step - loss: 165.5109 - val_loss: 173.2061\n", "Epoch 368/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 165.4513 - val_loss: 172.6691\n", "Epoch 369/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 165.0382 - val_loss: 173.1399\n", "Epoch 370/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 163.0306 - val_loss: 172.5934\n", "Epoch 371/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 166.0930 - val_loss: 173.3842\n", "Epoch 372/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 165.3014 - val_loss: 172.6213\n", "Epoch 373/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.9834 - val_loss: 172.3750\n", "Epoch 374/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 163.8981 - val_loss: 172.1021\n", "Epoch 375/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 165.8744 - val_loss: 172.5496\n", "Epoch 376/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.6559 - val_loss: 172.8005\n", "Epoch 377/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 159.9498 - val_loss: 173.3950\n", "Epoch 378/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 163.3949 - val_loss: 172.7652\n", "Epoch 379/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 164.8277 - val_loss: 172.5883\n", "Epoch 380/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 165.3068 - val_loss: 172.5409\n", "Epoch 381/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 162.1885 - val_loss: 172.5009\n", "Epoch 382/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.5248 - val_loss: 172.4124\n", "Epoch 383/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 163.5182 - val_loss: 173.1993\n", "Epoch 384/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 164.3939 - val_loss: 172.9051\n", "Epoch 385/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 162.8038 - val_loss: 171.7363\n", "Epoch 386/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 163.5496 - val_loss: 171.9834\n", "Epoch 387/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 165.6685 - val_loss: 171.7991\n", "Epoch 388/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.9859 - val_loss: 172.2614\n", "Epoch 389/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 164.6645 - val_loss: 173.6301\n", "Epoch 390/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.0150 - val_loss: 171.9856\n", "Epoch 391/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.0706 - val_loss: 171.8611\n", "Epoch 392/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 164.6985 - val_loss: 175.1403\n", "Epoch 393/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 166.0056 - val_loss: 172.3612\n", "Epoch 394/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 161.7131 - val_loss: 171.6247\n", "Epoch 395/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.8717 - val_loss: 172.4011\n", "Epoch 396/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.9090 - val_loss: 172.3144\n", "Epoch 397/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.4392 - val_loss: 172.5508\n", "Epoch 398/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 165.9968 - val_loss: 171.1253\n", "Epoch 399/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.5594 - val_loss: 174.4259\n", "Epoch 400/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 163.9094 - val_loss: 172.1458\n", "Epoch 401/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 164.2829 - val_loss: 171.9919\n", "Epoch 402/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 165.3343 - val_loss: 172.4296\n", "Epoch 403/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.7780 - val_loss: 171.4617\n", "Epoch 404/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 163.9111 - val_loss: 172.8841\n", "Epoch 405/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.4382 - val_loss: 171.7036\n", "Epoch 406/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.5818 - val_loss: 171.8330\n", "Epoch 407/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 162.9727 - val_loss: 174.7719\n", "Epoch 408/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.5265 - val_loss: 172.5498\n", "Epoch 409/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 162.0352 - val_loss: 173.9388\n", "Epoch 410/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 163.3949 - val_loss: 171.8935\n", "Epoch 411/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 162.9292 - val_loss: 172.7472\n", "Epoch 412/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.3816 - val_loss: 171.8597\n", "Epoch 413/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 165.5416 - val_loss: 171.8261\n", "Epoch 414/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 164.2654 - val_loss: 171.8909\n", "Epoch 415/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 162.5739 - val_loss: 172.9788\n", "Epoch 416/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 164.4475 - val_loss: 172.3067\n", "Epoch 417/1000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 164.5216 - val_loss: 171.6965\n", "Epoch 418/1000\n", "3028/3028 [==============================] - 2s 687us/step - loss: 161.2894 - val_loss: 171.1209\n", "Epoch 419/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 164.1510 - val_loss: 178.0390\n", "Epoch 420/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 164.6835 - val_loss: 172.4564\n", "Epoch 421/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 162.7112 - val_loss: 171.1788\n", "Epoch 422/1000\n", "3028/3028 [==============================] - 2s 740us/step - loss: 162.2015 - val_loss: 171.3191\n", "Epoch 423/1000\n", "3028/3028 [==============================] - 2s 806us/step - loss: 162.1566 - val_loss: 170.7353\n", "Epoch 424/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 166.0095 - val_loss: 172.3887\n", "Epoch 425/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 163.5539 - val_loss: 171.2342\n", "Epoch 426/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.8364 - val_loss: 171.9308\n", "Epoch 427/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 164.3284 - val_loss: 171.6756\n", "Epoch 428/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.5633 - val_loss: 171.6447\n", "Epoch 429/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 163.0290 - val_loss: 171.9544\n", "Epoch 430/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 163.5500 - val_loss: 171.1956\n", "Epoch 431/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 162.4398 - val_loss: 172.5499\n", "Epoch 432/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 162.3773 - val_loss: 172.0785\n", "Epoch 433/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 163.4965 - val_loss: 172.4213\n", "Epoch 434/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 161.7300 - val_loss: 171.9801\n", "Epoch 435/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 162.0117 - val_loss: 171.3473\n", "Epoch 436/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 162.6469 - val_loss: 172.7625\n", "Epoch 437/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 160.9837 - val_loss: 172.6170\n", "Epoch 438/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 165.0617 - val_loss: 172.8229\n", "Epoch 439/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 161.0224 - val_loss: 171.4187\n", "Epoch 440/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 163.2691 - val_loss: 171.1265\n", "Epoch 441/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 165.1241 - val_loss: 171.1580\n", "Epoch 442/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 160.7448 - val_loss: 171.3259\n", "Epoch 443/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 161.7394 - val_loss: 171.5966\n", "Epoch 444/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.6171 - val_loss: 172.7878\n", "Epoch 445/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 161.5252 - val_loss: 171.6806\n", "Epoch 446/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 162.8642 - val_loss: 172.3438\n", "Epoch 447/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 163.8785 - val_loss: 172.1428\n", "Epoch 448/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 162.3028 - val_loss: 173.7697\n", "Epoch 449/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 160.3780 - val_loss: 171.0155\n", "Epoch 450/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 161.2748 - val_loss: 171.1008\n", "Epoch 451/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 160.9550 - val_loss: 172.0572\n", "Epoch 452/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 164.9922 - val_loss: 171.1319\n", "Epoch 453/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 160.8249 - val_loss: 170.9991\n", "Epoch 454/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 160.1065 - val_loss: 172.7523\n", "Epoch 455/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 161.5961 - val_loss: 171.8605\n", "Epoch 456/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 162.7380 - val_loss: 170.9805\n", "Epoch 457/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 162.3075 - val_loss: 170.9723\n", "Epoch 458/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 159.9726 - val_loss: 172.5607\n", "Epoch 459/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 162.9827 - val_loss: 171.0538\n", "Epoch 460/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 160.5128 - val_loss: 171.2964\n", "Epoch 461/1000\n", "3028/3028 [==============================] - 2s 667us/step - loss: 161.3639 - val_loss: 171.1636\n", "Epoch 462/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 163.3468 - val_loss: 170.9224\n", "Epoch 463/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 159.6291 - val_loss: 171.3840\n", "Epoch 464/1000\n", "3028/3028 [==============================] - 2s 675us/step - loss: 161.5990 - val_loss: 170.2037\n", "Epoch 465/1000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 162.9794 - val_loss: 173.0041\n", "Epoch 466/1000\n", "3028/3028 [==============================] - 2s 762us/step - loss: 162.4555 - val_loss: 171.8789\n", "Epoch 467/1000\n", "3028/3028 [==============================] - 2s 709us/step - loss: 161.9451 - val_loss: 173.3224\n", "Epoch 468/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 162.4227 - val_loss: 171.1891\n", "Epoch 469/1000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 161.2478 - val_loss: 170.8557\n", "Epoch 470/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.3565 - val_loss: 171.0753\n", "Epoch 471/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.6382 - val_loss: 175.0159\n", "Epoch 472/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 162.4826 - val_loss: 171.7899\n", "Epoch 473/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 164.1315 - val_loss: 170.5222\n", "Epoch 474/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 164.5534 - val_loss: 173.2830\n", "Epoch 475/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 164.0606 - val_loss: 170.7608\n", "Epoch 476/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 162.0145 - val_loss: 172.2106\n", "Epoch 477/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 161.7918 - val_loss: 171.2370\n", "Epoch 478/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 163.1648 - val_loss: 172.1042\n", "Epoch 479/1000\n", "3028/3028 [==============================] - 2s 699us/step - loss: 159.7005 - val_loss: 170.4694\n", "Epoch 480/1000\n", "3028/3028 [==============================] - 2s 663us/step - loss: 161.6218 - val_loss: 170.3400\n", "Epoch 481/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 161.7452 - val_loss: 170.3413\n", "Epoch 482/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 160.3128 - val_loss: 173.8165\n", "Epoch 483/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 159.9365 - val_loss: 171.2087\n", "Epoch 484/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.0761 - val_loss: 171.1089\n", "Epoch 485/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 161.2046 - val_loss: 171.8848\n", "Epoch 486/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 160.6788 - val_loss: 171.2709\n", "Epoch 487/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 162.4264 - val_loss: 171.5535\n", "Epoch 488/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 160.2482 - val_loss: 174.1569\n", "Epoch 489/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 157.5825 - val_loss: 171.0360\n", "Epoch 490/1000\n", "3028/3028 [==============================] - 2s 669us/step - loss: 161.5090 - val_loss: 170.3822\n", "Epoch 491/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 161.7565 - val_loss: 170.0607\n", "Epoch 492/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 161.7483 - val_loss: 170.2627\n", "Epoch 493/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 164.5803 - val_loss: 171.7966\n", "Epoch 494/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 162.1903 - val_loss: 172.0072\n", "Epoch 495/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 162.9759 - val_loss: 170.4003\n", "Epoch 496/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 159.6835 - val_loss: 171.6416\n", "Epoch 497/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 160.7421 - val_loss: 171.6030\n", "Epoch 498/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 160.2594 - val_loss: 171.3219\n", "Epoch 499/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 160.2797 - val_loss: 172.5228\n", "Epoch 500/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 2s 642us/step - loss: 164.3815 - val_loss: 170.4376\n", "Epoch 501/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 161.6081 - val_loss: 170.2678\n", "Epoch 502/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 162.3593 - val_loss: 170.9022\n", "Epoch 503/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 161.9824 - val_loss: 170.6277\n", "Epoch 504/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 159.6839 - val_loss: 171.9537\n", "Epoch 505/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 161.2055 - val_loss: 172.3308\n", "Epoch 506/1000\n", "3028/3028 [==============================] - 2s 650us/step - loss: 161.9512 - val_loss: 170.2973\n", "Epoch 507/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 161.7128 - val_loss: 170.4003\n", "Epoch 508/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 160.8638 - val_loss: 171.1212\n", "Epoch 509/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 159.4775 - val_loss: 170.6534\n", "Epoch 510/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 159.6152 - val_loss: 171.4740\n", "Epoch 511/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 160.6930 - val_loss: 171.3731\n", "Epoch 512/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 162.2263 - val_loss: 170.9327\n", "Epoch 513/1000\n", "3028/3028 [==============================] - 2s 633us/step - loss: 162.0853 - val_loss: 170.8582\n", "Epoch 514/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 160.3429 - val_loss: 171.1614\n", "Epoch 515/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 160.5402 - val_loss: 172.0583\n", "Epoch 516/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 160.7416 - val_loss: 170.2461\n", "Epoch 517/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 161.1819 - val_loss: 170.4128\n", "Epoch 518/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 162.7132 - val_loss: 170.5424\n", "Epoch 519/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 160.4208 - val_loss: 171.8131\n", "Epoch 520/1000\n", "3028/3028 [==============================] - 2s 654us/step - loss: 158.8692 - val_loss: 170.4222\n", "Epoch 521/1000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 162.6787 - val_loss: 170.4423\n", "Epoch 522/1000\n", "3028/3028 [==============================] - 2s 803us/step - loss: 159.0116 - val_loss: 170.8608\n", "Epoch 523/1000\n", "3028/3028 [==============================] - 2s 812us/step - loss: 160.1244 - val_loss: 171.9021\n", "Epoch 524/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 162.4078 - val_loss: 173.2972\n", "Epoch 525/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 162.3566 - val_loss: 169.7208\n", "Epoch 526/1000\n", "3028/3028 [==============================] - 2s 691us/step - loss: 160.2869 - val_loss: 170.8826\n", "Epoch 527/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 163.2140 - val_loss: 170.8840\n", "Epoch 528/1000\n", "3028/3028 [==============================] - 2s 682us/step - loss: 160.4225 - val_loss: 171.4904\n", "Epoch 529/1000\n", "3028/3028 [==============================] - 2s 768us/step - loss: 160.7288 - val_loss: 171.9509\n", "Epoch 530/1000\n", "3028/3028 [==============================] - 2s 695us/step - loss: 162.6803 - val_loss: 171.5258\n", "Epoch 531/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 159.7621 - val_loss: 172.0885\n", "Epoch 532/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 158.9995 - val_loss: 171.2090\n", "Epoch 533/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 160.5217 - val_loss: 170.8096\n", "Epoch 534/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 160.9424 - val_loss: 172.6368\n", "Epoch 535/1000\n", "3028/3028 [==============================] - 3s 842us/step - loss: 158.3144 - val_loss: 170.2075\n", "Epoch 536/1000\n", "3028/3028 [==============================] - 2s 696us/step - loss: 158.4301 - val_loss: 170.9146\n", "Epoch 537/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 160.0240 - val_loss: 170.3219\n", "Epoch 538/1000\n", "3028/3028 [==============================] - 2s 678us/step - loss: 160.6323 - val_loss: 173.0910\n", "Epoch 539/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 161.1206 - val_loss: 171.1500\n", "Epoch 540/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 162.8877 - val_loss: 173.4601\n", "Epoch 541/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 160.2862 - val_loss: 170.9894\n", "Epoch 542/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 159.8784 - val_loss: 170.7302\n", "Epoch 543/1000\n", "3028/3028 [==============================] - 2s 681us/step - loss: 160.8627 - val_loss: 170.4640\n", "Epoch 544/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 162.1158 - val_loss: 171.2482\n", "Epoch 545/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 159.8140 - val_loss: 170.4242\n", "Epoch 546/1000\n", "3028/3028 [==============================] - 2s 670us/step - loss: 159.7070 - val_loss: 170.8865\n", "Epoch 547/1000\n", "3028/3028 [==============================] - 2s 662us/step - loss: 160.3218 - val_loss: 170.4262\n", "Epoch 548/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 160.0273 - val_loss: 169.9526\n", "Epoch 549/1000\n", "3028/3028 [==============================] - 2s 668us/step - loss: 160.9847 - val_loss: 171.4870\n", "Epoch 550/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 164.0840 - val_loss: 171.3563\n", "Epoch 551/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 159.9113 - val_loss: 170.4028\n", "Epoch 552/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 160.1473 - val_loss: 170.7043\n", "Epoch 553/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 159.5967 - val_loss: 171.5282\n", "Epoch 554/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 159.6932 - val_loss: 169.9564\n", "Epoch 555/1000\n", "3028/3028 [==============================] - 2s 658us/step - loss: 159.1953 - val_loss: 170.5015\n", "Epoch 556/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 161.7787 - val_loss: 173.0044\n", "Epoch 557/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 162.9967 - val_loss: 170.1349\n", "Epoch 558/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 159.5888 - val_loss: 172.1994\n", "Epoch 559/1000\n", "3028/3028 [==============================] - 2s 664us/step - loss: 162.2985 - val_loss: 170.7437\n", "Epoch 560/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 161.4429 - val_loss: 169.9490\n", "Epoch 561/1000\n", "3028/3028 [==============================] - 2s 688us/step - loss: 159.6986 - val_loss: 170.5544\n", "Epoch 562/1000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 160.6793 - val_loss: 170.8273\n", "Epoch 563/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 160.1173 - val_loss: 171.0857\n", "Epoch 564/1000\n", "3028/3028 [==============================] - 2s 707us/step - loss: 157.5780 - val_loss: 169.3652\n", "Epoch 565/1000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 162.4660 - val_loss: 172.4424\n", "Epoch 566/1000\n", "3028/3028 [==============================] - 2s 653us/step - loss: 159.9660 - val_loss: 173.9790\n", "Epoch 567/1000\n", "3028/3028 [==============================] - 2s 644us/step - loss: 158.6914 - val_loss: 169.3997\n", "Epoch 568/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 160.7930 - val_loss: 169.8471\n", "Epoch 569/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 161.1346 - val_loss: 170.1674\n", "Epoch 570/1000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 160.9507 - val_loss: 171.7297\n", "Epoch 571/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 161.3167 - val_loss: 170.1445\n", "Epoch 572/1000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 158.0708 - val_loss: 170.2134\n", "Epoch 573/1000\n", "3028/3028 [==============================] - 2s 728us/step - loss: 158.6763 - val_loss: 169.9388\n", "Epoch 574/1000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 160.3317 - val_loss: 169.7277\n", "Epoch 575/1000\n", "3028/3028 [==============================] - 3s 928us/step - loss: 158.5176 - val_loss: 171.7285\n", "Epoch 576/1000\n", "3028/3028 [==============================] - 3s 970us/step - loss: 160.4217 - val_loss: 170.7483\n", "Epoch 577/1000\n", "3028/3028 [==============================] - 3s 948us/step - loss: 162.8536 - val_loss: 170.0995\n", "Epoch 578/1000\n", "3028/3028 [==============================] - 3s 947us/step - loss: 160.4915 - val_loss: 172.6569\n", "Epoch 579/1000\n", "3028/3028 [==============================] - 3s 936us/step - loss: 160.5720 - val_loss: 172.3510\n", "Epoch 580/1000\n", "3028/3028 [==============================] - 3s 944us/step - loss: 159.1239 - val_loss: 169.5476\n", "Epoch 581/1000\n", "3028/3028 [==============================] - 3s 925us/step - loss: 161.6991 - val_loss: 171.7884\n", "Epoch 582/1000\n", "3028/3028 [==============================] - 3s 928us/step - loss: 158.4148 - val_loss: 170.4387\n", "Epoch 583/1000\n", "3028/3028 [==============================] - 3s 926us/step - loss: 158.2662 - val_loss: 169.5130\n", "Epoch 584/1000\n", "3028/3028 [==============================] - 3s 927us/step - loss: 161.8370 - val_loss: 170.7799\n", "Epoch 585/1000\n", "3028/3028 [==============================] - 3s 913us/step - loss: 159.9749 - val_loss: 170.2523\n", "Epoch 586/1000\n", "3028/3028 [==============================] - 3s 905us/step - loss: 156.5940 - val_loss: 170.1246\n", "Epoch 587/1000\n", "3028/3028 [==============================] - 3s 873us/step - loss: 160.6908 - val_loss: 171.0345\n", "Epoch 588/1000\n", "3028/3028 [==============================] - 3s 911us/step - loss: 158.6037 - val_loss: 170.5427\n", "Epoch 589/1000\n", "3028/3028 [==============================] - 3s 938us/step - loss: 160.3541 - val_loss: 170.9471\n", "Epoch 590/1000\n", "3028/3028 [==============================] - 3s 928us/step - loss: 159.5255 - val_loss: 170.3646\n", "Epoch 591/1000\n", "3028/3028 [==============================] - 3s 935us/step - loss: 161.1160 - val_loss: 171.1833\n", "Epoch 592/1000\n", "3028/3028 [==============================] - 3s 902us/step - loss: 160.2767 - val_loss: 170.9970\n", "Epoch 593/1000\n", "3028/3028 [==============================] - 3s 891us/step - loss: 159.7548 - val_loss: 169.4529\n", "Epoch 594/1000\n", "3028/3028 [==============================] - 3s 880us/step - loss: 159.9903 - val_loss: 169.9280\n", "Epoch 595/1000\n", "3028/3028 [==============================] - 3s 862us/step - loss: 161.6202 - val_loss: 171.7402\n", "Epoch 596/1000\n", "3028/3028 [==============================] - 3s 853us/step - loss: 158.8437 - val_loss: 169.4490\n", "Epoch 597/1000\n", "3028/3028 [==============================] - 3s 860us/step - loss: 159.0561 - val_loss: 170.4783\n", "Epoch 598/1000\n", "3028/3028 [==============================] - 3s 846us/step - loss: 158.9484 - val_loss: 169.9064\n", "Epoch 599/1000\n", "3028/3028 [==============================] - 3s 873us/step - loss: 157.5824 - val_loss: 171.9387\n", "Epoch 600/1000\n", "3028/3028 [==============================] - 3s 879us/step - loss: 157.9795 - val_loss: 169.7600\n", "Epoch 601/1000\n", "3028/3028 [==============================] - 2s 817us/step - loss: 159.6298 - val_loss: 169.7282\n", "Epoch 602/1000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 160.1124 - val_loss: 170.1696\n", "Epoch 603/1000\n", "3028/3028 [==============================] - 3s 872us/step - loss: 159.2270 - val_loss: 169.0431\n", "Epoch 604/1000\n", "3028/3028 [==============================] - 2s 823us/step - loss: 157.2206 - val_loss: 169.7749\n", "Epoch 605/1000\n", "3028/3028 [==============================] - 2s 683us/step - loss: 157.8090 - val_loss: 169.9441\n", "Epoch 606/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 162.3751 - val_loss: 171.0018\n", "Epoch 607/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 157.6411 - val_loss: 169.4377\n", "Epoch 608/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 159.0630 - val_loss: 169.5338\n", "Epoch 609/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 156.7809 - val_loss: 169.7155\n", "Epoch 610/1000\n", "3028/3028 [==============================] - 2s 648us/step - loss: 159.9771 - val_loss: 169.5142\n", "Epoch 611/1000\n", "3028/3028 [==============================] - 2s 635us/step - loss: 159.7507 - val_loss: 169.4071\n", "Epoch 612/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 159.3773 - val_loss: 172.1084\n", "Epoch 613/1000\n", "3028/3028 [==============================] - 2s 674us/step - loss: 157.8995 - val_loss: 171.6062\n", "Epoch 614/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 158.4661 - val_loss: 169.3865\n", "Epoch 615/1000\n", "3028/3028 [==============================] - 2s 686us/step - loss: 160.1052 - val_loss: 170.1696\n", "Epoch 616/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 158.4815 - val_loss: 170.0199\n", "Epoch 617/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 161.2008 - val_loss: 170.6164\n", "Epoch 618/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 161.2842 - val_loss: 169.5703\n", "Epoch 619/1000\n", "3028/3028 [==============================] - 2s 649us/step - loss: 159.8415 - val_loss: 172.8944\n", "Epoch 620/1000\n", "3028/3028 [==============================] - 2s 632us/step - loss: 159.6638 - val_loss: 172.3642\n", "Epoch 621/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 158.4357 - val_loss: 170.1112\n", "Epoch 622/1000\n", "3028/3028 [==============================] - 2s 636us/step - loss: 159.8509 - val_loss: 170.0325\n", "Epoch 623/1000\n", "3028/3028 [==============================] - 2s 666us/step - loss: 158.9104 - val_loss: 169.5619\n", "Epoch 624/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 158.4127 - val_loss: 169.0002\n", "Epoch 625/1000\n", "3028/3028 [==============================] - 2s 657us/step - loss: 157.7398 - val_loss: 170.0268\n", "Epoch 626/1000\n", "3028/3028 [==============================] - 2s 651us/step - loss: 161.4331 - val_loss: 169.2398\n", "Epoch 627/1000\n", "3028/3028 [==============================] - 2s 652us/step - loss: 157.3852 - val_loss: 169.3694\n", "Epoch 628/1000\n", "3028/3028 [==============================] - 2s 672us/step - loss: 159.3678 - val_loss: 170.1216\n", "Epoch 629/1000\n", "3028/3028 [==============================] - 2s 693us/step - loss: 161.1312 - val_loss: 170.4582\n", "Epoch 630/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 158.3719 - val_loss: 169.3865\n", "Epoch 631/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 159.7316 - val_loss: 169.3786\n", "Epoch 632/1000\n", "3028/3028 [==============================] - 2s 705us/step - loss: 157.1394 - val_loss: 169.8963\n", "Epoch 633/1000\n", "3028/3028 [==============================] - 2s 673us/step - loss: 161.3449 - val_loss: 172.3181\n", "Epoch 634/1000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 159.3781 - val_loss: 169.6526\n", "Epoch 635/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 159.1802 - val_loss: 170.4525\n", "Epoch 636/1000\n", "3028/3028 [==============================] - 2s 655us/step - loss: 158.7178 - val_loss: 170.2166\n", "Epoch 637/1000\n", "3028/3028 [==============================] - 2s 641us/step - loss: 159.7017 - val_loss: 169.3263\n", "Epoch 638/1000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 160.3958 - val_loss: 170.1351\n", "Epoch 639/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 162.1710 - val_loss: 170.2081\n", "Epoch 640/1000\n", "3028/3028 [==============================] - 2s 800us/step - loss: 158.5517 - val_loss: 169.6241\n", "Epoch 641/1000\n", "3028/3028 [==============================] - 2s 794us/step - loss: 160.9344 - val_loss: 170.2012\n", "Epoch 642/1000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 158.3191 - val_loss: 171.9858\n", "Epoch 643/1000\n", "3028/3028 [==============================] - 3s 929us/step - loss: 159.1510 - val_loss: 169.5879\n", "Epoch 644/1000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 157.9290 - val_loss: 169.8823\n", "Epoch 645/1000\n", "3028/3028 [==============================] - 3s 923us/step - loss: 158.8824 - val_loss: 169.9441\n", "Epoch 646/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 3s 916us/step - loss: 158.3046 - val_loss: 170.8674\n", "Epoch 647/1000\n", "3028/3028 [==============================] - 3s 924us/step - loss: 158.8961 - val_loss: 169.6918\n", "Epoch 648/1000\n", "3028/3028 [==============================] - 3s 915us/step - loss: 160.7238 - val_loss: 170.8824\n", "Epoch 649/1000\n", "3028/3028 [==============================] - 3s 917us/step - loss: 161.5551 - val_loss: 169.5539\n", "Epoch 650/1000\n", "3028/3028 [==============================] - 3s 949us/step - loss: 156.2917 - val_loss: 174.0558\n", "Epoch 651/1000\n", "3028/3028 [==============================] - 3s 937us/step - loss: 160.0972 - val_loss: 171.0689\n", "Epoch 652/1000\n", "3028/3028 [==============================] - 3s 947us/step - loss: 160.7981 - val_loss: 170.3374\n", "Epoch 653/1000\n", "3028/3028 [==============================] - 3s 938us/step - loss: 157.5052 - val_loss: 170.5070\n", "Epoch 654/1000\n", "3028/3028 [==============================] - 3s 912us/step - loss: 158.6757 - val_loss: 169.6677\n", "Epoch 655/1000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 160.3624 - val_loss: 169.7162\n", "Epoch 656/1000\n", "3028/3028 [==============================] - 2s 646us/step - loss: 159.4971 - val_loss: 169.2606\n", "Epoch 657/1000\n", "3028/3028 [==============================] - 2s 665us/step - loss: 157.1856 - val_loss: 168.8819\n", "Epoch 658/1000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 160.9312 - val_loss: 170.0434\n", "Epoch 659/1000\n", "3028/3028 [==============================] - 2s 676us/step - loss: 158.8594 - val_loss: 171.3595\n", "Epoch 660/1000\n", "3028/3028 [==============================] - 3s 910us/step - loss: 159.9488 - val_loss: 168.7680\n", "Epoch 661/1000\n", "3028/3028 [==============================] - 3s 916us/step - loss: 158.8101 - val_loss: 168.9001\n", "Epoch 662/1000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 159.8113 - val_loss: 170.0638\n", "Epoch 663/1000\n", "3028/3028 [==============================] - 3s 915us/step - loss: 160.4589 - val_loss: 169.0875\n", "Epoch 664/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 159.7050 - val_loss: 170.9555\n", "Epoch 665/1000\n", "3028/3028 [==============================] - 3s 863us/step - loss: 158.6413 - val_loss: 169.5150\n", "Epoch 666/1000\n", "3028/3028 [==============================] - 3s 865us/step - loss: 160.2878 - val_loss: 169.9787\n", "Epoch 667/1000\n", "3028/3028 [==============================] - 3s 844us/step - loss: 158.3755 - val_loss: 170.6440\n", "Epoch 668/1000\n", "3028/3028 [==============================] - 3s 858us/step - loss: 158.0792 - val_loss: 170.2293\n", "Epoch 669/1000\n", "3028/3028 [==============================] - 3s 850us/step - loss: 159.9498 - val_loss: 168.9937\n", "Epoch 670/1000\n", "3028/3028 [==============================] - 3s 843us/step - loss: 158.2495 - val_loss: 169.2576\n", "Epoch 671/1000\n", "3028/3028 [==============================] - 3s 869us/step - loss: 158.4830 - val_loss: 171.7845\n", "Epoch 672/1000\n", "3028/3028 [==============================] - 3s 856us/step - loss: 160.4299 - val_loss: 170.0406\n", "Epoch 673/1000\n", "3028/3028 [==============================] - 3s 874us/step - loss: 157.5308 - val_loss: 169.4381\n", "Epoch 674/1000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 160.2643 - val_loss: 170.1244\n", "Epoch 675/1000\n", "3028/3028 [==============================] - 2s 760us/step - loss: 156.4399 - val_loss: 170.7630\n", "Epoch 676/1000\n", "3028/3028 [==============================] - 2s 802us/step - loss: 159.1243 - val_loss: 168.5568\n", "Epoch 677/1000\n", "3028/3028 [==============================] - 3s 894us/step - loss: 159.1676 - val_loss: 169.7501\n", "Epoch 678/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 157.5924 - val_loss: 169.5234\n", "Epoch 679/1000\n", "3028/3028 [==============================] - 3s 888us/step - loss: 157.5491 - val_loss: 170.0231\n", "Epoch 680/1000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 157.0976 - val_loss: 171.7558\n", "Epoch 681/1000\n", "3028/3028 [==============================] - 3s 871us/step - loss: 158.5212 - val_loss: 168.8540\n", "Epoch 682/1000\n", "3028/3028 [==============================] - 3s 889us/step - loss: 159.3508 - val_loss: 169.0753\n", "Epoch 683/1000\n", "3028/3028 [==============================] - 3s 905us/step - loss: 157.2490 - val_loss: 170.3232\n", "Epoch 684/1000\n", "3028/3028 [==============================] - 3s 891us/step - loss: 159.2300 - val_loss: 169.6335\n", "Epoch 685/1000\n", "3028/3028 [==============================] - 3s 887us/step - loss: 159.8861 - val_loss: 170.1514\n", "Epoch 686/1000\n", "3028/3028 [==============================] - 3s 877us/step - loss: 160.5204 - val_loss: 170.4670\n", "Epoch 687/1000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 158.1540 - val_loss: 169.2893\n", "Epoch 688/1000\n", "3028/3028 [==============================] - 3s 895us/step - loss: 157.0562 - val_loss: 169.3536\n", "Epoch 689/1000\n", "3028/3028 [==============================] - 3s 853us/step - loss: 156.3564 - val_loss: 170.3442\n", "Epoch 690/1000\n", "3028/3028 [==============================] - 3s 883us/step - loss: 157.9062 - val_loss: 170.1885\n", "Epoch 691/1000\n", "3028/3028 [==============================] - 3s 894us/step - loss: 158.1902 - val_loss: 169.7364\n", "Epoch 692/1000\n", "3028/3028 [==============================] - 3s 873us/step - loss: 159.2492 - val_loss: 168.9721\n", "Epoch 693/1000\n", "3028/3028 [==============================] - 3s 887us/step - loss: 157.0340 - val_loss: 169.8868\n", "Epoch 694/1000\n", "3028/3028 [==============================] - 3s 868us/step - loss: 159.7746 - val_loss: 169.6406\n", "Epoch 695/1000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 157.6315 - val_loss: 170.3634\n", "Epoch 696/1000\n", "3028/3028 [==============================] - 3s 907us/step - loss: 158.0801 - val_loss: 172.4845\n", "Epoch 697/1000\n", "3028/3028 [==============================] - 3s 889us/step - loss: 159.5640 - val_loss: 169.7065\n", "Epoch 698/1000\n", "3028/3028 [==============================] - 3s 890us/step - loss: 159.3134 - val_loss: 171.1022\n", "Epoch 699/1000\n", "3028/3028 [==============================] - 3s 902us/step - loss: 158.8539 - val_loss: 168.7294\n", "Epoch 700/1000\n", "3028/3028 [==============================] - 3s 895us/step - loss: 158.1928 - val_loss: 170.3540\n", "Epoch 701/1000\n", "3028/3028 [==============================] - 3s 904us/step - loss: 157.2646 - val_loss: 169.3291\n", "Epoch 702/1000\n", "3028/3028 [==============================] - 3s 911us/step - loss: 156.2030 - val_loss: 168.9329\n", "Epoch 703/1000\n", "3028/3028 [==============================] - 3s 885us/step - loss: 158.9661 - val_loss: 169.7777\n", "Epoch 704/1000\n", "3028/3028 [==============================] - 3s 858us/step - loss: 160.9757 - val_loss: 170.3823\n", "Epoch 705/1000\n", "3028/3028 [==============================] - 3s 891us/step - loss: 155.3338 - val_loss: 169.7065\n", "Epoch 706/1000\n", "3028/3028 [==============================] - 3s 990us/step - loss: 157.0713 - val_loss: 171.0607\n", "Epoch 707/1000\n", "3028/3028 [==============================] - 3s 879us/step - loss: 159.6806 - val_loss: 169.8091\n", "Epoch 708/1000\n", "3028/3028 [==============================] - 3s 874us/step - loss: 156.4931 - val_loss: 169.0206\n", "Epoch 709/1000\n", "3028/3028 [==============================] - 2s 814us/step - loss: 155.5951 - val_loss: 169.6267\n", "Epoch 710/1000\n", "3028/3028 [==============================] - 2s 804us/step - loss: 159.6046 - val_loss: 170.0838\n", "Epoch 711/1000\n", "3028/3028 [==============================] - 2s 772us/step - loss: 157.1327 - val_loss: 169.7900\n", "Epoch 712/1000\n", "3028/3028 [==============================] - 2s 704us/step - loss: 158.2781 - val_loss: 169.1599\n", "Epoch 713/1000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 158.9984 - val_loss: 170.3524\n", "Epoch 714/1000\n", "3028/3028 [==============================] - 3s 857us/step - loss: 155.7164 - val_loss: 168.8685\n", "Epoch 715/1000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 159.1208 - val_loss: 169.1498\n", "Epoch 716/1000\n", "3028/3028 [==============================] - 2s 643us/step - loss: 158.6848 - val_loss: 169.0925\n", "Epoch 717/1000\n", "3028/3028 [==============================] - 2s 638us/step - loss: 158.5824 - val_loss: 169.6193\n", "Epoch 718/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 158.7854 - val_loss: 169.5794\n", "Epoch 719/1000\n", "3028/3028 [==============================] - 2s 647us/step - loss: 157.9613 - val_loss: 169.1182\n", "Epoch 720/1000\n", "3028/3028 [==============================] - 2s 656us/step - loss: 159.5335 - val_loss: 169.3814\n", "Epoch 721/1000\n", "3028/3028 [==============================] - 2s 642us/step - loss: 156.6292 - val_loss: 169.3946\n", "Epoch 722/1000\n", "3028/3028 [==============================] - 2s 639us/step - loss: 158.2451 - val_loss: 170.6399\n", "Epoch 723/1000\n", "3028/3028 [==============================] - 2s 637us/step - loss: 157.4689 - val_loss: 169.0045\n", "Epoch 724/1000\n", "3028/3028 [==============================] - 2s 645us/step - loss: 157.3548 - val_loss: 169.5154\n", "Epoch 725/1000\n", "3028/3028 [==============================] - 2s 640us/step - loss: 158.9812 - val_loss: 168.9519\n", "Epoch 726/1000\n", "3028/3028 [==============================] - 2s 634us/step - loss: 159.1682 - val_loss: 169.6233\n", "1010/1010 [==============================] - 0s 434us/step - loss: 168.5568\n" ] } ], "source": [ "param_distribs = {\n", " 'n_hidden': [5,4,3],\n", " 'n_nodes': [15,20,25],\n", " 'learning_rate': 10**np.arange(-5.,-2)[::-1]\n", "}\n", "best_params = {'n_hidden': None,\n", " 'n_nodes': None,\n", " 'learning_rate': None,\n", " 'loss': float('inf'),\n", " 'logs': None,\n", " 'model': None}\n", "count = 0\n", "for hidden in param_distribs['n_hidden']:\n", " for nodes in param_distribs['n_nodes']:\n", " for lr in param_distribs['learning_rate']:\n", " print('\\n\\n\\n\\n Model: {}/36, hidden: {}, nodes: {}, lr: {},'.format(count, hidden, nodes, lr))\n", " count +=1\n", " run_logdir = get_run_logdir()\n", " run_model_save_file = get_model_save_name()\n", " callbacks = [EarlyStopping(patience=50,restore_best_weights=True),\n", " TensorBoard(run_logdir),\n", " ModelCheckpoint(run_model_save_file, save_best_only=True)]\n", " model = spotify_pop_model(n_hidden=hidden, \n", " learning_rate=lr, \n", " n_nodes=nodes)\n", " model.fit(x_train_v_scaled, \n", " y_train_v, \n", " epochs=1000, \n", " validation_data=(x_valid_scaled, y_valid),\n", " callbacks=callbacks)\n", " loss = model.evaluate(x_valid_scaled, y_valid)\n", " if loss < best_params['loss']:\n", " best_params = {'n_hidden': hidden,\n", " 'n_nodes': nodes,\n", " 'learning_rate': lr,\n", " 'loss': loss,\n", " 'logs': run_logdir,\n", " 'model': run_model_save_file}\n", " " ] }, { "cell_type": "code", "execution_count": 215, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'n_hidden': 4, 'n_nodes': 25, 'learning_rate': 1e-05, 'loss': 167.54751586914062, 'logs': './spotify_pop_logs/run_2021_02_09-21_00_30', 'model': 'models/run_2021_02_09-21_00_30.h5'}\n" ] } ], "source": [ "print(best_params)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "best models so far:\n", "\n", "{'n_hidden': 3, 'n_nodes': 200, 'learning_rate': 0.0001, 'loss': 170.43551635742188, 'logs': './spotify_pop_logs/run_2021_02_08-15_43_29', 'model': 'models/run_2021_02_08-15_43_29.h5'}\n", "\n", "{'n_hidden': 3, 'n_nodes': 20, 'learning_rate': 0.0001, 'loss': 168.18092346191406, 'logs': './spotify_pop_logs/run_2021_02_08-20_09_38', 'model': 'models/run_2021_02_08-20_09_38.h5'}\n", "\n", "{'n_hidden': 4, 'n_nodes': 25, 'learning_rate': 1e-05, 'loss': 167.54751586914062, 'logs': './spotify_pop_logs/run_2021_02_09-21_00_30', 'model': 'models/run_2021_02_09-21_00_30.h5'}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "things to try:\n", "- work on avoiding exploding gradient \n", "- weight data by histogram (ie highly popular songs get more weight) \n" ] }, { "cell_type": "code", "execution_count": 222, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5000\n", "3028/3028 [==============================] - 3s 845us/step - loss: 164.6025 - val_loss: 170.8456\n", "Epoch 2/5000\n", "3028/3028 [==============================] - 2s 817us/step - loss: 164.5963 - val_loss: 171.2379\n", "Epoch 3/5000\n", "3028/3028 [==============================] - 2s 822us/step - loss: 164.7052 - val_loss: 171.4607\n", "Epoch 4/5000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 164.6133 - val_loss: 171.4892\n", "Epoch 5/5000\n", "3028/3028 [==============================] - 2s 708us/step - loss: 164.6884 - val_loss: 171.9311\n", "Epoch 6/5000\n", "3028/3028 [==============================] - 2s 801us/step - loss: 164.5814 - val_loss: 171.5620\n", "Epoch 7/5000\n", "3028/3028 [==============================] - 3s 866us/step - loss: 164.5816 - val_loss: 171.6308\n", "Epoch 8/5000\n", "3028/3028 [==============================] - 3s 835us/step - loss: 164.6366 - val_loss: 171.0448\n", "Epoch 9/5000\n", "3028/3028 [==============================] - 3s 907us/step - loss: 164.5509 - val_loss: 171.3529\n", "Epoch 10/5000\n", "3028/3028 [==============================] - 2s 792us/step - loss: 164.7387 - val_loss: 171.3349\n", "Epoch 11/5000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 164.6413 - val_loss: 171.3245\n", "Epoch 12/5000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 164.6633 - val_loss: 172.0367\n", "Epoch 13/5000\n", "3028/3028 [==============================] - 3s 836us/step - loss: 164.6694 - val_loss: 171.3254\n", "Epoch 14/5000\n", "3028/3028 [==============================] - 3s 846us/step - loss: 164.4238 - val_loss: 171.4308\n", "Epoch 15/5000\n", "3028/3028 [==============================] - 3s 846us/step - loss: 164.4981 - val_loss: 172.3876\n", "Epoch 16/5000\n", "3028/3028 [==============================] - 2s 816us/step - loss: 164.5225 - val_loss: 171.7009\n", "Epoch 17/5000\n", "3028/3028 [==============================] - 2s 771us/step - loss: 164.7220 - val_loss: 171.0925\n", "Epoch 18/5000\n", "3028/3028 [==============================] - 2s 788us/step - loss: 164.5967 - val_loss: 171.2770\n", "Epoch 19/5000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 164.5495 - val_loss: 171.0466\n", "Epoch 20/5000\n", "3028/3028 [==============================] - 2s 770us/step - loss: 164.6722 - val_loss: 171.7258\n", "Epoch 21/5000\n", "3028/3028 [==============================] - 2s 757us/step - loss: 164.5862 - val_loss: 171.0412\n", "Epoch 22/5000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 164.5785 - val_loss: 170.9490\n", "Epoch 23/5000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 164.5990 - val_loss: 171.5466\n", "Epoch 24/5000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 164.5312 - val_loss: 171.1098\n", "Epoch 25/5000\n", "3028/3028 [==============================] - 2s 798us/step - loss: 164.4728 - val_loss: 172.1906\n", "Epoch 26/5000\n", "3028/3028 [==============================] - 2s 785us/step - loss: 164.5543 - val_loss: 171.1306\n", "Epoch 27/5000\n", "3028/3028 [==============================] - 2s 761us/step - loss: 164.6158 - val_loss: 171.0552\n", "Epoch 28/5000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 164.4923 - val_loss: 171.1252\n", "Epoch 29/5000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 164.6562 - val_loss: 172.5344\n", "Epoch 30/5000\n", "3028/3028 [==============================] - 3s 842us/step - loss: 164.4209 - val_loss: 171.2999\n", "Epoch 31/5000\n", "3028/3028 [==============================] - 2s 777us/step - loss: 164.6766 - val_loss: 171.9403\n", "Epoch 32/5000\n", "3028/3028 [==============================] - 2s 768us/step - loss: 164.4191 - val_loss: 170.9612\n", "Epoch 33/5000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 164.5347 - val_loss: 171.7904\n", "Epoch 34/5000\n", "3028/3028 [==============================] - 2s 760us/step - loss: 164.5643 - val_loss: 171.8490\n", "Epoch 35/5000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 164.5863 - val_loss: 171.3282\n", "Epoch 36/5000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 164.4972 - val_loss: 171.2531\n", "Epoch 37/5000\n", "3028/3028 [==============================] - 2s 819us/step - loss: 164.5851 - val_loss: 171.2416\n", "Epoch 38/5000\n", "3028/3028 [==============================] - 2s 802us/step - loss: 164.4446 - val_loss: 172.0788\n", "Epoch 39/5000\n", "3028/3028 [==============================] - 2s 790us/step - loss: 164.5132 - val_loss: 171.5399\n", "Epoch 40/5000\n", "3028/3028 [==============================] - 2s 814us/step - loss: 164.5144 - val_loss: 171.3650\n", "Epoch 41/5000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 164.5487 - val_loss: 173.8277\n", "Epoch 42/5000\n", "3028/3028 [==============================] - 2s 793us/step - loss: 164.4347 - val_loss: 171.6663\n", "Epoch 43/5000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 164.2725 - val_loss: 171.3604\n", "Epoch 44/5000\n", "3028/3028 [==============================] - 2s 749us/step - loss: 164.5011 - val_loss: 171.6904\n", "Epoch 45/5000\n", "3028/3028 [==============================] - 3s 850us/step - loss: 164.5103 - val_loss: 171.6022\n", "Epoch 46/5000\n", "3028/3028 [==============================] - 2s 819us/step - loss: 164.5947 - val_loss: 173.0177\n", "Epoch 47/5000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 164.5558 - val_loss: 171.3451\n", "Epoch 48/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 164.3233 - val_loss: 171.8351\n", "Epoch 49/5000\n", "3028/3028 [==============================] - 3s 927us/step - loss: 164.4711 - val_loss: 171.6342\n", "Epoch 50/5000\n", "3028/3028 [==============================] - 3s 849us/step - loss: 164.3940 - val_loss: 172.1959\n", "Epoch 51/5000\n", "3028/3028 [==============================] - 2s 784us/step - loss: 164.3607 - val_loss: 171.8231\n", "Epoch 52/5000\n", "3028/3028 [==============================] - 3s 828us/step - loss: 164.4313 - val_loss: 171.6963\n", "Epoch 53/5000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 164.3543 - val_loss: 171.4475\n", "Epoch 54/5000\n", "3028/3028 [==============================] - 3s 864us/step - loss: 164.4495 - val_loss: 171.0251\n", "Epoch 55/5000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 164.4265 - val_loss: 171.5056\n", "Epoch 56/5000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 164.3459 - val_loss: 171.5648\n", "Epoch 57/5000\n", "3028/3028 [==============================] - 2s 784us/step - loss: 164.4413 - val_loss: 171.5367\n", "Epoch 58/5000\n", "3028/3028 [==============================] - 3s 896us/step - loss: 164.5286 - val_loss: 170.9731\n", "Epoch 59/5000\n", "3028/3028 [==============================] - 2s 785us/step - loss: 164.5625 - val_loss: 172.1762\n", "Epoch 60/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 164.4293 - val_loss: 171.8531\n", "Epoch 61/5000\n", "3028/3028 [==============================] - 3s 922us/step - loss: 164.3655 - val_loss: 172.5582\n", "Epoch 62/5000\n", "3028/3028 [==============================] - 3s 989us/step - loss: 164.4674 - val_loss: 172.5644\n", "Epoch 63/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 164.4990 - val_loss: 171.2571\n", "Epoch 64/5000\n", "3028/3028 [==============================] - 2s 825us/step - loss: 164.4328 - val_loss: 174.1695\n", "Epoch 65/5000\n", "3028/3028 [==============================] - 3s 843us/step - loss: 164.5150 - val_loss: 171.3409\n", "Epoch 66/5000\n", "3028/3028 [==============================] - 3s 827us/step - loss: 164.4577 - val_loss: 171.1187\n", "Epoch 67/5000\n", "3028/3028 [==============================] - 2s 812us/step - loss: 164.4035 - val_loss: 171.8131\n", "Epoch 68/5000\n", "3028/3028 [==============================] - 3s 831us/step - loss: 164.4400 - val_loss: 171.3401\n", "Epoch 69/5000\n", "3028/3028 [==============================] - 3s 831us/step - loss: 164.4021 - val_loss: 171.7373\n", "Epoch 70/5000\n", "3028/3028 [==============================] - 3s 844us/step - loss: 164.4212 - val_loss: 172.2194\n", "Epoch 71/5000\n", "3028/3028 [==============================] - 3s 836us/step - loss: 164.3893 - val_loss: 171.8830\n", "Epoch 72/5000\n", "3028/3028 [==============================] - 3s 943us/step - loss: 164.2815 - val_loss: 171.9819\n", "Epoch 73/5000\n", "3028/3028 [==============================] - 3s 870us/step - loss: 164.4390 - val_loss: 171.6122\n", "Epoch 74/5000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 164.3693 - val_loss: 171.5266\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 75/5000\n", "3028/3028 [==============================] - 3s 867us/step - loss: 164.2651 - val_loss: 171.6569\n", "Epoch 76/5000\n", "3028/3028 [==============================] - 3s 917us/step - loss: 164.3616 - val_loss: 172.4746\n", "Epoch 77/5000\n", "3028/3028 [==============================] - 3s 886us/step - loss: 164.4477 - val_loss: 170.9955\n", "Epoch 78/5000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 164.4357 - val_loss: 171.7094\n", "Epoch 79/5000\n", "3028/3028 [==============================] - 2s 794us/step - loss: 164.3830 - val_loss: 171.3551\n", "Epoch 80/5000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 164.3037 - val_loss: 172.2464\n", "Epoch 81/5000\n", "3028/3028 [==============================] - 2s 795us/step - loss: 164.3513 - val_loss: 171.9203\n", "Epoch 82/5000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 164.4079 - val_loss: 171.3807\n", "Epoch 83/5000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 164.4643 - val_loss: 171.0404\n", "Epoch 84/5000\n", "3028/3028 [==============================] - 2s 734us/step - loss: 164.4011 - val_loss: 171.8766\n", "Epoch 85/5000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 164.5637 - val_loss: 171.7225\n", "Epoch 86/5000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 164.2981 - val_loss: 171.6675\n", "Epoch 87/5000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 164.2882 - val_loss: 171.7170\n", "Epoch 88/5000\n", "3028/3028 [==============================] - 2s 747us/step - loss: 164.3510 - val_loss: 170.9447\n", "Epoch 89/5000\n", "3028/3028 [==============================] - 2s 738us/step - loss: 164.2461 - val_loss: 171.1511\n", "Epoch 90/5000\n", "3028/3028 [==============================] - 2s 732us/step - loss: 164.2483 - val_loss: 171.2641\n", "Epoch 91/5000\n", "3028/3028 [==============================] - 2s 784us/step - loss: 164.3658 - val_loss: 172.2559\n", "Epoch 92/5000\n", "3028/3028 [==============================] - 2s 789us/step - loss: 164.2954 - val_loss: 172.0128\n", "Epoch 93/5000\n", "3028/3028 [==============================] - 2s 789us/step - loss: 164.4175 - val_loss: 171.4589\n", "Epoch 94/5000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 164.3685 - val_loss: 173.1745\n", "Epoch 95/5000\n", "3028/3028 [==============================] - 2s 753us/step - loss: 164.4268 - val_loss: 171.8461\n", "Epoch 96/5000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 164.2224 - val_loss: 172.0219\n", "Epoch 97/5000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 164.4651 - val_loss: 171.4557\n", "Epoch 98/5000\n", "3028/3028 [==============================] - 3s 831us/step - loss: 164.2410 - val_loss: 171.7666\n", "Epoch 99/5000\n", "3028/3028 [==============================] - 2s 787us/step - loss: 164.4641 - val_loss: 171.9674\n", "Epoch 100/5000\n", "3028/3028 [==============================] - 2s 796us/step - loss: 164.3586 - val_loss: 171.7332\n", "Epoch 101/5000\n", "3028/3028 [==============================] - 2s 787us/step - loss: 164.1909 - val_loss: 172.8706\n", "Epoch 102/5000\n", "3028/3028 [==============================] - 2s 804us/step - loss: 164.4348 - val_loss: 171.2668\n", "Epoch 103/5000\n", "3028/3028 [==============================] - 3s 853us/step - loss: 164.1926 - val_loss: 171.4278\n", "Epoch 104/5000\n", "3028/3028 [==============================] - 2s 771us/step - loss: 164.2805 - val_loss: 172.7291\n", "Epoch 105/5000\n", "3028/3028 [==============================] - 3s 826us/step - loss: 164.2895 - val_loss: 171.9549\n", "Epoch 106/5000\n", "3028/3028 [==============================] - 2s 721us/step - loss: 164.3127 - val_loss: 170.9083\n", "Epoch 107/5000\n", "3028/3028 [==============================] - 2s 735us/step - loss: 164.3960 - val_loss: 171.9656\n", "Epoch 108/5000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 164.2570 - val_loss: 171.6380\n", "Epoch 109/5000\n", "3028/3028 [==============================] - 2s 809us/step - loss: 164.2809 - val_loss: 171.7832\n", "Epoch 110/5000\n", "3028/3028 [==============================] - 2s 820us/step - loss: 164.3475 - val_loss: 171.6060\n", "Epoch 111/5000\n", "3028/3028 [==============================] - 2s 748us/step - loss: 164.2924 - val_loss: 172.2388\n", "Epoch 112/5000\n", "3028/3028 [==============================] - 2s 754us/step - loss: 164.2734 - val_loss: 171.0281\n", "Epoch 113/5000\n", "3028/3028 [==============================] - 3s 841us/step - loss: 164.1977 - val_loss: 171.2823\n", "Epoch 114/5000\n", "3028/3028 [==============================] - 2s 739us/step - loss: 164.3447 - val_loss: 171.1033\n", "Epoch 115/5000\n", "3028/3028 [==============================] - 3s 978us/step - loss: 164.2041 - val_loss: 172.3923\n", "Epoch 116/5000\n", "3028/3028 [==============================] - 3s 974us/step - loss: 164.4608 - val_loss: 171.1896\n", "Epoch 117/5000\n", "3028/3028 [==============================] - 3s 965us/step - loss: 164.3133 - val_loss: 171.3742\n", "Epoch 118/5000\n", "3028/3028 [==============================] - 2s 815us/step - loss: 164.2659 - val_loss: 172.2100\n", "Epoch 119/5000\n", "3028/3028 [==============================] - 3s 939us/step - loss: 164.2499 - val_loss: 171.7857\n", "Epoch 120/5000\n", "3028/3028 [==============================] - 3s 931us/step - loss: 164.2849 - val_loss: 171.7220\n", "Epoch 121/5000\n", "3028/3028 [==============================] - 3s 982us/step - loss: 164.2790 - val_loss: 171.9365\n", "Epoch 122/5000\n", "3028/3028 [==============================] - 2s 807us/step - loss: 164.3558 - val_loss: 171.2097\n", "Epoch 123/5000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 164.3870 - val_loss: 173.2793\n", "Epoch 124/5000\n", "3028/3028 [==============================] - 2s 812us/step - loss: 164.2619 - val_loss: 171.6608\n", "Epoch 125/5000\n", "3028/3028 [==============================] - 2s 752us/step - loss: 164.1785 - val_loss: 171.2197\n", "Epoch 126/5000\n", "3028/3028 [==============================] - 2s 756us/step - loss: 164.2549 - val_loss: 172.4288\n", "Epoch 127/5000\n", "3028/3028 [==============================] - 2s 792us/step - loss: 164.2973 - val_loss: 171.4206\n", "Epoch 128/5000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 164.3097 - val_loss: 171.2396\n", "Epoch 129/5000\n", "3028/3028 [==============================] - 3s 843us/step - loss: 164.3047 - val_loss: 171.2277\n", "Epoch 130/5000\n", "3028/3028 [==============================] - 3s 845us/step - loss: 164.1848 - val_loss: 172.3760\n", "Epoch 131/5000\n", "3028/3028 [==============================] - 3s 853us/step - loss: 164.2085 - val_loss: 171.4891\n", "Epoch 132/5000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 164.1610 - val_loss: 171.3274\n", "Epoch 133/5000\n", "3028/3028 [==============================] - 2s 804us/step - loss: 164.1871 - val_loss: 171.5827\n", "Epoch 134/5000\n", "3028/3028 [==============================] - 2s 767us/step - loss: 164.2637 - val_loss: 171.2088\n", "Epoch 135/5000\n", "3028/3028 [==============================] - 2s 795us/step - loss: 164.3289 - val_loss: 172.2359\n", "Epoch 136/5000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 164.1712 - val_loss: 171.8566\n", "Epoch 137/5000\n", "3028/3028 [==============================] - 3s 860us/step - loss: 164.3358 - val_loss: 171.2256\n", "Epoch 138/5000\n", "3028/3028 [==============================] - 3s 836us/step - loss: 164.2480 - val_loss: 171.3127\n", "Epoch 139/5000\n", "3028/3028 [==============================] - 3s 828us/step - loss: 164.3196 - val_loss: 172.0316\n", "Epoch 140/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 164.1394 - val_loss: 171.5955\n", "Epoch 141/5000\n", "3028/3028 [==============================] - 3s 866us/step - loss: 164.1453 - val_loss: 172.4101\n", "Epoch 142/5000\n", "3028/3028 [==============================] - 3s 834us/step - loss: 164.3883 - val_loss: 171.4312\n", "Epoch 143/5000\n", "3028/3028 [==============================] - 2s 799us/step - loss: 164.1149 - val_loss: 172.2620\n", "Epoch 144/5000\n", "3028/3028 [==============================] - 2s 744us/step - loss: 164.3947 - val_loss: 171.5204\n", "Epoch 145/5000\n", "3028/3028 [==============================] - 2s 760us/step - loss: 164.1403 - val_loss: 172.2181\n", "Epoch 146/5000\n", "3028/3028 [==============================] - 2s 713us/step - loss: 164.1585 - val_loss: 171.1924\n", "Epoch 147/5000\n", "3028/3028 [==============================] - 2s 746us/step - loss: 164.3371 - val_loss: 172.8089\n", "Epoch 148/5000\n", "3028/3028 [==============================] - 2s 733us/step - loss: 164.2096 - val_loss: 171.5641\n", "Epoch 149/5000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 164.1719 - val_loss: 171.2194\n", "Epoch 150/5000\n", "3028/3028 [==============================] - 2s 722us/step - loss: 164.2503 - val_loss: 171.8051\n", "Epoch 151/5000\n", "3028/3028 [==============================] - 2s 750us/step - loss: 164.2046 - val_loss: 171.3802\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 222, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = keras.models.load_model('models/run_2021_02_09-17_08_09.h5')\n", "run_logdir = get_run_logdir()\n", "run_model_save_file = get_model_save_name()\n", "callbacks = [EarlyStopping(patience=150,restore_best_weights=True),\n", " TensorBoard(run_logdir),\n", " ModelCheckpoint(run_model_save_file, save_best_only=True)]\n", "model.fit(x_train_v_scaled, \n", " y_train_v, \n", " epochs=5000, \n", " validation_data=(x_valid_scaled, y_valid),\n", " callbacks=callbacks)" ] }, { "cell_type": "code", "execution_count": 223, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1010/1010 [==============================] - 1s 506us/step - loss: 170.8456\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACdoElEQVR4nO29eXgc1ZX3/7mtbi3d2jcv8iJbtmVs4wXMZgi22WJCWEJiIJn8Xk9mSCCZBBIyLOENA0kYQsKEkGRmAknmzUvesC/BBAJhsw1mM8b7bsuWLcuyLGtXd0vdUt/fH3WrdKukbrdlyZKl+j6PnyOrt+pS1bnnfs853yOklLhw4cKFi5EDz2AfgAsXLly4OLlwHb8LFy5cjDC4jt+FCxcuRhhcx+/ChQsXIwyu43fhwoWLEQbX8btw4cLFCIPr+F24cOFihMF1/C5GPIQQlUKISwb7OE4mhBArhRA3DvZxuBgcuI7fxaBDOd6wEKJVCNEkhPhACHGzEMKjHv+/QggphDhbe80UIYTU/r9SCNEuhBiv/e4SIUTlSf0ySUII8Y9CiNWDfRwuRiZcx+9iqOBKKWUWMBF4ELgT+B/t8Qbg/mO8RxC4Z2AOz4WL4QPX8bsYUpBSNkspXwauB5YJIWaphx4HZgshFiZ4+a+BLwshpvT184UQHiHEXUKICiFEvRDiWSFEvnosXQjxZ/X7JiHEJ0KIUeqxfxRC7FW7ln1CiH9I8BmnAY8C5wkh2oQQTer3NvrFuStQu56bhRC7hRCNQoj/EkII7fF/EkJsV4/9XQgxUXvsUiHEDiFEsxDiPwHrdS5GHlzH72JIQkq5BjgIfEb9KgQ8APx7gpdVA78H7juBj74FuAZYCIwFGoH/Uo8tA3KA8UABcDMQFkIEMBady9WuZQGwId4HSCm3q9d+KKXMlFLmHsfxfR44C5gDXAd8FkAIcQ1wN3AtUAS8BzylHisEXgB+CBQCFcD5x/GZLoYZXMfvYijjEJCv/f8xYIIQ4vIEr/kpcKUQYmYfP/Mm4H9LKQ9KKTswFpEvCSG8QBTD4U+RUnZJKT+VUrao18WAWUKIDClljZRyax8//1h4UErZJKU8AKwA5mrH/VMp5XYpZSfGIjlXRf2fA7ZJKZ+XUkaBR4DDA3R8Lk4BuI7fxVBGCQa3D4ByxD9R/3qlKqSUdcB/Aj/u42dOBP6iqJwmYDvQBYwC/h/wd+BpIcQhIcTPhRA+KWUQg5q6GagRQrwqhJjex88/FnSHHQIyteP+lXbcDRjnqARj51JlvkgakrxVuBixcB2/iyEJIcRZGE7LWfnyRwy65QsJXv4QsBg4sw8fXYVB2eRq/9KllNVSyqiU8kdSyhkYdM7ngf8FIKX8u5TyUmAMsAODckqE3vTQg4Bf+//o4zzumxzHnSGl/ACowaCnAFB5gfHx3sjF8Ifr+F0MKQghsoUQnweeBv4spdysP65ojPswqn56hZSyCfgFcEcfDuFR4N/NxKgQokgIcbX6ebEQ4nQhRArQgkH9dAkhRgkhrlJcfwfQhrFLSIRaYJwQIlX73QbgWiGEXyWo//k4j/sHJsUlhMgRQixVj70KzBRCXKsoq1s4vkXFxTCD6/hdDBX8VQjRihG5/m/gYeBrcZ77FEYUmwi/4tjON97rXgbeUMfzEXCOemw08DyG098OrAL+jHEffR8jJ9GAkRj+1jE+5x1gK3BYCHFU/e6XQARjUXgceCLZg5ZS/gX4GQYN1QJsAS5Xjx0FlmKUydYDU4H3k31vF8MPwp3A5cKFCxcjC27E78KFCxcjDK7jdzHsIYSYoBqlevs3YQA/99E4n/noQH2mCxfJwKV6XLhw4WKEwTvYB5AMCgsLZWlp6WAfhgsXLlycUvj000+PSimLnL8/JRx/aWkpa9euHezDcOHChYtTCkKI/b393uX4Xbhw4WKEwXX8Lly4cDHC4Dp+Fy5cuBhhOCU4/t4QjUY5ePAg7e3tg30og4r09HTGjRuHz+cb7ENx4cLFKYJT1vEfPHiQrKwsSktL0WZRjChIKamvr+fgwYNMmjRpsA/HhQsXpwhOWaqnvb2dgoKCEev0AYQQFBQUjPhdjwsXLo4Pp6zjB0a00zfhngMXLlwcL05px+/ChQsXwxrBenj/V4btR7iOf4igtLSUo0ePnvBzXLhwMYyw4c/w5r8Zth9xyiZ3Xbhw4WLYIVhvOPm5X4VAgWGh2/YT3Ij/BFBZWcn06dO58cYbmTVrFv/wD//AW2+9xfnnn8/UqVNZs2YNDQ0NXHPNNcyePZtzzz2XTZs2AVBfX89ll13GvHnzuOmmm9DF8v785z9z9tlnM3fuXG666Sa6uvoyT8SFCxenHJwRfqAAzr/VsP0I1/GfIPbs2cOtt97Kpk2b2LFjB08++SSrV6/mP/7jP3jggQe49957mTdvHps2beKBBx7gf/2v/wXAj370Iy644ALWr1/PVVddxYEDBwDYvn07zzzzDO+//z4bNmwgJSWFJ55IehCTCxcuTjUc+AT+c75h534VLv1xv0f4TowoqqchGOG5tVUsnT+e/EDqsV+QBCZNmsTpp58OwMyZM7n44osRQnD66adTWVnJ/v37eeGFFwC46KKLqK+vp7m5mXfffZcXX3wRgCuuuIK8vDwA3n77bT799FPOOussAMLhMMXFxf1yrC5cuBiCePmbcHS3Yb+91ojwBxgjyvE/t7aKn762A4CbFpb1y3umpaVZP3s8Huv/Ho+Hzs5OvN6ep9gsweytFFNKybJly/jpT3/aL8fnwoWLIYhdb8FLN8E1j8FVvzWc/lW/PWkfP6KonqXzx/ODy6ezdP74k/aZF154oUXVrFy5ksLCQrKzs22/f+2112hsbATg4osv5vnnn+fIkSMANDQ0sH9/r8qqLly4OFXx0k0QOmrYCWcZkf6Es07ax48ox58fSOWmhWX9RvMkg/vuu4+1a9cye/Zs7rrrLh5//HEA7r33Xt59913OOOMM3njjDSZMMCYAzpgxg/vvv5/LLruM2bNnc+mll1JTU3PSjteFCxcDgLrd8MRSw4IR6fsLDTsIOCVGL86fP186B7Fs376d0047bZCOaGjBPRcuXAxxPLEUdr8BUy+Df3jupH2sEOJTKeV85+9HFMfvwoULFycNnzwOr30fLv8FXPaA8TvTDjJGFNXjwoULFycNr30fYlHDFk01Iv2iqYN9VIDr+F24cOGi/6Br61z+C/D4DDvE4FI9Lly4cNFXrPg5rHoAFt4Ni+/o7rwFox7/rGWDe3xx4Dp+Fy5cuOgrVj0ASMMuvmPAtHX6Gy7V48KFCxfHg//zebgvx7AL7waEsgyYtk5/w3X8fURTUxP//d//PeCf89JLL7Ft27YB/xwXLlwkiQPvddvFd8B9TYY9heA6/j7ieB2/lJJYLHbcn+M6fhcuhgDeuM+I8t+4DyZ8xvidaU9BuBx/H3HXXXdRUVHB3LlzWbx4MZs2baKxsZFoNMr999/P1VdfTWVlJZdffjmLFy/mww8/5KWXXuJPf/oTTzzxBOPHj6ewsJAzzzyTf/3Xf6WiooJ/+Zd/oa6uDr/fz+9//3saGhp4+eWXWbVqFffffz8vvPACZWX9ozHkwoWL48AHv+y29zUP7rH0B6SUQ/7fmWeeKZ3Ytm1bj9+dTOzbt0/OnDlTSillNBqVzc3NUkop6+rqZFlZmYzFYnLfvn1SCCE//PBDKaWUn3zyiZwzZ44MhUKypaVFTpkyRT700ENSSikvuugiuWvXLimllB999JFcvHixlFLKZcuWyeeeey7hsQz2uXDhYtjhN+dJeW+2YaWU8u/3Gv//+72DeVTHDWCt7MWnjqyI3zndpp8gpeTuu+/m3XffxePxUF1dTW1tLQATJ07k3HPPBWD16tVcffXVZGRkAHDllVcC0NbWxgcffMDSpUut9+zo6Oi343PhwsVx4uhWu73sPuPfMMGAOn4hxPeAGwEJbAa+BviBZ4BSoBK4TkrZOJDHYcFZY9tPeOKJJ6irq+PTTz/F5/NRWlpKe3s7AIFAwHqejKOLFIvFyM3NZcOGDf12TC5cuDhOPHQaBA9BYCwUzjScfuHMwT6qAcGAJXeFECXALcB8KeUsIAW4AbgLeFtKORV4W/3/5KAfp9tkZWXR2toKQHNzM8XFxfh8PlasWBFXRvmCCy7gr3/9K+3t7bS1tfHqq68CkJ2dzaRJk3juOUO8SUrJxo0be3yOCxcuBhDBQ9322x8YXP63PxjcYxogDHRVjxfIEEJ4MSL9Q8DVwOPq8ceBawb4GLrRjzW2BQUFnH/++cyaNYsNGzawdu1a5s+fzxNPPMH06dN7fc1ZZ53FVVddxZw5c7j22muZP38+OTk5gLFr+J//+R/mzJnDzJkzWb58OQA33HADDz30EPPmzaOiouKEj9uFCxcafjbFqNb52RQj0oduO4wxoLLMQohbgX8HwsAbUsp/EEI0SSlztec0SinzenntN4BvAEyYMOFMZxR9qkoRt7W1kZmZSSgU4sILL+R3v/sdZ5xxxgm956l6Lly4GHTcl6P9PAyqdRw46bLMQog8jOh+EtAEPCeESJpjkVL+DvgdGHr8A3GMg4FvfOMbbNu2jfb2dpYtW3bCTt+FCxfHifvHQmcQvAHIKIJwnWFHEAYyuXsJsE9KWQcghHgRWADUCiHGSClrhBBjgCMDeAxDDk8++eRgH4ILFyMbncFu+8NDg3ssg4SBdPwHgHOFEH4MqudiYC0QBJYBDyq7vK8fIKXsdWD5SMJAUnUuXAwL3FcERIBUuK/OiPTNiH+EYsAcv5TyYyHE88A6oBNYj0HdZALPCiH+GWNxWBr/XeIjPT2d+vp6CgoKRqzzl1JSX19Penr6YB+KCxdDC7qzJ6J+qewIjfJ1DGgdv5TyXuBex687MKL/E8K4ceM4ePAgdXV1J/pWpzTS09MZN27cYB+GCxdDDLqzT9WsCziFtXp8Ph+TJk0a7MNw4cLFUIFeoaM7+/tGdnDYG05Zx+/ChQsXceE6+4RwHb8LFy5OTQzzGvyBhOv4XbhwMTzgOv+k4Tp+Fy5cnDqw8fgu+grX8btw4eLUhBvh9xmu43fhwsXQhhvl9ztcx+/ChYtTB26U3y9wHb8LFy6GFtxqnQGH6/hduHAxtHGCzr8hGOG5tVUsnT+e/IDbvQuu43fhwsVQwADy+M+treKnr+0A4KaFZQP2OacSXMfvwoWLoYV+pneWzh9vsy5cx+/ChQsNydIi/UKfnKRqnfxAqhvpOzDQM3dduHBxCsGkRZ5bW3Vcz2sIRnhsVQUNwYjt56RxX3P3Pwcq6tr42h/XUFHX1rf3ThLJvvdAHsPJghvxDxH0dwLKTWi56AuSpUWcz9N5dMD6een88d3X4UPaeMPjoHPuf2UbK3bWAduYPS6XX729m1Cki2ULSvt1d5JsLmA45Axcxz9E0N8X03C4OF2cfCSiRZwOVH+evhA0hiJ8tLeeS2aMIvWhIr4eg9CKXt4wSef/nYumcqAhxHcumsrrW2oACEc6efyDffzq7T2EIp1879LyuA7+8Q8qrcXie5dOsz2vMRTh/le28cPPz+jToneqBliu42doRMf9nYByE1ou+huJggl9IXhubRUrdtZx7uRavg54POAH2jBsCGMMn45E9+AnlQ1U1AX5pLIBMKftCcfP9uPTdxrhSBeAZfXnfbS33tpN/PDzM6wFK1k/MNAB1kD5JpfjJ3les7+hc4XmjdNff9z+fj8XwxfJctZL54/nB5dPtyJd/TX6//9hxRnsTf8K/7DiDMvBeIDfn7+Gye1P8vvz1/R470T34CUzRrG4vIhLZoyivdNw3u2dXSycVkRZUYCF04p6PE9/v4xU4yhMqz/vOxdNpawowHcumsq9y7ewYmcd9y7fYssrJDpW/Zz0Fcl+Vn/CjfgZvOjYpWNcDAXo1+ElM0ZZ1EdZkT0u16P6B17dzu/e20t9W4S7rziNR1dV8Lt391IfjHAXhqP3g53OeXOX+sGI0PVo9pIZo6xo2xnlvrWt1tpBfLT3KAAf7T1KxZE2KuqC/OKNnTzx9XN5eUM1K3bWMXtcNcsWGNP5zHvan+q1ftbfLxTppKIuyKpdR5hcmMnqPfVMLsy05RX++LWzbcek+4v+qBhyfpaOgfJNruNn8Mq9hgNX6OLUh+50Ezkh/RrdeLARwLK3rDmXu1IhtMagckxKp7auzVpIrpo7lk0Hm7hq7lgAHl1ZYS0eGakpymkfojEU4U8f7qe6KcyPr55lu08eVovH/vowi8pH8X5FPTNLjLLQcDRmWec9HS8f8fgHleq3gnRfCgDpvhSWnVfKxoNNLDuvFOiZJ0jGXyR7T//w8zMwqSYnBso3DWuq51QquxosusnF8EK8az7RvWBGwG9tq+WHn5/B4vIiywnpr3v8g0p++toOHv+gkvJR2QCW9dPN5T+xeB2T25/kicXruHf5VkWfbOXlDYdYsbOOlzccAuDtHbWalepoJKt2GmMTTavTlvddOQOvR3DflTNYMLmA/ICPBZMLAGhS363JUVLq/O76+9noIi1l8PiHlTQEozz+YSVAjzxBMkj2ni4ryuSPXzu7xw5rIDGsI37nKj3U4ExG6daFi2TgjCrjXfNOWjEedQFw7uQC8vxGhProyj387r191Ld1kJGaot5NcseG87kvFUIbgGuajSg/BiEPlI/KIj/go3xUFvVtHazec5QZY7LQnTvA/vqgZa+aW8Kmg81cNbeEhdOKuf35jTz0pTkArNvfaP3/cEsHnTHJ4ZYO/mtFBQ3BKD98aQur77qID/fWA/Dh3nrbefCnpsT97r95ZzcVdUF+885uphZnWYfXMwrvPvZkI/lE9NVgY1g7/r78sU4m+psrdDHy4HTojSqqbVSRbjznrnPyd3/uNOvae2xVhe39Nh40OPqNB5v57VfPtLhy//vdET7Ar8/6iN+9t5dvfGYyr760mYZglP/90mb+9M/nsPtIG9efPYE8f6qNa//SGSU8vbaaL51RYuPdl84fz3Xzx1NaGADgO0+to7qpne88tY7zywoBqGkKkx9I5aCyAGdMyKOqMcwZE/LQ7/1EPQe6g395QzVgJIHNKNxERqrXsnoZ6bIFk+L6Ff07AUMqnzesHf+UokwyfB6mFGWe1ERqsouM6+xdnCicTm3v0TbL6lHvsgWlttdtrGq0bIXGw+tRKkCe32fZ1IeK+DpGTb4e4WeCtRvISE2hs8twup1dksffr2TFzjrG51Vy0fRiHnu3gvJRWSyaXsxLG4ya/Jc21PDBD2ZY30Pn/u++4jSk8uFSwvsVRnL3/YqjXDy9mE3Vzcwdb3D8h1vClr33qpnWIpOo5wC6dzj6rsOJZQtK8aemGMe3qgIwcgmJ/MpZpfmUFQU4qzTfWsSGyo5+WHP8//byVsLRGP/28tZ+KbtKFjoXmginUg7CxcAg0TWQjAyC2SzVGDJ+/6OrZ7G4vIgfXT0LPep1XpNzxuVZ9vbnNrJiZx23P7eRx1ZVsGJnHY8p57Z6z1HL+umu1qn9l2r+edKb1P6LESXrXPm8CYYjnjchh7e2G9HuW9trufWZ9TQEo9z6zHoASvLSLat/j201xi7DtD+4fDoZPg8/uHw6o7KN14zKTicvkAZgWT3vkKicWX/s8Q/2qfOyz5brSPSaDJ8qD/V5EvoVnUYaauXVwzriv3BqIcs31nDh1MKTHF1Lh+0dbjmni0TXgP5YfVvEioJvXlRm7SjvXb6F1XvqiXZt4c83nktzKMqBhhDNoSjLFkyyot5H3twJQGOwA4Drzx7P7iOtXH/2eF5T3bB1rR3sPtIKwGtbavj5l+bwkbgefyqEhD3Kf2ylsUAUZVbw86VzePjNXVTUBXn4zV3sU7uOzdUtFGalcai5ncKsNHKiKTSHOxmbbTjqgKJPAqleWzXRjRdMZltNCzdeMBmApz+pIhyN8fQnVTy0dI61OzGooxTL6epVOcnuusORmGWXLUguz6af10R+RaeRhhrVPKwjfnN7Zdr+RKKmi2ULJvGDy6dbtcTxcDJ3IS6GJvRrwHlN6Y/pUbBeLTJZVYKY9rZnN1BRF+S2Zzfw/u46HnlrF+/vrmNnrfGepn1mjdFd+8yaKr61qAyvR/CtRWUUZxkRtWn1ap2vFLzK5MiTfKXgVV7fehjAskby1rA56YZDz0n3MndcLgBzx+UybbQRkZtWh15N5KyoKcnNsGyeP9WWfNahN3fp5yhRs5lOUSUblSf7PL1aZ6hV7Q3riD8RZ3eiSNTgkezuwuX4XehwRu/69XHbpeXUNG/ktkvLbXzxoyv3AJDuNWK4C6cWUVm/nwunFnH78xtp75Tc/vxGrppbwsf7GphYYKRjV+8+Ytk3tsXojEkee3cvrwSvMSL8VgB7tc700Vlsqm5m+mijQmdTdQul6v2WzBrD2zuOsGTWGNbuN/IH6al292L+3rTeFI9l9WSqs6LmUHPYsnreIhztsiWo96oFc29dG8sWlFq5Cmelk56cNXxEd2/B8SLZSH6oVe0NaMQvhMgVQjwvhNghhNguhDhPCJEvhHhTCLFb2byB+nxn3XB/wlnvPNRWdDd/cGogUfSuY9WuOtVhWmeLONtV05Jpl51fyuLyIpadX8pnZ44B4LMzx7C/PgRg2arGsGUvnGpIHlw4tcgW4QNcl7ucyZEnuS53OZWq/LKyPsh9V82irCjAfVfNAuAXb+y0umhnqYaqWSU57KxtAWBnbQs56UZ0bdop6ntOKcq07Xacde3x8hZbq41dkGlvvGAy+QEfN14w2cHX26lXnd4xu31f3lDdp3sm2ft+qHH8A031/Ap4XUo5HZgDbAfuAt6WUk4F3lb/HxBUKq7RtP0J58Wp638MBQy1hchFN9btb+TiX6xk3f5GG52jV9CAffGO10C092jQZnWH94V5JeQHfHxhXglzxhnO2LRjctMte8eG89mb/hXu2HA+ISCGwecDZGWkWXa6omimj87m6TUHqKgL8vSaAwBW9+zMkhyaVaK5ORSxJVzTU43vZdr9DSHLmjvo+1/ZlvDcXTW3hMXlRVw1t4TPzx6D1yP4/GxjgfvD6r00BKP8YfVe23l1Uq86vaN3bSV7z+h/l1OVrh0wqkcIkQ1cCPwjgJQyAkSEEFcDi9TTHgdWAncOxDGs3FVn2YFOrug1u2ULT14HXjy4chBDB3q5ZFlRJt9+ch2Hmtv59pPreOALp1sljgunFfPKphoWTisG4JE3d/Gnj/ZTraJzgPao3fHfduk0aprD3KaatfS/+9JHP6AhGOUnr27juZsXUJCZZj3+YvPVBqXTjK1a590bdnPbcxt4eOlcFgHfXFjG7iOtfHNhGetVCWhewMf//cCo5vn7tsP8nDncvLCMgkAqS+eP5+JfrATg3d1HuVI5ZZDMKslh3YEma0cwOjvVsssWTLakl53Xq06rjs/zW+Whr2w+RGdM8tAbO/nyORMZq3IBY3MzEko26KWZgPWzLiedCM6E/KlI1w5kxD8ZqAP+KIRYL4T4gxAiAIySUtYAKFvc24uFEN8QQqwVQqytq6vr0wGcOSHPsgMdAQ+1lV/fWrrR/+DCGc12xqRlb3lmHQ3BKLc8s85GlwCs2HnEslsONQGw5VCTLeJ8aUM1FXVBXlLNRzpuvGASXo/gxgsmsamqicferWBTlfE+OqUTAmIxw37v2Q00BKN879kNAPz+PSOK/v17e22R83x1b5lWv95+ed1c8gM+fnndXFtSOd2rqm6U3XiwxbK69LKz9FRX0NTPycNLjc95eOlcAA41hW02HuLRLjrtkwhD7V7vCwbS8XuBM4DfSinnAUGOg9aRUv5OSjlfSjm/qKjo2C/oBTsOt1rW+cfqbw58qHF4OobDhXoqIN41pTsugHGqfn1cXjqlBcbusLQg00aXAKoD1bA6l/+o6q59dFUFf99iVNWY9tGVe4zHVu7hD6v30RmT/GH1PuY/PZW10aXMf9o4Bt3Z6zX550zKB7Csfkz6Nb7riOHQTavTV4umF7PunstYNL3YSiZPLPA7KBZ4+Lq5lBUFePi6uTaZB7Pk1LT6orC43PAFi8uLbJ8DcP388WT4PFzfi2x0vL+TPSjqpn0SvX4o3+vJYiCreg4CB6WUH6v/P4/h+GuFEGOklDVCiDHAkYE6gKx0LzQb1rn1G0k19Cezemg40krJfidntYhJ7+hR+RkT8/jhFTO5/fmN/PCKmQDc/vxG7rtyJjl+H7trW7n+LGOBrlHVLDXNYY62Gk7waGsHn+wzNGk+2VdPtMtYEEyrSyzcc8UMbntuA/dcMQP/0/ak7QKepSXSSXa6l01aRc2R1nabXTJzNG9vr2XJzNG282CXRzDKSCvrQ9z27AZe/Nb51vN21BhR/Y6aFu66/DQbxZLj9zEh30+O38ftz2+0aKmAWhg2qN2J3gG7dP54SvL8vQYxj7y9m3A0xiNv7+ZQc3tS/RF6p7LeF5DIPwyHa3zAIn4p5WGgSghRrn51MbANeBlYpn63DFg+UMcQUomwUC+KeicaBbtVM71jONJKyX+n7ohRp3ecapOrdh2xNOBfWn/QWBTWH+zRNVtaELCsx2O8t8cjSFVUSao3haiSRzBt+ahMy+pRvjNp++sb5pEf8PHrG+bZonXnVKv7Xt5CRV2Q+17ewiNv7eKnr+3gkbd2UdVoJJNNq1cG6eerXt0f9b0MG9KVO7978VQyfB6+e/FU22vAXjGkv4fzHnzoS3MoKwrw0Jfm2IotnM/T7309Ga6/d6JijeFwjQ90Vc93gCeEEJuAucADwIPApUKI3cCl6v8DAr0xxYlkt2vxHPxw+OMPBIYjrRTvOzmvjWULShUHXmqjd3501UzyAz5+dJUR4eu68SvUYrBiZx2vbTY6aE27vyFo2QvVlKkLpxVx55LplBUFuHPJdC6fNRrAsrqMQTypZIDsDB95/lSyM3zc+vR6KuqC3Pr0eqYUGYuNafWqIX0B0/V4AK6ZV0JZUYBr5pXYInRTVO38ssIeDWpjc9Is+8zag4SjMZ5Ze9D2GsCqnHPKFuu0FhiNmqa4m+7Qnfeqfu/HmyqWSL5hOFzjA9rAJaXcAMzv5aGLB/JzTfz3ygo6Y5L/XlnBZ2eN6dP2LN6WL1FDxnDYCvYVw7EpTf9OeoXOM2uqbGJi+vMe/6DSqrv3p6bQEIyys7bV4KM11bHF5cX86aP9LC4v5vUtNbR2dJGhpAfKR2Xz8b5GykdlW12pYN8xfO70Mby1o5bPnW5Uz3z9/bO4NRVC79slFpzX661Pr6eqMcytT6/Hr6gVf2oK+xsMesm0Y3PS2XUkyNicdK6bP54HXtvB/3fuBF7eWKOOxtwZbFY7g81kpHqpqAvys9e3W+Wc6b6UHk2Ph5oN+upQcwcFAcMVFQS8pKvjSddkoO3WwEdKhtm0TqpNr9CJV62j/810ZVKnWF2815yqGNaSDYWZqZbta4Tel9U90We5FNGpjbtf3MSKnXXc/eIm1u5vALCsPaLtdlZO2qC9M2bZi6YXkx/wcdH0Ys4rMwaKmLY5HLGsnS7qpmPu++tWGoJR7vvrVsBw9B6PYW8u+TuTI09yc8nfe4i56T0DTaEoAE2hKHPG5wJYNjPdZ9n/WllBTMJ/rawgXQmVmXZPXdCyOv205ZCRc9hyqJll55WSH/BZU61+dPVM1Zg1k3UHjOetO9BsywsA7D0asqx+/zSq4zatfl70iD1R9K4jHgU0HDGsJRtuvXgatz23gVsvnkZ2hs/afsKJR+V6dPG9S8ttjyXaDYykpPLwRLdz8aUYP/uU9IAe0X7noqlWTb4+C/Z7l5aztlItGJUNvLurznLcxVkG9VHTbCRW31Gli+/sPIL6CDq6Opk3Ppf8gI9543P5+vtnGfX4QYBmQp7uKP+jfcbnfLSvgX99dgPrq5ppCm3gL/9yAZMKA2yqbmFSYYDOmKS2tYOCzFRbPT5AbobPstOKM/m4spFpxZnceflp3P78Ru66/DQApLGWIWPY6vU3HDBq/zu7YjYNnkXTi226O+dNzqfq02rOm5xPeqqXNZWNTB9j7BZuvGAS22qaufGCSbb75ydXz+K25zbwk6uN7mFnfT7Q68/x7n09kh9qEgv9jWEd8d/31y3qptpik0iF5Dn6+M8TDtuNRPmDodbh6+LY0CP5r54zgQyfh6+eM8HGtYO9bPNnr+9QdMcOy5Gb9oDqWD3QEGL6aIO3nj4605bMBRibk2HZtnaD6mlr7+Lel40o/96Xt/aQWPjxrHeZHHmSH896l0tOM8ocLzmtmJoWg1Yxra6bk6VE1Uyr44OKest+qpz4pwcabSWWYFTomNbUDUr3emyKmYlkTnJVbiI3kGYJsJk2XkfuOzuO0BCM8s4OY4HU77tE92Ay936i1w+HXfuwdvyV9WHLOmup4yV1nIhH9eiJPCeSnW/q4tSAXqGjlwzqXDvY9XTCkU4AwpFO1qjI27RjlVzC2Nx0Nqkmpk0HW2y0CECHooQ6OmM25/xq6Br2pn6FV0PX2OrxwR6h33DWBPIDhi0KGL83bYFmH7h2NovLi3jg2tk8+Np2fvraDh58bTsACxTttKCsAFUxSlesZwDz4LWzyQ/4ePDa2ehB0RfmleD1GNYJ/T3aVeVde6TLPgcXmDEmx7K6Q353t0F/mTbefedsCEuGvk10Dw+Hwo5h7fizlBhUVnpKjwgl2c7WeCt/oogg0SCWvuQMhkOEMdAYyHOkR6p6yWBNk4rkldXHHurO76YLJ+P1GBbA6/FYtlDRO4VZaVSqChrTHlCCagfqQ6SmqBLOlBRblD+/8ykmR55kfudTxnO13cRPXt1m1cZPLjJkk0177uQimzXxdyWzbNqgWsCCkU5bEtjZ5bq+qomGYJT1VU2WrER7tIuf/30nnTHJz/++k3uXb1Hlm1sA+PVbu1ixs45fv7XLNjlM3y0BLJk1mrKiAEtU5ZIJvQEMEjlke3I4mYq+RD4h2aBxKGNYO36TMy3OSkvocBPRL337wyY3iCVZnGiE0R8X51C/wPszCnN+V12QTy8ZXKkifdPqSpT6NfDoqr10xgwLxlAV004fZTji6aOybLX6ANl+r2Xfjn6Rvalf4e3oF21Rvi7/ALBC0R4rdhzh6jljEMDVc8bwsWr6Mu31Z49ncXkR15893rajOW+ySjArK9TXEBJbV69ekgrGDFzT7qxtVeehlUsV3XTpacVMLlTqo8r+fWutZXUFTmdTmj7kRccZE/N4+/uLOGOi0USml5Hq9Jwu7Hasv7WJRD5hOMihDGvHf0iJWx1qDCdc5RPJN8f7wyZyhIkGsSQaEBEPJ1o33B8X51C/wPuzttr5XfW/k76bczYI5itOOt+fatOad8og5Co+PNfvs2nNf/fiqXgEfPdig44sUO9X4E+1RflnRp5kcuRJzow8ybg8g903bUaqx7L/+c4eJPCf7+yxReEAD72+gxU763jo9R22aht9xwDwcWWjZbceMha2rYdaaFc7AdN+qEoqP9xbz2g1YWt0dho3nD2RsqIAN5w9sUeZ5mdnjrKsnuidNdZI6ppWH/KSaBylnsfTF7NnPlFDZz7pee3qoxd19KUS6FTCsK7qCXdKm9WhZ/b16MyZ8Y9Xz5uoOkdX+XMuNHq1QLIVPvHqhgd6CIT+/sOxysF+DWD97Pyb68O/zXr6xlCEz80aw7OfHuRzs4wa+vfUfNr39hzl2jPGWZUt7Y7O8QYV8Te0RfjptbOtASvfeuJTYhL+sHofN15YxvImNRSlCULe7modJSdPJAZt7UYpo2kNGqkLr8eDxyMhFsPj8fRYpN5QDu2NbbUcagrTEIzy8Js7ezj+4sxUatsiFGfary9TTsG0Z0zIVRIOuXy0V1UT7W3gaFvE6rotUbmNJqXBc8sl02hp7+SWS6bx6Mo9/O69fdS3dVgDXEx786IplrLoI2/u5E8fHaC6MURJnt92/zgHuJg//9tLBrVk6vbb0XuRRqI6fh2nak3/sHb8iaA7XX1Sl9MZO0vxTCRyhP/20hber6gn0rmFH18zyybJ258lYye6cBzv+5/I4jPQ6EuZrF6S60/1Wq8HbBLba/cb0eza/fV0Kvphw4EG7rvqdD490MgNZ08AwKvKO70pwhYRf6gcoRkVd6kGri4pbbr2b4W/aDj6MEAzfk93lL8g9QUOt3QY0XR7h3WcIfU5plVrAjFAqP8JYswbn8fHlY3MU/X5HgExaVi9O3dCvp9tNa1MyDd2EE2ql6ApHGHJrDEs31jDuZPzre90WFUJ6VY/D2mqwifN6+Hd3cbCaNpn1hxgxc46phYfYFuNQQ9tq2nlzInGMZpDzXXo7/E//3iWzTnrU7waghFrB6Hfg+Zj5jXbWwko9JRZHyrXeX9hWFM9qsCBDF9PaiZes0bPrVv8ss140FvMkx0w0RcOfaAVR5PZxg4VCkjnZBPNQ7Y1AAVVA1Awavuuia6BevWa+mCU+1/dRkVdkPtfNf62HYpG6Yh22WbSLi43eG7ThiJRy/51o5Ec/evGavxCOXr1cSGP4vI99nyVnkHyq6jYtEEV+Qfbo2SogScZqT52KN7dtHctmY5HGLYwUyWYM9Ns07PAPrf6cIuRxD7c0k5U7XxMm6fyEXl+L3ctmU6Gz8NdS6bbykFjKg9hWr3z9sYLJqnpWZNYOK1YVfUY50unY+670pC/uO/KmQnpGP26dA5N0um6eNo/zmugL5TvUMawjvjVPUB7FB5dVWGbz1l5NMiza6ssxT+g13m58SIC5xxPHXmqVC4v4GPZ+fbtpx456FEqcNwR60ArjiazU0h219LfEZNzuImZp5k97hCf7m+wZtfedmk5tz+/kYe+NIczJubxyFu7+NOH+6l2JCH177puf6N1beQHUm0NSePzMqhuqmH+xDyL2jFHEmpKDLSouvuW9i6umVfC+xVHuUaVNOplkevll40oPwqhLvD7jJ8zgVntT1rf97ox2WyqbmH6mGy2HWqhU4JXGENHjgaj1hCSmBSAJCYFXbGY+pwY00dn83Flo5VM/tuWw8SkYWuaDFqnpinEBmOgFhsONKhzE7Ts5TMNx5nvT6VDfQnTdu9qGmgMRQlHY/z54/0sKCvgnZ11LCgroCkc5UhbhHFqN3FEKY4eae3gt6v20BCM8ttVe5ASKuqCPPjadp69eYGtD8Kf2mrJXyS69hJfl71Tu4l2uPEGG/X1nhvsHcSwdvx6ZLRRTQ8y7e3Pb6SiLsjtz2/k7e8vivtHi+/84lfuLFswCX+q1/qjmttPSCwJC8dH+zgvnsHg4ZOlkfpb5lan0574+rnof4/JRZms3lPP5KJMvvfMBvY3hPjeMxtYdcdiW9XL4vIiPt7XQPmoTFbuOGJNnrrj+Y0caYtw8/9by5ofXmqjbfRZtW1hxa8rq3t+rwc6Y+D1YNsZvPit8ynITONwSwcFmWn4I2r6VRpMbn8SVOBYCbb32FFj8NM7apoxU1adEiYV+lUHrt/6e9S2dpAfSLUca0t7F+sVF29afWhJh0pBdHTB3qPG7007JjuNmpYOxmSn2XIYfl8KoUgMv2rQmpiXzqZwGxPz0m2SDUfbDKd9tK2dL589kU0Hm1l65jgAS345kNpTZRS6K5V0uQqzU7i3IE1Hosf0+zPe/ZgI+mv6es8Ndgf/sKZ6dEzMD9isLgObqFIg3lbOWbmjPy/Zzt0TbeZKpDp4spCIVtGRiDbqC13kHFqi/z30ZqDTVEWIaacWZ1o23aeSiD4v33namIT1nafX9dCAWbGjzrLNysk3h6M2igTA9FldEltcsKOmCei2b7UYpZlvtXyxRwOWDl0G4aBy1AebwoxSidZRmams3mPQJaata+uwrE6/OIeg6LuTbNUclp3upUs5W9OGo52W9ajaTo+QNg0fgM2H2ixbnGUcX3FWKrUtxn1T2xLhgb9tpzMmeeBvRnOYnheYNVZRTGNzmKL+RqaNF2IlulcT3dPmbr/yaDBpfR79GtXv4b7ec4NdDZQw4hdC3JbocSnlw/17OAOHPcoxmfaPH1QSjsb44weVtqENYKdc4q3MfaVZ9KSRHmEk+3o9Ok42QnHCSZOcCJyKi/GQKAKLt41OdDNdf9Z429AS/f31jk5TR8csRdRlB8xu2NqWMCmqdj7FI8hI8xANd5GRZrw2pLj7ULSLxjrDeeyvCyIVF1+rImtV0m5ZMKLyTrUhMLXE/KmKy0+FaZEnrai+wJ9CfaiLAr/hnPVEbXPIcMDNoU5ylUPvlDHqg8bvzdyDV0BE0UAzxuSwuqKeGWNy+PSAsTBEOjttx2zsDoz386b0dLLN4S7LqlNEsCNGsMNYqqpU9U8K0KnsBxUG7fNBRQMF6m/oT02xqnki6nxm+FIIRgw1Up0e/XS/cY+au5LCgI8jrR0UBnw2itWfmmK7Z/RkPaD9LGy0rHNojIlkqaPn1lad8Hztwa4GOhbVk6VsOXAWxhAVgCuBdwfqoPoLPo9xE/o8IFWIY9o6deHXtXbYHGhVfcgaAQfJb+X68rzHP6i0eGlT+uFYr3fmBZK5ABMNr07krBO9h4meJXTHD/0m+LflWywO/sdKfMvEuv2NFl+/aledde6cORaPEJbVxb8APjtzNM+uPchnZ47mDdVAtGrX0W6qoVMSU6F2VEkmCBXpCiFtzjimR/hAwJdCMNpFwJdCKNqFxEgLb+YrBo8fAaeQmo6GUJfN6k5Y3010O/vOHufSPKaYxNa0lZnuIxyNku4zJR28NIU7yc3wEmpXlUHtnbZqH4AURTelqEQzGLsE6fg8kSKgSyJSBEWZqbS0d1KUmWrtVA41h+07ImBCQQZHgxEmFGQwpSiTDJ+HKUWZLJxWbJW4AraeiJ2HVZPc4RYeuHY20H3PhFWdq2nNn83eBbOz+uzSPCrrQ5xdmtcrbdMbhpuAW0KqR0r5Iynlj4BC4Awp5fellN8HzgTGnYwDPBHozSxnTTI6EU37k6tnkR/w8ZOrZ9kauPQ2dyf6Yw6n/Xndt3ayolD6NjPZ7aKTSnGKZSWDeHSMs2KiL9C/n3Nalf7Ybc9uoKIuyG3PbnDII9ifd8NZ4xDADWeNw1mV9ZkphWT4PHxmSiFfPsu4hL981jgm5hvJ0Yn5GXRGVTessm0dMcvqjt+JoHIwQeX0way86Y7wAc6MGjILZ0afIjtN0SxpfUu3ZaWl2KzO/+uLQEhVOpj2n84vRSjbpbYuXVKQqXY5pv3qORMsq5Qm8HiM3QF023NK8yzbqhaS1vZObr+sHI+A2y8rJ6B2WKZ9aOlcFpcX8dDSudzz8hbC0Rj3vLylh7yKPvRlpVIsNa0Onc7Sf9blIADG5Potq99DyVKOI2nm7gSstBOon0v7/Wj6GS3tMcs6qYGdtd3VAboDfuhLc6yoEuzNOwWZqbbo4ESz8nqSKRGc21szyo9XW++EkxLSuyQT4WQ1cOlR14+umsltz22wplXp2/fxeRlU1ocYn5fB+xXGwmDaB1/bzrNrD1JR18Zf1lcjgd+sqKBI8e+rVWLyzhc2Eo5K7nxhIxHlUH6/eh+XnDaKbYfbmFAQYNthw0FE6Tu2aFF+KIL1cybYuPKGsOEkTQvdV2NaipFwNa2JFKBLWd0ZA2SleWjtiFkWjAjbXATMYPjXbxtdvb9+ew9jctKpampndHYadaq5TLElPK26XZ/+pIrJhQF2HQkyuTDA7iNGtY85H0Yf4KJLLqzcVUdMYlhHOadNlnlSAa9treW8SQU9rtdmtVg1t0e598qZ3LN8K/deObOHNLqzAs/8+aq5Y211/PEq9ZKlTvu7ImcwKnySTe7+P2CNEOI+IcS9wMfAnwbusPofzsSNvtLr20xdiwVgm6qm2FbT3KfoIBESzQ+1o3th6ktSyPndk5WNiFfv3N/Qv9M7O5XUrorodOGyj5W65cf7Gthbp4ZzKPvqpkOWjSmHHuuSPSSHw1FpWcXk0BmDd7Yb58a08ZAmuq158/R2E+lR/iwMiYVZGOWZpo8PO5iaFGG3erWNDhv3r3HwgOXsWztitr1OptoRZPayMzCdfV1bxKYICpCrgoNcf6pNHsKZC9CHyOgRv67P88AXTifD5+GBL5wOwCNv7jRm+L65kxb1mpb2Th5/36BAH3+/EoCLp4+y7OGWDjpjksMtHbY+DIgfiTt3pfG0dvT75GSqcw5GL0xSjl9K+e/A14BGoAn4mpTygQE8rn5HItGle/+6lXA0xr1/3drjj6CLRyUaxpxsI0e8KphEf3y9YqUvDti5WCS/gB1bbC7Zqp5k8dqmGpt9QzVCvbH1sNXJmeHz9KA4OlQo2xGJMSrbkAYYlZ1OdZOxcJg23jfSZRASoUN2Wyfts4WvsDf1K2zhK4QiqlrnOPp60nx2Gw/JSgAG0j2WDavVI+xcRbBPBDttlBHwmFavvNFpOLOptpfmWrKVFlG232dj2jZXtxCOxthcbfD0b6vS2rd3HOHH1xj32Y+vmcUKteibdtn5pSwuL2LZ+aW2b29ec6aNp6mUqPonHnXa3wq7iTAYFT7HQyz6gRYp5R+FEEVCiElSyn3HfNUQgVN6QacXHl4616rhnq1a2s0/gt4Gnuz7JaJf9MTqL66bmxSVcqIVAMlW1DiRDBXVl0Qx2BO1T39ywKJpQoo7MG2HCk07OqWqsukiJcVDqMOIECOKVjCD506gRnWY1rS0W26ireNYbvLEoUf5kyNP2snRJGAuEqY1WrG67fFCz1VkZXhpDHeSldHzlld5WVIE7FAUjml1dGnW9Ofmca1UTnzljiOMzkqjIRhldFaaNYFrw4FGi3ffeND4XUEgleqmdgoCqTSHohxoCNEcinLGhDyl+2PkDR5/fx8rdtYxPm8f18wbZ002mzc+j+2HW/j6Zwy5a52WNfN7IHvcm/r/Q5FO233cfZ/EX177uyJnMCp8knL8it6Zj1Hd80fAB/wZOD/R64YSnNtCZ/PUTReWMXt8bsI/gl3Uy540TJYD16tgktHCGQgk+7nxhozridy+VvXoJXX1qvb8tc01TMxLZ9vhIBPzjKjd54EOVZmlyxGYumcdvQjw6bdsaX4GlQ1hSlXyNh764mS3OKt1NC4/ETwYuwTTxkOykX08dKoKtk4piamfTWv7vlpNf5rXoKDURsqWM0jzejga7KQw4CUrPZV99SHGK/qnTe0k2jq6yA10f+7BBkXVNQRZMnMMH+9rZKKaMHZuWSGbqls4t6zQ1lA5Wu3YjqrrYoXaaazYWcfm6mYq6oL85JWtpHo9VrfvounFNlr2118+o0fQYv6s3/vdirx2SZZk82+nKpKN+L8AzAPWAUgpDwkhshK/ZGhhQ1WDzeot/s564HjQk0mGsFsTV80dCyS/aus7iLz5x9+t2x+It0glSjLF26nE2xEdCxdOLaKyfj8XTi3ipQ0GzSSEZOqobLYdDjJ1lCHJqyhry4Kd8+7NKWaneWjpiJGd5qFSJR1Nq6M3Z9/b+8VbFJzVOrM4/ig/EdK8go5OSZpXEOmU1jGYx3msRUrPQegSEgC+FEGkS+JLEXiQtHdBagosKCvi7Z11LCgzBrSMzfWzs7aNsbl+S5qitaMLKY1FuEU1tGWmGSWsmWkpNokFc2Rka7iL/er1ptXn+y6ZOdpWVHH4+Y18/zKjnFNX/vxEyUTXtnSQq3YvreoYfnS1XYzNhC7Pkh9ItfXSxEv0Dnad/UAj2eRuRBoF8BJACBEYuEMaGDSqBhjT6re6zvMl4ur14RN97brVOfF4yd1k8wXJdhk7ES9PkIjv10dX9kcySudtg8qrBztifKA6UE3bF7So92vp6BlP6/u0ZCNq/XknyuOD0ayl23goV52rpu3tePw+4xuZ1vY5Wv27KatsWl0iwaNKgjweD58oJVLT6ona81UC9/yyAtpU2Y9p9eTuReVG3uui8lHMG2905M4bn0O5WsxNG+86fH3LYSrqgry+xcjv1KvruT4Y4ZLTjPe+5LRRtHaYCW3D6klc/RrVdxNg59TjHcOpKr6WLJKN+J8VQjwG5Aohvg78E/CHgTus/scdny3njhc2ccdnjShCl2LWIwCIL5amJxf7Wt4YL3Lui2BbIu6yL9FKou+k11Ynel68XYPz9+YgkDTvDlu9eZPyok3H601PEuLx+JXH8R7eFA+RWMyy8bDpUKtl42nDjslJp+JomDE56b18DhA1bINqGzatvngUZ6dRWR+2LHSXQp82OotDze2cNjrLiuQPN3cQURSbabcorfst1c2cP8XYLeRk+Hi/Uen7N4aYVZIb97ve8tR6DjaFueWp9ZQq3SGTurnxgslsq2nhxgsmM77AT1VjiGXnl3LNvBLbLiFe+fHYnHTueGGTNeAmmfkWzlLR4YakHL+U8j+EEJcCLRg8/79JKd8c0CPrZ/z+vb2EozF+/95erpxbYqN65o3Ptbp1xxf449byzhufR37Ap2zftoLfuWgqBxpCtsgZene6x3KsztecaK19ou+UbI2z3nOwcFqRdWO+tP6gNUDjx9eczptqp/TmtlqbE1L5SMsmCz1B6fNAexekpxhWR19483g1+X1Fl0pImzYZpCrax7QmjqqclWl1YTe98cy80YXs+c2PqGT4kZZ2/vG8CfzfDw/wj+cZjVtrVBPVmsoGS7+nsj5IYcBHXTBKoZJa2KfmA++rD1GY1T2CskkdV1Mwyg7VdWta/Vouzk7jYJOx+Nx2abmtc/e/VxrKnf+9cg/nlRXaut310munYq55Lb+4vppwNMaL66u5cm5J3ODEHnwdvxz7qYSkqB4hxM+klG9KKW+XUv6rlPJNIcTPBvrg+hP7VD24acNqixqOdHLnC5toCEa584VNCccwJurqjQdnuaMeOeszQvUtp3P7qW87E9EsyW5b+7KN1c9LomPQz+t3nlpHRV2Q7zy1jr9tNrbtplUFHpY9UehyAKazdzr9ZKHTOZC4Jr8v6C1vcUzoGVgN/6w6cP/5/FIAW2+CvpPqUv7LtNOK/JYViuoRHg9r9hkcumnTVGuuaU04dxAlSha6JDfDRunkqwa6/Mw0po82fm9aXWf/loumkh/wcctFU1m16wgVdUFWqVnG9rnC3Ut3z+uw92Xd2ake7/rVKaBlC0pVCXUpwxHJcvyX9vK7y/vzQAYak1RUYFq9djmsWu3D0S6b43LioS/NoawoYG0tdcRzpvcu38KKnXXcu9wY/6ZfXL94Y6c1li4R9JpiPR+RLNfufF681yWqydfPi34M6/Y3cvEvVrJuv+EoMtRAkIxUr1VyGerotE1ygvhNTEMBzqRtPC5/oGNCfXGM18z12Hv7kMomgj4DAKDiaMiy55SqmcCl+VQoWQPT6o1fxarapjg7nUXlBp1jWj1nkK4o0XSfh6+eMx4BfPWc8bbfAzYV1N+/t5eGoGGd6qi6Wqc+ON1Z/673u+j3o7NTPV7dfKLga7jhWOqc3wS+BZQJITZpD2UBHwzkgfU3fnnDPFvGXxd7+vUN86w6flOv3HRg+rbwjIl5vP39Rb2+fzxOcMaYHFbvMRQSnZhZksP7FfWWtHB8dEcyej4iWWrHSdPEe12imnzdoevH8NSaA1ZZ5srbFzOlKKC6oAO2BdWkshNQ2oOKRBIL8ap1TrTc8lgwS1YjCXYuQbUSmFavQMrK8NASjpGd4cHnSaE+GKVAUTP6Dknn58uLA2w61EZ5sREgVStev7q5Hb9aiRpDETLTjKjdXBiKs3wcbmmnOMtnC6r+9OF+JPDfK/dynbre2lWRxF4VYOyta7PtGPR7E2DPkTbL6v0zpiR6b9Bpm/q2iFXff/cVp8U/mSMIx+L4nwReA34K3KX9vlVK2TBgRzUAcK765aOz+XhfI+Vq22nCWd7lLOE0F488f6qNJ9QrfnTcvKiMgszuISn6BamXsyVCbzXFxxpEocM5P1R/nb6w6fkHJ66aO9YqX9Ujpw0HGqmsD3HaaKO6966/bCIcjXHXXzbZEoAepe5oasp4MZqtTDvY6I+k7YlCd9pOZKj6+gwvRDu7z530GFG8KuBhWpGfnXUhphX5OdIWBWKkkMIFUwpZvrGGC6YUAt0Lmz8VgmplCUa6bLr6AH6fh+auLvw+D99ZPIUHXtvBdxZP4Vfv7AbgHVVjX5LrZ1N1KyW5flvT1oSCDHbVBplQkNGD49e5/J+9bmj0728IWnX8pvUpDQtfirDdZ4+8uYs/fbSf6sYwP75mVtyc2S1PrQO6k8XO5x2vTs5gT8/qDxxLnbNZSlkJ/ApokFLul1LuB6JCiHOS+QAhRIoQYr0Q4hX1/3whxJtCiN3K5p3ol0gGzhZsfarSbc9toCEY5bbnNvSyxeve0Ovzc3vQJXE4WCeSKSVLBP01/T0Excmt6tvlZz4xNMif+aSKTVVNPPZuBZuqmlij9HNM26Wi064uLIG0osw0G/cM9k7bwUJ/lGb2JxLtIBRrRkenvYPWSeHsUtpFu+pCNKn69qZwtEeOq0uR/V1dgpJc4+9UkptmLSCm1ef2Pv7hfmISHv9wP2NzjAjdtKt2H7FsrZJ5qG3p4FylhnvupIIeHP9LG6qpqAvy0oZqW15gQ5XhoE1755LTKCsKcOeS02wnSZ+7APFlWXTZFYgvWZJs7muozJk+ESTL8f8W0L1LUP0uGdwKbNf+fxfwtpRyKvA29p3EgMHJ3eszQh9eOpf8gI+Hl87t8bqr5o5VnOJYW5LIeZHpVIgO54LTl9r9eBdasoPcEyWL9QRzTZNqvFH2wb9t46ev7eDBv23jjS1KO2dLDbc8vZ6GYJRbnl5vcy6ATZmxPmQ4gPpQx5CskTjRpO3J/E6J5KB1+JVUgT/VgxpLgBCwTzVNmXauqq83bPc30evkAS6cVmjZIjXwvSgrjTTVhGBaIbrtKFVaOionHf0g9GErYNdh0k/mL6+fS1lRgF9ePxewF0S0q4lg7dFOHr7OeN7D1xnP03trEg1b1++HvggvDoa2Tn8j2Tp+IWV3KCuljAkhjvlaIcQ44Arg3wFzmtfVwCL18+PASuDOJI+jzzB5RdOeV1ZA1dqDnFdWwOzxuZZkg3Mb5+TUTbrIOYUnXgdgojjOrhnSFXd4ezxOvq9yCXrZ20d766moC/Kz13dYHZVmBPVXJZT210011nnb3xCmUC0gaSkeWrXKEYB0nyAYkZaF7ii/97NwctGfpZl95fhPVIMn0efarnPtia1mB62yplDa5uoWyzdXN4U5t8xw9GYiNzcj1bJfW1DK9ppNfG1BKb9/r8J2FJ+ZUsjrW2v5zJRCirPS2HSwmbnjcmz5gz8sOyuuDEKF4vErjrT1UMi10zbrAdh7NNQj55ZsSbSOvgxYGQ5dvclG/HuFELcIIXzq363A3iRe9whwB/ZAZZSUsgZA2eLeXiiE+IYQYq0QYm1dXV2Shxkfe9UW17S5GT7L6lG5XmIG8beFzlX//d11PPLWLt7fbT9WvQrBCfuu4fjdSF+HoNQ0hSzbqvRvWtujdKrMq2l1PlVv/1fztfGlGLXy0G1NZx+MSEyRyWOITZ5U9HdpZl9woknhNMV5p6UIxuYYUbhp/SrZ6k9Lse0Szp1kMKqmjajVONIZI0P9QTN8KTZHDdgi7J++toNwNMZPX9vRg7ozB7sbtjt896pRXqbVcY46lnMm5dnUOR9duYefvraDR1fu6fGa2y6dRllRgNsundZjl6xH8o2hCB/traexl1X9RLtyh0NXb7KO/2ZgAVANHATOAb6R6AVCiM8DR6SUn/blwKSUv5NSzpdSzi8qKurLW9igXzBgL+fUb0VnkjbettCJO14wkpp3vLDJdmEkknbQH3MOb9dxopyi80J9d/dRyx5uNjo1DzeHSVGXg2lL1Ja9JCfd5kQOqQHah1oiKBl4y+qIOuxgwFmTPxS4/BOFPkbUuZMNq0RtONJlW6ynKQ7dtGNVFc3Y3AzylYxDfmYqrarc1rQbVJXbhqomOk0l1K4YTarU0rT6MW05pBaPQ818a9EU8gM+vrVoik1/H+Cwuo4Ot0RsQczGg8brTasHY6t21ak8VF3C+yIRDRrvdYneT8+nJZJsPlWQrB7/ESnlDVLKYinlKCnlV6SUPWef2XE+cJUQohJ4GrhICPFnoFYIMQZA2WO9T79Av2AAPtp71LK2qNyRpNWdph5FOHcGlymu/zJHfX2iOQA6v67D6ajjLTiJIg/9Qn10ZYWKoIztuT4JqVUV0reGDdVFwLJ67b0z6XeqoDchtZMd5ad7hc2eKPRSTGeORdfJ10ePOieW1bW2W7ZFXQMt4U6qVX7HtIdbuq1fjYf0p3m5YKpBCZl2qppRPXVUlm0R+MPqfTQEo/xh9T7e2m7c6qadmO+3rH4tzxmXC2BZva5fX9gSBWLLzislP+Bj2XmlPR6Lp82V6F61LyQDXcg78DhWHf8dUsqfCyF+Qy/fUkp5S7zXSil/APxAvc8i4F+llF8VQjwELAMeVHZ5n4/+OOBM7uqTnfTaYGfKTufD11Y28H5FPZHOLcy3nLXxvFsumUZLeye3XDKN5lDUcujOUkodegPX/NI8q2zUn+q1ae7E4xSd2jx6fuJ7T69nU3UL9W3rLbGutfuNhHZWho8jbRGyMnyEo51EO2Kkp3rYWmucE9Pqa6Bzaz+UkagmfzDQrspa23uRkO4LnEPLoTvHkpORRri1g5yMNA4r+iUYifWYWKZ3w+qNVc3Gw1pxWvf9UK10d6obQ6RPNXbh6aqjd8vBJsteMK2Y9VXNnDWpgPZIJ6v3wORCP6FIJ4ea2xmtdpL7lWTz/oYgD/5tO89+epCKI23ctKiM3Udauf7s8eqYu+v9Z4wxy69lQq798Q8raQhGefzDShZNt7PJ+v2u32uhSJclB+HMs+n5tDx/6ikv2Xys+M2sxlkLfNrLv77gQeBSIcRujI7gB/v4PscF55Z4khoJZ9jui1sf0gz2BcNstJpZkmOr9gE7bfObd3ZTURfkN+/s7hGV6BGG/n62yooE070SRSj6TkNvemlWkbtpDzUGLasrYzpHCYbUuQpFTwFvr2Eo8Pj9Db2WPZHchensTWsiVb3etGdOzLNsVaNB91U1hklVVTqmzUrrtgGVPwikpfDRXnPnbNiDaodwsKmdJTNHU1YUYMnM0eQFjNxDXiCNH14xg7KiAD+8wihG0Es431QjL9/cXtuDHr1+/ngyfB6unz/eRtEm2vHqFXjO5+my0fHybM5SaZ2KGg5dvQkjfinlX5V9/EQ+REq5EqN6ByllPXDxibxfX6DzjgBzxuWws7aNOeNybBU5m6qalBBbrvFCrRxNH9jujOT17ljjIjKiA2dUokfpzgHwZoOU873jKXcCtufpVQm/esuUgZDsVwJaptU7QnsrEzy13LyB/hZSG2roVOF9Z5dEjQ+2ZvPqKAz4OKrE00zhNoBAmpeOUJSAoms2HWyxrN4LEFQNA6bVReDSvF6gi1Svl0p1LZn2rIl5vL2zjrMm5vHDv2yioi7ID/+yid/8w5nWdf34+/uMuv31BzljYh55ynHmBVK547Pl3LN8K3d8tpyzJxfYOs1//vedhKMxfv73nVZJ6Zbq5h6ibPqOV58T8cs3d9mep/eelBVlatr83Y2S3392g62LPVnV2VMFx6J6/koCIktKeVW/H9EAoV3JB5h2T13QZk3cs3wLDcEo9yzfwnvTL7LxHbqi51Vzx9ouznhln87JVbpzfvyDfTaKSVcdNJ/TmzV/NnMOvXGSBYE0Qk3tFATSqFLRmEnT9EYVnOo40bGHAwldObSv0FnlRDpHDcpRNwTtKXWddwfoUPdBR7SLVI8xazjVA6m+FNo6ukhX24m7lkznnuVbuWvJdP74/j6OtBoDULLSvVTUBRmfb5RcbjnUYlkz31BxNMRjqypYsbOOoqwKPqwwNP7NiVp6wPX9ZzfQGZO8sa2WfUeDrNhZx9TiA9x9xQxLKsLv2OI46dv4suR2Tv7h6+ZaqrE5fp91D+lB2rLzStl4sMnKEcR77xOVQh8sHKsW/z+UvRYYjTFuEeDLnNxu9hNGfVvEZvWt84N/28azn1ZTcaSVLBVOmdbWBaNdQM6Zu7pz1i+Gd3Yc4eN9DYQim3nmpvNsF5c+DtJckGqawj12Cc7/mz87ewl0eQl9SPZwRF/HHg4GEi20Pg9EY91WR7IjGnX40wRtHdKyJprVKmHaVJ+HcDRGqs9DTJXvCgEhpflj2lc3H6YzJnl182FbxVueGqgeUM44olq2I11dLC4v4vWttYZVw1Re33KYJTNHU/XpQc6bbHTz6oGLLhfys9eNe8es6mlWC0lzOMrCaUWsO9DE/Il5PZom9V23PtPZKXmi1/+bC5MzB+fMEcSr8e+rFPpg7xSORfWsAhBC/ERKeaH20F+FEO8O6JH1M3L8XmpbO8jxG1/5ziWncfvzG7lzyWn88+OfAPDm9iOMV7NezelI+vAV/QLqLuUyFoZ4jSDv7DDLOLurhMw/uMkfVtS1Ud1k8KxrKhsSXhT6Y86qIL3z1i5lOzygO/uBHns4kEgVEJGGNWmW3sTr0pRzNm1vKFK6+EWqG1bNqKezC4oyfdS1RSnK9HG0zT6AZWxuBhV1QcbmZlCpdr2dXcZ0rfcq6q1pW5ML/VZydtG0Qh54bQfLzptoXf+NijcPKf4wFOmyqXiWFvjZVN1CaYGfMaqE1LR3v7iJj/c1EopsYmJBgIq6IE9/coDR2QadY9rirDQOt3RQnJXG9WdPYPeRNq4/25gXoI8/jSce+OK34o8GT7Y5Ml4iua/NXIO9U0i2OK9ICDHZ/I8QYhJw4sX1JxHhSMxm9fLOX15nSDb88rq5Nm0S6H34Sn4gtUdyV4f+vAeunc3i8iIeuHY2YJdw0JtW9PbzRPXEj7y1y6iFfmsXP3t9h9V1C/Dh3nrLnvoFZz2hO/tTuR5f9bgZzl+FXqm9hGCKjifNa681MwmPFKBe7RpNqwvj1SlnX9cWxeyfMm2LKpFsCUXJVs2M2Rk+IipQMK3emPWLN41pab94c4dFH5r29svK8QjD6rX/X//MZDJ8Hr7+mcm9aNx3f6s3thoB0htba/lIyamYdu74PMvqiV9nElhP1F6oykwvnFrYpxkWfW2OTBaDLfuQrGTD94CVQgizW7cUuGlAjmiA8Ksb5tnGtOn8oC7Z8NVzJrDpYBNfPceIKO59eSsNwSj3vryVX2b4rPdYtasubulXvCST8XnddcjOx8ztp847Ot9vleJHV+2sIyfDrDwybuKZY7OpagxbdjggXtJWj/ArB/UITwyJ+PqmcMxmwVjI01OVLEaqwOtJobm906Im9WS9roB67uQCVlfUWzSLUCuA8AjLCXg9gon5GXy8DybmG1H5SnW9rdxZZwnFtUfBK6BTGhaM3XJMGra6QZV9NoR45O3dhpLm27u5cm6JLbr95kKjbPOb6nemNPq/PrcBgC61DTLzDemaJEpvsgw6/frdS8spyfMfl3xDsugPmmawZR+SbeB6HZiKIbh2K1Aupfz7QB5Yf8Op/6Hzg3pE8Is3dxGOxvjFm7sAWKgGTSwsL3IMbbbH1Hr5V6IIQ2+qiaeu6Yxk9BZ2u4CVvQBTj7SGC4ZjaaYOXfLCWU4bDyG1ZQhFZI/GOjMYyMlIQemmITywW5X3mlZv1tMpmP0NRsBgWn3gSpry8mle0SNvEVEcU6SzyzaH4Z4rZpAf8HHPFT3LKv+weq9q7trLounFrLvnMhZNLyZNSUikWVISHps1kUhJ90SHqvRFNPFUQlIRvxDCjyGyNlFK+XUhxFQhRLmU8pWBPbz+w6MrK2zDGPSKAj3JVN0YprJ+PxeqBpVlC0qpagixbEEp18wtsVUDmMPaoecQdTAiDGd0oA95/7eXtlgNYU98/VzrWJ1RzbaaVsvefcUMTZjKvvjoJX+nKk6lpG1/QJ+slaG+Z7ryT/l+Hw2hKPl+H+FI1NLjT/N6aWrvJCfd20NiZEKen83hVibk+QlFY1TUBZlQEKBZUTvm3NysjDQgSFZGGhPz/Wyqbma6mqnw8b4Gq6s2W+0kstO9jM5Op7IhzOjsdMbl+Vmt5QJOL8llfVUzp5fkUtUQJhSN4E/18sHeehqCUT7YW8/6qkbbsKLJRZms3lPPZAed8u/XnM5tz23g3685HbDPo0jEjev39IlG5Yk+50RnWw8FJMvx/xFjY32e+v9B4P4BOaIBgrPhRIdNM+f8UhaXF7FMzTDVH9N3Dc6oXG8Y0SMMZ3Sgv87kD8uKMuNKQ0B8YaoUtV03bUyV6sWOMRNgKGMoSCwki77KMmeoirKMFGFbus3FzbRnT8q3bLtJs3SCVK+SSCLK4ZvWdKKTizIJqN1lINWDV32mae9cMl1p3E9nT50RWOypa2VLdROAZddUNlq2UVXXNIajRBUNY9ojSgLiSGs7Y3ON5O7Y3HQ2Vhmv31jV2GORSlcVFKY1sb6qkYZglPXqtfr9FE/mxPk8XVKlL6JqiTj44dDAlazjL5NS/hyltyWlDDO0pNWPicZQp83qDlm/mBIljBJp8MRLBjmfp/8/XW1l030ptvd2CkzpA1L05O4oVT1h2mBH1GZPFfT3QBSzXr63uvmsNGGzvcFcdPy93Nf66793yRQE8L1LpvR4nsl99ybPE1Y7snCXtD3P9H+mNecYr9vfSG6GEXnnZnhtHdU5qqzStGat/IcV9XhTjOvLm5LCOWoRMa1du6p7CdM7cAHuu3Im+QEf9105k7uWTMfrEdy1ZDpzVMLVtCt2HLGsnozVp2m1q/yWaXW6VXfOzgVCf0yXOUns0Lu/UyJqJt57DAfnngjJJncjQogMFKcghCgDTqkC8W8tKuOe5Vv51iJj26Y7+5+8spWKuiA/eWUr/3Hd3ISNWdBdqx9Pg0eHOblq6qgq7v7cabb30/l+/b31zl8D3Rfx3zYdAuBvmw4RVh1Z7+0xBOd03jVNDeg27VBGf4899AhBl5SW1dGqattbO6StTl7SrZHvjLx1dEmjn6NLGg13EqMh6ZZLym3Pm1wUYNeRIJPVDOKN1a3MKcnq8X6mfE+nhN9cP5c7XtjEz79oVIC1qQKEtkgn4/IyaAx3UpSdRn6XpOJoiAl5GaSkCBpCUQqzDAelSxrMGpvDugNNzBqbw85aI6rv7uvo3mvozxufl8HyjTUsVtz++qomFX038d7uI3TGJM99WsVDS+faus7H5fupqAsyLt9ve29daXOUKs/cWWs0e+njPHVqxcnp64/pc6qdnbs64o0KdWKwyyoHC8lG/PcCrwPjhRBPYEzOumPAjmoA8N8rK+iMSf5bKVT+7PXtqhRyO0dVU9fRtohVGfDyhmog/qjEZMuxtipdc9PqEX88rX7nfGC9DE5vZpFqm23aaUohcdqoLEu0a6iW8Q/k2EM9OnZCj6r1ChjnRKl40IXrqlQC1LTZKlNrWhP76sM2m6Uez0pP4cwJhl7TmRNymFGSw7mTC5ihNJwylABahjeFNjVApa29y5JdCKR5bb8H+PUN88gP+Pj1DfNskgjlo4zgxLRTijLJ8HmYUpRpq5oZlW0kek2rz244pHYBh5rarS72lzcYgUihGrNZmJnGzlojgbyzts1Wpqxr84Cd9kx0X+j32vVnjWdxeZFacOIXLTuPLx4Gu6xysHBMxy+MmWp5GN27/wg8BcxX+junDLKUwJRp9Sj6VzfMo6wowK9umNej3j/eli/ZraBeqw/2CzLeqDin5LOOkjy/ZfXpSGCUx2X4PHxzYRkFShzLtEMN/V2to/PtdaqmvS7Yk/IyG6WcDVMeIS2bqt7MtOPzMiyrDy1pU5SaaXPU3yEnI5WaZiOyrmnusBKgpk1TJThpKR7bqMq7X9zMip113P3iZgDbCENdBlmnSM4qNWgV0+rVMXqviS6WBnDP8q2EozHuWb7VNn/a6Uz1EaVj1PGMyUm3lSUDfPWcCWT4PHz1nAmUqyRx+egsW15MX4jAHgQlqs/XkWiGhZ226f4eie6n4U7pxMMxqR41ZvHbUspngVdPwjENCNLVzWLaB6493aahY1bKmHr9pjpnX6oDEtXx6xek3mIOWD8/pnYlZieuvqXVNYeOOGQZ7n91O+FojPtf3U5tHJXGwUKy1To6/XI8iBf7OevNfYr68qXA+Hw/e+pCTCnyMzo7g9UV9ZwxId+Qr+6UeMwkrEbJqYFlpHh6VlEdVL0TBxvDTC0O0HqkkzE5aVZXtmn1ZepIq3ECjrRGKM4yfm/2mOgT0fR80J1Lpquu8+k8rIaa1PfCcz/+fiUrdtYxPq+S7146zTYadOG0QpZvrGHhtEJbhD7HIU64uLyYP320n8XlxVwzz6hqu+fzM1m164jt3Oj1+p+fPQaAPL/Pdu06x5PGo1FNmD/rdIz+vEQCiIm67HWcaPWPU4vrVEGyHP+bQoh/BZ7BGLQOgJSyYUCOagAwf2KepfGRCM6LMx6P6Lxg9AvgmTVVttJRHQunFfPKphoWTiu2ib6BtJpP3q8wOHvT7jzcYtnsdC+HWzrITvfS0h4lFDG09AFalFcy7VCCs1pnDk/SFTG6T/0+CEUNK4FwFNKOc15jaoqhNpqaAqkpKbRFushMNZKab++sY+E0g7PWlSj3HTVojH1HQ9SogSPrDzb2kLvQpTCy0n1AFF9KChMLU6moCzJR9YakeY2qmzSvGdUGyQuksk9JIhxWcsB6hY3+93RW3hxWu4bDzR3sPGxw9DsPt9qGj994wWS21bRw4wVWY72FFTuPWPbH18yyOckc1a2bk+FjVE4GH+9rYM743B4J2O9eOo2SvAyWzh/Po6sqqKgL8vrWw9y8sMymf/Pdi6dyxwub+O7FUzl/apH1mDn8Jxzp6uGoEznxeM9LhHjvp/P9Tpwox6+XcdsDvL7hZGn4JBtY/RPwLWAVhja/+e+UwZJZYwyN8FlGNBJvNFvPWZ3dsaS+lXRWCujvt/GgKmFTVsfDbxpVCUak1vvIR133HOBtpVX+9vZa6toMZ1DX1sE9V8zA6xHco/TN9ZkDiSpTkkVfyxVNJOLx9Qg92mV8QrRLoFIYli1SF39RIDVhpUy+ojDyA2mMzVVzaHPTbOcLjCE0pl2kFoNF04oIpJqiYz4uOU1VYCk7qdBv2Qe+cDr5AR8PfOH0HnmBz84ca9mvnjNRUR8T8anHTXuh+twLpxXRpjLvbR1dzBqbC2DZH1xuVNH84PLpzBln8P5zxuXYChN+u6qChmCU364yHKx+jZpduudNLujRLLhXLXp7j4ZsvLk5rMe0OhWy4YBxPW840NiDInlmbRXhaIxn1lYlnHfbF8Qrj062TDMRdXSiHL9ext0fOFnNYck6/hnAfwEbgQ3Ab4CZA3RMAwJ9OArY/2Dr9jdy8S9Wsm5/Y48FQecR9RGGzjJN/f3mjFOlbuN67i4yVWIuM81r0wGqVaOPaptDPRJ25gQtb4rHprL47NoqOmOSZ9VFouuxFAQMPrYgkN7dkn+c50x3zp+baUwxMm0y0KP82YrHn23y+NqqkqOSsDkZ3h7dqynqu6ekeGzJWFW9aNklM0dZtkmdo6ZwJ9WKfjFtqnq/1BSP7fvpi0B2utKuUfaXN5zB4vIifnnDGbYac9PhmLZULRClhX6bhvy3F0/B6xF8e7FR9qnnZnTuXp+EBfDKpho6Y5JXNtVw86Ip/ODy6dy8aIrtWnbKLeuOI1ednFy/j9uf28iKnXXc/txGwN4bojvG/fVqKla9Xa4cYO6EPJvVMWNMjmX/7aUtrNhZx7+9tMVGkzkddTzu3fk8/f/lo7LID/goH5XVw0nGc5oDWZPf35o+JyvZnKzjfxw4Dfg1htM/Tf3ulMF3LppKWVGA71w0FbD/wW57dgMVdUFue3ZDjxVcvzC21RiVOdtqmntEEfr73byoTN2kZT0iLV1I7a4XN9MQjHLXi5t5S9VBv7XjCGeV5gJYdrzSTRmfn2GLeveq8ZGmzVQ7hMy0FNvsVFMGxrQBlbUMpIqko/rXth6x2XiIF+UrH2pZ3cGbYyznl+aTp1QmTZud7rGsXhOuD5MBePyjA5b1KH7aIwQhxZeb1qR8Fk4rYpUaOr9q91Gbk1xTqQZ1KGuvsuo+Y8VZ3eqRxnsWU1YUYOG0YmtgSFFWGn9YvY/OmDF/FqA92mlZPWHqlBm2T2jrhn4t33X5aZQVBbjrcoNStAUkmqT4QaWfY9rXtxw2aJsth22vyVJ/INPquHmhuq4XlvVwzvo1X6KS4SV5GbYKHadj1ne5iXbTurDhfX81tLPu++vWHk4yntM8lRK4J+tYkw0Cy6WUc7T/rxBCbByIAxooPL1mvyH7umY/Z0zMs3HyF04tpLL+ABdOLewlGdsNnU+drZJgiaIIoMckn/MmF/D61lrOm1zASiXZ3BRsJyPVR5AYqZ4UG/cMEFZ0QLijy9Jsj8Yg4tBY12+kRA49qLReghFpceO+lG4n2huSVfvUo/wpkSeJRVSdvIPCyUxPoSncRWZ6CusPNAGw/kATJbnp1AejlKjuz6CqrgpGYrYcRq7fkBo2HXaOer+c9BRmjMnmcEsdM8Zk89HeekAilBPUSxfH5xoSBONz021O8r4rZ3Lbcxu470pjU6vPOTByNIdYOK2IyqNtbKpuYZLi+B9+c5ei8XZxy0VTue25Ddxy0VSyNXE/sNMsv7603MaV6/mlJTNH8/b2WpbMHG07hrCSYnh962EyfClWI9YZE/NseSO9EEDfNQJsVDNyTWsMPqniwWtnc9tzG3hQqck6k5fmdf3LN3fa5Bf0a17fZekJXGcxg16v70wCg35vdV99F04tskmq6Bhs4bNTCclG/OuFEJaYjBDiHOD9gTmkgcHfVWRuWp3S+e6l5fzg8ul899LyuMJpYBeVcq7M8ebiLjuvlPyAz5rkow+O1qNWvaRuv4rKTKt3U+oOOKC6SE0bUdUlkS5pa+aaP96omzatDmfkrEPR4WT46CHra0KP8MEul1yQabxBQaaPfOWgTZua4rWsPuvGPgsZKxk/f2IeY5WY2NjcDM4vMygS0y6cVmzZT1Sk/kllQw8efoNaZDYcaLLJETepyLUpGOEv6w/SEIzyl/UH1bfsXkb1zlG9Ock4rm6pgj+s3qeulX09BAJvvGAS+QEfN14wyXYundeUng/Sy4ztvSH2JVkvs9yinrelupn//MoZlBUF+M+vnAF0q29OzM+w8fp6wxbEz4U5u2t16CXMej7CWVtvL8eMH1roz/vupdPUvTotaT48EXU0kDhZn9MXJBvxnwP8LyHEAfX/CcB2IcRmQEopZw/I0fUjFk0rZvnGQyxSDkKf+JMoQtcxY0wOq/fUW3ymDr06oLoxxJ8+OkB1Y4i9R4M2BUI92kv1Cto7JaleYfiWLsDTc1pShlcQ6pSWNRHrMrpIYyo5mpOeQnN7l2VNrK1qsdlkoSdaU4XRUOsF1iU7EEXTgzf1hJqU6ExhVipH2joozEplanEmyzfWcM6kfJvkAMABtfgdaAiRqxx1boaP3ar7szeb5vXQ2tFFmteDx+MBOvGpZqhaVb1T29JuURLeFI+NgqtTJbB/VxrxTkG/9yvqKSvO5PuXldsi+d2qO3Z3bStTVTPd2Nz0HpUj+nSn2VW5cbtP411v37+snMPPb+T7l5VT3RiyGrHATiO1tRt/iLb2iG3qFMAhVTF0qLnDlieoPGoEJqbVB5LoFSfxFDPBTo3d/8o2Kx8xe5z5PYzP08UR7eWX++LuJsxzCMlX+zjPf7xKHv37ma87keqaodwVnKzjXzKgR3ESYLaLm1Yvicvx+6ztrHPWpj7C7fqzx7P7SCvXn93zQtMvwmv/29gMvbv7qFWNUaAuHr1U0LxnBBKvxxAO8HoEY3PSONTczljF/5rOXnf6gCXZYFrT2etO/3iQqIY+JgRISUwI/D77QBTTZmLsPoIdkkCaIEV4aGnvIjs9hdNGZ/NxZSPzJ+QC2OrSdWqrTYm+tzmGfgc7Orlu/njW7m/kshmjeFjJZleqbtiDTR2WnVKcydFgExMKAnR2xTjS2mFNcxqVnU5tawejstNtUgXN4ShVjWHOmJAHSJZvrOGzKmG8qaqJx96toHxUli0wdUby+i5LT5Ka/Lt5jehBhzmaMNzLlku/3swoOSM1xXbt/uYdo37+B3/ZzJVzS2yBRa3qEahtjdiu4zMm5vGjq2da1/xjKytYX9XM1OIs3lA74lW7jPyH7sTj1ck7oT9PXzjy/Km219y7fCur9xwl2rWVP994juUcE+0mdCSidnQn7lwgnJRTb8cNnLDTHsoqnkk5finl/oE+kAGHbXau/Y+iR/nN4SgNwSi/fmc3i6YX2zT4r5s/3uIrmYGN+9Sjl2vnjeWXb+3h2nljeeJjYxtqThOKd0htHcZF3tYRQzKw9fjGPqHbmog5rI4Nvi/jlxASEOrodvZzPU/SGTEkEPYAirEi0glnjM/i48omThud1YO+KlbaMsVZqXxa2QQY84ZTvR5C0RipiprRm6J+8eYuNQFqF12qIL9T2fkT83hnZx3zJ+bx7YumcvvzG/nhFTN4es1+NlW3WJLD08dkGRLEY7JsfP+WQwYtUtUY4g/LzmLG2BzrGrn1mfU0hzu59Zn1TB9t0GU7a1t79HjoapNzxuXx8b7GXiu77AJp9nJhPcrUB4sYct49tWfMKjUTN14wiW01zdx4wSRqmsPWoPTbnt1gjSJcefti22sONYcte+eScu5ZvpU7lxjaQ7oz1B1m5dEgzyqBQ2dErD/PmTPTneiMMVms3nOUGWPsGkaJdhPJwvm30T9XzzvoOluJmsj6gqGcc+j7mT3VoIusYOdT9Uoes8nGtDdeMAmvR3DjBZNsVQNO7lNvt//1O3uQwK/f2ZNQKllJpBOK2hlOvbY7EfpaZ59solaHX6ooX9olFm65yFCovOUio1SxRO1SSnLSWaMc+prKJttwDoD39tRbNqaOJIa0JSSNY4xZdskMg6ZbMqPYluQG2KEanHYcbuX1LTWqYqXGRmmAPRLXHYxPNU35UoQV4W9SPPdYtVsYm53m0Lyxn8mfftEYs/nTL85mQVkB+QEfC8oKbFUp0D2ntjEYsVXyOMsbG5XkRGMwymMr97BiZx2Prdxju3b/88tnkB/w8Z9fNrh7nUZ6dXONGpRew5xxuQCW1a/fH11tcPI/unoWL22opjMmeakXrSq9ks0+lAhbSbTO5Sfiua8/e4LRP6Dm55qIp2EFx8Obx7/Kk6n+6Y/qmqHM8Y8Yx+8sldMv1OZQlAMNIZpDUVtdNWArxdMbU66dV0KGz8O184yLU9dc0deYjk7j5jVtf6IvDtwJM6jqLbiylWZ2qaRtl70U8+lPDiKVBXv3cIZPSR74BK0qX2FafXsRUnROqKOTqOJLTJvm9Vr2pU0GLfLSpsO25CRgK8f8aJ+a2bqvgevnjyPD5+H6+eMAbD0WevnlnUtOU/r0p/HdZ9fTEIzy3WfXA/CZ8lGW1TVv9D4MsJf0/uTVbTQEo/zk1W22MZ/QrU65s7bFJsDnpDjMAoOKujZbcYJ+7epjQwFbMYGeDD/cYkT1ptWDHXstuj2cMCP7yqNBm8PUJ2sBfO8ZoyT6e89sIFmdnHiNVYkarpJN6Dp1fHScrJLJoTypa8Q4/nnjc9VNmgtgi1hufXo9FXVBbn16vS2BCEYreobPw3cvnsrtz21QTTAb+PFftxGOxvjxX42IXxfy0rnelnbjP6bVoYYbWfZkIUfVxueke2yRs6lfZ1o9cTu3y4jy53Y9aVtwnBF6i0retrR32pp6FpQZtfqm/cy0QsuapZZCCNJUEta0+kKg9x/oFTmANXM2K93LUZWcPdrawU9eMfSLfvLKdsBeb37fy5upqAty38ubbbuEhapU0LR6Z6vuqHXnDvYIz+YYHTSjSdXk+VNtwYST4vj+ZeWUFQX4/mXlLFBduAsmF9j6TpzO5ber9qhO3j3sr1f0Wn2oR1Oh7uz1SjZ9QAvQI7I34RyWoo8otTvd+PvSeJG38/f6eU3U4KQ/byjU7g9l5c8R4/j1xg+Ah740h7KiAA99aQ55KlrM8/t67AxeXF9NOBrjxfXVNhneZhXZmvZtVZP/9o5acv1KFtif2KPrU5VOJprbYzZr4tMuI8L/tEuVZnaqKL8T0lQHZlqqveM1onY6pvWq6h2vR1glgeurmnpQM42K52oMRSlWjVnF2elcqBYE0+qRfbrX+DuZVocukXDBFLVrm1JIY1jRKsrqNI4+X1Yfb+mc+RovAnVGvXpn987aVhqCUXbWtvZw6Ga+56O9Ddy73OhyvXf5lh5Rqp7EbVDnqyEUtU3mcnaQ6wulTkvpC54TeqetPf9gv0/0Rca5O/nuJarM8pKeuvimQmiycDptfdeQyKEPtQh7KCw+8TBiHL9+s4C9IkPfEi+cVqS2/0YEo3dJtirtkdZQhHNUt6lp9eRsuopW070pJ6x3czzQR+3p0OemJoI/XUX4hh9mge8ZJkeeZIHvGVsjVWmBcb5KCzJsThbskhTf+IzhwL7xmUnWDFfT6l24R1SJ5ZGWdkvfxbR6V68uYuZcoP/jjV2EozH+441dtoqhSepYTfvtp9bREIzy7afWcf/Vs8jwebj/6ln86OqZiuee2aOkVI/cdL7eWfOud3brr3Fy1o9cP5f8gI9Hrp9r2xU5ob+H7sR1yQfnojR/Yr5lnVLMOvToWO8Q1vMPgFUGesbEPNvxJErA6g64P2ibZLNZQznCHmo4ySTD4MFJ4ejVCnoNd0dnzKo7/uPXzraNPewSavqSEOxVScK9vWiaHHbIJUPvPLzPY0TApj1R6FrzeuVORNV2m1aHLpcckliVO5lAi0out3R0keHFGvZtaNiEyU73sU/JRZi2IDONo8EoBZlpvLLZ4ORf2XzYkjDYo3jrj/fVW1avI9dpEIB0n9eyF04r4tm1B7lwWhGfmzWG3Uda+aaqmlhYXsSfPtzPwvIidtQYHPqOwy0smj6aXUf2smj66B7ffXN1C+FojM3VLdbwEzB2F1WNYWu3YUdvmRXj5x9dPcuq9NKrvJxT2EzNfIDZ43MpyEw95iBxO13UfQzOShS9BNQon0yxFiy9ykX/rJsXllGghgvd+PgaALYcaurlu3dDV5mF+NLJ+nlwQq/+SaRKmewQ9ROtojlZyphDASPG8Scq5/x4bz3v7KzjzAlGKaBZYw32muLTx2azrqqZ08dmW4m3NkX15GZ4aQp3WjYZeNRN7LHdzInhxdDc8QLSY8gLqy78HnX9qHdVwbpldeg8/kWZL1FZH6K0wM9K7Fr25lcKd0J7p+L1O7vYr+rGK5Xjb1KURFMoSo7fjMp7RoW6nk4gzUu4M0ogzcv7aoykac25CIbtjnR1VcpF04u5qNyQUriovJj2aBdrKhspLQzYnBrAT79wOne8sImffuF0/vyx0Y+48WATWw81835FPZHOLaxVA8Y/UTZR/br+s166+NU/fGzVqJs6QWtVR7GzUciEs778Ry9vYfnGGrYdarb09vfWtXGmiuozUr09nJ1eqnjTwrLu2nhHgln/LP09fGpOr2l1yYaXN1RbjVUf7W1QE+x28MxN59neT3f2+vHkzU+1OVb9sVCk09a0pUM/vsdWVQxYU9RQbrjqbwyY4xdCjAf+BIzGqOH4nZTyV0KIfAxd/1KMsarXSSl76hf3MxJtTXcfabOsznGeMTHP9jqdB253NE3FkzRIBJ2PjVdb74QuuFaY4eNoMEpeRk/OW38/5xhGW5SvNWAdURUfptXnweqoUknDqvoQ508p5J2ddZyvqJ5R2WmqQSqNw4rCaQpFWTSt2DYP4Z/OL+WB13bwT+eX8tynB61dQijSSWtHl1Wls3BakaWN85KSUGiPdtqqqADuWb6FhmCUe5ZvYYKik0zNGB2HmtsJR2Mcam5nYn4GH+9TeQS1EJXkZXC0zc/O2qCltqnLDiTSjdcdul6jbnL65sAWm+5OpIvfvbeP+rYOMlK9ls7O9y6dxuuqc/j1rbU89tUzbTpRuqaPjnhNQ05q7Jk1VZY+jz4zQh/yAna9+dmqFBRED1VQ3Yl/tLfees0vrptrHY/TserHmuywlP5oinI2s5k4mQ1Xg727GEiOvxP4vpTyNOBc4F+EEDOAu4C3pZRTMWb33jWAx2DBWXqnJ4zMwdKLy4t6REZ6yZ+uie5Em8rQth1HplZvmOpLaeZRVed9tJcRg3qFjpMh1aP8eR6jWmee50kScak3zC+xrL4gHFbNP6Y1BcsmFQZsUb1zHsKv3tlNTBq2VZ2z1vZO6lS3qWl1CWJ9UpQpUWDaPLW7yPN7bdUwTh5ZT4buUQNS9tQFbcJiC6cZEbdpdX2eeJpMYFeR1GWUdWlisNfn68GE8yooUwtPWaE/oU5UMnDmrpwibSb0hDLYc1x6RZPeswB2fj2eRn0iDl5/b+d51f+G+nfva518vEqlk5mMHexE9IA5filljZRynfq5FdgOlABX0y3p/DhwzUAdgw49IgQ7hbPs/EksLi9i2fmTbMNMAO5/1dAauf/VbWxXTULbD7ei8oyWTUSnxEOiwSInCn0272ZVj7+5FyE13dXrA7OdeP7TastePN1wHhdPL7IJyAG2xOiFqhfiwqmFtuH2AD61NfJ5hG3wydcWTASwrO5EypX+TfmoLCtXYNpzJxdZ9qX11VTUBXlpfXUPZ2Py7c98UoXuaPXFwlkBo8sM687d2Zilv5/uRL65cAr5AR/fXGg0ue043J2D0JPKzqqeO5acRn7Axx1LTkuYBNahBzR6maa+eAG2ICZRueTrWw9bSqD6d3Lq0Md7LJ7ThvgO3Xle4y0YfXWeeqXSYGGwE9EnheMXQpQC84CPgVFSyhowFgchRK+TPYQQ3wC+ATBhwoTennJcKMpKo6oxbCUZa1WEWtsctknZ7lRCW6Y9oJK3B+qDjM5Jo6W9k9E5aeyqNaLUruMJ0R2IR6UEfB6C0RiB42xZ1/n/JqWw1hSO9hBSO50nkcrpe7SeA+ds2HNK8/i4stGy5rHqtfaLy4tYvrHG2jUFleZMMNJFrqomyQ2kWUqRreq4vCkpQCfelBTbeL/F/7ECgCc/qeLOz81gzd563tt9lDV76x2DSuzR8c2LyqwkabdWUh3XzCuxSQvoypazxuay7oBhndpNOv9t5i8qjwYt/fzekruGrEJzj45TvZt20fRipo/OZk1lI9NHZ9u0cJw0kq7w+esvz7O+nw4nZaDvJnSaZmZJDu9X1FsVPDcvmkJBZloPCsbJ/etTt/oCnT5xSjzHp1bsf9t4Sdu+UjNOwbrBwGDLOQx4OacQIhN4AfiulDJpeUgp5e+klPOllPOLinpqbx8vbrloKvkBH7eopO27agjHu7uP0hg0qm8agx096BxdakDXxR/IMk0zf9DemXj74Nx16Pz/qvBS9qZ+hVXhpT3GHurQm82cfFO50qUpH51tLUIBn4c3VWnem9tqe1BcJXnp3VZ7v6NqO25av+rq9fuELdrTeyoAfrh8K50xyQ+Xb0Xfn8wvNRqaTKvj4evmUlYU4OHr5vbY1uuSwbpWjx6B3f3iJiW/sQmA6WOyLatTf84I3dTWeVnJHZhwUh/6sJlEna2mhs2MMVlxKQ5n1Kt3BeufqzehgT1C13MYTimSeFO39O7hZOF873jUSqKu24HEUJZY6G8MqOMXQvgwnP4TUsoX1a9rhRBj1ONjgMQjnfoJv3p7Fw3BKL9621B1vOOz5Xg9gjs+W27jjk8vySHD5+F0FRnp9edVis6oamq3TU7qbySbKHbKLegSC36vivK9cGbKU0yOPMmZKU8BMG98jmV1+YVAupr1q6zuRHTNoZCiwULRmIoosWymmpKemeajSa00TaEI5qwv0x5sbLesfsPpjV1gXyD0LuElM0cbOYOZRpmm7kD12nNnk5UNmraGfU6sfVnX+wJ+9voOq5qlp+PqPRxw0iL64qFH6M5ZEPG0bHRn72zg0hdrfTeRqJ5ez6M4FynngmHCuaDGm2Oh/10SzadN1HUbzyEnonr64sT7qu9/KmLAHL8w+vD/B9gupXxYe+hlYJn6eRmwfKCOQUeNqqk37XOfGvNqn/u0yubc7/3rVsLRGPeqDl/dOei3dbDDuGFNe6LQHbCzy9Xsv3H24WSoZinT6pROSKooX9q7bgG2KSXKbYeabUF+SNE0ptWbrPRyWH1hco5KnDU227L6CENT4ti0+k5Ddw56UxVAhqrjz/B5bdo1ugMGbINK9BtT76AFbJ2yeqWLPpP2gWtPZ3F5EQ9cezoA7ep8tEe6iHYZP5tWh56gTAR7wrp7cXVGxPGcdaLhJvqOST+viTjl+Lo98Y/ByZPr3b92dN81iebTJnK6fZmlm2gnFQ/J8u6DnZjtDwwkx38+8P8Bm4UQG9Tv7gYeBJ4VQvwzcABYOoDHYKE4M5XDze0UZxpRxCEVvRvWuDj31LXxj+dN5Jdv7eEfzzOSi9tqg5Y9pzSXjyubOFtZOLb2vUcYZZS9Re+2kkv1uxj2xi4An8dg701r4r3O6wwn3wnQbCvNXBR4lqPBTgoDXtpVEX67oqrMQ27vMhQnD7V0MCY7jbZolJZwDH+a8cGfaPXsgVQv4WiEQKqX8Xledh0JMaXIz9zxeTz7aTUXTzdSNXq36PcvncYdL2zi+5dO4/ypRZTk+a2banJRgIq6IJOLArZE+566NssCjM7N4EhbhNG5GbYBJGaS2OKTtFX50VUV/O7dvdQHI1x/1nhbbfzkokxW76lnclGmrTHoxXVGqWhda4djxi7sVUNJ9h5tY/7EAtYdaGb+xIIe/HqyvK2uUf/MmipLvtmY87DNiojj6cbrC4dzuIl9oEmldVL6yinH49GdPHlZcaY1oEaHfo778jmJHkv8nY6fjE32HPVH2eewLeeUUq6WUgop5Wwp5Vz1729Synop5cVSyqnK9hSqHwBMUqVxpjVPdn4gFZ/qgPKleHhs1T4k8NgqI1LQL5/9DcZisb+hPWk6xllDPz4nzbI5GQaFYFoTPqXrblpnJG7C71ERvvorXpb9ApMjT3JZ9gvkq8qc/Mw0LlZVM6bVv1Oz4uab2zsxg1jTFqpEeGFWmq2R6u7PzSQ/4OPuz80k168SuMrq2izPrD1IOBrjmbUHe2zfzYXi4unFDsls+w07qcBvWb3H4oFrZ6uo3Cgn1Pst9ASuvYoHW95Bp3d+dcM8yooC/OqGeT2ixRsvmKxGJU5mySxFMc0a3SPyi0d3OKkBPfK9/mxFpahOW33B0aNt/b31CN0pB6Gf50QlkjpHr+80nM+Ll1twPs/ZcW0iUYnkQIqqJbv76gv641gHe9cwYrR6PlRNNKaVSt9AxmI2RcIO5fVMO7koYFl9rJ1TyTJZVCld+KrmDvyKO/b7UmwLiVNeYoparKYU+u1SySg6R7237sQb1djDxraoVclkWrWe4PVAQH2BQFoKo3OMskXTzlVKpnPH53JIVfocagrbumablPiZafUE52RV0z+5MNDDUUwqDOD1CKPuX6ORetabN2u222s7aQM9IaiXZtrn09qjd93h6XkB5+KjV+XoFJOTGtBnMuhw3uT6udDPl/N58eY/6N89XkIZ7A7K+d66wqcuMd6zRLX37+F8v2QcrXNhTNb59cVJ9ke9/0BiRJRzDgUEHaP8GhXf0djeZSvlm1acybbDbUxTW9Y0VTKTlmLXlC9VVMXYvEDCz9XpHCcOtUQs6/cJQlFJulf00PrZruim7bVB/GnG4uBPgxsnvsk7O+u4qLyI/wNIqRYzGUNiOHQJbFAiYqbVcwiLyot5du1BFpUXs3JHnfX91BtZduG0Qt7ZeZSF0wqpUYtAS6iDNao7d43SwNdpG53/f/Bv23j202oqjrTy86Vz+fEr2+iMSX78yjaWnmlo5bdHOm00xh+/dnYPusikMRLRLM+trbL+nj++pls/B+C2S8upad7IbZeWk+P3oVMrJpz0hD4qUaeYelIDvbfhOSkbXTdHX2ScFIL+/jo9ZEfyAma6Pbs0j8r6EGeX5vHI28b4xkfe3m3txMwGxkTvEe9Ydeh/J7289I9fOztpyuREqRXnDN+hgGFfzjlUkKMUDU1bpJxSUcDH2Jx0Mnwexuak881FU8jwefjmIqPZRu+ONYmWLuxDuxN/rsdmU9VCYloToai0rCnAYNrNXtWA5f0KIaGifAEfKXE5016oBLMunFaMR/1lPZ6eonH6iMBctTXP9afS0Wnc7KbdcqjFsuPUAjcuL0Bdm+qubYtw35UG7XPflTMBO+WiR+G6/ADAZcoJXjZjlG1OrLPy488fHyAcjfHnjw8kbPLRoUdTzp2BszO1Nzi38vprnBSTDn2Yi46eCdLuBUKPlPtCISSKtBNRKWNy/ZbVE7VOaYd456UvlTfOv22y3/fEqZWTqZF7amDERPw1apSiaUvy/Gw+1EpJnp+7/7KZcDTG3X/ZTK4/lXA0xs//vpMr55bQqSifTkcVh3M84ticdGtAel1bO9Eu8KUAQo0wF4ZDNNXsPUhShFHVYloTOZlpHGntIEfx9H6vsUL7PXB2yvMcbY9QGEgl0mHcZBFV7683m6Up557m9RBRHWLmZZ+V5qW9M0JWmtfWyObUWNe19TdXNwGwudo+RlGXJl40vdiWXNSjmtICP5uqWyhVnP0tl0yjpb2TWy6ZRlV9yJoT65zR6tSEMWEOJ+9tSHmiaEqPHm95ah2r99QT7drCn288t9fnO1+TH0i1HZ8OXcm1tDAQV18m3jlKlPDTo+VfXDfX9rx43zWR6Ji+q8kPpFqJ2tLCQFLJWCf0XcyyBaW9fvdE524gkWyCeSRhxET8TuhSzHqNeopydqbtUB654xgtum3KCbd1RBBmoYmkx8hBoUJx4fE4BUMtvBP9IntTv8I70S8C2Lj8LpWb6IrFGK9kGUy7X+nN7G8MU62qlqqb2jlXTW8y7eLTii2r1+F/RkksmPauy40I9q7LTyNVdeumep25ADu9Ya+H78Z9V82irCjAfVcZZZp6FKxz6E7omjB6VOnUv+kLj6vLIPQHD6wvnImGh8SLYBNx2Xq0nCznre98kk3aJhtd9zxf3ddBsoNTBhJDbRrXUMOIcfzFWak2e97kfMvOGms4gFljc3rIFhQFUi2rNxM50aKmWbW0xxLq9mSqLXRmqhezMbczZt+M+mOqWkc9fknqi0yOPMklqS/aBc2CxjGaVs9HTC02qJmpxQH2qYSmafXRhPmq7jvf7+uxi9E1b/QEuLnDiHTGbM1I0LM704STYokn6uVMAMbTfXFWsyRbt61PydI1eRK9Xv/cRAuEXQG2+y+a7KKSKOGnn4dEDj1+I1VySVsnkm2eSnbc4snCYFfNDHWMGKqnQXH1pt2r9Ff2Hg2y74jx87r9jWSkCaJdYCodH1YLwOGmMOakwlBUUuD3Uh/qpECpQk7IzeBAU5gJuRkcbAoTw1hVM9O9NIc7yVTTrxZMKWT5xkMsmFLIx3vrOdzaweisNN5q/WK3VLJy+iGPMRAlojj3SGcnqV5BZ1SS6hW0dRhRlml1LD1zPA+8toOlZ47nD6sNZ3ZEOXxzrN6qXXXWcTWGo1w4rYiP9zVY057e3V1n2ZK8DMtx/+TqWdz23AZ+cvWsHsnY7zjmGVjHkyBxCVhljN9/doMtAahDT5LqMsBlC3sOCY8HfUqW/Rjiv17/3MT0iVOrP+XYA1Y0JJvwS6RPr1NC504usB5LpP+aKHnqHLCSjDxyf1Mrfal5P5kSy6ciRozj17l1gApVKVNRG8Tn9RDtjJGS4tE08o3XRaTdmmgMddpsqor2Un0esjJSaA53kZWRYmmwm3ZvXatl9VtR77p95vJN3LN8Kz+5eiZfBtpV4rc9Klk4rZjXttaycFoxB+rb2Ho4yMzRRnSv01IP/X0nMQkP/X0nEwv8HG7psEYvLigr4L099SwoK2DhtCIeeG0H31k8hQMNpn694fxMrRuzO9PsFl2164g1aNtZbaLz3LrWuT6cw3nzPrqygt+9t5f6tkjchQOwiemZycxu3jy5KU36lCwdiV6vLzKJHEo8rf6BdELO99bPX6kqp10635iEpQvIOb9jvAUn0aKnvybRYyb62rTUlwEpg101M9QxYhy/mtfRbem2adqiEJNGAaaUJm1iTJ1KSzGqG9u7ID0FOqUgFpN4VC5gv9pB7D8atLq6QpEYkwoy2HUkREmuUgVVJZy1LRHe6VRRfhRCXeDHsA++voPOmOTB13fw5XMmkuo1npPqhf0qgbu/Pki16gk4qOyE3HS21waZkJvO4dYIHaEo/jQvLYoeMm1ELRCRLslTn1QRk/DUJ1WWHLMpb6DPJb7lqXVU1AV5+M2d1gQoED2ajuJFzrc/t5F1B5poDm/kxW+db3MCehRekJlq7Sz0hcNAT9ljE8lOadKTx/Gcn/P1zgTl8TqURK850Q5O53vrlNoZE/NsJa76DilZZ5rsopfM4tbXCVenUvQ+2B25yWLEOP5Ohz13Uh4f7Wvk3El5VDe1E2oMU5CVTpVKkLZbYwyxbGHAR3swSma6j5wMLxVHw0zMN/RsJhdnsrO2zbJgTNbqUguIafUGMT8qygemy6eIRCSpHkFhagrN4U4Cqls2qtp+ozFJpXL8lfVBPj97LM9+Ws1nVWnkWZMK2V4b5KxJhbyyyWjoEUiKs1I53NJh5TfKR2UpSieLr54zgTte2MR3L57KJ5UNNqpHlz7QB9Lr0bHzZo63zT+sqqlMq7/OGYXHm9HqpFJ09GVKUzxHdCxa6kShyxO/ta02KWeYrEOJ992dv9f1fhIh2UUvmXPUVwd+KkXvp8r4xhGT3HVKGOsqkPr0pUSwzYlNN24+004fnWXZQtUjUBjw2SJ0gPfD17E39Su8H77OVq0zb4JSzJyQ06PuvkQ53ZLcDFtV0A1nT6SsKMANZxu6QnrDlE77zJ1g3Nym1XXtX1xfTTga48X11TadHYCNVY2W1Tt3dTjVIeNV9VygKoVMG6/WPpGKZKLqjL5MaRqs7kk9AZ7sMSRKzuqId46cv9dzM315v74gUe1/f1RV9ff79QWD3ZGbLEZMxG/TnQd2qah8V22bRSAca3iWP80LbRH8aV5bExTAeyoR+t7uOpoU798QjLLJZ0gkhyRAM/50VZOfDmXtT1pdvdnqeHbUtjGp0OgKNscY6pO6LplezPKNNVwyvdgmH/DMTefZxktOzDvMtsNtTMzL6JHX0weiOzlhPVovH5XNx/saKR+VzTXzSqyOVz2qCUW6bHNind2ZJpwyFMkO1zjRSDdRBBbvGAY6atPzIsnW8fdtOGdyx6Cjr1RFX16nn2fghM+53qHrT/XGfb+BpGNOld3JiHH8KRh8fm/SOvpjznYg1X6FBzjYaHSYHmwMcfnMUaypbOTMCbkANJjOPtTd6h4D/CnK0avfheiu2NFv5dPH5rC6op7Tx+YwNteooDlTDb8wFUCb27sYpaSSR2Wns1tJ+raGjZ2BPl7yvMkFbDvcxqySXLYoGWbT6j0MZcWZcSdP6YNK9KTtVXNLrOc9s+YA0N3iH8+hJOoITYR4TjjRzas/Fk/hMhEGWn3R2aRm4ngqhk4U8Y5Bb8T63qXTkn6/viyWiSQg4iGx044vf3GixzrcMGIcf5fDFgZSqQtGLKs/pkOXSzb/E4vBo+8aJZKPvruPOz9nd3JbUr6CP8VI1OqOPhO4LvevbDvcyozRWZRGOqlsCFOan8EmJSK2qbrZ2p6a4wrLR2VR3dRO+agsm1TEkVYjcjdtlqrayUr32mbStrUbj5v2jAm5VDWGOWNCrs0x3rt8i72TVVuZ9OYkPeHndOjxHMrCaUW8sumQJb4WD05dlWQj+XjRI+Ao+zw2+iNq6y9H2J/HlBz6trPoy2IZrwoqEeKVl5pqpHo3cjLd2yMVI8bxO1GvOOh6BxedmgKRLsM6oS8C5tRXM8ZIE9AhDetP6U7anp3yHEfboxQGfKwFWxTtTRFAmOwMH10xSUt7JznpXg4qHt20n6jxdp/sb7SE097ZcYQuxVuFlPCcPimqU5UvdXbFqFGLhWmr1M6lqjHEM2uMao+pxVUUqAjKtHp3rCWNIKVtscjzpyZVs60P+37i6/HlEZxVQclSQseKHk/2Ta4fT7K7k6FAE8SbGwyJo+2Tdez6eXUurn3pgxipGDHJXafwmVMn34Tp30ybo8YQ5qSn2BLEtp0A8Kk0hNQ+lV+xzbj1Kq1/005Rqp9TijNtOvu68Nl8VcZoWtuIRU0PIl1JKpt2ipKQnlIUsH3u+WVGQtW0unPdeFAlcA82sqHK2GGYNl43pp6ATVZv3Rzybdp46KuOeiIBscFAIklkHcl2zZ6sxGWi5HpfRhP297Hq5/VUSaQORYyYiD8j3Uu0vZOM9OP7yjq/bqJL9pRb1huwyiJPIiPGY2fkpnO4pYOSXIOb31HTYlm99v87F0/hl2/t4VuLJvPkGuPG2qaeG1X6PNFYjKBqHw62xyjONpaxVOXk96sGrP0NYcbnZbDuQBPj8zKoD5o6QsbOYEpxJusONDGlOJOOaAxoZHR2BncuOc3WsGWLjLRAPFneXI/Ibl5YRoG6WcEePZrPPZ6oN1kqZSjwuX2tf09EX8WjO+Ih2V1HouR6X/7uyR5rXxKubuTed4wYx+9sYiorzKDiaNiyJuaPz2ZtVQvzx2cnfL/NfMWSWIBmQjHVgBWzs6SfHjCiZ9OasglHWjsIpHtpCncSSPfy5JoqJPDkmio6OlWtv7Ktytm3tseYkJfBgcYw4/IymDE2m9e31loDU8pHZVp1+G9tN2bYf1LZyANfOJ1tNS3ceMFkAFtp5t66oHpeA7/68jzbOD293lwfnG5OtZo6qorrzxpvPaesKNN2A+u14s6bNF4FRrKOLFmetq9VQv2Jvta/Oyk16ElfJVrY9O+a6HnJduRCcvmSeLTb8RyDi4HFiHH8TuxVzn7vUXtd+tqqFpuNBz3CBzi980nbDsBEqscQa1N0Ofl+L4dbOsj3e6k8aiRbI9EY4agpAdFBTG0u2lT3mD63t11pSbRHu3oMWNEXlax0LzQbid7fv7eXhmCU37+3l0XTi23DSH740hYONbdbuvw69NJMc4H4eG8D4/KMvoKt1c3cXdXIx/saCUU28cxNC2xVIR/trbeVm+rQk8XLFsTnbXUk4sPjOXTn8/pSJXSi6Ot760l03SHrtEmyO4a+7jr6UnnTF+kKN+F6cjFiHb8elaendEsxJJqdvkWL8vXB5pnEr4UIpPmIhKME0lR2QenyIzyEVHewaQE6OiErLYVoR5eVCNbzEZ2K9umMxRAxY5mJqte/tb3WsvmqCasxFGWO2hGUKIetl2amqSYB0+rQa/xbwlFue24DP7pqJuML/FaU/72nNwAQVlKkjcopNQYjhCNR9Vi058m0zdntRl/L8JKdshTv/fXXL1swyeaoT3RR6G+pAmfJZTLVK33ddfSl8qYvcGmbk4sRk9xNBNPZJ3L6YI/yZ/EkkyNPMosnE77GWUpZp7px61o6MNWdnSrP+qATMHYJpu1QQ1U6OqWtQghAqM5iIQRdqqqnqyvWo3tYJ+ynjjI6jqeOyrIN4AZsw8131rbSEIyys7bVoc9jX/J2qt6CnbUtZKQai11Gqq+nXLA2jOCRt3bx09d28MhbuxKeSz2Z1zNpmJw6Z7zEr7lwhSOxHknME5X47WsSMn6SOrmSy4FMcvclaetKJQ8duI7/GLANN9eqdRJBd0FKWNOyUt2sEml7LJBqvCqQKkhLMRy5afWh52aSuCQ3nX+/5nTyAz7+/ZrTAbjzs+V4hGFTlLRDisfDxHyj2se0U4oCZPg8TCkKUKkSzJVHg9z+/EYq6gwLWLN1a5rCNuel38DOwTUmF53nT+WBa09XYwpP597lW1mxs457l281T4RlV+ww8hErdhxJ6BwSVcrEqwZK1kFlqMUzQ5Wm6o66L4470SCQE610cc4iON7j6Sv09+iLE0/2PCZ7rH39TkNx+PrJhuv4j4G+RPmJ4jH9MVPz37Ddy8WDXzydDJ+HB79oOPQ1lY2WjaiEb6Szi79tPkRDMMrfNh8C4OWNh4hJw+q6Pc7O3Xte3kI4GuOel7cwV3UHz52Qxz1XzCA/4OOeK4yGtPcrjtqsifJRWeQHfJSPyuL0klwAy9q6gjUNnhljjJ2FafUeAX0ojtM5xLtJEzkR/TXJDmhJNPs2XuScyIEkGt6S7GCXeEhUchkPfRm2kug9kv076Uh2B5LssfZ1B+HuPEYwxx8PW5zVOhqX3x9oVYNgWoNRSym0Iwox1REQjMR4b/dRwlHDXjm3hHSvh7aOLtK9Hg40Gk1YBxrbqWkxHP7yjYf4+dK5VNYbjVmV9SFrmHt9W4dFGZlUz2UzRvPs2oNcNmM0kwr8eD2CSQV+G52zaHoxBYFUqpvaKQik8ujKPfzuvX3Ut3Xw6uYaGoJR/vdLm/nSmeOAboG4z8403vuzM0fbuPGbF02hIDPNchS6BIEpPDYm199Dtz8ed+/khHVN/4LMVItTd84RTqaM1Mnpx+P4E3H3iRqN4j2WbEVTsmWVyZZiJptQT5Qz6Mv3iIf+SFgn+/6nioxyf8N1/A44q3Vm8SScgNN3agRFNauLw+l9Aa9uMhz6q5sO8fOlc0hNSQGipKakkJUWo7m9i6y0FKu3wOT9Z5dks7qigdkl2aw70AQYzWFZ6T6CkQ4yVYLZmKVrjPA7/8G36YxJfvzKNl655TM25zB3fC6bqluYOz6XjQeN3cLGg822vKyz0/OmhWXUtXZw08KyHk47nn6+3mr/nSfX8X5FPZHOLTzx9XN7OG4TzhtW1/T/9ZfPAFCLihHpm2MRkxEGSyQHoTu1RI5H/37O58V7LNkEdc/pY70j2VLMRN8j0d8w3nuc6CKQrNxCXxPCyc5uGM5wHT+Jq3VOFE6NoHy/j/pQ1LImstI9tLTHyEr3WENgzCEvuuTC1OIAze1BRmWn0ylDBDskgTTjeZuqWyybmZ5CKBojMz2Fn31xNrc9t4GffXE2YPD5z66t4qzSfBZOK+L1rbUsnFbUw6Gk+4zLI93nZc64HD7e18CccTncuWS61eilSz7cfcVptvdwzp1NFEWbN93Mkhzer6i3Onztc2y74XTOuqa/fVGxi5slU57ofE68KVTJRprHKj3tfix+grov8waSLcVM7ECPL2kOyY+q7Av6u/pnpJaRuo4fe5Q/OdId4VcOwGfpcwC8AjqlIbccUVF7pFPytQUT+e27+/jqORMAmFjgp7I+xMQCP01hJakcjuLzeIAuZWFcbjrbDrcxLjed+ZMK+NOH+1kyaywf7K2nIRjlg731LJpezK1Pr6eqMcytT6/n8tPHADChINDjJtATngunFfH2jiMsmTWGMybmWY1eP3t9O4Al/eB8j3gDW+JFhc4O33iqlM7PiScOl2hSl3ksx3pNvClUfXVq8V6XaFZtoiareOiPUsy+zM9NdmrXUMBILSMdsY4/XpTf30hLgY4uwwK2ebzNYWMf0ClBKP6kS0r+74f7Afi/H+7nzs/N4MKpRVTW7+fCqUVWrb7X46Ghw5RiMN5n6qgsth1uY+qoLL57yTRKcjMMZ/r/1gKw4YDhnDNU/WiGT8SNqAGumjuWTQebuGruWO5/ZZs1uOMX1821HPWccXl8vK+ROeOMJHGyzTt2iqO7Lt1ZlZOIe+/PGzYR1xuPXuiL5LPz/ZL9ToPlQPtynvuDjnExsBiUqh4hxBIhxE4hxB4hxF0n4zP1skzoW7XOjFEBm00GzgqfDEWfZPi85mhePAI+M8WQK/7MlCK+uXAyAvjmQkNiQa/X/8Hl08nwefjB5dMx+75Mq/Pw+iSs6WMM+QnTBiPdieSF04opKwqwcFpxj2oHvXrkh5+fweLyIn74+Rm25928qIwfXD6dmxclvrkTVXSYyp/hSFePSVP9UcWRDJItI9XRl+oa5/sl+52GgvBcsjjRY3XLLQceJz3iF0KkAP8FXAocBD4RQrwspdw2kJ/rTNr2JcrfcSRoszpSMRgi05pwqn1eNmM0f/poP5fNGM3Ta/YTMake1XAV6YrxzNqDSOCZtQe55ZJymtQN0BSM2EYllhZkUFkfprTA6Mh9+Lq5Fvd+7/KtrN5zlGjXVs5UKp9mjf3F04v500cHuHh6MQ+/uUsNUd/Fr788D+id29abthJFdMlWSejUhV7a6Vwq+6OKQ0e84+vLe/fH8Qx1KmQw4Or2DDwGg+o5G9gjpdwLIIR4Grga6HfHnyhpm2y1TrZKumaneyyxNCnhmxdO4rfv7uObF04Cut8qAvh9glBU4vcJJIJwNGZRKdfMK+H9iqNcM6+Epz85AEgQghsvmGwJqd39l83W5wCsqWyw7P/841mYE65uf24jlfVhS55B595njMli9Z6jzBiT1YOn/e6l5ZTk+Vk6fzyPrtxjPc8JnasNRTqTqu5I9qbtmQvw9vpzf9MG8Y6vL+/d10Uv0Xu4cBfDk4HBoHpKAH1fe1D9zgYhxDeEEGuFEGvr6ur69EF9oXOc8KruWW9KCulKzybdK3htq7G9N212useyl84YDcClM0ZzmeJ/TasPuf7F0jlk+Dz8YukcHv+wkoZglMc/rOQ/v3IGZUUB/vMrRlnifVfOJD/g474rZ9qOzanbr2+Rb140RVEwUxI2JOnPc9Is9iYde4VOfw4wT6Sl398UR1+OL1kM98agk0XBnEq01qmKwYj4e6sL69HkKqX8HfA7gPnz5/dpwnRf6JwMn8cWoesSyZOKMtlW08qkokxmjc2msj7E2aWG0/2/XzvXollW7TIWqtLCTEu0LCfDuIj1mbR5/lS+e8k0zp9axIySHOv3ZUWZNnlkvbHqD6v3WuMRf/3lM2xNUSde+WGnWeLV2ieK6vtbT7+/MZAR9nCPVF0KZvhgMBz/QUC/M8YBhwbigxLROWleQUentFQpzZ8vm1HM8o2HuWxGMQBXzBrDs59Wc8WsMaSnetlW08r80nyLLx+Ta4xR12mW0sKA5SRvfPwToFsuQS87dDaP9FaOCHaHUt8WYfWeemaMyenhxE7U8SQa6J2oIakvGI5OcrjTNsPxbzZSMRiO/xNgqhBiElAN3ACq1GYAke/30hDqtJQuvSmGBLI3BSbmBdh2uI2ywgClhVnAYWXhrs/NoKw4y+LDAdK9HlupY4/P0hyAT03HMq2OZG8k/f1uXlRGQWbqMZ1zX5Ds6/vDwQ13Jzkc4f7Nhg9OOscvpewEvg38HdgOPCul3DrQn6vmklv2v748n/yAj//68nxmKYGxWSW5PVQedb4xI1WVYqZ6ky7l0xUqnegLl9kf/KdbLufCxcjGoDRwSSn/BvztZH7mr66fx23PbeDhpXMBWDS9mHX3XAbA79/bC0B1UzhhVNNbF+OxovV4HaX9gb4KTLlcrYu+YKQKmg1HjJjOXd3Rg/0i/vE13ToviXCyphEli/6e7OTCRSK4AcPwwYhx/M5oxXkRD1RUPpDoqwN3uVoXfYEbMAwfDGvHf0FZAasr6rmgrCChJvpQR7KDxF24GEi419vwwbB2/CE1gCQU7erh6E+li9jdYrtw4aI/Mawdf7gjatlTydE7cSrtTly4cDH0Mawdf2O402ZPVZzKi5YLFy6GHob1sPWxuek268KFCxcuhrnjf2jpXBaXF/GQqt134cKFCxfDnOoZyOYpFy5cuDhVMawjfleawIULFy56Ylg7/uGuj+7ChQsXfcGwpnr6OgzbhQsXLoYzhnXE39dh2C5cuHAxnDGsI3638cmFCxcuemJYO3638cmFCxcuemJYUz0uXLhw4aInXMfvwoULFyMMruN34cKFixEG1/H3EW5zmAsXLk5VuI6/j3Cbw1y4cHGqYlhX9Qwk3FJRFy5cnKpwHX8f4ZaKunDh4lSFS/W4cOHCxQiD6/hduHDhYoTBdfwuXLhwMcLgOn4XLly4GGFwHb8LFy5cjDC4jt+FCxcuRhhcx+/ChQsXIwxCSjnYx3BMCCHqgP19fHkhcLQfD+dUhXseuuGeCwPueTAwnM/DRCllkfOXp4TjPxEIIdZKKecP9nEMNtzz0A33XBhwz4OBkXgeXKrHhQsXLkYYXMfvwoULFyMMI8Hx/26wD2CIwD0P3XDPhQH3PBgYcedh2HP8Lly4cOHCjpEQ8btw4cKFCw2u43fhwoWLEYZh7fiFEEuEEDuFEHuEEHcN9vGcLAghxgshVgghtgshtgohblW/zxdCvCmE2K1s3mAf68mAECJFCLFeCPGK+v+IOw9CiFwhxPNCiB3qujhvhJ6H76l7YosQ4ikhRPpIPA/D1vELIVKA/wIuB2YAXxZCzBjcozpp6AS+L6U8DTgX+Bf13e8C3pZSTgXeVv8fCbgV2K79fySeh18Br0sppwNzMM7HiDoPQogS4BZgvpRyFpAC3MAIOw8wjB0/cDawR0q5V0oZAZ4Grh7kYzopkFLWSCnXqZ9bMW7yEozv/7h62uPANYNygCcRQohxwBXAH7Rfj6jzIITIBi4E/gdAShmRUjYxws6DghfIEEJ4AT9wiBF4Hoaz4y8B9EnoB9XvRhSEEKXAPOBjYJSUsgaMxQEoHsRDO1l4BLgDiGm/G2nnYTJQB/xRUV5/EEIEGGHnQUpZDfwHcACoAZqllG8wws4DDG/HL3r53YiqXRVCZAIvAN+VUrYM9vGcbAghPg8ckVJ+OtjHMsjwAmcAv5VSzgOCjAA6wwnF3V8NTALGAgEhxFcH96gGB8PZ8R8Exmv/H4exrRsREEL4MJz+E1LKF9Wva4UQY9TjY4Ajg3V8JwnnA1cJISoxqL6LhBB/ZuSdh4PAQSnlx+r/z2MsBCPtPFwC7JNS1kkpo8CLwAJG3nkY1o7/E2CqEGKSECIVI4nz8iAf00mBEEJg8LnbpZQPaw+9DCxTPy8Dlp/sYzuZkFL+QEo5TkpZivH3f0dK+VVG3nk4DFQJIcrVry4GtjHCzgMGxXOuEMKv7pGLMfJfI+08DO/OXSHE5zA43hTg/0gp/31wj+jkQAhxAfAesJlubvtuDJ7/WWACxk2wVErZMCgHeZIhhFgE/KuU8vNCiAJG2HkQQszFSHCnAnuBr2EEfiPtPPwIuB6j8m09cCOQyUg7D8PZ8btw4cKFi54YzlSPCxcuXLjoBa7jd+HChYsRBtfxu3DhwsUIg+v4Xbhw4WKEwXX8Lly4cDHC4Dp+Fy4GCEKIuaqk+Hhft1IIMaKGf7s4uXAdvwsXA4e5wHE7fhcuBhqu43cxYiCE+KoQYo0QYoMQ4jEhxDlCiE1Kkz2gdNpnCSEWCSHeFUL8RQixTQjxqBDCo97jMiHEh0KIdUKI55QeEkKIs4QQHwghNqrPyAF+DFyvPu969Rn/RwjxiRJLu1q9NkMI8bQ6lmeAjEE7SS5GBNwGLhcjAkKI04CfA9dKKaNCiP8GPgKmAekYzvaglPKnqsv3dYw5DvvVz48BKzH0XS6XUgaFEHcCacCDwA7geinlJ0oGOQR8FUP7/dvqGB4Atkkp/yyEyAXWYCin3gTMklL+kxBiNrAOOFdKuXaAT4uLEQrvYB+ACxcnCRcDZwKfGDItZGCIcf0YQ9epHWNIh4k1Usq9AEKIp4AL1HNmAO+r90gFPgTKgRop5ScAphKqeo6OyzBE4/5V/T8dQybgQuDX6rWbhBCb+utLu3DRG1zH72KkQACPSyl/YPulEKMxtFp8GI44qB5yboWleo83pZRfdrzH7F6eH+8Yviil3Ol4fW+f58LFgMHl+F2MFLwNfEkIUQzW3N2JwO+Ae4AngJ9pzz9bKbt6MES9VmNQQ+cLIaao9/ALIaZh0DxjhRBnqd9nqQlPrUCW9p5/B76jlCERQsxTv38X+Af1u1nA7H7/9i5caHA5fhcjBkKI64EfYAQ8UQz53blSymvVjOYP1OMx4N8wpladjuGYvyWljAkhLsJYINLU2/5QSvmycvq/waCQwhja76kYzt4H/BRD/vcRDA14AVQqtdAM4I8YNNIGYApwi8vxuxgouI7fhQsHdAnnQT4UFy4GBC7V48KFCxcjDG7E78KFCxcjDG7E78KFCxcjDK7jd+HChYsRBtfxu3DhwsUIg+v4Xbhw4WKEwXX8Lly4cDHC8P8DHUOYWvmaIvkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model.evaluate(x_valid_scaled, y_valid)\n", "visualize_model_preformance(model, x_valid_scaled, y_valid, s=1, name=\"DNN_less_tuned\")" ] }, { "cell_type": "code", "execution_count": 276, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5000\n", "3028/3028 [==============================] - 3s 978us/step - loss: 154.8842 - val_loss: 168.5151\n", "Epoch 2/5000\n", "3028/3028 [==============================] - 2s 786us/step - loss: 154.9358 - val_loss: 168.8252\n", "Epoch 3/5000\n", "3028/3028 [==============================] - 2s 751us/step - loss: 154.8986 - val_loss: 169.1885\n", "Epoch 4/5000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 154.8133 - val_loss: 168.0487\n", "Epoch 5/5000\n", "3028/3028 [==============================] - 2s 762us/step - loss: 154.9737 - val_loss: 168.1785\n", "Epoch 6/5000\n", "3028/3028 [==============================] - 3s 885us/step - loss: 154.9471 - val_loss: 168.0760\n", "Epoch 7/5000\n", "3028/3028 [==============================] - 2s 798us/step - loss: 154.8400 - val_loss: 168.1832\n", "Epoch 8/5000\n", "3028/3028 [==============================] - 3s 917us/step - loss: 154.8799 - val_loss: 169.3351\n", "Epoch 9/5000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 154.8530 - val_loss: 169.1148\n", "Epoch 10/5000\n", "3028/3028 [==============================] - 2s 764us/step - loss: 154.6873 - val_loss: 170.2196\n", "Epoch 11/5000\n", "3028/3028 [==============================] - 2s 755us/step - loss: 154.7280 - val_loss: 168.4964\n", "Epoch 12/5000\n", "3028/3028 [==============================] - 3s 893us/step - loss: 154.7143 - val_loss: 167.8450\n", "Epoch 13/5000\n", "3028/3028 [==============================] - 7s 2ms/step - loss: 154.7238 - val_loss: 168.9147\n", "Epoch 14/5000\n", "3028/3028 [==============================] - 3s 845us/step - loss: 154.5959 - val_loss: 168.5381\n", "Epoch 15/5000\n", "3028/3028 [==============================] - 3s 899us/step - loss: 154.6912 - val_loss: 168.9379\n", "Epoch 16/5000\n", "3028/3028 [==============================] - 3s 878us/step - loss: 154.6339 - val_loss: 167.8705\n", "Epoch 17/5000\n", "3028/3028 [==============================] - 3s 861us/step - loss: 154.7629 - val_loss: 169.1215\n", "Epoch 18/5000\n", "3028/3028 [==============================] - 3s 841us/step - loss: 154.5928 - val_loss: 167.8778\n", "Epoch 19/5000\n", "3028/3028 [==============================] - 3s 980us/step - loss: 154.5834 - val_loss: 171.4059\n", "Epoch 20/5000\n", "3028/3028 [==============================] - 3s 991us/step - loss: 154.5867 - val_loss: 168.3433\n", "Epoch 21/5000\n", "3028/3028 [==============================] - 3s 911us/step - loss: 154.5143 - val_loss: 168.4599\n", "Epoch 22/5000\n", "3028/3028 [==============================] - 3s 979us/step - loss: 154.3927 - val_loss: 168.7645\n", "Epoch 23/5000\n", "3028/3028 [==============================] - 3s 956us/step - loss: 154.6711 - val_loss: 167.9033\n", "Epoch 24/5000\n", "3028/3028 [==============================] - 3s 943us/step - loss: 154.2778 - val_loss: 169.4403\n", "Epoch 25/5000\n", "3028/3028 [==============================] - 3s 836us/step - loss: 154.5571 - val_loss: 167.9965\n", "Epoch 26/5000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 154.2452 - val_loss: 171.6108\n", "Epoch 27/5000\n", "3028/3028 [==============================] - 3s 917us/step - loss: 154.3589 - val_loss: 168.1108\n", "Epoch 28/5000\n", "3028/3028 [==============================] - 3s 900us/step - loss: 154.4511 - val_loss: 167.6143\n", "Epoch 29/5000\n", "3028/3028 [==============================] - 3s 913us/step - loss: 154.3857 - val_loss: 168.6394\n", "Epoch 30/5000\n", "3028/3028 [==============================] - 3s 876us/step - loss: 154.1579 - val_loss: 168.6990\n", "Epoch 31/5000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 154.2435 - val_loss: 168.9521\n", "Epoch 32/5000\n", "3028/3028 [==============================] - 3s 837us/step - loss: 154.4768 - val_loss: 169.8342\n", "Epoch 33/5000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 154.2763 - val_loss: 168.4583\n", "Epoch 34/5000\n", "3028/3028 [==============================] - 3s 835us/step - loss: 154.3375 - val_loss: 168.6752\n", "Epoch 35/5000\n", "3028/3028 [==============================] - 3s 925us/step - loss: 154.0612 - val_loss: 172.0984\n", "Epoch 36/5000\n", "3028/3028 [==============================] - 3s 991us/step - loss: 154.0605 - val_loss: 168.8107\n", "Epoch 37/5000\n", "3028/3028 [==============================] - 3s 977us/step - loss: 154.1839 - val_loss: 169.6640\n", "Epoch 38/5000\n", "3028/3028 [==============================] - 3s 857us/step - loss: 154.2976 - val_loss: 169.7338\n", "Epoch 39/5000\n", "3028/3028 [==============================] - 3s 854us/step - loss: 154.0725 - val_loss: 168.4882\n", "Epoch 40/5000\n", "3028/3028 [==============================] - 3s 873us/step - loss: 154.1503 - val_loss: 167.8173\n", "Epoch 41/5000\n", "3028/3028 [==============================] - 3s 831us/step - loss: 154.1555 - val_loss: 170.0530\n", "Epoch 42/5000\n", "3028/3028 [==============================] - 3s 836us/step - loss: 154.3430 - val_loss: 171.0071\n", "Epoch 43/5000\n", "3028/3028 [==============================] - 3s 871us/step - loss: 154.3129 - val_loss: 170.2600\n", "Epoch 44/5000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 154.0468 - val_loss: 169.3456\n", "Epoch 45/5000\n", "3028/3028 [==============================] - 3s 898us/step - loss: 154.1893 - val_loss: 169.1184\n", "Epoch 46/5000\n", "3028/3028 [==============================] - 3s 840us/step - loss: 153.9123 - val_loss: 169.0869\n", "Epoch 47/5000\n", "3028/3028 [==============================] - 3s 882us/step - loss: 153.9086 - val_loss: 171.3710\n", "Epoch 48/5000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 154.1599 - val_loss: 168.9183\n", "Epoch 49/5000\n", "3028/3028 [==============================] - 2s 824us/step - loss: 153.9186 - val_loss: 168.6925\n", "Epoch 50/5000\n", "3028/3028 [==============================] - 3s 864us/step - loss: 154.0330 - val_loss: 169.4643\n", "Epoch 51/5000\n", "3028/3028 [==============================] - 2s 817us/step - loss: 154.0039 - val_loss: 168.8904\n", "Epoch 52/5000\n", "3028/3028 [==============================] - 3s 844us/step - loss: 154.2186 - val_loss: 170.6615\n", "Epoch 53/5000\n", "3028/3028 [==============================] - 2s 816us/step - loss: 153.9812 - val_loss: 169.5253\n", "Epoch 54/5000\n", "3028/3028 [==============================] - 3s 956us/step - loss: 153.9714 - val_loss: 169.7914\n", "Epoch 55/5000\n", "3028/3028 [==============================] - 3s 974us/step - loss: 153.8926 - val_loss: 168.0221\n", "Epoch 56/5000\n", "3028/3028 [==============================] - 3s 967us/step - loss: 153.8466 - val_loss: 168.6013\n", "Epoch 57/5000\n", "3028/3028 [==============================] - 3s 947us/step - loss: 153.9102 - val_loss: 168.6725\n", "Epoch 58/5000\n", "3028/3028 [==============================] - 3s 930us/step - loss: 153.8955 - val_loss: 168.2246\n", "Epoch 59/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.9330 - val_loss: 170.7044\n", "Epoch 60/5000\n", "3028/3028 [==============================] - 3s 878us/step - loss: 153.7798 - val_loss: 169.0842\n", "Epoch 61/5000\n", "3028/3028 [==============================] - 3s 876us/step - loss: 153.7079 - val_loss: 169.2645\n", "Epoch 62/5000\n", "3028/3028 [==============================] - 3s 862us/step - loss: 153.8372 - val_loss: 171.0894\n", "Epoch 63/5000\n", "3028/3028 [==============================] - 3s 946us/step - loss: 153.8392 - val_loss: 169.2211\n", "Epoch 64/5000\n", "3028/3028 [==============================] - 3s 972us/step - loss: 153.6882 - val_loss: 168.0209\n", "Epoch 65/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.3645 - val_loss: 168.8364\n", "Epoch 66/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.7555 - val_loss: 168.6379\n", "Epoch 67/5000\n", "3028/3028 [==============================] - 3s 981us/step - loss: 153.3470 - val_loss: 169.4835\n", "Epoch 68/5000\n", "3028/3028 [==============================] - 3s 959us/step - loss: 153.9583 - val_loss: 168.7769\n", "Epoch 69/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.6624 - val_loss: 168.5073\n", "Epoch 70/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.6615 - val_loss: 169.6033\n", "Epoch 71/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.6942 - val_loss: 168.9418\n", "Epoch 72/5000\n", "3028/3028 [==============================] - 3s 963us/step - loss: 153.4408 - val_loss: 169.9956\n", "Epoch 73/5000\n", "3028/3028 [==============================] - 3s 909us/step - loss: 153.6805 - val_loss: 169.4848\n", "Epoch 74/5000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 153.6170 - val_loss: 168.6913\n", "Epoch 75/5000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "3028/3028 [==============================] - 3s 841us/step - loss: 153.6064 - val_loss: 169.9685\n", "Epoch 76/5000\n", "3028/3028 [==============================] - 2s 803us/step - loss: 153.6140 - val_loss: 168.1860\n", "Epoch 77/5000\n", "3028/3028 [==============================] - 2s 797us/step - loss: 153.3779 - val_loss: 173.4061\n", "Epoch 78/5000\n", "3028/3028 [==============================] - 2s 795us/step - loss: 153.3432 - val_loss: 169.9443\n", "Epoch 79/5000\n", "3028/3028 [==============================] - 2s 796us/step - loss: 153.4859 - val_loss: 170.1787\n", "Epoch 80/5000\n", "3028/3028 [==============================] - 2s 795us/step - loss: 153.1306 - val_loss: 170.3365\n", "Epoch 81/5000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 153.2570 - val_loss: 170.7358\n", "Epoch 82/5000\n", "3028/3028 [==============================] - 2s 785us/step - loss: 153.2655 - val_loss: 169.4516\n", "Epoch 83/5000\n", "3028/3028 [==============================] - 2s 794us/step - loss: 153.4156 - val_loss: 168.7426\n", "Epoch 84/5000\n", "3028/3028 [==============================] - 2s 808us/step - loss: 153.1691 - val_loss: 168.4729\n", "Epoch 85/5000\n", "3028/3028 [==============================] - 3s 920us/step - loss: 153.3818 - val_loss: 168.6674\n", "Epoch 86/5000\n", "3028/3028 [==============================] - 3s 841us/step - loss: 153.4131 - val_loss: 170.2576\n", "Epoch 87/5000\n", "3028/3028 [==============================] - 2s 814us/step - loss: 153.2162 - val_loss: 169.7147\n", "Epoch 88/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.2615 - val_loss: 168.7703\n", "Epoch 89/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.2652 - val_loss: 168.1954\n", "Epoch 90/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.1563 - val_loss: 170.4896\n", "Epoch 91/5000\n", "3028/3028 [==============================] - 3s 981us/step - loss: 153.2764 - val_loss: 168.5317\n", "Epoch 92/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.3926 - val_loss: 168.9113\n", "Epoch 93/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.2669 - val_loss: 168.5708\n", "Epoch 94/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.2073 - val_loss: 168.8110\n", "Epoch 95/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 153.0955 - val_loss: 169.0713\n", "Epoch 96/5000\n", "3028/3028 [==============================] - 3s 964us/step - loss: 153.0796 - val_loss: 168.9267\n", "Epoch 97/5000\n", "3028/3028 [==============================] - 3s 947us/step - loss: 153.0769 - val_loss: 168.9069\n", "Epoch 98/5000\n", "3028/3028 [==============================] - 3s 851us/step - loss: 153.1689 - val_loss: 168.5825\n", "Epoch 99/5000\n", "3028/3028 [==============================] - 3s 827us/step - loss: 152.9910 - val_loss: 169.1719\n", "Epoch 100/5000\n", "3028/3028 [==============================] - 3s 844us/step - loss: 153.1389 - val_loss: 168.8952\n", "Epoch 101/5000\n", "3028/3028 [==============================] - 2s 789us/step - loss: 153.0658 - val_loss: 169.0987\n", "Epoch 102/5000\n", "3028/3028 [==============================] - 2s 783us/step - loss: 152.9631 - val_loss: 168.8735\n", "Epoch 103/5000\n", "3028/3028 [==============================] - 2s 778us/step - loss: 152.6094 - val_loss: 168.5748\n", "Epoch 104/5000\n", "3028/3028 [==============================] - 2s 792us/step - loss: 152.9921 - val_loss: 171.1171\n", "Epoch 105/5000\n", "3028/3028 [==============================] - 2s 790us/step - loss: 152.9935 - val_loss: 169.0496\n", "Epoch 106/5000\n", "3028/3028 [==============================] - 2s 825us/step - loss: 153.1273 - val_loss: 168.5020\n", "Epoch 107/5000\n", "3028/3028 [==============================] - 3s 827us/step - loss: 153.0271 - val_loss: 167.8721\n", "Epoch 108/5000\n", "3028/3028 [==============================] - 3s 845us/step - loss: 152.9261 - val_loss: 169.4887\n", "Epoch 109/5000\n", "3028/3028 [==============================] - 3s 842us/step - loss: 152.8388 - val_loss: 168.7250\n", "Epoch 110/5000\n", "3028/3028 [==============================] - 3s 875us/step - loss: 153.0641 - val_loss: 168.4429\n", "Epoch 111/5000\n", "3028/3028 [==============================] - 3s 842us/step - loss: 152.8459 - val_loss: 168.2247\n", "Epoch 112/5000\n", "3028/3028 [==============================] - 3s 885us/step - loss: 152.7209 - val_loss: 168.2569\n", "Epoch 113/5000\n", "3028/3028 [==============================] - 3s 952us/step - loss: 152.6477 - val_loss: 169.6834\n", "Epoch 114/5000\n", "3028/3028 [==============================] - 3s 894us/step - loss: 152.8540 - val_loss: 168.5126\n", "Epoch 115/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 152.7168 - val_loss: 169.6583\n", "Epoch 116/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 152.9285 - val_loss: 168.8766\n", "Epoch 117/5000\n", "3028/3028 [==============================] - 3s 982us/step - loss: 152.7355 - val_loss: 168.8855\n", "Epoch 118/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 152.7545 - val_loss: 169.4490\n", "Epoch 119/5000\n", "3028/3028 [==============================] - 3s 1ms/step - loss: 152.8034 - val_loss: 168.2408\n", "Epoch 120/5000\n", "3028/3028 [==============================] - 3s 901us/step - loss: 152.6718 - val_loss: 168.4726\n", "Epoch 121/5000\n", "3028/3028 [==============================] - 3s 962us/step - loss: 152.6021 - val_loss: 169.2905\n", "Epoch 122/5000\n", "3028/3028 [==============================] - 3s 883us/step - loss: 152.7021 - val_loss: 172.5849\n", "Epoch 123/5000\n", "3028/3028 [==============================] - 3s 843us/step - loss: 152.6740 - val_loss: 169.0437\n", "Epoch 124/5000\n", "3028/3028 [==============================] - 2s 801us/step - loss: 152.6649 - val_loss: 170.0707\n", "Epoch 125/5000\n", "3028/3028 [==============================] - 2s 821us/step - loss: 152.5822 - val_loss: 169.9163\n", "Epoch 126/5000\n", "3028/3028 [==============================] - 2s 824us/step - loss: 152.6407 - val_loss: 170.1885\n", "Epoch 127/5000\n", "3028/3028 [==============================] - 2s 820us/step - loss: 152.7194 - val_loss: 169.1253\n", "Epoch 128/5000\n", "3028/3028 [==============================] - 3s 828us/step - loss: 152.4476 - val_loss: 169.8176\n", "Epoch 129/5000\n", "3028/3028 [==============================] - 2s 822us/step - loss: 152.6863 - val_loss: 168.5428\n", "Epoch 130/5000\n", "3028/3028 [==============================] - 3s 860us/step - loss: 152.6014 - val_loss: 169.9372\n", "Epoch 131/5000\n", "3028/3028 [==============================] - 3s 844us/step - loss: 152.5970 - val_loss: 168.3762\n", "Epoch 132/5000\n", "3028/3028 [==============================] - 3s 908us/step - loss: 152.6070 - val_loss: 170.2974\n", "Epoch 133/5000\n", "3028/3028 [==============================] - 3s 977us/step - loss: 152.5371 - val_loss: 170.3051\n", "Epoch 134/5000\n", "3028/3028 [==============================] - 3s 892us/step - loss: 152.3654 - val_loss: 168.9522\n", "Epoch 135/5000\n", "3028/3028 [==============================] - 3s 930us/step - loss: 152.5272 - val_loss: 168.1869\n", "Epoch 136/5000\n", "3028/3028 [==============================] - 3s 993us/step - loss: 152.3188 - val_loss: 169.2802\n", "Epoch 137/5000\n", "3028/3028 [==============================] - 3s 998us/step - loss: 152.3982 - val_loss: 169.6385\n", "Epoch 138/5000\n", "3028/3028 [==============================] - 3s 866us/step - loss: 152.2409 - val_loss: 169.1824\n", "Epoch 139/5000\n", "3028/3028 [==============================] - 3s 849us/step - loss: 152.3973 - val_loss: 168.0006\n", "Epoch 140/5000\n", "3028/3028 [==============================] - 2s 825us/step - loss: 152.1898 - val_loss: 169.5068\n", "Epoch 141/5000\n", "3028/3028 [==============================] - 2s 806us/step - loss: 152.2114 - val_loss: 169.3819\n", "Epoch 142/5000\n", "3028/3028 [==============================] - 2s 810us/step - loss: 152.4599 - val_loss: 168.4461\n", "Epoch 143/5000\n", "3028/3028 [==============================] - 2s 765us/step - loss: 152.3273 - val_loss: 168.9606\n", "Epoch 144/5000\n", "3028/3028 [==============================] - 2s 801us/step - loss: 152.2631 - val_loss: 169.5815\n", "Epoch 145/5000\n", "3028/3028 [==============================] - 3s 904us/step - loss: 152.4575 - val_loss: 169.2705\n", "Epoch 146/5000\n", "3028/3028 [==============================] - 2s 825us/step - loss: 152.1852 - val_loss: 171.1488\n", "Epoch 147/5000\n", "3028/3028 [==============================] - 2s 811us/step - loss: 152.2623 - val_loss: 169.8582\n", "Epoch 148/5000\n", "3028/3028 [==============================] - 2s 759us/step - loss: 152.2124 - val_loss: 169.9073\n", "Epoch 149/5000\n", "3028/3028 [==============================] - 2s 726us/step - loss: 152.4569 - val_loss: 168.8570\n", "Epoch 150/5000\n", "3028/3028 [==============================] - 2s 727us/step - loss: 152.0315 - val_loss: 169.1145\n", "Epoch 151/5000\n", "3028/3028 [==============================] - 2s 742us/step - loss: 152.1674 - val_loss: 168.8584\n", "Epoch 152/5000\n", "3028/3028 [==============================] - 2s 720us/step - loss: 152.3839 - val_loss: 169.5305\n", "Epoch 153/5000\n", "3028/3028 [==============================] - 2s 718us/step - loss: 152.0491 - val_loss: 169.1485\n", "Epoch 154/5000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 152.1185 - val_loss: 169.2822\n", "Epoch 155/5000\n", "3028/3028 [==============================] - 3s 927us/step - loss: 152.0676 - val_loss: 169.6072\n", "Epoch 156/5000\n", "3028/3028 [==============================] - 2s 712us/step - loss: 152.1592 - val_loss: 169.0274\n", "Epoch 157/5000\n", "3028/3028 [==============================] - 2s 723us/step - loss: 152.1164 - val_loss: 168.4363\n", "Epoch 158/5000\n", "3028/3028 [==============================] - 2s 730us/step - loss: 152.2479 - val_loss: 168.7971\n", "Epoch 159/5000\n", "3028/3028 [==============================] - 2s 800us/step - loss: 151.9847 - val_loss: 168.5068\n", "Epoch 160/5000\n", "3028/3028 [==============================] - 2s 703us/step - loss: 152.1031 - val_loss: 168.7837\n", "Epoch 161/5000\n", "3028/3028 [==============================] - 2s 714us/step - loss: 152.1585 - val_loss: 169.0935\n", "Epoch 162/5000\n", "3028/3028 [==============================] - 2s 715us/step - loss: 152.0126 - val_loss: 169.1073\n", "Epoch 163/5000\n", "3028/3028 [==============================] - 2s 716us/step - loss: 151.9799 - val_loss: 169.7447\n", "Epoch 164/5000\n", "3028/3028 [==============================] - 2s 710us/step - loss: 152.1461 - val_loss: 171.1592\n", "Epoch 165/5000\n", "3028/3028 [==============================] - 2s 698us/step - loss: 151.8777 - val_loss: 168.6871\n", "Epoch 166/5000\n", "3028/3028 [==============================] - 2s 692us/step - loss: 152.0333 - val_loss: 169.1184\n", "Epoch 167/5000\n", "3028/3028 [==============================] - 2s 763us/step - loss: 151.8763 - val_loss: 169.4195\n", "Epoch 168/5000\n", "3028/3028 [==============================] - 3s 944us/step - loss: 151.7753 - val_loss: 168.9155\n", "Epoch 169/5000\n", "3028/3028 [==============================] - 3s 831us/step - loss: 151.8872 - val_loss: 169.0228\n", "Epoch 170/5000\n", "3028/3028 [==============================] - 3s 945us/step - loss: 151.8906 - val_loss: 169.3947\n", "Epoch 171/5000\n", "3028/3028 [==============================] - 3s 902us/step - loss: 151.5304 - val_loss: 169.1085\n", "Epoch 172/5000\n", "3028/3028 [==============================] - 2s 782us/step - loss: 151.8640 - val_loss: 168.8293\n", "Epoch 173/5000\n", "3028/3028 [==============================] - 2s 792us/step - loss: 151.9197 - val_loss: 172.3470\n", "Epoch 174/5000\n", "3028/3028 [==============================] - 2s 776us/step - loss: 151.7990 - val_loss: 169.9395\n", "Epoch 175/5000\n", "3028/3028 [==============================] - 2s 744us/step - loss: 151.7589 - val_loss: 169.1347\n", "Epoch 176/5000\n", "3028/3028 [==============================] - 2s 731us/step - loss: 151.6499 - val_loss: 168.7198\n", "Epoch 177/5000\n", "3028/3028 [==============================] - 2s 719us/step - loss: 151.5496 - val_loss: 169.2877\n", "Epoch 178/5000\n", "3028/3028 [==============================] - 2s 773us/step - loss: 151.6082 - val_loss: 170.2304\n" ] }, { "data": { "text/plain": [ "" ] }, "execution_count": 276, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dnn_model = keras.models.load_model('models/run_2021_02_09-21_00_30.h5')\n", "run_logdir = get_run_logdir()\n", "run_model_save_file = get_model_save_name()\n", "callbacks = [EarlyStopping(patience=150,restore_best_weights=True),\n", " TensorBoard(run_logdir),\n", " ModelCheckpoint(run_model_save_file, save_best_only=True)]\n", "dnn_model.fit(x_train_v_scaled, \n", " y_train_v, \n", " epochs=5000, \n", " validation_data=(x_valid_scaled, y_valid),\n", " callbacks=callbacks)" ] }, { "cell_type": "code", "execution_count": 277, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1010/1010 [==============================] - 1s 490us/step - loss: 167.6143\n" ] }, { "data": { "text/plain": [ "167.6142578125" ] }, "execution_count": 277, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dnn_model.evaluate(x_valid_scaled, y_valid)" ] }, { "cell_type": "code", "execution_count": 278, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAChFElEQVR4nO29e3xU5bU+/ryTmWSSyf3GJSQEAiRAkIuAiFZQi8VaL/WUorbn8PV3bLU91Soerdp6RGvpqVarbU9r/fa0Xz1qi1iPWK1URNByVe5yC5AQSELI/TqXzEzm/f3xvntn7T3Z282QkNt+Ph8+i8xlz549e6+93rWe9SzGOYcNGzZs2Bg5cAz0DtiwYcOGjQsL2/HbsGHDxgiD7fht2LBhY4TBdvw2bNiwMcJgO34bNmzYGGGwHb8NGzZsjDDYjt+GDRs2Rhhsx2/DxhAEY2wxY6x6oPfDxtCE7fhtDFkwxioZY37GWAdjrJUxto0xdhdjzCGf/3+MMc4Ym0/eM4kxxsnfmxljAcZYPnnsi4yxSouf/8U+/lo2bPQ7bMdvY6jjes55CoDxAP4TwA8A/Dd5vhnAk5+zDS+AR/tn92zYGHywHb+NYQHOeRvn/G0AywGsYIyVyqdeAnARY2yRydt/CeBWxtgkq5/HGPsfAAUA/soY62SMPdhb+oWuChhjqxhjrzPGXparlEOMsbnktWMZY39hjDUwxk4yxu4hzyXKFUwLY+wwgHlW99WGDT1sx29jWIFz/gmAagBfkA/5AKwG8BOTt9UA+L8AVp3D5/wzgNMQK45kzvlTFt96A4A/A0gH8DaAXwOATE/9FcB+AHkArgZwL2PsS/J9jwEokv++BGCF1X21YUMP2/HbGI44AyCT/P07AAWMsWtN3vNTANczxqb3654BWzjnf+OcdwP4HwAz5ePzAORwzp/gnAc55xUQN6Nb5PNfB/ATznkz57wKYpViw0ZMsB2/jeGIPIjcPgCAc94F4MfyH+vtDZzzBojo+4l+3rez5P8+AG7GmBOiRjFWFqlbGWOtAB4BMEq+diyAKvLeU/28nzaGMWzHb2NYgTE2D8Lxb9E99UcAaQC+avL2pwFcCeBiix+n1zT3Akgi+xIHIMfitqoAnOScp5N/KZzzL8vnawHkk9cXWNyuDRtRsB2/jWEBxlgqY+wrEPnzVzjnn9HnOedhiBz+D4y2wTlvBfAMgActfmwdgInk72MQEfx1jDEXgB8BSLC4rU8AtDPGfiALuXGMsVJ5IwOA1wE8zBjLYIyNA3C3xe3asBEF2/HbGOr4K2OsAyJi/iGAZwHcbvDaP0FEzmZ4HkC3xc/+KYAfydTMv3PO2wB8F8DvIQrGXohC8+dC5vyvBzALwEkAjXI7afIlj0Okd04CeB+iPmDDRkxg9gQuGzZs2BhZsCN+GzZs2BhhcA70DtiwMVjBGCsAcNjg6Wmc89MXcn9s2Ogr2KkeGzZs2BhhGBIRf3Z2Ni8sLBzo3bBhw4aNIYXdu3c3cs6jKMVDwvEXFhZi165dA70bNmzYsDGkwBjrtdHPLu7asGHDxgiD7fht2LBhY4TBdvw2bNiwMcIwJHL8vSEUCqG6uhqBQGCgd2VA4Xa7MW7cOLhcroHeFRs2bAwRDFnHX11djZSUFBQWFoKxXgUXhz0452hqakJ1dTUmTJgw0Ltjw4aNIYIhm+oJBALIysoasU4fABhjyMrKGvGrHhs2bJwbhqzjBzCinb4C+xjYsGHjXDGkHb8NGzZsDGt4m4Ctzwvbh7Ad/yBBYWEhGhsbz/s1NmzYGEbY9wqw4T+E7UMM2eKuDRs2bAw7eJuEk5/1TcCTJSzQY/sIdsR/HqisrERJSQnuuOMOlJaW4hvf+AY++OADXHbZZZg8eTI++eQTNDc346abbsJFF12EBQsW4MCBAwCApqYmXHPNNZg9ezbuvPNOULG8V155BfPnz8esWbNw5513orvb6lwQGzZsDGnoI3xPFnDZ94XtQ9iO/zxx4sQJfP/738eBAwdw9OhRvPbaa9iyZQt+/vOfY/Xq1Xjssccwe/ZsHDhwAKtXr8a//Mu/AAAef/xxXH755di7dy9uuOEGnD4tFH6PHDmCNWvWYOvWrdi3bx/i4uLw6quvDuRXtGHDRn/i9KfAr+cKO+ubwJIn+jzC12NEpXqavUGs3VWFZXPzkemJ75NtTpgwATNmzAAATJ8+HVdffTUYY5gxYwYqKytx6tQp/OUvfwEAXHXVVWhqakJbWxs+/vhjvPnmmwCA6667DhkZGQCAjRs3Yvfu3Zg3T4xa9fv9yM3N7ZN9tWHDxiDE298BGo8L+71dIsLvZ4wox792VxV++t5RAMCdi4r6ZJsJCT2ztB0Oh/q3w+FAOByG0xl9iBUKZm9UTM45VqxYgZ/+9Kd9sn82bNgYhDj2AfDWncBNvwNu+K1w+jf89oJ9/IhK9Sybm4+Hry3Bsrn5F+wzr7jiCjVVs3nzZmRnZyM1NVXz+HvvvYeWlhYAwNVXX4033ngD9fX1AIDm5macOtWrsqoNGzaGKt66E/A1ClswT0T6BfMu2MePKMef6YnHnYuK+izNYwWrVq3Crl27cNFFF+Ghhx7CSy+9BAB47LHH8PHHH2POnDl4//33UVBQAACYNm0annzySVxzzTW46KKLsGTJEtTW1l6w/bVhw0Y/oOE48OoyYQER6SdlCzsAGBKjF+fOncv1g1iOHDmCqVOnDtAeDS7Yx8KGjUGOV5cBx98HJl8DfGPtBftYxthuzvlc/eMjKsdvw4YNGxcMn74EvHc/cO0zwDWrxWOKHWCMqFSPDRs2bFwwvHc/EAkJmzNZRPo5kwd6rwDYjt+GDRs2+g5UW+faZwCHS9hBBjvVY8OGDRt9BaXzFhB8/HkrBnZ/DGBH/DZs2LARKzY9BaxKFxa4YJ235wvb8duwYcNGrPhoNQAuLfpNW6evYTv+GNHa2orf/OY3/f45b731Fg4fPtzvn2PDhg2L+MNXgFVpwi56BACTdujAdvwx4lwdP+cckUjknD/Hdvw2bAwynP5Hj73yQWBVq7BDCLbjjxEPPfQQysvLMWvWLNx33324+uqrMWfOHMyYMQPr1q0DIGSbp06diu9+97uYM2cOqqqq8OMf/xglJSVYsmQJbr31Vvz85z8HAJSXl2Pp0qW4+OKL8YUvfAFHjx7Ftm3b8Pbbb+OBBx7ArFmzUF5ePpBf2YaNkYv3V4ko//1VQMEXxGOKHYrgnA/6fxdffDHX4/Dhw1GPXUicPHmST58+nXPOeSgU4m1tbZxzzhsaGnhRURGPRCL85MmTnDHGt2/fzjnn/NNPP+UzZ87kPp+Pt7e380mTJvGnn36ac875VVddxY8dO8Y553zHjh38yiuv5JxzvmLFCr527VrTfRnoY2HDxrDHY6k9/4YQAOzivfjUkUXn1E+36SNwzvHII4/g448/hsPhQE1NDerq6gAA48ePx4IFCwAAW7ZswY033ojExEQAwPXXXw8A6OzsxLZt27Bs2TJ1m11dXX22fzZs2DhH/Hoh0HgIyJ4OfG8bsPA+YNsvhB0GGFmOX8+x7SO8+uqraGhowO7du+FyuVBYWIhAIAAA8Hg86uu4gS5SJBJBeno69u3b12f7ZMOGjfNA4yGtvWaV+DdM0K85fsbYfYyxQ4yxg4yxPzHG3IyxTMbYBsbYcWkz+nMfNOhDjm1KSgo6OjoAAG1tbcjNzYXL5cKmTZsMZZQvv/xy/PWvf0UgEEBnZyfeffddAEBqaiomTJiAtWuFeBPnHPv374/6HBs2bPQjnp4q8vhPTxWRPtBjhxn6zfEzxvIA3ANgLue8FEAcgFsAPARgI+d8MoCN8u8Lgz7k2GZlZeGyyy5DaWkp9u3bh127dmHu3Ll49dVXUVJS0ut75s2bhxtuuAEzZ87EzTffjLlz5yItLQ2AWDX893//N2bOnInp06erBeJbbrkFTz/9NGbPnm0Xd23Y6E94z/TY720DVrUJOwzRb7LM0vHvADATQDuAtwD8EsCvACzmnNcyxsYA2Mw5Lzbb1nCSZe7s7ERycjJ8Ph+uuOIKvPjii5gzZ855bXOoHgsbNgYcP5sE+BuAxByhq+M9A3jGAg8cGeg96xNccFlmznkNY+znAE4D8AN4n3P+PmNsFOe8Vr6mljHW60BZxti3AXwbgDqkZDjg29/+Ng4fPoxAIIAVK1act9O3YcPGecDf0GNXtQ3svlxA9Jvjl7n7GwFMANAKYC1jzHJynXP+IoAXARHx98c+DgRee+21gd4FGzZGNp4cC4S9gNMjIn0l4h9B6E9WzxcBnOScNwAAY+xNAAsB1DHGxpBUT32sH8A573Vg+UhCf6XqbNgYtgh7e+yPzgzsvgwQ+pPVcxrAAsZYEhPe+WoARwC8DUDRKl0BYF0sG3e73WhqahrRjo9zjqamJrjd7oHeFRs2Bi9W5Qi2zioZ1Ts9WjsC0Z85/p2MsTcA7AEQBrAXInWTDOB1xti/QtwclhlvxRjjxo1DdXU1Ghoa+mqXhyTcbjfGjRs30Lthw8YgRlBrR2iUT9GvDVyc88cAPKZ7uAsi+j8vuFwuTJgw4Xw3Y8OGjeGIVTkQjj5e/lP+bwMYaZ27NmzYGCEgUf4IYutYhe34bdiwcc5o9gaxdlcVls3NR6ZnkETSq9LIH3aUbwbb8duwYeOcsXZXFX763lEAwJ2LigZ4b3rBqpFd+/s82I7fhg0b54xlc/M1dkBAI3w7nXNOsB2/DRs2zhmZnvjBF+nbzt8ybMdvw4aNoQNNHt9GrLAdvw0bNgYcMRWL7Qg/ZtiO34YNG+eMvmb1mBaL7Si/z2E7fhs2bJwzzBx1LDcFy8ViO8rvE9iO34YNG+cMM0cdC9VTUyy22Tr9Dtvx27Bh45xhxurpc6qnRecfy0pjUDaiXQD068xdG+Zo9gbxu4/K0ewNfv6LbdgYIlBuCufkSFel9fyzCP31o6w01u6qMn0dxUvbKvHT947ipW2V1vc1xv0bTLAj/gHEoO9+tGFjIGAxwn9p20k8v/EEfMEw7ltSbLjSMLvO/MGwas2i/1hWBoP5+rYd/wBiUHQ/2rAxUIiBrUMdsD8YAQDVGqWfvjhtFHZUNOGL00ZFPZcY71TtC5vL8eI/KtDUGcQj12lnWMfixAfz9W07/gHEoOx+tGGjn2AaNVuM8qkDhjJ8j5lv/4PDddhU1oAFE+tQtChZs70VCwuRFB+HZXPzcc+f9gAADtdG74vZzcMIVq/vgagz2Dl+GzZsqDDLS1t9zuh18U/n4Fsb5yD+aTEJqxNARFoz7DnVgquf2Yw9p1qwbG4+Hr62BMvm5iPRJdyXYo1y/PQ9etB6xMolxSjK8WDlkuKo76DcPD44XPc5e3vuMNrv/oQd8duwMUxR3tCJJ985jB99ZRqKcpItve6Dw3WGKQ2zdMdL2yrx/Mbj8AW7AUD9/7e2zkMSAB+AJAAOh7AA8OqVe/DT944Kp2wS9T7wxn6UN3jxwBv7sfauherjKxZOQFK8U3XoRlG51cj708pmlDd48WllMz6tbNZ8V6O0TV9E67GsJs4XdsRvw8YwxZPvHMamsgY8+c5hy6/74rRRuLI4p1cnRCPn6KieE9vz/yQIJ6M4/0hEWACazzKLeu+9ejISXQ7ce/VkvLD5BH763lG8sPkEWnxB7KhoQotP7MPb+2qwqawBb++rscyoKW/oxO1//ATlDZ2a76c/DnRlQLfdF9G62Wqiv5hBwzriH6kcXRs2AOBHX5kG4LC01l5nlg+nkfMvNpRpGDU3zMrDgeo23DArD6P+Kw/fdwO+rT2Rvg9A8IEGvCqvR6DHUV80rgYrFooxqsvm5ketVNbsqoY/FMGaXdVoD4QAADtONuN4fSc2lTUAOIw/3j4fNOlPVyfL5uYb+gHlpqdsQ/l+a3dVGR4H/bappbDqf/q6Gc4KhnXEb/VuPJj5tjZsmMHs3M1IiseCiVnISDIPeopykvHH2+ejKCcZ8wozUZTjwbzCzKjt0//rGTU0aqVR/i/nbcfEwGv45bztUZ+r34YC/Upl2pgU1Z5t9QMAzrb6seLSQmR6XFhxaSEA4IZZY3FlcQ5umDXW8mri7qsmoyjHg7uvmqx53KwuQJ8z61mw6n/MtmG2H+eDYR3xW6VTDWa+rQ0bZjA7d62e1zQy/dWHx1He4MWvPjyOP94+X5O79we7VbpjICRy+Yr9xqY5+JYb8G2SUX4E8DmAXadaAAhLt3XfkilolSmaVl9Qs6/6lcpdiychKzkBy+bm493PagEALqcDv99yEs3eEH6/5SQWl+RqVhBJ8U41YjfLoX90rB7lDV58dKwehdke9TiYHSOrNYO+oHP2F/NvWDv+C/kD2bAxEDA7d2MJfFZcWoj91a1qFE0bnPZXtwIA9le3wOkQyYLyBsHJoVH+85d9iuc3Hsf3r56M8FGRtw53RzTbAoCt5Y2qvXNxkeqczVYqDy0twYN/OYCHlpbg08pmbDkBTMxWysU9qR763V/aVilvCGdw35Ipui32vIfemJLi4zQ3zeEWHA5rx28Vg4FPb9cjbMQCs3M3lsDn/tf3odkbwkvbK7G4JBeBkEjDBEIRFI9Kxc6TLSgelYoH912GJDfgqwGANk2Uf8OssThQ3YobZo3FjoomAKJBijZLAcCoVDdqWgMYlerW1BZqWnx4ecdp1LT48MRNMzQdujsqmuEPRfDKztOYmZ8OAHDL7dHP1X53rrM9oO95e1+N+jr9TTOW4NBqnWEgMKxz/Bcyd3++nzUQXF4bQx+xnnebj9Zjzo/fx+aj9ZrHf/SVabiyOEdNsxw806raDOmwMjzxmggfAP4l92+YGHwN/5L7N02+f/XNM3BlcQ5W3zwDi6bkoCjHg0VTBI//R9dNQ1GOBz+6bpoml/3xcbESUCyNykPd4kYU6o6grk3wgxRrxI65YVaezP3nRR0HygSir9Pn3Y1YPWag32mwXd/D2vFfyIMdy2fRE6i/ijg2hjde2nZSioydjHrOrKlq5VoR2a9cu09z7tJCr0CP0/3W1nmocN+Gb22dF0XNnDs+Q7X0XKZpm2feL0N5gxfPvF8GAHhrbw3KG7x4a2+NxrE++/VZKMrx4NmvzwKgLdqWjk0FAJSOTcXHx8VqQrFG15D+hqApUssVjT8Uwdv7zsibwBnTY/7CR+WCUvpRuenr6HcabNf3sHb8Zpzk84X+QjLnOPcOesHFpGhoY1hBf95YO4+0ugX0PVR5Uh+YPLtsFjI9Ljy7bJbpuUsdOo3yn5q1FRODr+GpWVsBiALsw9eW4K7FkzT8evq5eRmJAKDa9w+fVS393DnjM7Dx/sWYIz+bRuVKWscd78QTN0xHosuBJ26YDgBRvH4FeqYS3Sfa/euXzWf+YLfpsT9U06axVjDYru9hneM34ySfL/TFHppT/J2MCJTnjGAXlW1Q6M8pKwVFqjUDIIqFAwhHtmJhIYCec+2i/HTceUURLspPVx3mF6eNwktbK/HyjlOoafHjiZtKcc+nl+IhN+D7VMvWUYq6iqXn/3de2Y2dJ5vhC36G1TfPULf997XC0Z+oF+/pkoygrlC3Zr9vmDVWw+OvbPQCACobvSjM9gAQjvpEQyf8oQhOyH34j7cOYmt5E4Lhg/jVbXPUnPqzG8RK49kNZXjljgWa667FF1T7D5Qcf2K8w/TY339NMc6+sR/3X1N8Lj/voMKwdvz0B+7r4qneadPtW3XoA1VUtgvJAwuj498XBUWjQmZloxev76rCvMJMZHriNY72QHWr2sRUdrYDAPDBkTo8cVOpJsrfd3slHnhjP57+2kzc0uLDntMtuGWe2DfadNXcGRDfszOgMmryMysRlvl51Ur6fjgC1Ep+fm2rP6qpavOxBgDA5mMNePOLU1RHveYTsXpR+gDy0hNVSx33xJxkbDnRhIkyfUWvO9qoRZvQFEZRb9c3pYAqq5KhhmHt+Cn02t3nC73T1kcIA80SMsNwo6YNNRgdf/05ZSUw0EsJL5qSi3cO1GLRlFx8dEwUbhPjHRq9m433Lwa9QVDe/Kj/ykNSPODrAvRsHRo5V7f44Q9F8MyGY7h+Vh4eWLsfe063os2/H3UdIj1S1xHEJlk83nS0HhlJTvUzAWBeYQY+LGvAvMIMbD4m8u+bj9XhT99eCMrjv7hAvO7iggw1D3/RuDNR6pxK5H+ioRMPfVnIKgs6p6h/ZCS5ABgHaS9tOxnVSdzbbxb1wUMQw9rxa4Wj+vfH6s+0TX+vVgZiH0Yyzvdcob+FIiGs2Gc3HJPO+Rh+eetsVcRs0ZRcNVoHtAJnmZ54KXkg1DKpkNq/5P4Ne063Yk5BOkqzZeScnYyx6YmobPJh/gSRN2/o6FLt3PHp+LCsEXPHpyMY5qhq8WN8ZhJ8MrXjjIuT+9yuWlpkVQrMCipkqqei0Ytxsj7Q4u2C2yW2Ay5uJIFgSLU0faUXc3vho3K8+HEFmrxBPPLlqeTm2rvkQ28ibTS9NhTRr8Vdxlg6Y+wNxthRxtgRxtiljLFMxtgGxthxafttrVTb6lPtioWFePjaEjXXeb7QF39ioXuZbY+ir9lJsRSaBhsdbSjjfAt99Ld4/MZSXFmcg8dvLAXQ08w0MTtJ8zmF2R58fW6+miOnhdDOVWmIrEpD56q0KLYOpVy644WjVSzF87fMRlGOB8/fMhsVjeLdFY0+TefupBzx2YqlWH3TDCS6HFh904yoa+H+JVOQ6HLg/iVTNNvW9wW0BbpVS2Uf9MfbqDhLfYSehUO3cb7X+mBAf7N6ngewnnNeAmAmgCMAHgKwkXM+GcBG+Xe/YMuJJtXqf/z+5N3H4iTN3jMYqGCDYR+GC6giZCygv4WefpnhSVAt1bGnqpYA8Ni6g9hU1oDH1h3U5PGP3V6JJWnrcOz2SgDA+kNnUd7gxfpDZzUMmJ0VzQCg2rQkFwoyk5CW5MKq66cj0yPsZUVZAIDLirJwqlnk8RV7yYQM1Z5o8MpCrTeKLvnnT6vgD0Xw50+r8PiN0+WNbnpUMHd1ySjVGmnwAKI4W5Tjwf3XaHX3jZy7Gcyu28F8U+g3x88YSwVwBYD/BgDOeZBz3grgRgAvyZe9BOCm/tqHFLdTYynON4K1KuLUF9sbDFSwwbAPwwVGcsl9sVKknHea199fLaJbxb5Q/SVUxN+GF6q/pInyqVYPAOyqbFbtoim5sgErF/9+jYjC//0aIYHwyJufYVNZAx558zNsK29EszeEbeWNaPGL9EuLP4SZ49IBQLUnm/zE9tQcPj0pAjbFTs9LU210n0EPrirJRabHhatKcrH+YK24YR2sjXod1d2nfiCWG7IZZXwwr5L7M+KfCKABwB8ZY3sZY79njHkAjOKc1wKAtLm9vZkx9m3G2C7G2K6GhoaYdqAjENZYivONYM0cYSxOMpb3DOaIwoYxaHesmba70e9rxs+nTUiPXjcNmR4XHr1uGopHCYVLxdKhKJdiDSYGX8OlWIObZ+ch0eXAzbOju1x/tv4oyhu8+Nn6o5ooHABC3d2q1d9kFCyfn48ri3OwfL645lrk92rxBjVds/FOkUpS7PJ58n3zeh+irnz3H797GM3eEH787mEcrhXspMO1HVHHkTpr6gfoDdnsJkCfM9PSj6W350KhPx2/E8AcAL/lnM8G4MU5pHU45y9yzudyzufm5OTEtAOXT87WWIrhkKcbqsvMkQ4atdLOW7NGIyqxQPn5+oiTPvfh0Xo0e0P48Gg9Htx3GSrib8OD+y4DIIeiSHt5kbxOirLx8/ePwR+K4OfvHwMATMpNVi2VS6BROACUjk1X7fhMUWcYn5mkaQBb84mgTio0TFoXoA70O4uKkOlx4Tuy6GrUUav/7k9/bSaKcjx4+mszNSkh/XVi5KxpeshsiA19zupKfbBF//3p+KsBVHPOd8q/34C4EdQxxsYAgLT1Bu8/b7hlxOB2xl3Q4umFgtlJN1S/00iA9lzsYZLo0yzUsX1/zV40e0P4/pq9SIyXufZ4R5RTDITCqt1UJqmUZfVRYw+P3V6JJSkil98uV8TtgTAWFYsgS7GnmryqnSTTK5NykrFwYhYyPS4snChy+LTwe6pZFGBPNfuwfH6BjPILohhItC5Az+WXtleqQnEAolQ9Faz55LS8kZwGAE3HL7256q8TI63+j441SH5+Q5RmEf3N6HNWV+qDrUbWb3ROzvlZxlgVY6yYc14G4GoAh+W/FQD+U9p1/bUP+6paVKvXAqcYqh20ZjzvofqdRgLouUg7bw9UtWokkSlnPS/NjTZ/J/LS3Bp6olKsVZziwTPtqn3P/1XByfdrJ2ElA7j7T3tQ0xrA3X/ag5f/9RK1+epwTRvW7qrCPBmpj051q5by5GlaZXFJLlq9gs7Z6u1C8egU7DzZjOLRKRqN/JVLilHbth8rZR8NbdR6RuryANF6/Hr2jgKazgGsU45pR7+exy/Aoyilenonfc4KBoMCMEV/s3ruBvAqY+wAgFkAVkM4/CWMseMAlsi/+wVnZDegsMbSrP1ZuDRbafRnOmY4pLL0GOzfw+r+0XQM/Z1++1E5mr0h/FayWRTNmRZfEHMLRWQ9tzBL8x4qmwwATgdTLY3yfzl/h5iENX8HAJX6rloFP1p3EP5QBD9adxAA8GllC7E91xCtHwDAdsnu2V7RrFlp0xUNLaoC0NQTzITiqKonPcZ3XD4BmR4X7rhcNFsZrXL1LCEa8dNjSesMZlpcwwH92sDFOd8HYG4vT13dn5+rwCcvMBFZaZs4LhT6YkJSLKDRz3Dp1B1s30MfYRrtn/51NFVDpQ5oDh0A9p5qVq0iN9Dm195Uyuo6NPYPZ68VOvlntdo6eu766q/OwMq1+7D6qzPwyJsHsPNkC3zBAxiVEo82fxijUuLVfVRs6dh07DndhtKx6fiwTNYPyuqxuCQXVxbn4uUdp3BlcS7oDYKuaGhTFQA8s+GY2v373/9nnvqc/ng9+e5hlDd48eS7h/GFyTnqamlXZTOavSH8339UYHFJrqFEi54lRFdSKxYWqq/TT/Ay0uIaDhjWnbvJCU74QkEkJwzc1zRLudCRcH3dGUudkNnouaEEs2PZn53F+uHfCvQyIEbHWX9DoEHIPX/aiy0nGhHqPoTSsWnYc7oVpWNFwbSuPajaU82C2baprEHzXWlaBdBOwvpK+ts4fLYT00Yn4zvz8jXaOtsqmgTlsqIJNCp3u4SsgWIbpPxCQ0dQk8d/T45A3HS0HrhRUCnf+ewMrirJxd6qVgAiNXOgqhW/+7gcxaNSsLeqRXWs9y0pxsxxaahs8mHmuDRN+qWpswsv/uMkmjq78Mh103C2TWj/nG0LaJhAerVPCppOY0x8P8XSFZeRFMNwuWaMMKxlmRUBpTnjMwas2GnWOEbZBX29f3RpakY5O19cyPRLXwy2jgWPrTskm50OaR6nMgOAdfYJxdi0BNW6ZYOUYiM8otpMqTOTmeTCcx8cw0/fO4rnPjiGB/dKts5ewtaRnPxmn8j7N/vCUWydLVLHZ8uxeg2LxhknU0XSLp0+useSbOl0qYuv2EfXHUSzN4RH1x3U9BLc+7ooSt/7+l60eCWnX9omYotHpSDT40LxqJSo3P1F49JUW9Eo6gwVjZ04Llc5in1hs0zpbC4H3dm54wVLSrF0FUOvE9oQZnbNnG8DHmA+K+FCYFhH/J/Ipd0nJ5uw+uaLAFz4YqdZOkAvD2slwrAa2dKlaX8WegdL+qU/v+O0MSnYcqIR08akaB6nnayAln1Cfye9PDg9ZrSb1e0Sl6OSrxc89hDinXFokvn+Jp9W+GwVtGydf855F3ur2jA7Pw1jAJxtD2BMWgJmjEvHy9tPqWyd0y1+1f5+SwXE0PIK5GckYs/pVuTLKHp2QTre3FuD2QXp6hjFunY/9p5uBQDV5qQkoKrFj5yUBE3K5Jppo/H6rmpcM210VFpq5ZIpqG3zY+WSKfjea3vQ7A3hkf/9DP9zR0+xGQCOyBvAkdoO/OH2eepzj7z5GTlO0LCGHr+xVFXaBIDj9R1q/4Bep4iet1auGSr//Oq3FkQ9bwXalQYu+DU0rB1/q4x4Wn1h0xxdX6cJzPLr9IQykoc1mx0Qi6Ptz/ykmTz1hezy7c/vuHx+AY7Xd2L5/ALN96MyvoCWffLcB8fw8vZTqGn146ZZeRp+Pj1mTd4gdp5sxsz8dLVL9uCZ6Dz8/+yoxMajDZhfmInnK5do2Toyj58MaNIa91w1GSvX7sP3r56Ci/LTkZeeqH52ticBnV0+ZHsSMJGIrykU0D3SoT/+10MIRzge/+sh9cb00bFGxMsVAZfV4WUXj8OB6jYsu3gczrZ3ySPHcMu8Auw+1YJb5hXgpW0VAIDRqeK8oHIQEbmdiL7aDOCuRRPx6LpDuGvRRM1Er9U3z9DcIChriN5sfcFuzbB1K+eK2Wum56Vha3mT2sMQC3q7sVzIoHRYO/4xaW7UtAUwJs1t+jozZxqLIzOK6vWIRcN/sNE0P0+eejhA70SU3HFSfJzmZk0LmV/9LzGZ6qOyBlQ0dGoGgVAsnT4aG4/UYen00arjV0Dz8AdrJE2zpl3D1lkY/xecbe/C6NQE7IBotNpzuhWTcpPx7IYyNHtDeHZDGVbdUKrR42+U9MtGb5dGuPbSoixU7arGpVJjZ15hJv5xognzCjOxaEoOVr93FN+7sghv769FfWcQo9PEymD1e0cQjnCsfu8I3vq3y9UB5qILVvQmnJQqm/urxXeh6aYrJmfj9d01uGJyNu778x4cqOlAU+cevH33FXh+43GEIxzPbzyOs+1dGlo2pVVS1pARTROwdk0b1XUA4K5FRciS4xRjhdFK40JhWOf4m+XJrVgKmqeLpRHKLC9Ht6fPS9PtxTJ68UJq5sSSexxutDdAm6NvkedSi7crqtOWgmrZjJUDQhT7wzcP4KfvHcUP3zyAh94UejoPvblfTa8odr/sQ9lf1YKNoX9CRfxt2Bj6J00e3yOJC4o9Ud+h2uNy0tXx+k7ct2Yfyhu8uG/NPgDAqNQE1SrDV8rOdsDtlHUGaelzr+w8jQgHXtl5GrMK0gFAtYny9YlOh2ZU4jXTRsHpYLhm2ih885ICOBjwzUsKAACnpFbPqSa/ZqRipXxcsV6ZQvMGw5rCrD7XblRL0Q9bt1IPMuvcHQ66VcM64g92c9Xq7+D6KT9Gd1yrTA2Kc22s6gtd9v44CQdbWmmgQOl/tEGqrO6I1K45gjV3LsTjbx/Euv21OHymDU3eEPyhCNbsqka7FCo7KnPVfz9Up1olsXG8zotWWezcXi5y6eMzPdh5sgXjMz1Iqu2J8u8YvwEfljXgquIc1MlVQl27YL6E5Tkf7uYIyxFX4XAEi4pzNDl+b1e3asdnihy5Jz5OI6MMAF7paL3BblxalKWycPRYXDIKr++qxuKSUZoi7svbTyEc4Xjq72WIcI4IB3616QTuuKIInoQ4eEPd8CTEoUI674qGTlxZnI11+8/iymIhJbH6phl48C8HsPqmGfhMlVLmUbl2+jslxcdpcuh0ZWZE+6TX0N1XTcbpZl+v6p7DAcPa8ackOtHqCyMl0YnH1h3ElhNNCHUfxCt3LIjqDlSgPxGM5vbGmnLpyyVef6dVrHzHgcrp92ddJnp7Rs1/2uE+6w+dVe1lUv8mPo7hbJuIXBXrccehI9ANjzsODsbQ5g8jNdEZJSr4H4euwH/GA75D2lw+HWCS6IxDZ1c3EmWBMxDuVu3otARUtXZhdFoCViwsRFWzT5Uw9khmiyfegY/laMOPjzUgMUFsp6pFyC5kelzwBruR6XGhSa78mrxBHJQOeOtx8d5GOYilsaMLnV1i/4+ebcclEzKx/lAdLpmQiVONnWjzhzFWrjaWzhiDl7efwtIZYzB1dAp2VDTjuhljcLJJfPaoNFGyppLNkDUMMIainGRsLW9SUzGU6rlioejO7y3AotfgLzYc67Wjn6aNhup4RTMM61RPULIjgqEIpo0RUYpiaXegmUKiUerCbLlnRvfqSxrXYEirXEiaLD1eVNzsXGD021DFS6pjDwgWiKD5TVA59qVj06LExHKTE1S75UQjAGDLiUb4wiICViyNxOmtozsiHldsUkRG+RHgxpR1mBh8DTemrNOkOxrkuaPYUw1e1bbLqL69qzuKakq72uUiAd0cmCcpj4qtk4XauvYuLJ6SAwcDFk/J0QxEAYCP5M3jo2MNSJBpnwSnQ/M58yaIm6Fi7/3iFDx8bQnu/eIUPPX3MnVloGdL0Xm8AZn2CQTDyPAIiqtiD55pVa2Ztr72uuv9pt7f19ZAd6EPa8fvk47fF4pgYZEUlZJFKyNn3xc/+H+8JYZc/MdbB6OeM8rxx4L+zjVa2T8zjrpVWL0I6P7oOfRWt2eUu6VUTKpjH40eR/HU+iNo9obw1Poj4nN9IdUmymanxPg4eAPiPYqlDJZ2vxRI84exJ3IbKuJvw57IbQAAX1Dm8oNAuXTo5Q1etMkVQVsgDOkbVdsV6bH/elkhGIStbBRpJsWGOVOtMs5wXEZiFId+VIpbtU//vQwRDjz99zLIBYZqletqYVEWtslU1bbyJo3j1/cpUCyZmqtaqvsPAJ/IdNYnlc0oqxM37LK6Ts0NWcDaeFV6HtFtGA1l6Q8MtIiiaaqHMbbS7HnO+bN9uzt9CyeAsLSr/noIzd4QVv31EDaX5Grmbt5FuLt9wVIxo3vFkuMfqHSKlVQP5WzHOsTe6jHujamhRIX0GOlF0Oixoyk++h5KxXz0umlYuXafqkNDzxWa4z8unbFiE5wOeIPdSHA60C5vAl5/GCnuOLQHupHiFl5SBvwIR4Q0MiBsUryM8OVPXIrXgM8JCB0OBkS4sADimIjc4xjw+y2V4BA2LGUgNhwWTJrRqW5UtfgxOtWN9oDY1/ZACPEOcTy75esp+ycxPg5d/jAS4+PQKm9YcowuIrzHehLE9/UkxCEgv2wgHEGrrHUolv7uD315GopyU7Bsbj7+zx8+QXmDF6vePoS3774cq66fjpVr92HV9dPx4dE60ak8KjnqWp07PgN7TreqUtBGMKJU/05q+gDW2X2xXpsDzc77vBy/0rFSDGAegLfl39cD+Li/dqqvECb2isk5qGw6hSsmi+LWjvJG1S6fl68p4NIfMpYfaPm8fByv64gaHAHEluPX00Mv1E3AWqH2/IfYWz3GdH/02kvahpieqFx/U2nzhXC62Yc2Xwhv76tRJRcEJ19QEH/5wTE0e0P4373VWFySi3+UiWLsP8rqwKRjDIS6ER/HEeoG4uPE5ymcds655twbl56Ew2c7MC49ST4P1R5036bm7n0B4fR9QcHJT3I54AtFkORyIMI5AmEOt5MhEO5JS9BiLgB43A60+yPwuB1wyp/E6QB8QZn2VBx6Z5dqlVVTmz+MPEl9jpfpGuWGEe6OwCNXMYoQHMX91xTj7Bv7cf81xbjrf3ahHd1wO+NQmpeGD8tE/8Fm2XimWMqKotIOJ+rFzVWxdK6A0kugWIq7Fk9CVnLCOV2rVinVRsFJrHW2gSZBmDp+zvnjAMAYex/AHM55h/x7FYC1/b5354nMRCea/WFkJjpx75IpyMvoaWBpkRFZiy+kYfgsmJh13uJMtCCcMTde46hjiRzoCRnLTaA/VwyUux4rrB5j/feg76HHqLLRi3cO1KqpAkq5XPn6PlQ2+bDy9X2YLx+rbQ2oQ0Im51ZpirQAUN0aUG18nHCIdW0ByEBZtS0yCm7xh5HkdMAXjggrw2LFaqJ8ksf/dvH7+KCsEV8szsbvob2RzByXjp2VLapVkOBi8AU5ElzCGQeCXLUJLvH/UITD5RArDCXLEpKReCgcwaiUBNR1dGFUSgJqpC6OYucUZGBnZQvmFGTg6FnhiEPdETjk/itJmxc/Lkd5gxcvflyOdI8L9Z1BpHtcmq7bDnmgFEvnD+w53YI2fxjfX7NXs3oAoJkrcPOccQBECk1/PtBzwuycN+uaNXq/0U1hoCP3WGE1x18A7aIzCKCwz/emj6EsR1v94aicHZ3+QyfvmHGzKazy+GnRENDm9qwWKxU5hxZfULNtq3lC/ev6srDU17lQffHVqBajfx3dj2c3lKkNUz9b30O5BIDRklEyOjUBGw4Lx77h8FnskkqYu041I1lGtorNTUlQbYdkrHR0hZGeKOImxVJwqbPDeQSnJEtFsQchcvkHcRt8EZnHjwBbZG5csRHp+SIRjl3S2e8iTh8A7rqiCExaQEth7giIG01HoBvyUlDtGNlTMCY9Ee1+Ef23+7uQIDtyFbtfsnf217ShTW6vLdCN1ERxbBS7QWrabDhch+ZOcV41dwa1BVjCyAG0E6/o1C6XvLkqdvrYFNVSHSCz89/sOaoLZFSj0r/f6Dwfqpx+q3TO/wHwCWPsfyHW0V8F8HK/7VUfgUZW+ju4Mq0HELk9hbq18Ugdyhu8+M/3juD1uxYaRg56ZUYKbTSqZQ3o89TKNsxSJkY9B7F2+8ayPL1QdQb9dzXqgr7nT3s09Nw9p1rwwBv78fTXZmKs7CYdm5aoDg8JSYdI9eUVNkuLP4wcGYV2BkJoklIfiqVcdupY9a+j8Hf32JSEOHR0dSNZUiVpLn9i8DXyLhmth5VIHapVzuVu3ef87qOT4NLe80XteUijcn0JvFlq/zT7gpDZHHRHgMKcJByr82J8tnDEVO+fbo/L81SxSfEOdHRFkBTv0Mihd8ubV3eEIyXBCX8oiBTZbEZXCatuKMUDb+zHqhtK0e4PYeXafXh22SwAwKEzHapVpm5Nzj2N5fMLDPWtzLj6j/zvZ6ou0FdmjhXbG1WFR748tdf3D0dYivg55z8BcDuAFgCtAG7nnK/ux/3qc+jv4DRipFG+XsJVH7EroKkiwJimqWce0AiBMlOoMqAe+jFwCmLt9o2FudSfLASjsXaAljVU2ejF67uqUNnojeqG/e6ru1He4MV3X92NEw2ye7WhA/kZImet2LHpPXZOvii+z8lPQ5UcF1jV7It6jwzeVWsEo1v39q7lqIi/Ddu7lgMAfGEZ5evuF/r3R3RWgVtG4+44Bq9MHymWgr5f1pVV63Jw1cr0P4IRIChTQIqloAqhlI2k33tFBj05wYmqZlH4rmr2YoYkOyiWrhI+OlYvxx7WIz8rCTPHpSM/S9x8rpRNZ1cW52gGudMOYTO8sPmEVO08EXVc9HMK1O86RCN5qziXBq4kAO2c8z8yxnIYYxM45+dGoh5A6O/gNLL0BcNqOuAHS6figTf24wdLS+Q7e+f5lsl8p2Ipk4R2DdK8oR6Ur2yW59aPgTtfxFK36M8ISD8Wk37Xl7aexKayBuRnnMTW8iaVZpmdLC5IZSYsZaakdQkH5e3qxs6TIsJXbIuvS7VKo1RFo1ddEYS6OapaRH5bsXWyEFrX2QW3EwiEAbdTRMghkjc3avPSs3VuzlmHY3VeTBnlQVydF90ApD9GN3qisUSnSM0oVkFOihtVrX7VWgFlEgE9xV5fMAJXnGDnuOKA01ItVLETspJwssmHCVlJqJSpqiZfCA7JHlLqvDPHpWNLeRNmjktHstuJ9YfqMGd8huxn6IbD4cDOUyKFpdjFU3KwsawBi6fkaKQh9Ku+m2aPw9byJtw0exzWHzwrRO3GpcNslUxXivRmAQDXTM3FyztO45qpuVhx2QSN0NtIgaWInzH2GIAfAHhYPuQC8Ep/7dSFAM0v0otePx4umissMDM/Q2MpD9xqRK3XELGCgdLx7t8IqMdlbj5ajzk/fl9lfqw/eFa19149GYkuB+69ejKSJf1SsTIdj/g44LSMMk83exGUnayK7eziqqU1oGQZCivWCPJegUBYm4rRQ5PHJ3x8sS9ctUqc3g1o/g9Ak5d3yxDN7QTOdsjBJNIaIVV+l9RevpPMxiDYDU3Pgf496TLKT09ywe2S++ACRslZvIrdX92qWlrQ/eGXp8LpYPjhl6diYrbI1Su2KDdZtZvLRAPY5rLoQee0ZrO0dDSKcjxYWjpak+8HtNcGXSkqEhOKvXdJsWgcW1KsUfscSbBa3P0qgBsAeAGAc34GPVTPIQF9qoI6+FI5TKJ0bKrlhqS7FhXh4WtL1B4AygM3c5JGg1hiaWIaqK7Zvga9Ad6zRuiy37NmDwBtJL9GNm6t2VWFj6RUgGJlzRVdYWhu5PqZtBT0ZhGJiKgxEmHqMlixcTprBTTKL8VrmBh8TfDyATVyVqwCM2IsveE4mfh+ijVCjixK56QkQGGAKpZ+J5/s8PV1dSM9SbxHsZNHpahW0u/hDwH18qaj2IhMoEQQwT8vEGJs/7ygAP+zvRLhCMf/bK/EL5bPwpXFOfjF8lkAoOH1f2m6uN4US6GMnZyYk6wZw6gflkKvB5oGumvxJHGtLp4EQBvExCLCOBxgNdUT5JxzxsSZxhjz9OM+9Qv0bB2auhATewQ3mAo93bdkimkRl+KGWWNVHjiF2SAWKgBnlabZFw1gsRRq9emY8wXdB9oENjrVjXa/F6NlJKkUOgNhjiy5r1me+Khh4UyuGhg4xqUnobLZh3HpSfCFwmL8prsX5g2x7fLO0d4VVqMhfUE1OouuxUHcpvLwfcEeTr5VGKWK9NAzdIxwRtJQFUtBv1McOZbVUqNHsQdlJH+wuhVM7huD4PKHI1zl9PvkSsrXxfHrTeWIcODXm8rVlXB5gzcquv7kZLNq//v/zEN7IIx7vjgFD6zdjz2nW9Hm3483v3uZRjGUjmHUXwta4kSl/IbsnEUTAesEiIFqrjxfWI34X2eM/Q5AOmPsWwA+APD7/tutvsfP1h+VeXzxY2qick2opb389EVcBXr6JdVCsar9QyMWqzRN6xokPdBvL7aVglW3ZA10Hyql3ktlow/JCSKfoFgqSbC9QjTdba9oRH6GKPwpdhyxPulsfMEwLp0opAQUS6HUQ/V1UaOi6ufBLMq/UHAQSwu1ZquJVHlTTHU7o2oBVDWTIk7pFJY2OcGh2gUTRXC1YGImxssC7fispKhrZtX105HpcWHV9dM110KNrC8olq6mL58sdH4US0GvBzOyhNF7KKymawdaeiFWWIr4Oec/Z4wtAdAO0cX7H5zzDf26Z32MVlnUUywFFX5aPm+CZqqS0YkfvTDvvVvUrC/gfJtC9FLTRlGKWWRkFfppU0agERAAw2hobJobiS4Hxqa58etNxwEAH5bV4TKp+ZKbIl5Pm3laOuVNuDOEcKJ4oj0gbnJUZphq4RyVRUPF9iVohA+0xRTlWwWVYugm996EOKCrW1jAOF1kdtumTnx0SgLOdnRhtEwTUcaPJz4OncFueOLj8OUZY/D67mpcN0OscFPc8ejoCiDFHa/R51kwMRvH6r1YMDEbtTJaV+y28kYxaKa8UUPNfPdALeo6uzBKdhHT1bQSybtdcTFLo1MYRexW3z9UaZ9Wi7s/45xv4Jw/wDn/d875BsbYz/p75/oSZ+TJplgKKvyk8ITXfHIaAPD4jaW4sjgHj99YqnnPoik5UkhKUM1oEZhGC7Q7EdBGCDTaoNGQ1UKqXnAsFiVRq7A6sJ1+P/qd9KuRR9cdgj8UwaPrDiE9URYQE1348Igo6iqWKkeG5P9DXDtIHICm45Tm+JWpT4rtS/SmrWMlynforBE0yp3kOFDI+51qlZRWstuJTLljmUnx6qjEeLVBC6qlN9cmqc2j2DxJf81Ld2v4+bfML0BRjge3zBdDVe6+ahKcDoa7r5qkjl48296lEWZT5gwo1oiaSVcMgPbcOyolqY/Wtked75SiHUvNLJYh6kOV9mk11bOkl8eu7csd6W9cWzpGY+mJMTM/HQAwMz89Sp3QSL5Z79Bpdy09GfQMBeMlpPFi3Ogkpsykc4HV5akRS8IM2u/X851e2FwuudSinkIv7lqZg65tDWgizFhB1SvjZAE07nMKoVZhxtaxCqupJHpGSH+tWgVSCVq1AZm3CoS0ks208QyApjuWMtKUnL1iKQOJrhpokRUAfr3pBMIRjl9vOgEu7yQ8wjUibVMki0ex9Lqj33b5/AJcWZyD5fKmQlfNJaMFEUOxFDQQsnqO0/PVbOrWcMPnqXN+B8B3ARQxxg6Qp1IAbOvPHetr0KHPgLbzls7QbPEFDXm9z204hpd3nEJNiz9qkIuee6xAz8FXbhBfnDZKEyWYad4YLWn1wyKsFqSMpoqZpY4A7RQjBfqlMv1+9Dt98//uAABsOd4AYCrq5eCO+o4ujUOhBcS+gNVCqFVEdd1Kp1/ZN5vXgMmDwZg24qfHSLYYqLZLvrBLvzTQoVPeWTuDESS54gB0gzEHxqS7Ud7gxVhZMxmVKnV8UhMQCHWjLRBGqlvbmAVotX/GpLvR4A1iTLobmyQtd9PRenR0iVTdbjlSUi9mqKRz9MOPnt1wTNI5j2HaGMEycrscUcQL/TWpnIdm5AYKo+FMwxGfl+N/DcB7AH4K4CHyeAfnvLn3twwe0AuERuh/vH2+pmtW6QidV5iJOeMzDJulqFjUEzeVal5nJPerXwI+tu4QtpxoRKj7EF654xL18ViYB7Hm7o1E5PQ3LysMIj3bh36/X946W33dackSUSyNTCn6toTcNzhfto4e9Lw0+556sTIF9BjFxwkuvkJNNUJ8HEOwm6upHiq/kJuagMomH3JTE9AqVwmKTZXk/VS3S7NK6JS1lU5Jt81Ojkd9ZxDZyfFYUJSNAzXtWFCUjRc/rgAAVLX48dOvluLRdYfwgy+J5kj9qETlnNSfdxOzk7DlhLBavR/tKpmyhtbuqlK35wuGNTcIs2ZLK42SQ5XJQ2Ga6uGct3HOKwE8D6CZc36Kc34KQIgxdonZewcD6AWiT7nQE9x88EYP5hSkqVaffqEpIbNl5kSpgaJYK7AqEGU130jTNnRf9cfIjEGkgI6703+/x98+iJ++dxSPv30wquGnTubk69oChg5usMAqW8cVp7VGMLq56ZN90s+qtjfkSalnxRptjxa8ATGWVLFUopmObgSAbRVNqnXKm4YzjgFM7pRqexzywoly6NHELM0A+bf2nUE4wvGWnAJGB9drBtqTtCkAZHgSeizh8eobuIwHKhkTMejrYqkLDFVYzfH/FgCteHjlY0MGeg7xdnlCb69owqPXTUOmx6UO3qCgJ8PZdnFCnG0P4gU5tOGFj8qjXmdGBdOcxAMEIxppLF2MFY2dGktzun+TXbd/O3gWHTJCVCxtzBpsUT7N4wOwnMs3oodahf44UGplslvSJd3aS7ZGagwp1mh7+oCD6uwXSE2iggy3pukL0BaBL5kg6jKXTMhUtfkVS7V7fvCXA2j2hvCDvxzQ1da035COb6SkCn2uXUOkIDcYvVYPrQXQm4ee2kmJGFaaufSIRetqsMGq42dcEQcHwIXm7KAf1C4lyuFi0bz76bJbd/rYVA2tTA/6PqEPInRJ9OJORrLK+ijCKr/YCmLtLqQnrtUTn0op0M9duaQYRTkerJTNbZS5QQd6085YwFzuYKBhla1jVHDtD8THxWmsAim/r1ojjEpN1Fja9zB5lLgWJo9K1dReAOCicRmqPdsum6faA0iTUg6K/frcPDBpO2WxuDMYxoTsJDgdDBOyk/CDpVNRlOPBD5YKFcyVS6bIc2cKdsn5xrtOtUStPDVECnLvaPFKeq83Wt+f3jysroyHg0O3CqvOu4Ixdg96ovzvAqjon13qO1D6n365R/ndnZILpzB5tOh5312Li5CVbFQE7nkdLTolxTvPebCL1RxirN2FRvtgVPQFgHv+vFd0Vv55L26/bIKaIwW4qqo4Z3wGxqaJkX5j09woUyaUgCHYLTVzumMMh/sZRnn8ZJP3GFEs+wOdUt6g0x+CC0AIQjAr0+NCnTeEUVL33u10IBCOwO10gDFRw0p0OTRzcAGgQ26vwx/SOF095YhSLm+YORY7T7ZgfKYHhyWtUrlB/PajCnBpJ2Ql4fDZTozPSMTj7xxGOMLx+DuHcd8Xp2jICJSc4JJ3T1cvd1FaP1Oi+8R4Bw6dEfum0C/vvmoyTjf7cPdVk+UN6dwKtVa5+7FO3RpMsBrx3wVgIYAaANUALgHwbStvZIzFMcb2MsbekX9nMsY2MMaOS2s+ILOPoI+0adfg4zdOl1z96aYRuj73aLz9npuA1SiCcojNhrJQWKVYmkXy9Puu+VQUxNZ8Gv06ZfJUfJwDlTKtU9nYiUrJj1cs1bvvlDIInV1hzVCQwYjB0HVrBkpzzZJpmKyUBNTJaFexDim37HBwXFwgLq2LCzJQKDtoFVsrufa17V0aSYRcWYNRrDK/du74DHW2wYmGTsyTjyv2mmm5qr1cjje9fHIOFsqO6YUTs6KuBfr3dxZNQqbHhe8smoTH1h3EprIGPLbuIABt/YzqOj1xk+ixeeIm0WNDbyQ0bdnXujux1AUGG6zq8ddzzm/hnOdyzkdxzm/jnNdb/IzvAzhC/n4IwEbO+WQAG6FlC10w7K1qQbM3hL2SWqZA73TpspAuH/V5SPo6fdHJCrTbM2uw74FZU5VZzYE+R/n1W46Jn1Sx9GakDBFJTojDh5Ki9+HRenwgG60US0EHfOj14AcD+oKTHwuoDAWFtV8dOCujbMVSXDoxW7V7q1oBAHurWjF5lFi7KHb53DzV0hROQ6f4v2KPybm3ilVAmx4BYMXCiSjK8WDFwolYWJQtirtF2Wj1SxKFP2gaOL20vRLN3hBe2l6JaWMEiUKxFDSvT28IgH7yXc91bDXwsYpY6gKDDZ/H43+Qc/4UY+xX6KX2xjm/53PePw7AdQB+AmClfPhGAIvl/18CsBlC8rlfoacd+mUI5Q9G8Ni6g+o0p4vHK9IK4vKj3Ha65Kxq8mF/dStWXFoY9VmULtnkDeLFjyvQ5A3ikS9PNUzj6DnEvQm+6WFG36Tpphtm5Wl6B7Ra5a2qrWoRrfaKpWJZNbINv6bVj9wUNzq6upHqdqmd0EpXp1PSCxULiBOHTqQaLDDi5McKs4lXFLS+QVMzSmH88zJHeWkJqGnrQl6akFfojvQwf/bItM2eUy0IySpzKNSN7RWCfa3YreU9ljZtiYlaEcTJofJUCqM0Lw17TreiNC8N4e5u1LQGkCVTTM+8L6STn3m/DKebfWj2hvDouoNqkRhgUXRh2hejT9Mcr+/A8vm9rZJ7bo9mKVHtkCPj6+R80zZDVbLh83L8SqS+K8btPwfgQWglnEdxzmsBgHNeyxjLjXHb54TaNr/GUg3yaWPSsOVEE6aNSYtqpKIn6zNfn6UuH59857AaoSwu0X4FejLc/ZqQF1aKwEYnGm30+t1H5b02S+lhnpPsuUDoje2VOxZocvnl9Z3YebIZ4zOT0NgZQEeD4HMDQI28AdS0+OFyOhAKRuByOqIGcgO9M1EGI/qak08Ri7hbmtuJQGcQaW4nQp1BzVAWI1BJingH4I8Aso6Odtm13B4Iq8zHMAfmFmRgY1kD5sr0jzL+MCXBibPt4nf2hbpVRpKynfGZMl+fmaQprE7ITsaBmg5MyBbnZ56kbeZlJMIf6kZVix85KQmam8VVxbmaYOl9OfP4/cNnkeGJl7WiBgBcVWu9b0mxxsHT61N/LdG/rQ45suq4z1fTZ7DB1PFzzv8q7UvnumHG2FcA1HPOdzPGFsfw/m9D1hEKCgrO9e1R+PhYg8bSE6jFFzSMMGgkQk8sq11+T9xUqikCG80CBXoEzWKNIowuEH+wW72xAdrGmd2nRYS4+3QLWmWeWLHJbifqOrqQ7HYiLz0Be6raUTIqGXuq2nvfARg3HQ0WnG+Un+QCfKEeawXJCQydXRzJCdFJnDo5mFyxwOfLP4ciEdUmJzjhD4fVcYdZSS7Ue0PISnKhIxiCPwQkuICjdZLMIK3SRdvRFcLk3BQcru3A5NwUVDR41RUIIJg+h892YvKoVOyqFIXhXZVNalF36wnBhDtR36nap5fNVM95RfPK7XRo0jn6YIneVaiEBxAdLBnNnKa2stGLdw7UYtEU87hyJBV0KT4v1fNXmKw8Oec3mLz9MgA3MMa+DMANIJUx9gqAOsbYGBntjwHQa62Ac/4igBcBYO7cueftRhyS/6tYKi1AHSEATUroo2MNaiSiFIaVu75Rl5/+JKGvoyfaLzaU9cr+0Tv8WFg+NKpfPj9fc2OjYyOpiJmSc+6UTqFGdtnWtPhQLjVbzJz+YERfK2gqzt4Xsi4vQad+9QUoZ15hFDV4lcHvIdUqz/lDgEumcxRLx0u++Z05eOCN/Xjyphn4lz/uAMKAU3qG3TJ1tPtUi9p7Ud0agF/m8drkvlBWjrYfpGflqQ+WLpmQiXX7a3HJhEzMzs9ApseF2fkZeGvvIQDATqnXT89lei3o5U/otXX/6/tUauczX5+luX700iS9QX/NGQVsQ7Vz9/NSPT+X9mYAo9EzbvFWfI48Cef8YchRjTLi/3fO+TcZY08DWAHgP6VdF8N+nzP+v8sKsfq9o/j/LisEANz35704UNOOps69uFKNPrh6QivCVbS7sK+lWmmdgeYhzZawZp9PP/c7r+zGzpPN8AU/w/jMJGwqa0BOcjmeWjYTGw7JIdeH6pDliUeDN4ispHhV1EtReqRDUIYqeuPkn28uX4HVxjMXE5Ri1+fdISzCgZ7ZvPrVwdg0N6paAxib5kZNa0CtOdC0HSDSSUpa6aVtJ1He4MVL207CF5CzeKUtzUtFdasfpXmC67/+UB0WFmXh05PNaPKFVC3/y4qy8MnJFlxWlKWpL9XJwnFdeyCqQbBJriybvCGs+ushNEv7+A3TsXLtPjx+w3QAUJu7JueeBhhTa2aHz7T3Kn8CaFfk+uvHSFeLwuyaGw7R/+elej4CAMbYjznnV5Cn/soY+zjGz/xPiMEu/wrgNIBlMW7nnPCbj8RUoN98VI47rihChYx0Kxq9+AXRmlf0vpVCm5690KcgNA56U4lVg4dugw4V/0wWcN85cAZPLZupyUVTBcfhglg4+f0JbT/J+YOOUXQ6RD1FZmbQJjuj2wJBze/sdjoQCokaDQCMzUgU/RYZiZoO64KsRFQ2+VGQJXL2tFisjGHsCIQxb0Im1h+qwzzZzfvsBydU+/W54wAI3f3NkiG2+Vg90ja41GLuEzeVYuWSKaht82Plkin486enUdnkw/wJmSir60CzN4Syug4sLsnV9BIofaT7TrdgVn46tpxoVIXbKDTiiNOg6U+xkqbV97ToJ+RROxRhlcefwxibqPzBGJsAIMfqh3DON3POvyL/38Q5v5pzPlnaCyL29vj105HocuDx60UUkS11bLOTE/DS1kpsKmvAS1srcbCmFQBUWzw6RWMV6GlgZlO3jEALUBRmnYZm9DP6XFWTVE9s8kbNnbWqBz9UMdg5+ecLjQaP9O6K7eiKqJa+bqp0joptkrNymzoCmg7kJDntSrE+We31hbpxy7x8JLocuGVePvaebgUA1dLPovW0iwvSAQAXF6Rj41Gx0lQsTaPSXgI9/Xh8ZqJqS8ZIWeYxqVHyzUbQ056NpEno9UMn6gHG3e5DFVav/fsAbGaMbWaMbQawCcC9/bVT/YEzbQH4QxGVfkgHTnwsB3YLq2VT0xOSnhgvbauUPOFKAGYCUcagzSgUZgMhzG4q9DmqG6Nnm3Tr7HDAQHHyBwL091RmEyt2xYIC1dJU1L4qETUrlstaF2cM8fIcj3c6ouSWL5+UrdqfvncU/lAEP33vqBp5K/aSCRmqpTpAdL4FnZkMgKRVu01X1qfkCMZTzX5Nfi3WPhb9tatAe21pE3nDwdlTWB29uJ4xNhlAiXzoKOc8untkkMHlEFxplyN6BOK108XouGunj8Et8wvwwBv78fTXZmL9wVrsOd2qdixSUSiau+yBODHo8o+mXMy0wPW64wrMcpBmRSb63AsfnUCLL4yURCc6u8IIdX++auRQgr5o29ec/L4EHZuoB+Xxd4Uj5zyLoFE2Wil249EG1aa5nWgLhJHmduLi8Rn4sKxBnRiX6nbBH+pCqtulqnOKsZViu51y5UC1e6gicnZKgpBhljz9yiafamULABwOrRjcgolZQq5ZdvMmSg5qYrwD4zMTsfOkiOr1OvvFo1Kw82QzikeloKxOEhPq2nHvkikArPHztbn4HqdOryF9Cicp3jmk0zlmsDp6MQnAAwC+xznfD6BA0jUHNWijjH5i1p2Li3BlcQ7uXFyEwmwPvj43H4XZnqjlI53HS1cDVOEPgGFX4gubT8jOWJEDpVEFlVygEYpepIqCRh56hVBlrkBlo1ejnX6+qpGDEfqi7WCO8s00faiaqb5Y/OXpuao1Ss/pJ5ZRZ1oi05Mlo1NUB63Yb1ySDyYt3T+aVgFAdPeD+N6VYryiYoGeSV3UwY/L8AAAxmV44JTnoTPOgbsWT8LD15bgrsWTAGhXvGfaxA1GWF0PM/mzWArKFY9KjYrCrSrk0mvXaBTqcIvw9bAq0vZHALsBXCr/rgawFsA7/bFTfQVXHEOom8MVF00lU/L6+RmVyMtINJw0RaVj7ygZJSln6VEMn39/fR/2VrWh1bcP//tvl6uP75Dyz4qlUYXZsAgrAyH0CqErX9+HyiYfVr6+DyluF+o7gqodDjAr2vYlW2ewYP2heo3tDQ4meiak/9Uwxcrre8TXFJ79RpkW+a/N5eDS5qW5UdMWQF6aGzPz01HZ7FfHIlZL2md1SwC/+7gC4QjH7z6uUNk8ChJccQBCSHDF4UfXTcMDb+zHj66bhrf21uDlHadwzbTRUdcMXfE+fuN0lWJZ1eRTrzMAmjm7lxaJ1FNGLw65twIsYC5SONxomlZhNcdfxDl/CkIUEJxzP/puOl6/wcm0loJO06LRgT5SoAJuP35XdOv++N3omZyNsgGnsTOoiTyaZBG2qZdirFZkTduKbqWAqxepKhmdrNrTDSJHq9jhgOFetNWDpkwU1o5Td8XSGhQALLtYyCMvuzgPHqnd73E70Cnz6YqlxIJumafv5lzDoAEAjohq6QpCP0HtV7fOQVGOB7+6dQ7e2luN8gYv3tpbjatKcpHpceGqqIYtbcGUFlwptRMAZslu41kFGaY6WHR7NJI3q4vForszVIXZKKw6/iBjLBFyFcoYKwIw6HP8ynhoDo7/eEso/v3HW0Lxj+rxU+iXeFQI6umvzURRjgdPf21m1Gc9+KViJLocePBLxZoT6Gp5wiuWPkeLU/SE1p+ARsqdn1Q04R/HG/GJXE18VtOuWqWp1GJz6aDFcCzaJspIJNHJIOXsVUtB5S+YTLAzxpAqBfNSE+JwhczZK/bXm0Qk/+tN5XDHiajcHefEvy2eCAbg3xYLch7V91ei91S3E89+fRaKcjx49uuzAACTR6WpllI7FZKEYmm69OPjopv34+ONpsGSkdO9Qqp7KpZO9DIr6NLt0aDKqoqtVdXNoSrMRmE11fMYgPUA8hljr0J05f6f/tqpvoKUG0EgDEzPS8PW8iZMzxMn8qEz7arVC5oZdfXNGZ+BjfcvBhC9fHxzbw38oQje3FuDZ+RFo6wa8jKSTDn5+rSP/jW02JsvB2i0eEP49Yfl6OYcP3rrEG69ZDyyPPFSOCsevq4QWvzdyEiMQ8tgUkY7Rwzmom2soBF2SBkGHwJyPfGo9waRK4OOsWkJONPWhbFpCaiVOfBgN0ecQ+bTIxGckeJ5inXIYMcBjgyPmIOb4YnH2t014ADW7q7BPV8s1hRnleJuqz86TPjF8lnq9XDDr7cAALyhbqHhU9uBgkxxPr6wuRwv/qMCTZ1B3L9kCh78ywHcL4uvD/7lAO69erJpKkXPm69q8WGFbLZ87G2xAnjs7UP4w+3zDGdGUBjN87WqffU7WT8Dopu0hgOP/3MdP2PMASADont3AURO4vuc8+hxVYMYy+fl43hdB5bPEz/WpUVZqNpVjUuLsjRKfnpGjdHJqmcNUE0ffS7TqLvPKNeofz/dtrL83VfdiowkJxq9IWQkiZ+xZHQqDtS0o2R0Kg7K6L9tiDn9vpZYGIxQVEuD5KfhAOpldKlYqnvEmBg3yxjgjnfCFwrBHd8jsKbYZLcLAW8IyW4X2qQjb/OHkCpn7CrF3xQ5RD3F7UKrlHlwOhz4ziu7UdfRJTq/f/hFTQpmdEoCyrt8GJ2SgNKxaThc24HSsSKQ2nWqWbW7TjXDH4rgj9sq4YpzwB+K4JWdp/FpZYumgYuC5vtrWvxq/e2Jm0qxqDgHL28/hUXFOYZMuGj0lMrNBgwZwcy5D1VhNorPTfXIMYvfk41X73LO3xlqTh+I5vymJ7p6LBngfPPsPCS6HLh5tuDWGw1F0dcC6BCIWJaJdJmq5/HTbdMh5S/+yzwU5Xjw4r/MAwCcknNXTzX7YlKKHAywOvZwsMMshUMbpjLkCzKSXFH5eo9M6XgS4pCXLtUv0xPhdsbJ18VpZh4AYiKXYun2qL4PAPxgaYkcg1iCX98m8vO/vm2OSlVWLOW8e2Xh2BuM4ESD4OcrlqJBUkAbOroQlEPbg+HuqAYuIxaOtq9GCCpeWZyDFQsLLffIUOaOWXrofDFU8/1Wc/wbGGP/zhjLlxO0MhljmZ//tsGDqBOGkJIT45VoyInnNh6HPxTBcxsF7ZOuBqxu32yClpU8on7IC33PqFThERVLMV4uuxU7VDBc8viUhJjgEg44weWCJ148o9hMeVfLTIpHpnT8mUkuzbAbADgrb/Jn2wIIyoR/MBzBw9eWINHlwMPXlqiaUoptl/z79q4IzsopW2fbu5CTLD5TsesPnUV5gxfrD53V5OevKhF5dcXS7Wcmxcl9jYNL1ggUmy8HtudnuPH8LbNRlOPB87fMxrwJgrM/b0IWRkm5b8XSmwoNfPR1BiPHbeZ06fas3iworObxh2q+32qO//+DWDt9V/f4xF5eOzRAovwbZo1VB5+kJMRh9XtHcatMCRnJKugHu2iXf9ZmKenpZ0pKyUxLhOqg37dmH041+3Dfmn346MErNaPxhhKM8viVA7Q/tPFPjzgH1MEneWmJON3iR4HUoqc8fDrTNjM5Ht5gEJ4E4eQbpaNq9AbRJUP1hs4gJuUmo9HbioIswYP3JDjl+5wYleZGXUcXRqW5sWZXFfyhCNbsqkJqYjx8oS6kJkrH7nHhbFsAOR4XfnhtCR78ywE89U8X4R8nGvHZmQ5MlamZfVKOe9/pFryw+QRe/MdJNHV2YVSaCBoUq+T9W/0hdHNxPndzhtU3z9DIje853abax27ouZHctagIWdL5tszL17xHf9NSQGtpgDbtYjbP2gixpGas5vGHar7fasQ/DcB/AdgPYB+AXwGY3k/71C/QN1JR57zmEzlr9pMqjZgboF0yalMwxtqM+vm+FDTKoWwDGjnotUToexSp2p0nm3HJRLHoUuyZVp/GDmYMhihf4b47mFa/KF06UcVSyWGl+TkOiEqLUCTJQT9J8XFR+jdTcpNUu7BI/HYLizKx7OJxcDoYll0sRM6Wlo5RbYkUSCsZlaKRPvjNNy5GUY4Hv/nGxQCASyflqHZaXhoWTMzCtLw0nJHa9oqlFMkd8pzacbI5KtDZLoezby9vQrU8r6pbfVFjDy8tylItbSykkbf+PXSlTaFPdWqZduc+zzoWWG3gGqqNXlYj/pcAtAP4pfz7VvnY1/tjp/oKTiYVDBmwRQ6MUCwNyneUi1zijooGPH79dDz4lwOqmBuNFu75015VBvaXt842bOk2izBolEOZB1TrX184ptLQtOCXLm8Mij3bHtTYwYxY2DouCHqqYo1Af3e9onQ8A4JcWHeCA+2BCJITHPB1RdRGqKJcDxpOBlGUKyLvOfnp2FnZgjn56dgjZzRzBnRIfXrFUlCee42svSj2eH2PTXCJS/BMawBPv1+GcITj6ffLcOsl47FiYSGqmn1YsbAQj7z5GQBRv1EG2++oaMZjN5Sq0TUATYR9/+v7VKICbZDSv+6d/UKIrLGjCysWTtCc19PHpqKqxY/pY1NxutmHw7UdGJ/piSI90JulvrHQCPppdwrMCBb0PX1RZB1JTVsUViP+Ys75HZzzTfLftwEU9+eO9QWofG1lo4geFEsjmxaf1N73haPE3CgmZiep1uxOb1rwIbUFKlJFJR/0kcw+OTR7X1Ur0hNFJJmeGIfTUoFTsTRqHWwKnAeZjPDZbQBik1iw2ptAf3c9MqUqa2ZyAtql5nx7IKKJWD+pFM5dsQfPtKn2YhkpX1yQETVmcvooj2oVR1yY7UGG/EzFZsk8e1ZyvIaOqVeQpYPFZ44TKZqZ49LglCsQZxzDcx8cw0/fO4rnPjgW9V3vvmoyinI8uPuqyVGrSHq+XT5JfHfFUhw926HayblyYHtuci+57Z4VMG0spNeC1UIo3W/AOI/eF4VVuu2hWqiNBVb9wl7G2ALlD8bYJQC29s8u9Q/0IwGpTggtRpk1e2R4EjTWCGYFn4B09sL2XCwPrN2PTWUNeGDt/qibCi3SKeJZnV0RfHBEFLsUm5fuVm26pHgqdqCR5JIRvmS5xMLWMepeNYOeKVMnGSd1HV0ozBTHqzDTjZNSmuNkow/JCeK1iiXlII2K5JM3lcLpYHhSUhNr5Eqrpj2oCpEtmJiFp/7pImR6XHjqny4CAPzzggIwaf1yZeAPdeOzmnb4QxG1EY/KLywtHYOiHA+Wlo7BT26agUyPCz+5aQbWHxTRumLpuffW3hrZQVsTdU7ShsZ0eT6nexKilCtpoZV29UZdJ1TBjYB+rp70YHSdUBYbEFtHrlUYbXu4w+oldAmAbYyxSsZYJYDtABYxxj5jjB3ot707T7jjeiwViwK00ZRSTJozPsOU+mWWu6cwyz1WyBWHsD35Jjqp6E87T2HSI3/Dn3aeEvtMBLGorro+4mySshFNnUGMThMFR8UOBDR5/G4Z4UvuulH5W79SmS5lKKaPTtbcvMemCaetWI9cwXlcDmTJu0tWkgtMEloVO78wQ7U0NbZQRrsLJ2XBLdMvih0jb6hj0t144gYRlT9xw3TMn5iFL0zOxnzp5H98o3juxzdO14ivbStvQrM3hG0yX/6bzRXg0lJZZcqFB6A5J6jIIN2ennVGVWhpYKB31Eoj4/S8NF1eX1u7otfGquunI9Pjwqrrp2uuH/JygEMTxGivBe2vbsRw018/Rgwds+vMavQeC/vH6rYH8wrCquNfCmACgEXy3wQAXwbwFQDX98+unT+UEYJd3cCvb52DTI8Lv751jny25ySkxSSzH78vCj4rlxSjKMeDlUuKkSgLgInxcbhMik9dVpSNR9cdQjjC8eg60ax191VCDfHuqyZh16ke4S16YwOACI+o1i01mN0DqMVM8/jzHX/CxOBrmO/4EwCtC6B0R33/wTGpNXSswatx/CHJhlGsL9RjWyQTpcUfUpk0iqWR6RSZw5+S69EcL30xtl2mAtt9YZxo8MIfiuBEgxePrTuETWUNeEz+TjRi/6hM1I0+KmvA5jLhgBU7UaaBJmZ7EJTSmMFujnC3OGEV+8HRs6qliq30BrH6phlIdDmw+qYZALQqtKPlTXF0mjtqsMhdi4qEUuaiIg2BQa86S0EnY7XIsYmKpaqglMdPrwW9zg5NNxmpZAJaB2pVQTOW6N3q9T0cqJ6WHD/n/JTZv/7eyVhBY5fFJbnY8+g1WCw1c2j0Tnnzsebu6c3DLK/50bF6OXWoXqp8ShVC4gm/NkdcGIr99aYTCEc4fr3phIbdMVpS7hTrkKpeDocD3dJ5KPZ8YbVmYMTW8cm5g4qlDj4vXex/XnpS1EqACu3RxqcOvzieik2UA20TXUzzw+uZI3Si2iE5JORQbQcOykLkwZo21Mi8u2Lj5AcL27PxsWkiRaLY/dUtqqV5+FNSq16xT351BopyPHjyqzM0acbEeJfcV3mzkisOj8upydFTlpG+JkXz408vm4kri3Pw9LKZmnqSGYzkxQFthK4wbhRLbxj0O1HoV9OPrTsob5wHTftbjPpizKbgnS/jpy+23Z+so/PFYKn9XXBQB0+jKatdt/rX0ZuHWV6zTBbLys524KE3D6DZG8JDbx7Ah3JZ/uGROrwlozLF0rrAbsm/3n26BTUtki0iLaUQ7q8Rn6PY84VHLisUawSrCpoyQES8Q9skp3f8E2R0PCHbg3jp8OLjWFQBd+WSYjiYsLS+US2HiyuWJuwVnZmCzCTNMaZFTAAaIbRFU3JRlOPBoim5Og15YLzk34/P8mjUKotyxOOKpTlsmkpZffMMXFmcg9U3i+hdkSC+tChbk3v/wdKpsut2alQKh25bW9DVpnDoeUn//8ibn2FTWYPKIqIBDb1m9Mqw9DnaEEahd4QTs5NVa66S2Xti0KxmcL40S/0+xLLtwUz1HByVvwsAM9oWHcxsJs5E86d6yiVtulKYE8vm5uO5DYJtoSyJN8kUwKayBnCZpmju6FLHILb4QsjPSEJlsw+jU0V+nskcP3MwzYxVJWpWhngnxTsBb0i1fQlfoFtjFcSqreNOiEPQ3w13Qhx+fGMpVq7dhx/fWIp7/rQH7V3davdqQZYHh892oiDLgzDnOFbnRX5WEurautAWCMMjI/k/bK1EhAs7OtWNZl8nRqe64Qt6EQhzJMilAy3OZnhcONkEZHhcONvWI1T269vm4IE39uNJmT4ZI+skY9IS8eS7h1He4MWT7x7GsovHYUdFE66bMRoAUCNvLopV8KtvXKyhUlLtGHpeagaEA6hq8apW6Xb1B8OaVSPAVErwfUumaKewkcas6OJrb86URaXQjKbB6feVQn9tKNDTL43SkfqmKCPap76+YbWZygqF00hUcTBG77FgxDh+qh74yHVTNc+ZjV+jzz27oQzlDV48u6EMv5S1AuV1+gtBOcEPnmnV2PREJ+o6gqoFBK+cjuVr7wpqLGTuHjxiqsFTJR1Olc7xxAolscEAMIf4UOYAHLxn+IfK1iHaOr1x8um2AMAnxeN8/m5NsVKv8077L5QI3elwICRTWKqVxdRQOIIUySlPSYxHXkYE5Q0+5Mnu2uLRcozf6BSAi07T0rHpiHe040xbAAUZiRrHOmd8hsbxKBHg2bZo3v0TN5WqDv5f/9+n6lCczQ9cqTk3lMLoReOEouuLH1egyRvEI1/WnpdUFkERUmv1hUjDkzb1BGidK2XhFI8S0bUyUY52q2ckxavfr8UXxJ7TrSiVxV8qEGgVRk4yyuGSe4/+OaMbRnlDp3qM9c1mVnn9RjcmCrN9sIrB3CMwYlI9h2vbNJamasyWcfS5aWPExTBtTJrlWkBYFu8USwe2UEiyEeIcQIcU0lKsXwpdKVZBtmSvKDZJXgBJLodF0QhzMTHqUtwyh+52MRzgIo9/gN8GH5d5/F448xRpUudFsfFyX+NdDmw5IVZBW040qJOVFBsnVztxDqbJt+q1YpITnKqlKRNKidR/KbdMjbnj47BLptCENT56dPi4nnff5gvhdLMPbb6Qhj2kTwvWynx8bVsA+2VD2P6qlqjXUSG17XLmwvaKJk19iqae9CiW9aDiUSmaSXIANMVeei7r6a8fHWuQN8EGy5x8o2tDnz6hjtsqn56mVPWFaKssmr7MvQ9V3f4R4/jvuHwiMj0u3HG5kBeiP4rZiUDTOwuL5ECIouhGF3oCPLdBNtVsOBZFI6VCXKOShbcdleyC4tPD3VrFRgDwdnGNVT9TslcU65VLXm8oen4rRYrM06e44yADSdUaoSvcY2kefx4XbJ15XLB1sjxO1abJAR9pbifGygK0Yr8yc6xqaTG1Qd4QFUtz71TcrFPukGKpnAB1wPOkA1bsPulo91W1aG4CX5wqcuRfnDoKi6bkSGcqcvs0lzxGqmSOSU/UMHwA4IE39qO8wYsH3thvyo3/REokfHKyGTPHif2aOS4jylFQp3uppIwqVsHP1h9BeYMXP1t/BICxI7rj8gny/FfYOtqB48p7AvIcCqiihD2v09autN+Jwmgf9PUI6rit8ulpPc4sSDNDX+bezT5zMBd3R0yq5/dbKtDsDeH3WyqwuCTXVP+e4mfrj8oL6ygaO7vUaUKLdaPk6PLx/cNnVXvJhAzsOd2jXtgmc+RtgW54mfh/kzeEOAdDJMIR52Co7xReWLE0TUIdeVICQ2eAIynh3KZgpic40RHoVq0V7HXdiqQ4wOcAfIGePD5zib1SJkTFSWZRnMMBp4OhLRCG2xUXpWtz56IiNHR04c5FRZidn45H1x3CQ0tL8JP3Dmm+063z8/H/tp/GrfPzVYcJ8KiGvLREFxq9IaQluvD9P+9FVYsf3//zXoyVjlppgmuRd7gWX0hDQfz2FUU4Xt+Jb19RpHGma+5cqKEu3jQ7D+8cOINFU3Jkjl3sDwA8/bWZeOCN/Xj6azPx1t5qADK1IgvKilzHquunY+XafVh1/XSkJrqw8WgdlpaOVouhyrlJpTroDYeea3q2DhUxoz0jFVu88vw/icUlubhhVh4OVLfhhll5mu2V1XVoLJVwqGz0qkHQ+oO1mu9EQWsLj1zXIzRopqVPr0Ez/Xyz2sJA5OGHqm7/iIn4J0phKMWa6d9r0RPxPHrdNGR6XHj0umnYc6oFVz+zWR1HVzwqBZkeF4pHpSAivVEkwrG9QjyvWArKTAnJ9yi29z3QokuuALq6eovrjVElC5mKVUBFywBAmaftdgJJERnlR4CLmGDrXMReQ65sQFIs1V+n3aunm0RUr9jffVSOTWUN+N1H5Xh9VxXCEY7Xd1UhEhEfrtg1u6pV2yyddrPOaQPAVTJiv2rqKKTIVVVKQhzGZwqHqdgf31iKTI8LP76xFLPzMySdNgPPvC/qN8+8X6ZR1gSAo2fbVUuLu7T7GwDSklwoyExCWpJLU0TWF1YpH/7ZDcdk3ehYFJWSpmcoB55GzvoVJb1JLZ+bj0SXA8vn5mvkRgBtqodGppTuCmivE9ojYJYOo70mFPoI2Cha1tM+za/PHhhF8v3ZSBXr6mGgm7uGteOn3HN97pJCr39P8Z1Fk5DpceE7iyZpipD3rdmH8gYv7luzDwA0A6LT5TCMdI8LnQHxwyqWwqmz5wqFzRM6N7+vgZT+QWJctKzFrrDI5e8Kazn5dL+VsX2K7ZQriM5AN47IesqR2ja1uKrYdz+rUW2tjMZr27uQJBkeir1x5hjV0sEki+Q8VsVSOGXe3xkXp6ZhFLu3qhXN3hD2VrVq6LRFkrpZlJuMJuk8FUuVLGulumVtayCqKYqeRzPz0wEAM/PTdTIdWgc4TXZiTxuTEnUePn7jdFxZnIPHb5yucYb0c5UirGKprhCdLREtN9J7OKFPM1LQNIve71NHRjvNKfRO0kgeRX+DoHx/qzCq4Q0WDPQ+DetUj4YBo4u6aMWdUjEpa6AoJxm/33JSXSL7gsIR7DrVhEsmZOJUsw+XTBCyujPHpaGyyYeZ49Kw9YQoxDV3hgAmLywW7Z3DOttfkIQc9UaY5AR84R4LAP7uaOYNzeVfGv8G6jqDGJUcj25fEOBANxOSCcfqvap0givOgXA4AlecA5WyYamyyYdsKVDWLe8qnvh4eLu64ImPh1tSmtxxDKnJbjR6QxgrZRLW7KpRbZKM7s+2BVSqa7scrLxFDvjecrxR7Vh1xkVHo1QdtaNLRvZd2gJHXkYi6jq61JvU0umjsfFIHZZOH426Nj/W7a/F/AkZmlQMoGXAFGZ7VPXLe/60B0CPXAfF0tIx2Hi0HktLx2B5kgt0DgPl4dNaE00x0Wlc4vj3NHfde/Vkdd7ttLw0lcUDwDDVo1fnpKD7o2fUUNbcT//pIvUaMmO2GKV+9CmSaWPSsOVEk0qusAL9rAtqBwMGep+GdcRPoY+6jPTv9VEX7c6kha92KcWr2OMyJ3q8rkOTz1b47IqlTq6vMV1Gj4pVIMerqlZx9r4wIMk6cDHgM7eI8D9zRyto5kkqZV5mkmbcn56LnZ2SoFolvz42PVFTPAWAxVOyVVsto+jq1gAmyKYexWZLJcvs5HgkyNVagtOBb31BFOu/9QVRrKfyBJNk9D4pN1kdTq/YKimNXNXsw3UzhBO8bsZYlMl0TtnZ9ihdfJriaJJL8yZvMIopo+XX94DKdADaYjGlCJvNYaApIZpi0qe86AqVDmzRr07o32bChBT0mtGnuShrjurum0W2Vj/3rsVSXmKxeb7cqLvWTAJioDDQzV0jxvFrxdGMVfk0y1kAp5r9qu2Q0WVHIIyNR8XFrVjqBBwyfaJYii5J6+zq5ho5gr4AlSCgA0Nkqlq1FFSOIAkywpfPXRwncvkXx72mmVGcLVNZiqWoa/OrlhYeryrJRabHhatkUZyyXrhcBfAIj8oPP/21mcj0uPD012Zq5Bde2l6JZm8IL22vBAD86LppKMrx4EfXTcOJejkPtr5DVXhU7KayetXeMq8ARTke3DKvQMOueervgp//1N/LxLbJOfH4jaUy/VKKlUumSIc+RX77nvwHPacoOwfQ5uFp96qZ1DHN0dO0j57SSFeolH6sX53QlQ/dnn4fjJypPg9PjwuFGbPF6kjFWDR0+lrHZ7hhxDh+PZ2Tgp6c+ilBVAedFgadMnWjWKrG2Cl13jsD0RIE1KYkCkemWCPEIkcsp+SBM6hdq4r1JPTYXeFbZR7/1ihOfopcIqS4XfiHdFr/ONaAxyR//bHrp8MnnbtiKTc+XeaJ05Nc+OFbn6HZG8IP3xJSAEojUSAYxgQpZTAhx4M0STVV7N6qFpmTb8H3rhRidd+7clKUZjt1rpTjT1cCAPDY9dPhdDA8dv10TbS9fH4+rizOwfL5+bhisihKK5aeE/T/+gif0kBpNKtn3lCdG9q3oHeSNKqmiqFm0SytGSwtHS2lnEdri83QahiZKV4aOVP96+hqxUhUTQ+jm0Ksjtloe/obyWCmWV4oDOscP8X//Yegc/7ffwg6J6W93bekuNfOwKKcZNy1eBKykhNU+YVmbwgfHq3H6LQknGzyqQJpnngHvMGIahXo8+a07kCdnxmo/HJKggMdXRGkJDiQ4IxDozfUa+Sdl+ZGVWsAeWluNHYG5L5o+wG8XVyTx/9a7rvYU9WGOflpeBNAo4xMG70hNULo5sArO0/DH4rglZ2no4bBUO162m2qfhe54qErJCV3nxTvkAJlXqQkKkXInlvl77ecRDjC8fstJ/GVi8aqjn7O+AzQ6PiblxTgQHUrvnlJAablpWnkEk42+RCOcJxs8mmavmg3rX7urHGeWns7pymhBROz1Py1Ph1z/zXFOPvGftx/TTEKsz29yhEA2hw4VXI1ownS8/X+1/ep+zNzXBp2nmxWAxmjSVb69IdRLlq/D305CzdW6QWj7ek7dQczzfJCod8cP2MsH8DLAEZD+LkXOefPM8YyAawBUAgxT/vrnPNormMfY3peGraWN6k65JTPTfHYuoPYcqIJoe6DeOWOBZrn/n7orGo7ZUGwvkM41ejGFwEziQV/WGsVeOLj4A12wxMfnSui0gSKRokyENvBeqQUvCGxUW8oHPU5VF+HauvsrxZ5bsXSmxb9Hi1e8Z1bvAGMz0rC8QYfxmcJJ3nZpGysP1SHyyZl40xbQB0QPis/HS9vP4UvlQpdm+Vzx2H3qWYsnzsOv90s5huHu4HvLCrC8foOfEdemFRaYNGUHJUnr+fQ06Lkzb/ZCn8ogmc2HIuSS6CdsodrxffcWt6I4tGp8hUMrTIdolhauLxrcZHqbOi+AdHFXQAq//2dA7Vqd61epE1xQnqdKMpnb/OF1P4BM1CnRkkLAHC8vhPL5xdEvY7iuQ1leHnHadS0+PCE1Cqyhp6b4PkWLs0cM3X2L22rxPMbj8MX7MZ9arotGgNdSB2M6M9UTxjA/ZzzqQAWAPg3xtg0AA8B2Mg5nwxgo/y737F0ulz2TheOp0Iutyt03GCacwW0y04unQwH10gJACISVqyeD3+uKB2bqrEUSr9VoBtRg1hyZDSa44lHq1d4+VZvGJIFqVpN561T5PHnOV9DYbYoxiqWEv4yZDoqI9GpGWBy5VRxPBVbL7XY6zu6MEtSGmflp+OqYpnjLxbO7yd/OwJ/KIKf/O2IeuNq9Yfwyw+Po9krLKAtQlIlS8rBB7R54CskxfOKyTlRHHCay6eFXyqDsL1C1AMUSwuX9HzQDyOhDt2Y/259AAndvn4bRqDbo+kXfT7dqMBJRQQB62kXvdZ+f4Huj1Wp6YEupA5G9Jvj55zXcs73yP93ADgCIA/AjRCD2iHtTf21DxQ0nwtoi1Gai0WnFUNztXRakj63TaHnwxshWVLhFKuASi8DiBq4okBfN6iXMgf1nUFNhL7bJdg6u13RbB1lgRKKABcXCGqqYouyElXbJpcLbf6wKlmxsCgr6oZqlL768buH1a5nAGiXOvrt/qBG/6Zasm4UWyvlHBRrtD2KFZcV4sriHKy4rDCKpUUZIvRzKS6dmKmxlJVDnbNeB8iIpbLi0kJkelxYcWkhAK3mPWXu6B0U3b6edKBA78Bf2CxWDS9sLjeVJTGSXNBLQ1jNh9MbC2UtxcKgsaqFr0+hmW3DhhYXpLjLGCsEMBvATgCjOOe1gLg5AIhWlxLv+TZjbBdjbFdDQ8N578NYKa2rWFqkoyeqZjgKgDWfnMamsgas+eQ0SmQ3Y8noFDikU3f04tytDi3pkrxIxSqg0suANsqnuLo4W2M1EbrUpM9Icmq6bgGtTj79rP3VrQB6bIXssq1o8iNeFobjnUyTJlv19kGUN3ix6m3RXNMhx551dHWjvF4WMes7ce/Vk5HocuDeq0UxNlUqaKYmxsMtb3xulwMOuUxSLBUnoxfzrfPy4WDArfOEQ6KRPV0l6IvAFHctniRvApPw3IYyqa9UhjFyMIxijWiaNO8OGLNUqFwIoG9IMlZV0m+/N+gjcro6MXfavX8u/S0AbbRs5ky1N72ekCSWm4BVLXwzkTabuWOOfi/uMsaSAfwFwL2c83bGrOU/OOcvAngRAObOnXsevakClbL4qFiaK6T0OtqBu7kkVyNtq1Dgjp7tQIQxgHNhdTDL61PkpLhxpi2gWqP3G2n1fFDWqLE0x/+PyNdF7j6izeNrFVK079Gnv5wOhlCEw+lgSHO7EOgMIs3twuhU4bRHp8bjgyPi+JTLztjnb5mt5uHTklxqYfXJdw7DH4rgzb01uH5WHr5/9WQ8uu4Qvn/1ZLz7maidVDT6MCknGWfbuzBJsqounZiFqt3VuHRilian+/J2ob//X5vLcccVRZrazLQxIkXmD4aj8uk0h73isglqDv1j2QD28fFGvPndy3QF1x5H9tyGY3h5xynUtPhx75IpmtfRJisKfQMS/Zs2UumLlbSGYKSLr89fP35jjzQ0zZWvfveIRpbc6HMPnhF1D8VS0OO/YmGhZl9pIZoWjntWFCyqyGoEq1r4+lrAYG/aGkzoV8fPGHNBOP1XOedvyofrGGNjOOe1jLExAOqNt9B3mFWQgU8qW9T2eyNhqpnj0mUHbjoAYLQcgDE6NQG7Ton0Q5M3qHagdn9ePscEirM/0xYwdO5mcDKh86P0AdAUE+XkTyQa+ZW6bSS549Du70aSOw5xjKHFF0ayFOn5wdJirH7vKH6wtBhP/k0cq7rOILbIzuQtJ5qiCtFKHh4QN1clx7zi0kLsr25V0x3PbzyOcITj+Y3H8ZtvXIzaNj9WLpmCW1/cDqCHd0/poS0yUmzxBrFkai5e312DJVPFgpEydKij1gt+fXCkXrVVLX7VmT779VnqDUvvUKgD/tf/9ykA4OPjDXjiplLN62iT1S9vna06xuXz83G8vgPL5wsndNfiImQlC0rkC1KzaPKoKmR54jWOkTKN9IVaI+hplco+6GXJqaP2BbtVh047f6MRrdSp7KuR6GFvQ1TO1RlbZeFYFV600b+sHgbgvwEc4Zw/S556G8AKAP8p7br+2geK5fPycbyuA8vnRUcR5fWd2HmyGeMzk3CqWUSuZ9tFmkM/zKKmNYDiUcnoCITRHggjxW1+CPVyCQlxYvi7YhWkJ8ahxd+N9MQ4+ILd6msAEY0rRWMHE/l4l6MnP6+IvWnYOhCpHZ9D8Pe7yBQquk/dMhXfHQYckhWqXN6bjzUgwoXNS3ejpjWAvHS3qiff4gvha3Py8PruGiwuFgXVPadaVAe6/uBZNcrcXy00cn77UTkWl+SiXRZ02/0hTSolxe1ElzekHtejknlztLZdVd0oq2vHb785F0W5KervuEMWYndUNKsMncT4ODVVNzn3NB65bhpGp4nV1eg0dxQLRxkXqI+8qZOkNwg9po1JwZYTjZg2JkXjGAFopAmUHP8Xp43CITnr91BNG351m3a4D50wRVUp6f7pHTClVQJMdegrlxSjtm2/2j1Mz/8XJKvKH+zG6psv0tBfKegqgU6ZE+dCz3eiRVS9A+6rQSm9QU9LVVf0vqCGom2jfyP+ywD8M4DPGGP75GOPQDj81xlj/wrgNIBl/bgPKl7aVolNZQ3Iz6zEEzeWak6SM7Lb9EybH+MzPdh5sgXjMwUd75uXFGD1e0fxzUsK8NxGwaj4pLJFZRJ4pR48jb7DNGTXEfkVZ0+dPgC0yIlULf5uFOUkobzBh3FSJqG3YnGEA8kJDnR2RZCcIHnwbuHMk9xAafef4QtFkORyYExqAiqb/Rgji9OaQeeZbhyr8yIv042KenHT65SFXFoXqWjo4ekXZLhR2RxAQYYbbtkIpFiqSa/ILShDyAXEl4h3OeALReRAlp4I/aoSEckrHb6F2R58Utmi0iN3nmzB+CxPlEN5bvksrFy7D88um4X8rCQ1Qn9s3SEAwGHZ1fyj66bhgTf240fXTdOkgd7aV4OXt59CTasfblecZiqWPm1gdINYPr9ApUzqHSP9P03bUE5/VJRKmyIIzFIatCDcU/TkUSkv+lm0SGome0xvgPqo/ZE3P8POk83wBT/Dmjsv7fX9VqH/TrFMsqLHaEdFU69pspGMfnP8nPMtMB4AdXV/fa4RNklphU1H64EbtY1aNC/68F8OAOipBfzywxOIcGHdLgc6u7rhdjngdACt/m51qIl++LeCpHiGzi6OpHjr3E79BC5ahouT0X8cA3awW0SEzwCgDb4uMUnLFwJ4nHAAnEfQIqNrxbpk7t7lYJqNOx2CS690CNMBKSWjk3GmLYCS0WLVAwAJLif2SeaRYqkw2KenWrDzZAuKR6di3vgMHKhuwzcvGQ8ACEoHFQxGNOkAJfpMTxIptspGr2qViP+U/G0oFpfkYs+j1wAAVv/tiJo+WblkippGArSUS+pgvvpfWwEAH5U1qPNtle9Eo9m399X0GlHft2SKWlRW5t8aRbo0bfPB4TqNQ9aid+ljo1qC/i00QgdgqHGvf50R6PGKjsqNi9TnCrPcvdUVAN1X8Z0/P002kjBiJBvmFKRrLKX5VTX5sL+6FVVNPoyRrf2KjZc65/FxDqRJCYM0twsOOXBEsUpwpWeWRaR2gmKtQH8JUaE4pSk4GEEUW2ee88+Sk/9neBLEvnoSXHhoaQmcDoaHlpYAAL4gpQi+MDlLI4mcLPV4FHv/NYLGeP81xfi0UjjBTytbUN0iKZctvqhGONrVSyV+f/7+MfhDEfz8fTF8PkmmcpJ0qTI9k4X+HjMlZ39mfvQ4Q4pdsj6wq7JZ4+gBY6f5i+WzUJTjwS+Wz9LIMAPAY+sOSRbOIR2FU/tLWeWVU0YZZd7oew7osaDfl3L6zcYZ0j4AvUgbhb4fwQhmkg0/WDpVjomcarqNWBCLxALdV70Mi40R5PipeiYADc3v+2v2otkbwvfX7MWe060AoNoC2ZFakJWEs7I56WxHF9olE0ixTNIPma5ryyVvHIqVWRnVKlBqaXEM6AqLbSo2KOmewe4IDkJw8g/iNvjCko8v8/SKNPLYNLfGabz72VmEI1xlz1TLYezVLX6kyNelxMepw8wVS50mVcak/3/wS8VIdAkr0OMM6TzYRbIGoNgcKTOR43FpnBdtpAK0Qz2Wz5N6OvPMx/PRAqWeW0/7Oeg2aHMY/RxAq39DI2o9nZCmTKxSF6mD0vcc0GNhJCRoNs6Q7iwVZQO01Ed68zbj0JtBf4O1AqNtm32mzc/vG4wYx0+lfwFg/cGzKG/wYv3Bs8iTDjMvzY05BYJyp1gq0RvHhAOOY5EoLf1u2bqrWAVU0ROAJqqmC3naF9AZEH8o1itTPl5/WNN1WxqRfPzIa+J5pe4Q7MYZ+T3PtAaQJZ2sYqniKI34l12cL7+rcHjUqdBJW5RrT6V/AW3kR1ku+s7dVJnKSU1KMJXnpftuJiVMHcLqmy+Sw9YviuLWU0qlUSSpf8/y+QVSwK1Ak3fXN1xRp2uVR04nuembtIwibBrB6iN5Lc+958ahlxShDVyUxqvfb8rDp9C/jv4esfL1jR6nf9v8/L7BiBFpu7I4B+v21+JKGXEqBcf91S2YW5iFw2c7MbcwS51gVNUiHOfP1guJ3p+tL4MvKC56X5AjQ7JwMuQIK6OmLX1hNiyj93B3BBOzE1He6MfE7ERUNApnHEZPzKwUYT91yHm3nLB1IG5UNW0B9caVmeTE2fYuZCY54YpjqGoJYGy6O2oVM2tcGnZWtmDWuDQcr+9Esy+EjCQXnn5ffNen3y/DrZeM19AJKV2yqVPO1WWOKI46jfwoy+WR/xXqnI/872fY9vDV+MHSEjzwxn78YGmJpmgIQJPPnZWfiQM1HZiVn6mJWum+3bekOCoPrBTxMuZqi6yUWmnEAtEXF2nuXj/Qxwga1phO+I+CFsM33r9YU3yk+2QM49w6/X4VslaiWCrTTGtcbb6QJhVGmUVmx8iIHqrn+xsdI7PHe3udzc8/P4wYx58mI23FFo9OVQuP6hQjVxwCITmwRdpFU7Kxbn8tFk3Jxjv7xYBpHgE6usQFodiIZO9EGBDHgW4ILXwlE6y4CRqVt0tnX9Ho11y+qW4n2gNhpCp58DjJ1gEwpes1lT2U4ZIpICnW4453qVa5cbX6QphXmImqFj8mywEltEnnny4eh5e3n8JXZo7F1NEpeHTdITxwjZK26VmT0KlKT68/ivWH6jC7ID2Ko0558xlJ8apS5DsHajW/B71B6N8D0Au758hQKeEeMM3rP6/Jx2jqk/7GQd9DbzhqCs0VvVg22sb9r+8zZJXQAe1m2wOgYfIoztRsYhbF4zdO19A0qTqqfhCRUj/44+3zNSscs2NkRA81K8wace31j8dCCbVhjhHj+HecbNJYOoM3IJUsA6FwlJRwk5wl29TZhTiHmDoV5wC65QXBFSvDcx4RTh+Qzp9phdvcrjjJDIpD6dhU7DjZgksmZGBvVavKtd/GZdctB4A2DSc/NdGJZl8YqYlOxMm6gWLpsBQqnaDX/qHTyG6alYetJxpx06w8/Gz9EYQjHG/tq8Gtl4zXNC61+UI43exDmy+EQ/LGcehMe5QjpX9T57D6qzOwcu0+rP6qUHykw+nXfFqlsnAe+fJUzYVNdeRX3zxB3Z+MpHhNY5CRE9FTAY0icbNOT3rDEQyk3h0tvYEZjfbUQ9/wZrSvlFlEnSn9TEVWobcIW0/TpDcCur2ofSUrHLNjZEQPpe+JhZYZKy7kZ/UlLtR+j5gcv8JRV+xpKQJ2utmHfbJJa191G+YVCiaHYreUN6uWMmoyJWNFsUYdj0pgqNhO6ZA7u7rVebHtgTAccqCLg3EkMZnHl5sqDchcfuA1zdBsTdERwNbyJtXSKVkXS3aKYmnBetVfDwmtnb8eimKl0PzxSqntvvL1fbhUirRdWpQlCskuh1pYNmLNbKuQg+ql9g6VxqBNTPr8cPGoFNXS3Ls+v65nxCgwywnTYqqZgiNVnjR7nVaorCeHrmeVGOXA9ftKP4tum+b79QVhqzlwuk80P6/fV/1sXSugtQ76HS5kfj6WzxoMheMLdYxGTMTPZCpGCWA2HqlTbYKMUCoaO5AoZ8eelUVPo07bBsnmUazL5UCguxsulwPBSLeqf5PkdiHgDSFJGXhLUC5HBJbXd2C36zYkMRHV0wg/GWJSlreLw5PA0ChXII2dXTgrO2h3nhQ3p55GrQSVg9/mD+G4FEtTbIecE9wRCKFBbq+ioRMTZZOUglrZ2Fbb5scVk3NQ2XQKV0zOUQW80hNdeOyvh+APRfDYXw/herlqKG/w4mfrj+C335yrRi/UuQPQbO+qklwcOduOb31hYlRqgM70pdEt7RCeMz7DspaNUXQby1BwPehn9RRDo3PvRukPs4iafnca/esjdL1EhRXo6yUUNJVklrbRH7/zGbBiBqsRsdlnGW0j1o7hvsSF0hgaMRE/lR8GtDRLOiqRcs8BIDvZrVqXzNe4HEy9YyrWK6UzvYFuTcNlnMxBq5bSNkkXL9XWoRE+ACQ5XarVcPJ1dT0qFU1rGlNGCWelWMpFp9LEYVmBVuxOKYOws6IZN83OQ1GOBzfNztMwRB6XYxgfv3663JmeugCNXm6Zl49ElwO3SIrkvUum4OFrS3Dvkima+bl6tg5NG9ColxZFARiqcOojdBot09y2kUyx/j1Woad6Wtme1dUEjfL1A9rp68wiWO0KqfdGMf0+0f3Wb9soUrU6htEqrEbEZp9lxFSK5Xfua1yo2QEjJuLXY0yaG+WNomHrZKNP1a75qEysBBRLhdQUPxuKcOHAec9sW487Dh2BbnjccfB1dat5/dQkFxq8QaTKG0my24k2vxBC2+r/eo+2Dum6pbUEAMhJTUCDN4ic1AT8casYP/jHrSdRmpeKnZUtKM0T2jS0qezSCRlYt78Wl03Kxkb5XXZWijRLXoYbx+q9yMtwo8Unhc98wSjq6S+W9+jS0KYh5QZTVteBvIxE+EMR9ThRtg6dQrXshW3whyJ4buNxXD8rz3BSlD66phEnjXTnFWZqiqJ6SQIj0M+lE6+ssmPMoJ8IZfQeIzaR1QiWdqLqP9O8u7YHVM30l7fOMRz/aBTJ/2JDmWZ0qVGkqpeXMPqufRHJW90eZSpR9IWw21CpLYyYiF8PZS6uNxjRXPL6MYWpcvJUqm4gup7VF+7uVi2lcNa2KgNFhA1LAfxwJCK0dRxCW2dR4uuYGHwNixJfR5F0mIp1ypWG08FwQmrmnGjwamoTADArP021ipBabVsABRki0lcsrRMomkTjMz1RzVhUuIwOExkvG7zGZyZF5fSNplA9/bWZKMrx9MpeoVGrPuoyynPThivA+qBto6EeNEKPvYHo3GULaARrtq/GnajazzTrrqWg/QxmmvtGEbbeeRptg+6DWbTeF5G81e3FUrewiqHSZzBiIn69SqbbxVSbKCNtxerfR62CBROysKW8CQsmiEKn0xEHoBtORxy45PVwAFyqtHG5jN5J9HVoLr9Jtt82+cK4euooHKv3qqMLKVLdcWj1dyPVHYf0xHg1pw9Aw7a5tChLFTdzOx04XNuOuePF9ugw8j9sFcvd4/UdONMWkM1Y1bh+Vp5m1uzx+g41HROSvQhn2vyalcAfb59vyOJIS3KhIDMJaUnRtQ4atd4wa2yvKo/KNqmlMIrW9BGxGSXRaPatdnsnNZEuhVXNG6PvpN83K9GyGZ3TLILV03B7vp/xCoLCzHnqj5GyD1ZrGH0Bs8+ySoHt68+lGOiVwYhx/C6nA13hCFySxlktu1erm/1qo1QgDFxSmIGdlS24RLJ6WmTo36KbiH5INnopltInaUE4TrbkKpbm8ikn3+1kCIQ53E6GT04K2qViKd00K9mNVr8XWcluVRk0IHn84zOTUNXiF/LSTWKFcYrMFnC7xM/91N/L4A9F8NTfy5CTIm4ajDFMzE7ClhPAxGwR0VMN98dvLIWSXmjzhVSJX+HID0d1mwJaB2qmkEjZRGbD7q0O4aYXkl6qwOjCNGtO0qInH24m35wxN97ShU2/k/5zqTM0StvEmp4w2lejFYQeZs4zllRKLMcuVvSnVr/VbQ90IXnEOP4u6RwVS0/vxHjBmkmMZ6hrFykSxVLQVYP+huACEJI2wRWHru5uJLjisK1ruZrH13PykxJEo1ZSghOXFWXhvUN1uLI4F+8dEjn5Skk5pcPNlYHv9R0BjEl142x7l9roRXVtvjRdRE6jUxOiancZSfGoavEjIykek3I82HO6FZNyPJoUEACNhjvlgf/uo3I1nUO7ZPWgjmxeYaaqfa8HLeDqO4GtwuhC0jd9GV2YZisBCqokajaMJNbctlGzmVGPQKyO0WhfrUbDZg6OrgZiyd33hVMcaMf6ebhQ7B0jjBjHLxIxwgJaqfOAlGIIBDkqu8RKoLLZH7UNVxxDVzeHK06MIqz3BpErT2Yu7wrcoe3OTXLJCF9mOG5OW4djdV5MGeVBQObrA8EwTjUJquWppk54EgBvFyD9L6aOTsHOyhZMHZ0CV5wDW8qbMDMvHSelPLHyeYuLc7D+UB0WF+dg6wkxSnDriUbcPGec5ksvmJiFAzVtWDAxC4floJMzbV348oyxoPOG39pbg/IGL97aW6MZo2h1WU6dw0vbTqrDVvTFV/2AD2U6FWAcyZs1O1H0NgGqN1i9EOl30h8Ho+f06RMKMwdFtxGLJILV70G/e19Ew/TmYZYaM7rp9YVTHKjGMasY6AlhI6a465LTpxTrkfKYngQHFF217s+pyTHZZMUYR7NfFuCkDSvTsCLA/ohQ0NwfuQ2+oFTQlLXATkn77Ax0Y7ZsqJpdkKFKLFS1BMDk7Umxe6paVbu3SkT1e6taMFc6UMVSdc0OmQbq6AqjVerwK3Zp6WgU5XiwtHQ0Vi6ZgqIcD1YumaJpqgKATWX1qn3kzc+wqawBj7z5mabIatQ4pYdWzlgLs8Ysq0JeRkU/q8XAWGh0RsPVo58zLvqaFWDpNrQ0157t6WmotLBq9P+++O7Wt6dNjVkpHPcFpXGgGseGCkZMxK+fkavkxRVrBYyJsJ4xB2HnRL+OKmhOCr6GSFDcYSsAXDQuFWfaArhoXCo+Oiai8gM1bchIikdHVzdS3C5cPjkbr++qxpdnjAEgagAhaakLOSkFtxRbJVNDVc0+PHCNmJf7wDXFeGn7KQDAdtnZ++S7Qo/lyXcPY+74TFWldOa4NDlvWFEozUBVix9zCjJwWo6kDIa7NdHUPX/aiy0nGhHqPoRX7rhEcxzMRMaMcupWI/m+LgbGArPIVP8cTZ/oRduMIj99+qNnmLk2ohYQZ4aRvg/9f19EmlabuaymxvoiKjfaxkCnVQYjRozj1zdwSQ021RqBqnB2ScomY9HeXjPvNgj1/y4H0BXpkWzYc7pNtbQR6qysKZxtD+CWeQXYfaoFt8wrAACMTU9EeaMPY9MT0R2JoLI5gNzkeNTL+QCKpRF6sy+ECAc2HKnH9LGpqGrxY/pYwfdvkK9v6OjCrlNyaMmpZlVuomdf/KqdnJuCvVVtmJybolmmUgVOPeiFrh+wYsT80DNqjDjver7/QCznrS7X9a8z6jI2e59xKkubk+/tdUb/Px/oP8dsDrDRdzAiAvR1Xn+g0yqDESPG8ccKOgtXga8XCjeN8icGXwPkayRrVKh3AnJkn7CJTjFEJdEJMIcD3mAEiS6HRsf+lTsu0TRWtcvU0tm2AAqyPJri7pemj8a6/bX40vTROF4ncvcd/i51fOFeKcv84JeK8eBfDuDBLxXjtx+VAxBqpKVjM4Vi6Shxg5g5LgM7T7Zg5rgM9QZxQpfSuWvxJFWBU4/oqLcn127E/DCLzvQFU2oHWzHPLK9vJtpmBDMnaVXJsi+Pi/5zzH4bo/dQ9HVe34Y5RkyOv69BJ2EBQkkzElEUNXugX1nMktTKWePS1clZvjDgk7lvXzCi0ikVS5u+qFAcLSIDIvoryvFgxcIJOCOj9jPtgahmMzoekd5UMmSkrNi7Fhfh4WtLcNfi6KW8FSkApdO2xRfdrq9nfvRMg+p5jx40H67fntEgEOuyBcawuj0tjPP6RqMArTaOmdUFrG7P6uusHiOz38boc/pazuFCyR0MB9gRf4ygET4AXOr4Mzq6IkhJcCDBEUFXRIxXLB6dggNnOnDRWJEKOSRZNIpVMCY1AWfauzAmNUEzGhEA/PKu4Q91Y3SqG2faAhid6saMvDTUtAYwI0/k5J9895DM3R9Cu1yhtPu7seiiHKzbfxaXTBBFYKUBK9QdwY9vLMXKtfvw4xtLkZrowjsHzmDRlJyo7zu3MBN7TrdibmGmJrrzBcOalA1NYwTDEWwtb0IwfBCvfkvLydfmqXui4wPVrYZpELOIkQ5LSYqPs5TbtppyoftHt20WQcfSJKRftRilT6xu0yql1Ox1saSlrH6/gVqlDUaWz4WG7fjPAUZ5/GRED2YBRG6/XFIuFXvL3HH47ccnccvccfjLnmrUd4aQm+xCm1TMbAuE8NGxBgBQLS1Md0q2TmdXWE3dKJaOW1w4UXQWL5yYpekDAIDSsWnYc7oVpWPTsLeqBc3eEPZWtWD3qVZNiolemMvn5eN4XQeWz8vH4Zo2VYpZkZBQ2Bs0jfHS1kpsLW/63CHXtMkqljSIQE+E/Xl5bgVWP4vunzIL+Fwceqw6NEbpE6sUSSsNYPpt619nVcHUync0qkNc6NTMYEsLDgRsx/85oM7eKI9fafL+OMkEEhb4w9ZK1XZJ/mh9ZwgepfrLgdn56dh1ulXl08tMDoLdwFUlWVh/qA4Li7LwmZQ4dsqibFqiGL2YluhEsxyt1+ztQmleGnaeBMZnJgKAJqXTIpfdLd5QVKFWMyzlEzksJbcKa3aJVNGP1h3E88tna7j/VHdHkW92uxxRTBbqvGguSj8wxKrTpBG2viBsBPpZpp9D9i+WzkwgNkaNMb/eWE1TuxrrVldBVm9Yemesb9wz+h5WnKn+2MVSdO3r5rWRCtvxfw6os6dRvhnccUCgW1g6bAUAnA4h56BYBV5Z5PSGIhqpBEDkwf0hUfg9I3X2z7T6cfvCQqx+7yhulxd1U2dItUGZzqluDcAtu1aV6JxO1vqPtw4CELncX902R1OofXTdQTR7Q3h03UGMTRfy1PurW5CdHI82fxjZyfH44Vtilu4P3/oMWx+6Gs9tOIaXd5xCTYtf1dIHGB5bd0hH+yTOi3bT6XC+0ZlZdGz1c2IR9TJbdehprkZsGCOYNaXRKP/tfTXy0ejjaoWFY+U7WXmut8+M1Wn3RbRus3xsxx8FGuEDbRpnX4qeKN8MskdLtRTeENfY3tAV5hqb7nbCHwoi3e1Ek4xgm7xBPLfxOCIceG7jcdxxRRF8QeH4fcEQFkzMxodlDZg7PgPVLYLf3ynTSS9tq8SmsgbkZ1bilnn52HO6BbfMi+7azElJQFWLHzkpCRif5cHOky0Yn+VRU0rBMI/y2X8/eFa1t1wi6KiJ8XFRqwl681nzqWysYdH6N0YORf86YxaNcXRMYea4jPL1Zo7MjF2jj8ppFy7dB6PcuxkozdVsiIoVFs65wMiZmt1gYsFg6N8YDrAdvw76oq1VZ28VTgZVmC1MfP+o5HjUdQYxKjke9Z3iAxV557MdQdVePikLNa0BTMz2YLfU5onIFya7XfCFgkh2u1BWJ6Z7ldV1qMwdZarYR2UNqt10tF4VbLtepyp5+8JCHKk9gNsXFuJ/dogmsMpGr6Yg3BEI4cG/HMDD15aI7yc7o51OpolMW3xBHK/vxPL54mZAi7GUAKN34Maqm9pIXj82UoE+OjaKtqnWP3080xNveR+sQp+vV768/nOMcu+AcerIKD1kll+Pdd6AFcRyg+mLaWg2zGE7fpgXbfsccoALGJDgENo/CXEMrTIabw2EcFlRJraUN+OyIqFx7yAD25Xu2+3lTSjM9uBEgxdj00XufmnpGLy8/RSWlo7BvtPNqGkNIMvjwoy8NLUuAACP3zAdK9fuw+M3TMdT648AAFIS4qIuuOc2HleHp1w9dRQ+qWzBrIIMlNUJieayug7sqGiCPxTBm3trcP2sPPzkJjFU/Sc3zdA4FNp5Ki7YHm9PRdr0NEh9bUB7IHusdhs90Ds16qyT4p29qocumJhlMTK1tprQH1e6T1Zlla0WrGNtKrOGc583EMsNxmohuj+7fYc7bMeP2Iq2VkH8PAAxp7bRG0J6ogtd3d3o6uaIdzF0BBT1UI5mORRAsW4XgzfI4XYxkf6RG6yTnbWKvWlWHraeaMRNs/LgdsbhQE0HFkzMUYXYlEHvdPC5kv93xzujLrhHr5uGlWv34dHrpiE/K0ll9QBQo2M6DQoA9la1SpZQKxaX5KrHQe+49MJsivOrbPTinQO1WDRFvNeITqiP5K3SJ2nj2IqFPftEv4cyxrC3bRnJEZjBzJHF6qjP1Wn3RZrF6jG2Mn/XDGYrA7o9/RSwWDBSGT4j1vEbRfn9jcsmZasjEd/eXwtAzPpNdAF+OQymSubkFSsXAwiERF/A4doOTBklLNBDIX12Q5mkY5bhl7fOUVUuKxu9qG3zY6VcntPB51SWWZ8/pZH9tvJGyeo5jazkBI1csBY9UaFVyWFaULz7tT0ob/DimffL8Oq3FpjSCWNhiNBCLX1Ppidec2Mx2lYsfHozR2aUeurr6LM/8/h6xJISiuVzrK64zDBSGT4jtnOXRvmlkMPN8Vqff44zTmupU6cL51C3OHlD3QxXFQtnqtgnb5oOp4PhyZum458XjIfTwfDPC8YjQebTFTs2LVG1B6pa8buPy3GgqhUfHWuQksgit08Hnx+tEx2ZR+s6o9QmaTescpM5XNuh6dKkg78B7ZBxM1VEo+7T6bIZTbG0y7UvVBbNhqBbAd1v/f4YdbnqO0ppxyrdRn+qSPZFV2ssXcvW33PuWLGwUP6WhVHPWf3ckdrtOyARP2NsKYDnIeTxf885/8/+/kwztk5fQBmUnqQb3yh13VQbltz9sE4D2sk4wtLqc6m3XjIet14yHgAw64m/Ixzh+Nnfj2J8VhKO1XkxPktIO5yS6pynmn1YuXYfmr0hrFy7D1+TevxKI9IzG47BH4rgmQ3H1OawFm8wan4ujcpXLpmirhpoRHb3VZM1A1ZokdTqkp3irkVFyPL0rsd/oaJWq2wd/f5Y7XL9vILnhY4+rTZmWaebGrOJ+hJmv+VITeFYxQWP+BljcQD+C8C1AKYBuJUxdq5tmueM3tg6VqL8FKnbr1gFcoKjaqXUPfwhQKGvu+KgjnVUbFjy68PdESTJtEOSy4HURLFjqYnx0nlAtXtOteDqZzZjz6kWLJosct+LJuciIU68X7HFo1NU++yyWcj0uPDssllRU6hK5OtKRqfg+VtmoyjHg+dvmY2frT+C8gYvfiYLvjS6pUPUKfSP0xWAWTRlFJGZ6fFfqOjMauSt358ffWUarizO+dxOYHpc6TYGKvo0+770OaNVmh70e2jnCFw4WN3XkYqBiPjnAzjBOa8AAMbYnwHcCOBwX39QX7B1aDEwwSmKqwlOhnFSKnm8HH7igJjw5QAwdXQaDtS0YeroNBytbUMwAihkE1q4pVIMi0ty8fquaiwuycXR2nYcqGlHoYzkV76+D5VNPqx8fR+ukRfQqNQEHK8XKYVuLgfHy7uQ2+nA4pJc7Hn0GgDARfnpmiLk0bMdqp0zPgMb718sv61xztQo2tY/blUGwaqOzEDkYGP9TH3XsREGWwOR1casWPbbjH7Zn4yawXaMBxsGIsefB4CGFtXyMQ0YY99mjO1ijO1qaGiI6YNiyeMrK4KkXs7DcZI2OS49MUoZszAnSbUiHeLCyiVTkC5PaMUq1Mux6Yl44EvFcDDggS8VY0ya6Iwdk+bGL26ZjSuLc/CLW2YDAObL1Mv8wkxN9N4jtxBUH6NWgT6SfPbrs1CU48GzX5+led3qm2fgyuIcrL55BgBr0bb+cSPlST3McuVm278QGGl5X7Pva/VYGK3gzCJvezLWwGEgIv7eSvBRxGDO+YsAXgSAuXPnWicOE1jN4xdlJ6G80Yei7CScbvED4Gqx9aGlJVj93lE8tLREnWQV7OZIS3RJXRwxTDc72Y3yBh+yk914aXslmr0hvLS9Ekunj8HLO05h6XQxTevpZTNVXvqT7xxGhANby5vwzNdnabRmaOQ4Rt4sxqQnaiiEta1+vL67Gl+YnA3AuJVfH1lpo3xyHHQRa39G21aGjNgYOohlCIr9uw8cBsLxVwOgv/Q4AGf644Osdt2elkXR080+XDE5BxvLGnDFJOFMt5Y3qc75+Vtm44E39uPpr83E917bAwBqV+zqm2eoDl2ghxOel5GontzUudK0iNkFQuUNKNLlskSxRtuItdB1oZbL9rJ86CMWJ25F5mGkrLouNAbC8X8KYDJjbAKAGgC3AHKayQXE2DShaz82zY02fwihYDfinXGaIeWAlrWSluRCQWYS0pJcuHxSFl7fXYPLJ4luWH20bMQJ13eiWskJ0zwp0NOub9Stqoeen29fWDb6Gn1587YZOf2PC+74Oedhxtj3APwdgs75B875oQu9H3EOptr/um0OVq7dh2eXzcK2iiZVmgDQslZoW/9FcpLWmPSkc/rcx9YdxJYTTQh1H8Qrdyz4/DfAmPLX4guq3a9m0BfY7AvLxmCGnQLqfwwIj59z/jcAf7uQn5mR6ESLP4yMRPGVadpmzvgMDQOG8shptKxv67fSrq/HtDFp2HKiCdPGpFl+j1G7frT+Te8wE+iyYWOwwU799T8Y70UDfbBh7ty5fNeuXef8vsKH3lX//6tbZuHBvxzAU/90UZQKpRmU4RMPX1vSJydjX6ZZ7JSNjYGCfe4NDTDGdnPO5+ofHzGSDW/urVFVJPUwa+/u60aQvqQKjjTaoY3BA5uKObQxYkTa9NICFOcrKmXDxkiDnS4c2hjWET+VTjCSHBAw1hm3IxsbNqJhrzaHNoZ1xD86xY2q1gBGp7ijIhStrrqxznhfTA2yYcOGjcGEYe346zu6VKtnClgdMN0XU4Ns2LBhYzBhWDv+3JQEVLUGkJuSEPVcX+co7ZynDRs2hgqGteNvk3IKiqXoa66wzT22YcPGUMGwLu4unT5aY23YsGHDxjB3/LfML0BRjge3zC8Y6F2xYcOGjUGDYe34n3m/TB3cbcOGDRs2BIa149cP7rZhw4YNG8O8uKsf3G3Dhg0bNoa547eZNjZs2LARjWGd6rFhw4YNG9GwHb8NGzZsjDDYjt+GDRs2Rhhsx2/Dhg0bIwy247dhw4aNEQbb8duwYcPGCIPt+G3YsGFjhGFIDFtnjDUAOBXj27MBNPbh7gxV2MehB/axELCPg8BwPg7jOec5+geHhOM/HzDGdvU2ZX6kwT4OPbCPhYB9HARG4nGwUz02bNiwMcJgO34bNmzYGGEYCY7/xYHegUEC+zj0wD4WAvZxEBhxx2HY5/ht2LBhw4YWIyHit2HDhg0bBLbjt2HDho0RhmHt+BljSxljZYyxE4yxhwZ6fy4UGGP5jLFNjLEjjLFDjLHvy8czGWMbGGPHpc0Y6H29EGCMxTHG9jLG3pF/j7jjwBhLZ4y9wRg7Ks+LS0focbhPXhMHGWN/Yoy5R+JxGLaOnzEWB+C/AFwLYBqAWxlj0wZ2ry4YwgDu55xPBbAAwL/J7/4QgI2c88kANsq/RwK+D+AI+XskHofnAaznnJcAmAlxPEbUcWCM5QG4B8BcznkpgDgAt2CEHQdgGDt+APMBnOCcV3DOgwD+DODGAd6nCwLOeS3nfI/8fwfERZ4H8f1fki97CcBNA7KDFxCMsXEArgPwe/LwiDoOjLFUAFcA+G8A4JwHOeetGGHHQcIJIJEx5gSQBOAMRuBxGM6OPw9AFfm7Wj42osAYKwQwG8BOAKM457WAuDkAyB3AXbtQeA7AgwAi5LGRdhwmAmgA8EeZ8vo9Y8yDEXYcOOc1AH4O4DSAWgBtnPP3McKOAzC8HT/r5bERxV1ljCUD+AuAeznn7QO9PxcajLGvAKjnnO8e6H0ZYDgBzAHwW875bABejIB0hh4yd38jgAkAxgLwMMa+ObB7NTAYzo6/GkA++XscxLJuRIAx5oJw+q9yzt+UD9cxxsbI58cAqB+o/btAuAzADYyxSohU31WMsVcw8o5DNYBqzvlO+fcbEDeCkXYcvgjgJOe8gXMeAvAmgIUYecdhWDv+TwFMZoxNYIzFQxRx3h7gfbogYIwxiHzuEc75s+SptwGskP9fAWDdhd63CwnO+cOc83Gc80KI3/9Dzvk3MfKOw1kAVYyxYvnQ1QAOY4QdB4gUzwLGWJK8Rq6GqH+NtOMwvDt3GWNfhsjxxgH4A+f8JwO7RxcGjLHLAfwDwGfoyW0/ApHnfx1AAcRFsIxz3jwgO3mBwRhbDODfOedfYYxlYYQdB8bYLIgCdzyACgC3QwR+I+04PA5gOQTzbS+AOwAkY6Qdh+Hs+G3YsGHDRjSGc6rHhg0bNmz0Atvx27Bhw8YIg+34bdiwYWOEwXb8NmzYsDHCYDt+GzZs2BhhsB2/DRv9BMbYLEkpPtf3bWaMjajh3zYuLGzHb8NG/2EWgHN2/DZs9Ddsx29jxIAx9k3G2CeMsX2Msd8xxi5hjB2QmuweqdNeyhhbzBj7mDH2v4yxw4yxFxhjDrmNaxhj2xljexhja6UeEhhj8xhj2xhj++VnpAF4AsBy+XnL5Wf8gTH2qRRLu1G+N5Ex9me5L2sAJA7YQbIxImA3cNkYEWCMTQXwFICbOechxthvAOwAMAWAG8LZVnPOfyq7fNdDzHE4Jf//OwCbIfRdruWcexljPwCQAOA/ARwFsJxz/qmUQfYB+CaE9vv35D6sBnCYc/4KYywdwCcQyql3AijlnP9/jLGLAOwBsIBzvqufD4uNEQrnQO+ADRsXCFcDuBjAp0KmBYkQYlxPQOg6BSCGdCj4hHNeAQCMsT8BuFy+ZhqArXIb8QC2AygGUMs5/xQAFCVU+RqKayBE4/5d/u2GkAm4AsAv5XsPMMYO9NWXtmGjN9iO38ZIAQPwEuf8Yc2DjI2G0GpxQThir3xKvxTmchsbOOe36rZxUS+vN9qHf+Kcl+ne39vn2bDRb7Bz/DZGCjYC+BpjLBdQ5+6OB/AigEcBvArgZ+T186WyqwNC1GsLRGroMsbYJLmNJMbYFIg0z1jG2Dz5eIqc8NQBIIVs8+8A7pbKkGCMzZaPfwzgG/KxUgAX9fm3t2GDwM7x2xgxYIwtB/AwRMATgpDfncU5v1nOaN4mn48A+A+IqVUzIBzzdznnEcbYVRA3iAS52R9xzt+WTv9XECkkP4T2ezyEs3cB+CmE/O9zEBrwDEClVAtNBPBHiDTSPgCTANxj5/ht9Bdsx2/Dhg5UwnmAd8WGjX6BneqxYcOGjREGO+K3YcOGjREGO+K3YcOGjREG2/HbsGHDxgiD7fht2LBhY4TBdvw2bNiwMcJgO34bNmzYGGH4/wFqu7nQgO1G6gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "visualize_model_preformance(dnn_model, x_valid_scaled, y_valid, s=1, name=\"DNN_tuned\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Random Forest\n", "ideas\n", "- look at parameter importance\n", "- grid search max_leaf_nodes and n_estimators\n" ] }, { "cell_type": "code", "execution_count": 260, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fitting 3 folds for each of 50 candidates, totalling 150 fits\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "[Parallel(n_jobs=4)]: Using backend LokyBackend with 4 concurrent workers.\n", "[Parallel(n_jobs=4)]: Done 33 tasks | elapsed: 139.2min\n", "[Parallel(n_jobs=4)]: Done 150 out of 150 | elapsed: 686.9min finished\n" ] }, { "data": { "text/plain": [ "RandomizedSearchCV(cv=3,\n", " estimator=Pipeline(steps=[('attribs_adder',\n", " ColumnDroper(columns_to_drop=['artists',\n", " 'id',\n", " 'name',\n", " 'release_date'])),\n", " ('std_scaler', StandardScaler()),\n", " ('reg', RandomForestRegressor())]),\n", " n_iter=50, n_jobs=4,\n", " param_distributions={'reg__bootstrap': [True, False],\n", " 'reg__max_depth': [10, 20, 30, 40, 50,\n", " 60, 70, 80, 90, 100,\n", " 110, None],\n", " 'reg__max_features': ['auto', 'sqrt'],\n", " 'reg__min_samples_leaf': [2, 3, 4],\n", " 'reg__min_samples_split': [2, 3, 4, 5,\n", " 6, 7, 8, 9],\n", " 'reg__n_estimators': [1000, 1100, 1200,\n", " 1300, 1400, 1500,\n", " 1600, 1700, 1800,\n", " 1900, 2000]},\n", " return_train_score=True, scoring='neg_mean_squared_error',\n", " verbose=2)" ] }, "execution_count": 260, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = Pipeline([('attribs_adder', ColumnDroper(['artists', 'id', 'name', 'release_date'])), # drops text inputs\n", " ('std_scaler', StandardScaler()), # scales data so it is consistant across parameters\n", " ('reg', RandomForestRegressor())\n", " ])\n", "\n", "# Number of trees in random forest\n", "n_estimators = list(range(1000,2001, 100))\n", "# Number of features to consider at every split\n", "max_features = ['auto', 'sqrt']\n", "# Maximum number of levels in tree\n", "max_depth = list(range(10, 111, 10))\n", "max_depth.append(None)\n", "# Minimum number of samples required to split a node\n", "min_samples_split = list(range(2,10))\n", "# Minimum number of samples required at each leaf node\n", "min_samples_leaf = list(range(2,5))\n", "# Method of selecting samples for training each tree\n", "bootstrap = [True, False]\n", "param_grid = {'reg__n_estimators': n_estimators,\n", " 'reg__max_features': max_features,\n", " 'reg__max_depth': max_depth,\n", " 'reg__min_samples_split': min_samples_split,\n", " 'reg__min_samples_leaf': min_samples_leaf,\n", " 'reg__bootstrap': bootstrap}\n", "grid_search = RandomizedSearchCV(model, param_grid, scoring=\"neg_mean_squared_error\", n_iter = 50, cv=3, return_train_score=True, verbose=2, n_jobs=4)\n", "grid_search.fit(x_train, y_train)" ] }, { "cell_type": "code", "execution_count": 261, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12.573040785166949 {'reg__n_estimators': 1000, 'reg__min_samples_split': 2, 'reg__min_samples_leaf': 4, 'reg__max_features': 'sqrt', 'reg__max_depth': None, 'reg__bootstrap': False}\n", "12.534620438361213 {'reg__n_estimators': 1600, 'reg__min_samples_split': 8, 'reg__min_samples_leaf': 2, 'reg__max_features': 'auto', 'reg__max_depth': 30, 'reg__bootstrap': True}\n", "12.5489233549215 {'reg__n_estimators': 1300, 'reg__min_samples_split': 9, 'reg__min_samples_leaf': 2, 'reg__max_features': 'sqrt', 'reg__max_depth': 40, 'reg__bootstrap': False}\n", "12.519919712047214 {'reg__n_estimators': 1800, 'reg__min_samples_split': 5, 'reg__min_samples_leaf': 2, 'reg__max_features': 'auto', 'reg__max_depth': 70, 'reg__bootstrap': True}\n", "12.573395583803112 {'reg__n_estimators': 1300, 'reg__min_samples_split': 8, 'reg__min_samples_leaf': 4, 'reg__max_features': 'sqrt', 'reg__max_depth': 70, 'reg__bootstrap': False}\n", "12.533363266862146 {'reg__n_estimators': 1000, 'reg__min_samples_split': 5, 'reg__min_samples_leaf': 4, 'reg__max_features': 'auto', 'reg__max_depth': 90, 'reg__bootstrap': True}\n", "12.573492713044157 {'reg__n_estimators': 1000, 'reg__min_samples_split': 9, 'reg__min_samples_leaf': 4, 'reg__max_features': 'sqrt', 'reg__max_depth': 30, 'reg__bootstrap': False}\n", "12.54480105722274 {'reg__n_estimators': 1500, 'reg__min_samples_split': 6, 'reg__min_samples_leaf': 3, 'reg__max_features': 'sqrt', 'reg__max_depth': 40, 'reg__bootstrap': False}\n", "12.530492307511164 {'reg__n_estimators': 1000, 'reg__min_samples_split': 3, 'reg__min_samples_leaf': 2, 'reg__max_features': 'sqrt', 'reg__max_depth': 50, 'reg__bootstrap': False}\n", "12.567356951792451 {'reg__n_estimators': 1300, 'reg__min_samples_split': 8, 'reg__min_samples_leaf': 4, 'reg__max_features': 'sqrt', 'reg__max_depth': 80, 'reg__bootstrap': False}\n", "12.57103454921842 {'reg__n_estimators': 2000, 'reg__min_samples_split': 5, 'reg__min_samples_leaf': 4, 'reg__max_features': 'sqrt', 'reg__max_depth': 60, 'reg__bootstrap': False}\n", "12.522457527937528 {'reg__n_estimators': 1500, 'reg__min_samples_split': 2, 'reg__min_samples_leaf': 3, 'reg__max_features': 'auto', 'reg__max_depth': None, 'reg__bootstrap': True}\n", "12.549730802077814 {'reg__n_estimators': 1800, 'reg__min_samples_split': 7, 'reg__min_samples_leaf': 3, 'reg__max_features': 'sqrt', 'reg__max_depth': 110, 'reg__bootstrap': False}\n", "12.530266662447321 {'reg__n_estimators': 2000, 'reg__min_samples_split': 5, 'reg__min_samples_leaf': 2, 'reg__max_features': 'sqrt', 'reg__max_depth': 110, 'reg__bootstrap': False}\n", "12.527109781738481 {'reg__n_estimators': 1600, 'reg__min_samples_split': 6, 'reg__min_samples_leaf': 2, 'reg__max_features': 'auto', 'reg__max_depth': 100, 'reg__bootstrap': True}\n", "12.53805088544878 {'reg__n_estimators': 1200, 'reg__min_samples_split': 9, 'reg__min_samples_leaf': 4, 'reg__max_features': 'auto', 'reg__max_depth': 40, 'reg__bootstrap': True}\n", "12.515744234868128 {'reg__n_estimators': 1100, 'reg__min_samples_split': 3, 'reg__min_samples_leaf': 2, 'reg__max_features': 'auto', 'reg__max_depth': 20, 'reg__bootstrap': True}\n", "12.549226075716307 {'reg__n_estimators': 1000, 'reg__min_samples_split': 3, 'reg__min_samples_leaf': 3, 'reg__max_features': 'sqrt', 'reg__max_depth': None, 'reg__bootstrap': False}\n", "12.53437279529851 {'reg__n_estimators': 1600, 'reg__min_samples_split': 8, 'reg__min_samples_leaf': 2, 'reg__max_features': 'auto', 'reg__max_depth': None, 'reg__bootstrap': True}\n", "12.531400924406004 {'reg__n_estimators': 1700, 'reg__min_samples_split': 3, 'reg__min_samples_leaf': 4, 'reg__max_features': 'auto', 'reg__max_depth': 70, 'reg__bootstrap': True}\n", "12.570592096610488 {'reg__n_estimators': 1700, 'reg__min_samples_split': 3, 'reg__min_samples_leaf': 4, 'reg__max_features': 'sqrt', 'reg__max_depth': 80, 'reg__bootstrap': False}\n", "12.530874112422502 {'reg__n_estimators': 1200, 'reg__min_samples_split': 7, 'reg__min_samples_leaf': 2, 'reg__max_features': 'auto', 'reg__max_depth': 100, 'reg__bootstrap': True}\n", "12.541013038658278 {'reg__n_estimators': 1100, 'reg__min_samples_split': 7, 'reg__min_samples_leaf': 2, 'reg__max_features': 'sqrt', 'reg__max_depth': 50, 'reg__bootstrap': False}\n", "12.547977214094809 {'reg__n_estimators': 1900, 'reg__min_samples_split': 9, 'reg__min_samples_leaf': 2, 'reg__max_features': 'sqrt', 'reg__max_depth': 70, 'reg__bootstrap': False}\n", "12.559666624448827 {'reg__n_estimators': 1800, 'reg__min_samples_split': 9, 'reg__min_samples_leaf': 3, 'reg__max_features': 'sqrt', 'reg__max_depth': None, 'reg__bootstrap': False}\n", "12.520470774542398 {'reg__n_estimators': 1300, 'reg__min_samples_split': 3, 'reg__min_samples_leaf': 2, 'reg__max_features': 'auto', 'reg__max_depth': 60, 'reg__bootstrap': True}\n", "12.571088079954842 {'reg__n_estimators': 1700, 'reg__min_samples_split': 2, 'reg__min_samples_leaf': 4, 'reg__max_features': 'sqrt', 'reg__max_depth': 90, 'reg__bootstrap': False}\n", "12.530193933061476 {'reg__n_estimators': 1800, 'reg__min_samples_split': 3, 'reg__min_samples_leaf': 2, 'reg__max_features': 'sqrt', 'reg__max_depth': 110, 'reg__bootstrap': False}\n", "12.552103794828792 {'reg__n_estimators': 1400, 'reg__min_samples_split': 9, 'reg__min_samples_leaf': 2, 'reg__max_features': 'sqrt', 'reg__max_depth': 40, 'reg__bootstrap': False}\n", "12.515744234868128\n" ] } ], "source": [ "cvres = grid_search.cv_results_\n", "for mean_score, params in zip(cvres[\"mean_test_score\"], cvres[\"params\"]):\n", " if np.sqrt(-mean_score) < 12.6:\n", " print(np.sqrt(-mean_score), params)\n", "print(np.sqrt(min(-cvres[\"mean_test_score\"])))" ] }, { "cell_type": "code", "execution_count": 262, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'reg__n_estimators': 1100,\n", " 'reg__min_samples_split': 3,\n", " 'reg__min_samples_leaf': 2,\n", " 'reg__max_features': 'auto',\n", " 'reg__max_depth': 20,\n", " 'reg__bootstrap': True}" ] }, "execution_count": 262, "metadata": {}, "output_type": "execute_result" } ], "source": [ "grid_search.best_params_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "best results so far\n", "- default: 12.594972524391357\n", "- 12.531446398819769 {'reg__n_estimators': 1300,\n", " 'reg__min_samples_split': 5,\n", " 'reg__min_samples_leaf': 4,\n", " 'reg__max_features': 'auto',\n", " 'reg__max_depth': 60,\n", " 'reg__bootstrap': True}\n", "- 12.515744234868128 {'reg__n_estimators': 1100,\n", " 'reg__min_samples_split': 3,\n", " 'reg__min_samples_leaf': 2,\n", " 'reg__max_features': 'auto',\n", " 'reg__max_depth': 20,\n", " 'reg__bootstrap': True}" ] }, { "cell_type": "code", "execution_count": 259, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scores: [12.59594617 12.49479531 12.5113109 ]\n", "Mean: 12.534017457713995\n", "Standard Deviation: 0.04430624607222727\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9rUlEQVR4nO29eZhV1ZU2/q471DxQVCHFTIGojIqigBBigholOCSx1WjUpmNMZ+gm6XTS2J9ptWMi3cmvW7s7xlbTfuaLJrE1jRHJYOgYxBkjgoCKMllQSFVRVdRcd9i/P87eh7X3rXM43Lq36lbd/T4Pz6LuPcM+556z9tpreBcJIWBhYWFhkT8IDfUALCwsLCwGF1bxW1hYWOQZrOK3sLCwyDNYxW9hYWGRZ7CK38LCwiLPYBW/hYWFRZ7BKn6LnAER3UFEPw2w3aeI6AMi6iCi+YMxtnwAEd1PRN8e6nFYZB+RoR6AhUUa+AGArwohnhqsExLRVAB7AUSFEPHBOq8fiOj/AqgXQtyWieMJIf4yE8exyH1Yi98ibRDRUBkOUwDsSGdHIgpneCxBzmkNLIucglX8FicFItpHRH9HRNsAdBLRbUT0PhG1E9FOIvoU2/bPiWgzEf2AiFqIaC8RXcq+ryOiP8p9nwVQc4JzFxJRB4AwgDeJ6H35+Uwieo6IWoloBxFdzvb5v0T0IyLaQESdAD5GROOJ6EkiapRj+mu2/XlEtIWIjhHRh0T0L/KrTVK2ShfTYp9x/jkRvUBE/0pERwHcIcf+AyI6II97PxEVs32+RUQNRHSIiG4mIkFEp/qc4xYA1wP4lhzP0/JzbT95/XfJ/19ARPVE9A0iOiLPtyrNbauJ6Gl5n14joruIaLP3r2eRS7CK3yIdfBbAJwGMAvAOgI8AqARwJ4CfEtE4tu1CuU0NgH8G8GMiIvndYwBel999B8BNficVQvQKIcrkn2cKIaYTURTA0wB+B+AUAH8F4FEiOp3teh2A7wIoB/Ci3P5NABMALAfwNSL6hNz2XgD3CiEqAEwH8Lj8fJmUo4QQZUKIl3zvkHPde+SYvgvgnwCcBuAsAKfKc/8DABDRJQD+BsCF8ruPnuDYEEI8AOBRAP8sx3PZifaRqIXzW00A8HkAPySiqjS2/SGATrnNTTjBb2eRW7CK3yId/JsQ4gMhRLcQ4r+FEIeEEEkhxC8A7AZwHtt2vxDiQSFEAsAjAMYBGEtEkwGcC+DbUqFvgqOQTxaLAJQBWCuE6BNC/C+A9XAmJ4WnhBAvCCGSAOYCGCOE+Ee5/R4ADwK4Vm4bA3AqEdUIITqEEC+nMSYAOCSE+HcZD+gB8AUAXxdCHBVCtAP4Hjvn1QAeFkLsEEJ0wZlAs4UYgH8UQsSEEBsAdAA4/WS2le6yzwC4XQjRJYTYCee3tRgmsIrfIh18oP5DRDcS0VbpZmkFMAe6y+aw+o9UaoCjqMcDaBFCdLJt96cxlvEAPpBKnR9nQn/jhRMfGK/GK8f89wDGyu8/D8cyf1u6MFamMSbznGMAlAB4nZ3zN/Jz9xo89s00mo3gdBec3+Nkth0DJzFksMZskWHYoJNFOhAAQERT4FjLywG8JIRIENFWAOSzr0IDgCoiKmXKf7I69kngEIBJRBRiyn8ygHfN8Up8AGCvEGJGfwcTQuwG8FkiCgH4NIAniKg6jXHx7ZsAdAOYLYQ42M+2DQAmsr8npXEOhS44k4xCLYD6gMcLikYAcThjVvc56JgtcgDW4rcYCErhKJ9GAJDBvzlBdhRC7AewBcCdRFRAREsBBPVTc7wCx9f8LSKKEtEF8jg/99j+VQDHZIC6mIjCRDSHiM6V1/A5IhojJ5FWuU9CXmMSwLSTHaA81oMA/pWITpHnmcDiCo8DWCWD1CWQvv8A+LCf8WwFcJ28rksQIF5wspBuu1/CCVqXENEZAG7M9Hkssger+C3ShvTt/n8AXoKjhOYCeOEkDnEdnCDoUQC3A/hJGmPoA3A5gEvhWNb3AbhRCPG2x/YJOBPDWXDy8psAPAQniAkAlwDYIbOH7gVwrRCiR7qpvgvgBemuWXSSQ/07AO8BeJmIjgH4PaRvXQjxawD/BuAPchsVOO49wTF/DGCWHM86+dlqeX2tcLJ+1vW758DxVTj37DCA/wfgZzjxeC1yBGQbsVhY5BaIaCaAtwAU5kqx2IlARP8EoFYIYbN7hgGsxW9hkQMgh4aiQKZL/hOAp3NZ6RPRGUQ0jxycByco/j9DPS6LYLCK3yLnQETXy6Ik819a1brZgCzA6m+M96d5yC/CiSO8Dyem8CV5nh0e57k+Q5eSLsrh+Pk74cQo/j8Ag0ahYTEwWFePhYWFRZ7BWvwWFhYWeYZhkcdfU1Mjpk6dOtTDsLCwsBhWeP3115uEEGPMz4eF4p86dSq2bNky1MOwsLCwGFYgon6r4a2rx8LCwiLPYBW/hYWFRZ7BKn4LCwuLPMOw8PH3h1gshvr6evT09Az1UIYURUVFmDhxIqLR6FAPxcLCYphg2Cr++vp6lJeXY+rUqTje1yO/IIRAc3Mz6uvrUVdXN9TDsbCwGCYYtq6enp4eVFdX563SBwAiQnV1dd6veiwsLE4Ow1bxA8hrpa9g74GFhcXJYlgrfgsLC4sRjQ9eBf7fpx2ZQVjFnyOYOnUqmpqaBryNhYXFCMJza4H3Nzoyg7CK38LCwiJXYFr4F6wBpi93ZAZhFf8AsG/fPpxxxhm4+eabMWfOHFx//fX4/e9/jyVLlmDGjBl49dVXcfToUVx55ZWYN28eFi1ahG3btgEAmpubcfHFF2P+/Pn44he/CM6S+tOf/hTnnXcezjrrLHzxi19EIpEYqku0sLAYTJgW/qTzgBt+6cgMwir+AeK9997D6tWrsW3bNrz99tt47LHHsHnzZvzgBz/A9773Pdx+++2YP38+tm3bhu9973u48UanNemdd96JpUuX4o033sDll1+OAwcOAAB27dqFX/ziF3jhhRewdetWhMNhPProo0N5iRYWFoOFLFn4JoZtHn86eH1/C+79/btYfeFpOGdKVUaOWVdXh7lz5wIAZs+ejeXLl4OIMHfuXOzbtw/79+/Hk08+CQD4+Mc/jubmZrS1tWHTpk345S9/CQD45Cc/iaoqZzwbN27E66+/jnPPPRcA0N3djVNOOSUjY7WwsMhBPHs78NJ/AIu/Clx0p2PhZxl5pfjv/f272LTbCY7+5PMLM3LMwsJC9/+hUMj9OxQKIR6PIxJJvcUqBbO/VEwhBG666SbcfffdGRmfhYVFjuOl/wCScUdedOegnDKvXD2rLzwNy2bUYPWFpw3aOZctW+a6ap577jnU1NSgoqJC+/zXv/41WlpaAADLly/HE088gSNHjgAAjh49iv37+2VWtbCwGK548gvAHZWOXPxVIBRx5CAhryz+c6ZUZczSD4o77rgDq1atwrx581BSUoJHHnkEAHD77bfjs5/9LM4++2x89KMfxeTJkwEAs2bNwl133YWLL74YyWQS0WgUP/zhDzFlypRBHbeFhUUWsf3x4/KOtkGz9BWGRc/dBQsWCLMRy65duzBz5swhGlFuwd4LC4scx5b/C2y8E1h+O7Dgzx1Lf/vjwNyrgc88mLXTEtHrQogF5ud55eqxsLCwGBJsvBPoPupIwFH2d7RlVen7wSp+CwsLi2zggY87fvwHPu5Y+sWjHZkDyCsfv4WFhcWg4dDrx+Ut/+u4eHIE1uK3sLCwyBQ45cL4c5zPlMwhWIvfwsLCIlNQlAuAY+XnKKzit7CwsEgX/zoXaDsAVE4Gvr79ONVClikXBgrr6kkTra2tuO+++7J+nnXr1mHnzp1ZP4+FhUUaaDugyyyRqmUaVvGniZNV/EIIJJPJkz6PVfwWFjmGO6qcbJ07qhxLHzguhwmsqydNrFmzBu+//z7OOussfOxjH8O2bdvQ0tKCWCyGu+66C1dccQX27duHSy+9FB/72Mfw0ksvYd26dfjJT36CRx99FJMmTUJNTQ3OOecc/O3f/i3ef/99fOUrX0FjYyNKSkrw4IMP4ujRo/jVr36FP/7xj7jrrrvw5JNPYvr06UN96RYWeY7kcfn17UM6knRhFX+aWLt2Ld566y1s3boV8XgcXV1dqKioQFNTExYtWoTLL78cAPDOO+/g4Ycfxn333YctW7bgySefxBtvvIF4PI6zzz4b55zjRPxvueUW3H///ZgxYwZeeeUVfPnLX8b//u//4vLLL8fKlStx1VVXDeXlWlhYuAjBUf7D12GSX4r/g1edqPsFazLqgxNC4O///u+xadMmhEIhHDx4EB9++CEAYMqUKVi0aBEAYPPmzbjiiitQXFwMALjssssAAB0dHXjxxRfxZ3/2Z+4xe3t7MzY+CwuLAeL7pwGdHwKlY4E7WoZ6NANGfil+nmqVQc7rRx99FI2NjXj99dcRjUYxdepU9PT0AABKS0vd7bx4kZLJJEaNGoWtW7dmbEwWFhYZROeHuhzmGL5rlXSQwe425eXlaG9vBwC0tbXhlFNOQTQaxR/+8AdPGuWlS5fi6aefRk9PDzo6OvDMM88AACoqKlBXV4f//u//BuBMEG+++WbKeSwsLAYJd1Qe/wc4lj6Xwxz5pfgzmGpVXV2NJUuWYM6cOdi6dSu2bNmCBQsW4NFHH8UZZ5zR7z7nnnsuLr/8cpx55pn49Kc/jQULFqCy0nmwHn30Ufz4xz/GmWeeidmzZ+Opp54CAFx77bX4/ve/j/nz5+P9998f8LgtLCzSwDffdUjVvvnuUI8kI8gqLTMRfR3AzQAEgO0AVgEoAfALAFMB7ANwtRDC12k2kmiZOzo6UFZWhq6uLixbtgwPPPAAzj777AEdc7jeCwuLnIKy7lM+bxvccWQQg07LTEQTAPw1gAVCiDkAwgCuBbAGwEYhxAwAG+XfeYNbbrkFZ511Fs4++2x85jOfGbDSt7CwyALuaDv+L8t4fX8LbvzxK3h9/+AFjbMd3I0AKCaiGBxL/xCAWwFcIL9/BMBzAP4uy+PIGTz22GNDPQQLCwsFLyvfwOv7W3Dv79/F6gtPwzlTqjI6hGz0Aj8Rsqb4hRAHiegHAA4A6AbwOyHE74horBCiQW7TQESn9Lc/Ed0C4BYAblvCfs7Rb8PyfMJw6KBmYTEs4GPdZ1M5qx7gg9kLPGuKn4iqAFwBoA5AK4D/JqLPBd1fCPEAgAcAx8dvfl9UVITm5mZUV1fnrfIXQqC5uRlFRUVDPRQLi+GDgFY+RzaV81D0As+mq+dCAHuFEI0AQES/BHA+gA+JaJy09scBOJLOwSdOnIj6+no0NjZmbsTDEEVFRZg4ceJQD8PCYthAACAlA/rwh0I5ZxPZVPwHACwiohI4rp7lALYA6ARwE4C1Uj6VzsGj0Sjq6uoyNFQLC4sRC27h39GGBICwABKkK8Bs+vFzDVnL6hFCvALgCQB/gpPKGYLjulkL4CIi2g3gIvm3hYWFxaDgzVX7cNPk3+HNVfu0z5Uf/97fj4xcfT9kNatHCHE7ALO7cC8c69/CwsIiO/Dx43u5bYYiyDpUyC+uHgsLixGDwK6ZPPXj+yG/KBssLCxyEukUMZmumcdeOYD5//g7PPbKgWwNc8TAWvwWFhZDjnTy5C+ZMw7bD7bhkjnjAABX/3ouPiuAxK+RVsWt3wpipAV+rcVvYWEx5Fh94WlYNqPmpPzrv3mrAS1dMfzmrQYADicMkSPTAV9BmCuQbAZ+RyJlw5BipM3SFhYjFUH96/yd/q8PLka4CEh8AABtUGWcJ1PO+dgrB/D9376Nb37iDG0FYa5Ashn4HVGUDbmAobihFhYW2cN3nt6BrfVtONYdwzr5mavE0nDv3L1hF9p747h7wy7MnzzKXUGYip5PTHzyATBg99CIomzIBeRTepaFRS4i06vuJ5o+iXAhkGgKfi6/MdRWFKK9MY7aikJNX/itQLhBeawnjq0ftOJYTxzrvrLEczs/w3OkUTYMOfIpPcvCIheRiVX3137+BtZtPYQrzxqPfxXSjy8A3Klb+F7n0lYJX12q7bP2qjO1SSHIGPkE8Z2ndzgf9kOWmAnDM1vu6hGt+C0sLIYWZuZNEJjK7gdvXYB/LQQSbwGJSP90C4C3ou3sS2iSIx3jkO/z7ctma26fgR7bRLbc1Tarx8LCImswM2+CwMygCUeklR/R6RbMbBilaE3LuLQwosmBZtHw/b3OmSmkk+0UBNbit7CwGDC8XBLpuDvMbJ0EnBRN0173s4Z5ts63V85KCcYOxIoezKSRbLmrreK3sLAYMLyUYTqKKwwnJVPl4//FpN9h0+4mLJtRgz0/fwP1Ld3Y09SJe6+dD6D/SeX7v30bLV0xfP+3b+Ohm87VvvOajHI5CyfTsK6eHMFQFHFYWGQKA3ZJ3FHp/ksIJ1aakPHSS+aMQ1VJFJfMGYeG1m4AQENrt6+b5ZufOANVJVF88xNnpLiO+H78vfvO+p3YtLsJ31m/03eo2XbvDAasxZ8jsDUHFsMJpnWcSZfEpRVPYXdjJ2aMKcWzAB7evActXTE8vHkPvvCRaXho817cvLTO10K/buFkXLfQadl6em05gP4tdP7edfbGNel3vcMd1uIfQnBrI1tBHAuLk0HQled3nt7hWMcqnTGDx161dBqqSqJYtXQaAODwsV5XXjS7FudPr8ZFs2sDk7T5Wejae6dSMvtJzRxpXP3W4h9CmFa+tfQthhrmM+lp6ao+1yfR7zplVWt0xlJ4/IcvoKUrhse3fIDrFk7GrStmuoFafozRpQWa5H59Ze2fFNg1mdc9Evz6HFbxDyFG2sNkMfxhPpNeLkgzU4Zn0ZxeW+5+987hdvfzwM+7YXl7uW2uvv9FAMDTbx7CPdfOxzULJuGhzXtxzYJJga+XF3dxmNedjisrKLXDUMAq/iGEF/9HLjwYFvkJU8EFVdZ3b9iJ9t4E7t6wE9NPKXdpDN4/0u5+/gZdg0cAJB4GcEcb4jiepskV0dXnTsb+o2/j6nP9rfbyoghau+MoL3L23tlwDPGkwM6GY4Gvlxd38Xx/87rTeT/55AEgp2J4VvHnCGxw1yIXEDRoaz6vlSUFaO/tRmVJATp7HOu5syeGUfLzUSUFCHfraZqXlutBXAVe9GW6bNY8uQ27j3Sgoa0HfXFnRaDkQFfQVy+YhP3Nnbh6waSU6/Z6P/0mhP7Gkyur+xEd3B3MFMmBnssGdy0GE17Pa9AgJk+xBIAa6WevKS3QfOV/6P4U9hZehz90fwoJyDRNeYw9zZ2aVDDfBT7Ww21OOufhtm5UlznnVDIdlBaEXelXZczHxMfjd794UDnXUkBHtMXvR86UaQzUYreEchaDCf68rr7wNNdq9XNxqP1WX3gaHt/ygRaA5e6Zf/7tLgBAY0eP1hxlnvgF2nsTKC8MYzuARNIZi5IK5rvwnfU7XdfRrStmuTGDx187gA9aulEtJx2+HY9B+Cnb/rh2lHL3Wvnc+ONXtHvH5XDBiFb86WQepIvh+gBY5Cf48+qXXbb6Z39CfWsP9jR2YNqYsuM+ayMAyyeCLX1XO9TJfTqpWm1lMdqPdKC2shgAECanSCt8gteT59efXluOuRMqcXptearSZmPyM8RMpc6/70+5m/sHpW/2O+dQY0Qrfu6zszh55NrDapEdcEXGs3OuWzgZh1p7AACHWntw72fP1rbnSpf79cMR6cuPAP903stuwdWq6lJ8/7dvY9WSOgBAJBRCIpFEJOTvce7ui7vSb5KaWlOKrfVtmFpTihsWT9XGyuE1KfBrz7Qhl2sxvBHt40+HGTBdjLQCD2BkXpOFA6/flufCA0BlSdSV3E/97I7DePH9Zjy74zAA4NftV2Bv4XX4dfsVji8fji//Jy/tQzwp8JOX9qW8j5OrS1zJi6/M+ENbd9yVfrGw9dsaXBm0aIufi1+73/7pFK/lWgxvRCt+MwCVTeTaD5sJjMRryleYypT/tnwS4Bw3ANAbS7iSK+cHn9+DeFLgwef3ANAbnV9V8wzqeh7DVTXPAKwTrvk8zR5f4co7n96Blq4Y7nx6R8qkdOuKmagqieLWFTN9r+nmpXWIhAg3L63z3Y4rdb9r90QaLmQb3B1E+KWFZRojMTg7Eq9pJCCoC45vxwOf676yRPttTZ81f1cmVJVg95EOTKgq0frTvlN4neu7d6mT1d9MMV48eyzWbT2Ei2ePTRnfU1sPuVKp0Fg8meJm4QVcV/7HZq3giidvXDS7FjsbjuGi2bXaecxr5/eFN4rh5/EDdyEPV3eotfiHEJaR0yIdcCvV7xnSLGcfHho/rFpS5/DmLKlDZbFjJ1YWRzQLH9AbpHx75Swsm1GDb6+chY27jgAANu46kuIiUSMRAG5ZNg2REOGWZdPwzuF2bD/YhncOt6cOiE0qZmctT3ZN49r5ONJxB/N9hqs7dEQr/sH08aeD4frQWAw+vAj9/J4hvt23L5vtKOPLZqds53cMnq3zXM+nsbfwOjzX82kk4jInXxJZclcGV9xhqWHCodQWiBH5XSQEjXzNjDNwFxOfVHgOPgA0tfe4kt+vlGtnk0c6xiHfx29/v0l5qI2+Ea34s2nxZ+KHsz50Cz94FQpxJev3jAf1K/NjmM81V6Zh1uh8cfETqOt9DIuLn0g5Hlfc7T3OzKAkh0rrrK0s1qxw09d+94ZdaOmK4e4Nu7T9rz53MqpKoi61w9HOmCu97hcAbfLwMg793m++j59x6TehDrXRN6J9/GaRSSZxMnnCXrA+dAs/mEVWXCo8/toB5xl/7YDvM+7HusmV1z2/fwdH2vvw9uFjePX/XITG9j4AQGN7HxIEhMNAIgGMKi5AY3sfRhWnVs2aZGkqnXPj20e07WpKC1Df0o2a0gJtNcBz9QGgtqIQ7Y1x1FYUav76zt64w9P/wl5ct3AyJowqwu7GTkwYVRQ4HdNrO7/3OygVg98YhrruZ0Qrfp5bnGn4/XDZzNkdrsEki5NHoEIhI8PEq9LWfF65Ar16wSQ3wKme2yNS4e8IXYtwxKmunRF7DCLu5Omc6hMz2Pj2EcSTAhvfPoJVS+pQXhTB5OpStHY7x1SSF2Apv39pQTil4n7V0mlO/v/SaXj8tQPueTl9AwBtOz8EoUMPqpj9jLd0vxsMjGjF3xNPajKT8Pvhsjmb51ohSK5gJEyI6XS1MosUOYlZaWFEy2bhx+JG0cMv7HUt5zFlBWjs6MMYyX8TDstirDAwoawY9S3dmFBVjNIiJ79fST52rpB5JlCHrMBtkpMKjwVok4AKzsrJjK9qTOZOVXAFQLsOCIHdjZ1oaO3G2qvOzCi3/kh4B0e0j7+1q0+Tg4Vs5uzauED/GGqfaSaQzjWYPuaDLV2u9Ap2AtAUN1fUL8Wvwt6i6/BS/CoAPAsfuPfa+Vg2owb3Xjtf85MDekbN9QunIBIiXL9wCmorCgHAlRx3b9gpffc7tXfGPDZf1fDrNV1C/Dp41641T7yJTbubsOaJNwPf16BB8+GKEa34l88cq8mhQKaj97lWCJIrGE4vo9czYQZqgzw75nVPqCpx5YdS+X14rDdFkV29YJITGF0wCbeumCULpGYhAkfJK1fA66v24cZJv8Prq/Zp5015Dpnr5+W9RxFPOpK3UbzirPEA4Eoe3PUDnwj8Mpr4dfCirwNHnQlBySATrN/zNBLewawqfiIaRURPENHbRLSLiBYT0WgiepaIdkuZtbv3O1lOrmQ6SEdxB6VtzeQ58x2D9TJm4rfxyjc3rXevZ8dvDGs/Mw/LZtRg7WfmISGVcUKIlEmFNzC/+tdz8afkn+HqX89FHE5evcrB4WPlmTfmGLSUSTYJcDfN0U5n5a0kHytHUKpj85quWzgZb/zDxW4hlvo/TykFgmX7+T1PI+H9zLbFfy+A3wghzgBwJoBdANYA2CiEmAFgo/w7K+iVvv3eAfj401HcfJ+gluhAJ4tcwUh4KfwQ9LfxvQ8egVHzWfF6dvgYzPFwv/ktH5FFUR+ZpmW4AcC+5i5XhnG8QcpVYzY4dAtjNgDQ0zmbpcJu7uzDmie3Oe6TJ7cB0BWlNgkwN415PV7Kdda4CkRChFnjHEqHL/10CzbtbsKXfrpF207z6fvc8xsXT0UkRLhRErfxCdZrn8CFccMUWQvuElEFgGUA/hwAhBB9APqI6AoAF8jNHgHwHIC/y8YYkkKX6SCdQBAvAw8avQ+SujccMBICX34I+tv43QceyPSjCPZ6dvgYlKJX1ivPodd6zxqTza7QZxGOOqmZnG7BzITj6ZwFEUeJ85iZ8qubrJ5q3IvqRuOtg21YVDc65Xq8AvKc2G3NipluhpGS5rmVNKkZFF7e0+y4nvY0p9w//jtdMmecew2/eavhpNI5hxuymdUzDUAjgIeJ6EwArwNYDWCsEKIBAIQQDUR0Sn87E9EtAG4BgMmT08vBr5EZCjUD6NCTTtpVOhxB6XB85yJGwkvhh6C/TdD7wLNwnv2bj2rfrd2wy82Bv2h2rdbAXFn1Zq3KNz9xhqu8vr1uOxICePD5PXj8L8/X0jw5dfKnap7B1vo2nDWxEm1SibZJxZ+UxApJCNy6YrZ77APNnXho815cv3AKAODOX72F3oTAnb96C8DxbJtfbPkA8aTAL+RKQ13PmhUzseaJN/vNvIlJSy3Wj8XGJwvelAUAmjp6NenCSHn14im6+ZHX3EnzoZvO9fz9hvP7qZBNxR8BcDaAvxJCvEJE9+Ik3DpCiAcAPAAACxYsSMtmH1XiKP5RJekr/nQQ9KX3s/aGK0bKdQwUfveBW6am1crx0Oa9iCcFHtq8FzsbjrkW6JZ9R9EVS+Ku9TswYZQTGFUWOs90GV3qPP+jSwtw5sNTtUbnCXG80TlXjE0djlWtZDREiCUEoiE9o6ahrcfN1V+zYib6ErL/bUJoKZzXL5zsFnP956Y9EAD+c9MerFkxEwdaZNC1pVu7J/ycADCm3CkWG1NekGLVc8PqqFT4Rzt6tXfLry8H/5144dlIf46z6eOvB1AvhHhF/v0EnIngQyIaBwBSHvHYf8AoLYxocrAQNNA4EnyF+YB0/MC+YG4XnvpoHm/lvHGu1AOSLMnSsGZ5ALYo6nDYFEXDDt0CHJcOAPxg4cuYEfsZfrDwZS3Dp7JY8u9LOVq2NRxdWuBOPJt2N2lpowAQkWxtkTBQFA3J84a0DB9OygYc77wVNlxMpk9+wqgSV/oVZfKMJh6UDsrZtbPhGOJJgZ0Nx1K+G2mxq6wpfiHEYQAfENHp8qPlAHYC+BWAm+RnNwF4Kltj4A90LmI4pSDmM7wm6KANOTjJGAAsmlaNSIiwaFo1Nu760LGcd32YcrwX3mty5T2/fxctXTHc8/t3XYrji2eP1bpTAdAbnXfIRucdn0IiIUnVZKfz9dsbEE8KrN/eoAVJOf8+ANTLDlz1rT04a2IlAOCsiZUYXebk5Ss5tbrMlZ29kn6hN6Ep6kKp6ZW8beVsVJVEcdvK2VpdgamAF9WNdu5X3Wjt+kxlzJlE+eQalLPLb7uRlp2X7ayevwLwKBFtA3AWgO8BWAvgIiLaDeAi+XdWkOvsnANNQczlB2skwXOCDtiQw2Sb/LF04fx4816t0IhnzQBAY8dxeaTd2e5Iey/++G4jAOCP7zZq2wC6sRMOS1K1MDBb/Ax1vY9htvgZAOCgdLMcbOn2dTdxVMhVQEVxFG0ywKskV7qlRZI1syis3aPbL5+DqpIobr98DgDdLcXHbd5vHidokzz8bd2xlImSp47yzKKgesAv2ycdIy0jGWBZQlYVvxBiqxBigRBinhDiSiFEixCiWQixXAgxQ8qj2Tp/0Jl+uCpQ6yoaWpgVpvw54v832SZ58PL6hZOlq2cymqWPWkmef14i3Scl0ZB2vHjSSVVW8upfz8WfEk5OPrfyS6S7U0nV5jYUguZu6oo5x1FylOTgH1Uc0ZRfu7TqleSrBp6v3y1XDt2xhJZbD0BLCfVTztcsmIRIiHDNgklokhNgU3tvysRr0j4r+CntoHTX6RhpQSeLoXiPRzRXD38YT4a5cLhgpGfQ5Aq8ng8zAMgDjxDCJRr79mWzNWqBMMEJrhLwjHS5PLO9AQXRELpiSRRIJV9dWoAj7X2oLi1w0yq7Y0nNUpb63pWcOvm8oifcoGhru6IvcSzmSCiERNJpdP7kn+oRTwo8+ad6hAAkcdwinDdxFDbtbsK8iaO0bKKzJla6mUAAsKexw5UyzotEEmiUdQBKcvBVhyriUoRtnKSNu8OqZaZedVlBStCW8/MHIWLr77ftL9sHSI8LKtMZYJnEiKZsMANQXkhnGZcLq4SgVojpYw6KXLjGoYB53Xzl6NcUnPuVufVpFjvxlPp6qfzqW7rR1iWbikvZIpV0S1dM48zhx6spd4KvSnIrv1Xy07d2xlICqyUFIVdyd9H0UxxfvZI8oHvXeqcv7l3rd+BQm6PIlXSVvZF/x2tpzOdwdGnUlXxSMS33gzLOcLC1B4UyYF0YDaesEjg/f9B32ms7893KplU+FBQQI1rx8yi/H/iNN19mL+XnF9jLNYVp+piDIp9cSX6V0zxXnis/k/yLKx7u4jB96KqOPAmgQLahKoiEILMXXRmTWjSWENo+3KB5qe8q7C28Di/1OaRqp8YfQ13vYzg1/phvPnyLO7noDVK0ACmAZTNqXMndQDzmAADlhWFXVpU4Cr2qJIqkPHcyKTRSNgAoLoi4kn/XI++dkrxJY5ucDNu6Yimu3HSaqgRVunyC8HLpDSeMaMVvPsRBYL70nsrPJ7CXawrT9DEHRT5lHfGJPCU2xEz0hNTAiaRuiQJ6cLHxmHRxHOvB9DHSipaSY9X5TuriqvOn+rbFDTFZWiTTlItSe99eKQnQlFTgytgPJg3C9oNtmlSIyNlJyYRU8Imk0NKo+UpD1dP0V1dTKT+rLClIiXXwCYfHRExFz383/g76GWlBV8N8gvCjzBgu8FX8RPQ3fv8Ga5Dp4p7fvyNT4N5J+c5rpg7Kl5JCHetzjKGGGVTjyIQ1NFyhvfQe1L+ATkB2iqQXPqWiMIX8i7souIW+td5RmkpGZTpjNExa6uL4UUUA4EoNzNfzUre08ruvSknTPK+uGlUlUZxXV63t3iFbHypJxmEVDkgOHyW5u2nGmFIAwIwxpaitdMaoJE/v5Bk/02ucfabXlKK91zmWktyy75N8Wn3xJKrlsZQcVRJxJW/yYr5n/HfTJm8fI81rNez3XvDz5tq7HhQnsvjL5b8FAL4EYIL895cAUjVejoFzfJg/pJcVYCo7L+XnpxT9XEcDRaaPN1CLJVeWuumMg7/0fCI3LX7+ewppjgshUjJbeIeppNwu2Y/5PkqmRSqpwHPmTcybUOlKnqbJXTsA8O1129HSFcO3123X9udMnQBcGpOasgItP9/MEuLglnynbKqiJJ9IeJbQ7sZOAMDuxk60SreSkkfkqujIsR7NdWTGI35803lYNqMGP77pPM3NxeMCgK6Q+SRg1vN4ZVwFJUrkz8NwNY58Fb8Q4k4hxJ0AagCcLYT4hhDiGwDOATBxMAaYKZgBtqA52ANFJpaC2WTuHKjFMphL3UwwJvqlWSqYFj9fGfCG3iaaZZC0uaNPcwmZOCot4qNdfVrw1A9PHP4k9hZehycOfzLFyufwCrIuPbVGk1xT72pwFOeuhvaU/XkaKV/R8JUAABxq7XYlz1TiMN1NYZlTGg6FtInDrBHgvy2P25lN2L0om/3orvlqmBuD6bDqDicETeecDIBT4/UBmJrx0WQY5YVhtPcmUF4YTlnC8lSwbLbt80vV4ud953C7xm7IkU3mzoFyknAm0mzjZBtgn+gYqy88zU2L5CmE375stnas2596C7GkwO1PvYVRJVF0xRIoLQyjN55w0zIBJyibFDI4K46nRZay5xCANimMKomgtSuOUSURtHfHPY/Hrfy63seOE+b7gKeNvnHAUUxKqvaHTYzxsi+RRCQExJOAjDlr/nW+opGX6CpsPmHwSYBfQ2lhBC1dMXflMLo0iq7WBEaXRrFy3hSXwO3wsR6s23rIbaDEJ8cnv3ScbG71z/6E9t44KmWtgVcD+VnjKvDi+80uzbPns5KGMThcU8GDKv7/B+BVIvofOL/3pwD8JGujyhD4UrwwrC9u+IPBKVhV8UamJgFTsXL6Wn7e7QfbXLeDqfjToXkeLKTDRJou/JR7OjnT/KXlL715LJ4dc0z6yI/1xJ1dxPFdVduHePK4QhTQA58mCsJhAHEUhMNICOfYSom+G74O4bCkTk7A/T/Hshk12LS7yc2+4fCy/tW4lFQGUllh2KVb6MfTo61o/DCtphS7GzsxTfr3dzd2YnpNqdsBq1FWK3PX1uTqUrcp+8MvOoHlX7/VgHswH6OKI2jtjrvFZAo8KwjwNpD+/L9eRTwp8OgrB7BmxUw8u+OwnAgOu/utvvA0fHvlLPf/QRX6cK2lCZTVI4T4LoBVAFoAtAJYJYT4XhbHlXGMkXnOSvKlIF/WBeVfSRc8bY2PwS/zJpepJzId3MpEsNk3156B3/8KmSlTURRJyfTgwdi4NNfjiaSvO4cHJMvksZXkaZtmWiQHt/Kvqn0Gdb2P4araZ7RtzKYlylKPhPSqWzMewV0r/DselAb0bCLFlhkNUcr7xM/L/frLZ45FJERYPnNsSvyAxxZuf+ottHTFnNVVXE60Un7rEqeN4rcumam5aXjKLKA/i/xZMfv+PvD8HsSTAg88v8ezG1rQ53pE+vgNlAA4JoS4F0A9EQXPkRwicPa/mnIn+0BJnput/XgBl3vp+vZ4n1HTWvbKvPF6CE0FNRT5xZl+8P189X7Xx//mQVvzxebH5+mX3J1w56+cXP07f+VM/p9fUodIiPD5JXWaFT2hyvktleTokMq0ozeRYil7NQh6L3Id9hZeh/ci1znnYL78HZKwbIfBHHn/JkeJ3b9pDwB91dHaLYOp3al+IeUeqSz2X/TziaBXXnxvQqBQ0nEqySdBntPPeXbM6+Z1D3xVdcsy2Tls2TQAuuHD3wUzFmAGexV4319Ap8LgObT82RiuCj0oAil+IrodTpesW+VHUQA/zdagMgX+kqakX3okTfulaXKYCiqoouW1BQO1ls1UtKHIL870BON3T/yuj//NV08mjS8/Pg9WcuuzV2oxJZ98Q1IavFGvjWeBVAoL+lEOvPjKz+XCwS18wCjGYsdLB4Wye5aSXpOCV5qnCe7HB3TXEU/N5Dw75kTJi+F4oRh3+wDelryKASjJ3wf+XJorZs4kylN1vYq0RiKC+vg/BWA+gD8BgBDiEBGVZ21UgwDe/o7Dz1fMg0emb8+r7ZsJ08o/2baMfHvebYmPhV9Ttn2P2Q5ued1zs+Wg2cFMrZxUj1lF++tlFe4/2qVJDt5+sKokgpauOKpKInhq6yEAwFNbD+Gea+endX3vRa9DOORYytyPn2kSrV7pNlHSC0SOLaQWvGUFYXT0JVypYE5mPJAcl9a74tdRcuXccXho816snOv8ZnyCbZATSENrN+5avxNdsQTuWr8zZQXMn4eNuz4EAFfyRip+CRFrPzPvhO/+lT98IdD7PFwR9PnqE0IIIhIAQESlWRxTVuCnoIJm9ZjKnR/Hr0EERzrBIK99rls4WXsxzElrMILAmQhu8ftv/k5e9/xeyU+vJlB+7TyAbhJ58RaByqIE9ElUbaN443l2WK/McumNJVPyzdNBOCSt/JCerbNvAMccCEx3zLhRxdh9pMOVXuhvVZMQenXzo6/sl0HW/VizYqbmHuL01AkZA1CSt6fs7oujvrUHexo7UFtZjPYjHa77lBd3LT/jFDeTh0/2PPceAK78j80aIZwLvzLqEYCgiv9xIvpPAKOI6AsA/gLAQ9kbVubhZ6FXFEUCZfX4KXfeSMIP6WTlDDSTx5zYMpm+moksI990VfYC+q24+Hd3rd/htiY8rbZC60nLWwR6MUeaxVd8n964TlvshWgIiCUdmYSj3JRv+b1I/9k6ZopkEBRHQ+iOJVEczQ77SipvzonBWyUCcNJfi8LolBlRKruJX69q0Xj9wslYv70B9S3dGFPhxOM411GXXHU0tPWk9BHm2/FJJhIOeWbMecX0vDwCIwVBs3p+AKd14pMATgfwD0KIf8vmwDINM1jDGzP78XBzcOVu+gB5bCAXSJz8ir6ynbl0svDz6/MAIC/CM102X/rp69i0uwlf+unrmgvhYKus9JSS+7C5n/uu9Tulv3knlE53pTxerL/0HQ/wY0RkoZKSXpW36awguuWJuk8wEXG6hZPBYVldq6QXeJbP1y88HVUlUXz9wtPRIrn5Wzr7Urj+r5B8QlecNR4v72l2WjTuaUaNpGpQklcCf+EjTuD3Cx+ZljKGW1fMQlVJFLeumKUlUZgZc/zd8IrpjfTgbiCLn4j+SQjxdwCe7eezYQlOosWtVj9Lkuf5mpzhHFp+OBDIB57pIjJfK3qQqpb94NVo/sYfv6LdLx4TOdDspAkeaO5M8QP3lxaZSALN0j+vJM9S4dzzZmogh1cWTlDw7DLAOyc/m+Aplia4K0uldioEDSrPrK1AY3sTZtZW4L7n3kNLVwz3PfeelmVkrk627DvqSpWL39mXSPHB8769676yBGtWzASQ+qxw1+fpteXaMXg/hKBc/SMZQV09F8HJ6uG4tJ/Phg/M6hsPeD4khvI8UXVtfxOJ2u9kCkaCwgx28mPyCSybVct+WPPEm9jd2ImG1m48+40L+h03oBevbdnXAiQSstQ/mH1cJJubFPXjCjFz1k98tPSwTVyLcKFS9G0Or06AytvBQmVJAdp7u1FZUoCO3u6TdjcBenWt2lc1WlHgQV9A9/+fqlYiQmgFVudMqdLcfTx+42ekcZhxouFadJVJ+Cp+IvoSgC8DmC775iqUA3gxmwPLNPgDc93CyagojqCxvQ8VxRHPatqffH6h50NiBg39FC3/P1fwx3ri7gOplppBuEGCKOqgvvd0JpxMTBY8mOf1wgJ6it7Fs8di3dZDuHj2WNRWFOGhzXtx4+KpAHTrnSty070wFDDTNHMNPKPGbzrlcQu/2xkOEeJJ4UqFhFw1KBmSmUAhAlpl3Ky1J4YHn9+DhAAefH4P1qyYiavPnYz9R9/G1edOxt0bdqK9N4G7N+zE9jsv8X63umPuityFnED4uzFUhs9Q40Q+/scAXAbgKSnVv3OEENdneWwZhUno1NmTcCVXLqa/2cvXZ+YGe23n27SZWTJBfYqZyM/nxwhaS5BporhbV8yU/li9GtMk0+NkYM9sc9Inn9l2COslEdh6SQTGrfeguejZBC/G8iNVyyY4wZofgtYZmLEPjjJZtFVWGEaB9GkVhAmFsqS3MBLC5dKnr2RERrsj4ZDGHTROUj0ryd81vo/fu8Ub1/NcfRPpkPuNBJyInbNNCLEPwL0Ajgoh9gsh9gOIEVHOO8Z4ublZqciLSXiRiamAvQK1QRu5m5Wj/Ph+D6QXMkGR4FUQ43sdAZkLg74gvFKZ30uzWxUHVzy8ZaEJ5dbpz70zWPCjTh4sZHO1Y06uvFL54tm1AICLZ9fi0jnO/y+dU4sdh2T1sZQV8l2sKI5olA/3fvZsLJtRg3s/ezYAnVpDWfDHumO+Stts5sLh1WDdD+kYO7k8WQT18f8IwNns785+Pss5cCuwprwI9a09LmUDDyB9Z/1ON3hkggdxK4qjWtCW55F7+e7NfGA/t0YQZCJ90usYvsteHxIzDjPW4cU+yt1rPBh4/cIpMq1vStrXFzTTJdPwStPMdfC0ytLCMDokYZsf/FxCf3y30ZVxuYzYuOuIm5evOPVVemdnTxxTa8qw+0gHptakdinj9Cpf+Mg0l8XzIjnB8HdOPXsTqkqw+0gHJlSVpLgz+4vHAf7PfzpxgVxm7gyq+EmI45UMQogkEWW6uDCr4AFNQFd+vsVXTOH5VY56+e4XTavGW4eOYdG06pTtgGAZPxxBqZzTgd+Dat4/L/B7xI9nso9y91qrdOccbOnGz7ccQDwp8PMtB9zsjeGCdKiTcw2qTkHJoFDVx+GQXkH75Bv1aO8FigpCKIxE0dXS7XbrKoyG0RVLojAaTjHEeDC2SdZZNLX34KLZtdjZcAwXza5NMUBM5Ww+r+b35jMKeL+P6cQFcjmIHHQtvIeI/pqIovLfagB7sjmwwYRf8RXP8+VuEdPH7+W75yRV5nYms2IQ8CWnXxP1dGoJTPcV3y+oS4hvx6/VzKXmf3Pr0ezSlMvwI1UbTuD3P11OoNGyZ+7okgIt/sJdM8VRZxWhJP9Oq8swVsmNktyusaNPe/6DPtd+XfX4M5ppt08u1wIEtdr/EsC/AbgNzvOxEcAt2RpUNuBnzZoZOhxeVADmbM6341V/3Co3t7v5kdfcSSGodWuuOvixva4XCLayMHmE+DEumTPOPZeZI+1l/fBrNblxXt3bjJauGF7d2xzounMR/ZGq5aqVz7l0TgYFYUJfQrjSC8dkMdyx7jh6paKub+l2q5XjSaE1cgGguW24EfPQTedqzxevg+DpvWZKsFc1ftDVdDo9HTKNwcoyCqT4hRBHAFybtVEMAswuPBzch+hHCsUfzjf+4WLtIfEqSOKEYYA+eZgka0Hgd2wOP7eUF/pbCit5w0OvuAVTC6ZWeU4qZtqswp1Pv4XeuMCdT7+F6xZOxjpJcKbkcIGXHz/X/Z5BM3dMcLqKqpIoWrpiqCqJIhZPuuRtABCT/vuY0cGF8/FwsjsAWLNipmvwTK4u9XwXbls5W0u3VsYJTwkGoK0U+LPrp0y9DEK/fbLZDGmw4gInyuP/lhDin4no39FPHEcI8ddZG1mGYRJEcexr7tAkB/8h/BS1XyUvhzl5ZLJrFVe6qkoRCN4ly4/MijsE/ArU+PXxlUFQdshch5cff9+QjmpwUFNWiJauGGrKCrFPVlEreoyBVjdz/OVPt6CxvQ+7Dh/Da//nIpxeW+5W3qrnevWFp+HZHYddfh9AX2n7VYP7cT4pDFVgdrDiAicyVHZJuSWroxgE8OpEE35+ZbMwSynOFIsgIA2C1+SRiSUeV7pzJ1SedJ9eXhxjThA3Lp7qFkz5FajxwB5/gYczhmu2TibAM37qJWV1/dGulHaSfDUAwP1/W1fMs/cwx90bdqG9N+5K4PjKwCsLZ2fDMcSTAjtlcxr+XK7dsMt1I5nPv2mk9afYs91L2ut9H6zWqr6KXwjxtJSPZH0kWYYZWOK48qzxWLf1EK48a3zKD+L1Q5iZB0GzXkwqZYV0LAzTrcInFW4ZmdfglXrqNzlyvhQ/cGpcvrQ3mScLw+RSH/em2VxksDASsnWC+vjNHr488NstM32640nMGFPq9tIFgIhsyxgJkdu316Su5g1aAP35ra0oRHtjHLUVhUi0JtEVS7qFZ1wJm3EnL+X80Oa9iCcFHtq8F2tWzNQp1FkDHi9ku5f0UKd6nsjV8zR86EuEEJdnfERZQqn0RSrJld8Ni6fiaGcfblg8NXBDFTPzYKAzdTpLPG7hqwmFP6RBcu2B4z763nhCk9oE4UGPrJbbNy+tw5oVM/F+o+Mue7+xQ1P2E6qKUd/S7RbO8TZ+uY6RYOVPG+PkyU8bk5onzzG6tECTXjBJ35pkQLepow8TRhWhqzWB0aVRgArc3/1DSYyoogCcPvvGxVOxt3kvls8ci/+UbSRVHQaPwV29YJKr7P2U881L69znMh1k2+If6lTPE7l6fiDlpwHU4ni7xc9imLk1TX5tL+Xn14BBY+rMAF930GIur2VhOsFhQH+o+crg6vsd+qWj8iVe/fM3UN/SjT1NnVg5d5xbj8CXytvq25AE8MAmh1elP1+vQOqkksvgrp1cJFXjCGrJr1riZM6sWpKqCEskkV1JNKQF3f26ip01sRJb69vclpWRMBBLOFIxbRYXRLT8/BseehmxhHCbtvPUUZ72XBAh9MYFCmSbSFXwdbClK6X/LtC/8uSB43SQbYt/sFw6XjgRZcMfhRB/BDBfCHGNEOJp+e86AN4RzByEmVPLc3a5lZMur0fQnGLeIJ0fz+/YXt/5NWj3g1mDoGBynXPyLh4c5zwokmLelV7gXCy5jlwnVeMImq3zI1kd/aPn3gPgEK0pGZTaQeprhAjYWt8G4LgcJd2Do0oKUFroKH4lFW5bORtVJVHcttJ5t0LygCFJl6JoUy6VVraSvFk9rzVJN0+er/693ttMUKPkMoIWcI0hIrfzARHVARiTnSFlB+YPzB+a9dscBbh+W4Pvw8QfOlMZBy3q8CKE83vQ0nkI/SYiXjjGx202ueYTASfH4i9i0OYhmWhTmE3kAqlaNqEokpX0I1zj4CRrfpk7nPTw6gWTnOY5CyZh9c/fwKbdTVj98zdSDJUx5YWu5I1YOOUDoPNqeRktJvyef97cx+u99dMDuczBExRBFf/XATxHRM8R0XMA/gDga9kaVDZgkqXxH2/lPMeyUNIL5jKTK+OgpG28YtVMn1QPmt8kle71cnDrna927t6wUzKYOvtcNLsW50+vxkWza7UqS7UEL4iQlqdtgluIuY5cIFULiqDso9yqr5TZNkp6HY8zawLAqvOnIhIirDp/qraP2VymUJ6sMBrS3hNzwvECD7h+9DTHplTySxeciqqSKL50wanae+angP0MMb/32AuZZqcdagQt4PoNEc0AoJzJbwshUmnv+gERheGkgx4UQqwkotEAfgFgKpw4wdVCiKxPnSYfD2/grJak+5q7AhM1mUqbP0w8f908Bg/Azr39N/2mTwatCfCFT6yCZ+88/abj0336zUMol2yJYfk283s0rtIhuVMSON660AuZzO3OBoZrmqbf6okH1LlV3yUzbbp6Uy9Qy7xhBVsAsHHXh06W1q4PtWOHQoREQrjuGk6fzd+TzbubPBu7HJXMmUc7ejGhqsT9fOOuDzX5+GsHnODuawdQURx13zOzdwaHn//fTNE+2b4V2Q78DgYCWfxEVALgmwC+KoR4E8BkIloZ8ByrcbweAADWANgohJgBh/phzUmMN30Yefac/pdPCuZs7sVXY/LkcMshaE9b3hfUb6zpgC9nTfDUVqXsy4sjaJN1DEq+d6TDlUrZKzkSMJys/KDgSpxb8iqxUkmVrrlsRk2K9c6xT+bu7zvapfXINfP4OVQHrWd3HPZdnihlP6GqRDNUeLzA2ff4+8At/nS4roD0VtD8/Q7qbsplBHX1PAygD8Bi+Xc9gLtOtBMRTQTwSQAPsY+vAKDqAh4BcGXAMWQUvIGzycDJl35eyzqTdExDQMW99jPzsGxGDdZ+Zp72uVcDaCC4fzHow8m7IkXkm69krvvl08FI8OWrIqmqftw2HPz3S0oFreTbsqju7cPHMLpMuvvKClImAUWrHE8I7GtyUjf3NR3P31fySjkpXHnWeDz4/B7EkwIPPr8Hl58pm6+cOT7l2dWef/bOFEnDREn+PvDnmrssTWTaHeNF7DZcEVTxTxdC/DOAGAAIIboRrMHRPQC+Bb0b3lghRIM8TgOAU/rbkYhuIaItRLSlsbEx4DB9YLg+eNUfj/JrLIHQZ3r+4JqBKv6g8QfVT1GnY3kEfaD9fKGtXX2u5BNgRL58SuZCJ6tMYyRY+b2xhCa9oCpkywvDKW63IzK76kh7n0uL3doVS8kSqpGTQk1ZAZpkNldTZ19KHn9tRREiIUJtRRFK5PtUIrNmAJzYN87eT7PmhoO/j54rZgRPiPB6PzP93uYagnJL9RFRMaQRQUTTAfj6+KUr6IgQ4nUiuuBkByaEeADAAwCwYMGCARudJvWyF3f3zY+8phVFeXF+KC5v5Sf08hte+R+bA/nreWzBr6rPj3yK//3wC3vR0hXDwy/sRXcs4ebjb/67j2vFNpxCl1dmAiPD4jdz8oeTL98LnMfeLwVTVdB29uPX5zB74XJw6/tIu/PKN7b3IkTOJKIC97xSVq0qOnsT6Ow9Htz90gWnevaw4O/n1QsmuT12ze2Oky0e9q1N4DDfE78e2wpDXVmbbQRV/LcD+A2ASUT0KIAlAP78BPssAXA5Ea0AUASggoh+CuBDIhonhGggonEAjqQ39JODSanALfvrFk52f1y/oiiudM0Hw1wpqHOZ5eFejVT4A+gXmPIjn+Jj4kUvSjmoNoVcofu1MBwJGE7UyUHBA6kmiiMhdMeTrgT05XZ/k/h0Rb8gJQdvYcjdReEQkEzApV0+f3o1Nu1uwvnTq7H9YCtauuKoLIkgEg6hsb0P1eUFWpBWtdzkE4GiRjeLp/h231633W3EvuTUGs8iKz+KZpMCGkh910ZCANcPJ1T8RBQCUAWnencRnJX/aiFEk99+QohbAdwqj3EBgL8VQnyOiL4P4CYAa6V8agDjTxuckAyAxnnjVRDFla6pnPnx5k8+TltsLlu9ulLxBzBopoH5cPIxrf75G263oy5DqfNKzWz0Yx1qDFfq5EygT+bV9hn5teU+BGncbWNWAvMWhgckI2eIALWIUN6ml95vcqU687GeOMZJN0xhJJwS++JUDBVFEVeJm881X71WlxXiSHsvqssK/WkPPCiaAd2483rXsl25O9Q4oY9fCJGEk83TLIR4Rgix/kRK/wRYC+AiItoN4CL5d9Zh5rVz/6BfJyteaevXkUoRm1WWFGj+RbMSmH/HA8RB/YZ8PGYAlx/DJMTiyGYT7lzASPDjB0XIkHMnVGpSwUzTVFQLSnphXGWRK/kzboKnjuoc/MfdQ7ywCwA6JQtnZ29cy9DhEwKgr17Hy/GMryzyfWf4e2duF6TifSQEcP0QNLj7LBH9LRFNIqLR6l/QkwghnhNCrJT/bxZCLBdCzJDSn+4xUzCCuzyjgJeLm+CTgl9wiqdIBlXinGecK3Q/eFX+muBL9HzASMjWSQdJQ2472KZJhbjUxkq+KakW3qxv04L4ZnBXrU437W5Ch2yO3tETTwn8K5dP2NAocdmYJZ5Mpih0/k4++soBmaFzIKXmplr26K0uK9QUeqYraP0Mu5FQrcsRdPX7F3Dcg182Pp/Wz7Y5iavPnawFjLhPnmf4mFTHHz1tDNZtPYSPnjYG59VVB/L78WM8vuUDje3TixzObEbuhaDEbEtOdeh1lRzpGAnUydmEqdD7C9wLANEQIZY8TqTGURAhdMWOS77/6JICNHb0udI9JrO3TIXOkwmKoiGnKXs0lJKIUV1agA9aulFdWqC5Zi76lz+6BYbP/s1HtbGmE5z122ekBXuDWvyzAPwQwJsAtgL4dwCpLGY5DNPa4PQE3HI2aQs4bwh3rZgWAPfla64jY6XB0yz5ec0ydQ6vNFI/GopX9ji9bJUc6cgnK98P6VRLK977kmgIs8c7xVBKcsue99WdOMpxuSjZKik9Wrtj2j63SL6nWz4yDT1S0SvZJtOK27r60CN9RT2xZEodC7fy127YhVP/fgPWbtilFWEC+vOfjqvGj3bF63jDdSUQVPE/AmAmnIbr/y7/P6yas3B/IgCNdIwv60w/JlfIfiRt/OHkriPTx+9VWGUSU3F4VQKbFhQnxBpOfPfpgLt2gJHvy88meMzHZN08U8YAzpxYiRpJqlZTXphSyc0plvlqYs2KmXjveyuwZsVMHJG9cZVcPnOsK69fOFnWk0xOyZDjeEAWhz3w/B7cumIWqkqiuHWFM0Hw94S/00HdqH6GnZf7drjy9gR19ZwuhDiT/f0HInozGwPKFrpl+oGSvGiFw5wgOG/I0c6+QFzgvFvVRbNrte/4fjzljLtwUhqWe1QCm3n3h2T2zqERmprJMZyok3MRo0oiaO2Ku1LBzOrZLmMF2w+2ufQefYmEb5YQh9ZzguSUQIoH6Igrp48pddk5fyFX58rt+bWfv4EPWrqxt6lTW03wGJnz4fH3hJ/XbFjkBb907SD7DCcEVfxvENEiIcTLAEBECwG8kL1hZR6cEAoACiIh9MaTKIiEtIfEzJGurSxG+5EO1FYW+5I7ab575t4xHyC+H7fY+UNsFpFdvWCSm+PMx6oapihZKfueKjnSkM9pmukgBLj9bqOs1SUAlBU4Cl9Jd5+Qc09Vf4V+yfm64iiUK+a+uP+KkhMOjikvQn1LN8aUO+4h3m6R17vwvs0AcEj2hTjU2q2x0JnvFq/V4d8FjYv5pWsH2edkkIke2wNB0HdmIYAbiUitlSYD2EVE2wEIIcQ8711zE5fOqcW6rYdw6ZxazfI2LR7eQcjvR/aqBFbL1v78hjyI5feg8sIXELljnVBVLHOsndRUM3NjpMErgLtvSEeVu+AZPwlpjCipArCNHX1aFa5qkKbklz82A9//7dv48sdm4O//Z7t77HAIACvg4sydY8qdXPtTygs1mgez7/Xaq8503xPlxiwtCKc0Ub/sTKcn9mVnjsevJJusEKnvnJ/i1lYGAeD3rmdCaQ91sDioj/8SAHUAPir/1QFYAWAlgMuyM7TMwsxd16hfmYVucsj78eRz8O34/02fPj8GD2Lx+IG5hNWqf9lYzUCcRjw3QpCvaZqZhirncMs6mCOeB4TNbB9udBTKPgyFEcKNix2e/hsXTwUAFMgZoCAcwo8+dw6WzajBjz53jpbHbxYz8veEx8LMvr87Dh1zJQ8W+6VN8++CsuUGRSb8+kNdJxBI8Qsh9vv9y/YgM4FimbmgJA/i8ocuKp3G0X6cx2ueeBObdjdhzRPBwxtmpoBXAIpPEOaDyl+YqZINcWpNqdYfFQA2vn3E4U5/e1BYMAYF+VSMNZiYXF3iSp6DbzJ/7pe0zPuPdqFXunV64yLFKj+lotCV/LnmefyLplUjEiIsmladMh6+D+8RAegFXGaXuEDIAM05RyaU9lATvQW1+Ic95PPnyhppTSipcPHssZrkOCyzEZQMgpQsHiMA1V/6mcnvwyemp6SSV5KDvyDDFWa2jrXy/WGuULmBw1MuzQIrXsAYks9kiCiFbpzHvHjap8mFL+RKVAihPddCvm8iCa2hugm+Dy/YAnTefr8qe6/j+dGcB9nfxFAr7UwgbxR/WL4ZSvJGJdyS55kGgP4ALJ/pMEgvn3lK4BQx0zrgDyFfMvqlsHHwpbiZS11WFNHkcER/pGr5YuWPkRTISgZBtTRclOT58Dzlslx2mSsvTH02VLFWNEQp9S6jZCbPqOIIuuWxu2PJFCXeJnP827rj2op1+hjJ2z+m1LeHBX8HC2SfXyX5JOXbB4OBv1vZpD8frhi+GuIksWCqQ5y2YKrz43NLnFvylcURtPfGUSkfeB74ff+Io5Q37voQf3y3MVCKWNCAMM/kmTLasXCUi4ePgVdWNrQ5L7aS/OUbTrDZOg54wBXQA6Y8d4YzcJrUy9wwiIYJsYRANEw4JukWlFz98zdcqu7bVs52kwnue+49AECTzH6bWlOGrR+0YmpNGXYdOobeRBIF4ZBW0Q4At66YqVWrOxdAGgGcHwEifwdVVy+VrcbfoXOmVAUiTfPLyvEKzvLPh2uaZlDkjcX/4vvNmuQBpFtXzJSFIDNRI1PNlGxq73Elbwnnx+/jt0z0ihNwS8Zsm/iO9KO+03AMY6UvdWxFISqKHT+skjEZuYv1Q8yWyxiJfvygTWx4Q3STOG1MeYErVRpmYZi0+o0JcrWn5Clyn1PKC7BY+tIXT6tOWRnwJug8maDxmPO8K8lXqJfOdWpSLp1bi19vd1yXSvKKcr6P3yqGr5p5AZd5TenAz8rn1rxXE/WR4M7xQ94o/jky80VJHkDiD77pD+RWNH95zOAWf4j9loncsuHb8TFo6ZvQC7W4/79LFpkpaRJ25TKGa7aOX39aDj/lxdsU8t+MB1IBSWUs5UzpS59p9JddPnMsIiFyq2DHS9bZ8ZXFeOE9J13whfeaUChTKJXkWThrntzmGCNPbkNYJvAryV2QvLrcZPv0Mnbuv2EBls2owf03LEjZhvvrX97T7BZwrb3qTMe1c9WZMJEJigTufuXv4FBn2gwm8kbx8wpEABg/qtiV/ME3Z3q+GuBBVvMhCcqayS0bHiDjDyDPfQZ0Xz4Ptg0nRW9isKz8TLSP5MreJDvj4P5wL158AFo7Qp50YPI18RaZnEqhqsQ5T1VJJKXvLH9Gy2Wsp7woklLAuGqJk465aslULSngtpUODcJt0vDhzzVflZoTG1/JemWumdxSmr+eJT2kY637wYzHefXPHelWPkfeKP4K+VIqec+187FsRg3uuXa+RvZkPkx8CeuVqw+coPk6A0+55AEyPgmYFblevvukzKRQMpcxVNk6mWgf6afsOdql/7y9J661tzTB3SwRGViNhEivLYFel8FXCd/8xEz5rM1ERM5KSnILXVXV9sUFRssMGSV5y02eNWPWkPDnmr8LK+eNRyREWDnPGddBGUg+2NrjnT5pEBZ6uYdMeGW/mROJF/wygfJJ2XPkjeLv6k1q8tkdh/Hi+814dsdhjSwq6MNkgj/Efq4e1cXoQHOnG8SdMroEP3nJsdx+8tJ+lEr+EyWLpCNYSQXe8CLXkYvZOnwlxf3p6YJPENXSp11dVpCy6uC/J4/Z8BgSADz5p3rEkwJP/qkeNyyeimUzanDD4qlaYgJnzAR01llulddIha8kb7m5akkdqkqiWLWkLuX5T+HDkTCzevj1ciWupVUahIWcaTOola9tZ0wkXjCNsoG6i4YrIydH3ih+c+nNm0N7VfGmCz96V24N8eV7r6yR740nUjI1gjbNzmVkwsJPx23jtw9Pd+TbjZKuFCX/cplTLfqXy6YhKi3raJi0vPYUsKXGFdJaV1KrImfPg7k64Vk+XPnx1eEXZCXrFz7itMbgneVWLZ3mKPSl01Isan69Wq2J8fxztw13mZjKlMe/vKpmTeXO30E/8OvlStevIIzD7LgVpJLXT7mPhFTPvFH85ku1ct44V3KKZtMq8XoAzM/5317Uy4DucuJFNdxaLC2SFr+HVFDMiCdiSBwqcPdOuhY+V7TpuG389uH3j7tmviVdKd/6xEwA0KpFx1Y4VvTYiqIUGhCeodMsj9fc0YejMlajZJk8b1lhWHPrfSgzaZTkypm7OLhf36xk5dY7z8k360QUv9OEqmLNUDEzyprlmJs7+7TVhKlMzf1c+FTNnj+9WpNe4KsLrnTN+EZgBKjk9VPuIyEInDeK31SS/GX0omgGvK0Dc0nMt+MPhhlY6pFZOT19CYyTSmRcRRFmyEKXGWNK0dkjLXwpWztjmlRolyuA9hxdCfhRJ3NrWdbpuJJjqlRoU0+mRN8H3KXTIym6e2IJ1EhXRU1ZAe75/bto6YrhHvnScx8xJxozLf6x0toeW1msuetM7hke0OXumISc/ZU0VwoKxQURV9613lHGd8nnkBsdPBX57g27pNLeBQC4V8a47r12Pu77w260dMVw3x92477n3nP+L/P5eQtP0xXFwc/Ln/lFdaMdq7xudIqx9MaBVk16ga8u+LvFVzcm/Cz2IJW8fsp9JMQF8kbxmw1W+A/LA2QpPn4PigWzCYpXVoIZWOLxBL7P3mYns2Jvc1dKxkRMFrTETqat0hAhaJrmgqmjXZlCIMbQ2NGjSS+Y1AVeKJIpkkWRsNYgnHs4jkhiMSW9Ave8khXQ+y53yQm+qy+Rwj3DJwXujrlcKngld8gMtB0H2zQLtLvP8ed398WRkJwISvLnurFduora+1ArYwlKcvBCQI0CGTpdAnfnmIqVrxr4yoBb5aYV7TUm01jySrDgFb0m/Cz2IIp7JCh3P+SN4jcLU/jSd6zsLDS2vDClEcvVCyY5S9gFk7SHyewL6mVF8AAuoHfaapQWWWN7j0aOZeZmDydwK//0hOPeOT2R6t55XlLSPr+7SXNpqAdSScUV39oV1wqceKES4B2a4a4i5zh9mlTgrh6T14YHOBukQmxo7U6hFuCD4L730XI1oSSnVeDumH1y8nfl0eOSK1ae7TN5tLMSUpIjLieDuEim5MbzFGY+VlWxriRXrtwNaipWbvFzI4tb5aYVzcfEJxLTWOITAf+/n3IeCe6YbCJvFL+Z837X+h1yibxDWzqb1LH8geYvn6novbh2zFZ2cydUujIul/TxhNACeTzDB0CKIhoKeAVJ/dI0/fq/ct87/7/5O3Eq4Hc/7AAAvPthB8aPciZSJfkxeN4998kDeookdzFxty8vggJ0JdkhLfmOvgRuv2w2qkqiuF3Gg7gxcNHsWpw/vRoXza7VVhmAXhuizVjG7MXbGfLnkBcPmlYvz6fnLiXz+eQpzHys/JkEvC1fM4GBK9pieWOLIyEt5uAHPpGYKyy+gghK0jbSLfaBIm/oUKIhyVsifQE8FdKkPd5a3+bSH88aV4EX32/GrHEVKUFb9SKdM6UKd2/YifbeBO7esBOn15a7lYBmizpeTemVHx6TvhEl+Vi9+FuyDa8gaX9pmjCogk40zkiIEE8KV3JwKuCS6PFR8K5kJsaPKsYHLd1ukR5wfMLiFaIF4RDiSYd7RlnhEI4r44OWbkZvcLzAaeIopxPVxFFFKamOfEy80QYP9ALQOGv4s/LsjsN469AxN0uF8zJx7hiVijxrXEUKFxTPp68pL0Bjex9qygtw94ZdaO+N4+4Nu3Ddwsm4dcUstyiLc0Fdv3AKHtq8t9+eDny7zt44WrpiePiFvZoLBtAnQLMKXXXjWvfVpdo9MrvbcT4e3gVv1ZI6d9xBG6IMVberoe6y5Ye8sfjNxhGcj5wvYU1/7MMvOClnD7+wV7NyTMuDL2+59cKLaACk8Oso8KpPv4rcTBQkDRTp0C2YPnjVuq8wHEKZzFYqKwqncLvwwqWLZf/ii2fX4uEX9rqKB9CD90VRVf8QTnXtMNOexxlukSmbtyyblpKhwv3c3B9uBv69VodmVhZ3V3BL3MyN570XOPh2pq+du5VGFctgbHFBiguHT1o8XmVSkWhgKxK+YgD0YCp3j2pLKSObJmjVLF/V+NXLeAV0g26X6fz8XE77zBvFzy09QH+Y+ENn+mN5YJX7Y83yeg7+0sfkelvJNpk51NYV05RcqyzAae2O53xhVjp0CzxrBoBG+NUm/fhtXXFNyQLAeXXVqCqJ4ry6aq3eYl+TUwinpNZ9jCkosysZV0p89cXdHebKjj8rnOrD7JvAf3f+rHTKil4lueuCZ+WYLg6vwipOEGhOPjzAzIPA3J0J6Flp3EL3841zA+nWFbOku8pxdfJx8PvHXaLp8OL7wRyrl6INul06dBAnM75cQt64esyX1AujiqJobO/DKPkyXC77fV5+5nhs2XcUgJMexymaAWgt5viDb/q5uTU/qqQAjR19GFVSgLbuGPoSAgVhQjwh3CbZ2QDvK8zdTAVhcsdgwpM6OeRk4/SXisnRLe+7kuu3HXJlRNIHR8KEqdUlDg2wXJHdtX4HumJJ3LV+B6rLCtHe241RJY4rBjg+MfPsETe9jyjFgn148x5npbB5D6rLCnCkvQ/VZQWa24G79wCdFviea+f32ycW0C1+niRQXVaIrpZut7FIUYHj/isqCLspxLFkMoW2WJ88jlvlmhFjWNFc2X8on8kP23sxe1yhNlY+vlVL6jzdZl5Iqehl4zDdNtwVxf/PG7Gv++pS93PTReLVn9Y8theVctDt+OeZ6ImbbiP2wUDeWPwmuMXDZ3fOhAlAsyw5Z45pQfFG5zxv28w+4djX1OFKznaYbfI1r9iCybjI4WXl+xU684Dw9DFlAJM8hZNnNJmuNo0GwaAW5uDZI6Wy2UhpYSQlh/6AnDAOtHSjUk7ulUVRzVr3Kwziq0OzcpQfo1vWCHTHEinj5jUkIXmXQv3UFmsZZh4uE82tAp3XiQdqzcJEDq3tp5HO7MU6a1rNPF/fCylWtEchlXnsoJZz0ICu13Ze5G0jEXmj+LklBOgBu9U/fwObdjdh9c/fQJv0BSvJVwo879g8HrfseS/cM2odq1FJDp5HnglkgomSw8uXz89z2ZmOD15JnlHD4xFmdhNP22yRhWktnTEUS4tUSZ6OyZUXr34FdLcIdymYE0lS/lDJpNAmea90RMDb92v65Hkgk7NhmjED7srjsSY/8GIzruzNjlk8Yygorz2nRDDrU7hbiitDM6vHq7qWw/zcy/Xjp3QHiydnpGcF5Y3iN/vl8kwLXrSiFVgBmr+YdxMyLVjOssihlotKZhOnyupfJRXSTQf1svJ5oHaLfAGVNCcCBTM/n1MGqEyeeFKk8BJ1GFKhVyptJc3sEQXukwf0iYRP8l7piIDuv+aKx/TJc3oDzoZpxgx4wJrHD8zCJZ5txitovapzAYMs8LNnO9W5nz07JRbAj61NYIYVzidirgzN+83vhdmPV8FU6EEsbwC+Kw2OoJPCSCBZGyjyRvFz5QLoioe/BGbPXf4i8BJ904KtrSzSpELQxh2ZAJ+YuKINGix+r0ha+EX+1Mnc/cIphgHgdzsOa1LBzEbimTe8QbjZG5lb9twNwXPcAWi/E9+O028DesUwD/xqysZ0QXgc2wTPIOJsmKYirK0oQiREqK0o0s7La0sAPZjKG6lwBWpSdnOl5ndN/Ng8WGyuZM3YjAvjeHzC8WuqHgSmYubX67caCJpFk8vZNoOFvFH8phXHFQJ355gUyPxF6JHWZU88mZKeWCSPW2REOYNyuWcC3AWTTpwgDGnhy781K19+Zj4wqeml/TucJsqJVsnW7j5XcrIzIVdYSnJfOXfP8cIuwPAxs1WaWbi0Wa68Nu9u0jjpOdq6+zTJXRLcFWKm9PKJhO9jKsIHn9+DeFLgwef3GErO21l3rDvmSk4prhWDQS8280yxhG5V82DxUel2U5Jn7/gdj8OL4sJcdQRNv/Trg8ER1C8/0v33QZA3it+vIxJ3B/ByekCnxuV+fNMYbJUKQcmhwEBz/BNxaeHLAiy+Wgk6kdy4eIqsl5iiKfsvXXAqqkqi+NIFpwKAxiPD3S9mFhRfrfDfYmGdE1BV8tFXDsiA7AEt6Goq56icmKORkEa/wN0sZhMVrmh56qOp4F7ee9RRoHuPavfE3G6cXBWOqyzSlJzZ/Yp/x2kV+MRhupH4Cozv78cYyx9mzqsPePeZMI/HlbgXh7/50gRNvwyKgQZ38wl5o/hN3zO3PlbOHed0E5o7TmuNCHh3uTLdJ1yRDSf4USens1rhVvSXpbL/8gWn4keS9fFHkvWR45Nzx7nSLDTy4rznOfh8+8riCB5+cZ9TdPfiPo0iA4BGs8CfCT5BmFk4D0hF+8Dze3wtXb7S8HMncN87D5KaCpMrwDUrZuK9763AmhUzMU4aKuNGFafEkAqi5Ep+bDMYqzVIYasT03jg2/FjmO4r7gLzunYzmOul4IdKMeeT7z9vFL/Jic7dOzx9z8z75lkgQRkghxP8qJPT4fvnnZ04xa8ZC+DghVkm46XJea9gZv/UlBe5sk+65PriSY0MzgRnv+QFeSb9MHfAcEuXZ7wA8OzJbK46uGLjFch+Lg4trZJRKnM6bwBol77+9u64NlZevwDAs0GK2ZvXy8o3+aT4pOcV3DUVOv87F5RuPvn+s6b4iWgSEf2BiHYR0Q4iWi0/H01EzxLRbikHZVo3LR7OjMlf9BTudOZ68CMdG04ISrngxfevCrwKwqQxZprg2VJmb1iOsPwsHCbEpNKO9cPRzBUwpz0G9IpczrlvWrBcWfNMLz758GcDACKhkCv5c+THB8+VGg+eArplqaUVGxYw386cZBSapCGj5JJTa1zJj6f1xAU0twufVMzevN6BVf3O8kkvneBuOlWzmZ4s8sn3n02LPw7gG0KImQAWAfgKEc0CsAbARiHEDAAb5d9Zh5l+xikS+NJ+/TbHZ6lkLnDjZBrpUC5wJkvu/tpxSFrNUnLwbmN+xWGcetmMJfDz8kws0yXEm4lUSo6ayuKClDaKXFnPnzwKAFzpjoc9G4Cea8/z5k1mTC+L0VxF8gAsV7R+aYxeXFCmK+uNAy2u1KhISp3YhJLc7cInlRr5LijpFVi9beVsGY9wCsJ4EN0ruOsHrnSDpmwGaaF4Msgn33/WFL8QokEI8Sf5/3YAuwBMAHAFgEfkZo8AuDJbY+DgOdYAsGxGjSt5MJC3ZBwp8KNODooCWQTgMFo6n8WT/kVoPCffTGvlpHR+hWdlRRFXLpAv5IIpVSlNxg9J8rRDbT2a22Gq5KlXkitrHifgqxtzFcP34Vk9ZsaQV69l83NOcMa5dUzw/fh2XEm++L7DPaWkV5css9Kco0i6y4oKwr4Vvhxm60Xe4cv8Lgi40vWLR2iTQoAWihb9Y1B8/EQ0FcB8AK8AGCuEaACcyQHAKR773EJEW4hoS2Nj44DHcFg2YFGSZ3TwjBCzGcZIQH/Uyf1Z+X7Nw7187Sa0+gHWSrBcKnAl2yVhWXtPHDXSNVNTnmqhcwXPq3DNwLMWkGUKwaRV4Mq6RCq8koKwZghw3n9AV0o8q8f03XtlzpjVtSZxnILpuvBrgq5w89I6REKEm5fWpd4HDmN/rkB5O9B0rV6/Dl8nC/M+8rHySS/TpG/5hKwrfiIqA/AkgK8JIfrheu0fQogHhBALhBALxoxJZcA8WZgFP9znyXPHU1oqDlOkQ50cVLlzmNY6d41NlwHH6WNKcUwqeiW54uacMmPKnCCtkjy9kCvqKjkxKGmyeirwSR2AxobJ4wScbtnPwceVjenS8LL4TaWruX58MoF0aufjEw53cfBsH0Bves4nErNjnFdHL3PyCepH5y0kOdLxw5u+di/6ZnOSyoUA8XBBVhU/EUXhKP1HhRC/lB9/SETj5PfjABzJ5hi8wH2evKuSuXwsk8qmrCCMiZLzZOIJuE9yAen48dPBR6SlrGSlVMSVJRGtktikTuBokQyVLV0xrbALgMYpzxX1Qzedh2UzavDQTecBgGeaZaolelyp83ROHmQ1ezd4VcOaLg0vi990n/CsFz9KZJ7xoxWR+TDN8tUFn0hM65hvxyciHn8AvMkMTfBr1/zwPpXOXvDL/vFDPmXlDBTZzOohAD8GsEsI8S/sq18BuEn+/yYAT2VrDBymC4Gnd/LvOBkWoKd91stVgpK5hnSsfLOiOQiUOzoa1oOJgOHXZxxB3D+ferzjBVxmtypOg2AGMjm44uEUHGavWU7ZwJlXS6ULqrQokhKMDZpxwq1ov+141guvODYVHI8FBHbBsBWE5wrE2I5POGaDFc4Q6qdY+bm0oKsffWuGkU9ZOQNFNi3+JQBuAPBxItoq/60AsBbARUS0G8BF8u+so6wwqknu1ojKdL1oKJTSsWk4ZfV4Wfl+wVOThjoI5JyIWCL1/nCX2rQah8BuWk1ZSrYUD/Z+fonjp/78krqUbB0elH/rkKOI3zqUapnyl567O0yFyYOh/NidPXLC6kmkKEz+t98k4JWTb2afcBeRXzctr1gAp502wVcXfDJMoVFmsQ9+j8wGK3wS9VOsWtYcWzUHDRZnAunEJ9JxD40El1I2s3o2CyFICDFPCHGW/LdBCNEshFguhJgh5dETH23g8Csg4gpg/mTnoVHylPJCTeYSgmbrBJ28zIItvxx9BZM9s1CuHAojIS0bxsyWUk1JqssKsXHXh4gnBTbu+hC9ckJWkvv4eSCTu2YAnVaBKzyT8ZKPgzNe8lRR02XD3SJ+aYfcWtaUpA+hGZ8EzOPxlYdXpa0JL055U2l75dqb1cNccfsqVo8eAYOZIsnvUVDlnI57aCS4lPKmctdUftziLJG+i5JoOCU9rkAqsoKTcIUMFoJm6/jBi3wN0PsD81UDd+GYQdZV5zv+8VXnT9VeejNbipPf8UA7T98EdB8/b4/IXTMA8NBmpzfyQ5v3aj50M/OGu/h4QJhPUikuEg/SN1OZcmuZX7sfzQOfBMyK16C57Rx8ovMLhHrl2vtVD/uBT0a+vEADhJ9C11ZZAWML6biHMuFSGupVQ+5psyzBVHCcfoEHd+eMd146Jc3GLLmEdPLxTXBj1OxFwBURL6QaL4ugxlcWo1S6zpTkTI/aw234erkbg1vbJg0wj7l4pSACelojt2ZNBcdfWq++y6bi4q4jTp1sKkWv/HWvXgGArgD8Kl6DTgLmROcFLyK1oErNT3F5HcNvn6CK0K9oS5uwfWILntTVAZGJVcxQrxrypuduCrskEQBxXEpsk/z6Sl6/cAoe2rwX1y+cggc27XF74WazD3o45JC/9dc4hfe+PTX+mFMfDWBfmufiaZW/2+HQFijJUyHLiqJo6YqhrCiqUVDvO+pY8B8eS6UC4D1VF02rxluHjrn59HyCWLWkDt//7dtYtaQOB5o73fsNAEckrcKRY70up/7qC0/DO4fb8f3fvu0q9DUrZropjZOrS93vzD62vA8qVzK8z6vZk1VX3H4REw/4FBrx3q7f/MQZ2jWZfV/VuC+ZMw7bD7a5QWTen9Y8Rn/XdzJ9bL1g9sv1Gis/r18f28A9bn3updbk/bLZ7nlNZKKf7kDh1fd3sJA3ij8acqpLVW1SNOQ0+I6GCIunVWPT7iYsm1HjVHMy2mXuf852L1yFCBESEIj083Br7p24/p2awvSpLDgSyaQmK4sjaO+No7I44ua5H+uOYUq1k59fWhTVirQAZ8nvNiNXy2wijQhvzYqZ2gtsWtg8oyYcApBInQRNhe71nanwOLgCONYTx9YPWnGsJ451X1miKwQ21ttWzupXsfqdi98TE1yJm9fkpRxM8rXdjZ1oaO3Gs9+4wPO+mMpuwIrHUMBex+MThArwnug++MHvXga9pqFWusDQN2LPG1ePSS3Ac7V58Y5ZEcqbcw8WeuXJldTSNJPSvdPP7MPJ045PcEipP+Dpk/z/JTJLREmSLzURaXzw3Gd9yzLn81uWOYU7fBnM/b4mmyb/zq+XK+eEyXQgTnNJ+LgG+Fj96Ai8Mn78XAN+/nCv/bT0S6OlKAcfQ7p+aS8XjBlg9rxGNkGkex84/I7Bv/P73fOJk8cLeaP4TfCmGQeOOvncB452Iiqd/0ompfWbTCYz3sw8KLQ0zZgM4MZSA7hccS+e7hRULZ5ek1J/sFi6WxZPq0apzOApLQxrXZ4AvS8xD6zyl5R/DngHFztkuqSS/DseMDXpDbiiTacJd1CF55d2GFRRpBOMTUch6+mXegcuDt+eAB7fmffRazu/exI0A4kjaA1EUNicfn/kjavHxP7mDlf2xqWFHReoKlG+bOfWcEKy0sIwOnoTrhwoQuRQPCupwP34QBsSCbC/vdEqK2Bbu2Jag47CMKE3IVAorXtOTqYM3GNdcSydUYNNu5tcat/RpVF0tSYwujSK76zf6bpCFtWNxovvN2PWuIoUF4IZXFRuEX4sE3dv2In23gTu3rDTbV7fn+XttzxOx2/r5ZdOF3x8Qd0JA13ym64dr1iFea1erpWgLqGgLjQvf7+5DzcmfvNWg7a/335eMGM5J7v/SEfeKv4WSQWspEKbtHaV5GmgZs56OoiGZWwhTC5HjanjzDTNGfHHIOKpKw0zCBySfyupYLqORpcWoLGjD6NLC0BEONLei5rywpQqXE6lzCs4efbJQzedC+C4YrhmwSQ8tHkvrlkwSZsEVPNxxQ7JX8baymK0H+lAbWWxb1DOD14Kym9CCOpXzgUEVV5eSte8P1zR8onDvCdeCtTvvqbzW/S3j/r/QIOxuRDMzTXkreI3FbAKihZGQuiOJd1CpEyjtDCM1q44SgvDSCQE2nsTKCsM443ENa5Vzy38CLwLsMoLI2jtjqNcunjMdpAKZ02sxNb6NrcQa1SJo/hHlRS4DcUBoSlgAGhs73XleNkntrQgjOVMuZsWK3eh8QyT+2TLRdU8nb+MPKsn00EvP8vbS/llAplQNkEVLYfX9Zr31Ws7nsFk3hM+Br9J0+s39PstzH2CjDUociGYm2vIGx8/D3YCOk3Adz81F1UlUXz3U3NTWv8NFMq9omSbXGG0dcU1Dvh0SNXMhiEcvAp3V4PDF68kxxHZI/hIex9WLalzGBaXOBS/vHiN57JvfPuIk+n09pEUf2yT7FrV1N6j+eePyniBktyn60XwdTLwyu/2Y3AM6gdeu2EXTv37DVi7YVfg8aQTjzDB/eu+vDuZhE+6JL8mv2brXkiXTXOgwVgbzE1F3ih+M6vnEdmQ+5EX9+HVvc1o6Yrh1b3NKfvxKtV0YKaAcus9HVI1PpGYwWZejcwnlT65BFDSZMBUMAOrM2Vxz8zacs0S5PQXZvCvTU5CbcZkNEFmFCnJFYcXF85JIWBTDn78oAqBVwUHhd+xg1aV8vvC77+fwvSaAIMGbf2qjL3oIPyOF7TSNhMY6mrY4YS8UfwmODnZuq1Og491Ww9pKZEA0mJp41XCZh+AqpKoK7mVf0HZL1HX+xguKPtlSgNtDu6vL5NWvZJePYFTmEmZ9c07YXE/PgBslUVsW+vbsF8Wau0/2qUpcdMS9coyMVkyvaxHU6EEfZmDZo+kk+1hNjsZMDxSR30bsRiFcZ4tBz0mwDVPvOmQ2j3xJgD9PvDzpptW6XVf/caa6cyboa6GHU7IWx+/F8zesGZev4LK/lGKnMOv0Ou12J8hXAgkYs4xlS+/pqwQ9a09qCkrdJWsaqAdCTlZRZGQM/+ogK4ZbI7IuEUkTEgmhXN80hudAA7//Lqth3DZmeOx49AxtHZ3YEx5kcbECABXnuVspyTgcOYr3/2qpdNS/OReVAB+vnvugzW3C+rbDhobSCeGwKuCMwGvAPaJMmr6K4xLObZHgZOZ78/vw5X/sTlQkRWHGWz2CgL7rcQGM55joSNvLX5euJQOVJaKkkHh5cvn1vU1CyYhEiJcI5fbtRVFrhwnA69KcvCc/MKI8//CSDiF3neHpDdWUsFsU3jD4qlYNqMGNyyeqsUMOP2wafGnkx9u9q7lSMcqTIelMZ1j+8FkBeUIUphlbudVGBf02H75/n5FVl7XEbRGIOhKzO9+BYX15QdH3ip+bgWbAdgg4D17/ZBCnRyXvnwjHstJ457Z3oB4UuCZ7c5ymxdg1cheqjWlBSleKB44vm3lLFnxOgvr5fHWy+NpzTaY28FsU8h90QnpP0okhba/6RrwCkKaioIrOZ72aSrWdF5mfq6gy/+gk0XQ4wUlS+MIGvxM5574VRzzZjBBr8PPJce/CzrWdO6XRfrIW8XPlaaZ5x4EWrtGH5g5+TOTjpU/M/mYxvVfIX3tFcUR394BPLuG++cBx9Wj5IHmTrT3xHGguROH5OSkpCqSmj6mDG2yB25bTxxFMuVJSd5/mFMYc/phU9F7+Yj9rFm+wkmnVZ8JPqagK4agk0XQ43nRHp8MBstn7ccKyq/Dj4YinaC513ksso+8VfwDdfUEhZmtw3nkz5/uuFTOn16NVmmtt3bFUSLdKkpG5HIgEiLc99x7aOmK4b7n3sNU2eFKybHSJTS2ogj3b9qDeFLg/k17UvrdcrcSb0bC2yYC0FwAy884BZGQI7n1aCp6k1Newc+a5emhmWjVx8eUDt2Cn3Lnx/NbGfB7lK67abBoB/yULo/ZZGJC9ILfisQi88hbxW9m22QS3L1j5uRzd8xTMmCqpAJvKg5Ac7Pw1YDpPy2WDWWUVPjyBaeiqiSKL19wKgBoKwVFz7Dk1BqNFx/Q2+6ZbiAF84X3sh79fPz8mviKJl14Zaz4wa9pidd1BLXI013FeI0j03ELr4A8oP9OQSfEfMZwSSnNW8UfFOkQs5nuHY4Qo1fwyhQ1s2t40NYvXV1VxSqpYFrl5UVRV24/6Fj/2w+2pRRwceKy2grHLaWkF7xcA34+fp4emonuTVwJ+aY+poGgilBDhhuOZ9oFFNSSD6rcgyq/kdjvdriklFrFfwIETeMPWowVkZo/EgppBVd8gjFdLlzyXH1TqR2VbhslFUz3C28oP3eCQ+Mwd0JlitLlL/qqpdOcSWHpNO3Y5hj4kp2/BOYY+LF5jn9QZWoqAE+FYMyUXtv5BXcHSm+c6YbjmXYBBbXkg2beBFV+mabZzgUMF1ZQm8efIXArv673sZQmKQpjygtR39LtSsDJ54+yHPzSgjBau+NuwJeTr4kk3C5gB2V2jZKjywrR1dKN0WWFiLX1IJZ0Gs2YTVCWzxyLdVsPYfnMsVi/zVHyL77fjF98cTGA/vOgeVWv5oftR7H2xw558yOvuS4gMyfej6fFC2bO+5on3tQakiiYee1m56j+jgdAO7YX8dmNP34lozUGQYnY0sl/9zt20OPxzBs/X3zQfPp08u5zPVd/qBusBIVV/GkiXerkmtIC1Ld0u1IhKU35ZFKgu09WFUsZkh25QkSIybVHEkCj5NlRkvcHriqN4ki7IyuLCzTytV9Li/7XbzVg5bxxWLf1EFbOG+f70PIMn8deOeCSr129YBL2N3e6Jf5cSfKX02wJqBX5AIEUHoepALwakpjX1CnjJp1GNpYfO6QXIVmmlVA2WSQzcWyvto4msllMlwnFammareJPG6Yfn/e/TQdahbBwFH5cyqT0DSeF8OTwB0x+HufLtu44vnbh6S77JQCt/8C+ZqdKeF9zl+8LUSrjAqVFUdy9YRfae+O4e8MuTD+lTFsJcGVoKhtuJfpZ2F4wx8e3vXXFzEBKicdP/I7H/+/F4jmcKk8zcWy/dpfDCZam2Sr+kwK38k3q5KDgqZTFkRC640lXKsimX/1KVehFcPL/j7T3uvUAfFLg8QNTcWmNWVjg0e+F4Jb9vz77Dtp7Zb6/Ebj0akZiKlluRatskv62C0pNHFQpcbqEgVIdZxrZdBMMFxfEYCDX3UWDARvcPQmkQ53sh8KCkCYVxpQXaLKGSR7c/dqFp6GqJIqvyQeY5+vznsKjZbWvkrdfPgdVJVHcfvkcLX3SKwcf0CePY7Lo61hPPCVw6RU8NYNyXrn25nZBs2jSSdsMGoizqYqZQa5k5Njf01r8J4SXlZ8J8KItjsoixz9fWZRKAFccDaErlkRxNJRiydeUOQHjmrJCrShqb5PTU3j9tgbcc+38lKIcdYztB9s8A7DcSrrugZedD/tJdfJy4ZhWltdqwG87P6vVK2jrh5FuBeeaL9u6WHIHVvGfAEGzdbwQDTk9AKInsbZqlYFUJZtk8Lapvc/VtV2xZEpz9EV1o/HWwTYsqhuNR1/ZD8Dh0+EBXACe/XMvmTNO85PzIC4v7pk8uhi7GzsxeXSxL6PkszsOu8c2lSz/m2fHmNZ3YOUckI8/n5Brita6WHIH1tVjIIVULWCDFC+YDWA4y6UXzGwdTtnAO4nxeAEA/OQlJ23zJy/t1/h0jkp6ZyW9+ueaZfM8fY/n6/O8ez/3EE8jNeGVG++Xp+3nKgjKAplPyLWc8ky7WHLFdTQcYRW/gf6ydQbqy+eIyFZekbBewGU2VeEYVRp15Z1XOG0i77xibj9VxcfLzbgSN4nUeGaLH08L/46nQfIX2KRo4IpbpY/WVhb7UjYE9bv7TQrWb5uKkX5Pcr2YK5dhFT/Sa4GYLlq6Yq7kKZwxmdUTY9k9CqZLR4GzcQLQArq8ytJsqcgDsn48LXzyKJUN3ZVUMHsHcMW99jPznJXBZ+alvKR8MgpquQ2Umz/TSPfY2ewXkE/IxIomX++/9fHD24+/bxDHwCcBgmO7K0ue9w7QeMsNPomX9x5FPCnw8t6j+IVU9t//7duYMrpEbpcajeX+/nVfWeI5Pl4By4OGOxuOIZ4U2NngNHXxyoc3/bs8MP2btxpcX/Sx7phnkNbP3+8VyAzq504nEJrusf0C4F5jyLVAbS4gE8H5XIuDDBas4kfms3X8wIO9MWbccwbOiPwuItdjPIXzo6eNwbqth/DR08Y4FbjJ48RvPKeeV1keaO7EW4eOuZ21+MPOK3L9cug5+P5eVa0mzJfUq1J2zZPbnPGcoM+BCa8XOGhAMR0FYB476OTjde1+Y8hXBZVt5GvAOW8VP0/THGjVrR/CBLf3LQCMrSxGfUu3KxXKCsNo702grDCM2spi7D7S4fLsj5GFWmPKC/GM5NZ5ZluD7CUgEJaZLIumVbsKnrtwvv/bt7U0zVnjKtxsm4Y2p7sXiFKUC0+RrCiO9puaydNBT6aq02tlYDKTBoXXC2yex0s5p6MAgvYHNo9t9qcNMoZ8VVDZxkhP6fVC3ip+LYibJaUP6NY6AC3XvqG1250UON3C9Wecgr1NnVh+xikAgAJp+hdEQojJA8WSwv1/l1w68EDrzoZjrhIyOVZ4to3qxlVaEE5RLjygy5tw85eFTyLAwF0SZiPyTBOXeSnnTCiAoJOP33i8tstXBWWRHQxJcJeILiGid4joPSJaMxjnzHSaph94to5J63z1gklOpeyCSTo/D4PZ9ITTLY8pk1W9ZQUpWT08C4cHT800zcqSAlfyQK9fFojXd2bKZtCmI14Uv+Z51jy5DZt2N7kuoIEimymO6WTR5FrKZTaRr4HUXMSgK34iCgP4IYBLAcwC8FkiynrydbbTNDm4Qi+WifdKPv7aASfD5rUDmCgbkEwcVaTl55tNT3i/2/tvWIBlM2pw/w0LUiYVv5aIHLxh+zuH27H9YBveOdyesp1XJg8HT9l0BhOs6Yhfg3UOrTF8BpBrKY65Nh4/DFRx2/TL3MFQWPznAXhPCLFHCNEH4OcArsjGiQYzTZMreG6J8+Ir58PjkrtSPr90GiIhwueXTtMKpABoaZFcUZTIc5b0UxbsZ0lyK1/LEjK3C1AUxcdmHtsPfHXipxB4IZrF0GKgijufVje5DhIZagcX+IREVwG4RAhxs/z7BgALhRBfNba7BcAtADB58uRz9u9Prf48EcTtlSBJQFnXe9yy37f2k5i65pl+9xlTXoDG9j6MKS/Aa//nIpz33WdxpL0Pp5QXQADud6OKotjd2IkZY0rx7Dcu0HzRz+44jIc278XNS+swubrU9a+rxttqu3cOt7vfqZTGZTNqAvtyM5Hix2kZhopy16YqDg/Y32n4gYheF0IsSPl8CBT/nwH4hKH4zxNC/JXXPgsWLBBbtmw56XPFb6t0M3dOiz/mdq7as/aTWLthl6ucVSCU0wZ4pTRm68G3L5WFhUWmkUuKfzGAO4QQn5B/3woAQoi7vfZJV/FbWFhY5DO8FP9Q+PhfAzCDiOqIqADAtQB+NQTjsLCwsMhLDHoevxAiTkRfBfBbAGEA/yWE2DHY47CwsLDIVwxJAZcQYgOADUNxbgsLC4t8h2XntLCwsMgzWMVvYWFhkWewit/CwsIiz2AVv4WFhUWeYdDz+NMBETUCOPnSXQc1AJpOuNXIh70Px2HvhQN7HxyM5PswRQgxxvxwWCj+gYCItvRXwJBvsPfhOOy9cGDvg4N8vA/W1WNhYWGRZ7CK38LCwiLPkA+K/4GhHkCOwN6H47D3woG9Dw7y7j6MeB+/hYWFhYWOfLD4LSwsLCwYrOK3sLCwyDOMaMU/FE3dcwFENImI/kBEu4hoBxGtlp+PJqJniWi3lHnR8YWIwkT0BhGtl3/n3X0golFE9AQRvS2fi8V5eh++Lt+Jt4joZ0RUlI/3YcQq/qFq6p4jiAP4hhBiJoBFAL4ir30NgI1CiBkANsq/8wGrAexif+fjfbgXwG+EEGcAOBPO/cir+0BEEwD8NYAFQog5cGjhr0We3QdgBCt+DGJT91yDEKJBCPEn+f92OC/5BDjX/4jc7BEAVw7JAAcRRDQRwCcBPMQ+zqv7QEQVAJYB+DEACCH6hBCtyLP7IBEBUExEEQAlAA4hD+/DSFb8EwB8wP6ul5/lFYhoKoD5AF4BMFYI0QA4kwOAU4ZwaIOFewB8C0CSfZZv92EagEYAD0uX10NEVIo8uw9CiIMAfgDgAIAGAG1CiN8hz+4DMLIVP/XzWV7lrhJRGYAnAXxNCHFsqMcz2CCilQCOCCFeH+qxDDEiAM4G8CMhxHwAncgDd4YJ6bu/AkAdgPEASonoc0M7qqHBSFb89QAmsb8nwlnW5QWIKApH6T8qhPil/PhDIhonvx8H4MhQjW+QsATA5US0D46r7+NE9FPk332oB1AvhHhF/v0EnIkg3+7DhQD2CiEahRAxAL8EcD7y7z6MaMWft03diYjg+HN3CSH+hX31KwA3yf/fBOCpwR7bYEIIcasQYqIQYiqc3/9/hRCfQ/7dh8MAPiCi0+VHywHsRJ7dBzgunkVEVCLfkeVw4l/5dh9GduUuEa2A4+NVTd2/O7QjGhwQ0VIAzwPYjuO+7b+H4+d/HMBkOC/Bnwkhjg7JIAcZRHQBgL8VQqwkomrk2X0gorPgBLgLAOwBsAqO4Zdv9+FOANfAyXx7A8DNAMqQb/dhJCt+CwsLC4tUjGRXj4WFhYVFP7CK38LCwiLPYBW/hYWFRZ7BKn4LCwuLPINV/BYWFhZ5Bqv4LSyyBCI6S6YUn+x+zxFRXjX/thhcWMVvYZE9nAXgpBW/hUW2YRW/Rd6AiD5HRK8S0VYi+k8iWkhE2yQne6nkaZ9DRBcQ0SYi+h8i2klE9xNRSB7jYiJ6iYj+RET/LfmQQETnEtGLRPSmPEclgH8EcI083zXyHP9FRK9JsrQr5L7FRPRzOZZfACgesptkkRewBVwWeQEimgngnwF8WggRI6L7ALwM4DQARXCUbb0Q4m5Z5fsbOH0c9sv//yeA5+Dwu1wqhOgkor8DUAhgLYC3AVwjhHhN0iB3AfgcHO73r8oxfA/ATiHET4loFIBX4TCnfhHAHCHEXxDRPAB/ArBICLEly7fFIk8RGeoBWFgMEpYDOAfAaw5NC4rhkHH9Ixxepx44TToUXhVC7AEAIvoZgKVym1kAXpDHKADwEoDTATQIIV4DAMWEKrfhuBgOadzfyr+L4NAELAPwb3LfbUS0LVMXbWHRH6zit8gXEIBHhBC3ah8S1cLhaonCUcSd8itzKSzkMZ4VQnzWOMa8frb3GsNnhBDvGPv3dz4Li6zB+vgt8gUbAVxFRKcAbt/dKQAeAPBtAI8C+Ce2/XmS2TUEh9RrMxzX0BIiOlUeo4SIToPj5hlPROfKz8tlh6d2AOXsmL8F8FeSGRJENF9+vgnA9fKzOQDmZfzqLSwYrI/fIm9ARNcAuBWOwRODQ797lhDi07JH84vy+ySAf4DTtWouHMX8ZSFEkog+DmeCKJSHvU0I8Sup9P8djgupGw73ewEcZR8FcDcc+t974HDAE4B9ki20GMDDcNxIWwGcCuCvrY/fIluwit/CwgCncB7ioVhYZAXW1WNhYWGRZ7AWv4WFhUWewVr8FhYWFnkGq/gtLCws8gxW8VtYWFjkGazit7CwsMgzWMVvYWFhkWf4/wE/SxUOF7OYsgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model = Pipeline([('attribs_adder', ColumnDroper(['artists', 'id', 'name', 'release_date'])), # drops text inputs\n", " ('std_scaler', StandardScaler()), # scales data so it is consistant across parameters\n", " ('reg', RandomForestRegressor(n_estimators=1300, min_samples_split=5, min_samples_leaf=4,max_features='auto', max_depth=60, bootstrap=True))\n", " ])\n", "train_and_vis_model(model, x_train, y_train, x_train_v, y_train_v, x_valid, y_valid, name='rand_forest_reg_tuning')" ] }, { "cell_type": "code", "execution_count": 264, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Scores: [12.5751417 12.4760525 12.49940694]\n", "Mean: 12.516867045706846\n", "Standard Deviation: 0.042295062961615386\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACAKElEQVR4nO29eXhc1Xk//nln0W4tlmy8yrLBgG3wEkxsYuOQGEgwYGighpgUSpOQtSVtk9bkISE0NLhJfk3ot9kIlEKDEwikZolJIG6IMRASExsbL0TGq7xKsiRrl0Zzfn/cc67ec2bu9dVoRhppzud5/LzyzF3OvXPve97zLp+XhBCwsLCwsMgdhIZ7ABYWFhYWQwur+C0sLCxyDFbxW1hYWOQYrOK3sLCwyDFYxW9hYWGRY7CK38LCwiLHYBW/xZCCiL5GRD8JsN1fENFhImojogVDMbZcABH9kIi+MtzjsBheWMVvka34NoDPCyFKhBBbh+KERFRDRIKIIkNxviAgov8movvSdTwhxKeFEF9P1/FMENF4IvopER0lohYiepWIFmXqfBapwSp+C18MoxKcBmBnKjsSUTjNYwlyzqyZLIYZJQD+COAiAGMBPArgl0RUMqyjstBgFb9FAojoABH9MxFtB9BORHcT0btE1EpEu4joL9i2f01Em4no20TURET7iegq9v10Ivqd3PclAFVnOHc+EbUBCAN4i4jelZ/PIqKXiaiZiHYS0Uq2z38T0Q+IaAMRtQP4ABFNIqKniahejunv2PbvJaItRHSaiE4Q0b/LrzZJ2SxdTJf4jPOvpTX7HSI6BeBrcuzfJqJD8rg/JKJCts8/EdExaQ1/Qq4uzvE5xx0AbgHwT3I8z8nPtf34qoCILiOiOiL6RyI6Kc93e4rbVhLRc/I+/ZGI7iOizd6/HiCE2CeE+HchxDEhRJ8Q4kEAeQDO89vPYmhhFb+FFz4K4GoA5QDeAXApgDIA9wL4CRFNZNsukttUAfgmgIeJiOR36wC8Kb/7OoDb/E4qhOgWQijrcJ4Q4mwiigJ4DsCLAMYD+FsAjxMRVyarAfwrgDEAXpPbvwVgMoDlAL5ARB+S2z4A4AEhRCmAswE8KT9fJmW5dDG97nuHnOveJ8f0rwD+DcC5AOYDOEee+6sAQEQfBvAPAC6X373/DMeGVJqPA/imHM+1Z9pHYgKc32oygI8D+B4RVaSw7fcAtMttbsMZfrtkIKL5cBT/3oHua5E5WMVv4YX/EEIcFkJ0CiF+LoQ4KoSICyGeAFAL4L1s24NCiB8LIfrgLO0nAjiLiKoBXAzgK1Khb4KjkAeKxXBcCGuFED1CiP8D8DycyUnhGSHEq0KIOIALAYwTQvyL3H4fgB8DuFlu2wvgHCKqEkK0CSF+n8KYAOCoEOL/CSFiALoAfBLA3wshTgkhWgF8g51zFYBHhBA7hRAdcCbQTKEXwL8IIXqFEBsAtMHb4k66rXSX3QDgHiFEhxBiF5zfNjCIqBTA/wC4VwjRkurFWKQfVvFbeOGw+oOIbiWibdLN0gzgAugum+PqD6nUAEdRTwLQJIRoZ9seTGEskwAclkqdH2dysvHCiQ9MUuOVY/4ygLPk9x+HY5nvkS6Ma1IYk3nOcQCKALzJzvkr+bl7DR77phuNcjJS6IDzewxk23EAIkhxzNLF9RyA3wsh7g+6n8XQwAakLLwgAICIpsGxlpcDeF0I0UdE2wCQz74KxwBUEFExU/7V6tgDwFEAU4koxJR/NYA/m+OVOAxgvxBiZrKDCSFqAXyUiEIAPgLgKSKqTGFcfPsGAJ0A5gghjiTZ9hiAKez/U1M4h0IHnElGYQKAuoDHC4p6ADE4Y1b3OdCYiSgfwHoARwB8Ks3jskgDrMVvcSYUw1E+9QAgg38XBNlRCHEQwBYA9xJRHhEtBRDUT83xBhxf8z8RUZSILpPH+ZnH9n8AcJqcAHUhEYWJ6AIiulhew8eIaJycRJrlPn3yGuMAZgx0gPJYPwbwHSIaL88zmcUVngRwuwxSF0H6/gPgRJLxbAOwWl7XhxEgXjBQSLfdL+AErYuI6HwAt55pPxmPeQrOJHirsUqzyBJYxW/hC+nb/f8AvA5HCV0I4NUBHGI1nCDoKQD3AHgshTH0AFgJ4Co4lvX34SiVPR7b98GZGOYD2C/3eQhOEBMAPgxgp8weegDAzUKILumm+lcAr0p3zeIBDvWf4QQxf09EpwH8BtK3LoR4AcB/APit3EYFjrvPcMyHAcyW41kvP7tTXl8znKyf9Un3HDw+D+eeHYfjq/8pzjze9wG4BsCV6M+OaiOiSzM0RosUQLYRi4XF0IOIZgF4G0C+4WPPWhDRvwGYIIQYcHaPRXbBWvwWFkMEcmgo8mS65L8BeC6blT4RnU9Ec8nBe+EExf93uMdlMXhYxW8xLCCiW5gbgP9LqVo3E5AFWMnG+MMUD/kpOHGEd+HEFD4jz7PT4zy3pOlSUsUYOH7+djgxiv8PwDNEdKnHeNuGdbQWgWFdPRYWFhY5BmvxW1hYWOQYRkQef1VVlaipqRnuYVhYWFiMKLz55psNQohx5ucjQvHX1NRgy5Ytwz0MCwsLixEFIkpaKW9dPRYWFhY5Bqv4LSwsLHIMVvFbWFhY5BhGhI8/GXp7e1FXV4eurq7hHsqwoqCgAFOmTEE0Gh3uoVhYWIwQjFjFX1dXhzFjxqCmpgb9PT9yC0IINDY2oq6uDtOnTx/u4VhYWIwQjFhXT1dXFyorK3NW6QMAEaGysjLnVz0WFhYDw4hV/AByWukr2HtgYWExUIxoxW9hYWExqnH4D8D/fMSRaYRV/FmCmpoaNDQ0DHobCwuLUYSX1wLvbnRkGmEVv4WFhUW2wLTwL1sDnL3ckWmEVfyDwIEDB3D++efjE5/4BC644ALccsst+M1vfoMlS5Zg5syZ+MMf/oBTp07h+uuvx9y5c7F48WJs374dANDY2Igrr7wSCxYswKc+9SlwltSf/OQneO9734v58+fjU5/6FPr6+obrEi0sLIYSpoU/9b3AX/3CkWmEVfyDxN69e3HnnXdi+/bt2LNnD9atW4fNmzfj29/+Nr7xjW/gnnvuwYIFC7B9+3Z84xvfwK23Om1L7733XixduhRbt27FypUrcejQIQDA7t278cQTT+DVV1/Ftm3bEA6H8fjjjw/nJVpYWAwVMmThmxixefyp4M2DTXjgN3/GnZefi4umVaTlmNOnT8eFF14IAJgzZw6WL18OIsKFF16IAwcO4ODBg3j66acBAB/84AfR2NiIlpYWbNq0Cb/4xS8AAFdffTUqKpzxbNy4EW+++SYuvvhiAEBnZyfGjx+flrFaWFhkIV66B3j9P4FLPg9cca9j4WcYOaX4H/jNn7Gp1gmOPvbxRWk5Zn5+vvt3KBRy/x8KhRCLxRCJJN5ilYKZLBVTCIHbbrsN999/f1rGZ2FhkeV4/T+BeMyRV9w7JKfMKVfPnZefi2Uzq3Dn5ecO2TmXLVvmumpefvllVFVVobS0VPv8hRdeQFNTEwBg+fLleOqpp3Dy5EkAwKlTp3DwYFJmVQsLi5GKpz8JfK3MkZd8HghFHDlEyCmL/6JpFWmz9IPia1/7Gm6//XbMnTsXRUVFePTRRwEA99xzDz760Y/iPe95D97//vejuroaADB79mzcd999uPLKKxGPxxGNRvG9730P06ZNG9JxW1hYZBA7nuyXX2sZMktfYUT03F24cKEwG7Hs3r0bs2bNGqYRZRfsvbCwyHJs+W9g473A8nuAhX/tWPo7ngQuXAXc8OOMnZaI3hRCLDQ/zylXj4WFhcWwYOO9QOcpRwKOsv9aS0aVvh+s4rewsLDIBB78oOPHf/CDjqVfONaRWYCc8vFbWFhYDBmOvtkv7/g/x8WTJbAWv4WFhUW6wCkXJl3kfKZkFsFa/BYWFhbpgqJcABwrP0thFb+FhYVFqvjOhUDLIaCsGvj7Hf1UCxmmXBgsrKsnRTQ3N+P73/9+xs+zfv167Nq1K+PnsbCwSAEth3SZIVK1dMMq/hQxUMUvhEA8Hh/weazit7DIMnytwsnW+VqFY+kD/XKEwLp6UsSaNWvw7rvvYv78+fjABz6A7du3o6mpCb29vbjvvvtw3XXX4cCBA7jqqqvwgQ98AK+//jrWr1+Pxx57DI8//jimTp2KqqoqXHTRRfjiF7+Id999F5/73OdQX1+PoqIi/PjHP8apU6fw7LPP4ne/+x3uu+8+PP300zj77LOH+9ItLHIc8X759zuGdSSpwir+FLF27Vq8/fbb2LZtG2KxGDo6OlBaWoqGhgYsXrwYK1euBAC88847eOSRR/D9738fW7ZswdNPP42tW7ciFovhPe95Dy66yIn433HHHfjhD3+ImTNn4o033sBnP/tZ/N///R9WrlyJa665BjfeeONwXq6FhYWLEBzlP3IdJrml+A//wYm6X7YmrT44IQS+/OUvY9OmTQiFQjhy5AhOnDgBAJg2bRoWL14MANi8eTOuu+46FBYWAgCuvfZaAEBbWxtee+01/OVf/qV7zO7u7rSNz8LCYpD41rlA+wmg+Czga03DPZpBI7cUP0+1SiPn9eOPP476+nq8+eabiEajqKmpQVdXFwCguLjY3c6LFykej6O8vBzbtm1L25gsLCzSiPYTuhzhGLlrlVSQxu42Y8aMQWtrKwCgpaUF48ePRzQaxW9/+1tPGuWlS5fiueeeQ1dXF9ra2vDLX/4SAFBaWorp06fj5z//OQBngnjrrbcSzmNhYTFE+FpZ/z/AsfS5HOHILcWfxlSryspKLFmyBBdccAG2bduGLVu2YOHChXj88cdx/vnnJ93n4osvxsqVKzFv3jx85CMfwcKFC1FW5jxYjz/+OB5++GHMmzcPc+bMwTPPPAMAuPnmm/Gtb30LCxYswLvvvjvocVtYWKSAL/3ZIVX70p+HeyRpQUZpmYno7wF8AoAAsAPA7QCKADwBoAbAAQCrhBC+TrPRRMvc1taGkpISdHR0YNmyZXjwwQfxnve8Z1DHHKn3wsIiq6Cs+4TPW4Z2HGmEFy1zxnz8RDQZwN8BmC2E6CSiJwHcDGA2gI1CiLVEtAbAGgD/nKlxZBvuuOMO7Nq1C11dXbjtttsGrfQtLCwygBGs7IMg08HdCIBCIuqFY+kfBXAXgMvk948CeBk5pPjXrVs33EOwsLBQ8LLyRzkypviFEEeI6NsADgHoBPCiEOJFIjpLCHFMbnOMiMYn25+I7gBwBwC3LWGScyRtWJ5LGAkd1CwsRgRGuZXPkUlXTwWA6wBMB9AM4OdE9LGg+wshHgTwIOD4+M3vCwoK0NjYiMrKypxV/kIINDY2oqCgYLiHYmExcpCjVj5HJl09lwPYL4SoBwAi+gWA9wE4QUQTpbU/EcDJVA4+ZcoU1NXVob6+Pn0jHoEoKCjAlClThnsYFhYjEzlk5XNkUvEfArCYiIrguHqWA9gCoB3AbQDWSvlMKgePRqOYPn16moZqYWExasEt/BxV9CYylscvhHgDwFMA/gQnlTMEx3WzFsAVRFQL4Ar5fwsLC4shwZu3H8CtU1/Em7cfGO6hAADePNiEWx9+A28eHDoqiIxm9Qgh7gFgdhfuhmP9W1hYWGQGPn78B37zZ2yqbQAAPPbxRe7nbx5swgO/+TPuvPxcXDStIuNDPNN4Monc4uqxsLDIPRjunTsvP1eTCn4KOJOTgtd4Mgmr+C0sLHIKF02rSGpZ+yngTFrlXuPJJKzit7CwGBWIfa0MYQB9ACIpBHH9FPBwWOWZRG6RtFlYWIwamEHRMACSMh3HG80Y1Yo/l35IC4uRjKDvKt9u3iM1ePTQlZj3SA0Ax9IXwpFBse6NQ1jwLy9i3RuH8PXnd2FTbQO+/vyuhPEoV88Dv0k/O+dw6KlRrfgz+WNZWFikD0Hf1a8/t9NRzs/tdCx86rfw37r9AG6rfhFvGWmafor1/g270NTRi/s37HJmDQAQImE8d15+LpbNrBqQqyeoQh8OPTWqffyjzS9nYTHSEDQbxu9d5cd4quFqhPOBvgbHrQP0Sy/4BWYnlBWi9WQbJpQV4ivXznHPY47Ly//vd31BA8LDoacyysefLiTj47ewsMh+3PrwG9hU24BlM6tSzly5/nuvYtvhZsyfWo7/rV8BgtPgg4wArte5/JTzYNM0+djWf25JWo+dDgw5H7+FhYVFOqzZp+pXOFZ+veO/DwugjxKVVyrnGnQqJXMPpf3YGcSo9vFbWFiMfISF9OUL4KrSZzG9ex2uKn02YTulaL1cLsqHPthgKt//K9fOwbKZVfjKtXNSOtZAzpVOWMVvYWGRMaQUuDQanfeRzNYxnPlBlaIZmA0yJr9j8/29Jpt0IVOBX+vqsbCwGDS8/NnpcPW8dfuB/qDrU285H7LMG2Bg1bReY1r3xiF869d78KUPnY9fvX3M89hDGYzN1Lms4rewsBgwTEXvpYQD+7kZqVoM6K/ANbdTTZeIfJWinxLnY+LXcd/zO9HRG8d9z+/E/3xiseexh9J3n6lzWcVvYWHhImgmiqno02mZ3jhuQ3+mjHEuv2AqH/u3fr0HTR29rvLfcaQFH75gou918ATRbA7MpgPWx58lsFXGFtmAoD5l02/Ofd1ez3LQZ7y9O6ZJfq7igigAoLggqhVzAdAqb7/0ofNRURR1Lf6mjl786u1jCef68AUTUVEUxYcvmIi7r5mNiqIo7r5mdoA7dWZk8zttLf4swXBwcltYmEiH5f7153ZiW10LTnf2Yv3nl7qfJzzjHp2xiv9zsyPzEll3vnLNbNeqv/NnWwEADe09zpdsNbB6UTVWL6oGAJw3YYznNfFJ4bGPL3L3McFXE+paBrIquvPyc4c9p5/DKv4sga0ytsgGmC4OL9ePqcQ1xcj88PzzD18w0dPlwrF4RiXePnoai2dUAkicSNT46lu7Nckrb81xexlTfExBq3ABBFLo/J3ONsNuVCv+bKic80PQh9PCYrjgpbBMJc6VM1fAX39+F7Ydbsbprhieql+Bjwqg7wUAi7xpk5/YchixuMATWw5jzYpZ2kSiQRgywLhNPLnlMJo6evHklsMA4I7VrMJNZpidSaHzdzrbDLtRrfizbZY1ke3js8g9mMaIl5XOXSSrF1VrylkzYpj7xSRVe5OlaV7Ejv3+c8dh/bajeP+54wAAqxZOxcHGdqxaOFUbX2lRBPWtPSgtctSY6Vrh0gvtXb2uLM6P6GNmMA2zgSr0bDPsRrXiz7ZZ1kS2j88iN8CVqWmMPPnHQ45F/MdDmv/bfHZrKouw7XAzaiqLsHbDbjy0eT8+sXS6Q6pW4JCqmXQLd/5sK+qaOrGvoR2b//mD7rF/9+d6TfJJ5skth12rvKvHIWBWkk9SgRUtm7BMF1MQZJtCD4pRndWT6ao6jlQi+EM5PgsLDs5DzzN5eJYLgAR/vdcz/txbR135o037EIsL/GjTPq05ypNX7cB7wj/Hk1ftAADUNXVqUoFn5AB65k1Dm+PPb2jrxi2LpiESItyyaBoA+GbveEEFkIvzwpqLybzWbM7QSQWj2uIfSnhlMlhYZCN4nvtDt10MwLHev/7cTs3CXzx9LN4+0oLF08dqq4FjLV2oPdmGYy1deOkf3o9J5YU43NSJSeWF+G3rXyAcBvr6dCuf+9PN7BlecMUzcgBoq46WDieDp6WjB7uOnUYsLrDr2GkAwOyJpXjt3UbMnljqe+18hbPq4mocPLUHqy6udu/Llz50fsLKJ5szdFLBqLb4h3SW9gpAWVhkIbhVra08jef48TcOIhYXePyNg5rlfbzFsdKV/Mxl56CiKIrPXHYOwhHpy48A53Wvw/TudTive11C8VVUap9oyGiIYoKN6a4VTq79XStmJ9QScIvdD3yFw1cJ500Ygwsnl+G8CWMSjs3/b9YPjESMaot/KIOnPL/YwiLbYVrVCuZzXF6Uh9buTpQX5WlK8pZF0/DQ5v2um2XVCxe6GTt96KdcuHbeJKzfdhTXzpuEv7qkRjv21XOd766eOwlbDjahtbsTZUV5CWPiwV1z3Py9vmnhVDy0eT9uWjhV299cTQTN0PGkngho5GVzVuGotvgT/JUZxGj01482v+ZoRLp/I/M5LoiGXcmt3o17TiIWF9i45yQAaBk7fzP1RUzvWoe/mfoiDjR2AIArOTbuPunKqpJ8AEBVSX7CNXFXj9+1m2NS4G4t8xr530HbK37lmtkOFfMZKnz5yiLb3qVRrfjNHN2hQiqNo7PtwQBsz+KRAL/fKJXnMAEe3DgvtKzE/vzVeKFlJQC9DaKmQNn+potEyAR8AYFVC6eioiiKVQunJl6Th4VtbnfoVIcmFcxgsRfSbbzx+5Bt79KodvX4ETplEkFdTF7VgNmSHmbTTbMffr9RKs+huV1XLO7Kz/zkTZxs7cae4614g/qzdQA9J5+Dp0g+v8PJtlEUC23dfa7kRtqqhVO12gHufvKrBA7LeSFseGC83FpAau4YXpTGx2bu71fANdxuoFGt+M2I/VAhqML08jVmC0ZqjvJowWCVA3++eG79mhWztO24AjX94c0yi6a5owdb+25yWiB2An0RPSdfy/hp7kRtfTuONXfiSHMnYnGBx14/gN64Y4CdON0FAJg5rhi19e2YOa5YM9LM7J93jrdix5EWvHO8VcvjLy2IaEVkV86ZgPXbjuLKORN870tQ3n0v8KKvoJOr+S4Nd/HmqHb1PLJ5H5o6evHI5n1pP7bf8jjoktHL12hhAXj7iPnfnJES8H4uf/yKk1v/41ecd4Hn8fOg7X3PO9k198nj8Swanq1jtkDkbo0jzY5iP9LchT6pz/sEEJP/UfLd+nZX8haGXLECuo+ef2fG8F7ceUKTXuDH8/Lr+73fnCE0aFzARKr7pQuj2uI/frpbk6kgKEmVhQVHOpbyXiRfQL9b0FSSa57e7ubXTywrcLebWF6IuqZOTCwvBKArv5sWTnXz39/Y1wgA6Is7Lp5Dje1o7YrhUGO7lpPf2eu4aZTkFu3k8gLU1rdjcnkBOnv7UNfchXEleSAiHG7qxJQKZwyhEBCPO5LvzxUroFM47Dzq5OyDKJE2wo+8h+FLHzrftfi9VrV+77fp3knl/R/u1fSotvhvWVQtK/tSd/V4BWWGe8a2yG6kI5jnlXHixU8PQMuv5xbxAzcvwLKZVXjg5gUA4PLgvP/ccVr+e3VlMQC48ouvLUZt9KP44muLtcrbU7KCVkluIS+fdRYiIcLyWWehMM+xLQvzIlquPwDkhUOu5CuQxdPHIhIiLJ4+FoBO4aD4dIrzIwkW/93XzJF8+nrj81QSJ0b7+z2qFb9Z2ZcKvB4A65qx8EO6FYeXW9BMLeSuGW4Rm8/rizuPu/KmhVMRCRFuWjgVty+ZjoqiKG5fMh0ANPfO91/ei6aOXnz/5b2YXFEEAK7kEx2fSPjKwKRU4Iqar0B40RigZ+Xw6zXTPHkBFlf25iRspnee6X6bMN1rIxGj2tUTlP/bD6ksyYY7Yp+LyLZ7PlRLefM8PIPlUGO7J4VBX7xf/n7/KcTiAr/ffwpf/MNijTqZu3eONTuriWPNnfj69RfiW7/e404Q/F2bPbHULaRSyrulowd3Xu6sNtRkaI5V7bNxz0m0nmzDhLLChO2AftdLuyRnU9IrwLx81lnafeCunpTAAtHZ9twFxai2+FMhbUoHBlu4kY05/dmObMuTHi5wl8njbxySlvOhhO3Gleb3Sx/q5AXiCUzvXocF4gksOacKALDknKqEd4tn4vx+X6Mzkexr1IjUeHaOCb46X3vDXCybWYW1N8xNuCYOM87AV1k8vmeuIFYvqsbWr16ZkOIZtK6GB6JH6nOXUcVPROVE9BQR7SGi3UR0CRGNJaKXiKhWyoxNk0NZucsx2MKNdBTl5BpGg0/WS8ENBNyNUVboLOiV5CiUFbmF0TCearga+wtW46mGq9EHZx7ok9spq3tCWSG2HnKeua2HmhLfLV4zwwqu+CRg8vGs3bAb53x5A9Zu2K39fqabhe/Hn39O2Abo7pm7VsySLq9ZLg2Ekl7vEH/v/N7BVKp9sw2ZtvgfAPArIcT5AOYB2A1gDYCNQoiZADbK/2cEw2XxD/bB8NtnpFoYmcZQxVzSMfF6HSOI7xnQJwjzWNwfXjWmAABcqcG08uFY+TdW/RLTu9fhxqpfAgCWnz/eCdSeP16bBMx3a9XF1U7l7cXVetyBTQLlUvEq+dDm/YjFBR7avF8bGp8QAGiKmz//Ji0zB7fq+SQHBEvYMCc2r99spMb6Mqb4iagUwDIADwOAEKJHCNEM4DoAj8rNHgVwfabGkA1I5cHw22ekWhijBemYeL2OYVILeCkbbgGbx+IBzppKJ/CqJMcLrdc5lAut12lWPndjAMAjrzrK+ZFX92suGFMx8kArf355hk5BxFE3Sn5i6XREQoRPLJ2uXYdZc8DBn38zeYNPiPxvzrlvHoODj9uc2EabwZXJ4O4MAPUAHiGieQDeBHAngLOEEMcAQAhxjIjGJ9uZiO4AcAcAVFenlo6pAj08/zlbETRINNz5v2fCSA12BUU6aCy8kg7MIKZXj4cyyZhZVpSX2PuW0Qlsr2sGADz71lGNGfOiaRWaL3+ueAKt3X0Ykx/Gfxtj7ZHFVj19IqGCllfXHpFppEdaOrUqYe5fL5SKt0XWHFRXFmNMQQTVlcW4Qlbb3nn5udjX0K7VHPDUUf78m9d+/4bdaO2O4f4NuxEJk7t6+tKHztcq+L3eIf7smr/zaKMvyaSrJwLgPQB+IIRYAKAdA3DrCCEeFEIsFEIsHDduXEoDkGnCrhwqpOIOGC0WxWi5Di+kY2nPrUm/Z4UrU27BctfFd37zDpo6evGd37wDAGjvjrkyGnLcLNEQYd4jNXj00JWY90gNAGhWPnfhrHl6OzbVNmDN09sBAFUlea7kK40jzQ4RmpKNbT2u5B24+LHrW51tlPTi4DdrDsZK5s6xBnOnaZUX5IVcyVdPj7y636ngf1V3KZngJHLm75xJl85wxO0yqRLrANQJId6Q/38KzkRwgogmAoCUJz32HzRKZVGLkkOFVJTfaHHhjJbr4PB6MVMNxnI3yZ0//RM21Tbgzp/+KeE8XJlyKgVexGQqU+7WWCR7xy6aUZmQrfO+6NOY3r0O74s+rfnxTYbLfDnJ5EfDmo+ejw0AJknrXEkFXhcQkexpSnr57s3sHz7R8Rx681lr74q5kvv4zaYxXjDTQ4cKw2EsZUzxCyGOAzhMROfJj5YD2AXgWQC3yc9uA/BMpsbQ0tHryqGcVVNRfiM1SGRitFwHh9eLGTQYaz57nEOK89qYhUFcmSoKhb54XAueXj9/EgC4kgdZ/2v/ldifvxr/tf9K9MWkhe/oRjRK90ljW7dWcBWTCf5KcjcLJ0QolZlCSn5WVuV+9rJzcOlMJ+3z0plVmkuoZqyMOYxNjDnwyTDhvrJAdEOrc78aWrsSnjVeVMbvOS9q8/ttzFhAEKRDrwyHsZRpJ8jfAniciLYDmA/gGwDWAriCiGoBXCH/nxFMlpwgkysKh3RWHY3KL5fh9WIG5Xk3FfqhU52uzIs41m9ehDQ3DaAr08J8afXm60ppQmkBIiHChFInc4cr2nBYWvlhYA5+iund6zAHPwUALSefV+5yUjUAKCmIuJJPAp3dzsSgJHenbDngKMEtB5o0pX370hmO9b90hnscJbnbxryvnZIaujMWxwmZn3/idHfCiouvLvj77pW3D+iTuhnYDoJ0U3MMFTJauSuE2AZgYZKvlmfyvAqfuewcfOvXe/CZy87BeRPGABg9wZmBYLQHXNMN837xYCD/zo/nXYPRFyKOuCuvvsBpP3jVBRPx6l4nCUFRIX/z17vR3BHDN3+9G6c7nMngdEdMC/puP9KCuAAefGUf1qyYhafqVzjUyfVOta2quh03pgB1TZ0YJ1M7eU7+/oZ2xOICv9yRmPbMXUlVY/LQ0duD4oIITsvVtCJEO3Sq3ZV9cRUQ7tP4+Hnmz+pF1ZhcUYTak22YXFGkNUo372u9VPb1p7vRJ+9hnxDaymD1ompt8kiFGj2VxImRGvQd1ZW73PoZjVZ40GXmaA+4phvm/fLjfeHwqvw0LUnptUE8Dmzc7VAIb9x9Ao2yQYmSzVLZN3fEUCA7kxdEQ5ovOiwDuK5Evy//vB7Z6LxnXQKpWkRmPETCIdQ1OSuQuqZO5Ev/u5LcvdPVI5uy9MQTyNzCFHKlNNARi+vN2lUDFiV5eqhflXFMxF15x6UzEAkR7rh0hrZSAXR3kV+VMEfQ7bwwUvXKqFb8DfIhV9ILqbRAzIYK2qAKfTQGXNMN/nua92vNU285mS5PvaV9Zz4D3KXjF6zk7hQe4CyVbhUl1csZAtDR6yi/jt645osuka4fJbkvn/Px8P0BoEla7E0dvdrkcdWFTmqkkhxnjyt2pUmrcOWcszSpUCDHWpAXTqi05ZggKSQmlOYnuHD4RHn8dBdicYHjp7sS8vi5xR80/uKVWZQOZIOO8MKoVvynZMaBkl7wK9UOUt5tYqgmj0wr9Gx+cE0Mdqz89zStOB6A5fj0T7ZgU20DPv2TLQB0bvzZE0sRCRFmTyz1VS5VxXmuNLNKotLqjhq9BGuqil35x55V2J+/Gn/sWQUAOCfmWPnnxNZBLhIQDXm3JXQ+I1e+IFMjlawoirhyW10LAGBbXUvCZPbCjuOuzJcFWvmREE53ShdVZyyh0pbfc+7/v+fZt9HU0Yt7nn0bgN7Pd/22o4CUZhEZ/7+5GuDgz4pJ55Bsm1SRzSvtUa34i6UVVJzvH6X34joHUuPjD/qDD5bMLegyM9UHMJsfXBODHStXGuZvMbm8wJXc+jdTKXl/2sdeP+C2HDTTGLlC51k4vXIpoCS3xLnye/YtR/k9+9ZRLYDrbNsvpXGP3jgSgrby0AgRUD3WSYKoHluI3pgcg5QdMnirpMLd63egqaMXd6/fAQDokcuLnr44rrrAKca66oIJiElzPRaP4/ntRxGLCzy//WjCPeeZTuZ94BcfkQOPhEhz5QK6xc9XA+bvyZ8VPvFypOPZz+aVtm9wl4j+we97IcS/p3c46UVzZ68mvWAGdfjfqQRv/Pbxqg4M2tErlUBtqgGokRS4CjpWr/vHlYbZh/X2pTMcCuKlM3C/5I85frobY/LDbsUroDdBUW6Wrt44c6841i934XCXBMHxpSs9x90z1893gsDXzZ+Eb799GcJhoK/P+af+jgAgeRRyj+bAPHZBJISO3rhLn6Bwx7IZbtUtAMQhXJkfJnT39UsAkHFcROREEwnpjVO4u8lcOXFlzzOdyosiaO6IoVyuNlbOc6595bxJ2HmkBbX17ZheWZTQfcyrh/Wap95yKZpf+sfLErYL0sg9FWRzlf2ZLP4x8t9CAJ8BMFn++zSAxKTYLAO3HFJdunlZ1X4uIb6Pn7WRCplbKpZIqgGobAtcpaPPcZAVnPlbcMuSd3XrkRa+kjyoqexj3U52oJRmd5/QfO1+jQPVNb95sEmz8i8r+QWmd6/DZSW/kOcWmvTCrZfUIBIi3HpJDWpl79va+vYEv3mfHGtfn9DGPUWugpQskUWSJQVRXDi5DABcqWCufPY1truSTzBj8p1jKfm7P5905dob5zmxhRvnJXQf84I54Xg1teHPxnARPA4VfC1+IcS9AEBELwJ4jxCiVf7/awB+nvHRpRG8F+lL//D+Qac4JrMaklns5ufckjDHEMQ6CLqaCHpNIynVM+iqyA9e989M2eTgluXzO4457gopgX4lGwkReuMCkRChIBpyVwOt3d6VoNy6VVk8yfDb1r9w0jRbHZoFZeXXSWVWZ8QfTFSV5KG+rcelYNi45yRicYGNe/TCeZPfik9gfNVgurn4BPaK3FfJ/muNor61B+VFjqLmq4H8aAi9fX2IhkI4KdM3lVQrpSbj/vDet4D+fPBrmFxRKNNG9apiE6aVz/8eSe9JEATN468GwCOkPQBq0j6aDMIs2+ZkVus/t2TAxzMVtZdCMT/n1mNpQSQl947XtqkoxsEq06F8IdLhegoywZr3hPvuj8jUxyNNna5lrlzRFcVRnGztQUVxFL1Sq0XChIqiCJo6Ym6glOPmhdV4aPN+3LywGg9u2oc4ki/DuZV/oXgCbd19KMkLo585PxEleWG09TjbTa4oQn1bj1vduq++TZNemFJegLrmLkwpL8CJ1m709glEwoRueX1KcnitXHigFwCWzazCptoGLJOVvptqG7CwpsJt+K6OMH9KGbbVtWD+lDLttzGfA664zbodPkF4wbTyeSP3dBgd2YSgiv9/APyBiP4Xzq/xFwAey9io0gRuoSyorsCm2gYsqJbKyaN9GoCUFJmXQkn4nJ03qCIL+tClOx4RBF4MkplAOnym/Ld+53ir1oJP/W3eE05vwJVaJESISQvf+b6fv0ZNBk0dMYyTVnYklKjSH3nNCQI/8tqBBPfQ3sjqpL78tpij7NvOwCmjvm/r6cOqhVNxsLEdq2SWixns9QJ3k6jrTOqLYgiHHCs+HAImlRXicFMnplYU4vhpZ9KMy7z8Yy1drnxXTkCb9zbg7HElqD3Z5tYIcPDfxnz2uFGlehADic/NujcOub81LxTzihGYcjRY/4EUvxDiX4noBQCXyo9uF0Jszdyw0gP+kr72rmNFKLnq4mqXqpU/QKWF0YzO7Kpdm2m9+z1MQZVzKopxsMo03cRW6Xip/I7BJ9Gth5pdGl9AoLW7D/dv2IW7Vsx2UxUvmlaBvKgTCM2LhhAKkWNt54dRmBdGvbTwAW9lWi8nhPokacU8TmAGYLmVP6N7HUSs/zsFcx8v3L9hl3t9gaqNJfg7FAoBiPdLjhA5gd4QATOqHMU9o6oEa2+Y21/p/ODvAcQRkmuaA9LHf6CxXcta4vs4H/Y3c+HPq1nwxo0qP2Ppvud3oaO3D/c9vwvnTRjjuZrmf/Pvbn34jRFv/Q8knbMIwGkhxAMA6ohoeobGlBHwpg+AsaxjD1bQdo3pCBYHrQhNpbpwqHLwUyG28kPQ4LXf9XF6XbMYiAduOY0vz+fmTJiA7qJok/76tu4+nJbZYqfPkDXmB+XvLi+KojayGvvzV6M2shqAY90L4UiefsnhFxDmUHEGJf3y+r0Qku9JiEjLTAL6s3viQu/axZ/dMnmtSvLkC15JbIKT0vHf/eRpZ8WgJK+Q9iu044R3Xs+b3/Pld+yRgkAWPxHdAyez5zwAjwCIAvgJgIE7x4cQ3Bpas2IW1qyY5X7HuUGumDPBnfUf+M2fNd+eF9Lh80vmr0xm1ZucJApBLdtMWiV8BZMOBE2j870+NpHz5hyrF1VrlluXXKV09fShvNBR/IXRMHr6nM+VLMoLo627D0V5YbR397nPlF8GDX/2/JRyqwwct3b1IhzVc/LPja1DPOYoV2Vgn8k1ExRBXT0cnTK9tLM37lroyXZ/ePM+xOKOjIad1dJ9z+90OXxU5W6YnPOHyalWrm/rQWlBxDf+pgVwSd5dSpy9+O98/X9u1lxC1ZXFrivJ63nze77SYf0Pt7soqMX/FwBWwmmmAiHEUThpnlkNP2uIU9EGTav0K+tPZeYPmsLpxQLpZx0HvY7BIt0pn2aAzYtOw68nKrcQORWAuR2vJG3ulPw4nT1aWiYAdMoJorOnD4WyHLYwGtKyUkzwZ8+rAhcA9oQcK39PaLVm4QP+KaFDBW7Zc3cMZxU1wQvHuFVvXg+ffNrlSqS9u0+jXgb0FRz/3ceNcX5TJT0LIpkhAOgsnpw4jiPoyj/VIq3hLo4MGtztEUIIIhIAQESJUZcshznD3rRwKh7avD+hpNvP521aIn5pmwOF3/5eLJB+q4R0Z/+k20LxOp5fmuzprph7/0sLItrKjKfrKv4YAFrxFQB8+n+2oL6tB7uPncbk8kLE4gK/39eIBpmWqCTHknOc7BMlgf7iqiAozg+juSOWtIKc+/Gnd68DZMbigcBHHzwKoyF09sZdycGN6miY0B0TyIs4EoArOSqKomjq6EVFURSn5YomDuFq/HiSFVJxfhgdvX0ozg/jVLuzj5JccXNFXVWSj7qmTlTJDl18Fc+fGzPt08vNy8G38Vv5pxojG+7iyKCK/0ki+hGAciL6JIC/AfBQ5oaVfpjKjpePcxeQqZC0jB+DXpcjlUq/oK6edCOVc6XbdeR1PL802a8/t9P5MElG1JGmDlfySQCAyxO/elG1FmhVLpqDpzoQkpkoSnK8LtMLX3fTDAcGzrIJeGfrZBKRkLOCiSRZ43dJZd+VZDLjVnlI0Uonef45qorz0NTR60pA3lsjKYinufIxjC2OoqO5D2Nl0JxnJKn2ie09fbh9yXQtU4kzfC6oLvccn5n2mcxVmen3cbiregO5eoQQ34bTOvFpOH7+rwoh/iOTA0s3zCUZTyXzC7Ly/3NeFdNdYvKGKAQNEqXiMkk1EJrKuVJd0g70eH5j5fffDHjzFoGHZLbIocZ2bUIwwYuO8mVQMT9JcJG7K0za4lTArXxOqpZJBHVLmeBB4F45OfX2nSE4zKxo7ipaKpu/KMkD5ctnjQcALJ81HiT3V5Jb+V1yEF29fQluQe7W44VoZiMcvp/Xu5BtVevpRiDFT0T/JoR4SQjxJSHEF4UQLxHRv2V6cOmE+UPyDkRcgZoKif+fPzDc7wggoS7AayLxonZIBanSPGSSEG6wx/ObzPxod1tkZk1LZy9i8reICYE86ZNXkoP7rM89ywlZKcnBlRynLUgVpi9/KBA0+ydoto9vcJi9C9yvv+NIC8Akn1B5XwLViEZJPpHwWgnz+ed0DrwlpdkY3st/P1IzdFJB0ODuFUk+uyqdAxlq8A5EQRUo387MX+epZFx5mQ/ZYIM6qUwc5vUNlhU0HfA6rznW6/9zM2rW/BLX/+dm7V6afDBlsvdrWWFE42833SwcXBlyymETqWTAcOyVaZp7ZZrmUFn5QVEkJ8WiaCjhWlO59hbZ9LylK6Yd+/3njgMAV3JMKCt0pUnfvGrhVGelt3CqFlQ2n3/+/+/evAAH1l6N7968IIGe3YuHZ7gDrkMJX8VPRJ8hoh0Aziei7ezffgA7hmaI6YGpaLx4uP1cPfzBMvPXvTKDzIdssC6TdJC08TGkI28+FXid1xwrV8i8r6vJB9PW1edK3q3KD2TITMGkTs4G8GvnaZom/DKSvNDQ2u3Kbpka1R2L44W3JWe/lJxCmmfamERx3NXTKicVJTm8ntFr503SpNc7mG53ZjbjTMHddQBeAHA/gDXs81YhxKmMjSoDMIOJPCPgCz/bisNNndjf0I7v3rwAwJlLtXnlL+DNp2MGfblvOh3kcINFKrQRasIYTIZP0GA4z4ffe9Ip6997si3BdcFz6nvl3529cd+gZlD3RyrwCuBmtMn1AKBV5JLjnSFKzFsoiDjkaUp6IRom9PYJRMOE4rwwmjtjKC2MYO6UcjcjSk3Sqlp5YqnDAzSxtEBT7qpFpUuZwSp0r5UUzdfOm5TwzvFndPbEUpde+pTcX8nA9CqjGL4mkRCiRQhxAMADAE4JIQ4KIQ4C6CWiEXWHeEckQF8+Hm12OESONnf6Lh/9aFu9LFhzO96NabBWtN/+ft95rWKCBqJTWXWYx/ZabpuVthyaspJ/h5J8x2EGNYfDys82144JXnVrwqz49UJ5YdSV/J5vOeDYh1sOnHLZMZUszIu4kiv3l3Yex2vvNuKlnc7KgHMlcSVuPofcFfjQ5v2IxQUe2rx/yGpaRhKC+vh/AIDT+LXLz0YMeMEWoCueT8oGzp+8dEbCfl5FW6bv3quM29yO+zLXPL3d6eb09PbA18Efdj8FnEpxV1CFnsqS2O8lXbthN8758gas3bAb9zy7Q7bdczyJXgo9aHGTSXWQaStf+fKHI4A7nOAK+a4Vs1BRFMVdK2a5q6/euMBCaUwtTLJK5MqdK20ALqPo5Ioi33eQv9OcosUvFpZJV2c2TypBV54kRP8iUAgRJ6JsWbUGwpc+dL7GxMhdHBdNq9By+TlMF5FaCprUDl4l4gDcJezqRdW4fcl0p6BoyXS3B6uiig4CPwZBr+5egzm2gsmE6LUk9irMMl07/CV9pbYBAsCPNu1zFXLvGRRmkSROKzqDHz8UIvT1CYRMkpsMwKsYayTBj0LaD15B4DjL/X9Otox87q2jrktVYXJFkeTML8KcSaVYv+0orpnrPCv8neHgMZ/Vi6oDv9McXs+8nxtpqCjPM4mgv+4+Ivo79Fv5nwWwLzNDygzOmzAGF04uc3m6U2HGDKxYk1UDyr+5wrtrxWxtMgoCPwZBr0kq6EPs6+P0qHA04RUL4HUOqxdVaxOB2l5A52/xA29L6IeE/q1pBPfjAy1DVowVFMlaJZ4JxflRNHXEUCy7X3lxDpmsoLwN5Vef2YFYHPjqMzs0t09hJITOWBx5MqrLEyRWXVztKndVC3Og0Um/9OphYfbYCPpOc3jtY1bpp9uQGm4EVfyfBvAfAO6G83tvBHBHpgaVCZgduDju/NlW1DV1Yl9DOzb/8we177wImZTiUkFazvGdrDNQsmAxAG0yGijMh9vrQTMVfSoPpMnn7gV+bH7e9u6YJr//8l40dfTi+y/v1fYfbOrkUMLM1jknll1Wfio1B3Wy0YyS0TChRwZte9hxTJfZhLJCtJ5sw4Qyp9sV0M91pNApP1CSE/zxFbRZIc87oK1aONU1GD58wURPw4n32V174zzvanxAG4NLAGeMYbCTSrYhKB//SQA3Z3gsGYVZwcl/PN5VyQ/cSjUZM/n/t371ykC83iZr4EDht5T0W514PZBeDSoAPaXOLHPnL4FXRtM3f+U0Ka+XxFumghkpyPZsHS9EZTN05RkLyh6qlH3PmSYPDzoTLdtHchapJur8WeHP6DvHW7WMOd5bl6+Y77z8XM1w4s/8cdm28fjp7oT3hFvzfAVhviderLOZdOEMFWun7/NKRP8khPgmEf0/JHk+hBB/l7GRpRnchwjoP15YpvyFQ/43nj90ZszA/H8gMPdJKj94sgc1Wc9R7vbxg0lhzMEL1vzOwycPfr+aJae9kiMV2UCqlgo4YyaQWpCbd9aC0F1ypjWvcFZpAeqaOnFWaQEITiGdaqLOwSeBr8t+CMotyFebvKWiqYD5/+9aMct9Ds02jF5d8PzcqByZdOEMVVzgTIbKbim3ZGwEQ4Tl54/H/oZ2LD/f4QTh1uiWA6cQizu+R78bbz4kXDl6MWj6gbuE0vGDewV+g04qE0rz0VofczlPOLg/1i/AzFc+D912sfsdnygAvWNTsjTCbMJwkKplC/jKYGxxHupbezC2OA+nO2Poi8XdxiknZDOUE6e7tN+Wp88el9soyY0EoL/1ZYPM8FGSGxDcLerlPk32fvJ3itfgeK1+/d6ZTLpwhiou4Kv4hRDPSfloRkcxBODpnGtWzNIepruvmeNtHTCk+wf3WuoGhTlZeFksQZtFmBTGHH4vC//7wsll2FTbgAsnl+F/Xj+ATbUNGFucp1uL8M8dzzaMhmydVMFXBpy6urwogu5YHEWyi1lMuoJifQKFMuOqIBLCSelyOXm6G31yGyW5kRDri7utIZVbqV5WAHO6ZZ5dpgq9FIL64b3clny74crIGaq4wJkoG54jome9/mV8dGnETQunIhIil3+f5wPzjB8z59erEUhQBN0nk4yZQQtYvBhGAe+CK/P6NsuXZXNtA9Zvc9L31m87inwZAc3PJt6CgBgNOfl+1AucmK1E9gwoSdI7gE8CLdJlpyTfb2HNWADAwpqxDg8/HD7+pTMlO6eUnLuH17eY8YLH3zgo6ZYPau5RP/JB3/x8n2MopFKrMpJwJlfPt6X8CIAJcNotAsBHkf1uTQ0m/4dXkNVshs5n/tOdvQMOxpqWg18AVSEdWQNeFBImeLZTp0yeV0tsfgwvigUzWyoUIsTjwpUK555Vgm11LTj3rBLP68kWmGma2Zatw8GDp36oGVuE2vp21IwtSvguP+JY6PmRkEaVbCJPZvbkyUBtU0fMJcfjMaDX3nX6Frz2bqOW/Wuyc74oK3Nf3HncXXWrnP3ujl4U5TvH5hlDZsYckDzG5beC5jGDQ43t7mqCI5szctKBM1E2/E4I8TsAC4QQNwkhnpP/VgMYeBrKMMK3lRqzAEy6ZW3mN4Kx3NLl/+e0A6blwJe3XquJdLAE+h2Dj4/nQp+SCl/Jz/zkTWyqbcBnfvKmtjzm+5vZUkrZm12W/Ngvsw3ZTqrGkS9JiPKTkREx3L50hkOClsSNF7Qmgp+rTZKkKVkqJ4DSwohWNRuVhXNRudrmq25+VY9s3ucUY23el9DEnhO4cfiRD/qtoPnq1azozxUEpWwYR0TuE0NE0wEkcqtmMbxcFYDO22MWKvEHiPdy9WPxvH/DbsnHszvhAeT9c73oF9KxzPSb6Pjks3zWWQCA5bPOwljZwk7Jk9LHerK1W7Po+PWF5YutZDb0iU0F2U634JWF42ehc3jVTZwJFUVRV3LeHjNLqLM77so1K2Zh7zdWYM2KWbhyzgQAwJVzJiSsuu++ZjYqiqK4+5rZWvqlSaHCK3T5e2LyOgV1l/J3w6uftR+ymYohKIIq/r8H8DIRvUxELwP4LYAvZGpQmYCfItSYAZlyN8EfLJP0jStrs8E3x+pF1dj61SvdEnO1T1BlHzTmwCc6cztuefEGGD0x58VWkjezUG6gzt4+1xIOh/1JvFTO+BlYFbICI4lULRVwIsKBICgtc0w2QYjF45pCfnGn83y9uPNEwjN+qLEdrV0xHGps1/h9rpgzAe87uxJXyEmDryr5e8cNkIHA7Ker3segGA28/UELuH5FRDMBqGlxjxCiO8i+RBSGkw56RAhxDRGNBfAEgBo4cYJVQoiMT52+zZOZlR/Ut2dmCfH9eKVgKvDLKAgac+A+ebP8/Pf7TzlNxvefQnlRHlq7O1FelOcqBdXlaEJpASIhwoTSAi1dT9EfJGtuwtP/TKsw2zAa0zQ55cXY4jzUt/VgXEkeeuNxNHfEXJdMeVHELabq7O5zqR3CIdI4kLRMnsIImjtjKC+MoLUrpuXx84prvqLslkZEd6wv4d3iZGx7v7HCfS+v+PffaXEjXoPDA70TSgs804+D0rAExWB5sLINQVsvFgH4EoDPCyHeAlBNRNcEPMed6K8HABxe/41CiJlwqB/WJN0rzfCz+DVXjwEvq9pcIqbSGSsVVw//zuwCxqG5tsyqSia5C8HsavXgK/sQiws8+Mq+wJw3mWS/TDdGqpXv1x6RK2DeWN5sYFIii6hK8qMYX1oAABhfWpDg7+dUyrxhi0mtsUxm6iybWaWtKHnarvkuKRK2a+ZOxBd+thU1a36JL/xsa0LciPv4y2XjpPKiPN+4hdlnlyOT/a1HCoIuwh8B0APgEvn/OgD3nWknIpoC4GoAD7GPrwOg6gIeBXB9wDEMCjx4BECjAvZziyT01pUwl4hf+NlWbKptwBd+tjXwmLxcPX4PptYFTGY9KOl1bN4WEgAWz6hEJERYPKMSLbKvaUtHT0LWxVBx1w8lst2XHwSKafRMjKNaS0WjL4HKka9v7UaBDNoWJAkQX33hRERChKsvnIi4dOcoyXFaTiinu2LYuOckYnGBjXtOYtwYR1GPG5OXoDx3yuds55EWLfW3uEA+11Ly97Oy2DleZXGeb9zOi0IiKEw9wN8nfh0j1d8fVPGfLYT4JoBeABBCdCKYPvgugH+CHus7SwhxTB7nGIDxyXYkojuIaAsRbamvrw84TG8ckpwwSvJlJvcbJszsAVkpU/Ghmt24BmqFBI1HmHjktQOIxQUeee2AFtytlEFdJUcSYVpQjFQrn4NTHfuhS9IndMXiCZM4V+KcC8cEd2mGyFEXIQqhUE4qSnIr/UBDOwDgQEM7Jsn8/EllhQkr2SPNXa7kK4Z22UZTSb5a50aM3yreNHYGClMPeLVWHakrgaCKv4eICiFX8ER0NgBfH790BZ0UQryZysCEEA8KIRYKIRaOG5eGBCLDAuApZ4+/cUj6DRPTL/3cQBxezVz8LALuC/WDV0DXT7n7pYfyPqg8+NYhmTOV9HMpjBSYjc5HqpXPwZvJ+4GnWJouOCGnAAHC4uljnRXg9LEJx+Bum/HSlz6+ND+hT2+DdCs1tPVobTBXXVztvD8XJwZP86KkSQWzU5eXZe9n8XOjykQQK93P3eo1CYwkBCUVvAfArwBMJaLHASwB8Ndn2GcJgJVEtAJAAYBSIvoJgBNENFEIcYyIJgI4mdrQB4bqymLUnmxDdWUxAOAKmV52xZwJ2Lj7hBskMgNQJk+IV8BozYpZSRs/mIFVDk7s5heM4mXqpYXRQKXknJZ2+ayzkhapANCCb8qyb5Mxg9Fg8Wc7dXIqCMkArvL08CArp8ZQwffmjhjGj8nDydYejJeuF66cf/zKPvQJ4Mev7MOymVXYVNvgWuDcbVNZnIfDTZ2oLHYSAfh58yTnf16YkBcJobW7DyX5YS1jDkTau9Aqq35bO2MJ7Jy88YoX1bdf32aTPZfD750cKEZqodcZLX4iCgGogFO9+9cAfgpgoRDiZb/9hBB3CSGmCCFq4FA6/58Q4mMAngVwm9zsNgDPpDr4gWDtDXOxbGYV1t4wFwC0todrb5znfHfjvIT9+HLSb1nnaUX4+Bp5nIDHEhKOxdxNfhYGT6M7cMpZeh841YEfyyDtj19x4ht82T8alLuJ0eDH9wP/zczfLyKflYjhmnzf2VWa5D2L+TH21Ttc+koeamzXpAvDd3TVhRNdyVN8G2RLxob2Ho1XH9BXydyKNi15/h1/H/0sft/8/AD+/5HqwgmKMyp+IUQcTjZPoxDil0KI54UQDWfazwdrAVxBRLUArpD/zzhMtwivWPVrOM4fLj+folfAx/Q1ek4QPvwhfr58Dp30qp80y1QOIynzJhWMBj9+UJhN5xXNQZER8OdtDwHvQjvudze349XXZrD4d3+u16SC6r9Q39qVEC/jhV4c5nvmlYjh9z765ecH8f+bBtZIDeJ6IaiP/yUi+iIRTSWisepf0JMIIV4WQlwj/24UQiwXQsyU8lRKIx8g+MMDALcsmoZIiHDLomnaj2o2QOcPgF/2T9CAj9d3PJZgPnR8YvI7NrdyTD/paMdot/K9YCrwFklzoKSCX46CYkwNhxKNAtVqWwiBMZKIbUwSAjdOuMYJ27hLyQRfofL38weyyvgHssr4wU0yrXjTvsAWv5+iDpJIYW4z2lYAQX38fwPnWfis8XliAm2WgmfxrFkxS/Nd7jp22rOPJwf3KfpRIms0sgF7d5oFZkGaQJhxAd4T4A/7G1HX1ImF0yoAIVDX3IUp5QWDvY1Zi1ymTubIj4TQKQnXOlnlnOqPYrZDBPRgMS/SMvcrk8V+ZUV5AHrcHrsA8Msdx1xZI+NpE8sKsVe2YYzHoVV/A8D9G3a5VMwdPX1unEF5YFRHvHCYEO8TCIdJo554QDZs51Z5sv4W6v9nIj1Md9FXNiOo4p8NR+kvhTMBvALgh5kaVCbwvrMrsam2Ae87uxKA7rtUfv87Lz8Xa556C6317Zggi1rMwCpv+6b2McFT4KYpNsQk/kSvakDzAfRi2rz+e69qkwrf7lmZF/3stqOuNVgnl++jEaOl8nawMLNtvBCCs0pQEnBebJ6Pb4KT+KkCL+XP5wV+fNUxbkw+TrZ2Y9yYfK12ANBZN+vbupzuXIUR5IXDONnajaoxThaRmkhqKovxrow9JEub5kaWcosOpMmR33YjNYjrhaCK/1EAp+E0XAccWuZHAazKxKAygTf2ndKks+YVCWvf2vp2TZqBVSC5sudKl2frJOtPm4xygfsbE3qEGs0n1PHMYNmdP/0T6pq73MDcaMZIok7ORnj5+M0GORVFjrFTURRFTDr0w2coHOPkfjPHl+BkazfKCqNoanc+VzUEvCveY68fBAD09ArUjC3AydZuTCorSNiupbMHJ1t7UFWSp70X6z+/VAvaeq3A/TDarHo/BFX85wkheMrLb4norUwMKFPokQ+tkqWFEdS39qC0MKIpWs45Dujc3fxhMrta8fTJl/7xMtflsu6NQ1qRFncXPfLqfgCJfWwTHsAkgV8gsc+psui5ZZ+lNDmDRjZSJ2czOIeSiYjsOa2k9p18DyJhQlOHNyGfJ5gyjobD6I33ISp/NL4yLikIo6O3DyUFYc24AYDHXncKDh97/YBbpS4EEgIXfD9uiJm8Wl4YbVa9H4IGd7cS0WL1HyJaBODVzAwpMygrimiSVwfyYKrJSaPlITOYAVhOK8thFml5BaT8MhR4gQ0/r7l0Ho0UCxy5GsD1g2JZOAMdf0LQNl9GdPPDIc2Pb7JxKsK+xrYet24gRDo3jy+Ycr71Eieh4tZLpgHQkxE6Ze1IZxLeKf5k80IxM9vNKwkiKPVyUObbdGT4DHeWUFDFvwjAa0R0gIgOAHgdwPuJaAcRbc/Y6NKIHumTVLK4IKxJT/g0X+G4ZVG1zBLS08fM5hOagmfWEJ9gTIIpXlnMKxJN7hRzchttyKU0zaDwC9r6obqySJMKFZIETcnKEibZ7HGsxVlVKsmNjvlTHJK/+VPK0Nnj+N86e2IJfPw85ZJn2Zm8V3zC4CsQv+wcr9aqfvAiTfTbLlUMd5ZQUA3x4YyOYgjAqV0BoEtaFl2Gm+W6+ZOwfttRXCe56HmrNx48ghCaf9F8qBXMz7nFzzlS2iVNQntPH4rz5GQkJ4YJpfluZfF9z+9ER28c9z2/E6FQCIjHHQkkNLMeDRiN1MnZgDmTSlF7sg1zJpWirqkDnb1xFEZDaJR+eCXLC6Kob+1xJeC4D/c3OHEkJUvyw2617kFZPHjwVIdbT9LSGfOttP39vkaHKnxfYwLv1cbdJ5wMvN0ncFZpAeqaOnFWqX+Gmp9b1gvJfPxeDLle3wXFcMcTAln8QoiDfv8yPch0wKzcXVBd4UpuHXCCqQTwij/Dv8iPwVcGpktIY81kS1XOtGnym/DKYl6MNU5mPSjJrabRAmvlDww8J5+jRBoTSvKCLo1u2SjMapaJA0oqmCuNdun3b+/u01a5y2c5HIzLZ433Z9Nk75PJe8XdqFWSnVNJL/B30LftKgNfQQRlyE0V6TjGYDACeiOlByZpE28Izb8zOe75kqymyuH5qakqTiBv8/Ivmj+w1w/OJwHeag4AXtp5HK+924iXdh7HOLn0HleSh7Zu52VU0mvVMZIwGknVMgnTxz9WKsSxxXnad2ZF75jCfjleGg7jx+Rj5jjnGVfylPSpn2rr0WiezVgALxjkz+ELbzsN1V94+7g/myZ7/s0OXLw7V1DWTf4O+k44OYqcUfz3Pb8TTR29uO95h1efs3P6sWRyC/1ZaSU9+9bRhIcpqIURpKm62YiCc+30SJO/p09oJFyA/tKPVCQjVctWKz/dwXS/ylgvmJb36Y5eV/LCrAaZAKBkp7TQO7v78IXLz0VFURRfuPxc7G90njklr503yZVdcmXQ1RvHx5c478/HJZHad29egGUzq/Ddmxdozz9ngvVKlAD8q9NTaY/o19Y0SGDV7Oc72jA6o4BJwB9AIJFN86HN+7UetMkKrqIhh4EwGkrM6edxAgCebR557vGqi6v72yOyz814RFGe4z8tygtrmTwl+WG0Sb8qAG1iGknw8uNn+8OZDs4jzqbptBLsLx70QoicPHuVZcP/5vUpcTmyOPpbLZa6gf/+BE9uxFwzdyLWbzvqdsc6JUnWTrX3oEzm9JcVRbX2nSae3HLYUfBbDmvXF7S3hV/efdBiLDM1k/8d5Bh+7J6jATlj8ZtEZXxG5w+x2ZSCc/fcs/ICVBRFcc/KCxJcNtzK8WPQ5K4k/oLwz3mrOQDokN919PRpVmavnMSUDPheZR3S7ccfqibvqtYj7wwNC8zxcMue/568cYoJvh0vsopKja9ktXS5VFcU6tk13dKPL2WRHENRflh7dnceddyESmrWu6Ra6O7tQ4Os4lVS61THYmE8bdR0j/J3kFvhPIvNRDr47/k1eaVwBk0BHanIGcVv5h3fv2EXmjp6cf+GXdqDauYGc+4evyVnUD9ic2ePK3nlrcrkKc4LJyyJ+XJbq7g0NH3QBh3ZgEzm5OdHwprMFIK6esym82ePH+NK7qo5KRvaK3m9zCy7fv4kXCqf20uNvHnVX0JJnghQWugYL6WFUbfaVsnTklbhdGev9ryZXFX8O7UCnVxRpLXsBHSDhvvhb72kRqZi1iS8I/wd5AaWap6upFfzoaC58Kbbho/DK4UzFffSSELOKH7+oAOQRFOO5EFb05K/a8VsGVjyp0QOys7Jg2W88lYLWhkKnS+3efCtME+2v5NyJNEtZzJbRzWSaUtaDJQcZlAzCLxoDwCgQrpUKooiKJd/K+nV1S0mDRAl3zu9EhVFUbx3eqXWD5kHVs1sNf7s8ZaiZvHUknOq+iV73sznnSt0fq6E9yIJXcJF0yq0QK9prfN3kE84Zn8Mr8bpfg3VOcwYntfqfKR200oF2e5GTR8MZVpVko+6pk5UleRrqW3flYx/Cpzx0g/cp+iXo3vtPKdO4Np5k7Bxt9N8rKWj183cmT3xOBZPH4u3j7S4rfD48W74wWsAGJcQ+oO72QyTWyfbcvL9+s56IS59LvEklMMdPXFXqolZ4ZHN+5ysrc37EAkRYnGBSIjQ5x7P2e7e53aiOxbHvc/txFUXTMD6bUfx/nPHYefR0y5pmdm3WfmuN9U2YMeRln6ywMpizSfPJ5Ivfeh8l5bELHbiK1H+jCs22DPdP567b/rdC6NhV352xWyX3yqBOsGrcUrAhuqcOwvwZ8K1lA2jDKUFEU1yq8svG8bLB5gq3zevE+DVvpw2mnOLAHo650hFNmbr5EvLOT9MCZlUHNxNWFHkKLaKoqhv9zJeVW1mX+2TzLD7GtsxXVbOTq8swmRJm60kj+HwRifc8r5/w27pLtmdMFatatxQkvw7HmvSfPUI3rTcq1mQnwuUV/Vy14r5bvG6Fv6dXz9fDtNtM1jLfrjpFtKBnFH83BIC9AeSLwbMH9XLB2guM4M+DHzpzIPKKovimrkTtaYWAPAj2YjiR5v2acfiwbtsx1Dm45tdqbTvGN9Mt9TY3X1C46ThvnVApypukemSSnKofgdTygtcIrJoOJwQ3OVFUtyt8dkPzERFURSf/cBMAMBKef6V8yclUH8olMl8fCW5UuNulsUzKh2+pxkOLTn/TmN59ckQ8ArGAvD0vfsp2RbZc1dJBdNVyuMM6cjPH2zx1HDTLaQDOePqiYYJvX3C9Y/ylLFX9zqTQWNbD9Y8vR21J9twrKULL/3D+xOaQKtlq5uLLC2oBIpYLzDLq0G2pWto7XJXIqfae7D1kPMyuamlHjCLzbIN3L3DaZMPAMiPELpjwpVBMHNcMWrr213pCUZFSUJnpeSG77gxeahv7cG4MXkgwKH7HZOnxVQAaIqxUu5TOSYPDa092rH573HrJdPw0Ob9rk/9oc378fGlTpZWUTSEjt64WxClwF1AqxdV44DMpT/Q2IEDjR2ukbBxz0n3Ga0aU4C6ZkcCiWnFCiZDJX/+Fd8OiDSKEkDnuH/3ZKvbOOXs8WM8e0EkY5oFEhud3LViluaCUfBjpw1Kq5BJDDfdQjqQMxb/HJkTrCR/EXiJuJnVwH2o3MIwl8D8pfdzCbVIJdLS1Yuj8oU72tKlV1zKFDglFW+Qkgr7JE+KktkGP+pk3hM4KBJ6JTBwS56nO5oBb05zccOCKYiECDcsmIKyQhloLEx09wX1/3OrnK/mzIpqTpHArcdDsuOUkpr7ic1Y/BnlzK2AHrjkq1wzPZE//9zlYla480lvQpmTKjqhrLCfW0pK7iLySnQIWphlWuTcjRSUViGTGG66hXQgZxQ/bxQN6D1CedNnM1uBZwT4LVv5y8MfcLOHL6eV5QrqGdkx65ltRxPcCb+WZe9KKpi8KtmAoGmaWlaJDzidAIdZ5Ro0tZLn3j/yqhNXeeTV/VpbQNMtyBUPdwlNkTnzSnKisSPNUmk3d2jZNc65Q670YmsF9GeFGxrLZ50FAFg+6yw8/sZBmfPuUGZx44Tz9phB2wsnl7mSu1zuffZtNHX04t5n3wagT3pmBhEHN3x4TCpoBW0qfvNUfe2jwUc/WOSM4jeLbXiwjD8I5gvi5Vs1g2D85eEPuOqGpWSV5NqpKsnT0vy4ZaqqK5U0G65kM4KmaW45cMqV3Fo3oVplKqnAi9qAxAI9BbN+o14q0/q2Hs3Hf0Lmzp843ZXAQ8PBfeqcpgDQlR+fIMxg/T0r58hCwDkaL9N4WbGrpBfhmnIBbtx9QkuJBHQff6lU2qUF0QRrW7k3X93boCUZcEoQQE+C0CxdY5Li2T88UcHPOubvEB+fqZi58cS/80vn9FPuXj76XJoQcsbHbz7QNy2c6tI0fOYnb+Jkazf2HG9FWWFU8/FzK443ZTeDYF7+SlMhlRXm4WRrD8oK8zCxrACbahswd3K55pflTIfZgjA516Ckgl+aJu/6ZDp0eJWq2e6Pg6fa8jF88tIZeGjzfnxC+s05OKWBWb+hdLmp07nr6VPLnGMrHhru526Tv0lbd59vx6aqkjy3ReCkskI0dbS4/Zd5irDijjrS1IHJ5c7KoUCyq4WJEINAmEgbA296ztOSTTTLFWNzR28CDcKk8kIcburEpPJCzS01udyJGajMIr6C4G1ETffX4hmVePuoE0RePKPS/W3WvXHIfS9+9fYxnSrBw3dvUipw1xaPpbkTbXdiOrMfLYOXjz6VBu1+8GvePtzIGYvftCq5Quc9Qs20Pm7FcWvKLMLh/kpuUUTkCZXklhJ3KXCFlI28+l4WtV+apl9BGVf2PK3SxBgZ9B5TEEGptLZLCyMJDI4a2InNADivJOX3vGqMXImNydOeDUD3c/PfxrQQObV2mVSIZQXRBDcj32+sVNhjS/ITlKlWlcueG05NbKZRciuau5RMGgS+WuH++gc++h4sm1mFBz76HgDehYnmefmqhv82fq5SL9+9uZ3mfmWTBV9lmPBzy3qtQoIWYQZFNmf/5IziN33AR6QVcaSlU3MH8BcRgGeRCM/AMMEfIJ73DQANssFFQ3u3dl6uCJfKz5XMNqRCtzBzfIkmx0lFO25MnuZyKZfKXUkeCG2RefAtHbGE2MmnlzkB+k8vm4E75N93LJuR8PvxQGtITsahEKFcBnXLC/MSUxqZ5CmWpqtB66/AlLgZj1jz1FvO2J96y1eJLz9/PCIhwvLzx2s569zfbyqxo/K5PtrSiduXOJPc7UtqUCafPyX5fsmKtJLRiPuxzvLgsVfbw6BBUXM7blTxe+RXY5BKANZv8kkF2VwJnDOK33QncOoEjkK5zFYyWaPzB37zZxyRDc2PsMbmyXBKcpko2SSVV1NHTGtfx1cGr0tLU8l0I2ifVi/4+fG9gqxzJpVqslwqxvKCqOZTr6lyJgYlNUuXWeWHTjmZPUoeP92FWFzg+OkuVFcWY0xBBNWVxQlWNFdenOCMKz8zU4Z/p6V6GpMKVxx8Rdgj3VpK8jRNP+X12OsHZZPxg1qRFYe56lBdsupbe/D8jmOIxQWe33EsoYFJ0EIovp0Xxw2gK2evtocmZ44ZJ/O6Jo5UsnpS8d2PhmYrfsgZH3+VzL9WyoP7iJW74M7Lz3UtSKXw+UvP/aT7GtrR0dSJsTJY+4WfbcX6bUdx/fxJONDQ7voh/TJvePu6wmgYvd19KIiG0Cr9yL0ZcvWk0qc1aAtEL/eOSYvBUzPnTynDtroWzJlYiprKImw73IwaWdFalB9Gd0cMRflhLT6iMl7UPVovs6LWbzuKjbtPuPnmtyyaptFfcAV66yU1Mte+BgBcHzXPlFkjm3/w3HbAeVb+5/UD2FbX4nI9mf5st7iIUSUDQJ+cKPqESEgX1v3S7G6ySYb7ok93xbR8+rywQx2eFyatheEDNy/QroHXqwBwA8zcj8+58QGdfkElP/AMHb5fsraHO4606FTHHsViQamXTXj51FM93mhGzlj82lIe0KxCv5mZW0OPvX5AWmAHEiworngapVXY2N7jGUwEdAWslH3rIAK6ftkxQeCXzcKt/JnSyp8ZW+e7Dwf3zwO6X5/7wPkEAUCjO+CTsLmC49W2PN88geKXKVDu9uE+ar4/4G1lPr/dqRhVkrNN8hROs0XmSsm2unLeJNz3/C7ZIGhXgmvg7muc7J+7r5mjPYf82CY98u2yQcrtS6brjdIN8IDpIdkj99CpjgT3FR8Tn8zMd4Zb716Vu2YtgRfNQ6ouEi+feiqNWEY7ckbxm4Eg/sJpS1Bj+c4fdp6JYpbAcwV/xC3AcbImALgyk4jKputKDhTKelbSy5fPrXqzExN39fCJiNMeOBv0W3s8rZUTd6lzKMndImYPWc5kyfsZmJQGXIHyojmulMx+CF6Kwkw1LZcpleVFedpEYhoJW+RxthxsQp/k9OmLx319299/eS+aOnrx/Zf3asc26ZH5ZDa5XNIolxcluFV4LQB/djX6BgNePPYA0CCNnYb2Hm3y4NdkFmx5GVzm50EVtdeEYR4vm4OuQ4WcUfyJfsx+lXLvc7Jo5bm3E5af/GHnVubDmx3+nIdlcJcrEU7Xq1LzClJ1qA8AplU9WATJyd+4+wRiceHmln9KBlY/tWyGNgmYLi+ubMaVOKmD40oKtEIqwLuAy+yoxrNHuDtHURko+f3f1joK9Le1msXOlZLpT/fKF+cMlwBQICergmhYKxA0/fjcBcMzd0wfOFd43Jjgk9Qti6bJHHyHGoIrP82iNp5rXsfCVxbmdl7cOKby5BOQ3+TBEVShB1XUQX3q2Rx0HSrkjOL/zkvvoKmjF9956R0AwJXSr3/lnAnokVwxPTGRYPFzJcBJ0czmGk0yZ1pJhWb58Def4SVIB5plrrqSCkGrWlNpdL5Pso0qyS1OngJqFiOde9YYV/Kq58SK3v4JmiuAXjkLK8mVIVc8ZqCWB+W9isNMxcUlV85mcR9fVXLFaoIzxfJqWLMvNL9evnriAdPntx91ArjbHdcYr5rlitB0q/D7xSc9c+LlbiWuMM1qZD4B+XUS4wiq0NOtqLM56DpUyBnFzys2Ab36UfPBGhYPf+m1ZhgG42JMKiAl3fOyLIugCNrSz4TpqlHwy6fnCEekhS8XDOf2OVb+uX3e1Mlmfj+vTeAsmRNlNaqS3K9//LTjnz5+ulur6AUc4jQlubIxJzOt4pr9hialAb8XpsWuYCouXjnNXYQmBw9fVXLFarpZvAP++lVxhZcvV4z5kZBvdtmPX3FWoj9+ZZ+vRe3Fk1MvK5iV5G4lrjDNamR+LxplvEFJBXM8QRV6Kl23UkEu+f5zRvGbKJDWWUFeGGXSAlOSg/suuZIzLX6/IqSBwqwyHir0xaSFL93wfhW1XuCdrLiSLcxz7q2SPF+fT5qmC4fjYcmt8/Cr+zXqC0DPjecrCO53B6ApUJP+WuGknIiU1LmT+q/KzGvnq0NNsSap8nYKkmZp9Qh3XzNbulwcq5wrPO6O4ROg6i6pZKWsP6ksyddpxD1SJwGjNaExVi/KEvNzrsR5i0YO08JPxfLOpH8+l3z/OaP4TY719q4+V/JcbzMI7OXCGScVjpK8CGkkgbt30tEc5bi0FI+f7tKKtEwXQrPkNmrujGmFbOYKgitqvqIxFTq3fE+1O7/VqfZeCOmyU/KeayVPzrVz8IIkvXvh7eNYu2E3zvnyBqzdsDvBLbWgutyVvPLX7I3MV4fcevTKXgGC93Tm3/HssrNKnaQBJSeVFbiST0x+FN48G6lIdgtT0lzVKJifcyXuReYW1ML3s7z9isgGa7Hnku8/ZxT/d29egANrr3YJtcYWR13Ji214/10/mK6jkQo/6uQSWWlakh9OqKj1ArfYuaI26a45jslgp5Ici6RvXkmFZhlMVJKnLvLf9oSk41CSgxdWPShdJA++sk+L/wA6oZnWwMRQptyA8LMeeSDar6czV2TcKueuIsXRoyR3N/FgbHOnvF9S8mPz9NXTckJWkitDvwYrg1W6Gvmaz+rEr/nKYC32XPL9Z6yAi4imAngMwAQ4CS4PCiEeIKKxAJ4AUAOnJ8cqIUTGnWpmcQd3PXD6hb2ysOiZbYn9d72IykYaghZjcbI4dbnNnTGtIcre+natGQl3U/UkWS0li/fxVoRTKgpR19TpUh2bFMkKnLIY0DNqivMjbnOSOrkSUJPQ/Rt2ucVdVSV5qG9ziNROd/aiu08gGiL8coejVH654xi+e/MCVErCtcqSPI3gSykmtTpctXCq1rvW3Y4RrK3/3BKtB+yhxna0dsVwqDGxxwAnJHu3vs0dd3VlEWpPtqG6skg7JwCN7VNZ3Hdefi7+8odOr2bFGsrHtPaGue678dLO457kd8mKuVSvX7MBTLKCKb9CKm1/ny5g/P6b7/RoaJAyVMikxR8D8I9CiFkAFgP4HBHNBrAGwEYhxEwAG+X/M447f7YVm2obcOfPtgLQCbXMBhhe8OuxOpIQlDqZ++h5VomaHPf6dcGCzplvFrJx2ghuwc6QK60ZSVZcXqmdADRXEs/k4bQMADTrlvuieeGTGSSfJPPhJ5UXaVahWcvhWeBkZIrxQLRXW01AJ5jj4+auFJMziqd98jEkFHN5cFCZ5HfciuZWPl+1ALoLxstl4udK8SNA5ODX5LcysPBHxhS/EOKYEOJP8u9WALsBTAZwHYBH5WaPArg+U2PgqJMvhJJamh/TcDwPfbQglTRNE1xP8AmB8+eY4GmyZmYRr1rmk4pp4fPMIO6/No/H88h1H7gzSSjJi7P4M7Bxz0mnHmHPyYSMLe6j5y4XM7PFyy1i1pD48chz8HiTl9+cZ0QBuguTY7KcOJTkY+LjMd0l/Jq40jWrcM14RzL4uVL4d4F76frUHFj4Y0h8/ERUA2ABgDcAnCWEOAY4kwOA8R773EFEW4hoS319Yi70YMHT/KIRaRVGSKNyGC3wo04OCq+U0E5plSqptUCUW8chfDOEojKKGjU7jhjnLS2UjUUKExkveR655gM3Cri4K4R34FKulkON7fj4Umfy//hSZ/LnSolbuqby49txJZRAsMZmUa+2mgC0FQXn9OGWLm+iAiRmTymYkw9X1DwobQZPvZS12bCIr04Gq4CDBlnNoPlQBWdHQ9pnxhU/EZUAeBrAF4QQp8+0vYIQ4kEhxEIhxMJx48adeYczwFQUPJ2TN9e4f8NumeGw+4zHyGakQp2cCvi9AwwPAvuP2QmLg2eSTJENQJQsk3QOZUURT38/oPdXqJYEb9WVRYkFXMwVwuMRnDjN5OPnLzpPYzSzcDyDn4ZbhSt0zvZpKhS+otBcK8zS9cq6MZFgRXNeexaUNrfzUnJ+yt1r5RMUQSkb/CikM4nRsLLIKDsnEUXhKP3HhRC/kB+fIKKJQohjRDQRwMlMjkGhS/qAlTSzFxQmlOajtT6GCaWJfuSwNGeVzGZwK3969zon4gInmj5YSK5JEBxyth7JBgk4fDtNHTGUF0VcXp44oFFQq+2a1Xbst4jJyUm1suyRhRI9vXGE5LFCABZUV2BTbQMWVDsvObc4b18yHd/69R5XKuW5ZsUsFOeH0dHbh+L8MIrzw25wVwU943F4uhAUvBStGcRVAcxVF1fj4Kk9rrXNFfpDt10MIHnnKd4lrrqy2F1lcAZNhWRWLg9+moHPr1wzWzuG+lutLJTFb16TeT4lk3H6Azo7Z6rMmNnGrpmOIPJwd+fKmMVPRATgYQC7hRD/zr56FsBt8u/bADyTqTFwmFTEMUmOFYvHtRz/25fOcHzAcpnPc7p57nk2YqisfO5+6ZO+GyW7paLu7o1rhq7Z2awkP+pKTtNQIB3rShbLorrigojmEuIploCueLgbw3TH8EwlXgvAm9/4uRB83QkeAVPT1ePVnMQ8Nrfm+erC17JlY/AiSwO8GUfNsXL2T255m8fz6iswWOvfPIYfBtu8PSjSsbIY7lVDJi3+JQD+CsAOItomP/sygLUAniSijwM4BOAvMzgGF9xKBfRMkp1HHett59HTONDYoVVfTiqTvUmlzGZ4WfmZxIWTHS79Cyc7PEaVJfnoaOpEZUk+rr5wopsa+PyOY7J/gbOSOiUVyqm2bjcwu/VQE7rkxKH6xXb1xF05rtTpLzuuNB8QAnXNXZgoA741VcUuN75qdAKiBF/02JI8rY+Cghd9gwluzZpWm2nZuzAmBN5z1+vYgM5/z88F9FvopjWsNZ7xmIh8YezDg+ZBLe8g3PwDsdz9ehtzBEkpzRYMd+ppxhS/EGIzvHnBlmfqvF4wg5N8IjggA3sHGttRIxtiq4BXZXEeDjd1ujKb4NfoPCj4fcgLh9DdF0e+tKyXzazCptoGLJtZhVdqG9ztCP0ul+2Sc0dJXim7ZsUsrFkxCwDwi61HAPQXTZUURNHR242SgigEBFq7+7R4i6JxuGVRNR7avB+3LKrG7/efchuLr1o4Fd/69R589gMzAUBj2nziU5e4isd0VVQV5znHKM7Tqli5W4Xnz6///FLtGNxFYipCk7JBIVkjFwWuJN853uq6c1Yv0guweJMW3nyFr0oAbxdOUJiT110rZmsuJn4uDi+lq+5TMndTupHs+Nma0x90MssUcqZy12w3yCeCmAzyxfoE6mVPXCV5IM6vqUo6YVIGeG6X5mwdsy8rz/DQs3UcxAGE5c1QktMlcJjEXU0yqNnU3qP5+M3m9Lx9IM/v5tk5APCJpU4efkLhkWHBcpcEdw/5VeTyrBevvPZk5woCfrzAufHsPEEDnKbrw8sVYgZ3g7qYvMYaNNfepKT2QtC2jBb+yBnFzys7AX0i4I1AeMcnQO97OlQFXCG5UAqdgUg53X78NqnglOQcLvzaOYekWiEpOVlm40wuL9Be0k9e6qRIfvLSGfI4/Vk0fPZRLReV5Nz13KI2KSDWrJiFvd9YgTUrZmm+bdP3rPXFZSmOXHGZfE3cfcK3C+rn9lN+fh2qvArC/HrkcvBJxfQpe40pVT4dz9x7j57VJsxJz+tcQX3jftsNVSwgm5EzPXfN1oZji50y/LHFeWiT2ScqMKmjXytxt0hGdb8PgT5375wTSy1bx+s6Jlc4VACqonVCWSFaT7ZhQlkhIm1daOqIoaIogpsWVru+++Onu1Bb34450sd/+9IZTkbN0hmai2TVwqlafcTKeZOwfttRrJw3CTuPtKC2vh3VYwu1/QGn0rRe0iVwS5e7IBIQ0PI2lZX623TNcPfJmqe3uysN00/vuXz3oSDgMOMRXq4RPu5ksQIFP9eHF2lbUBeE6ULj5+JuH9P1lOx6AGg0Fib48YK6i3h8xO94QHbHAjKFnLH4TShl39YVQ57MIMmLhhLyzRfWjHWlSYGbKXjx6gP+pGpBXVH8Ovhqx2w5yP9fLAuCivMiWlm/2SNXU6ZMAfPVAwAtf33tjfOcqtQb5yUoY94rmVvUfkyWfDs/y8/LPeHnMvAjm/OyHv3YOf2scq9xpMJjnwCPyTGwBWzs75edFGQ8fr9nKqsQv+rfwFlaoxg5Y/GbWT3FBRF09PaguCCChlaVuRDD67JoR8lXpDWggpsA0JuBFEk/BCVVi4QIfX3ClQpj8sNo7e5zC89CMiM+hBA6ZdZMZ09cS4Ncvaha44FRefUtnTHNYuIEZkCiRaasvS/8bCtauzvdFEq+Ha9KNS01r/xwP/Dt/CxE03L2Oja/Xr+VhlfWi9+4gwYkvTJlgsI3+yfANZjwzGCCfr3pyOMPerygKwPz/uWSpa+QMxa/mdXDA4qqN3kolGhte1EVpAM8YOqHoKRqRZJ4TkkFs7p2nCxOU2mRAAAhtKYzAHDgVIcrefMQbiVNKlM88I70surM3sNeNAgm54uX39xE0OpOjqA55ny7oJZpOipWObxWLkGDtqZl67UK8eO75wjKp5NqzCCV4wVdtVnkkMVvIiYT+WO8/51wWBx748Jlc0y3X58fz4u/JtU0TZX73tzRi5K8MNp6+lwJNv5CGeAujIZRWhRFfWuPlDKjSUo+CfLcc/5ymv7wdW8cci3iJ/94yE2L9PNzc/+uy2cjt0slhzuoBRfUkkxlpRHU0vUbt1/lrdf+QVcdXvUIg4kfJEMqvx9PATUVt9/xhjtFciQhZxU/V7pKIfYJ4JOXTsdDm/fj4zItMKjFH5Srf3K5wxE/ubwAx1q6ku6TLE0zWTFWfoTQHRPIlyRzIUlxnGzlwsGbcrTLWEd7VyzBb2u6xxS8qAkAne/+7PFOkDKZsufKhk8qyegIgsBLEfmVxgdRrGc6xkDHM5DtkrkuTJiusaDn5deUjGf/TBZ/upWsV3A4HecYbnqEbETOuHpMmD1bFTbuPuHQ88pm7EHhZb3z9oMA3MYgdc1dWopkKnQLvZL2WEk+S8WEXNGIuNZJC+hvxtHY1oMSSYlQUhDBONkIXUlOkKYtxX2yZjhvPHcnmFxJXq6LVJfoXg25/YK7/Du/82aS9z2oK8rrOgJTGBvwqkfwO17QNMigbhsvCoh0B1yHmx4hG5EzFn+eQSaWL90d+dEwSvKditGS/DD2NchuUFIGdfV4rQyWnF2F9duOYsnZTpYQ715VyxqZcCt/QfhJl8BsGxItb/V31RgnsKq48LU6A/V3HJhYWoDa+nZMlAq9stjpPFVZnIcWWa/Q0hFDdaVzHOUK4gRpa57ejtqTbTjW0oXl54/H20dPuw1IOJafPx77G9qx/PzxmlXIJxsgGB3BQJS/lwXrZwEHriQNmI7JEdSFk8oKwm+lYlYde52T7xc0GB40DTKoxZ5KMDwVZLpieCQiZxQ/p+AFgOOSJfJ4S5dLMMZbDColet18J99cyYFC7bNetnLkzci9snVaexxl3CoD0HxSCZFjaBPpKamA96RiKi4+6aGzlx1dB8/rP9DQBgA40NCGx9/odHsZKEoGBc48yb+bXO5MPqrAy4uOAEgtr5orPBUITpYBk0p2jNneMAj8lI2XcjZhKkav+IF2DR6T1Jqn3kJtfTuONXfipX+8zPPa05GBFNRdlG6F7DWhWt9/InLW1aO4YGJx4Ztd86xU3M8aSt+nxsoXnOKAW/lz6QlM716HufSEb4Uwdyl1SItcyXelsn+3vl3rXGW6ZjhBmiqoqq4s1toXAtC6Pqnatt44UChTLAvzwli7YTfO+fIGrJX9C8zqUwWT9dQrlzrlZT5TeF5uHyC1ZT+fpNJS6emhnM1je2UJ+d0jr2wds1NXKvBi9DTHHvR+8WMEpWzwg3XpBEfOKn5p9CIa9u+lq/HSMA6dVNM8t/Sswv781djSs0rz5S+scV6ghTUVWlEVoE8yvFGJWbDFx8TH3SmJ0ZRUDJljS/IxZ1IpAGDOpFKNiRHQX0w+hrYumR7a1YeHNjtdrB7a7HDmeKU7mr5jL9920CYcJrwUnl8rwaAI4ms34bdd0LF6dfTyg9d95em4gH5fzck7FXjFDIKO24+yIShytRgrFeSMq8eEKsIaSDEWp3L2yng5E7yok4kVis2bUoZtHS2oGetY42WSQ6isKKIFh91xJcZ2tfGZCp2nc/LK269ff6FWnMSXzpdKps5LZ1ZhX30bOpr7MLY4imvmTnLpG8x9uPIJ6jtO1V/stZw3z5vKsj+oD9zvvKmM1cuXn0rWi0kFzY/x2ruN7uR9xZwJ2u8XNB7hFTMI6vbxo2wICuvSCY6cVfz5YUJ3n3DlQMF9/37wy8kPkeOyURJwlLVZFal8/a2dMYwfk4+Trd0YPyYfjW3dbjoooFfoLp91lju+CaUFktp4mjxJv+untNDpmFVaGElQDjxt86Ckrt5xpAXTKotR19yFqjEFGvUykFrAbvbEUrz2biNmTyz1DUKmgqDKIGiAOZWc/lTH6uXjT4dvnB9jbPEBrN92FNfMnZhwzqDxCK/rDVoX4NWjwCIzyFlXj1L2qSh9ANgiXQ9bzuCCMHPy54ifYnr3OswRP9VMdJ5y+YOX96Kpoxc/eHkvAN0V9YOPXYRlM6vwg49dhHxZBatkmaRDKCvK08a3cc9JJ0V1j9PlkgeYO2RxV0dPX4KfldMRc9+9H/dM0MpP7mrgje/N1MlU0jtT8cP7ceakgnTEArxcF+moSuXH4LxJCedk8YhUUjit+yU7kbMWP0fQlE1epFUnm7LUnaE5C7fwI3By5J0uUgXuvnHotApt3c7nqvFLNOQEVaMh4KWdx6V1fBx3XzNHWx7zoG2njMYeaep0U1gPSaudM5U6TVcEIAj3PrsT3X1x3PvsTqxeVJ0QG1Dws2ZNvh8vcMuyMC+C1u4+FOZFUkqd9Du2XxUoR9CMFQ4/N4hZFMUbrATFULkuvNw0ADwbz5j3dahSMy3Sg5y1+DmCBmqD8vHzYiyTW6dbdhNXMgh4Rs2PNu1DLC7wo037EgKpik5ZSYWwJCNSsjDSL3mBWa/sQ6wkjw3cv2G3ZNfUA4CmpedF92tux1cGnTJ9tbMnpjVbSRWpBBf9Mla84HdsPoZ0BC6HC/xe8N8sHUHzXOXCzwZYxZ8B+FEnN0om0MbWHi1LKGh6KJ+kTNeM6j87saxA2+7WS6YhEiLceonj4ydpTRORY2XDsbpXznPiFUretWK2zASZjbJCWcVbqC8SedMTACiWBHHF+Xq1r6kouO+XnydoJWrQNMF0uxqCplXyMXiluGYLgk6O/Lcxrz0V91MqLjU7WaQH1tWTJgSlTq6SwVklgf5sISD5qoMHbZWbBgDueeZt9MYF7nnmbaxeVO0utXkxFAD8fv8pxOICv99/CgAwtjjqZuVwcF8voAfcntxy2A3ocjRI95KSXq4BHsAFEl0rqgGJX19XDtO1EDT7hJPIcbdL0OBuEP4cE+kOXKabe8YvWOyVWeTnwkklEygo0s3jk6uwij9N8ErTTMSZHUvzp5RhW10L5k8pA+DtPumVqUBKqtaR5UURtHbG3HiEqZyrxhS4SlxV5Na3dmHtDXMBJH8RefUqf7HNVFEOnsr3rV/v0Sp6/Zgsg7zQptLwUgjm59zt4pXeCMBzUhlsWqUfgirMVM7rd2w/Je6VWeSHwabg+iHb6RdGCiGcVfwpIlXqZNX0RUmFomgIHb1xFEVD2H2sFQBcWVoQQXNnDKUFEYwryXdpGfY1tGvpnFHpw4+GQrhwsjN5XDi5DO/WO8pdKeeayiJsO9zsSgBo7vScqQDoQdv27phb/n/LomlaqqipQJVrwMzTDsqM6QVTaZgrCgXz2DctnIqHNu/HTcYE5hfczWRaJUdQhTmUljI/VyYt+aBIR7A4k8p5pKxIrOJPEUGpkxP2CwHxeL9U4PQLys/fI31AvPuV+ntvfTsKo2F09PYhX/ZSrJcEaPVtPe7f2+pa8OllMzTl/Kws2nr2raO4XtYjXD9/kv9Dy7JtjsjisSPNXdh17DRicYFdx04D8M+O4f1kU3GZ+MGLI8hUFHy8u46d9rRm+d9eRUjDRSY2lJZyKj0Gsj2TJ5PKOdtXJApW8Q8AXn78gdxEnqHjhaoxToNxxbqZzDmkgrYPbd7fH7SFztxZ39qDcWPyEpRzmAhxIRAmwl9dUoNT7T34q0tq3GOfydXzyOZ9LuFa0MpM82Xj+wVNv/Sz1Lgl74dU0jaDFiENFplUmOk49khRamdCtq9IhgJW8Q8AXn78A2k+T3mho7RVo3Hu8z/S0ump0MsKHZdQWWEENyyYgoc278cNC6a4BVtji53j1VQVo/ZkG2qqipM24XjneGuCYuXKb87kMtTWt2PO5LIEpejlKzdfNjNDRH3nF7T1s9TMe+EF88VMJZ6QqxgpSu1MGC3XMRjYdM4zIJUGKYMF75AF6H1nCaolJGH2xFJEQuT6tTmXEK+G5Xw8AHD7kukOU+aS6doxzHxzr9RFfjwzrY//nx/bTPfzSoU0P/ci/zIRtGI4FaSjUtbCpmJmE6ziPwOCNjrX9jFYM72Qr5rCGBuaAeCP//cfsKm2AR//7z9ofXEflsyYD0tmzOWzxruSd8KaVC4bokvJrW3uGzfzzc0cfYWJ8jhKcnAlyY/tt51fJyyu7P0UcKqdqEYzsk3RWtrk7IF19RhINVuHw6/ClxOzefEFmcyfKuOmuTOGaJjQ2ycQkRLoT+dU7SI37j6B//6bRUnz0gE9WGnSCWg+bEbmxsm6Hrh5gXs8s8EHRyp+d9OPz5flfj5+645JRLZlmNjfKHtgLX4DybJ1glj5XuC8/wA80/h55S7n0geczlpKlhc6RVflhVHtcwAolyRtSnrB9Msn488HdBcTryXglrfZ4INbmX5+d69+q16rDMDfYvRaDaTS/3UokcnzZhtBWrpdZtm2ohlJsBY/0pOt44X8cBi9fX3IlzOJqdQViLVUNHuYczZNNUV09caxt80hXdsrO28VSA6egkhIs/ZOd8VceuX1n1uiWV5elayAHgTjVAwcd62YpeXne/W7Na11r0wev0bumcxfT3dRVCrj88toSgWjPYiZbSuakQRr8SM1P35QtElLWcnCaEiTCkvPqXKlacnzRYLZSYmjuCDqSi3Y6aNMeUDXz4LiVMx8u/MmjNHy87188n6kXvy7VRdXOyRtFyeuQPwsxsHSAqdiHQf1WZtj8wqa+x3PWreJSMeKJlfvq7X44c+tk254kbG9/m6DK6NydaAKpThlM8c5sqn6OXKC4Ln2T2457FTabjmMxTMq8fbR01g8oxKAbinxitpUrGNApzcI2l3K67uvP7/LHfdAcuYHSwucyaIoc2ypVAJb6zYR6VjR5Op9zVnFz907Qatu04GxJfnoaOp0pQIv7IqG9UBARVEUTR29qCiKapz53TJ/s1a6eh7ZvA9NHb14ZPO+fpeMEAlVrV5FV6bi4W6gX719zDMnn//t5f4I2l3Kb3Xih+EIHJrXFLTtpJ8LzEv52MBoZpCr9zVnXT1+1MmZRJVsdK5kMlw5Z4Imq2ThVVVxnkvj0NOXWPrLA608MGumaXLeHe7qMV0p92/YJTn4d3m6cN453uoWfQHB3R9ey3Q+7oEgaOAwk0t7r2s3x5bOJuojCdnoVhkN9zUVDIviJ6IPE9E7RLSXiNYMxTl5IRaAlIqxOH++H2SMFZGQQ6kM9Eu/toUKG3ef1GSX7IDVFYu73bTywpTgNvLy/5uZO42SdrmxvceXK563cvR6QfjkAAQvpDInDAXzPGbPgcEik7nkqficsy3zJpOwefzZgyFX/EQUBvA9AFcBmA3go0TkrQXThHSkafLKWD+oToWxeCKlMld4vM8uL+aaUOqsBpRslqyazR09uGflBagoiuKelRckZIZyBe/3kvHj+SHI6oQXigHBC6mCBpW9On+likwq2lSsx5FkcQ7WYs+lSS7bMRwW/3sB7BVC7BNC9AD4GYDrMnGi4aBbMFEp3TRKcoXH6RduXzIdkZAj1944D8tmVmHtjfMA6J2wuHI3VxMcfi8ZP55fW8Agq5O1N8x1xsq4/IO83Hyl4TdJmZPgYDGSFG22YbAWu7332YPhCO5OBsBr+OsAJES0iOgOAHcAQHV1aoyIqZCqjWOslgCwbGYVNtU2YNnMKmw/0uw2OhlX3M+LD8ClPv7E0ukA4P79+/2nUN/W4/bBNXnpefBUFTutWTFLC/J5dXAyq3M5/AKF5vH4eIIew2uboJkWfAx+XbfW3jjP8xothha5GggdjSAxwOyJQZ+Q6C8BfEgI8Qn5/78C8F4hxN967bNw4UKxZcuWAZ8rdneZm7kzW/wUPX0CeWHCn/91BdZu2O0q5+Onu1xO+r+6pCYlWmAvBN1npHTusbCwGDkgojeFEAsTPh8GxX8JgK8JIT4k/38XAAgh7vfaJ1XFb2FhYZHL8FL8w+Hj/yOAmUQ0nYjyANwM4NlhGIeFhYVFTmLIffxCiBgRfR7ArwGEAfyXEGLnUI/DwsLCIlcxLJW7QogNADYMx7ktLCwsch05W7lrYWFhkauwit/CwsIix2AVv4WFhUWOwSp+CwsLixzDkOfxpwIiqgdwMMXdqwA0nHGr0Q97H/ph74UDex8cjOb7ME0IMc78cEQo/sGAiLYkK2DINdj70A97LxzY++AgF++DdfVYWFhY5Bis4rewsLDIMeSC4n9wuAeQJbD3oR/2Xjiw98FBzt2HUe/jt7CwsLDQkQsWv4WFhYUFg1X8FhYWFjmGUa34h6OpezaAiKYS0W+JaDcR7SSiO+XnY4noJSKqlTInOr4QUZiIthLR8/L/OXcfiKiciJ4ioj3yubgkR+/D38t34m0i+ikRFeTifRi1in+4mrpnCWIA/lEIMQvAYgCfk9e+BsBGIcRMABvl/3MBdwLg3dpz8T48AOBXQojzAcyDcz9y6j4Q0WQAfwdgoRDiAji08Dcjx+4DMIoVP4awqXu2QQhxTAjxJ/l3K5yXfDKc639UbvYogOuHZYBDCCKaAuBqAA+xj3PqPhBRKYBlAB4GACFEjxCiGTl2HyQiAAqJKAKgCMBR5OB9GM2KP1lT98nDNJZhAxHVAFgA4A0AZwkhjgHO5ABg/DAObajwXQD/BCDOPsu1+zADQD2AR6TL6yEiKkaO3QchxBEA3wZwCMAxAC1CiBeRY/cBGN2Kn5J8llO5q0RUAuBpAF8QQpwe7vEMNYjoGgAnhRBvDvdYhhkRAO8B8AMhxAIA7cgBd4YJ6bu/DsB0AJMAFBPRx4Z3VMOD0az46wBMZf+fAmdZlxMgoigcpf+4EOIX8uMTRDRRfj8RwMnhGt8QYQmAlUR0AI6r74NE9BPk3n2oA1AnhHhD/v8pOBNBrt2HywHsF0LUCyF6AfwCwPuQe/dhVCv+nG3qTkQEx5+7Wwjx7+yrZwHcJv++DcAzQz22oYQQ4i4hxBQhRA2c3///hBAfQ+7dh+MADhPRefKj5QB2IcfuAxwXz2IiKpLvyHI48a9cuw+ju3KXiFbA8fGqpu7/OrwjGhoQ0VIArwDYgX7f9pfh+PmfBFAN5yX4SyHEqWEZ5BCDiC4D8EUhxDVEVIkcuw9ENB9OgDsPwD4At8Mx/HLtPtwL4CY4mW9bAXwCQAly7T6MZsVvYWFhYZGI0ezqsbCwsLBIAqv4LSwsLHIMVvFbWFhY5Bis4rewsLDIMVjFb2FhYZFjsIrfwiJDIKL5MqV4oPu9TEQ51fzbYmhhFb+FReYwH8CAFb+FRaZhFb9FzoCIPkZEfyCibUT0IyJaRETbJSd7seRpv4CILiOiTUT0v0S0i4h+SEQheYwrieh1IvoTEf1c8iGBiC4moteI6C15jjIA/wLgJnm+m+Q5/ouI/ijJ0q6T+xYS0c/kWJ4AUDhsN8kiJ2ALuCxyAkQ0C8A3AXxECNFLRN8H8HsA5wIogKNs64QQ98sq31/B6eNwUP79IwAvw+F3uUoI0U5E/wwgH8BaAHsA3CSE+KOkQe4A8DE43O+fl2P4BoBdQoifEFE5gD/AYU79FIALhBB/Q0RzAfwJwGIhxJYM3xaLHEVkuAdgYTFEWA7gIgB/dGhaUAiHjOtf4PA6dcFp0qHwByHEPgAgop8CWCq3mQ3gVXmMPACvAzgPwDEhxB8BQDGhym04roRDGvdF+f8CODQBywD8h9x3OxFtT9dFW1gkg1X8FrkCAvCoEOIu7UOiCXC4WqJwFHG7/MpcCgt5jJeEEB81jjE3yfZeY7hBCPGOsX+y81lYZAzWx2+RK9gI4EYiGg+4fXenAXgQwFcAPA7g39j275XMriE4pF6b4biGlhDROfIYRUR0Lhw3zyQiulh+PkZ2eGoFMIYd89cA/lYyQ4KIFsjPNwG4RX52AYC5ab96CwsG6+O3yBkQ0U0A7oJj8PTCod+dL4T4iOzR/Jr8Pg7gq3C6Vl0IRzF/VggRJ6IPwpkg8uVh7xZCPCuV/v+D40LqhMP9ngdH2UcB3A+H/ve7cDjgCcAByRZaCOAROG6kbQDOAfB31sdvkSlYxW9hYYBTOA/zUCwsMgLr6rGwsLDIMViL38LCwiLHYC1+CwsLixyDVfwWFhYWOQar+C0sLCxyDFbxW1hYWOQYrOK3sLCwyDH8/zf6oHeir9o9AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model = Pipeline([('attribs_adder', ColumnDroper(['artists', 'id', 'name', 'release_date'])), # drops text inputs\n", " ('std_scaler', StandardScaler()), # scales data so it is consistant across parameters\n", " ('reg', RandomForestRegressor(n_estimators=1100,\n", " min_samples_split=3,\n", " min_samples_leaf=2,\n", " max_features='auto',\n", " max_depth=20,\n", " bootstrap= True,\n", " n_jobs=-1))])\n", "train_and_vis_model(model, x_train, y_train, x_train_v, y_train_v, x_valid, y_valid, name='rand_forest_reg_tuning_2')" ] }, { "cell_type": "code", "execution_count": 266, "metadata": {}, "outputs": [], "source": [ "rf_model = deepcopy(model)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Generalization\n", "## Random Forest" ] }, { "cell_type": "code", "execution_count": 289, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12.300822075749615\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADe7klEQVR4nOz9eZws2XXXi353TBk5Z9ZcderM3X167lYPGixZ2NK1McaWwcZgG7BsDPaFB/gD7wGGd9+1fAEbnv241zymazDGYOka2xjkAQPGRpIldUvqVrdaOt1nHuvUnHNmzBH7/hFReSLznKzOPqeqz9D5+3zqs7KqIjJ2ZO5Ye+21fmstIaVkggkmmGCCdw6UOz2ACSaYYIIJ3l5MFP8EE0wwwTsME8U/wQQTTPAOw0TxTzDBBBO8wzBR/BNMMMEE7zBMFP8EE0wwwTsME8U/wT0DIcTHhBC/NMZxf1wIcVUI0RVCvOvtGNsEE9xLmCj+Ce5H/Azwl6WUBSnlK2/HBYUQR4QQUgihvR3Xm2CC28FE8U+wb7iDSvAwcPJWThRCqHs8lnGuOVksJnhbMVH8E+wphBCXhBB/SwjxGtATQvwvQojzQoiOEOJ1IcQfTx37A0KIzwohfkYI0RBCXBRC/JHU/48KIT6dnPu7wMybXDsjhOgCKvAVIcT55O+PCCE+JYRoCiFOCiE+kjrn3wgh/rkQ4j8LIXrANwohloQQ/0EIsZWM6a+mjn+3EOIlIURbCLEhhPhHyb8+k8hm4mJ63y7j/AEhxOeEEP+7EKIOfCwZ+88IIa4k7/svhBDZ1Dl/UwixJoRYFUL8+WR38cCbfB7TQojfTMb6JSHE3xNCfDb1/4eFEL8rhKgLIU4LIf7k0OfyT4UQv518/l8QQhzf7XoT3EOQUk5+Jj979gNcAl4FDgJZ4LuBJWIj408BPWAxOfYHAB/4C8TK+i8Cq4BI/v8C8I+ADPBBoAP80hhjkMADyWsdOAf8HcAAPpS8z4nk//8GaAHvT8aYA14G/tfk+GPABeAPp8b0Z5PXBeC9yesjyXW1Mcb3A0AA/BVASz6n/wP4DWAKKAK/CfxUcvy3AOvAY8n4/l36Hne5zi8nPzngUeAq8Nnkf/nk9x9MxvAMsA08lvpc6sC7k/9/HPjlOz2/Jj9783PHBzD5ub9+EsX/53b5/6vAdySvfwA4l/pfLlFoC8ChRDnmU///xC0o/q9PlKaS+v//BXwsef1vgH+b+t97gCtD7/e3gV9IXn8G+AlgZuiYt6r4r6R+F8QL4vHU394HXExe/+udRSD5/YE3U/zEC6lPssAlf/t7KcX/p4A/GDrn/wR+PPW5/KvU/74VOHWn59fkZ29+Jr7FCfYDV3deCCG+H/jrxIoRYis57bJZ33khpbSEEOljGlLKXurYy8Q7ibeCJeCqlDIaep8DNxsvcXxgSQjRTP1NBf4gef1DwP8GnBJCXAR+Qkr5W29xTMPXnCXZaST3D/FisBNvWAJeGnHuKMwSW+rpY4fv8z1D96kR7yZ2sJ56bRF/LxPcB5go/gn2A7EZK8Rh4F8CHwZekFKGQohXiZXam2ENqAoh8inlf2jnvd8CVoGDQgglpfwPAWeGx5vgKrGl/eDN3kxKeRb4XiGEAnwn8GtCiOlbGFf6+G3AJnazXLvJsWvAcur3cRa/LeId0zLX7zV93lXg01LKbxp7xBPcN5gEdyfYT+SJFdwWgBDiB4HHxzlRSnmZ2Mr9CSGEIYT4APDttzCGLxC7Uf6mEEIXQnxD8j6/POL4LwLtJECdFUKoQojHhRDPJ/fwZ4QQs8ki0kzOCZN7jIhjAm8JyXv9S+B/F0LMJdc5IIT4w8khvwL8YBKkzhHHH97sPUPg14kDxzkhxMPA96cO+S3gISHEn00+F10I8bwQ4pG3Ov4J7j1MFP8E+wYp5evA/484ILoBPAF87i28xfcR+9zrwI8D//YWxuABHwH+CLFl/c+A75dSnhpxfEi8MDwNXEzO+VdAOTnkW4CTCXvoZ4HvkVI6UkoL+PvA5xL20Hvf4lD/FnEQ+kUhRBv478CJZEy/A/xj4H8kx7yQnOO+yXv+5WTc68QunP9r5xwpZQf4ZuB7iHdF68A/JA6kT3CfY4c9McEEE9wjSKzyrwEZKWXwFs77h8CClPKj+za4Ce4JTCz+CSa4ByDiMhSGEKJKbJn/5psp/YSn/6SI8W7iwPR/fDvGO8HdjYnin+CegxDiTydJUsM/t5Stux9IErBuNsZ/cYtv+SPEcYTzxDGFv5hc5+SI6/xp4nyAXyeOcfwKsdvtk7d9cxPc85i4eiaYYIIJ3mGYWPwTTDDBBO8w3BM8/pmZGXnkyJE7PYwJJphggnsKL7/88raUcnb47/eE4j9y5AgvvfTSmx84wQQTTDBBH0KIyzf7+8TVM8EEE0zwDsNE8U8wwQQTvMMwUfwTTDDBBO8w3BM+/pvB931WVlZwHOdOD+WOwjRNlpeX0XX9Tg9lggkmuEdwzyr+lZUVisUiR44cIVXK9h0FKSW1Wo2VlRWOHj16p4czwQQT3CO4Z109juMwPT39jlX6AEIIpqen3/G7ngkmmOCt4Z5V/MA7WunvYPIZTDDBBG8V97Tin2CCCSa4r+H1oHk1lnuIieK/S3DkyBG2t7dv+5gJJpjgPoJVB8+K5R7ing3uTjDBBBPcd/B6sZLPTYGRjyVcl3uEicV/G7h06RIPP/wwf/7P/3kef/xx/vSf/tP89//+33n/+9/Pgw8+yBe/+EXq9Tp/7I/9MZ588kne+9738tprrwFQq9X45m/+Zt71rnfxIz/yI6SrpP7SL/0S7373u3n66af5kR/5EcIwvFO3OMEEE7ydGLbwjTxUDsZyDzFR/LeJc+fO8aM/+qO89tprnDp1ik984hN89rOf5Wd+5mf4yZ/8SX78x3+cd73rXbz22mv85E/+JN///XHb05/4iZ/gAx/4AK+88gof+chHuHLlCgBvvPEG//7f/3s+97nP8eqrr6KqKh//+Mfv5C1OMMEE+4m0Hz83BUZuzy38YbyjXD2WG9CwPKo5g1xmb2796NGjPPHEEwA89thjfPjDH0YIwRNPPMGlS5e4fPky/+E//AcAPvShD1Gr1Wi1WnzmM5/h13/91wH4o3/0j1KtVgH4vd/7PV5++WWef/55AGzbZm5ubk/GOsEEE9yF2LHyYV+s+5vhHaX4G5aH7YdgeXum+DOZ672pFUXp/64oCkEQoGk3XmeHgnkzKqaUko9+9KP81E/91J6Mb4IJJrjLsU9+/N3wjnL1VHMGWV2lmjPetmt+8IMf7LtqPvWpTzEzM0OpVBr4++/8zu/QaDQA+PCHP8yv/dqvsbm5CUC9Xufy5ZtWVp1gggnuVdQvw8nfiuU++fF3wzvK4s9ltD2z9MfFxz72MX7wB3+QJ598klwuxy/+4i8C8OM//uN87/d+L8888wx/6A/9IQ4dOgTAo48+yt/7e3+Pb/7mbyaKInRd55/+03/K4cOH39ZxTzDBBPuIta9Cbx3WgKm3/9m+J3ruPvfcc3K4Ecsbb7zBI488codGdHdh8llMMME9gPrlWOEvxjHB/ut9VPxCiJellM8N//0dZfFPMMEEE9wxpK38x77tjlj6O3hH+fgnmGCCCd42rL8BX/w3sYTYus8vXLf47yAmFv8EE0wwwX7gyhegcy2WC4/EFv4dtPLTmFj8E0wwwQR7hXQy1qH3QPFALO8yTCz+CSaYYIK9QjoZa+GR+OcuxETxTzDBBBPcDq58GS58Co59AyyciP/2NiZj3Qomrp5bRLPZ5J/9s3+279f5T//pP/H666/v+3UmmGCCW8SFT0H7aizvQDLWrWCi+G8Rb1XxSymJougtX2ei+CeY4C5EmrFz7BugdDCW9wgmiv8W8WM/9mOcP3+ep59+mr/21/4aH/7wh3nmmWd44okn+OQnPwnEZZsfeeQR/tJf+ks888wzXL16lb/7d/8uDz/8MN/0Td/E937v9/IzP/MzAJw/f55v+ZZv4dlnn+Xrv/7rOXXqFJ///Of5jd/4Df7G3/gbPP3005w/f/5O3vIEE0ywgzRj59Az8A1/PZb3CqSUd/3Ps88+K4fx+uuv3/C3txMXL16Ujz32mJRSSt/3ZavVklJKubW1JY8fPy6jKJIXL16UQgj5wgsvSCml/NKXviSfeuopaVmWbLfb8oEHHpA//dM/LaWU8kMf+pA8c+aMlFLKF198UX7jN36jlFLKj370o/JXf/VXdx3Lnf4sJpjgvseL/07Kf/2RWEop5drrUn7hF2J5FwN4Sd5Ep76zgrvD3W32CFJK/s7f+Tt85jOfQVEUrl27xsbGBgCHDx/mve99LwCf/exn+Y7v+A6y2SwA3/7t3w5At9vl85//PN/93d/df0/XdfdsfBNMMMFt4vVfhfZaLN/zZ+5qxs44eGcp/jTVag8V/8c//nG2trZ4+eWX0XWdI0eO4DgOAPn89evIEXWRoiiiUqnw6quv7tmYJphggttEmq3z6HfHSv/R736zs+4JvLN8/HvY3aZYLNLpdABotVrMzc2h6zr/43/8j5FllD/wgQ/wm7/5mziOQ7fb5bd/+7cBKJVKHD16lF/91V8F4gXiK1/5yg3XmWCCCd5GpNk67/kz8IOfjOV9gHeW4t9DqtX09DTvf//7efzxx3n11Vd56aWXeO655/j4xz/Oww8/fNNznn/+eT7ykY/w1FNP8Z3f+Z0899xzlMtlIN41/PzP/zxPPfUUjz32WD9A/D3f8z389E//NO9617smwd0JJthvfPxH4O8ejOU9yNYZF5OyzG8zut0uhUIBy7L44Ac/yM/93M/xzDO3xwa4Vz+LCSa46/B3D0LYAbUI/5+rd3o0t41JWea7BD/8wz/M66+/juM4fPSjH71tpT/BBBPcJn75L8P534Lj3wbHvhUu/OdY3seYKP63GZ/4xCfu9BAmmGCCNM7/FvjtWP6/L93p0bwtuKd9/PeCm2q/MfkMJpjgNnH820AvxfIdgn21+IUQfw3484AEvgr8IJAD/j1wBLgE/EkpZeOtvrdpmtRqNaanpxFC7NmY7yVIKanVapimeaeHMsEE9w5+/W/B2f8ID/5x+M5/CN/zT4B/cqdH9bZi3xS/EOIA8FeBR6WUthDiV4DvAR4Ffk9K+Q+EED8G/Bjwt97q+y8vL7OyssLW1taejvteg2maLC8v3+lhTDDBvYOz/xHsZiz5h3d6NHcE++3j14CsEMIntvRXgb8NfEPy/18EPsUtKH5d1zl69OjejHKCCSa4v/FPvw22PguzH4gt/R2L/x2KfVP8UsprQoifAa4ANvDfpJT/TQgxL6VcS45ZE0LM3ex8IcQPAz8McOjQof0a5gQTTPBOwNZnARnL/8dv8U619Hewb8FdIUQV+A7gKLAE5IUQY6e9SSl/Tkr5nJTyudnZ2f0a5gQTTHC/4qe/Dj5WjuXsBwCRyAn209XzPwEXpZRbAEKIXwe+DtgQQiwm1v4isLmPY5hgggneqeidvC7/RuvOjuUuw34q/ivAe4UQOWJXz4eBl4Ae8FHgHyTyk/s4hgkmmOCdhI9ViEmEAvKPxUo//9gdHtTdh/308X9BCPFrwJeBAHgF+DmgAPyKEOKHiBeH+6Pc3QQTTHAXQF6Xf+Pzd3QkdzP2ldUjpfxx4MeH/uwSW/8TTDDBOxCWG9CwPKo5g1zmraug9Pn81PSOfU/uY63k1c5fJhiFScmGCSaY4G1Fw/Kw/RAsr//7W1kE0udXiBkq/W7WH2vu/YDvQ0wU/wQTTPC2opozIFH2aSU+ruKv/uwiFa7b9BET+/6tYqL4J5hggrcVuYw2qOR33Dbjnp/+5WP3Dlvndl1ce4mJ4p9gggnuGIYXgQH/PSk30E9N3/T8u0mZvhluZXezX7i7P6kJJpjgvkBaQVtuwOVGj8PVPLmMNqC408rR8ULW2g5OKeR4+s1SVn6jYe2pMt3PhSTt4rrTmCj+CSaY4JYxrqJca9p9Jb7etrjWcnC8gLJpcL7W5fh0gccPVgeUY+tnp3kX0AYsrnN10q6ejKqw3rapmDe2U91uO/0FZqY0XgXb9DiPzxffwifx5rjBxXUHcXeMYoIJJrgnsdq02Oy42F7AA/OlkcdJJIqIZdk02O55lE2Dy/Uup9fbaAIeP1gdOKdMrOjLwNpfXGGt7bBYMges/6bt4foRTdu7QblfbvRoWj7Qu2FnMc4472dMFP8EE0xwy3C8kK2uQ+lNLNlK1qDl+FSyBrmKRrWQoZozuFK3QApEUjas9VPTVIAWscLfYeyMUsgCQSRjOYzD1TwQW/zjUkiXKjmyhnZXuGP2E/e14r+XAj8TTHAvwjRUZgsmpqHe8L/08zdsme88jwensgSR5OBUFoASMS+/BDR+dA3bD8nqKks546YKebGSxTTUmyrqmZLZ3wVYbnBbFNLdcC/qmXtjlLeIuymKPsEE9xLGVWa7Wcjp52+UZX58rsRUweyf3yZW+m0Gg6Fp//gw82ccjEshvRWdMa67627Cfa0N9zqKfidW9nvRmpjg3sduCnB4Tt5MIecy2uDzl6NvmQ8c91PT14O1H2ux+oMXeN3yqeR0yiOuOey2GWecO/c0POZh3IrO2M3ddLfivtYkex1FvxM7iMmuZYI7gWEFOErxpufk8N+Hn7+d1+c3OjenaTLaL297Qd+qXqrk+mOz3GAkqyd9fqPrcm6rxwOz+RuCyKMWsnGxm7vpbsVEk7wF3Ake7t3E/Z3gnYNhBZh2Z2RUhXObHR5bGHRrDM/VNJ1ygFXzz5f7NM01rrt2Fhntl3e8sG9Vp8fWsDzKWQM3jBhGejyXt7v4YUjb8W847nZrB91NNM1xcW+N9g7jTnzB9+KkmuD+Q6PncXq9g64IFFWgqwqbPZeDM4X+McNzNU2nLJt6f+FY5HoA93f+6Fc4td7l4YUCf4Ibufc77zfKqt7NMEqP56H5EhlDTXYUg7jd2kH3Iu7fO2PiH59ggr1C2/HwopC24/HU8hQ77pjdnrG028b/R/M8RWzZpwO4gR9R77oEfuzpP7PR5lrTxvXCG7j3o2IJo0o+pP+e3kkM43ZrB92LuK+14Ttl9Z5ggreCUcpxt2DofDFL1wuZL2bJZTQWStkbSiwMP2NpZdvjupVv//UNTiVWfenCFguVLKWcDkDJ1NlUPUqmPtIFs5tr5naf+XfKDvu+vsO7wT9+K2njE0ywnxgnOAuDbJljc8V+0tX5zTYXty2OzuRYLOf6wdXhBcX6WLlfZiFt5S+mFoRD0wW8SHBoOnbBlLM6pqFQzuoD5RhGxRiGqZSjnvlxd//vFC/B/Xtn3B2rd9rPuZeK/50yQSfYe4xSjsN1b9Kvd9gzGVVhq+Ox2nIoZDRyho7tRbRsn/WWPVB3R3K9SUrthy7xxeR/i6lrphcUgM2e248fZGyfqzWbjBJn9e5kCLci//oxijKQOTzqmR93JzDquBsWtXv8+bv3RnyPIe3nTON2J87EjTXBrWKUv9wNoz5DxvHCvkKfKZmc3mj1C6vNFTO0nVhank+961I2VWZ+/ihHia16PtYasPJtz6fR9bGL/g2VOncWlFxGYy6fYavjMpfP8NWVJmc2WxgKzBYz1Ds+S8WAhXK2f4wbRgOZw1e3u5xcb/PYQonpotm/zri7/1HHDT9v9/rzd++N+B7DqKDS7U6cu8GNNcG9j3Q1ysVKtj+nTtYbnN1sk1Hg+HxxoLDaQjmLG0UslLOcWm1xYbvDVFbnGNf9+ABf/I6vcaVucWgqh9712eg4zBUznFxp8LX1No8vlFA0ZWBHfKnW5dRqm7yugJAICQhJx/Xxo5CO61MNM5RMHTeMbsgcPrneZqvjcpI2B2yv75J64uDUyOcs7Y4FBhaiHQw/b/f68zdR/HuAW7Heb3fi3A1urAnuDezmpkgXP0vPKS+KyGc0vCjmx6ddMmnu/PFffqjPyU9b+HlgKqdzcUsyldPZ7jh07QDX97lY91ht2uQNhfcdne1b7wCvr7VZaVpkDYVj0zlsN0JXBHPFLB0vZK6YpdF1Ob3RRhelOJkrhccWSpwktvhXGja2H9J1wl0/n7Q71vXCPqsobbDdLBntXn7+7t2Rj4HdWAp76aO7Fev9Xp84E9w7GJ6faSs/bTGnLd+CrrLVcTgxcyPvPR0LyHLdyn/9z57l5FqXxxZjP76pa5RzBqau4foRPS/A9SOOzxXpeRFHpwp4oaSQ0fHCuOrm8ekCG22H49MFbD+iWjBw/MGF58XzW/iBpOMGA4HmJw5OcXCm0M8tyBoahqG8Jdrpesvus4ruZ9zXmicd8c8a2r756O6Vbd+9HpCaYHykv+vh+TnKyn/x/Bbntnq0eh5eJCmZBmtdj6cYdAnl/vkyDxNb9jlSzc6FEhdNFnEw9txGi6+uNDBVSRBKDF3BDyMeW66yNJXvM4R2YgQAR+eKmKbOYsnEUAW6odyQIVzMaOiaoJjR6DrhSKs+7WY9t9EeWUgtfVwuc71k9Nv1vNyJ5/K+fvrTxZP200e3l9b7fk6Cez0gNcH4SH/XB6q5ge97VEXNluVztd5jNm/w2FKJes/l2FTsSkkHcRe4buXX/vK1fjDVa/TImypeGCvhjhehKAodL8Ig4vJ2l4dnsgPXdPyIWs9jsRwr3uEM3SdU5abc/R0oMuTCdocjldhVNOr5SfcNeDOGzs551/a4reMo3Inn8r5++tOTaD99dHfabTQu7pWdyQS3j7Q75maK7WasHogQSCBCURWOTBdQ1Nh6n/n5oxzjRl/+ixe3ObvRo2N7vPfoDB035FASJD1cznBytcXhcobPXtgmkgrna704uLva4fGlIuc22/1dwfPHZgZYPml66LG5Yn/ufvH8Nuc3u1QyelznP4h4faPLex4a/fxIJEIKJPIG7v+oc3Z7XvYyP+dOPJf3teJ/u3CvuI0mcYX7D6OMjvWW3efAVwuZkfMzrYS9IKJrh3hBxKXNLp+/uM3XHZ3hgfnSQIOUCz90kS8lfvVC3UJVoWBorLds1lo201mdgzMFVrselazBatfj6eUqNWubp5erXKr3WGvZFExlYFcA8NpKk7PbHVo9H0nEetuhYKix4k8QyJCcrhLIkAdm87Qcnwdm48VmVA/enKEzVciQM2LffbqM8q08c3uZn3Mnnsv7Wgvsp/W8mw/1djBRzhMMY7cd5ag5vtlxWW87lEyNhXJ2ZOniS3WLa02bgqnSdSMCIrpuxAf/yyO8D2h/GXhikJOfVqKPH6gg1NgP/+kzG5xZa6MLeP74LLNZnTf8gNmszpG5Eqqm88BsHtsL6DoRR6byPHVAp2BqPJeUSrZ9n5blYfs+c8UshuJQMgddPU8dqOJH8NSBKsvTBY7Nl/vPXjoXIf25pXf/tY5D1/Ux1NjtdCtJX6Pyc+4V3NcaZtTqvxfYzYe6l5gEZCfYrTbNKJfObNGg65rMFm9se5jGkaksPTfkyFSWNxwXz5foSjRg4QO8/iff4Nx2jwdm8jykir7idMOoz6mfyptU8i5T+fga1ZLJc0enqZZMbC+gYbvYXoajs0UUTem7SR5aqvTHc3iqQCBjKZFM5w1MXRkwrmwv6LuhhpX2qDIPadpnOjs4XV10GLvpj92Kvt0LuK81yVrL4lrdxlDEnn9Jb5dfbhKQnSA919LsmuPzxQELt5lSdJWsgaE7cZNz2x8oa5BeIMpZA0MXlLMG3/R7z/NdQPvijZz8jKJiuwEZRR1QnBXT6LtNDpQzXKyrHCjHgdZD1Xzf539ms40XRrRdf2AhAgZ85Wna5oXNTv+9ax2nH0ROkzaGDaPh7OOd+04/R7tZ66Myme833NeaZDeq1+3i7XLJjLPATHYF9x9GMU3SVEwYsnBTNfM7TsClbQtDUTg0nRsoa5BWgl+51uDSVg9dgW/lupW/9hevcrHjMleMlbhQYamaQ6hQ1FVOt9scLMeUyx3r/1LDJorgUsPmqSMMcPRlKNlo2Ryv5lhv2Lx0tc5zB6doOf5IX3nW0JgpZsga2kBG7nOHpmg6HuWsfoNhNLwz2Lnv9N8tNxj5Waff734mQ9zXWuLB+WI/geNerZI5zgIzbAVOcO9j1E5vmIqZtkq9MEzRKSMUETN0ojDiUq3LTFL6OL1YaCjYXoiGMmDlZ1SFtuNzsBL7wU/MlzENjcPVPJcbPeZLWTp+yHbPo2P7XG1YBH7AG2ttlorx2Opdh7PrHTIK1G0fVSjUbR/FCug5IesthydL5f4iMnzf5azeV/DHpnJ9emk6cD0cv0g/L+nPKv33N9ZbA4vNKGV/J+Jtb5cRd18r/nTd8OEv+27FrXzxw1bg23Xddzp2+8xu9/MctlAbIyzP9HGZlHKudx3WOy7LlRwX6hZhBBfqFg8tVWjZfr8A23t/+0m+GWi/Bie/640+k0fd7HBpu0dGERycKQz4tG0v6JdZaCl+P9P1CzULywm4UrMABurrLJZNVpsOi2UTx/MJI0k5p7DStOg6ASvNeGzp+7mw2WGlYfWZSe8+OkNWV1lZa7LZsSmZ8d/T7phx+ucOu3rutLJP4+1y7d7XT/i4fr27CbfyxY9KyNnv677TsdtnNm4f11ELxKhEImDkNdOGztmN2MKu9XwWCwbntzo8uRjvBkclYx2ZK5DL6swVM3z1ao1rDZv5QnyN9I55ve2w1nSYzhkslMx+/XxFSPxoZ6fBQH0dgCMzBaq5DFecEDOj4EcKqqoQSZGMYvC+W07M0W853oBlXzQNdNWhaN7IqBtnHu8WmB2nSc1+Ph9vl3tpX59wIUQF+FfA44AE/hxwGvj3wBHgEvAnpZSN/bh+ekubfijuZgx/8eNMuL2wUu5nf+Z+YbfPLD33dlNGw8lEN0P6vWwvGGh0Pqp5SsFUyeoqBVPFiyQPL5QJRMxbH5WMVckatByfStYAmVTSl7FC/oMzG7xytcm7DlboOQFn1jvoSPww6rt6Dk0X2bYDDk3HC8xwoFYo8YJg6gqVbAZTV3hyuUI5r9/UIEsHhwcCrVKCkCDlDXP/VuZx2lUqkTf9Psb5nvYCb9eOY7+v8LPAf5FS/gkhhEFc2uPvAL8npfwHQogfA34M+Fv7cfH1lj2wVXw7LNrbtQyGv/i3yxK/01vcO41b+d52+8zSimqU2yaX0QYYKmmreqeeVDVnDLDTrtYsvrbeIgoiDs4URi4Kx+dKTBXMPm89XQEzTdU89wPn+fWLNT5wdJp8im1TzuscnMpTzsdxgcvbXS7Xe0xlNRYrWVwvRNcEYRhyrWmxUDQomAq6olIwlRs+D9sLqPc8looBD84V8SLJg3PFXa3vNFV0qWj2P8OvXGmw1XHYKtx43qis5N2+07SrNM0ESiP9Pd0P2LcnXQhRAj4I/ACAlNIDPCHEdwDfkBz2i8Cn2CfFf6VucWqtgy6UgZTv/cReK+r9ssQnPv1B7MX3NiqpL12GoGl7A5ZjOrHo1Sv1fkng+VK2b4Wm2WnrLYsrNZuZbKyQ31ht8PLlFtZhj44bcHK1TRSGfOtTB6+7TH7qAF/PzRukeKEkZ2h4oURNKb3lSq4fIwA4PFOkZvscninSsT2sIMT1IzpOiOdLOk7IWsthq+dype4Ag5Z0usxzWqHvRroYpWwl0YC83e807SpdbVoDDKgdDNcQutexn0/8MWAL+AUhxFPAy8CPAvNSyjUAKeWaEGLuZicLIX4Y+GGAQ4cO3dIATF1QzemYurir6JdvBbcy7nGU+sSnP4i9+N5GJfWliQVp3jswsCikred61+bcRpeMInlwvtRnpzV6DoesuAsVwFdWmpzZ7KCpkko2Q73rU+/6A52ophhMxvoP73+R19c6PLpYpLLR4sxaF11Inj44jYzicV1tWnTcgKtJ0PXYTI7Vjs2xmRwvXrIpZDTsMIybpYjY9ZLRFAqGRkaLLf70PaTLPKcV+ldW6pzb7tHsuXz40aWBuZumiqYXkXLGwFAVypndv6txEzjT38GoeNn9tiPezzvRgGeAvyKl/IIQ4meJ3TpjQUr5c8DPATz33HO3RFdJWy1vl4V7N0yQcZT6O8mnv19xkuH3HfWZpokFuYw2YDm+tlJPSiG7mLrGgUoOVVXZ7npsdGzmiwbPH7/uDjlQyXKxYXEgoVkeqOTZ6LgcqORZrmbxIzixUET7J9et/OFkrMMzeS43nFhudzi/1eFAWcf2fJqWh+0ZtK2AlVqPuVzsHrpUt4hkLL/xoXmK2QbPHaxypdbDDkIMReHdR6dRNKVffqHjRrhRSMeN6Lhun+P//qlCn6bp+pJWz8ctx494ur6+F8l+olgUhP1FJJ1TsNuOYVT5huHvOV1359nD03f8+X07sJ93uAKsSCm/kPz+a8SKf0MIsZhY+4vA5n4NIG21KKpy28GZe8U9MkoBjUN1ux8wfJ97ubsZlewzXPVyuPfrDrFguMcsXGe1PDRfImOoHK7m+e8nV9loubQq3sA117reQJ38r39ojkOz+X5wdKcUQrpBivjbtQE6qCoUZksGqlBYb3s4vmS97dF1Q5wgpOuGZHSVommQ0WOXx1Te4OK2xVTeIGtoTOXjxKo0P79s+7iepGX7AIRhwEbd4Vg1y1I5S73ns1TODihkXZE4boieBH7PrXf48tUmYRDy9Sfm2Vkwv7rS6I/tieVqn7Z6ZqM90DFr+HNPU0PPbfV4YDbP48nCtIN7hfG3l9i3J19KuS6EuCqEOCGlPA18GHg9+fko8A8S+cn9GkPaahHTtx+cuVfcI6MCXHfD+N+OxXO3bM69fO/dGFhfvlLnStPG9QIeP1Dtuyku17r9ZicfenSR5YrJesdmuWJS7zqcXm9T1FVUTTBTMFA1wcsXt3j5cotnD5cHEpmG4f+j+X6DFJ/rVv7mWpPPJgHcp47M0LZd1lsOh8omORWiKCKnQsHUyWgqBVNnpqgQRJKDU/HOYrGS492qylwxwytXGlxpWHheyFRWJ5QRU1md11ZavLrSJIoinj8+i+1LpooGti85bGpkdEHZ1IjCqB+ETh8DULd8Wo5H3fIHmHhhKNls2zwwPcjQ0xVB1wvQlfi5Tmf4frB4fQew2bH73H8YVPz3et2dW8F+P/1/Bfh4wui5APwgsSHyK0KIHwKuAN+9Xxf3gpCeG+IF4Z4EZ8a1pG8He60Y77YU9Ldj8Rm+z72MkwwXRUtb7+l7Wypnqduxhbva6PYV99XtLl++3CCTcN3TCUzrHZe1psNLNHhsvshm1+Oh2SJ/cG6b05sdNBX+yBMFDk0VUNXYEn9tpdFfSN7DdSv/33zdC3zmfJ0PHp9i65UVXl/rsNW0eerIDIqiMF3IoCgKh2ZLdALBodkijufT6nk4ns9Cqdiv9QPQsz1euVrnA0enWSybcX5A2aTt+syXswhVsNnqcmmrx1Ix/rwOT2W52rI4PJXltastLm72MFBYmsr2KaDpYwAWyxlqVp7Fcmbg86xbLqqqULfcwTldyHBivkS1ELuk0j1308cN5xS807Gvil9K+Srw3E3+9eH9vO4OvDDC0FS8MNoT18ao99hLZbafrKC7wb0zavHZy5Iae3Gfo76HtJvi8nZ3wM2Qvree7ZHR4sSm0+sdNtoOl2sGHS9ACEHHi+vFbHVcTq22KSeliV8i9p2f3erQcwNWWjaGKuk5AYYqubDZ4oXzDd53vMrx+SKP/MrDvIcbfflL1TwPzfssVfOc2Wix0rRZTBTy0werBIlsdB2utmwenM1zdrvHRsfhcl1HSUo2XGn0ODhT4MWLNS5u99CA73r2cN+ldGq11S/ettVz6fkhWz0XgK4fMls06fohPc/lSt1iuWJQMkv9bN8rdYuuE3Kt5fIU8MBckaYb8MBckZWtNr9/bpsPPTDD0dkiPV9ydLY4mK2sKtdzD2Cg567lBv3jqjlj31oq3isu4DTujVHeIo7M5Kn1fI7cpGH0XmIvLelx32vcyXY3KPs0Ro1nLxtb7AVGce/TFn/J1Acac6fv7SvXmlzastAVgaaAF4ZoCpyYL1DvBZyYj5VT1/EIIknX8ZgqmJxYiPn3m+e2uVq3mc1lsL2IQEpsL+LFC9u8erWFECHf9MTyACf/X7//Rd5Y7/LIQoGS7bLVcWnbLqZhUMromEY8p1pOEAdVnYArLQcZCa60HBw3YKXV4/h0lkbH5UuXauSOzQBQyRlEQZdKzhjIj2m7Hn4Q0XY9DBQUITGSLFxDVek5IcaUShAJMrogiMRAYtcXL2yzUrOYTeoI1XrXM46/cKnBRsvlhUsNfvgPPchSNXeDAdOwvIGSDcMGxM5x222nvztzw+gtG1e30hPhbsauoxRC/PXd/i+l/Ed7O5y9halrlHMGpn77vOy94Hbv5aS4lcJsd7NlMpfPDCQZ3WmklUu6UXfW0PqKppzV++UKAM6sNnnpamyxNzoup9dbzOQ0SlkNKQAkx+YqZE2TxWRxK2R0NFVQyOgDgcqsrmAogqyucGnLodnzqHcd/uevfii26mvAdwxy8l0vZLNtcWwqy7ob0LI91tsuD8zlWe04PDAXG0CnV1v9zFtdFWx1bY5PZwkFzBdieXajw1bL5exGB4BjM3lsX3JsJs9mx2aj5VA0VLbbHue2uswXTJaqOeY7LkvVJP4goziiJiOiKKTVDYiiwUq51bxONa9RTRLFNAUsN14k53I6r17zmMuVR35P6XgBDLq+PvToYv+4tGHxyEL5LWfH76bcb8Xwu9PP4ptdcUejnACeB34j+f3bgc/s16D2CufX23z1aoOsAo8dqLzlD3rclXzcmi3jXHfc49PZhuNOor22TPZy8iqqwgNzxX6P17sJjVS544yq9BXNV1eaA1m0/+31dV5f61DvuPQcDy+IaFgutuuz0XLYaNqEYciVepe5RNFJGQECKSNqHZsvXqrxwePTZPR44cnoGj03pOcG9NzwhgYpv/WHvsBnzsfnVBWFpUqeasHg9LUGVxs9DpZ0HlpY5Mi0y0wxVshbXYuTq03mCipLlUJMeBCCp5fK1C2fp5fKfOHSFl4Aqhpb0o4f0rRdHD+LrgisJKC63XNwfMl2Ly7ANl8ymU0qbW51PDa7NnMdg47nIxToeP5AsPrB+TKKpnJ8Ot4BVQsZTizGUioKC0UTqSg3NFXZmXfDTVUcP+qPM43dmDvj1FXaTbnfyq76Tu8Sdr2ilPInAIQQ/w14RkrZSX7/GPCr+z6628TlWpe1ls3l2o11u8fBuCv5bse9VWtg3OPTiSbj3tteB3fvlV7Dt7JApV0GV+tdLmy1KZsK1+oWL680cJyAM+sNvni5CUHAtz69zFqtwxtrTaoGLFTzCEUhZ2g0LIeeG9JyPX7/jTW+dKVNu+vw0FKF09danLzWpKxJMqbGlW2bk9kmJxbK/cbn/88z3xRb9Wdu5ORfa9rYruRaM+51e26zw4PTJttORCQF206E5wd0XR/Pj+MKdSukYGrUrZCZ4vU4WM0O0IRCzQ6YK+ZYqHjMJYvFly/V+NKVFiIMeeLQDKau40eCpbLJtabNUtnECySWF+EHSdqNkAgZywPlPCsNjwPlPOe3LFqOx/kti3eZOisNiyNJXkJ6XlfzBtP5DNW8wVrT4uXLTZ49XMHxwj41c1ihH5zKDrCRdpBm7qSL3uUygyyjt0sh32mixbh3dgjwUr97xEXW7mqoqsAPI1RV3FIbxnFX8t3qg7xVa+BWrhlf+M0n0V77+8eZvLcbi9iLXcWtPMxnNzoJZTEilALT0AilYKtnY7shG12bWsej6wXUOvGj4UpB3jBwpUAQ4QcRggiiuCImEbx2tcXra60+q+dC06LtRlxoWoR+yMnVHjo+JxbKyKRAWglQJJQE/Kv3vsAXrzR496EqPwqUTQUvDCibCi9eatCwPF681GC+oBJFIRVDcn6rzdn1HrO5+N6fXChwsWbx5EKBrKkTElHN6lze7nFqo03BUAnDgKvbNseqsbJ89UqdU6sdDEKeOTKF4wXoSsRMwaScN5gpmHzp0jaNnse1Zg8AQ1H6yV1LlSyHpl2WKlmiMOLMVoejUyYvXqpzcbOHJgRPHZkZYEo9MFug6fg8MFvgjfU2qiao9zw6js/ZjTaGKnn8YHUgJrRYjhO/Fss30l13MDxv07uGYTfQ7cyh3XCnY2/jXvnfAV8UQvxH4iqbfxz4t/s2qj3CdMFkoZJlumDe0EbtVsqv3q2lEO7UJBrnuuN+HqM+2734PEf1pd15/5t9n2lf86FyhnNbHQ6VMzw0myeQ8N4j06w1LKJIkDXjcx+cznJ+q8eD01nW2vFisN3xkYqgnMsQCsFWx6JjBWx14pr1i0WTc5s2i0WTz5zdxPbhQq3He3/rqX6d/Dax0m8D212LRs9juxuf37QjwiiWhhoXQzNUUA2dSs5ENXROrXfYaPc4tR4vJJu9gFJGY7MXkPUjHDdis+PghwGOF+KHAVttD10TbCT34QagKApuABc2e5xab1M1VbKm3k/gyutxvCKvx26sdHKX7kKt47PddVFUlcVylqYXkVUVum5ANnHxvbbS5Mxml1bPp5zX+w1fHlko0UvkStOhlDcwdf2GeZNu0jKKJDA8b4czq282z+60hb7XGMuhKqX8+8Qc/AbQBH5QSvmT+ziuPcFMQSera8wU9Jj2ZXtkkgm2o1AaVpwZea1h9SfRzt+HMeqcNIav81Yx6n3vVVRzBln9zfMnRn3u456/G9KLfvo6a02bi9s91pr2Tc6SiCQge6XlEoaCKy2XfNbgXQenyGcNTC12SZharCgu1S06bsilugUyYqNtg4w4PJVDQXB4KkcQSiIJQZgkLHVd3KQ+/kIhgwYsFDIDvvx/+dSn+ejcb/Evn/o0hWyGclankI2D4FfrPdZaFlfrPWZLWeZLOWZLWaqmga4KqqaBZXtYnsRKetyutdqcWmuz1mrjBhE9L8QNIhodh62OQ6Pj8PzhCnlT4/nDFQC+7niV2ZLJ1x2vcrHWo951uVjrsVTKks+oLJWyZDMKmqKQzSS19TWFpuOR0xSCELJGLPOaSqPnktdUZkoZjs/mmSnF9+P4AR3bw/ED5vIZ/DBiLp9BVdV+/sJyxaSY0ViumDfMm7bj44chbccfe37MlEyePTy9K5ssl9EG6i/d63grd5ED2lLKXxBCzAohjkopL+7XwPYCF7ctVhsWF7czPHN00OJPr+DDgaNRJXTHqbF+uw2a73TQZ68x7m5klEW1F8lX6fc+m8piVVSl35BkmAaYLl+gCfCCAE3Apc0On79U4+uOTDOV0zE1lamEinit6dJxfK41XYSIWTYX63bsP+85nFtvU8poaBr9sr8rLRs7iOXPt/8EJRPazUFf/tPLZa62XZ5eLrPWsrGDkEomTuBq9Vw8X9LquSwWDdqOj05Es+vQsFyaXQdN09AU0LQdamOAG4VstwMenFMwVEFOV2i6ISBouiGnNzvUux6nN2NWz1y1yPsfEMxVC3iygxtElLIqG80eZzc6HCxmcPyIvKnh+PHc3+h4OG7ERsfj6x+cwUfy1MEK5za7mJqGF0YUTQ1dUSkmn8dsIcNMwWS2kBno2ZtuHuNFsr8TWJ4enDcHqznabsDBam5kmev74bm6XYz1CQghfpw4EesE8AuADvwS8P79G9rto+34KKqg7fi7btXS1QLTPsZhvm9aqfdsr0/do3rdn7jbdcZxL91KLGJc3GkK2W64XR//bqUp0t/pi5drXNzqoSnwzPIUNctl0cvcUPMlXb6gkNFo2iHL1RxfuFBjvelwar1DLqNQzmloemzhHqqaXG05HKqanFyp07JC2l2Lnuuy2XY4swk6kigEL4gt0rmcwZWGx1zOoNROZd6+/wU+c67OBx+YIueGLJWz1NyQ19baNHoBr621ATB0BSWRl2oOMoq4VHPwZBxovdhwyGkCBGS0uKxBwVRjCqmpstmNa/Vvdh0eWShTt0IeWSjz+Qs11lo2J9fiBUZBcq1hc2Iuj+tHZA0F1484udmh50lObnb4uqOzNJyARxYrQHyPju/jBT5eKOOyzKEcqOhZ6/rUbJdaN/48pgomDy7Est51OLvZJqPEjdelkAgEc3ljJPU3vVhcTX2nh2cK95VBdbsY1x/xx4GPAD0AKeUq16medy2eP1RlKm/w/KFq/+HfcaGkt4iLlSxHZ/IsVrJ9vu/lRu8Gt03a7ZDuY5rGblvCUe6M9N9vd8cAo91F47iqbuV9h/+3l+6q3Vxv222Hly/X2G47A8cNf29fWanz0uU6X1mpYwqVrhNgChU/khQMDT+Scc0XJ+zXfDF1hem8gakriTIqMlUw8XyXlYaN57vkdB1NVcglPu1K3mQ6n6GSNwkRKCqECAJf4voQ+JKaFeIHULNiPruuKWQNBV2Lm51HxFb+V662WG/ZfOVqi5KustVzKOkqnhdi+x6eF5/v+5JQxDKjRXTckIwWkSGul58hpOeEBBH0nPicUjaDoWqUshlWGzYNy2W1YXN0Ns/xmQJHZ/PM51UUIZnPx4r/06+v8/LlLT79+jqaiF02mlB4erGErsLTiyXsIKDjhNhB/L1XcyZFU6eaMwfaKB6aKvDQYolDUwW8KMLUVLwonu/lrE42yY1ouz5eGNF2fSQSIQWSuAicG4S0bP+G+WF7AdvJ7r1k6uiqSsnUd3UZ7tfcvZvdtuMufZ6UUgoRUxGEEPdEGbtrbY8oklxre5RSLI2ZkjnSsk4HepqpjkQ7WYA7Cj1dE2Rcq3TUNW/YJYwRRLqVTML0dW7FpbRb+7lhLvQ47z2qTMOohibDGJWUs9q0Br63dOnfgzN5XAkHZ/LkdYXNrsNDs/nYElWuV/++vNXjD85vochZihmF/3p6iz98YjZR2LECz+gWVxs9jk/HY9/oWGx1XDY6FtW8id7yqOZN3Cgkb7qYWQ0UgaIG/c/lf1v5NkoS2ivwV6f/E6c2LR6ey5HzXWpdD7fqcqnWY73pcKnWQ9cEIhLo2vVigzvW25WGhR/EcraYxzQEoVBRlQhNgZ2wU9f1UUUss7qKKgRZXeVqo8dWz+Nqo0chazBTyFFISiGc2mjR7klObbR49GCVStagkNVxERydLuAiOLPSZL1l8dqKyre/61ASIxEIAbP5DJfrFrP5DFMFEzeKWChnMVRBICVPL1eAQVepoQhsN8BQBDlDZ6qQIWfonF5v9xsslRMK604CVzq/5fhcqZ8hvJvL8Fbm7ji4m922447mV4QQ/ydQEUL8BeLeuf9q/4a1N7hW73Ct3mMur/HgXI61ps1SKbbOWraP7UWx9ZBy6VRzRr/yX8v2R1b0TNcEGeYFj0L6mmlFNzwpx5kkuynhUeUGxqWAjlLIwx2RdlXQYyxeo8o03BBzSSF9zaKucrrd5mB5cFFudF1Or3XQBTAPswWduaLJbEEnSvztTy0W+Pz5bV653EKJJDlN4QuXmyhByPPHZ3npco1LWxZ5rUYEXNrq8nsidtW4foiO5ErLIUzKHQBc2erS7Llc2epydDbPtY7JYtlARnBh2+FwOcvFWgcZgaHGi0wJUEQswzDA9WNZt1SkgLoV8dWrda5sdSlp4PgRThBSTyikC2WTK22fhbJJw/WJCJBCJaOKeBegCmw/wHGBKLY8y1kNXRWUsxrVgsmmFbA8nadrx6ybrp1hpphlJu8xU9ypzpllo9dlsZIlb6homiBvqJxfq/PZ8y2UqEw1Z+IEEdVs/D1crbe5XLNYKmkcmi70SzGoqtp/DvJZg3cfnSGblH9OG0dBFGffB9FgB6zLtQ47DZaGE7jSC8S4uJW5e0vvexdhLMUvpfwZIcQ3Ee9CTwD/q5Tyd/d1ZHuAjuWz1fXoWD6aqrNYyaKp8YTY2RJWzLiH6M0s4XEreqYTQHYrNpa2Rm4Xu/UATSvBUYvSbhbQKIU8/HncUPlzjPdOY1Q2ZfrehktTpK+Zrmz50FKlf/5Kw+bCdodKVuN5IGvoVHIGWUPnU6fWuVqz+ZLe4Eq9x0rTZiqvUsmZ9Dyfawl9kSiibXsQRfRsh/ObbRbzCkZGJ5ISV0Y8PFvm0rbNwzOx19MPwY9ieWSuzLYjOTJX5tOn1omikCtNm5+tfVds4dcABksuNJwQmci86uP6IAOHIMoTSkkQSezAxw/BTmIE2YyGqStkMxpLBYOtTsBSwcANQdcEbgjrToRQYwkwXTSZK+eYLprM5k0MvcN8weRSrYcbBvghzORUQiLKSQvCB+crdLxYNnpxELvRc9nqRRiawlYvopSDUvb6PNjouvRcn42ui6ZIbC9EUwYDtelnDxjYZc8WTdpewGzRHIjTPLk8RTmfSc2b63OonNX7TV5GWdw3q+fzVg2vcXCnufq7Ydzg7j+UUv4t4Hdv8re7FjXLJwwlNctnuZql5cYSwDRU5koZTEO9pWSotOV5tWH1y8xmDHVksbFK1hioJHiz9xp3ooy7KN2K1TFKIQ9/TuOwnIaRvtdRddDTD+96y+4v0MBAUN3xJQ3Lx/HlQAOOtVZMcVwrxfdsewEN28X2MkRhRNPyicKIuaJOXteYK+pM5TS+sgILSQXLrKnFTUdMjS9c7NLsSV5f73KgmqNp+Wy1XQ5PRRSSoD/AfMlkresxXzKZKWQwVJWZQgbXD7FccP0bSy78xcqvcWbL46FZA931CAFdhPhSR8XHlxqqKgkiUFWJKmP/upokd13Z7rLd9riy3WWunKWS86kUTCzHJwolOQ1OTGepdzucmI7nftvyuFa3ODFjslq3ubzZ4ysZDU2JA889x+X1nkut6/L6ehxELhixf71gCFq2T88NaNk+3/zIHP/5jU2++ZE5VloueUMhk8Q85vM5LmZs5vM5WpbPlUaX5XKGrKHflEyRy2gDzc7TxdxeuVLjWsvB8QJOzF+v3TM8h9KN6Y/PlW668x0O5L8TMe5y9E3c2BD9j9zkb3cVZnMap9RYDteCySRlZw9WsiPdIbu5cNKKLt0MYlhppq2LtKsnTS+7FV/guNbEjR2f3hyjFPLw55T2x45aYIbPubDZ4Xyty/HpwkAnpPRx6fe1vYBGz8MuxwyO3z+1zktXmrR7LsvlLLWuQxTk+d3X13jlapvVeo9m12Wj5dKsxuWBL2x3+eqVJjlNYb6SY6HpMF/JcWmzTS/wCAO4tN2j63hc2o6zTl3XZ6vrxrLl4wJbLZ+qGeAEEZYdcG6jzfmNLtWEt75D65zK6fzmy1d4Za1Lr2vxTxvfGVv5jRtLLtS7HlYYS0MDAUQSLDe+ZsfxKTg6ioCuI9noOYTARi9paN5x8KNYThdMXD8iDCUtN8SPoOWGLFazVPIGGTNp93i1Tb3n8trVNi2rx/mtECVyefrwLE3Lw4/yXK11uLTdo5p8nVs9nyiK5VQhg6Yo5EwdL5IYSkyxPDyV41rb5nDSJOaR5TKRKnhkscT57S5tJ+D8dpejcyVminEHr5sVVdvp+5tG2TTY7nmUTWPXSq5bHY/VlkMho3E81c077T4crqr6TsSbVef8i8BfAo4LIV5L/asIfH4/B7YXuLjZpdEOuLjZvUExnd3scKVmYSiCpu31+3w+cXCqf/5u1Mr0/0xDZToX7x6GlWZ6kpZNve/qGdUgZa8pl2eHgtrjYNws2vS4Ry1Ew+ek2R0DLQXTzbSzev+zfWO1xRcu1lGJuzqttSxals9ay8KPJF0n4GLDIvAjOrZHq+dxud5lu+twud4F4PNn1nnpaocw8HhwocRKw+LYtMnVtosQClfbLo7tsd1xWG3EyuDkaoetrsPJ1Q6mAfhgGrDV7dHzYtn1PNaaPmeMJgCvrbZpOyGvrbY5s+ngAi9e7lIyk5ILwB8xPsGKA8tGXOVQKvFDKBUIZaz4QwnthCzWtuDpwwYrTZv5ssFKzSIEEk8Pi/kMtZ7DYj5D2wmS5KWAWtfCCaDWteLG6H5Ax4pPikIfywuJQp+2ByHQ9mDb8pAilhsdD9+PufgAipR0PR9FSjw3wA0CPDfg02e2eGO9i5QhTyyVWW04XCvHg5/J6oSRZCar09I1tjsuzyyWB3Z0w0XV0n1/03PHUAU9N8BQBYZ6PbYzPFfnivHnMFccbOSSdh+mdxK3iruZGj0O3mzEnwB+B/gpBhuld6SU9X0b1R7h9U0HSyZyyPJ1/ZCG5eL6JlfrNqfW22iK4ImD18/fjVqZ/t9uAaXhdPCdAlQ746mY+bF3GeMiPSkLpkpWVymY6tjnj8MKgvF2HcPnnJgv9/ulphtrZw2tvyim672vNGx6rs9KI86ufWi2yOWGy0OzRTY7DitNmwdnshycynN2y+LgVJbX19pIKYhkfM/ntno0ez7ntnqgqDQtj7ObPR6ezXJxO5YXtkDRtL6Putmz6Dmx3CkkHAK1bky5rHUhYyQ7gYSD3rQcekEsP8X39S37tJXvOPH5Tmywc6Bost1zOFA0Y8u97TCVM2n3HLoBZDRYnipwpRGwPFXgy5ebAIjk61ys5lnpBSxW87yxXqPtwlanw3Qhx6ZlMV3IYegCwiiWgBtESBnLakZhlZBqRuHYdJ6tTsCx6TzbTQshfIpJolikxHWIIkXQ80OEiGU1q6AIqGYVVppW/F01Y8X/xkYPz494Y6NH1/XI6Sp1xxvY+eqKxPGu99ztuBFOENFxo4HYWZo+PVvM9BO4hkkONyj1nbmXo+8a3Qvf+zgVPYcxbrmQtwNvVp2zBbSEED8L1FPVOYtCiPekGqnflehE1+XwlrKY0cloCsWMTmeHJzwUdN3NPz7wv9SkGrYE0juANJ93lNtn+JrjWBbDxwwEROfixh5vtpsYh0K5Fw9M+vP46kqD1ZZNMaPyxHKuH//47NUNXrraQAYRCyWNr1yDhVJ8XTeKa9e7kWC75yEj2O55ZDM6Xhix3fOYL2ic0xXmC/E5pi4QSiwLRlwuoWBA3Q7RVYW6HdLoWTiuR6MXKy1N01CFj6ZpCDdW7EJCUuASP4jr+QCEyd92zIMIYivfieW7nU/QA/LO9UqHjeSF60uIYmlmVHQNDE3hyIyJteVwZMbka1dqXNiyKekhswWdpuUzW0jKOgsFVVGQQqHnx4W0ej48OGdwuWGxUDSwQommqQTJAH0gCmPphvGyZochpYxOEEWUMjoz5TzlbsBMOd7t5lWBFYTkVUHD9lhv2Tw0Y/LEgTlqdsTx2QrTRYMQwbuPxrvmgiHYaLk8tlBASJ1QQtHQB4gVGx0H24vY6MQroa4SF4BT4Uqj1+8ClqZP217Qt/iHSQ61jtOP9RycKexL0BZujRq9X7TRW8G4V/znwDOp33s3+dtdh9jWjmXL8rlS7zGbj5WZG4VkMxpuFDJTMJgvZpkpvAn9MYVRTIBhi31URmma2dCw1P7fh5O/xmm4Mjzx0uyhW4lZpMdwu1vam2XR7rxfmrWRXgiv1Lpc3Ooxl9MJI8gagpYda62u41DveXQdByWK6Lg+ShRhuSFhGEtFjcsh78RzDlbyrHdCDlbyRKGCogqiUOHMdpOL2z0KmuTiVo+GC2c2Eh9/EODLWGqJda2p9E0DSeyeISV/zUusfA/aynUrv5ec0wPKGrQCSApl0vUDIrkjQzwfLMejUjDQBRSyCl++aGEBX71q8+iBLAifXNJc6I1rW1xpgskWWSVedLIKnN5osW3F8sHFClJGmEmGcUZR0dRYtlyXAHDciM+dr7HadPjc+RoHyhnyhtovDXF6s0erZ3N6U8cL4gzalYbHc0cksYNKcni6wJblczipre8EUM5rOAHMlrMcny0wW84OECt0RcH1QnQlHlvHCfDDiI4Tz4udDl5ppLt0PXWoMEBySDdb36Fb7wduhRCyX7TRW8G4T7KQUvbNYSllJIS46x1bxRz0rFi6XhAHzJJep/PFLF0vZL6YJWtoPDAvmCqYt72FG/5y0++Xjguk3UOjqkcOK/Fxr5muaZ7GuDuYdEB6tzZ14ywKw9c8udLga6sdHl8qUs7qfb9teiHseQFBJOl5Aa4XsNZ0OFKJg7uuF9eXd70IVwpMTeBKweGpPOdqPQ5P5VlrWnT9ENuLF4uYChkRSsl6x6HedVnvOGx1XSwXtrou24lPfUd2HUmUSBLfu+eDFus4NAEisaB3ZMlPGDs+fCjzCTaA+aHPY7EArWYsAabzOivNkOm8TsOO6ZxOJGj2IqSAZi8acDV1PImhxRLgQpO+fGhWxxA+uqFzdstHApcakiMzERKBn9TQKZoaui4omhpWoGH0Ago5jWavR7sX0Oz1OFTJEEYCNYmzukGEH8XymUNxX9x3HSrQsH3ajk/D9vnSpRqvrXaQYcRDSxWmCjpTOYOpgk4xIzBUhWJGDLDbDE0jn9UwkjpCnh/Scjw8PxzInv7UqXVObnTZalo8fXiq774cVsBVQ+GVRo+Hpt++purj7oT3izZ6Kxj3yheEEH+V2MqHOOB7YX+GtHfIaaAmMpCSjKYRJOvXQjnbzx7MZbQBV81bpSiOspbhxi3hTlwgTcdM/90duuYoJb7bNUdNxHF3MK9eqffpbg/Nl0YGuEd9PsO+zDRevlTjS5dbuJ5HwdQ5udYhCiJOLJT6dXMOVPJcbrgcqOS5uNWllNMQiVO7bnu0LI+67WEIiRtEGEKy0uzS6gWsNLucXWuwXvc5qzUAOLPepN6NOLPeBAEdW7La7BAEsVINgoAdm3JHJvR1DDWm4TYcj7miwWtObBA0JbwgEgtfALRoJwHctoRG4sPfkTuo24OyZnl4MpZ53UBVfLKaShgFOD5EcjDd/9hUhmsth2NT8UKoAUEiiWLfPVHEtAnrDkybsN1x6ToR252Y5eSHIVEk8cOQ2UKW9XaH2UKWluWjagGqolGzfIIgpJYEhJ9cLmAFkieXC3zo0YPMVSo8vlTklz53llcvN8krEcdmy6zUeiwl3cWeOFBFUVUeWyhxdrNL1lTxI2WAqx8vrzKRYOgaJdPA0DUEol+fp95zuFrvsVjQdnVfrvd8Chmd9Z5/1xVpu5sCwuNe/X8G/jHwvxDvcn8P+OH9GtReYccHqylweDrHtuVxeDqmmqUnX/pLSAdth1k9o7643SzpUVvCUX+vdZyBFPRRynq3a97uBEvTU3erbz6KjbSbL3O12WO9ZbHa1Fis5NnouByqmryx2uQL5xuoUYTjhdhegOMFVHMKPSekmou/zNev1rlS88mpdQ5MFXC8kLrlU7cCLtQ6lDOCS/U46HqpHiutzXaEn0hNiX3b9U7EdF5FJURXVHbs6h0/fTmbwbRcytkM5ZyGqnqUczrpfkQlkVj4iVX8h/gEHmCkjhquMNRwh6QVX7lhRbiKgx1BveNgZBRUwA4iFiuC803JYkVQs2JLfkchPzKv88aGzyPzOnYQJj27JMdmcnTWLY7N5OJgLBAlRk8kFVRFEEmFo1N5Nnshh6byXBE9Mg2Hcl7H85KuXckO+cRClWutiBMLVRw/oOXETJyz2zZOIDm7bfP8A/Mcms4znbRebNoeXj8Zy6DrZpktGnFm9UYbXZQwdZ1iVsdMuP/pLGu4Tu00NJWspmFog26fYeNjqZyl3vNZKmcH+PrzpexIl+luSZe3g+Hn8G4q4TBu5u4m8D37PJY9hx3F22M7Sf0um5l+4/V0UGhUWea1pj1QYmE3N9Aon/g4MYNBa/t6Mtiwj3Lc+MOtTLD05K8WMpyYj+ucnFnvcHqjjaGKAd798LjT8YMBl1ZGG1ighFBACIRQUBUIwhBVgVdWGpzd6pDNgOsGnNnsktdgs2VzadvhM6cj/uq3wMXtWKlf3PbxwxZb3YhLWy00VaPRDlgxu/QSI3lHuim544/3A6h3w3gR6IbsGOY7smO5OFEs65aLFcKF7R4vZL6PkgvtzI2c/B32+TALPW2V79TV2ZEFHbadWNaSYEDDgRktwgHCMGKntLzlSlYjm54Hqy07uZYgSqQbxlaZG4In41IQnoQDU1kut1wOJO0Is1oc4M5q8c63sG2xUM7ih5JrRZ/FUo5LtR6KKrCSvgHnt3rUey7nt3ps91y+ttLCVOHEbI665XNiNscTS2VabsATS3GCVdcJsf2QrhOS0wVXmz0OV82B4niljIahKv0y1elELxD9HI4jM0XaXsSRmcHs7WED6OhMAUWN82kubnX6hffSAeVh7JYXcDvYjf58p/FmPP6/KaX8/woh/v8w5GQGpJR/dd9Gtgeot6/LjuvjRyGdhKGR5hKna/Kkldlqs9fv83l8vjgyUxW4qbU77iqfVui7JZeMq9BvZYINFzzbcS9dqfWo5mI/6247ifRnM2o3BXGNGiWRL1/c4vXVDlklpNHzWW84TJuCa02btR4oYQPLBSuE81uxSrYSk9yK4PVa/MvrtYiK4uEAV7Y9dlpw7Mi09Z0UgcSJoJe8btykZ8dK77osJkam5UBJSaz8CN7jf4IuUHDga0BixPflDtKKf2dR2FH8SW8UbA+UZDxKBI1uMrYuJMYwQQRZRRICakJ/vNDw8BI5m4t3LBpRfC0RXzOSKoWM3qe3Xm062F4sK1sdNtoOF7Y6eEFIq+fRcz1m8gbn6xYzCRlis91jrW1xoK2hq0WCSGK5ER985ACFQo5nDlY5td7i/HqXmazGU0dmBrLl/+D8Fo4XcXKjw9cfn+3XzL/S6LFUzfXpqafW20nZ6zbPHJmmYMZVVB8/UEGoCo8tlHad3+m5ly7xLJH9gPIwdmvEfju4Ffrz24U3G8UbiXxpvweyHwhScq6YpeOFzCVFp9IunVHlD9ZaDj0vYC0pwjUqU3VUABfGU8Lp84d5yONWqkxj1ATbTXGPaj/34FwRL5I8OFe8gWE0Kts23Rjb9oKB5LgrdYu1Vo8rdY031trULHhjrY3txor44pbdV4at3nVGTDP5MkdZ1c1oUKaRngc7rx2uK9/whjMGz/nPaU6+n1j5PiS6uS+TuG9f7iBvgOPFsk/j3Bm3e10WMvE/tAyxBo9AVWGuIKi5krmCQFcN8qpLyYh9/EryfooHXjYuq+BJwXQhQ7bpMF3I0Oh0aXR92p14pM2ej5fIi1td6h2Pi1vduM+EH3Fhu8cjiyWyuoZpJGwbK8ByQjpWwOEHcpyrWRyezqEpEieIa/C8dLnJua0uWQX+1Hvj56Vk6rhhxPFqlsu1Hser2YGa+YeqeTpuyKFE6RZNjVBKiqbGTN7gUr3HTN4YeK80ho2h9E5++Lm+WawMRmeq3y7uJkU/jDfj8f9mIn/x7RnO3qKahXU7lunMPxitkNPK7OhMgZ4XcTRxuYw6Z1QAF956ktPw8cMJKm91Iu3WoCSN4XyDtELfeeBsL+gzb+AmRdoS+YVzm7xwsUngezy2PMUb6y10BZ44OMVKPVbsK3Uby44VpGWDteOe8WAqC10bKomE64p02Jq/HajE+nVHjkIpTKz8EN6V8uOPi5Z3Xaa5/jC4S/CSX+pu7DoC4jr+CFQkAYKFks6llst0UmVW6IAfyyiS8b1EkoypkTcNMqbGhSsuvRAu1OMLmBkQbizbjkvHj+VsPosqPEqGRkbXKZlGv+5OhEBVVSIEW10P1w/Z6nr4UUjPDblU76Eo0HZ9EmYmjZ7H6fUOuiLoBZLpvEkvkHiNDi9fafPsoRKL1cKAQp8tZXlgtshsKTtA2yyaWr+Gz26unrSyv5tYNHcb3szV85vcxMWzAynlR/Z8RHuIhIJMRoXPnNngK6sdLNsbqOQIg8o1a2j9SZX2F8Jon/Yw7/2tdtDaLUYwqgrnuAHc3R6SUUhb9unrD49lVEmLa02HthNwrekwV7S5uNVlMXEZLFRMrrU8FiomTcuDADKZuKolEejKjcpxv7DbIvLCiMzbUUFbGLT4yyJm/lQSCdd3EWnkACuRfvKjMbgg7ChFN4yotX0cH2rteNTWjv/fh/c8UKZ9ocUTy2VkEGG5PjKIbmASaUq8M9AUQceTCGJ66LOH82w6EYdm8hysZPnaWoeDlXiHvFDSOVdTWSjpNC2HrhPQtBymcgY9JyCjCJwwJKsqOElSWMfx8MOQjuPRtnyu1LvM5XXqls/5rS4lU6Oaz/YVOgy2XnR8v19KXaL2G7G8JTLFBDfFm31CP5PI7wQWiNstAnwvcGmfxrRnSJoU4YVxsaudHxhUiI4Xstl2KSX0yVHB3TRGTb7hMg9vlWEzbJWnYxFp7JbYNaqV424PRfqcdO5AJWv0r297ASLVrOSVy9u8cL7B+45XMXWVl682efZghQfm8qy2PR6Yy7Pd83D8OKMW4mYgqhrLnAGiF8tO4tOREawmCmpHvh1QiV0+Ox7gdBXNx/jEWO+RXrBUFQhiqQexQk+M8wHoKWkqUI+gqMS5J5e7sFSAvKYQEJHXFGqOix9BzYmXhrRLqtULUUUsdQ2khIYdsMNF2rlWECVxhwimDNjsxXJpqsB822dpqsDprQ5tJ+T0VtxzV9U08rqCqmkQxbWW4tLVAT3Po20HzJdMLtYc5pNnRVcVLDfOjk7TNHXNJ29qJDyLG4uyJXNsu+NT6zlsd7JU89k+tTM9j89ttEf2pbiVtp3vlEXjzVw9nwYQQvxdKeUHU//6TSHEZ/Z1ZHuMg9UcZzdtDib9cdOKe7VhJQp3sDb3bvXzR1npw1bwqIYp41JDR9UL2m1sw4HncVo5ps9J5w6cXKlzcq1LFISYhta3ugBeXWlyrWXz6oogayicWeuiKZKiaVDJ6xRMg/p23Izj+FR8P6dX29TsWMqEDumGsaLrJMl2OwXKAGY02A5iuZ/4bMrCH66TPwoKsZK/Wf/SWnBd7iwmN/sGZLLiSBU0A7BjH79IdKEQ4ISx0nZCKBkK60SUEt/7chEudmLphhGBjKUuJJYXQhhwcFrjfC2WAIulLDXLYrGURUpB0epRzOWxXY9a18N2PZo9j57n00wW7LyhUchq5A2NS40ejhdxpeUwWzARQqHjBTyyUOZw22e5GrtGFUWwNJVFUQTFjIKhxfKB2RlUVeW5g1XcMBqYxx03wA8kHTeg5wcEoaTnBwOtF9PPzm59KW4lD+dWFP+9uHCM23N3VghxbOcXIcRRYHZ/hrR3aNrXZUY3eGSpREa/cXvYdjy8KKTtDG7gozDiUq1LdBOlme6nuTNxGtaNPXNHTcz0OWnkMoM9e6u5m/cKrWQNMrpCJWsM9J4dPif9evi44Xs9t9khCqOBMay3PDqOz3rLu6EYXVEXbLQdirogo6p03ICMqnJuo8XVWo9zGy0u1FxcP+RCLbZQO8l30rFjiq1CLCuZ2E1SGeqfPVNW0RO5nxiuk/8+PsFjfIL37WLtL+UH5SiEQzKNpA0uTjjomkyqQ7Pdg8CP8IhluZCjnBWUC7EBc2S2yFQmlo8uFCiZBo8uFGg4AVEEDSdgsWCQ0WGxEM+hJw9NcXQ2z5OHpijnNXQlLq3wtdUOja7L11Y7HJnKUTI1jiQllstmUobb1JjJ6uQMlZmszlIpgx9IlkoZSlmD+VK2X+huNp8hCCNm8xm8SJLNaHiRRFEVjkwXUFSFjabDq1frbDTjOTlXNPs/h6fzzJeyHJ4ezHRPPzvpftnDGPXsDPfCHXXcuBj1LN/NGHd5+mvAp4QQO9m6R4Af2ZcR7SESAwoDePpQBd1Q+olR6VU+Xb4hjTfW29R6Hm+st2+IC+xWVjlt8Y9y1dwuQydNW2s5/gAPeVRQ64311ki+crqZDNAvdHVioUDH9zmxULiBJdHxYK6UoePBYk5luZoja6hsd32aPZ/trk9WlYRRSDZpNZhm5czkDNbaATM5g5Mr8UO40hy8z3or4dq3bqY29w7DnPxxEIWDcseVowM5AS0Z+/ptyQ2JXTvIKuBFsVSTHZAqrrf/VSSEQqAgCYVgoZjhwrbFQjFeITtOiBvFslLI88BcQKWQxwnqOCE4Qci2LYki2Lbjz9hQVTKaiqGqVPJZZko+lXwW2bWRQmJqgnI+w3zRpJyPr3N228IPJGe3Lb7hwVkcqfDuo9Ocrfc4PJPHimC2mGG2nGE2Gdt2z0NXFLZ7HqWMnvD19QFj6HwtqdNf6/I/wQCr7eRKQDlrYGrqwNy7lThaGrdi4e9m1Y9KZLybrf9xE7j+ixDiQeDh5E+npJTDdOW7DtNlaLViOV00eUJV+korXfI1Xb4h/cUtlbPU7TgLEAa//PT5aUU7zOpJ7wDS56erCIL5lidL+uEZl4e823G6IvrJLulCV3ldYbPlslFxWJ4eTCg7UDI5ud7mQMlESslay+HxxQK6JtCUuCF4RtPJ6jr5ZOEr56HWiqXlBgR+LFuJomvJQRdKN3GZ7Mj0/243+JsO4KYt+0tDx5nE9M8duYNVZ1BOmbDhxDKjQasb3+eUCpdbcKAMW23oSigkK+BcOW7QMlcG24/vKZBwaFbj3FbAoVkNGcIGAWVDZbPlYvsRm6348fOCkDCIZdexuVq3ODZloKsCQwVdFVSzGXTNo5qNFXLLsrG8gJYVN025XLc5PGUyW9BoOCEPLRTjQHV0faGuZlUUIalmVfwIMmosn1kqs9XxeGapTNNyuVrrsVyKr1PrOnzxYp0PPjiNkILXV1vMZg0Wylm6ro+hZjk+nWej43B8+kYCRccN8KOIjhsMlFVPGz271ZIat7z4OAvBbj2uR5E+7nnFL4TIAX8dOCyl/AtCiAeFECeklL+1v8O7PVQLOaY8i2ohd0MwNF3ydaGU6wdxL251+Np6m8cXShydLaJoSl9Rpr/8luMPNHnewW48/vQESyvXB8Jo5KQahfROYlwe8m7HOUFIy/ZwgnCg0NVnL2zz1ZUOYRSwWMkNjLPtBahCoe0FvL7S4Pxmh5IOWU0QCUFWEVyuddnuuFytxRxyRcQ+b0VA149wiWUa6SDpcEbtXjJ+ht07o3CgBOfb1+Uo5DNxKeZ8BpIGWbg+LBV0Vlo+laxOM2Hj9IO6qopOiK6qqEJiEFEwFI5PFdnoNTg+FfcdMPW4c9R618JyYb0b78xKWQ0z41LKapzbtOjaPuc2LR5dqtBwWjy6VMYQgqsdn0NJ5q6ixNnTiqKQzRjMl0yyGYPpQo61js/BqRKWGzBVzFDIxMrx0aUpnFDh0aUKG22L1ZbDgbJF29KodzwubVt0/Ij1tsPpjR7f9ASc3eiy1XE5u9FFUQR+IDm33SVnqlyp9TAUWKjkePKAZKGSu+HznCuatJ2QuaI5kGCYUZQ+GaOSNcZqlpTGDYXdxth9pwkgu+Fuys7dDeP6+H+BeJf6vuT3FeDvjXOiEEIVQrwihPit5PcpIcTvCiHOJrL6Zu9xq5jPabheLOtdm3MbHeoJMdxQ1bjkq6oOBEpXWzZdN2C1Ze/qrz9czVPJ6Ryu5gd8hunywjDos8+oCi07TvJ6bKHEbDHDYwulgfcd9j+Owm5NYtJIv9+o1wAbbYeuG7DRdrjcsIkkXG7Y6ELFj0J0oXJxq8N/P7nOxYTpsd1x2O7GnatWGl0aPY+VRpfVloPlxi3wtjouTghbSYGwejv2ddfb0GgFRMQyjVFJWnuBF/g+TvJ9vMD30SZeQNo3uWYpJbeTDK0duYMkVtqXXhi/nxcOJmZtdn1CYrmToboje26Il8gTi1VmSzonFqs0PYmMVJpenJAF4EmBDCMCQCbf+4FqnoKpcaCaRyJxwxCJpJw1qOZ0ylkDDwVTE3jJ427qcdMbU9fI6QqaJsjpCqWcwUI5RylnxFmuGYW5xHpfnspxbL7A8lQON5A4foAbSF5daXBxu8urKw0MJaLnBBhJCrKKjEtyIHnfkSrz5QzvO1LF8SKaPR/HiwZKNMPgfC1ndUxDoZzVB543oM8uS1v/wxj3GUlj1POXNbR+u8jdMByju1sx7uiOSyn/lBDiewGklLYQYtzn8keJM4B3nqUfA35PSvkPhBA/lvy+L717X1tv44WxvLDV5bUrDbIaPH98rh/MyerqAIsloypkjPZNU8PTVnYuo7FQyt5QlmE3tk16Ih6cKfR3CpYbDFTqHFW/Pj2ZdmsLmcYwbXVn1wMM7IAyqqBl+WRUwXrP5dRqm7m8Tjkb0/DKWY3fP7nOSystbMfjmx4/wLVah6u1Nkt5ga6qRMQW7EbHouPARsfCdmNFZbvxw7dTJqEXXQ92toaey+mEybMj4bqFnyWO2+zIt4pRNE2F6xx8gFwW2nYst+3rY07D1IEgkUAQXpfpuv05PfbR53RBtxf/J6G6990pMoK5gklG6zJXMLm8vY3lhrR6NmZGRQC6FlMwJfSbqqzWunSsgNVaFy+M8APwXJ9rLZt6z+Nay2Yqo+EEIUbyKTpeHPh1vAAQCAkgmC0YzBZMZgsGnz+3wVrd4nwx3uKk6zdldDB1nYwOR2bybHYCjszkyWUyLFWz5DLxYlHJ6RQyOpWcjqKqLJSzKKrKoekMXgSHpvMDva9hsGy3F0X9Xfn7H5zv71bXWlaf4ZNuzj6Mca3vUc9ImiY9Krv/XsW4it8TQmRJ5rMQ4jg3liS5AUKIZeCPAn+f2FUE8B3ANySvfxH4FPuk+C07DrZZNrTsEEUTtOz4iRuloNOxgBvaNaYUd7p8cnqCVXPGQGr4OCUX0tcZ1/84rjWTXiBsgoF7Tr9eadg0LI+Vhs2ptSbnN7tMZePiWafW2sxkFS5sddhs21zYitXjl1da1J1YlgwVN4B616Xrx9UwO27UZ/G0E1nSYcu/LuHGxKZ0l6th6MQKXyeegOP4+weSsQRx4/OhugrDLqS0Ek//byrh2k8psJnc045MB2TTWCjl2LRil+JWpwfBdYt/rmyybTvMlU2+dHmb9bbLly5vYwc+fgR24BPJECdp0LKT77Aja26EH8Zyh2jbDSR5NySUIY4bYmlKvJtM5krW0CmaOllD5/xmizMbHaayCtMFI/bRVwx6vgSURDJQQz+nZ9DUDjk9w/uOldEMjQ8cnWaz43ChpjJfiueupqmU8waapnKx3mW1aZM3FD50YrEfUzu70aFlxa01D84UOL3R4cxGG12Fpw9W+w3WBwygFMNHIpktmDetwTMuBqjdnnVTvXC/JYaNeyc/DvwX4KAQ4uPA+4EfGOO8/wP4m8TN2XcwL6VcA5BSrgkh5m52ohDih0lKPx86dGjMYQ4inUTz1IEiNdvlqQPxUBw/otbzWCzfWHVz5/V62x5gwdyguEeUWUi/3q1u/g7S/stnD0+P5X/czZpJV9q8uNXha6txzftyVudSrctMTmeqYPYfZIC27dFzfdq2x2tXa6x34LWrNXRV4Voj4gsXtyjqsessSDSylfDtLQs6VkgIXGuGff/hjnJKI51pOgrDfv000glL4/r701b+U/ITccG0kfnoMdredVlVoRbGcroE3QbMlKHRGBzTTh5SJCCXsHVyCkzlTUpmwFTeJKPFin/nK1aFglBi2fFcwghsL8Dy452S5UVYcqd0c0ClBM0mVJL9c04JCcJYLk8V2ex5PDiTZ6postJxODKTx/ZCFDWm3AI8fqBM3Q14/ECZ3z21jhuEbHY9Tm+2WW/bnN5UeXa5zEbH5dnluNLmK1dqvHC+zvuOT2FmVA5N5TEzKjUrZu7ULA9VVVgoZ1GTzmfzRZN8psd80SRjqKw2XBZL2YFS38M9ocOkF3bohwMMn/RzNLzzHlWDZ1z2Tvr5HdX/Yq9xp9k/b3pFIYQCVImzd99LvDP9USnl9puc923AppTyZSHEN7zVgUkpfw74OYDnnnvuTR7TmyNdj98KJNVcBiuI3yrN3Tda8NmLNT5wdJoHFyt9hRqFEVsdl7mE0nYrtT/G2W7O5TMD10ljnFLOw0gvJHGhOZ+1lsOlusWFTQtdUXjmkDqQlZzXVSIpyesqXpD4qoNY8XhAy44IIp9AQiOpcGoaMaXTNGArUZSp3Cu6XA9i7mwPe0PyZtitLII1JG+GF3ZJxkovHLshPQYlSbJS1LjmU4TEUBOKJalib+F1mY4ZeEFAz3PxArNfx2ZH1iyXMIjlE0slWl6LRxdLvHSl0R9LXlcIicjrCtV8hs2ezXwhCdRqBoVMgKIZIMBQFRDgBRFeIPGCiMWKyVzTY7ESu0pqPZ+27VPr+Tw4V2S1FcuSkSGkQ8nI0PZD5osmbT++qVeuNFhpWrxyRfCHH11gq+dyYq7AG6ttTq22KekqB6Zz/UxdAEUVLJSyKKqg2XO51rA5PpOlY/uc2ehgKJJ3H5vFiySL5VzyvUgMVSXYpf91mjk3HBIeKC9+F9Ms73Rt/je9YtJm8S9LKX8F+O238N7vBz4ihPhWYiZcSQjxS8CGEGIxsfYXgc1bGvlbhAQUcb2deqPr8pXLTaZNjTdWO7y+3kKG8NSRmRQ1U+GBuWK/d+sojNvIYdTkU9TxrjPOe8EgbTNwfU6u+8wXdD53YYsvXayT0yMqWa1vwR2fL7LSiOutrzR6ZJO3y2qw3opf92wIfBmXBujGn2K6pPAo3EpRNTkkx0G6Ts7NkrFuhnGpoZkM4MWyYcfKfkfC9VjFTv6O5SUWfQRCgZW2ix/EMkpuqi+DuBdAFIQcmCqy3A44MFXk3EaHtU5AJaMRqToF3UY1MuiKgqbQ71G7XM1yteWwXM1y8lqD9XbIG2stpgpZuklNnJlChq7n90tSv7bS4OxGl7ym8IGH5nhk0edANY/rBxQMFUOD0Jdsdx2OJQlcahRwYbvLiekMgRA8vFAmEIJAQsZQCCSsNmyu1HssJgHhYkZH1xSKGZ3ff32NU+s9MmrEs0dm6TgebiAHgrMzJZNCRkMTgsJQ7OyG3fJNmHK5jDbQfOXrHpx7yzTLt0sh32n2z7ia5neFEP8vIcTBhJUzJYSY2u0EKeXfllIuSymPEDdx+X0p5Z8BfgP4aHLYR4FP3urg3wzpBhwPzhU5NJ3jwbnY1fPqlQbXGhavXmkQRSHNnk8UhQNR/Z7t8cWL2/QSzTYq4r9jYV9u9G44Jp3Vl36dPu5WMgd3yxZMB57PbvdoWwFnt3ucWu2wbTmcWu3wyZcu8VtfvcYnX7oExHV3Lmy7vHJ5m6QKNS1nsPRw+vPc+Vta3kl8PmHrfH6IrbMbxmUPJblnqBIcN15gnJtEuKrF+IGqFiFMPqMwgBkztsZnTINCVkEnbqIOcXnnHXmp1mWlYXGp1kXRVEwdFE1lNomuzWYhiZH3Zd7UqOYy5E2NdlKcqu2FCBnhhBIhI85sdWjbHmcSNpblBfS8AMsLaFsum22XtuXyyqVtXrzY4JVL2wgFiEQsgfM1G6JYBq7PFy9uE7g+86V47s6XDC5st7nWsLmwHX/yjh/Q6vo4fkBGU1AVSUZTaNsum22Ptu3ekNkuZZy9JqUYmXWeZs4MPzthGHKtaRHubL92vpsxn7HbzeIdF3ea/TPuVf8c8Xz/S0N/P3aTY98M/wD4FSHEDwFXgO++hfcYC+k+qusti/Wmw3RW4+BMgYKpYeoqBVOjZGqUsrFMc/VPr3epdTxOr3d5aKkysjBa2lWzW9edUf18b2WS7dagPX0PtZbDlXqXhbxOvWNTbwfUszbX2g6bPXj5ahOA0w3ZlzuTojGk3O4mRT+MUWydS7ucs1sphXTRtmvJDV/rXnddWcH1TNydb+/x+SJNu8Pj80VesDr9N5CKRBMCqUgqhsoKEZUkGFnJxh24Klk4uVJnoxvLR5eqrHd9lis5mj0fUwM/VOn0urRc6PRiZ5ntxmWRbTfkcDlDo+tyuJyhY/t4PnRsn3LWoO14yIQKNFc0mc47zBVNzm92uFLvMZdXeWPDom17vLFhsVS12Og6rDdjp9qBisnVhsOBisnnzm9zerVDRsC7Dk8zV8qiqSrVnEkxa1PNxbvey/UeGx2Hy3WNb3h4gWLe5NmDFT53fpOm5bPWtjBU0U/mAuh5PkEYy7Q788Xz25zd7tDq+Xzo0YX+9zTs8lRVlQOVHKqq7tr7eRTutyDuKIx7h48SK/0PEC8AfwD8i3EvIqX8FDF7ByllDfjwWxnkrULVAD+WX73W5pWrTaIo4vnjc3zjQ3NIReEbH5jh7LZNNW+gaYPp5Atlg5rlsVCOJ06aCTSqZv1S0RxQ5qOyekcldu0c92a+yPQW+dOn1vi9M9t8+KEZvuvdRwcobkKNe6sKVVCzvbiyo+0R7DBqbuKDGdcPfqcxqnTyXuBmi0K6kYvN9Ydnx010qe7iBrHUk5VDV6HWcbB9Sa3j0LDj1pEb3fiDd5LdlePEGbuS2HV2ZDbPhhVwZDbP5+sbdFywXJdNKz5mMwlyeEFEJGNfvqrqFHIeqqpjhUnHslASRGAItU8BnS3qFDIas0WdCzULJ4jo+iGzWYWrAmazCutNm822zXoznscfPLFAPhcr7k++fIWLtS4zWYWvf2gOU1MpZFSePVzFNHQeW4xpyppQcIMITSg8slQllzU4XM1zcrVFMWNTyWbY7LkDiZCFjIamxq6ewYqx8eAl0a6u1YfmS2QMlcPVG7vkjfOM3W2xgP3CuHf2i8TP1D9Ofv/e5G9/cj8GtVfY6VXq+OAGPpYX4Caabtv2URXBtu1zeDrLdtfl8HR2gK9rqIKaHbCQBJ7SlLb0pEo3nFi6SQbiDtLK/gbLYoTPcuS9pTIJX7xUZ6vj8uKlOt/17qN86fwm/+X0Ft9yYpYzG3XOrbeZzkVYVsIUsSK6iYeou4t//m7HrZRO3ksML5C1btz2sdb1KGeh5kE5C04U4UexbCa7hx2ZVF6g5cKjSzk6axaHZ3Jc3OxxYbPDXFaj7gT4EupOQDbZxu5IISCSEULE/XPXej4L5Sw5XbDV63BsKksgA9wgJJA79ZCcOJ7TdFgqZ7lSd1kqZynoGmt2xIHpIltdl64T0nTic0xdo5wzMHWNlhfG2eteyFQhywPzgqmCSRiGGLqgnDDFMrpC3tDI6MpAYuOzh6fJ6AaPLxVvKCNiaAqFjIqhKQM714fmSvgRPDRX4isrdc5t92j2XD786NLAd5J2c+bgpiy83Z6xOx10fbsw7p2dkFI+lfr9fwghvrIfA9pLBMF1Wc2alLM9qtnYQriw0eHVKy2yiuCPPLXMu1WVuWJmQCEPNz5PT97FSrY/kc6stXCDkK7jj13TY1Tj9HELUO34923f5Kn5Ahe3LZ6ajy2t//r6Ohe3Lf5rGHKtYdGwJV+50hmgKO4kP72NJe/3BPtp5d8uMhpxEFiLDUtJLO1WTHXdqoU3MJZkdF0WTBVdjeVLlxrUXXjpUgMtaU7j+5JCVkW3QrIJ/dGLIiIp8KKIb31iiUBR+OZH5vjkq6vkTR1dN7AsF0UIvMQQurDe4VrTpWp0ePr5aQ61XZarBU67DYIgimnQxHkBO/uZc5ttvnq1galAFEUIFKIoGnDVnNyyCCO4ULfiooYyCbnLwWbnC+UsNTtZoFKKOoYg7so82Pgn3a5RJKFJcZMQ5aiAcDout1tg9W5mAu0lxr2bV4QQ75VSvggghHgP8Ln9G9beIP2QpdPRASwvjIO5XjjA3d2t8Xna1ZNW1oWM2t/u7lYffFQbRLi+9Vxv2aw0LDKKwkzJHLmt3erYbHdstjo6G5ZP0VTZSMjxShhh+RFKGFHvxFZ+vRPds8o+jTtt5e+GunVd6jsN2lOLrMVNXEga/U7sr692aHqxTO9Wjy/kaAcW89UcUeCjipBswlVOs3xWWg4ykqy0HLquhx8EdN14XmmqfT0p0Hbwgli6YUjPjXDDENeLyBoarhfFiVoZvZ/n8aWz27x4rQVeyEIxywXTYaGY5exml8v1HoYSlyE5SbtfAdf14yCyO5SJt9Kw+0lbiqoMNh7K6RycylLO6QN8/abt9Z+9J5crlPP6TYsNjlLq4+TTwL1ZcO1WMO7dvAf4fiHEleT3Q8AbQoivAlJK+eS+jO42kVb8xYzAUBWKmVghP7RQoudHPLRQGsicTVf7G258nnb1pJHe7g6XYU4r7qbt9XcD6U5f6UnZcjzcIOlwxCAnf+f3w9U8SJEYVIJ2z2Oj43KoFJ+jGXGde83QxuLN383YjZN/tyGdY5BLNLsfQjnJcygb15ut75gFUXBddpLXHeu6+8iL4MGZHJs9nwdncqw2HUzDp2jGlEldia19XRFcqXU4t2FRzSrMlUyuND3mSia+H6EpCqqSXFVG8fVlxHbHwQ1iuTyV41zDZnkqRyBhvuWxmCjXi40uXdvnYqPLe4/PMl8wKeV0Nls2p1dblHWNB+cGq7c27LiYYcMOBmryNHoOaw2bpdKN2exPLk9Rzmc4XM0PZKcPJ1YN7hKuY1Rw9lbok3eacrmfGFfxf8u+jmKfUFWhkWRcaqrOYiWLpsYK+esfmufQbIHD1TxnNzpcaVh4XsSD88WRrQpHlUlIxwUubHYGLPa04o6CiNMbbXRRurFx+k7SWDVPxw05lDxwacZQ+r2KpoKhqBRNBcvzaFselhdrlY1WB8uP5b2OcTn5dwIZ4sS0G9PuYt++ZcdyNqdSq4UsFlXsWkiXOLEFBplnpRx0LSjnYsqs40HBgOlSnkNTPtOluIRxJJOsdKBuBago1K0AQ1PxZIDnSw5O5ZNKm3m+eGEL2/fZTkqGHpgq0/C6HJiKG51HxOSEcj7DU8sRM+UcuqKw2fM5OBUr84NT+eT3PIYq4to/qsCXERldxZcRL16scXq9S8f2kzpUcoekOWA0bbYdDkxlUXduIoV0BVnLDW5gxA0bZ5YbjJVDMy5bZ5QL9n7DuPX4L+/3QPYDhgaEsVyuZmm5PsvVmDZme0FfoabTxkfVz78ZNfNmVLFhiz2tuK82LAqGhh8NpiYNMn8Gk7matoeXsHfS73W255M1VfxIYdsKiSRsWwmP240TrdruLSU833GM8uPfWtuN/cNwHkCaAjpX0Nm2feYKOg0vLmPRDCR6ki2mJ+5pNfldVWC2oLNl+8wWdNZbsa9HE+D6DpttF3fOwfYiNAG2FxsfS2WDy3WbpbKBaagUMga5jEolZyQF0ozEZ05fHp4yOZ/U4DczcZFCM6NyYq7Qz8j1QknTDvrPy/sfmkfTdN5zbIrXrtbjxi49j+eOzVLr+hyZznNho81KvcfBcmxc5QwVVSjkDHWAhXawmqPtBhys5riw2eHcVo8HZvM8fnCwUG/6uUg3EXpkodx/Dl84vzkQ6B3HL7/bMZPg7n2AdAZomnIJDNTDf+7Q1EDa+M249rtNELhOFTs0ZLGns3LTVLPhhWNUIberdZtT6200RZBd0Pr3EIY+Gw2HY1WT2ZzGWSGYzcVjTCcc3Yu4FU7+rSBH4pbhxhIQFQ2aQSyt4OYdtIYVf1mFehhLJwoRxFKVcZxFlRF6Ul1O30kISE9SoaILP67gpiROfgW+utJhs+3w1RWFuaLB2brFbDGeH48sTxOqOo8slths9pAyIm9oqKrCVN5AVRUOTWXZsrx+PX4HwWzRxEGQU1XajkdOVen5EXMFM5YlkxOLcVVOgKVyhkPTeZbKGTaaJhczLvNFk2ouw5GZAtVchkCCocXZvAC27xNEsUzHvtLPxNn1Fl9eaSHD4AbFn8aosibDgd5xFPdux9zP7p00xq8RcA/C96/LHfqjk2Q3HpvKoSqxTFsj6dfpPrQAFzY7vHS5xoXNzkCGX/p1mn0Ag5mAMyWTZw9PM1O6XhiuYXmsNi0u13qsNq0bMvoc36fjeDi+36eNNnoeTSdCURSaToSmKmR1FS3ZJRSzKkYid8ilo0mmdx/GzbzdSyhDcke/5DOQTzwSefV656yCgNnEpb0jl2czZEUsM6qGpkBG1VA1PW6tqOkslDUyAhbK8febT76YfA7yhopQYzlfypDXYL6Uoed6+AH0XA+pCMrZDDLx18/mNGwvYDan0fFCdEWh44WIpCOakJKpnIEiVKYSZXawaOD4AQeLBtu2T07T2LZ9SqaOrqqUTL1fLjmTzKlr9TgR8Frd4ZnDM7z7eJVnDs8M+O4Lho6mKRR2ejIbJrNFg6Jhptg/YuC56vkSP5T9KqAjv5/UYpF+dp5crvDc4SmeXK4A42Xe7nbMnc6ofbtwX9+dntDrdA2aPY9LtQ4zuXhSeqEkn9HwQoltu33f+1TB7Fsm6S5dB2cKbHRs1tsOBUPl2Nz1zN30lrTedTi73iGjwPH54kgKZ7p143AjlvQ21NR1ilkdU9fZ7NhsdW02OzoLRYNrdZWFokEgQVWuW1pK0ipBEeIGhXa3YlQbxFtBuvftMGaTctCzOvRSyWsloMnNu3HpOnEylg6LeZVztZBDUyqFbIaWb/W7Rx2dylOzQo5O5dEzKi2vyUMHynRtj7rV4oG5HDkjQy9s80DCfClmFIxeRDGjoAiBocTf27c8Os9/OrnFtzw6y2fPbaGqAdWsTsnQ8aOAUqJcP31ui4tbXT6tC8oZla4XYKpwqd4jlBGX6j02OzZSRlxLamQ3vJCpvEnDC3nfUoGNtsPx6QKGKrD8WDmn2ToHZwpsWw6OL9m2HJ47PsO7tRnmipkB3/1MOcOJxRIz5XjVfP7YFEIXPHewOpCoBfRfn5gv4IeSE/MFdkM6Uz2X8GVvFugdxy9/P/vux8V9ffeKel2utm16bshqUhg+7YsXiL7vPR2orffcuEvXVPxG6absab7+UiXXV9Z+JCmYat+PP4rCmX4QDlfzfSbQcFkIQwHHDzEU8CIFpECg0Op5rLYtHuhlmc7FHZWmE1dPyw6SiprBrpUu7yaM2wYxjbSCTycgF4BGIoch5XVZiHf1FAwomNBuw1QygHQ9/ncdLPPSSpt3LZfoOQF6u8dUzmS6kOFiw2WxGAcVp4tZchmH6WKWhxaKSKnw3KEq2z0foWZ4bLGIDHxObXY5OhWfc2i6RN3pcGi6SBCGSKGga4JNK6Rs6mxaIZFQ0FWIhELW0Fgq5vqdoLp2vBPs2j4KKhlVoePCg3M5rjZclss5FCm5oLosFOJrLhaznNmwWCxmOTJXIJfVmStmOLfV7fPwwzCkZXnYybb54fkKdSvg4fnKAMMmnY2eTrKCuHzCoakCqqoyZ2gDrpqd19NFk6Wp/E37V4wiVsy8QyiX+4n7+pNKl8nNqYKW7ZFTY2s47YtfrXc5t9XhUHkwgauaNzixUKSajydlmt651rT7Vnp6EUgHrmDQn5i28tM+y/SkXm10eflqk2cPVjg+X2Sj5WK5ERstl4weF/I6NmXyxQs1XlvrQBAiFQilYNuOSYB+ikqYrgvv7UWj2j3EOMlY6YApDCr741XB6YbkeFVwoSH7fvjpqkq3ETJdjc9KN0tPPHCEEipZQd2TlLJx/1lBiJYwTYpG3Di9aMSMlrN1h4NTeV68uA0RNF0f01BRgZ6XFOTruYRRRKPnMlOYpZw3mCmYLJZMVtsOTywW+f3TW1RMvR+If2SpzFo35JGlMlfqFlN5j3LepGM7bHQcDlV0ZvMmK6bHbN7k2cNT9ELJs4fjGonH54rU7ZDjc0W8IEBXBOWsYKoQN1uZKuiUclP0QsHDS7EPfbGa44nlgMVqjp7t8crVOh84Oj3Qa7ntSRw3iss8w8ACkUbaEndhgJiQzntxQ9mPTwlE3x06bH2PSoAcRax4p/jk9xr3teKve9elFUSUcwZWUrBkvWWz1rKZzuqcb9gYqsr5hs3SdpeT63ESyjB3OD1J03z99ZbdL58gDDHg408r+7SVH4WStabDdM5goWT2j6lbPqqqUE+SsVQ1SuqwRHz5UoOVhs2XL9VwwoieG+GEEUog6do+fhK/WCibtDyHhbKJ5To0mzCbNPB4O5CmOQ4XsSwDrUSOCuKm2yvmM7DtQnXH5y6gKWN5aLZC3W9xaLbMuaQrSgQ8Ml+k5bV5JCmkN52Da1Ysj87k+fK1Ho8dyNOwXCQBGV2lmjfYtK1+j9lcNkPOcsllM3z1WptGz+Wr19ocKJmsdTwOlEyMjI5hqGSTBL+MpqASV6BsWD6aiCUKFAydTcvniQNFtnqxBHCigJyh4EQBTx+cwg7h6YNTrLcdlso+s6UCy5UM7VDynuPTPLxcZaqc6yvgY7MFVtoux2YLBJGk7QoemC9xue7ScwMu113ec2yaphOwnJRYPjxVIJCxfOlSne22yytXWyxUsyxX8zS8CM+LmCoYffbQqHIljhf2s9nLWX0g6zz9/KQNpbj/dZeMEu+w0xb+qATIUYlVE4V/a7ivFX86S/LoTIFeEHE06XN7aqPNmfU2moBDZZOvXWvx3HKJL5yvcXqzQ7fn8+TBMi9dbfDcwSoPLVUGkrHSXYTSjZiHWzqe3exwpWZhKILlSpbT7TYHyyZ/cGmLr6y0iMIQf6ncLw3xzKGpfs9fgFLWZKHiUsqaoCr03ABUhQVTo5yNffznNro4YdxcA+DITI5tJ+TITI7PnIm529t7kMGVbju4G9whmcZ/GcPKf3hW4bWtiIdnFdY6seLREj2Qz0LTiqWuShQp0FVJJVkgKhmYq2ZZ7oTMJVTEhWKGmuOyUMzw6HKZlit5dLnMp85sxVUvEbz3+Dw+dd57PLak50sm612f+ZJJxw6QMi4m8OjyFN1I8OhylVxGpemG/cBiHIvRKGZ1FsoZrjUdFsoZPn92g8+ea6DKKl/34DwPzfnMJwyynKajqbF89EAJqSg8ulhAUyLe2NBZrhi4UWxMuFEcGN3pogbghJJqNoMTShaKGaaLOjOFDFttm57rx43PpQQh+34uQxX03ABDFUznNU6uhkzntQGLf2mhhGGo/XmYJj1kVKVvqFieT73rUjZVTEMdyHNJc+/TLtTLtR5uFNJxoxsYNuP0tk3vMoZdo+P2xniruN/KN9z7d7ALUtnwlLM6GU3pZ9TqQsH1I3Sh0PQiFstZml5sWTuJhf358zUu13t4XsRDS5WBBKqNhs2Z9TaGAu8+NjOQrZvO7m1ZPlfrXWbzBiDouAErTQdTV8hmNExdQVcEXS/eptteQL0Xb3UBZosZZjtZZosZgsDH88NYCh0/jKsyrrZ6tC1YbcXafbtt0+z5bLftOJfBpy/HQdq9kq5O6UeDMo10ieLd4glpK//bKr/MajNiqaKw5EWsWrCUAxcdQ3Vx0VmuCDrbDstJ96iZgknDdZgpmERSRdUUIqny7uNTvHylxbOHyrheRMv2cBNrdaZqUumFzFRNbDeum2O7Ic8drNJxajx3sMqBqTwnej4HpmJrNaOpSCnJaCoLcxnWej4PzuV5cLGMJwUPLpZwvYAj0wVmEt95zw2SnVjAZtPm7FabgwnP3gtDLtdtKqttvrrWIqsLvv7hReaLWeZLNvPF7EAG+EZnG5BsdAIi6bPesKhXdU6vmwOlwiumRhCFVEwNP4KcocfSNFmq5MiZ5kCdneePz/KFS9ucXOsShiEHKgUeWCyQNzM0vKhv8b9nppAkYcVIV3y93IkDv7oSx712LPRht8vpjRbXWg6OF/CuQ9P995otGnTdLLPFG1014wRe067RYUMr/YzupeK/3/j9dzvZY89war1Dvetxaj3OZs3oCoVMXDlwqZylkNFZKmdZrhY4NpdnuVrgQCWDkIIDlaSjkK6y0bYp6ioIiRCxJZWeiGnLaOc6JdMgoyvYvt8PmD2+VObQdJbHl8pUCxlOzJeoFjJ8+vQWX77Y4NOntwBoWi5XG12alst2JySKJNudkM1eHJze7Hl03JAA6Lixmr5Qt7GCWBaTOVocmqvDHPS0nEvcKnOZQZrjbvXrjSG5gxeSBikv8H0AtM2EqmnCcwcrlPKxfPxAiRlT8PiBEq7n4oTgei4zBYOMBjOF+J2fOFCiktd54kCJuaJGwVCZK2osFAyKps5CwaDe84mAekLbMZU4s9RUVEIpcKOIUAqEgIyhEZOgdrqzxZ9E2479/W07pFTM8vBCmVIxywOzBQ5MxRKhxOck3UoyhkbZ1MkYGl/b7GD5EV/b7PDgfIGcofHgfIFGz6Fn+zSSLNr/u70/D7IsTc/7sN939rtvuW+1V3V39TY9PQ3MYAAMBisJUKBkgCAh0pRNGo6wREE2aRNUSI6wHLJghq0QtVowRQUd5IggRQoEaRIgDAjrDGaf6Zneu2vLrNzveu49++I/vpO3zs2qm5NdXdXd03mfiIo36+Y99yx5z3Pe712e1zRUyqaOaagMXZ9vbnUYuj5FQ0osFA2FOFHQNGnrRYU4SakX5T7DGCxNI4ylzv7Rv3NNk8WqtLs9j84oYLcn99m1AzbbI7p2QBxH7PVc4jiaKHHODz4BsAx1PNTcDxL6jnyw3hMLjO8rhaxZhnS2LGOiBPPSQpWPn29yaaF63zbThh1NG1y0Ui9yrlUaq+Kea5SoF/Vxr8yDPuth8H4NaDmOR3kOeXz3P7pOQF42V4iU222Hc1kTS61ostoqUiuaXF+ts9Io0igabPecMQkjBOtzJeol6TkcjHw0VeFg5EvvPIzRlUlPxwviiRilrgrcIEZXBZauYSiyTvrm4YidnsvNwxE/9kx9HAtNidi3fa4uyuO80Rkx8CJudEYsVw1udlWWqwbbvREHto9b1yjpCko2kxWAJOsLSmT4A+DwmDLbuQrcsqUFaGRhnIYCRw2/fjo5ntDKmpms7FuzUYQ7jrTlksY7BxEb8xr73YjDCOY0qEaT1Tp/qfSrvOHFXCupPKUolAyTVFEomQa6Lq0Qkn6FgG07wAulBdi2PeI4Ydv2eH6txVzFp1Uq8q3tHkGSstnzWSgbIFIaWThkFEkSGkWwVNCYK5lUChrf2Owx8iPePnR4diNi5EcEmaTrx85VGAQxHztX4YWNBl034qWNBocjOVz8cBTghxGOH49FyJ5aKPPWgcNTC2VMXWWr6/Gx5SrlkkmpYHF5vsRme8TNrsfyWL5bZPqXgm9sDjgY+Hxjc8Bqo8A7HYfVRoHFqsUwTLi6WMHSdWolWd4L4Icxthfih/FEOeZKo4JQdZarFssdj82+y3JNfqcaZZP1ZolG2WTX9nHDmF3b56m1Ji9dmKOgq/d5zhOVPEN/vAoN4piSpRLE97sD+WKIvOrsSV79NM/6JJG1/M95yYf3WvHzXuUbHkV46HGtNM6Ox3+3y819m9fvyiTglYUy55olriyU2WoP+b0399hqDyc8CNsLCOMYO5NfyHswfS9CEQp9b/JJXCvoFIx7IaW9vo8bRez1fWw3IogSbDdiq+vSsaVC4dFN4fgRXpgQpwleFk+pKArtoU9FUWiUTVolg0bZZHsQSmIchJiagoZMLgJkhUuo4h5JWxosZs7KogG6JkcA6kfbZEXvqi41YkDa/MPTyf5zZGtlHUtI+/xqnWZZ5fnVOv9Mk17+P9N+Xnr4pvTwAYZZydEwjNlsu3Qdn822y9v7A/pOzNv7A5rlEjVL0CyXcAMPPwY3kJ6nghwmrqBQLug0Swblgk5RFbierNpqVSwuNMu0sjLLz1xq0iwZfOZSk/PNEkVT5XyzxFrNQlES1moWUZKiaypRVob74sVFPvPEIi9eXEQzNJ7faKAZGm3b5Uu32rRtlzjrVD2qFNr3YzZaJfb9GC8VnG+V8FLBlYUqG60SVxaqVC2dhYo1VnytFQ3WW0VqRYNmSWXkxTRLKj0vQlMEPS/i+mqdJ1eqXF+tc2D7HPR9Dmz5RDcNhWpBwzQUWYaZlWPmv4fX1+t85toS19fr8npcW+QzTyzwmWuLtEoWjZIhbc6rzXvO9yH3ZN5olKhaOhuN0n2rhLbt8a27Pdq2NyFpfhLyx5D3do83Ux7hJI/YVBX6WU7iYXDSeNP3Y3t4fCuNj7THn8d232fghWxnky/yHbb/81t7vLU3wvYC/kLrXlyzYuroikrFlDfpUq2AnyQs1Qq4QYQdxJxrlrixb/NOe8ilVpmCoY2/4HNVi0ZZp1EyaJR1DvouNw+HLJZ1ri2V6Dgh15ZK/MGbe3xts88L6zXe2Rtw61BONwLYGXmkibR3Ow53+9JWDbgZQtUAJzpSTpeMb+mZh66DLuDAg4YFnSOvX4DtJIRIC5D11TDyJ1Um8zAV8BJpAaIoJUmlfW13iO3HvLY7nIjj/9LFf8kXbvX55Pka/wWwXC7QHrkslwtY2Q1pqQqHfoAfg+MH/MnrS/SDhB+60uJ330zZdxyaRekhP7/RYBCmPL/RIAh9Njsu1xcLxEKhZBjEQmGxavHy9pDFoxjvkXKkrrFjO6Qx7AxdSqZOq1SgZOpcXawQJoKrWSOR7UYESYztRsxXrXE/x+22K6tl2i7XlsoUNY2FTD7hxdUaAzfkxdUab+wO2ew4rFetSbmQY+GhtbrFru2yVrfY6qVcWapQsgwplZzloPKrDMtQqJd0LENuv9EsE6bSxnHMOwc2zy5XuHkw4JWdIUkUc2G+OiFJ0qpYPKMqNIoGL13QWKxbnGtMeuJFU5uIkec9z7yXn7+P9o+tEr5xp8etzogwSLgwXxrr8Z/kCU8TYzs+qetBx3X8s6aJKp6ER1kq+ihKTR9Xs9lHmvjzCcePbTRwQ2lhssa4ZhgkiU3NMCZEowqGRrOij5tl8l7L9bXGuPHk63fa42YwN4gmOne/58I8S/Ui5xol/sGXbwECO4wp6AbVokZBN/jW3UM2uw6Ngspu32foR+xmDyhdqIRpjC5UtjoObhCy1XGoV8ss+UPq1TL7dzsEyGYegIpVwBq5VKwC/cADUnwhSLKqjiTNZmSQk/89Zh+EZhUGvXtNTk4gG8ScIOLvOH+Gaih/n6/WudX2COOEW23pBS7PldiyQ5bnSsShJMRqUafkWxgDj1LB4ou3uxwMXL54u8uluSJ3BgGX5iRpzVUKrDUKzFUKfOVWG9KUtw886qYCiqBuKoSJ4MJckTCRJ/n2To+v3e5higRD0zgcBXheIvM0qQCRcn2tyUqzPL5JTUOhVjQwDWWin8NQU0ZehKGmhElKwVTGzXqtWpEfvLpIq2KiHIxoFA0UdXKgiKllHnq20trqeQzcmK2eR8XU0BWFiqnR1wQlU8PUxHiA+FLF4MpCVUo1Z01S+Qqdt9seIz/ibs8jTsD2Qnb7ASvNSQI83nx41Pk6TT/quEChuVjDMrSx1PjRfXR8mla9qBIfpNSL6sT9dtKo0XyIKS/GNnKDcUVcHieRa7765yRMa7J8r9INH+YO4Q/nUT0iWEgis4DvvTSPZmi8mAlB5euS1xpFdocea40i+7bHvu1RtVQqpkbHDlmpSHrMl67JKnOJa7kb4eWtDmESY/uShPMxx+dXG0RJyvOrDd7c6/P2/oiqoRIEIft9h2BOrhCKPY1GOQsFFHSqpkGtoFMpGSg9j0rJ4DNXWoSJ4DNXmnzzdgeArH+LuarG5kDanc2UGHDcdGLaU6Uk4/9ZNISWAXuBtAjY82HRlKuG20M4V4aFYoG247JQzMS+srCuF09W6/zZ6j/mndDnUtXkicUiu7bPE4uSuJUETF1FScDQFdIUCrrCYsVgdxCwWDF4ZWdAz4M3920sXUMVgk62MycMCGNpN5omr+7abDRNtrsemiLn1j65WGLHdnlyUd7wO0OPURCzM/R4Zq3FRrNAtWzSFAZ3+zErjeKEp1k0NdbrRfZsn/V6ceK70qgUubKY0KgUASUTHs4EwnIjOBerJjfaIxar5sSUqvmKwcKwMBZZ6zse290hi2WNc60WV5agWbY4sH0qBQ1T1yYGiPfdEC9zPtaBL9065JXtIUkckyIT2m3H49mVOnf6Izaa1n0EmK/QeWd/wM1DhwtzRbwg5tvbNk+vVGiWrYkyyeMklpdJGEs25L7rAMuNEi9pGgsVE4GgWTYpGjojNxiXSQMTHnv+4ZHfpx3GLFYL2OFkLuH4cR2fhX0ajz9P9melIewjTfx5L/b4Fyc/6UqosNIoIlRYKFkMvJiFisXACyfkF4qGPv7y5sM7Fxcq4xshiVN2By4Xs2aZ/Bfx3FyJYRRzbq7Em/sDSRdCsGcHRHHKnh3wxGKNHTviicUaAHd7Dps9h/WeSUFVMVRBQVUZuiF9x2fohrQKggMvpVWQHu6dA5tDV1qhZuFYNZvTGkHBlN6QRjKOfy7WdQaHIYt1HRWBfRCwUjNoVgv0N/tcXqqRpCmKcClm+Ytf87OafB8GBlQt6eWvNSy2+j5rDYtK9mCtZOWtK80id/o+K80iX73VZuCHbPZcri1WuNMLWa0Xsf0Y2x+x0SxRMlSZ9DVkR22jWKBW9GgUC2y3PQxdZeAkaLpOydDQdJ22G6IJQTtbAS2VLTYLIUtli2eWKmz3PZ5ZqhCksG9HXFqo8ubegLs9Fz+Imata3O25DNyIuz2XIE7HPRvPrdYIk4TnVmvsDZyJ4T75EEgYy0qYMOaYTo3IyunlNrWixWqrRK1oTdSwb3eHGEKlYqnMlQxudUbMlQze3h/y5n4fQ4Gn1xsEYcrQDwnClCuLZdqjkPPN0oTS5k7f4W7HxVAEc1VrokLnzV17rP4axQmjIGSn72EZas7JmcRJoc08jjdAHp3b/++VnXGF3Y9cX54g2uMPjyMcX01Mw8OQeP59H2Yv/VHiI32GXs5WdHViqXinM+TNnQG6gNVagQPb49pcaSKOb6hifMMBE57b650hb2QNYI2yOf6ydZwAVVHoZMvYfIPJGzt9vr09IIkSriyUGfgRVxbK3DkYIISgZqm4SYSlSQvwjdsdbh84FIWsKfeihIEX8uvf2uFWxycIQ8qlIk1vRDmTenyjx9heLMsKn4KA8KhmU5HxzxjG3pChqChKiKGosgrFjqhVCqSkWJpcqg+cmDiBQSY3UDVA8aT91R/6Er/56iE//tQc6u0e9ZKJqurc7ThsdocsFCWBFHSBKhQKusANQpIY3CBEVTVKhoqqanz2iSVMo8v3XWygq4ItO+LprElKU1L8KEZTUgae7BwdeAE/+vQShqbyyYt19gYhHSegM5TE/4kLCziJ4BMX5tkbhZQMjb1RiK4oBEnC0IupF4xxLwVAz/G423VZLMumvH3bpWopbLTKnG+VUVTlvuE++ZXfN7c641BRnrTe2rMpmipZAzlXFsoEifw+5ElHVdXxsJJ8NVk+BAXwzFoNRVW5vlwGBDXLxNI19voeX7rV5gcvzdNzQl7f66MpgmfWJwn5dntIraRj6oJWQeeV3ZDFsj7h5BxHXufKMtRxCOek2H3+3JZrFu1RyHLNOjXRHh/QMm0/D0PiZ4Xs8zgzVT2bPQfbj9jsZSnL3OjCWx2HJIVbHWdiedgehahCoZ3Vg+c9N9uJ2O252E40UT1wYa7MSr0w7hA+UuvsDD1e3e7wpXcOeXW7gxfGDNwQL4xZn6txdanK+lyNJEhxgpAkkKuMnb7DKJTWjxPSVJL1XsdnFMFex2ehrBGnsFCWX958Tb6X3rPFrPqnqMlh1kbu3aqqZJOdFBZKGqahslDSUFLpySop/Jfdn+aPw5/nv+z+NJDJJ6vSVooWz6zVqRQtzrUsWkWDcy0LJxLoqoYTyf0cDiMSUg6HEddXG8xXTa6vNjB1UBSBqcNaq8L11RprrQr7to9Cwn5WxfLWns3hwOetPZtzc0Vqps65uSKGouDFMYaicK5VYLFc4FxLhqSaFZOXzrdoVkz5vki+r+t4DJyAriM93FZRygsDWLpO2VKlOqqpo2sKFVOfkPdea8jZsEfDSvK4ulDlXLPE1YXqhBx3URccjjyKurwe+dDNxPaLVS4ulLm6WMVQZMe2oSis14tUslAUwFKtyFLdYqkmV0p+nGD7MQdOQMnQOHAC/DDE9iL88P6KmufWmrx4rslza82JBq7leoELcyWW6/Lc8tUz+UqeekH2qOSlHLq52P2DqlouzFd4dqPGhfnKfceTR36f+Z9PqpY5K7LK7xVn5uocDnze2B5QzxK1+dGFCI2bhw7NkjERD43ikJ2ey0pVej15YbXXUjA1jSidrB443iGcV+vcG3iMwoi9gccfv3PINzb7iCTh+Y06li4bkV67GzDwI7pZA1izbNJ2fZplE1WkpDGoIkVoICIQGrxzaOP60gJslOD2SNpyQeNgFNEoaFQtkx1nRLNUoGik7NkOFzNyPHQcwljaVrlAkqQMfbjbd7A9aauAYt2ryf9/Xv0tvrY14IW1Kj/XLDDyY843CyxXLHTD4MX1Jq1SlyBN+aFrsnMzCn32bY9ozuD7rq1RLRd5ZqXG7UObesmkYpl0hy6vbg9YrRrouoqh6ejZ9HJNVfCjbAaBqbHQsCiYOp+/3aXnRHz+dpefemaFiwtl6pkSZH4AThzHtAomrbJO3wkI4hQVBS+IaTs+y8HRLFsFP5T69gVDo1kyKBjahDzH7cMRr+/0KWsq63PliU7VxWphYvDPEXaGAVXLYGcY8BxM5JTycgN55Pd/PGSZH1y+UDEZeBELFZNWUcMJI15Yq7HVd6lYGkZ2DY+HQ47ClMeHpecxWdVzr5KnnwuZLtUKE7mE/L102th7/n35JDTwwHnVJ20/I//pODNXJkxiTE0lTOQNk1+mz1dNXlJVFirmRDzU9hJZ0ufJL2i+LO9c0+RwKDsj80Js37zb5daBbGe/ulInDEK+vtlloahR0lWSNKWkq+z0HHZsj6WeTq1ocLfrcPPQ5GAYMvIjDrIwxUazwPbAZ6NZYBRAuRBSMA1alsOBBy0LnFAmNTNdN4Qq5RaECufmqxy6Pc7NVxk6vtSVV6HrpuiatACmZqApAaZm0HVkyWLXcfk7wz8j4/jD+8cgLlYtmiWXxapFrWBg6IJawSAwUs63KtRLBgvVEhsth4WqJIO2m6IrCm035aULrXEp4d3OkCCO0RTBV2522O6N+MpNhX/r0xcxDY1PX5APjssLFbxY2hv7Pfb7Hs6cyQsrNXb7Hi+sVO8j8fyYTduLCJIE24soFjQ2miWKBSnJnR+LOQojGmWTURhNxMTzcfjff2uP7ijkrUObT7NIzTI4HAXULIOd7oiv3u7z8XO1CZXJi80inZE/zgHJXJLMKeUrWoDxzzVLH+/fiMVEyFJTUtxAhr7yYUo/Tvjx6yYFXSVIYN8OWahkDVy5cMhxrZujUsl39uyJ1/PbbAfOOLxzpzPizR0bXQgaZXOC0PNd7PnSzGlKm0VTmyD744JtDxJvO46PmrTC48JH+srktXrONUscjkLOZVosVxYrGOP4673KhDtth+2+R9nUOBx63NgbsZSNn8tXQzRKBc7PJTRKhQmvq2QYqKq0AH9w45DNtsMf3DiUXqohJ2VFaUwUpURpzJfeOeCV7SFKElHQFUSaYiiSgLwwRRMaXpiyWjZ4ZTdhtazz1r6CKRJGicJ61aLjOKxlJTq6qqEQoasavYHH0E/oDTxGSUoqoB8kWJnqmZ7Zi60iB6OQi60id3sjwkhO/8pX63ztz74+JrNl4PJSlUGUcnmpym98a5sv3u5y2HO5MF/ij97qoBLzxRuHvLkzxBQpP/XCOheaBW52PS40C3SGHm/sDqjoKrYXoSCwvYiCAUmqUDDk5KX1emks9fvMWgNFk+Jhv/fGPn0/ZLMb8NSawVOrNXTDYKvrcHN/SN3U+ATw9Ttd7nQdgiCWU8pECkLh6nyB/aHP1fkyzbI1Iaf95FKVURhLm5MuZtxxKzt1dwceTy1IsswT72u7A0ZRxK4dTJCboirjHAHc3916lAvIP6xaFWsck39tt3+sukWQihQQE550nlzdIJqQF88jX2aZX3Ec18DJx8HzOYLN9ohKQb/XZJTzxPPEPS3RevzBk9/muGDbOPE9RboZpss3zx4Ck/hIX41owh4Vr8svcj5Z9K3NztjLr5gqpi6tGyWUCxpulolLkXXfKSlFQx8v+bsjdxwSGo1cvrXV42JNflmTKGHPdrkyVyAFRn5KnEIUQJwkRAHsDhzcUNpnVhsYmkY56+yM4gQ/iojihLc6Lkma8lbH5XzNoD3yOF8zuLraxE0VnswSoAVVFhkW1JTbfQc3gtt9h/migR+CiGNalSKq6tDKqm0UTcXSDRRN5b/u/SxVI1eTb0j79dtdvny7i0LC9z+xTJyktO2AOEn56q1D3twdoqXxOAH92o6NoaoIAUamc9+oFrg8H9KoFvjnL9/l5bsDdrsOc2UDS1UzTZ6YkukwV7E4tH22+y4VU25/69Dm9bsDSprAUFKUFAwlndBB6owCeiNpAQqGQmcYcG2xzFKtQJSkrDcLDL2YuZKFE6aUjs1kzk9o+9pWn4OBz9e2+pQKxph0hlFCs2wyzL4f+T6PpYrO3a7GUkU/0YvNo2hq47DLzYMBuz2PVkGGl45KTY9Xt+RXKvkyyTzBHq+uyXvF+d8dH2ie3yaPtu2NpcsvL1Twk5TLC/fH6/PEPU1W+fgDJi93fjzpevTzd7qGsyEt3xln5mrcbnvs9T1utw2+H3hzuze+SfLkoinQH4Z4YcTzK1U6TsDzK9KryH/h4jjmTmfIQknH9lOCOMH2U/7RV7d4uz0i8AJ+9lOXORzKyV+HQ5eO7XMwcHhrB4Qiwz5hmpJVWaIChwOPoReO2957Ix/Hl9bQNYZ+QpokLLXKzI9SlpplLs4VeKftcnFOLuUDIYeKBEIhimISIIrkTAKEtIdOKLV8sviQ50Z4YYDnRhNe/l9Z+//yza0Bz61VKe31udMe0bSkt3qzPSJOEm62R9mwcCCFtarJa3s2a1WTaqmKHSe8kA0OMRSFIJHJ1TCK8cOYMIpZa5V5IRGstUrcOBxhqBoDLyGOE/Ztl8st6Wm/tjfgbs+haAleuDAPmsEL6zWqlj7WQRI1kVWNyOuhKQoLNQtNUViuFcddrK+NOuMHthdo49UcwL7tstf3qBgqa3WLzbbDWt2a+A4cH/Q9IVGc09TZ7bp8ZbPDi+tNnlipTSi55uvom2VrTFS3Oi53+w4lU8X2E946tOmPQj771NJEuWM+f/FH7xzQHga8tmdTKhhTG5GmVb7kc1jH+xryeGV3wIHt8woDnlmtj4evHPfep1XL5PffKBoTD5j8qmWax34a6WY4fQPXWcSZIf44lgnTOJb+/x/dOOTWoYMfxqzXiuwPXC63ZDhoGMTs2gFzJYNG0cQ5GmYLiCwE87nPv8MXbvd481ydJ1ab7PRdNuoF+q6L7UHfzUY8uilRlNB3U+60HXoB3Gk7XFuuY6hKViopST8FDl0pSnaYJXe7viy77PoJC0aKoUAqUoZeQhIlDL2EG4cuPdfnRqbE5rohfmYtHYQnG7EsTWT6PYJGQUdVpQVwo4ggSnGjaCKWbzshXpxiOyHzZZOSqVPMEuRVXWVv4PHCapVnNuSUp2c2GvSDGFVR6Acxiy2NywsVCplo0FZ3yHbHZas2ZKlWIEkF8xWTZ9ca1EpSI+a1ux1IU+bLOm/uD7jTdpgr6vwIqzy5WMUJEp5crGIogtdNhZWqyfbAo+34HNoe3391icVGYewVl00NU1Upm9pEDidMFAqWSpgoE3F8YKKSB2B9TjZy5Ut683ILIB8GqUgRiAlPPD/2s14yxsnQuarF0Itxw5ihF3Np4R4hns8lyw+HAb1RgF+L7tObz69cWwWDm8mQVsGYmlh9kETC0e9Okl/II58Enhb7PwnTPHmYfChMi9eftvzyYSQbzgrODPEXTYONZpGiKb2E+YLOa2HEfEFnx3Zxw5gd26VuqfTdAEtN2es7vLljSzkAZL15dxjiVkK+utlnZ+Dx1c0+G/NVoijFCSKaRYvtoUOzKG8WJQ0Z+TFKGo5HHwYJ7A9suk7C/sBG06RCo6YJRm6In4JzJL+gyduooqV4fowfgufHjIQrE8GuyzYpe32X7ZIkqSTT0EoEVC0N3Y4oWxpV00BVQqqmwWqrwJ4TsZpV9fzNvZ+mmsJgD36az7HvwYIFTT8gjMD2A55fb7DvRjyfdVzaQcJCxcIOEs63itzoOJxvFfmDN/d5bXtASU15ZrWB60eYylGoZkTH8bl1OAKhYeiwOwgnwhxemJBAJliXMvQihlnn7scvzHNxsUajaPCrX7qFHyW8ujekZKhYukoYpxO5A0laaSa9nPLKVo8v3e7heHUuLZQxFZWKqUx05wIT5Z0HtkcYJdh+SNhNx0NzTEOdiLfnHx61gj7OGXRsn54bUNTUiRp4gFZJ52YnoVWarJe/MF9F0aQnbxkOYQJrzSIvb/V4c3849v7zqJeMcVI9H3bKJ1aPJ1ALhjb+nRtEYz2dkxqm1nNa/XlxtOPX8GFwH6l/wFo5H1WcGeJ/br1OSMpzmUKhoinMl00UTaGlWTRKHq2SheNF1As6fiiIUoGpK0SZsM3BMGR/6LIwNFmpGWzbHis1g97QZbM75ELDII4joojxymLH9okTaf2so8z3YDONCYHNQYwppMZ9dxiPhQ+Php10Ham133ViIMZLoTMM6PkQJ3Cr73JOKDhBzDAjk4ImxZQLmsKBLfV0DuyI/ihiGMGt9ohnNxp4UYyVxd6ryKH0VaCgA560lq6iqxGWruKECRVDx8kOrllU6bsRzaLKZkeqi252XPaGPl4UsTf0eWevz+s7Ng1D5dNPLDJXNil2PebK8hre6Wqs1CY1krZ7Lr1RwHbP5cJckTRNKd7fR8R8yeTV3QHzJZPnNhpUSybXl6r8y1e2eWt3xNALubpS527X5e2DAXVLZbvn0B35bPccnl5rUC8aFAx9ogJlrjoZ0lmoFLCDeFwVs68GVC2dpVqBPDmaqsLAC1mvFyYqwLZ6IzrDiK3eiO+9PD9u8gJ4+8DmbsehbklphqNQSX6a1aWFKs2yVM98e/cudzsjFrMHxbQS0HzY6fhIxO7Q5429AbqosrJWnEgCL1Tv9TJMw2ZuPKmiKhO6O3kPe9o0rIdJuj7MNmexMeu0ODNXJYhTivq9Wbh+mDDwYvww4eJcgZsdjdWaiW1qbA0clmoWuwOHvhuOK2BIE5kgThOuLFY5dKS93fVwwoTbXY+2n5Ck0Pbll3/oRbiJtN1sBdxNoZH1nqQBtDOSb7tQM2TIJ5N4Z+Des0f3oxeAEsqBWp4DTikhSRgTckqKntn84PV+9uA5cOAvfPUH+LeBwVeBP9WfCO8UDRWTmKKh8tRKnWFk89RKhTCJGfnJuCT2btcljCLudl0sXWHoRURxRLNkoB26NEsGbx4MudtzebMov2oX5qtsDQIuzFe5vFCj58dcXqhxpz0aTzQrGXIyWcnQQGi0SpZsWGBSYEyockKZOMZTCyWTO4bDQlbHf6c94ubhiIWiwYW5Cl035sJcJTdExMINojEZsig/5yisl6+8AcY/H1ewzFd3Vax7OQPXj4mTGNePJ6p1AEZBgh9J2xl6vLU/wFTg+lpjojrlKN5eK+lSxjkj/i/dbPOt7T7PrNS4ulQZE3d+LsTxkIftR4RRip01Rh19dj7R+407nQkJizzyMf4XN5oTOvt5D3vaNKzTllzmcwaWoc4StY8QZ+YK3umMeGtvgKFKjRNDV6gUVAxd4VbXJUngVtfl+kqNl7Q5Fiomv/PaNtt9j1fv9gDoDX1e3e2zVjHQNUV6w5qC6/ns9V3OV3WKQhJ/UWSVHkMm7BG6yT2bX4geNSMe2WoBBo60UQJEoGmQDVNiECI7iDMLoCspUWbP11V6BzHn6yp3ujF+BGUt8/A9qa8D8Ffmfo13DlwuzRcoxSm6JktSn16psz0KeXqljqop1CyHRlGSVtcJ6bkhXSdkpW7J0a5CsNEq0B7FbLQKdAY+nZFPGMod3W4PuHPocLs+YKVZIIgT+n7Azb0+X73do6gmXJovs+9EXJovU7I0Xt1LWarKq5QvqRXZSkykgt96ZYevb/XYbo/41z62zvp8eewFe1FMFKd4Ucz3X1tkY0H+7ltbXfwoZuiF8iGZhXNgsoJrGo57tGVLpaCrsuM3F/Z5eq2G7Sc8vVabKC1dnytzdb7E/tDj6ryU6fbDhOExQs4T6HF1zs7Iozfy6Yw8VuqLY+L+2s02t9o2c0X9vsaqfO/Ay1sd3j4Y0R/5fO+lhfG55ceBHkc+xj/xUDmWEJ4WLjptCCa/almuF2Zhm0eIx0b8Qoh14P8DLCGHOP1KmqZ/SwjRBH4VOA/cAv5Mmqbdx3UcR5BDsA0sPatgqBTGTS39kU/X8XlyoTwRp3SCBDeIcLLg/O+9tc9b20NMUkwF3tzr0bIEW/2AOIGtfoAiVBSRkGZu6BFtnJTu0pFCcjpyYMooN+Uqi8SgqnA08yVK5Hu9bJu7mQrFke268oJ3XbCMGBXohTH/XPt5qhEMNBikmYefymasparJna7HUtUkDFIKA59WyeSdgyG9Ucg7B0MEMd/Y7pANMeP8fJm9Ucj5+bKcRqapxAieXmrQcRKeXmrwG/s76KrA8eQVeHNnyCgIeXNnyLlmmVe2+jQMlXcOHXpOwDuHDj/6dIOLTsR8vcRub4QqFAbZyefzLBVLlSJplspXb8mQyUJJncgXACxWLJpFl8XKpOcaxTH7A5dLrQLL9dJEOCefqM17qG4QjVccfS+c8GjzFUNuEI3DPhcWqpQKJgsVk+7QH+vUAERC8MRSjUgI5iomth8zVzEnyD7yQ75085DPXp4jsIxxAhZk+WOUcF/5Y9uVmlFtN2C3745F5uaq1sQKZt/2SVKpMDrR0ZsbB3oc+Rj/4cAbP1SOe/jTBNdOi7xe0Cxs82jxOK9kBPzVNE2/JoSoAF8VQvwW8G8Bv52m6S8LIX4J+CXgrz/G4wBATWX55ZPz8sa2dIVWyZAhClVhoVJAVZWJARaGkuAEEYYiid/zY/woxvNjvn044NCBr252Wa6aJBEU9ZSDgUzO2l44vgh5+yCMcracdZ1p2V+mM7xnMzl9vIAHVDDnPs+5Z4+maPWGUNXulWl+JvkcB8B8Al8GSrqGrquUdA1hCmo9g0bF4NWtLu/sORTSmL2Rw+0e/E60y38APLlcpedFPLlc5c3dHnGSUDYEQZpiagpBmjJfM7G6DvM1SSAbzSJ3Bj4bzSK32iO6TsCt9oi6Kaub6qZMthqaoGIqvGp77PRGnMv6Iu52Pd45tKlbGgM34PUdm6alk8QwCiKS+P6moPW5Ch6wPleZSI7mp6h9LNd8BZOJ2nyFzGv7Np+/1eZT51tcW65NhG3yBOsnyVjXKV8Tv1Ivjuc4wKTqpBtEGLo3To4effYf7A4wVJV3ui6KqvD23hBTSbm0WKHvykldfXfyG/bCegNTl41um12HMI4ZZN/J/Gri2bU6tZI+lkGeVmY5DXmP/2EUNE8i83zZ5rRZAfmfZw+G0+OxXak0TXeAnexnWwjxGrAK/DTwmextfxf4Xd4H4v/DG23uHLr8od7mB6+v8uZOn99+85AfvjrHQtXCCyM0BW4futztOpR1lYNhjKkpHAxlTPvSQpmdUcClhTKvbA9IAT8AS1VRdWnzlTtw/zDz74RMlHNsjypJo/TeH0sg4/vkbB5uzv5+3svnXhxfUeXGWbEN+0Mp57A/9Lm6WMXSNWoFg74fEabQ9yNG8i3jaV3toQzztIchnVFEHCfSJg43DofMFw0WahZrjRILmYdbMAXNokHBFFQLOoaqUi/qNMtFnvBT1uZrBElKwdQIkpQIgapoRNkV3O05bHc9VstSrvpu1+ON4gDbDXD8hPYDmoLyZZevbA/Y6o5YLBucaxYZ+gnnmsWJKpi5qkUSJ9xqD5kr6hPOwOv7fXa7Hq8X+5xfqEw0fQ28cEyw643imLjz3mo+MVo0yxNe8RfeOhjnCDbmSuP6+BfXG3wF2XPSHoUUDJUoGzJT0lU0RVDSJxMdea8cmOhKPl4ZlFe9fLc43hNwGg//tKGeac1YwAN/fpyJ4o8a3pezFkKcBz4GfBFYzB4KpGm6I4RYmLLNLwC/ALCxsfGej8HxfLZ7I8415Cl/Y6tLexjyja0u33tpniBOGPgRSzVrnNxdaxi82R6y1pBfUE0DU1XRNMjyfigptEc+YSCtnXnbR7akyQEpR/ZBUJGEqgL97D1HNr9iONIidIBaNgaxmNk8TOQDwSSL5Qtpr3ufk2/wYDlzyo6If7VR5GbbZ7VRZMd26Q5ddmyTqikQKVRNQRirdN2YaqbR/vZen5sHDi1L5dB22bM9Dm2DNE0YeTE9Rw4+Wa4FLFUl6SSplEJOUoWNZoWdYchGs8Jqo4gdhFxbrGDqCoaqUDV1WiUNQxO0Str4ggtSUFIWKwZlS2OxYiCSlEZJo2rqE6QNTKismpr8XFNTJkom85OkgIn5tbYbjpupVmtldgchq7XyRHUMi7DeKI4Jtu+G+FE8HphyhC/cOOSt/SEDJ5ggZoChJ4UEmwUVU62MVxmNVplSIRsFyHCi/PPKUhWhqlyeL031ihVVGT9EJBIUIYd15vMUPTd4YJnn8elcjh+Nt3kY4jxt2ObEMYjTfj4FZno+7wPxCyHKwD8G/r00TQdCnM73TdP0V4BfAXjxxRdP7gg5BQxVp1UxMDLt9O8518KP23zPuRZBkGC7IUGQsLRUGCd37SBCSQV2pg54s+2yN3C52TZkJUkohdCKBR0hYooFnSHZMPFsv8UCYN+zD4KGJP78H+NBV8lChoMsoFaCjn3P5vFb1s9T9eSA8wFQNaUtCxim0hZ1BZWEoi7JoD/0GAYh/aHHdt9j4MXcPRyhqSqGDqlQ+cy1Of74dpfvPSfr+B0/ZhSEOH6MIlRKpoYiVAqGhqZIVcmKpaHrgkqWtIiTGFJp52om15arzNVMTF1QL0hbMDQaBSmH4QQpSZriZDLVCgphnKCg8NRKjZ6f8NRKk+fWUhJN5UevzU+Q9tWV+gShzlcMFqoW85XJWvcJPR4mE5iv7/SIw5S6pfLEcp2CpY1DKHlhtzzB5jt/DweFMVHqisALk3HSNL8CcMOUZsXADdOJEMpurtTVT5KJ3oF8vD5PaN2hPzEoKE+O+QRxPi5ft4x7IyKPdb3mP3t34I63WaoW3hOJnuR9nzQGcdrPp8Gsvv8xE78QQkeS/t9P0/SfZC/vCSGWM29/Gdh/nMdwhBfO1xlGKS+crwPw3LkWmqlzfanKr3/9Nm9uD1kq63z/tcVxcnevF9JzA/Z6MqBytz1g4CTcbQ9olBS6XkKjpJBEEWkKSXS/Sz90J+0R8gJyWeQEH7hYgxt9WJUDuKgbcBBIm8QwisFSoZ0lBtqjydnCMDkG8a+f/5d8ecvmE2sVzrUHvHMQc25OpWwa7I9c5rLk3RsHQ4ZuwhsHQ5oFA0WAripUCwaG5lErGPzsS+e5sFwbj8yzDEHZULEMwfm5Mrd6Lk8ul4lTQb1kUjZ1dm0fJ0jYzfT0y6ZF2XIpm9bEeMO3D0bjHomN5r2ifScIiZMEJ5B/g63OkAPbZ6sz5PJShaVaAUWFcsnih59colzUsfyQr3dHXM2a03pehKYp9LyIiws1Li8KmmVrIiT0yp6NFyS8smfz3Pm5iYHk4da9aVp5cs/LJcAkoSxUCgy8hIVKYbIqZ7GKUKSHDpOlkeeaBTb7DueahYnPun04fGAICSbj9fltbh3aE41ieeTP4fiow6OYetcJJkpAJ2buqsrENu+WRKfNuD1pqMrDfPZZ9eZPg8dZ1SOA/w54LU3T/zT3q18H/iLwy5n9p4/rGPKwdI2KoY2reja7zrgDc6sbEJKy1Q0mPC1LT9EUBUuXHl3fjfEy+4lzTQ69Pk8s1vj8jQ4ecLf/AOKP7tkCMu5eQIZ1hkjvPV/puVAu0nYdFsqZCuSRCGMMtZpGvxNRq2lsdeQHewn8nvh52XUrACZr8hfrRVbskMV6kQvzRfy0zWefaPHGjg241DIxOE3EhKm0F+erHPopF+erGDrc6vmsNKz7lCUNVcGLEgxVYRSk1Ao6oyBlpW5RsTSaJZOElCCMUIW8hgtVg5plsFA1JrTlLV2hXjCxdGVC875VMjE1aY8uh6ooxMgHk+PH6KoyoTPzhf0BSQq3+y7fA5xvlhh6Ceebpft0Xo4SmJcaDrfbIy5lQ1XyhGQZCvWSjmUo95FRvnooH8LIK3Uer923jHvzGvIri/2RP67wyX9W/gHTd8OJqp78Q+Xj51rjbfLTwI6T67RzOKlrNv+747H8o9dPKw1x2vGID1PJc5owzizU83g9/u8D/gLwLSHEN7LX/n0k4f9DIcRfAu4AP/sYj2GMP36nzdc2BwgSfvSZNVmn7MXoiuBTV1pEwKeutCYUDltlC9PwaJWPkl+MbaIpNIsGiaawn9XUH9k8kpw9+jnkXuzeP/Z+oQipd5aFAroZ8XdjeLKqcziIWKvqBH7E1ggWSlCNs5r8rPLuZ9XPsQssqfBDgU/HCQgCn4En0BXBrh3Q91JKhko/K7M0NJOC7mFoJs9uNPFSeHajyVduHhBkWjK3chUtlxer9P2YgqbS92NaGthuQpyG+JGJGyT4UUIQxxwMA0ZZ4jBBSkEngJamvL7b59MXWqzVC+zaHmv1woRCY6NicW2pSiMrxfzkxQWCVPDJi/OoisJqo4CqKBM6M7qQDUx6VlJ7fa0xrqSZphOjmTovXZhDy7R58oT07FqTWsm8r1rlla0u394d8PRSlU9cmp/4Xd6ByHvYuwN3XO2zPleeWFkUDI0jT/pBmjzAfbmIaZU0+W3yJZdH53x03sd1998tTvLep/0uP7/iJDG4h8FpVgnvV6jnw7z6eJxVPX/I9GKWH35c+52GzfaQ7d6QhWKW4DrSRhCC59eb6LqM2/7zb27x1c0e/aGPnySYmoqfSMrOGlalDSM6QxfC++uc81By9mjRHQEV5APAYrIyZ+B6eIG0IMM3UWZ3ui6DSNp/FGeDzuP7B6Q8uVTF3hrw5FKVb+849J2Ab+84XFgo4SdSFvr6coGtgcv1ZenhLtYsNvsBizWL1YbFxqDEasPi99+OQAEnjiYqWn6EVa4tlLnVcbm2UMaLoVbyKVsF3t7rc7vtsFBUidKUvhNw40AmImw3oDcMsd2A2x2XNIHbHZdWxRjPlS0VjDFpPrdaJ0xSnlutA/Dkap16xWK5amGoYpxM9eNkTIhzZZ1W2WCuLEn8NJ7jcQI9vs2RV5wnsO2+y9CP2O67933etGTkyA0mBqkcj2MfkfVXb7fHnvzRfhtF4z49nHzPQp5o8tLJQZxOHYh+vALqCCd5xach9OOfkb8er+327w2fH/kTtf/TyPK0JHqav/X71RPwYV5ZfLiO5jHC9yOSNMHPPM+7nRHvHAxoWCo39m2+eKtDf+hzt+twMJC2ZGikaSqlAwDDAHxp32n7eJG0TQU6CWObx2IZNofStoeyIqeI7MS1XWl9916M3o9SOQQ9q+Ms6nKyVlGHm335mTf7suP2KI7/r1uf4y0Prljwr4BKwaRVMqkUTPZs+SCJ44i6KQWE66YgFjor9SKxIsnxwnyZnift3e6IO12HparG04s1DocRTy/WSFNoDwOyqA2NapFPXZ6nUS2y1xsRxTGKSPFiIE3wYlgoWxiqOxatK5gmCzWLgmnSKGrcOEhpFLWJ6VXHh4jkw0v5UE3XCcae9EpuWMkbu/1xldZxTKtOOanZKC8TUS8YY+/5hY0mpvHgUYV55Inm+OjEad5n/kF0XFQtH3vP9ywA45+/fqvDG/s2w1HI8+cbE+SeX03kZRpOqqI5TagmT+jrc+Wp8s/3r1Lu/TyNLD/MJDoNH+Yk8nfHFXwEuLJWpx8LrqzJrGln5NN3Ijojny/fOOQbd21c1+dcq0AYy0YkQ5PkWM0UPc83TPq7PucbJn4cEkagpiEXFiycfY8LCxberjcmd4BG2aLrezTKFp2h9OIF92rhR75M3O5nCdwokTLMUbbKMDQglPYPwp8fe/b5ap1auUjVdahleYGlusW87bNUt9gbeBTNUM6ydbNOVDflwryBockmNoDvu7yAZRp8fL3O776+z60Dm4alstEq0ihalAoGd9oyydgZyoPPNwl97m6fIErojiIuz5fYswMuz5dYa5VJFYWnspkGP/bUIs2KwYvrDfYHflaeqdynh3OEo+Hm1Qfc7NOIpaDLcZYF/X5lt2nVKSfVn+cF2/IhnOO18tP2kyeqfC4CpnufeU++74ZTJ1nlZQ0KhjYm+KKpoGsKRVO5bxBLPi/w5FLtgcd8vIpmGtmfROjTzu34Qzb/8zSy/DCT6DR8mLuNP5xH9Rjwo08somoqn708B0CjZFErujRKFlGqoGsqUapwaId4UcyhHfITzy4wjBOezapYEk2lXJC2XjSwBjb1SoEojNFVMHWFjYbCW92EjYb0UOfLBne6HvNlg03NYxRJEk9zK4ONuSLeocPGXJHbHdkAkA2PYrVu0HYDVusG1QCUGKoq/I2Lv8Hnb3X41PkmF3XBth2OB6f/+NMrlEomn77Qoj/y2XVCzrcKlCwdSxfMlw1aRR1dUWllte5PrjQoFqQe/uffOcTUpY6R7UWoAmwvomSaVIsGJVOSVp74LA1URWBpMF8tstHyma8WeenCHIv1e9r4V1fqXF2pA/Da3uZYViAf683LCMM9sTS4vyv3QTdWvhsVJj3cadUpJ+G+wR+nIKBpRJXPRRzHtEHjK/XiAydZwaS0RD4MdHmhQs+PuLxw/0CUPEGfNtE6jezzOGnV9F5DNR80iX6Y4/UPg+/+Mzgltvsejh+znUlUrjUK9PyQtUaBH7zUoOuF/OClBv/065vsdn1u6wOW6ld4djVlKZuz2rR03kmk3e2PcH3o2i6qohIn4AQxK80yB+6AlaYkxGrJpFW2qJZMjnorVcAqygHm5SJcXiixMwq5vFBi5Hn0vIS5LBfxn3d/hqoOgy4MdJnIHejyfKJI2gvzZTRFIcmSmUGCVCJN4JmNOdxU8MxGC0MXuAk8sVrnTtulUdI5GGU9Cgc23962SaKEp1ZqHI4inlqpEfgRr+3ZLFdM1ppF/DTh+y7JaVr5m+HKcgMvVbiyXMPSFdabJWpF/T4yyG+TXzHkvdBzjdI4nOIGEZ1RwEpFHmfew80j/7nH9/nWnp0JoyV88sr81OqUaThpcMhptznCtJg6THrV+VXGSaSXl5bIS0sfDynlkb8+jh99R0J/FDhpTu6jxHvNEUzDd2Oo6SR895/BKfEHr+/xxa0uo6HHv/6J8zK5mwoQggM3pmRqHLgxTiyTvk4s7rtJLUOlUpC1zl1X6tx33YiykeDHcji564EfgevJcIjr+XRHHq6XNX1FsulrvVrgcOSyXi2gqwo1S0dXFZ7baDGIezy3UQeymvxQevn/16d+i6/esfn4RoVi2wdVUNQ0RoEUNBhljWYvb3b55mafJI5ZrJiomkLZVFmsF+l7CevNMq2Czv7I52Nr8ia81Rmy03coW4LuUI6p3OmNqBctVhpFYiFoOxEqCm1H7id/Mz+zWkNRBdeXqtzY63OrPeTaXOG+Gy5/Ax0PlRyFQPLhlCBJ5OzbLPSVF+7K46QbM6+a+TB4lN7e8bDLtLi6o0YTIxqPcLzaJ/95Oz13/LA4rW7OaXEa4jvpOp00J/dR4nHlCL4bQ00n4cwQf9sLQKjSAv/q5Tv8ztsdPnu5SQz0nQDb8ygbKUkCZSPljZ0+v/PGIZ+9Nscz603SNCUMU9I0nZDd7LrZeEQ3wY19nAi2szj44ShGKCqHo3jC4xeaQqWgIDSFUZDQc0NGQcL/8a0f5T8EBq/DuCZflbF8U5Ey0KaisljTKfekXakVudv3udKSN3kQxThhTBDFfPtun83DEd82dWpFjb4T4AUBsVA5N1cizlYJBVWj6wYU1Brf6vhEScJWx+fJlQbbfZ/leoHdnkeUJOPSzHz8XRhiHML49v4QEHx7f8jllcbEDXe88uMI+RBIzbjXNbrRKGH7MRsZgU2bt3rSjZkfZPIwOC1pnFZIbBoh5ePqOz33gZU4xxUw8593fLj5aVYzpz230xDfSZ912jm57xWPK0fwQYeaHjU+OmfyHfCjVxcYvbLPj16V0kBfvNWjOwz44q0eP3Z9CV11aJYswkRq8oQJfPl2h92Bx5dvd/iZly7ghSko4IXpeCiKoULRUDhwE2qWQnsoxwYOM62e8zWTO12H8zWTgRvQD0KqZZ2CoRHEyVgTxdAEbhhPdN0C/B/mf41v7To8M19kPYykzEAYEQsVQ9eIhYplmcxXLCwrSxjqCpoiKOoKjiawDA1dE/ScBFWRNkoC7rZHLGQx/s3OiO7IZ7Mz4iefWeJ33pYywKWCyfm5Mo2iSdXU2Hd8ri5KLz3faJVfHX36Qos/pM2nL7Tuu+HyjXN5bz8/9s8NovFc2kbZnNCZeZQx4NN68qcljWkjDb0gnlorP+2zp4W0jieH83gkGjgPeM8Dm7segEfdjPUw+LDmCD5sUL7zWz4i0HSuzFdAk0T3wlqVkmXwwlqVrhMSxzFdJ8T2fIYh2J5Py9JwgoBWpjMjREwUxQgRj7XxvUh+qXSOYsYqhoC5qrxhN3sOIz9ls+fwwmqVYkHwwmoVBUFRU1EQXFusUCsYXFusMAAST3r4AEEkVxdBlHIwktIQB6OIRlGnauo0ijopR5O3pJXJaoUoVXhxo8FKvcCLGw2uLZVpVQyuLZUhFaRpFu4CtrtDtrse290hl5bq/Nj1ZS4t1ScI3QlT5koWTiiXO8v1AhfmZDdsvWBg6nJ27WqzzPdenGO1eX/FS9XS0VWVqvWAWYoZ8nNpG0WDgn7PU3T8iLtd5z4lyWmvwz1PtOsEp3r9+OcVTe2+KpcHIR/OyB/3xDU84Tjz8IKY9lA+NPK4X3Dt3eOk83437zmOk65T/rxPew1meHw4M4/AztDhdsdhuSpP+cJCjaedhAsLNV7eatN2Anojl36mgdMfQdePiGNpQQqVaapKKlSKhkB3UoqGIIhSFFWS86cvLRCKDp++KBOgt3sefiTthcUa640KaBpB6DIKY4Iw4Oe++H38b4BBG/608jn2gQVFSpkmQmYYEpHSKKrEcUKjqFLSYBSElDQomzqaUChnXaeeH7I7cPH8Et/YDLh9OOQbRYNWtTgeP1krmaw2S9Qyz7FRLrJYDWmUi/cJdx3F1Hsjj52ey0r1/saoV7Y6Y+liRVMnts97u0vHdO+PYBnqeGzgUu2e3MBJoZGj/x+vLc+/XjQnJQpO4+2etJ+TyP94qOXovfk4/PFwyLSkZ5RA0VTl1LUcHkWsOf8Z08Izp93PtPDWSZ27cDop5Y9aJc2HCWfmapYsi7mKS8m61zHphPKL1RvGjPyQ3jBmrqbTOQiZq+nc2RtwaHvc2ZP+d+hLJcrQD1mtFdl3RqzWinh+BAlUNIXVuTJPuzGrWRjjUsOi73hcalioScKe7XJ93sSNBZoANxYT4Z2FokbHiVjIZtSuNcq0RwlrjTI1y2CjWaJmmbzdCTA1jbc7AYnwOBj57A9kxdJ2z8EPY7Z7DsMo4sAOuNGxecZusG97VC01k0iQGvUAP/XcCkvNwliA7ai7NC+fcLutULBUwkR6m/kbc7cfYHshu/2AT16e4yixeFxiYKfvcLfjYihioiM1T44nxaenkdZpyOzo7z6tVv00+3kkpYg5opyW9LyyWMEwlPuSs48iZHHS8bzb/ZxE6CeWip7ioTLtus8eCO8dZ+aqdW2bV7cHbGQef5rE9J2ANInZsx0cL2XPdri4UGUYDri4UOXOgc3Ql8OpATpuRJxKuzFXolGKKZdMRmGMrkGsCOIope9GxFnnrWpqlAoC1dT45nafrh3yze0+/+/Bz1D1YXA4KblQq1iUh0NqmTbNZ64tEAuFz1ydIwX2RhHX1+qs2S6bXYePr5R543DIyAvYz4YANMomhurQKJus6AV2+yFX5yuM/JC39myWqwZbPcHAjdnqeVxdmayv/8JbB2P9elVVx0nGiikTyxVTEn++pv7aUhk7DLm2VJ5oPiqa2kQVy9CLcTPtn9PU5B/HNNI6icxOU6v+HWPaj6ii4/jnnjRl6nHhve7ntDr502r/TxvimbZS+6iVVn4QODNX7Tdf3eVOJ+E3X93lr/0UfHOzx2ZnxDcNBQVIhPS612sWNw5d1msWL99qy7GFWTeVKhKSWFpLAS8IsJQiaQJRLJuyNjtDDm2PzaOZiYmKEAISlUM7wEvh0A4mvPy/PP9PeWV/xPWFEnNFi4rl08gkDkZ+TJKkjPyYuWqB8/NFiqbBbt9jvVHCTQTzpQJl02e+JMMn+eadlJSrixErjSLbA5eUlO2By3pdpe8GeFmdd75McOh5vLEzoFlQ0BR4a9fGVMCLEnpOgJfFHzpDdzwGsFG2xtIKN/btsRb80+uNiZuzVdLHg0Sm1bQ/6maf0zQfPWoyeZhzyE+ZenOnzxv7QwajgB96avk9H08e07z0o999p2N+Nzr5D/qc/AN/uV6Yus/89m/vDSYa2j5KpZUfBM4M8YexIM4swM22Tc+Vtlk0IJYDzdtuRJJKW7F0jFFIJUtEzpWL3BkMmCsXeXXXZuAmvLproxITJ+BHAbu2x77tsmvLL2W1oECaUi0o/E/pz1M15IDzfJnmQtViqx+yULU41yqw2fO4kHXh3u4NGfoxt3tDDm2HP3yng5bE7PZcXt7qU1YTrq82mSubLGSrhFZZZ65k0Srr2H5CtaBh6hplLeLQDvjYahXH87h9OOJSM9Pj3+tzt+/hBRF7doQTxuzZESUrpWyphElKZxSgaoJO9iC0/QQ/ibH9hIJxr7Qzn5w9jnxj0ZOt8gN1Yk7b7HO8pn0a3mtFysM8FPLbHJ9YNY3o8seQAooQD2jzevc4/hCa5qU/TGnnSTH+acg/8E+7z9M2tM1wOpyZq/fkcgU3HvDksiyncz2p7e564OgJKeCECVEQMfBCoiBioWJyxw5ZqEhyrJQ16kWDSlmjvR3iJmQzUAURYIcpQQikCtncEPpuhBAKfTeSXr4ivfy//ckv8KXbHV461+SKSNkdRlxZrLBv+4RxQi+b07heLfDq9pD1aoHffm2f3b7L1+/0KRd1TEPFjlKKRYO1ZoniUTjFT/DjmKGfMF82mStbzJdN3tjpI0jZt33iNCWME251pLJkXiRNE0OCMEETCSVdYX/ocXW+RKlZZKvvcr4pO5krpoohVCqmOlHauVQrjJOzx0lnWjlinuy9IOZg6D1QnyePfBL6JEI9DU4ik2m9B8cxLQTy2m7/VBOr8sfw7FqDWsm47xrCux8ufpxcp4VdTpvQnbZKgdMlbY83sZ1mn9NCYrMHwMPhzFy1K4tV7g4irmQeZKmgoAcJpYKCSGUDlkgTel6IF0T0vJDN/ggngM2s1GepbPGa6rJUtiYGpPh+pqjpp/SHNj03pj+UMsR/c+dPyWHnO5Ox/HpRo2wa1Isa+7ZPlKS4UYIXpcRJipflCG4cDOk7ITcOhlRMHU0IKqbO8ytVdu2Qj61UWShqfD0MxwlhU9eolwxMXaNZtriyBM2yhaWrqKrA0lVqpsa3d21WslVCXiRtszNisW5SK5q8fLfPZtvlZaPPaqOArii0s5u8UTa5tizttOahPDEUTSk45mU5A0VVHihRAJAm37nDc5rmzKMO1eyP/AnVyWmYFgI5PuVqmupl/rjzsgr5a3hST0B+BZR/EJ52NXOaktXjOG3S9kE5lCO829zO8e/UDO8eZ+aqff1Wm9vtEV/Ppmmdb5Y4cG3ON+VUI0P1KBoGO4MRIy9lZzCia0tC79pym1uHI3quz63DUb5xlzBzmsIItgYxIdJCJrmQSPsLc7/GN/ccnlss8j1uiO3JYdyv3u1zq21TNQQvnq9zs61zLgvBDNyYKEkZuDFzJRVNU5grqfS9CDVN6XsRr+8PCeKE1/eH/OD1SZGyztDjTmfIQklnrVHgxqHLWqPAVtdBQ9D35dIkf2NVsmHkFVPndnvE4dBj5BcAhSQVHLV/5D23rfZwPMBmrVWeSjpv7dl8dbNLmiT8eH4WbJHxg2O754xLO0/CNM2ZR4F8HPq08gfTCPa4dtC08tTTVBhtB85UrZ/8Cii/sjiJ0I/P1p2GaQ+o05L4o6zQeRQlrWcdZ4b43zoY0felBdjp2jiBtLqmEcYQRhECFUWJEalKmkryTrN7bH8QMPJj9gcBmgYEsst3L+vS7UbwR+LegJSx5EIivfyIFJHZ3sjHCQJ6I58gSjEVhSBKqZWKXFqMqJVkOOW59Ro7TsBz6zX+2ct36dgh3961Wa7HtEcBtzoOL9WL2E6Epd9PlG/sDmnbAW/sDuk7EZoq6DuyS7Y99Dm0j88Ak1pCK40iQoWFqslyzWKhat6neplX1PzKZpednsdX6GbDxu/F6PM3dJQmFHVN2ikhh2ka8cdrw0+TSHxY5OPQJ6lO5vEwx3Aa4p3WE3Ac01YWJ5FrXhfpJByvwHq3mEbWD/O5sxj/e8eZuXpJNGnf7MkxgG/2oKFFhMB2L6JWAjcBLwxQVCBGWuDQdrADabOKRkzl3pgxAVSz6qBq9uJPBJ+jD9QCeAoFRQEFhaJloCjS/i8/Oce/eG2fP/nkArYfMnBCLFU+bTRD4+JcCc2QYmxxIsXYVmoWd7oeKzWLqqWzWDXH3bAvb3V4+2BEf+Rj6dB1fJ5YLKFWLBq2T7NiYfshcxWPuco9j/mIHPL6OJ2hjxem6KpyHwHmPcwX1xt8Benx58M2x0nn6nyZ/aHP1fnyRGgiL8Wc91CPL+vfa0jntB7m8UlXj2s/eeI9zTYnkd60lcXxa3jaJrY8TlIVPQ2mHfd7/dwZHg5nhviPCkyObH4WbpZHxY3Ay6Zc7fXv6Vn42Tb7w3t2qSbQSBGq4A+tP0fVg4EFAy+L4wdyDGLVgr4jbZQkhKG0QRgRRhFBGPHUWpNU03hqqcrn/vgW3ZHPOwcy6aoj8MMYHcFTCxUOhh2eWqhwfbWBm8D11QbVoslKo0StKMNDb+/2+aMbPYgjrq83eWKlRtHS2WiUxgqaFUvFj+HptTowuRT344SqpePHCe1hSNlUaQ/zAyIl8ona9bnyuA/A8aNx2Ob4XNq87MN9A0EeQEDHiem9LvNP++A4rSd8mv0c/f87VfI8yjzFSeT+MHH9aQ/C01ZWTcNJK5gZHh/ODPH7x2wecyW4M5J25MMokoNFRkex++x9VU0+HKoaiDQlQtoqoFiS8D+lfI5+AjUFvglcW61i3xlwbbXKds8DBUZhzOHAZ+RL+7tv7vLKzpCDgcPdrs2dzoj5klxmVEsmi7Ui1ZJJrCrMVQrEqsKlxQqKqnJhrijDBbku3Dsdj54TcKfj8Seevee999yAINNrtzSVWsHA0uR+8iEHL+exf+pSC8NQeHG9cd9Nnn9A5JEPAb2+N+DN3QGagE9cmp+QSF6uFXm30sHvdZl/2gfHaRu9TrP9SYT+XhvFphHvSeT+MOc27UF4XC303WIWtvlgcGauuIYk/QedcK2ooo9iakWVzkjG9f3o3nuPbLkk6PZTyiXB3xv8OenZ2zAw71XrzFUF/V7KXBbraZRNlmoFGmWTJIY9O2CpYqFoCjGgaAphBCMvIowgSQW6omZJVJivyPr8+YpJQROMvIiCJjBVhWEQYqoKh6MAXZH2KrJ3QFMUqgVlQu747V2br211iSNZKhgmybgrebfvstl2MRWFpVphLNNQNAuUCtJr/Pqd9rjWf65qTQ3p5MmgbOhoiqCc6ecv14oEScpyTZLRg4aYv9vk57vBNKI5rRrlaT35aYR+Erk+DAlOI96THnAP08Q27fNOm/h+mCTurGzz8eHMXM3RMZvHqwcxcc4CDLkX6slytxz2U4LMjjtvU/i56j/ixmHIxTkdI0kxRYSRedL20ONux+V8TaNgqiiKoGAq6KpAF6CrgmdWqyiKwvXlMvu9ITfa97x3LwjGGvpBLLAMhSAWvL5r0xkGvL5rs1yzGAYRuiIfFudaVXbtiHOtKp2hx1v7A0wFdgcOu32X3aqcpqVrgkp2Q+3bPrsDj6ql0SibY+/Oz5FBvtYfmNDxyZNGngxMRUHRBJdasgwyPyUqH9efluR8r1Un3+l3R3iY5qWTtplWvvheSxGPf+7DDFyZdj0e5mFxvLJq2nV+r01wM+J/tJhdTSZK8ieQHLO/wbFh55kd+hFeIu18SUcVUDbkY+Obd21GkbRLlQJemLLd8WmVLQxNRVcES7UibTdiqVZkFMQIUkaZHO+eHTD0I/bsgLmSTtkymCvpFHRBZ+RzbaGEF0by4RDeG5DiZI1Q+QlWhibnABiazu3DAV++0aGiyRBMHIfs910utcwJsu0MvXGZZq2gY2rqeCpUfvmfb3KaaxTHZFA0tYkh6seli/Mk+qBQwmlj7acVZjtNyeRJOG1oZlr38aPOUUwj3oe5Hu817PIwK4aTMCvbfHw4s8SvAVHOngZ5fZ3n+Nx4+7lQKuF7YYqq6uh6gKpKclSQDw75GIiJYmmrRZOioVEtmvzRWwd86XaHnu2jqipFS0dVs/m5fsTbhzYXGxbPrtfp+SnPrtdRVZWlWhFVVXl7f8jb+0Nqpsb3PwEdx8MPYzqOx3xpjtsdh/mSSbfiYxoqixWDz984ZKfv8rXNPj/zPeCFgkbJwAvFRNjntd0BNw9H6IpCs6RzuzNCV+Sg9fwD4s3D4QMHrBwnk2mTmKZ1x55085+2OuU0BPIwpHfSNidVNk3b5jQrk9M2Y532ejzKcMrDrBhOwiz+//hwZq9qEemtH9kH4Qs5D39ck5/930A+MAyk7AOZTdOUNJUWoFrUOHAiqkWNuYpF2Y6Yq1h0bY9Dx6Nrewy9iK2OQ9VU+eSFJl0v4pMXpJ7/Kzt9ugOfV3b6/Mj1FS4tlClnE7cGXsxCxeLmgY2CIMn2KVJoOz4ihbf3h2y1XeqmjhPG1AsGThhzbaFMx4m4tiBJeqNpcac/YqNpTYR9ioYMSxUNBZE9vo5s3hsf+SGvbQ+oF6bX2sP0Dsxpk7lOuvnvI7ppf+sPgEDyD7jThixO876TziVPvCe973F1wc6I+rsHZ/avNDhmH4TjYxD/UutXeasdc6WlErVlKCYCFsvQH0CzDCVDQ1cEJSPrgtU0DC2iomnUiiYlw6NWNNm1fdIEdm2fH7hSZXcQcKFV5GAUUdQ0DrKSIscNOBgFOG5Ax/Z4+W6X+YLGM2uN8UCTgqoy8EMK2Sqh6waY2QzdkR+N5+Q2Sgbx7pBGyeCzTy7z9LnWODYcCcETSzUiIZivGAx9i/mKwXKtzlK9yLlGCTeICJKEK9nDYsJzDGIaFWmnCZTNVa2pXvqNOOZux2WpcvrBH/kVx3ttMDrtPk9LbA9TrfNeQxsPQ7yPy/uf4cON2V/3BOQ9/BJgarKjy9RUykpMJ4GyAkv1IgeOw1K9iBuE+HGKm6m01SsGxUFIvWIASTbpMOGZlSqHTsgzK1U8P2Qvm5jlJQF3OiOWsrkBhmlIlVDT4PU9G9uJeH3P5vnzc2Od/FudEXGUcqsjU9cXF2Ry9+JClefW64SkPLde5+2DEaahEsb3N/vka/JbFWtiOPlR5c3NgwG7PY9WQWN9rkzb9nhld8D1pSovbDQxDflznky+eafLna5DECTMVa37Yt9HBKOpGsuNApp68orheFXN0YrjcTYCvVe5gdMScv597xcJPy7vf4YPN2Z/3WPIh3d+gqzrFlmTf6cdEGa2XoFeH+oV6Ds+biTt0IsZhXC3lzVg6Roo0tp+ghdIGeOiqVG3TIqmxtfu9HGjhK/ftXnp4hzNskulIEn50nyZHTvg0nyZasGg7YRcmq9MaOFfWihxOAq5tCC996eWq6QoPLVcplQweOnCHAVdhdSWXcZpcl/9d36Wa54M8jro+SlbAK/sDjiwfV5hwA9cWeAZVbnPW9WUFDeI0ZQsDHWKiVOnTRK2bW+cF3iYRqD3Omz9cVadnLZs9FFilkw9O5gR/zHkwzsFC/qetCBr+49szdDRCKkZOlvDkBg4GMUoSOE2PysR2us6jLyYva6TzbcVRHHCnbZD1/G503Y4Vzd4bc/mXN1go1Fkq+ew0ZBaPWutMk/7MWutMpfnSyQKvLDe4AtvH/KFWx1EkvCTz69xebmeK+kTpCKFY5UzG60yQSLYaJV4c2/A3Z6LH8TMVa2pS/48UT+/UUc3lHEC9vpSlVeQXv604R7NcoHLi4JmWV7Eacnd/Apk83A4VQY5/1B6bXdSNfPdkuJ7Hal4WqI87QNmWhjs/SprnMXozw5mf2Umvfx8eKdQUDC8hEJBJjMrBRi60vaDiBhptSy6oKVQMEBxoSSLekiEiq5K2ypq6JqgVdSoFQ0MTaWWxccXKxZBqmB7AWGcYmfaErqS4vkxupLy6nafV7f7FFWFuz0Xx4u423MnGqFAjooMoxTbjyZu5vbA4Uu3DmmYgla1yL4ajPV98sgTzXGiznv163PlcSI2r46Z98Tztf5wOnI5rQzye20eer9i6g+T3L1PSuExeeKzuP7ZxOwvzaSX/3E+hwdYwPdULfZth43MEy0ZoLrShpGMJsdRSpCtBIIILiyU2HdGLNUlGT2/Xqbvxzy/XiZIVJolC8M0WaxazJWk3ezYuFGEpiS8c2Dz2nafWqYCt2f7uFHEnu3jhDF+kLI/8vnEhQZRAp+40OCVuz2+vT3g6ZUqn7g4R8XUxs1Z+ZDOb7y2zxt7NmmS8ld/7MlxchgmSWfkBuPa/TzZHCewaWWKeU98SVXeteZNPt9wkhbMaVUzP+hGoPcqE/EwnvhpCf2DvjYzfDA4s3/paV5+Xmlzb+gTx9ICeKFs8vJC0BRZny8EFAvQtqUNMoI7smutOk860sZJzGbH41yrSBSDritEsUwaG4qGqans2S62F7NnyxxBHKV0nZA4SnluuUp7FPDccpWVZplYKDyxVOX3Xt/jzV0bnZRPXJzDMlRaRalnPyGfoKeEYUJZT+9rjMqTztdudsZSzqWC8cAHAo3i1Dj0cU/83Xbe5vMNp9WCOYnophHq46wEehg8ylDLw3Qiz3B2cGaJP+/lX+dz9/3eBW61Y7zMAgwzlc5hwNjL3x/CcxtFup7DWqOIG0SkQBTLbTQFoihBU8DxIrwoxg8iqgWTME7QVIFlmizWTCzTZF3T2e6HrNdliEPVZJxe1QRtN0YVCm03Zrg/GDdTNcsmjaJPsyzVOYuGTrNsUjR0lgs6RyT8sXML6LrF0yvV+274POks1QzaTsBSbTLW/Pm3D7ix76ArCldX6lPj0I2iMaHB8247b/Ofm8TJA0c1nrT9Sb0DebxfksAfhFf90J3IM5wJfCB/cSHETwB/C1CBv52m6S8/7n2e1Iw1Dd4xu1wFuyPtZke+pgAr1RJ7o5iVagknitkf9lnOiPvGXp+bhzZLZRU/lUPL7w5CUqDvhvRdn5fOt7CDiE9s1FFUlUrR4ukV6YGeb5Y5HAWcb5Z5fa/HZtehWVSpmAZvbA+oGxqfujyPot1Luubj6vlwyEsX51hsFMaDOqbd8Bfmqyiaet/7SoaCqUkL02vV80R3Wq2daUSV9/4fZvuT8KglgR9XLuFhMCP0GU7C+/7NEEKowH8F/CiwBXxZCPHraZq++jj3e7wZ65MP8PKPowbjck6AhXqFu0ObhXqFZinl5b0hzy6W+cSleVJN4RPnWtiejxPBC+caAOyPYuJU2u+7WGVn4PL0Uol928fUFKI4JREqF+cqJELlmbUGK83SmCRSEkgEKQmtUoF6waVVKjDyQkxNJYyS+8gxH8Y5Pof1yBM/abLVNH2cZ1YbKKr6HattgO+owQOnEzJ7nJ7roybHx6WBM8MMjxofxLfxJeDtNE1vAAgh/gHw08AjJ/5pcfzT6hheWS1xs+dyoS4ToKmiUi0apIrKn3phmaXbXT5xrsEL5xrjMsutnkOqqFyal3v57LUWCMFnrzZZaVb4SdNgtV5gYy5GKBofP1eb0Kg/ThJdJ0LTBF0n4spiZax06QYRYSq4tly5jxzz/39tt//AOazABEmdRufltN73abtWpxHlaaUHPmyYxctn+G7BB3FHrQKbuf9vAd9z/E1CiF8AfgFgY2PjoXY0LY5/CzhfhltDaa8slPn8nSGf2iiz3ijxm293+PHLTZ4/3+KfvbrPn3pqAYB/88X18YjEj19c4MpKjXONEre7IxarBeww5tm1JrWSOU5s/snnz/HJq8vj+njTuBdCubhYG5NEvlM2j49tNDAM6WW3KtaE0uXRyuA4Oeb/P20OKzD1YfFe69bzOK22zGm3+TDju/W4Zzh7EEdiYu/bDoX4WeDH0zT9y9n//wLwUpqmf2XaNi+++GL6la985V3va+eXamMv/x9+/+/xa68e8qefmuMXf/J5Ng+HY7mBgqFNhEPebV3zex0/N8MMM8zwOCCE+Gqapi8ef/2DcE+2gPXc/9eA7cexo+VflgN0S8AvAr/4k/d+l28+Ah44pPq0OG09+QwzzDDDhwEnB2sfD74MXBFCXBBCGMCfBX79AziOGWaYYYYziffd40/TNBJC/DvAbyLLOf9OmqavvN/HMcMMM8xwVvGBZKLSNP0XwL/4IPY9wwwzzHDW8UGEemaYYYYZZvgAMSP+GWaYYYYzhhnxzzDDDDOcMcyIf4YZZpjhjOF9b+B6GAghDoDbD7n5HHD4CA/nuxGzazC7Bmf9/OFsXoNzaZrOH3/xu4L43wuEEF95UOfaWcLsGsyuwVk/f5hdgzxmoZ4ZZphhhjOGGfHPMMMMM5wxnAXi/5UP+gA+BJhdg9k1OOvnD7NrMMZHPsY/wwwzzDDDJM6Cxz/DDDPMMEMOM+KfYYYZZjhj+EgTvxDiJ4QQbwgh3hZC/NIHfTyPG0KIdSHE/yyEeE0I8YoQ4hez15tCiN8SQryV2cYHfayPG0IIVQjxdSHEP8/+f6augRCiLoT4H4UQr2ffh0+epWsghPjfZ/fAt4UQ/4MQwjpL5/+d8JEl/txQ9z8BPAX8OSHEUx/sUT12RMBfTdP0SeB7gX87O+dfAn47TdMrwG9n//+o4xeB13L/P2vX4G8Bv5Gm6RPAc8hrcSaugRBiFfh3gRfTNH0aKf/+Zzkj538afGSJn9xQ9zRNA+BoqPtHFmma7qRp+rXsZxt5s68iz/vvZm/7u8Cf/kAO8H2CEGIN+Engb+dePjPXQAhRBX4A+O8A0jQN0jTtcYauAVJyviCE0IAicsrfWTr/E/FRJv4HDXVf/YCO5X2HEOI88DHgi8BimqY7IB8OwMIHeGjvB/4z4P8EJLnXztI1uAgcAP99Fu7620KIEmfkGqRpehf4fwB3gB2gn6bpv+KMnP9p8FEmfvGA185E7aoQogz8Y+DfS9N08EEfz/sJIcRPAftpmn71gz6WDxAa8ALw36Rp+jFgxBkKa2Sx+58GLgArQEkI8ec/2KP6cOGjTPzv21D3DxOEEDqS9P9+mqb/JHt5TwixnP1+Gdj/oI7vfcD3Af+aEOIWMrz3WSHE3+NsXYMtYCtN0y9m//8fkQ+Cs3INfgS4mabpQZqmIfBPgE9xds7/O+KjTPxnbqi7EEIg47qvpWn6n+Z+9evAX8x+/ovAP32/j+39QpqmfyNN07U0Tc8j/+a/k6bpn+dsXYNdYFMIcS176YeBVzk71+AO8L1CiGJ2T/wwMt91Vs7/O+Ij3bkrhPiTyHjv0VD3//iDPaLHCyHEp4E/AL7Fvfj2v4+M8/9DYAN5U/xsmqadD+Qg30cIIT4D/LU0TX9KCNHiDF0DIcTzyOS2AdwA/ldIR+9MXAMhxP8F+DlkpdvXgb8MlDkj5/+d8JEm/hlmmGGGGe7HRznUM8MMM8wwwwMwI/4ZZphhhjOGGfHPMMMMM5wxzIh/hhlmmOGMYUb8M8wwwwxnDDPin2GGxwQhxPNZSfG73e53hRCzoeAzPDbMiH+GGR4fngfeNfHPMMPjxoz4ZzgzEEL8eSHEl4QQ3xBC/LdCiO8RQrycabWXMv32p4UQnxFC/L4Q4n8SQrwqhPh/CSGU7DN+TAjxBSHE14QQ/yjTRUII8QkhxOeFEN/M9lED/iPg57L9/Vy2j78jhPhyJp7209m2BSHEP8iO5VeBwgd2kWY4E5g1cM1wJiCEeBL4m8C/kaZpKIT4r4E/Bq4CFpJst9I0/U+yjt/fQM5xuJ39/N8Cv4vUffkTaZqOhBB/HTCBXwZeB34uTdMvZ7LIDvDnkZrw/052DP834NU0Tf+eEKIOfAmpoPq/BZ5O0/R/LYR4Fvga8L1pmn7lMV+WGc4otA/6AGaY4X3CDwMfB74s5VsoIEW6/iOkrpOHHN5xhC+laXoDQAjxPwCfzt7zFPBH2WcYwBeAa8BOmqZfBjhSRM3ek8ePIQXk/lr2fwspH/ADwH+ebfuyEOLlR3XSM8zwIMyIf4azAgH83TRN/8bEi0IsITVcdCQRj7JfHV8Kp9ln/Faapn/u2Gc8+4D3TzuG/0Wapm8c2/5B+5thhseGWYx/hrOC3wZ+RgixAOMZvOeAXwH+Q+DvA//33PtfypRdFaTY1x8iQ0PfJ4S4nH1GUQhxFRnmWRFCfCJ7vZJNfrKBSu4zfxP4K5liJEKIj2Wv/z7wb2avPQ08+8jPfoYZcpjF+Gc4MxBC/BzwN5AOT4iU5X0+TdN/I5vR/Pns9wnwf0ZOsXoGScz/uzRNEyHEZ5EPCDP72P8gTdNfz0j/v0CGkFykJryBJHsd+E+QssD/GVIbXgC3MuXQAvDfI8NI3wAuA//uLMY/w+PCjPhnmOEY8nLOH/ChzDDDY8Es1DPDDDPMcMYw8/hnmGGGGc4YZh7/DDPMMMMZw4z4Z5hhhhnOGGbEP8MMM8xwxjAj/hlmmGGGM4YZ8c8wwwwznDH8/wFCyh4L86SwoQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "y_test_pred_rf = rf_model.predict(x_test)\n", "rf_mse = mean_squared_error(y_test_pred_rf, y_test)\n", "print(np.sqrt(rf_mse))\n", "visualize_model_preformance(rf_model, x_test, y_test, s=3, name=\"rand_forest_reg_gen\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## DNN" ] }, { "cell_type": "code", "execution_count": 290, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "12.783879061686402\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADLzUlEQVR4nOz9eZQkWV7fiX6u7b67xx6RGRm5VVZVZ+1LL9DdtLrFItQsgodEozkgJAbm6c2Ig95ohPTOebSeJCQGZo40M2hmGGk0jOieQSAkhBAC1KKBpteqrurasqqyco2IjNV3d9vN7vvDLDzNPdOjorIyKjOr/HtOnF+Ee5jbdbNrv/u7v+X7E1JKJphgggkmeO9AudMDmGCCCSaY4J3FRPFPMMEEE7zHMFH8E0wwwQTvMUwU/wQTTDDBewwTxT/BBBNM8B7DRPFPMMEEE7zHMFH8E7ynIIT4P4QQf+9Oj2OCCe4kJop/ggkmmOA9honin2CCCSZ4j2Gi+Cd4V0MI8bgQ4utCiK4Q4lcBK339Y0KINSHE/1sIsS2E2BBC/GjmuP9DCPGLQojfTo/9ihDi1AHO921CiNeEEG0hxD8RQvyhEOLHMu//ZSHEOSFEUwjxu0KIlcx7UgjxXwghzqfv/6IQQtzmSzLBBBPFP8G7F0IIA/g3wL8ApoBfA74/8y8LQAU4AvwV4BeFELXM+58C/g5QA94A/v6bnG8G+HXgbwHTwGvAN2Xe/17gbwPfB8wCfwz8XyMf80ngaeBR4M8D336wbzvBBAfHRPFP8G7GBwEd+EdSykBK+evA1zLvB8D/L33v3wM94P7M+78hpfyqlDIEPgM89ibn+07gZSnlb6TH/A/AZub9nwD+gZTyXPr+zwKPZa1+4B9KKVtSyqvAHxzgnBNM8JYxUfwTvJuxBKzLYSbCK5nf66kC3oMNFDN/b+7z3rjzre79kZ53LfP+CvCPhRAtIUQLaACCZMdxq+ecYIK3jInin+DdjA3gyIif/Nghn+/o3h/peY9m3l8FfkJKWc385KSUXzzEMU0wwQ2YKP4J3s34EhACf00IoQkhvg94/yGe77eBh4UQ3yuE0ID/F0kcYQ//C/C3hBBnAYQQFSHEDxzieCaY4KaYKP4J3rWQUvokgdS/BDSBvwD8xiGebxf4AeC/BerA+4BnAC99/18DPwf830KIDvAS8GcOazwTTDAOYtKIZYIJDgdCCIXEx/8XpZR/cKfHM8EEe5hY/BNMcBshhPh2IURVCGGSpG4K4Mt3eFgTTDCEieKfYIK3ACHER4QQvZv9pP/yIeACsAt8F/C9Ukrnjg14gglugomrZ4IJJpjgPYaJxT/BBBNM8B6DdqcHcBDMzMzI48eP3+lhTDDBBBPcU3j22Wd3pZSzo6/fE4r/+PHjPPPMM3d6GBNMMMEE9xSEEFdu9vrE1TPBBBNM8B7DRPFPMMEEE7zHMFH8E0wwwQTvMdwTPv6bIQgC1tbWcF33Tg/ljsKyLI4ePYqu63d6KBNMMME9gntW8a+trVEqlTh+/Djv1SZFUkrq9Tpra2ucOHHiTg9nggkmuEdwz7p6XNdlenr6Pav0AYQQTE9Pv+d3PRNMMMFbwz2r+IH3tNLfw+QaTDDBBG8V97Tin2CCCSZ4V8PvQ2s1kbcRE8V/l+D48ePs7u6+7f+ZYIIJ3kWwG+DbibyNuGeDuxNMMMEE7zr4/UTJ56fAKCQSrsvbhInF/zZw+fJlHnjgAX7sx36Mhx56iL/4F/8i//E//ke++Zu/mfvuu4+vfvWrNBoNvvd7v5dHHnmED37wg7zwwgsA1Ot1vu3bvo3HH3+cn/iJnyDLkvorv/IrvP/97+exxx7jJ37iJ4ii6E59xQkmmOCdxKiFbxSgupzI24iJ4n+beOONN/jJn/xJXnjhBV599VU++9nP8oUvfIFf+IVf4Gd/9mf5mZ/5GR5//HFeeOEFfvZnf5Yf/uEfBuDv/J2/w4c//GGee+45vvu7v5urV68CcO7cOX71V3+VP/mTP+H5559HVVU+85nP3MmvOMEEExwmsn78/BQY+dtu4Y/iPeXqsb2Qpu1Tyxvkzdvz1U+cOMHDDz8MwNmzZ/nEJz6BEIKHH36Yy5cvc+XKFf7Vv/pXAHz84x+nXq/Tbrf5oz/6I37jN5L2r3/2z/5ZarUaAJ/73Od49tlnefrppwFwHIe5ubnbMtYJJpjgLsSelQ+HYt3fDO8pxd+0fZwgAtu/bYrfNM3B74qiDP5WFIUwDNG0G8+zl4J5s1RMKSU/8iM/wj/4B//gtoxvggkmuAvRuAIbL8Liw1CcSV47ZCs/i/eUq6eWN8jpKrW88Y6d86Mf/ejAVfP5z3+emZkZyuXy0Ou/8zu/Q7PZBOATn/gEv/7rv8729jYAjUaDK1duyqw6wQQT3KvYeBH6m4k8JD/+fnhPWfx5U7ttlv5B8elPf5of/dEf5ZFHHiGfz/PLv/zLAPzMz/wMn/rUp3jiiSf4lm/5Fo4dOwbA+973Pv7e3/t7fNu3fRtxHKPrOr/4i7/IysrKOzruCSaY4DYja+UvPgwbJPIO4J7oufvUU0/J0UYs586d48EHH7xDI7q7MLkWE0xwD+Dlf5dY+YUFOPvJd+SUQohnpZRPjb7+nnL1TDDBBBO8Y9g8B1/9PxIJiXVfWLhjVn4W7ylXzwQTTDDBoSJbgHX1K9BdT+TCgzC1kvzcBZhY/BNMMMEEtwvZAqxjH4DSkUTeZZhY/BNMMMEEbwdXvw4XPw8nPwYL9yev5aeSTJ2FuzP2NrH4J5hgggneDi5+HjqribwDqZm3gonin2CCCSZ4q8gGbk9+DMrLibxHMFH8t4hWq8U/+Sf/5NDP82/+zb/hlVdeOfTzTDDBBG8B2cDtsSfgY389kfcIJor/FvFWFb+UkjiO3/J5Jop/ggnuAnzlV+Cff08i4a4O3B4EE8V/i/jpn/5pLly4wGOPPcZP/dRP8YlPfIInnniChx9+mN/8zd8EEtrmBx98kL/6V/8qTzzxBKurq/zdv/t3eeCBB/jWb/1WPvWpT/ELv/ALAFy4cIHv+I7v4Mknn+QjH/kIr776Kl/84hf5t//23/I3/sbf4LHHHuPChQt38itPMMF7F6/8GnQ2EglJ0Pb9f+muDd6+KaSUd/3Pk08+KUfxyiuv3PDaO4lLly7Js2fPSimlDIJAttttKaWUOzs78tSpUzKOY3np0iUphJBf+tKXpJRSfu1rX5OPPvqotG1bdjodefr0afnzP//zUkopP/7xj8vXX39dSinll7/8Zfmn/tSfklJK+SM/8iPy137t1/Ydy52+FhNM8K7ElWel/IP/LpFf/hdS/u/fnch7CMAz8iY69b2Vzjna3eY2QUrJ3/7bf5s/+qM/QlEU1tfX2draAmBlZYUPfvCDAHzhC1/ge77ne8jlcgB813d9FwC9Xo8vfvGL/MAP/MDgMz3Pu23jm2CCCW4B2Wydj/11+MB/dqdHdNvw3lL8Wd7r26j4P/OZz7Czs8Ozzz6LruscP34c13UBKBSun0eO4UWK45hqtcrzzz9/28Y0wQQT3AI+8xNw8d/Dye+Ej/zE9fz8dxneWz7+29jdplQq0e12AWi328zNzaHrOn/wB38wlkb5wx/+ML/1W7+F67r0ej1++7d/G4ByucyJEyf4tV9L/IdSSr7xjW/ccJ4JJpjgkHHx30PUTeQ9mK1zULy3FP9tLK6Ynp7mm7/5m3nooYd4/vnneeaZZ3jqqaf4zGc+wwMPPHDTY55++mm++7u/m0cffZTv+77v46mnnqJSqQDJruGf/bN/xqOPPsrZs2cHAeIf/MEf5Od//ud5/PHHJ8HdCSY4DPzf/yX8/eOJPPmdoJYS+S7GodIyCyF+CvgxQAIvAj8K5IFfBY4Dl4E/L6Vs7vc57yZa5l6vR7FYxLZtPvrRj/JLv/RLPPHE27Mo7tVrMcEEdwX+/nEIOqCX4f9z+U6P5rbiHadlFkIcAf4a8JSU8iFABX4Q+Gngc1LK+4DPpX+/Z/DjP/7jPPbYYzzxxBN8//d//9tW+hNMMMFbxG/8Tfi5M4kEOPXJROmfemc48u8GHHZwVwNyQoiAxNK/Bvwt4GPp+78MfB74m4c8jrsGn/3sZ+/0ECaY4L2HX/wk7HwBZj8MvdfBacH5fw38HPzg/wT8T3d4gO8sDs3il1KuA78AXCVpMtaWUv4eMC+l3Ej/ZwOYu9nxQogfF0I8I4R4ZmdnZ9w5DmXs9xIm12CCCQ6AnS8AMpH3/TnIVRP5HsWhWfxCiBrwPcAJoAX8mhDiwImwUspfAn4JEh//6PuWZVGv15menkYIcXsGfY9BSkm9XseyrDs9lAkmuPvw898E/ZehcDax9Pcs/u/7OeDn7vTo7igO09Xzp4FLUsodACHEbwDfBGwJIRallBtCiEVg+1Y+/OjRo6ytrTFuN/BegWVZHD169E4PY4IJ7j70X74u/0b7zo7lLsNhKv6rwAeFEHnAAT4BPAP0gR8B/mEqf/NWPlzXdU6cOHGbhjrBBBO8K/DpKkkSoUgs/T2Lf4IhHJril1J+RQjx68DXgRB4jsR1UwT+pRDir5AsDj8w/lMmmGCCCd4K5HX5N754R0dyN+NQs3qklD8D/MzIyx6J9T/BBBNM8Pbw6Urm9zYgGFj8E4zFe4urZ4IJJnh349OtOz2CewITxT/BBBPcW8ha+RPcEiaKf4IJJrh38elJts6tYKL4J5jgPQzbC2naPrW8Qd68i9XBxMq/rbiL7/QEE0xw2GjaPk4Qge3f3Yo/i4mV/7Zxj9zpCSaY4DBQyxuQWvx3HSZW/qFhovgnmOA9jLyp3ROWvv236tddUnd6MO8C3P13fIIJJnjvYIyVf0+6pO5iTK7gBBNMcOgYG0S+oQCLm/5d88K71yV1D2Ki+CeYYIK3hNXdHi9vdji7UGZ5pjh4fb8MoXEWu831Wtv9XDj3ikvqXsHkSt6juGfS8Ca4J7Hf/Hp5s8NO1+NlOkOKfz93TDaIbH+6MiBVaANloEOq+DNW/mSOHx4mV/MexcTnOcFhYr/5dXahzMskFn8Wpqqw2XGoWoUbPi9rsfdJOkDFwKW/eJ71lsORao7FtzCGdxrvtkXo3v8G71Hc1Wl4E9zz2G9+Lc8Uhyz9PXhRTCVn4EUxALsdlyvNPiu1Avn/fn5g5QsSpS+AM/NlTENlpZYsFlkFO7RLuMOK925ahG4H7v1v8B7FxOc5wWFidH6NU7zjFDXAlWaflh0AfR7gupXv/PWtwYIwiqyCPVLLD851YavLRsfFLUcsVnODc+4dszeu7Hiy79leODjnTHm4Y924Y7Lf83YYWnd68cpiojm4u27IBBPcbtyO+X2tZbPd9XD8kNPz1108Gy1noJBPzZeGPn/pn5/kARL/fYfrvvzLW12uNm18P8YJIs7vdmn3Az7+voUhBZvdMUgkigCJ5MJ2h0u7Nidm8kwVrSFLPLtwAIPfNzvOYBEaVfzjjtl7b++6vV3dcDftGiZajrvrhkwwwe3GQef3fguE60dsdzzKI69nFfIoyiRWfhkQmQKs3uubvHatw1ROxY8lbdvHCYIbjn9xrclr2z06fZ8PnJolZ2jU8gbfuNrECSJ6bsRiZTiucINlnv5uqgpw811G9pi1eo9nVps8tVwDuK164W5yz060HHfXDZlggtuNg87vrFW/VM3fsAgI5UblvlTNDxTyxqcrA6t+8dPtISs/7LqDFNCWG6JpCi03ZLGUw1AVKuZ1N8uesnX8kI4T4Pghthey2XEwVYX75ksYhsJKrUDL8fGCmJbjM1O2hixz2wsH45wpWzdY+nvIHvPaZo961+e1zR6fOLtwW/XC3eSevTtGcYdxKzdk4h6a4F7BQee360fs9FzKpsbF7S4X6j1OTRd5aLmG44c0+j5LpXDIBbOnbCHJxd+z8AHqf+UyX9npc3q2wIWrDa62HDw/pGpphHFE1dIQKizV8gg1OSaOYt7Y7nJ2ocyx6SJ+LDg2XRiKF2St9nE7EbjRhXOQ53WhYlC3fRYq+7t3DhIXuJtxb4zyNuB2K+qJe2iCdwOyz4XjBzR7AU4pYKcX8OpGF10oPLRcY63pcHG7S9XUUTRloISz2TpZC78A5AyNmZJJztDIGyrNrs8Dc0UKps6DixUKlsFMweBKw2a2YAKw1nRo2wFrTYf75kt4ccxCJYfjh+x0PeYK5tAiYCrK0E4k+32y6aXjYhSjOHt0iqWp4pta+ePiAveKLrg3RnkbsJ+ivpVF4W5yD012HxO8FWTnS9ayD2NBzlAJ46SWVgH2mpcHMsIyNAIZUdJVXut0WK5YAys/BtZ++AIvXevw0FKZRaCS02m5PpWcTqPn03J8Gj2fBxYqdLyQ5Vqe89s9ul7IWsvlzBL0XJfXNjpM5RS8qDBID/WimLKl40Xx0PkVVWG2aGEZyZZhVCHvHS8QxBLEm/TiPejuaFws4V7Bu1pL7JdqlsWtWO93k79usvuYAA7ufsjOl62uw2bHpWioPHp0auA732xr+BEcm0rcKo8dqRHGiSz90grfw43ZOn4UUbBU/CgCYLPtsNa0MRWFSzsd1psOlwodnjoxQ9HU8SNJy3ZZq/eZzesArNZddnoeq3WXbz5z/Zl1/WiguHf7PrqisNv3eezY1CDGAPso5DxYhnpDttA4v/+bYVws4V7Bu1pLZNO+Hl6eGqsU7ybr/VZwr49/gtuDrEJ3/eimee95UxuaL/OlHD0/Yr6UuyEAuudmASjkDN5/Yoacrg5l67zwF9/gatPmWC3P/fMlLEMb+OB3ui4bLZeyoTFXyTHXDpmr5IYygSxdp2QZWHqi+HteQKPv0fOGs3yyu4dL213ObbSpWfpQFs6ZperQMfVMQHl5pjh4/s9ttsemdr7d636vGF73xihvEbtdj2tth5Kp3rDKj7pH7pUbdjPc6+Of4Ea8XffjxV6X3a5H1UoCtW+kQdaHlmtD8+XkXIla0aSWN4bI19pOMLDWZ8oWyj9eZJEbrfzpgs6lRsx0QSdvaiyUc4PP1hRwgxBNSWgetno+ZxfKxFHM5XqPmbzO8lSOMJYsTyULjBsGeEGIGwa8vN4auI6mCiaOH9N2AvphRK1g0g8jnlltstFyeYYmZ5aqQ0p4HKdQsjBdDxIPVRintQCH7fa90+7Zd7W2mC1ZdPyQ2ZI1FBCaKVv35Co9wXsHY9ks91EYWYVuGSpzZRPLUNnuuARRRMe9MVc+i6yifPTXH+QEiXLn0+0hK/+3vv05vnqlxftXqsy1HHpuxFrLoe34vLzR4+xikadPzeHHkpyp4ceSrbZPHMFq02O7Fw5SJh87VsXQXaq5RGlKqaCpKlIqXGs79LyAa20HS1do9DwqlsrxWo61ls3xWm5wrc7Ol4BhvqBxnEKjO5vzmYKyYzOFd8Tte6f1z7ta42WtmcQPd32Vfy+6R+60lTHBwe/BuPl5UIVRzRm03YBqzqCaM4b4cMZ93smpPI2+x8mp/JCih2Er/9RcETdKZM+LiKVEAC+td/j6WgsZxzx9ao6yZWAoLmXLoGP7uEGMqkqqeYVoN5GrTZuuE7DatFmeKbJYyXGp4bBYySHCkBfWWqyUDfKGzlTRJG8kLp8HFiqEQlCxdB5fnqKQLhxZvqBxnEKj96BoqeR0laKlvmN64U7rn/fM0z+6yr+b3SPjlMtBU9omODwcVHGPm5+jCiN7r7N8NFkFmFStXkfWpZMztIGFrIwJ2hYYztiBNNdHKEzlFSIZM5XX+YbtUO/5tG0HANcPaDserh8kbp8wQlOgVshxfCamVsjRtD3Wmw4L5SSd8+h0nidiydHpPF+53EBXVV7e6fP4iVl6XoCh5pgrmIPUzs2Oy2ubXXRF3PT6HOQenJorM1W03lG3753WP+9OzZfiP718jT+8uMu3nJzhk08cO7Tz3G2W9DjlctCUtgkOD7di6Y0rmILhe53lo5krmINCqCsjPDVfzxRTnZotsVp3MBWFE1y38v/oz73MC9faPLJUYZFUifd9XD+g44Xs9By2uzp9N6RlB7y21cUyNHKGimUk42vYAaqq0LADXrja4vx2j7IhODFbGeTeB1FM3lQJUkbPR45OUSmYrNQKqFLyu+4O37RS4/XtDlcafXQFjk+XBllBo5lE4xTquPz+/Y45KN7u838n9Med11KHiM+9ssnLW11CN+TjZ5cO7eLebZb0OOWyWM0NUtomuDO4lWrQ17c6rLccPD+6IfiYrXTNBi2vNPvoqsJ23xuykAGWKjkaTsBSJcf0Pzs+8OVnrfyHjlQRqjLwj292PewgYrPrUTB0kAKBgpRQ73qcni6Q0zU0BXJ68v0eXCjTDyIeXCjzey+tUe+5bHaSfHsZJ8aHrghsNxpY7Nmd+emlGkdmy+R0ldc2OgAIFBo9hze2epiK5P75ylAm0ThkyeQsQx2ijx53Dw6qJ96uv/5O+Pvf1Yq/aKloSuK7O8yLm7Wk74bVf5xyudOWzQT7I2tA5AxtMF/7rs+5jTbVm8zj7b43UPAlP+S1zQ4lXR0qcmo7AV4Y0XYClklSI01NoZLTh3z5X/7z53hjt8/pmQIPqAqn50ooqZvIUgXNvo+lFocycVYbMYsVi1JOQxGClakCeSNJzdzqOGx3XLY6DjN5i7LlMpMfTp8MYkEupxKkC0F2d7O20+E/vbHLx0/PcLRqsdl1OFq1eGOnz1bXZa5k8vSpYRdu1o01XbIyVcnhIMtpsZobMoyy52w7wRDb6DgctEboILgT/v5DfXqFEFXgnwIPkbgF/zLwGvCrwHHgMvDnpZTNwzj/o8emqDsxjx6bOlQ+7awlPfpgvlVlOXr87Sg2uV2405kI7wbsNx+yBkTWHdFyQzRFpeWGN7gpslb+b3/jGpcaPQJfct9CcVDkJJF4YUzbTapZxxVgrTdsnrvUJKcIzsyVBzsJgO2ujxeFbHd9PnQ6jx9LFit5BAI/EhybKhBFEdu2x5n5JKD6xk6flhPwxk6fubJJwdSZK5s4fkiz7+NUTHRF4jgReur6yWbfPbPeputGPLPe5oMndebLObpBRMdOFpOVqnnD9c1mJj2sKhnCt4CW7eP4Nz7/2XNWLH1QY3DQHsLZvgG3gjvh71fe/F/eFv4x8B+klA8AjwLngJ8GPielvA/4XPr3oWCn6+EHMTtd77Z83t7Nbqbl4HvIm9rg5tfyBjldHdqu3+yYLGwvZL1pY3vhDcfvTcorzf5t+Q5vB6NjuxVkv+t7EfvNh0pOJ2cklng2OLtQMsmbCgslk822w2rdYbOdBFBnyhZPrkwzU7Y4OWtRzRmcnLXQFUEvdaHMFkzCKB7w4WSt/Dc+9Rr/2zd9hTc+9RodN0BRBB034MW1Fi+sNXlxrZWOTqYRXUnbCa7n1Dse5zZb9B2Pb6w2efFKm2+sJnbctKWy3nSYtlS8CAq6hhfBTs9lt+ew03PpuhF+FNN1Ex/9Sq1ANa+zUivw0FwRkDw0V6Skq2x1HEq6iqopzBRMVO1G9XV2ocxsyeTsQnlovna9GC+O6HrxDfcge86lap6V6cKAnXTv/0bn7e14Fu4kDm2ZEUKUgY8CfwlASukDvhDie4CPpf/2y8Dngb95GGN4ab3Ji9famFp8W6zVg+waRlfvt5plMGo9jBab3Em825pRvF2MWoQHoUwYtdizx2SVfXbeVAsmJ2dKVAsmHTcYysnPHn98pkw/hOMzZV7daLFa73O0anD0X5weWPiM0CV3nSBRvE7Ao0erhJHg0aMVnr2yy/NXuxgi5js5yspUgfWOy8rUcFOUz722y7nNDjKC7bbNpXoXS4Mf/gis9nxmSxarPZ+SpRBLKFkKfiDpeCF+IGnbDhd3eswXk2uULQLTDI3HjtXQDI2dvoemKuz0PR49UiOI4dEjtRvuwXTJ4mFVuSFDZ7Zk0PNyzJZudM3cLONv79ru3at307yFw3X1nAR2gH8uhHgUeBb4SWBeSrkBIKXcEELM3exgIcSPAz8OcOzYrWXk1Hs+sUzkfo2gD4pbUXwHOWa/se3HI34v4k7nL99OjCqDg3RyGu1Lmz1m3LXJ5rDHUcx2z+XMbOGG47P+/mstn1hIrrV8vonhnHz9r2/xauo+3H1+jYs7PRYKBh97cJGT8xVqeYMvvrGDlDFekLhgVFVhrpRDVZWhGoGCIYljKBiSoi7wopiinvjrH5orst50eGiuyCubXXRdIYwFpbzG0ak8pbzGxR0fL4yo9/0bvo/jhry60WbK1KgUTPpuhDGlDtFHjN6DcYkW2ZTNLLf/fs/muIX4Zvf+XsNhjlgDngD+KynlV4QQ/5i34NaRUv4S8EsATz311I0dIA6Ah5dK7NgBDy+Vbnjg3ikcxMe/39jebQHVg6Tb3Svfc1QZjCMIyyqJ0UV+3KKfPSaKIq42eswVdDZ6PmXLYKPn8+jIOXfbNq9utvnwiWm+7XOPD6z60Zz8LMVx2/VRFEHb9Tm/0eILl+p8+MQ0RVMniiVFMwnUagq4XpKHf2mny0ubHeIw5tRshbVukMi6g4zBi5LHNRKC49MFIiFo9ly22jbNmsmjR49TTVM213Z7mJrKdOHGa7jRcbG9mI2OSyVvJK4mKfdlxtxo2Tx7pcWTK9WhZjJZjFbxj9up7Wek3Is0DVkc5tnXgDUp5VfSv3+dRPFvCSEWU2t/Edg+rAEsVIucXYxZqBZvi8V/KziIZZCdRKOT4163LA6Ke/F77rebu+G9zCKQXeQv7fZ46VqHOJIs1fKDa5BN03x+rcWlnT6aENw/V+TCTpdHFm/MODm/1afVCzi/1ec01638z3zL13h9p8eZ2SI/Dvzh6zu8fK3NbsfjxEyJq22XEzMl/uD1bS7tOgRBRBRF5A0NN0x82rtdj7rtsdv1uFpv8tWrTTpdj+myiYag5QZEqqCY04nUxOJ3/ZhWP8CtxMQCKjmLWAwvPMszZZxYuWmF7XTRYqrgMV202On5bPdcdnrmEPnaXgHanvXe6PuomqDR929I4dy7tqPu03E7tazbdb1pD83Pe5GmIYtDO7uUclMIsSqEuF9K+RrwCeCV9OdHgH+Yyt88rDEULQ1NCIqWNhSQeiddJ281LjA6wd5NrpH98G74ntkHO1tFu5+PP8tHc2KmOHjvtd0uHTfgarOP6wasNvosl01CIQZ0BTDMQPvNv/MIf4Ybrfylsskbuz2W0urYetfmSsNmoaSzWK1xer5EzlJZruR4fafHciVHL4gwNYeZUsKHYwcxQRRjBzGvbra4tJUUY33X4grVgsdUweIvPL48SL8EiGTMTs8jkjHf+sACqpa8l828ObtQxo9j7psr3vB9Ts8WaLk+p2cLrLUcankDS1d47moz5daJODKdH7Lej0/lWWs7HJ/KD8UisvMrb2pDOmC/HcS4+3YrOMgcf6d2BYe97PxXwGeEEAZwEfhREkPkXwoh/gpwFfiBwzq568fYYYjrx/s2hR53sQ96E/YL6mWV+kE+b3RyvJtcI/vhTpew3w5klcMfv77B11e7PLFc4mitMCAvqxWtoR6xD86X6PshD86XBhk7pqIgI7jWtFkqWghFUC2YCEWgSTlw5wD03GjQePwk1638Z37gFX73tR2+/f5ZlDCxnhUtub7FnM50QaeY02l1fb5xtcmMqVMrmTx2tEatZKL0A+bKBuXU1TNfsrhg9JgvWRiaRiGvY2jakHIGWJkuUCsmSnW351OwVHZ7Pu9bqvGR+1RmyhZLqhgo/W9cbfKHF3YI/YjlmSJvbHX4+lqbKAqZr+QHKan3zZXwY8l9cyUu73a5uCOp5bWhegVgaGHMxiL2ew5H37sZboer+CBz/J3aFRzqkyalfB546iZvfeIwz7uHzbZN2w7YbNtDTaFh+OaPu9gHrcg9aBu2g9zUgyrAu2nbeKu4mxevgxgDWat+pmwNKe5LOzarjT41SyWUCuttm4KpMlXMDdFmqKrKsakiqqrS6TuDjJ2dnsduz2en57FYyXOpYbNYyfPs1QavXeuQUwWPHp/hvs+c5hHAYdjKd6TgwcUKjhTstHtc3umyUEi+xyNHaiiqykMLZX7/3DW6dsBrO20+WlnA9kMMRcUNHfpeOHD15CyVB5Yq5CyV73v8CIV0UVlt2XS9kNWWzdWGzeVdGy+IOLNU5X3zRTa7Lu+bLw4XUM2VBpk3n399k1c3+8go4pNPLBNGkNNUwiip6u35Iboi8CM5oGlYqhURqsZi2aLl+oP8fuCGwrW9XX624nm/53rcc/VO7UjfqfPcXU/bbUY5b1CwNMojqV0wPpsi+2AflNvmIFvFm/7f28B+cYG7WaFmkfXB7lcleSdwEGOg7QZDbobtrst216VsqcwUErfETMFgoaSz3tRS18owbcbF7TZfutTgQyemeGCxOmhJ+MLVOhstl61yHz9v0rR96j2XP/OfnuYvAJ3zwEfb5En63eaB/+1Df8JXL3d4//EyHzQUnmv2OTOd4xtdn5YdsNnda0d4vXJ3pmAilD4zBZOOF+KFSaqlG0iCGNw0q+dYrUDXizhWK+BHku80DBbLFi+uNllr2MznTWZzOueCkNlcGhA2dd5/YgbN1IcKqLL3fb5oclm3mS8mbqgPnpqhVDA4u1DGi2Luny9TK5pDO/alan5wDXsb3tAOKNudq2RpAyrnpn3dx7/fcz02s+pdRt5292qF24CHjpTxokSOKsNxNzj7wI8+pAdRqG8p4Pc2sF9c4F7ZDeznfrvTyLptsvfd9SN2ei5lU7shSDhXsui4EXMlCy+IODFbZLaSY6lWQqg6izeJLb203uLSTo+SoVDNG2y2XKZzGl4gcYMQL5BcrvfYbLlcLvb4JMOpmW2uW/luEBPLGDeI+bfPr/Kly216PYcwirnadDhWSRTyuc0O9b7Puc0OZctkumhStkw6tsd226FTtQjCgI7tE4RJvUC25+2r623+8MIO33Jqlu2OzdVdm+WyyemFMqfnSuRTxZ/lCDq/3cMNY7pejGUEA4X8+MoMTgyPryRxgWwevu2FA1dNo+cOmrdkMZrlFEUR6w2HhZJB3sgN0mCHnvdMG8ZRvBtcjgfBu/obukFMx014wEeV4TjFORoEGrdL2Pt71FWUff2dmkCji9idymB6qxh1v91NyPp0vcz9lUiEFDddrLL9Hxw/SNoZFg16jsc31hqUTkzzbLPHs6stnlyu8pEHFgkjSceJCCPJly7u8pWLTTpOjWJOp1YwKeZ0/vwffIj/Euhs3pia+ZVPvsiza02ePFqj1nEwNIVa3uSPz+9Q73t8Y73DdN4gDCM2O8n8bHRcvvD6Dt/xwBxeHNN1A1qOh6Ep+CHYQUjTDvHCmKaduHqaPY/XtjrooswLa002Ww4vrDUJIknfD9loe0wVXJ6/0mLKSojYLtd7vHqtQ0FXKJkqpppIgUAKiUAMuZBgOLibN/SBq+arF+u8vNklDmIKOWNwP0abrWS5f7LtGkef5feCct8P7+pv/+++vsYza23qTZsHFqtD3CNZjFP2WcKn5ZnhlNBxrqK3y9VzK9w8o5P6dtYsHKbb6G62rsa571w/GliRN8sH30stdIOIluPhBjle2uiw3fb4+lqLy5ttvrbaodm2E8UfSrwoIgwlLcem40ZstW0eWqzS9wPymhiiWPjHj/8hX7rc4kPHq/xt4JVruzx/uU1OiVislinnDXRN5cx0jmsdlzPTOTwpQCRZbgAXd3soiuDibo+VmQI5Q0NTBHldR9ckeV1HwSEMYxSSOfTKtRZfvtRAiWNUJaFBeWixgKUJwiimZMJ6y8fQFdZbyQLz/NUmr2/1UIXkTz2wQK1gkDM0mrbHpe0+Uzmd49PFgQsJhoPVAjGIC/hx8pofR0PPoTMyx7MVutnnYL95fFhz/G52ud5do7nN+Ppanc1uIrNVjcszxQP13M3yli/PFMdW8o3L2Ya3HoQdVSa3gttZXHKvuI1uN8YZAFn3X1SPhjJKXlhr8MZOn3bf41rTZavjcqXuMJs3eCXsMJs3+HzdZrvncrmefPYr63VW6zav6JLHj0+hKpLpvM7Hfv9JvhvoXBm28l+91uTKrk3NSHYc662Arhex3gqwNIfVeo8TVRPV0JNKW0OnIqBkGVRSxT9fMPj6Wof55QoLJYvX9T4LJYtAxhRMA3PPm5JxgV/c7dLo+Vzc7dJ2Qvw4ZqPjs1LLU80bCKHywHyei40eD8znAQjDkGstm/tmLFp9n8v1LjN5nZfXWry43sZSwNJUNpou0zmd5ZniUA/ftuMP4gL3zZXoeBH3zZWGgrYvr7cGqZ1JB6/rBHLAYIHYL550WHP8bn527q7R3GZoikAg0RRxQ9rXOPdM9vepgsGlXZupm1QVjsPoIvBWlfAod/qt4O0Wl+z9/WbVi7eCu8kK2q/JdnacQ3nnMFgE1louXS9kreVyZgnats9q02a2oNPq21zc7nGkpKOrOaJA0vcDwihJLw6j1IXihERxIoMYcrpKEA8Tqf3h977ESxtdHloscf7fvUA/gPN1G4ClisnVps1SxeRaxyOM4FrHo93z2Ow4LJcNVAEt26PRS+6hEwuO1PI4sWCz5+H4MZs9j1OzJY7UQqp5i5g+mqoQk7hgTs6W2eyEnJwt88zFXYJAEoUxuiJw0sybth8zV7Jo+4kV3g9jSpZOP4y5VO+x2fa4lO/Rdj16bkjb9Xhtq8urWx10FZ4+NTsUnPWCCDeM6HkRy9MF3q9pzJVMGj2X89sdTAUWKxb1fsBi+lyP7nb3ft8vnnRYrtG7uTblXa34Hzpaoxc0eehojTd2eqw3HKqWzpml6lj3DJAJ7uZ5v6oyV7pRCR90Nc8q4XFunKySUUZ40N8pjLseb5dydhQXt7u8sdPn9GyBh5ZrN/2fd2pxyO6uqpYxZBFms3e6HZvffXmb7zk7x/N+zOVGn8CPyVvJPZKpO2Sn7SSBzlJiMOx2PS7t2qw3vYQsUAE/SugP/CT7kOPTBda7AcenC/zwMx+9qS8/imN2ei5RXKBmqez0ImqpT3yubDKVt5grm/Qcj6btoZOj7YQIBG0npO24tO1E+QII6XNxp8uZaR3bFTT6HrYb4vsB5zbanKiaLFZMLjUMFit7zVtMjlRzLFVMjk3l2Oj6HJvK4ceSvJE0VL+y3eYL5+sYJF/usaUqHTfisaUqGx2Xa22bU9M5js+U2OqFHJ9JLO/Aj9DT6Z5N4dzoOLy41mTWUvnAqdlBPOj8Zoftjstu0eRbHlhgaaowNr6193ttn3jSYdG53M2uzHdWu7zDqOZ0Zks5qjmdRj+g3vdp9IMb/m+vPD5OXTh7dKvVnIGpJ6RUMEypm/2/LFZ3e/yHl66xutu74TxZiuUszetBPvewkTfHU0vfToyyS94MB6GyBsZSPI++vttxefZKnd2OO/Reluq30XM5v9ml0XMBcP2I7Y6H60f88YUG9b7PH19oYOnQ7PlYOmhScmW3jyYTK/L51Ravb3d4frXF6m6XjbbH6m6XK/Uuu12HK/Uu80UTU9MG6Yv5nMZcKUc+pyVWvpco/F/9wJ/wqel/y69+4E/44oUtnr/c4IsXtliZLjNXVFmZTmJVzX6AG4Y0+wFtP+l+1fZhuqSDlEyXdNpORAC0nUQhv7Deo2sHvLDewwsCvCDECwI+/0aD1YbN599o4AYBjh/hBsl9emW9zWtbHV5Zb3N6ocaDSxVOL9SwdIWeH2LpCt9Y69Doe3xjLemWZRoqRV3HNFQ6ro+CoOP6nJwt8fCRGidnS7h+hB1GuOlKmDM0ajmTnKFxoWETxJILDXsQP7G9EFNXqeVNTF0deh2g5fiDArmsQs/O79H5YaoKbce/oTfxuxl353J0m+CG0PMi3BBWpix2ux4rU4ml/fJ6a9A8OowkbTtgrekwXbpuiY9aAuO2hFlLPusWGOUfyab/jQsOH6aV8FYCXIc1hjPzZUxD3Zdm+qBb5HGFOKO7sXGWfTeIBsU/a80eF3d7VHOCp5kd8klbqqRr+1hzOa41HK61Ha41LL58cZdvXGvTbDt8y9kjuGGMEoMbxjixQNMSt4oVRQQRBFGEF4aDH4CfOvetiWV/LrXyRSI//9oGF3Z8lMinnEss+PWGz7HpHIamMZ3uQruOx3bXpetYFFRJ2/UpqJJeKCiYGsSC9FQD6fkh/SDC80POb3W4XO8xZSlUczrbHYfTNYOrjZiG7XO1kSyEX76wzYsbDnHg8b6jNXRFoWiptN0ABUHbDdCFJIhidJEshJcaSXHXpYbN0VqR9bbP0Vr6TKSNVzY7Lu2+z2YnOY9lqMyVTSxD5fHlKm4Y8/hylde22qy3XVw/5JGjNSoFg5VaYagt5UzZGizYZVNjqZq/6TwanTcHCQLfTS7K24F9v4EQ4q/v976U8r+/vcO5vdhqd+m5HlvtLpauUSnqWGk/0CxHylROZaPlsFTW92VSzAaVvCi+aZPr0fSyLLIUy7YX3lTZ3wpNxEEn4n5pp7fSN/hWHpKD0EwfdOHJ5tRnkSU4g+Fqzos7Hb50ocGHTk0xVzQHxT9RpGBpClGUWH0vrrd4ca2T0CcoCqqayBfWm5zf7lDQ4UqjR9eNuNJIdncycNnthZwJXE5N57jWcTg1bdH1JEUzoJyzuFzvYHtwuZE01sn68j99/+8PMna2zu/Qj2Cr41MyNbpuhIwDdnvghhG7vaQRy8XtHi3H5+J2j3zeIq9rtHxJ3hBIBIYhsEwgIJHp9TXVRF7Zdeg5cGXXobySQ9c0YkVDxDEdz0fEidFTd2OkSOT5zTZXmjYzm4nlXbQ8anmT5dkS23bE8mziwlksmZzf7LNYMlmo5HBCycnZAn4cUzA1/DimbGkULJ1yGnjOpviaqkIkFB5YKPPaRntA0dzouYMWk9m8fUgI4JqOh+MPu2f3K8zcLytvD3dzoPZW8GbfYC/8fT/wNPBv07+/C/ijwxrU7cL5TZuGm8idns92x2OnmCi9LEfKGzt9/Dii68kbJkHW4h/XtzPZIl733d+MafCgOGg66K0o6v0m+EH6Bh+UOfR2PiRvlt6617Q7O7bRDK61lk3PDVlr2by62WGz4/DqZodVXePV9S45ReHUTJ6vr4fMpg1BOq6H7QV0XI9638MNIup9j8BL5sB2y2a5YrHa8gcJA8+suXipfHhJRcaw3fGp5jUcP8JUJf+n84OJhe8ApE1RXOhY0A9CgiCiH4RYOqiApcO1tOL2Wten4se0nZDtdtJVbq1t03QS+cFankjGTJkKb2y32e0ErO12WarkaXk2S2mmy1TRpJo3mSqa7HRsIgm6Kum7Hrbr03c9RE4np6q4Mpn7Tx8p03UaPH2kzMXdHm9stalZgo/dN8/Fos3RSo6cprHVCziV+u5nSnmeOpHIqaLF6XnBVNHCUMUghVNG4El4+OgUMLzoP3e1PyCq64cxtbxJP4z5g9e2OL/Tp2v7LNcK+DIadPDqegFBGNP1gn1id8OFmftl5e3hbg7U3gr2fSqllH8HQAjxe8ATUspu+vengV879NG9TWw4GSnjZH1PJ7IfycTqiGTymhSD9/awX7Q/O1nypjZkyR/EEh+nHEfPOe7/DkonMW7MyWCvT+T9+gaPG/O4h2G/h+St7lS+8PoWz6w2eWq5xvc+tTKUWpnt3ZpdCHs9l8+lXDIAqw2bZy83MVWB6/pc2u1xombS6nmsNvvMFTX6YUCr7/PCZptvOXsEXQicIEQXAh2Iowgd6MegCvBjEFGMpYlBLvlewNaPYKvr0HYT2XJ1whguN9whCx/gk9FnqQPTERiXmmw58NylJieni2zbPZZKRZqOjR+DKWK2uy5OBNvdxDWynbjT2e7Aju3Sc0N2bJf1TkAErHcCnlwuUmh5zKZxhYqlIpRElnImeTOklDPp2TFBJOnZMRUrCbKqMplfxXzSDKaY1+l1AixdJQjh3GabC9t9ZvMaZ4/UODVbZDZlAVVkxMXdLser5lARm6qqg+bv1YLB8ekS1cKN1fFxFHOtabNYNIYMtXYvyQrKaSqWkcTgLCPZqc2VcnT9iLlSbmwtxuhzMEqyOG6uvhss/T0c9JscA7KRNp+kWfpdDRPwUjlbspjtBsymPvyrjR6vb3TQxfB7WQWSM7Sx0f5xqYCj+cLjFN24RWWUPnqcEjVUQc8LMNTcga/HfhP5IFbP6Jj3c1GNe0jGLSrjrtNa06bRC1hrJumLz19tDbJqwiji4m6HqqXiBTHPrDZ4anmKf/qH53lhq8/qZotvOXuE19aaXNjtMm0Kdno+ja7P65s95ssGTSfA8wM8X2O743FyJrGKt7o+biTZ6voEMahakmapyAjHT2SjE9ByJI3EfOf0rMb5nZDTsxqtfkhEwhD7K+73Uw6h04VOlGbrREnlbUpdjyqgmRoqTQd0Q2CqAt0Q2J1k/tlBTCfNGdiTeyHyALhSd7G9RM7mBZu2ZDYv8OMYKSV+6rY5t9Flu+txbqMLMiaOARnjxBF+KHEin/PbPs1ewPl0ZXlhtcVqw+YFHT52Zo6rTYf3zRf4+nqH7Y7DGzsaJ2fKXK73ODWVXMPn19vU+z7Pr7fpuwEvXuviuQGPrkyx2XEpGiqGApd3e0znFaA2VLnb9eKkLaQXs6gqHJ8uoqgKR6bzPC4lR6bzPHJ0ikra1AX2eIhUKrlhaoeDzkngpr+/m5Q+HFzx/wvgq0KIf03SB+fPAf/noY3qNuGpo3me27R5fCHxG06VdHJG8pU9P6bjBnh+PPRe1pIeVXTZwFM2qLQyUxwq6c/mC49TdNnsg6wL46D8NWtNZxCQHnUtvd1irHEPyX5pbwf97HELWXbBrOT0waJ6/0KJhhNw/0LiPvACj3MbHRZLGk4EYSzpBSEb63VeXO9iKJJLLQfHg0utRJNebdrUOy5X8xquH9LzI5p9l4KlYygqPV+i2S5dN6BnJ5b02k6btV2HaU1iGRpeECJkzNWWiyPhastFUSAE2qmpf7RWYLPb4WitQMdpA6AoUI5BEYnC/4T6WTYDWFDhy8BeQpIXkiZBJrLZ8+h7kmbPG7znhcn54Lo0099NwCAiSmWITkHzCdHpOSFuGNNzkqPWWn06XiJrlkkUQd+LUVWIY4giScP2cULY7SUupUbPw/MT2XIjDE2l5UZM5QwsQ2MqZ/DCtRY7HY8XrrX4fpKsujiSVHM6fSdEIkAKDFXBcSMMVWGz49EPQja7yRK22kjccJoihnbi2XjOmbkyQQxn5so3xIxWmzZdJ2C1adN2Ai7Ue5yaLnJyrjR2p5l9zvOmdiDCxXsdB1L8Usq/L4T4HeAj6Us/KqV87vCGdXvQ7NvYYSItQ2W2aGEZSf4zIgaUVF73FWddHhstZ8j6zgaeXD9iW/UpW/pQMDHLAQ7jFd04V80of804hVq0VHK6StFSD+x7P6ifctzCsd/x4957M+7zAVVus8ezV9o8uVLhhVV3wGV/er7CY8uwUE2syHMbXa61bM5t6Byt5ri42+fMdJ56N6DZc6l3Lc5MWzT7NmemE4UgEYn+QFAumZR6AeWSybEpi8tNh2NTFl+51GCz43BuM3EZrHddvDCRi5UiihDYISDSglYBtpNYQXZqqV/Z7dB2JVd2O/xL+4cSy95Os3UkdHyI08uzt3SG8XVZ1qAeJnKn7+PJRBZzKqodUcyp7NrJ8rBn6YuM1DQNUw3QNI0wCnBCIE52kF4Ajp8o8ZyuoBGT0xUiJFEMERJFChQFpIRa3mTXdqnlE7dNOaej9yLKOZ2+H9JzA/p+SM6AWMbkDJAypuMEKKnLtGDoqKqgYOg8uWKy6wY8uVJlt+NS73vsdlwsFVr9AEuV6feQCR8SkpnMTjz7/LYcHz81mpZH5qGuCHpulBSUuT5eGNN2/X0TG4bSPjOf9W5z72TxVr5VHuhIKf+5EGJWCHFCSnnpsAZ2O/BK87rsOz7PrTYG9K1J6CxO5XVkb/ao9Z19b6GSw4tjFio5zm91B9b3sZnCkFU8bvKMBphudn4Yr1CzzaNHFf04ZsmDTuT9HpL93DM3++yDlspvtj3sIGSz7XHuWpJRoxNhexG//+ou3/rADA8vT9Hq+3TcxB+/0XHZarp87WqTgq6w0/XpOB6WaVEtBFhmovhzSqIYcwrcN1vkWjvg/tkiHTfA8cPk83oOtgetNFtGSEmQSlOFIEpk1YB1ErmROj9lmv79zzufSpR9J7XySeRZPpv8QwwkGwq2U2mq0I8SmTbVQgiIUvM/isASyYNqCcgLaMtEAuxVi/SAqYLFlU7AVMHi3FaXGKg7kmoOYgkp3xpBGBOmcqFqstULmS6ZFHWDbTtiqVqkkhNs9kMeXEh2k7Nli6udgNmyRRyF2EFIHIVcbPo4fszFusOxWg5VEUSDuoYGb2x2qRgqZxYrFAyNrX5Azw1p2T5NJ6SU06kWdNwo+UJhFLHb8wijiKmixX0LMFW0iKJowM650/W51nYp3mS+ZY/JBpH3S2w4SFbPreBuTgE9UMWCEOJngL8J/K30JR34lcMa1GHgy1fqXNrp8+UrdQAqeZ3lqSKVvD7kwslitIAri6wvPmt971cMki0cyRaU7Idx/7dfwVXWgjloMVQW2c/b7/iDfPbo4pm9Bn3H56uXduk7ycMRxkkBneOH9P0Ixw/5nZeu8cp6i9956RoAOV0QS0FOF7S7Lrt9L5E9nziW7PZ8ru402eoEXN1JVv62HxHFiWw7EWEU03Yizm/12O15nN/q4QYxAQmjK0A3CSnQteH8ZpeOn8gLjeT1Cw1I44kDWY5SZR8lVn5MIve91qXkmFoJ4lTZxxFEqUkfBRCJZF5GQmVlRkEDVmaSk+7NMgVo920cL5GpcY/vgYyTeIOME83fTncobQceX65xZCrH48s1Hjte5fR8iceOV3nlWod2N+SVa8k3CEIIo5gghLYLUgraLuR1hSgKyesKoKSLVzKqRtel7QQ0ui4yltR7HjKW5HXQVZW8DpYqhyz+3X5AwdTY7QdUcjo5I+kb8OpmwhX06maXuZLJQtlirmTeUIy1WM1xYqbAYjU3VAWffV5Gn9H93ns7uJVn753CQZehPwc8DnwdQEp5TQhxd3XOuAl0ki2xDlhCpeeGWOlDlG3lljO0gXsmG7Tdz6edTe0ctb7HHTOOruBWLIP9rO1x2Qz7Hb+v9T7GvTMuQJ39rFHX1ctrjUEbwhfWOnxjvYnjRixWTCxdw48SimI/jAkjSRQk9RJRqpCv1vs0+y5X6ypb7T5OAFvtPg8fnyaSMdWCxrlrkgjYtdPFxnFx/US+uOqzuhuSE7vU8hZhLFGB1IMykN3wumymv2861/3wLvCv+aEBrcIgNTP9+0N7Vv6boGZZrCsuNcui57jgga5DKIEIpJosLGoqFcUkpztoWuKCmbZgx03klVZSoXulFVHOQasP5RwUcxb5nksxl+yA8jo0gkR2nMRi7zg+U3mLvKFiKirrHR8HWE+pnJt9jyCSNPse95cMhICyKeh5Ak1T0YWgbKrkdIWymTxjM2WT3K7DTNnE9UJsP8T1Qo7NFjmzIJmvFKj3PSo5HS+9sCencpzf6XFyKjfUiL6W1wbtFrO77f0s9HE73/2e69tJ33A7UkAPa9dw0E/ypZRSiKQkTwhxdxO9pzBIFL9BslU9OVNkNg0EZVu5tdsOa00bU1G42rB56Vqbh5YqvP/E9Nh0zuwuYT9Fmb1xWbqCg7R+HD1+XKB27++b+dHh5tzjo+ccN4b93EPjHpKbFcGZqdW1p+yjKObKTps3tnpUDYWTs0uUc0mAXVWTHZSqqlRyGoamUMklY7hcTwKTl+t9IhKr2omT7BkFgevHmFrie98btlRVFBEjVZX1ZoAHrDdDgrhPz4PtXh+ZWth7UiPJCNMAi6ThSTF9zU1fK7uphZ+6bb5dfnbgzz8oNnsubpzItHsgQQQnp3W6WwEnajoN28eOoGP7TBdNohjUNEqwZ5iqCjjpOIIA/HTz6kdQzWvoaiIBLEvDcEIsS+Ol9Q6bLYeX1gVeCBe2+0xZGjMWNFyYSeOmU0UDs+MxVTQoF3PMlz3KxRxbvTZRJOkHMZquYGg62h7xDnG6A4jpBgGKUOgGAQ8frVFOK28v7XTp+hErU8kzlm0Z2coUWS6VLSp5A0sf9snvl/4M10naWplsvXEVvfD242BZ3I4YwWEVjh30k/6lEOJ/BapCiP8c+MvAP71tozgkuBk5WzKYK1vMphV+jZ7DG1s9TCVxD7y60cEQgp4XEkQxPS9gM7Mg7PGt38ySHS0yGqegZwoGlxt9ZgrDyn6/yXaQQO1+k2NcAdToObN/H7SA6yB5/Oc220M00z3bpd7z6dkuuqpi6Cq6qg4RhIWRT73vEkYWq80eHSdmtZl4s2MSpR4Dmkh+1wRc2Wqz1Yu5stVGSf3fe7JnB7gykf3Ueu+H8Go90dCv1iV7SbF77+85/VRgrgq9ViL/z9Z1K7+TZux0lCQ1czTj5iBIedOo96CSSw42dHCCkIBEXu0m/3O1C3M1HU3xUPUkXTGfDjSvAnno21DMZxYEDXKGSdH0yBnJLsF1QnyZyJaM6QfQsl2u7irsdB2u7qqUC3kqjk25kIQ7V2aKbPRCVmaKLJYNLuUMFssGPdvkWsdnsZxwEOVNFTNt6r7Z9unYAZttn4ePTnOl7rEylWTOLJRziazkqDsBC5XkDuSE5NxGm2PlWU5mcvfXWi5eFNP1on2LLLOJFtMl6/r/9bxBVtB+CvlW4mCH6b8/rMKxg2b1/IIQ4ltJ5vv9wP9XSvn7t3Ukh4BsepwbxrRsHzdNo9jpBWz3HOZ6JlaG9GmpYrHT97h/rsj5zTZfX2sTBxEPLdduVNYpslww2Zz+UeW42XEG3DCOb/OFS3U+fGKaOIoHRUlgDR0/zp1yUHdMluMkq/j3y+N/Y6tzIA6ccch+1mh7QqEIZCwQiqBW0DAVhVpB49+/tMm57R5EMRe2+th+zKsbfa7uJu6Lq7vJ3dyrsZNxkiUDSRVsM4qJgLVWnLhJgK3Uwb7evy6LCngxWKncQzQiOxmptJLXd1rDFAvvjz9LHyjE8DKQ08EOrsuDwMnIYiage7GRREUuNuTQguIFPpFMJEA7SALX7QAeWSzQW+3z4HyBdt9jpxcyn9ewVEkQxwM/ei+9bj0fND3hFg0iiROEhHGy2JiaghMmTKIAjufTdSMcz0fKIgiJlAonZ4qcr7ucnCnScgK2uw6ul+bGyCSbCikoWCanF4sULJNnL+0MMrh2eh7PrbawXZ/lmSLrPZ/pgpnIcp68nuzKdRVcP0RXGWp4M0rPkU3nXJ4pDubhDVl9bxPvVCXvYWUWHegThRA/J6X8m8Dv3+S1ewJvbHV5Y6dLxVL5yP0LSc5aLEDKIX//dt/jgYUKoRBEscDSVKI01TM7ybJKMMuhvx+VQlYJ/t65DVw/5uWtLqWGOyhKet+RylAWzGhB182w3+SoWAa7fZ+KdfAJOi7VdHSyH7QYa8+6A9juOGy2bbY7Bgu1EtNlAxQdxwtp9j0cz8ILPJwgydkfVchOcF2mlPZEYUZRZ9ws9sixEWCnyt4eceEqIzKL38n48rN+/HQ9GUgZDsu3Ct+/LrM7jmNluNpJpJAqUiYSoKZD3U1kKW9SK/iU8iabvRBVDXGkypXdPj034spuMtKcCS07kV6YLDBeKAGFxHBW8EJByRR4YTIH1jshfhSx3gmZLrm4QUyj7/L6Vo+ru32+amnkLZU4kqylhGunF4rUnYjTC0VKpoKpqJRMhefWWqy3nJTWWuAEMbspa+6pWo4r9T6najm2ux6bHZeypSGQWIZKGEnOb3XT5isxhqEM0XOULX2QZp3FaJp1FrfiR78VhXw3Zfkc9OzfSpLVk8Wfuclrdy26jk+jG9B1kqdreTpPKBOZjf5nlXNJV/GJeWS5AjDEAfPgQmWgBDdaziBeMKo0R3cJe0rwqeUaz5BQEbQdn7rts1AxsP3rjajh7Tckz/aBPSiyVcEHDSJn/2+0b2p2Ibu049BxfS7tOJycLVDvBuSPxrT7Nr1+KoPEldMLEsvcTi10gLT3N2FwPRf+rYThspWueZLFYU/CdfdgFlkr/+w+QduWHJZvFVIB4kQO8vsZzvAJoii10JPlTNc1NEJ0XeNaw2anF3CtYeO5Hk4Enuux5UAvhEu7SarP8VqOru9wvJbj3Gay53A86LlJnKHnupxdKnOxIVmZShTosZrOelvjWE2nmNORMRRzOvWeixuE1HsuDy3Nc7XpcnIqSQE9OVNiteNxcqbEVDE34OqZsnr0vZApS+O++TJBHPOBlSTZoW6HqCjU7ZDZkoGlKZTMZIEwVZWiqWEZ17PoqjljqHFRNvCbxX5B22zK8WI1d2jK+W4ietv37EKI/yfwV4FTQogXMm+VgC8e5sBuB7IPdtfx6Xr+QPFXcwaG7lLN3dhlak85e5HB+0/MkNMTJZxdFLJKMJvhc3KuNJSfP26XcGapypmlKpBYAktTxcEistfTFYYLug7TMhlHcuZHcmwefr3rDlxU2f9brdu8utFBEwn515cutvjQySqn5kuEgY/jS8LA549e3+X8doecGnOh4eEAFxoe7VT77vbhaBmaHaikxclZF8weetwa7BGZxZfGWPn7YdxClM0ukyTK/GZ3JE1cIoiHP2s39QftOjBXEigStDTpv+uFhKncaoW4MVzcconSxafeS0jQ4HoefylvkjeSnYGlJ6lKlg6GpmEoPoam0Q4UakWLdpCsuPPlAtWCy3y5gO0FRDLC9gKeOFalF0ieOFZlumiyXMsxnXICRUJwrFYgEsONz0HlSC0HJAH8o7U8qpo8Yxtth7WGzXRBZ7ZsJeaOUBKurYRsa+jZzSZpwHgFv59rJmtsNW310JTzO+UeOgje7Jt9Fvgd4B8AP515vSulbBzaqG4TShbYbipDCUIkkmHrHa6301NUZXDjR/2HWbdFVlHul+EzbpeQRfaY/ZgD15v2gSblrdAlZxel7ALXcvyxO44vX9rl/FafruPzwEJ58PCsN/u8fK1NLafSsD1e2ehgapJvfXgZVAVdA1SFF692aITw4tUO7VQptdxkUgYkbo5eWh3bc244/aHioFb+QZDdZexRLNzM0+xnZEmAnxZq7bmvAsDQVRQtkQCd1M/U6Sf6ERhkO5HKo2V4o5NIAEvXsHQVS9c4OpXD3nU4OpU0KF/t+BydynGkanKpkZDZAXTDiErOpBtG+H5E34vpuCH3pVTMx2cSSoSOGwzy1p9YrmHqKmcXypy71uTZ1Rb2chVBzHrH5oG5Attdh622S8lQgRoFI5kfBSMJNO92HXa6Oh075IW1BpYqUDR18ExVLH1ofu6XpDDumREIpEh264epnO+mSuB9qxSklG0p5WXgHwMNKeUVKeUVIBBCfOCdGODbQcpJRRzDdF5FkEhIuie9utlGk/J685TNzlDx0ujikC3IyP6+VM2zMl1gqZq/oaBkrmASRPGBe+juV9g1Wqg1DuMKR/YrKMkWrmQXuDiKuVzvEUfxUCcrgGbH5bWNDs2OS97QBzuVKzs9mn2XKzs9PC/EDWK89HpM5XQURTCV0wdB2FCOz4jZCYblYeFL/BAv80N8iR8CDlaAZYzIg8AbkWZGZmMR87WEFXS+JqikT2lFgZ7n4/mJBK6bbhrMl5M/58uwN90KJkQpzUS0RwinSrwwRlUlTx2vsVTL8dTxGqqqU82ZqKrOTDnHiekyM+XEZXIkb9DsexzJG8RBhO0HxEHEVtdlq+Ox1XUp5jVmSjmKadrodMni4SNVpksWr2x0WGs5vLLRoeNHzJWsVOYGPwBzlQJnlirMVQp4QUTHC/GCpOfBRtPlSqM39Exlnz0Yfn42Wg6XdvtstJyx3dpgOPB70MLKex0HLU/7nxneUffT1+5qtPzrUqiJwhR7W8qeT9ky2Oj5LBYNOm4iszd+VGlnFe+ootw75sJ2h2cvN7iQshpm4wfjFO9+k3Ic9jtm3AKx38Ixrtr3YsMmiuFiwx5qHQnQD2KEksgoirja6BFFSbu+7a6PGwTMlCwMXTCTsqK2HB8/lLQcf6hSNQt3RL5dFEbkzTBKl/whPstZPsuH+OxQoDULf0SOgzUis6jlr8tK+lqFhMPe0hNppLfLMKBlJ66dVuq3WUpdYEtFmC8VMdREThdVTGC6qJJysw3kTi9AplJVNYq6jqpq1HIqKFDLqXiBxA0CvCBZnb98ucluz+XLl5tIVaViGUhVpeMG9L2E9uIDx2d45GiFDxyfAeDltSa/98oGL681mSkY2F7ETMHgffNFTE3hffMJedrTJ6Y4OZe4EY9WLUqmxtFqkre/XMtTyRvMFExmyxYzBRMviilb+g0tFWH4ucjGx/Yzevar0H+34qCKX0gpB3t9KWXMPdC2MbvFnipYWLrKVCF5/GqGwlqzT81Q2LV9NDWR2Z65o43Ps5Msm22TnWx7PCI7afOMcYtFFgct7c7+37WWzZV6n2utGz3U46yW0f6kWWT7Du+2bX735Wvstu2hRTG7SwIo6ApSSgq6wlcv1nlxtc1XL9Z5fatLxw55favLl1/f5qX1Dl9+fRuA16459IJEHkRx7pdtc1CMZt/sIWvlH5Ri4VawmB+WWczmFZRUGunKYFhwYaNPN0ikl66AnpsUd0kYFHspmoYpErnRs4ki2OjZ5A0TBOQNk5WKhaXAStowxhKSIAqxhOTSTo/1ls2lnR66kQRLdUPFNASWZmAayTbBCyNcL8YLI47VTISicKxmktNUNAVyWtK/eLvlsZXSVL+w1uC5y01eWGsQSThSyxHJ4QDuKLLtMKfzBkEcM503+LaHlvjOR5f4toeWaPY8Xtvo0ux5NxyffUayCj37HI4aTYfVbP1uxkGfp4tCiL8mhNDTn58ELh7kQCGEKoR4Tgjx79K/p4QQvy+EOJ/K2pt9xu3AbMni9FxxwMff9GOO1go0/RiRXgaBMuT22Y+3Y5w1UTJVTF1QSsvWs0o4S8WcxUH5QbKTd79GLON2A6MWexbZ/OfnVtvsdjyeW21TtwN0RaVuB1xuOsQxXE6J4+t9h92eR73vsNnpc36rw2anT9+LcGLoexFfW+1jB/C11eScrfTZasU3uj1uhlvJ3NkPWWWftfKzFv4oRlNKD4JcRropSZx7k9tbd+KUTC2mkuhqKiZsplNk0x82YLLNXgDqvRBPJnKvraila9RtO1WyNvmcQd6EfGrR+lKgKQq+FDT6Ln0/pNF3qZg6RVOhYuooCMI4Qknn16PLFVZm8jy6XEFVTR5cKqGqJvPVPKfny8xX85zb6rHadDi3lTgH+m5Ive/Rd0NyukLL9snpClfqXV7fSprQjxow2V12dle+PFPkOx5aYnmmSBhD3lQJY25wP2afkXHN1kcNrYO6UN9NOKji/y+AbyIhJlwDPgD8+AGP/UngXObvnwY+J6W8D/gcw0HjQ8Ns0WSmaA26EJ1dKDNbMjm7UB7aXmZfv7TT5YWrbS7tJKWTWYWa9S1mJ07O0KjlzAHvfxbjlPV+Fsc4YrcsGdUoshM7e3zWYh9dHMqWjq6qiRQxl+p9dBHzjSs7/PsX1vnGlR3CIOTcRocw2ON19+m7MWstn1evNXlju8ur15rstiMksNuOblDut1uRv1Vklf1+Vn5xRB4EWWW/tz2WgO9el6NIW+/S6CfZNjk1kVmkxeaUDKgVksVhr1e9qSd/mzoYKuhaIiuWhakn0k5J6ux0tTA1gRACUxPMlJMsnJlyjlreomgZ1PIWzb6PG0Q0+4lyPDJV5sxCiSNTZR6Yz2PqCg/M5zkzW6CS1zgzW2CxpKMosFhKMtIKls50waBg6bgRVPMGbgSmrpLTNUxdHTRHd9OxZXfZ2WcxO1+nCzqRjJku6DcYM/uRF+5h9PX3il8/i4NW7m4DP/hWP1wIcRT4s8DfB/Yat38P8LH0918GPs8h1QOoJFaaCnhBTNv18ILkickZGrOlREGf3+4MerJ+/H1Lg8Ymf/j6Fq9vddFVydOnZocyX0YnSrZC8GZMnzCeivlWKBuyGQL7USlkj89a7MWcOZSmGUUR6+0+J6YsLu706fR9Lu702egmbe7O7zg0ej6Xd7o8bwq+//0nMEWEEwaYIuKLF3u0Ynj2Ym9I2d+Kos/et7diZY/DuNTM/YjUeiPyIChpiR+9pMF2utlyAXXv95uEcIo6uEEiTUXD0DxMZY8pKEHeAs1PZNHUMAkppfe+ltPZsQNqOZ04LcCKUfjTD87hndvlEw/O8JULu8QSDLHHeQ9+GCGAb3tgHi8WfNsDc6x3XMIoph8EKEIQxTFKmjZayRscnS5QyRtc67jYfsS1jkvOMgY75zASWLogTKPIjxytoWgqDy2UubLbZb1pc/9MnoeP1BBC46GlhCBxpnTdUBqlXHhYVajlDS5udwdNVbw4HriDRivDsxQljh/etCJ+P4y2YbxbCq5uN94sj/+/kVL+t0KI/xFuzOeTUv61N/n8fwT8N1xv2g4wL6XcSI/fEELMjTn3j5PuKo4dO/Ymp7k5slv0uuOjKgr11M2SpVkAhVgKRjdABV1DUwSFdAs9TkHvx0Z5EGSV+Ci3zkHOObo4jC4Ke5QPBU2l2fd4cK50Q6HY77y0xnOrfbp9h5bt03YCWrZPXkkWzLySZ7UZsN3zWW0mpmvDlYRxTMOVNFPN3oyhynUiM4XrtRQHhRyRbxdZK/8xPjvIqb/dcDMKPrt4qWlhlqpAjeQa1dKpVi1Ao5VI200I6Gy3z8kSXOzCyRIYmoog6XqlKDqKGqIoyTcoWjqqCChaOq2eh4wh8AIs0+DUXAnLNHDStB4nVchtJ0BTBG0nYNdJ+ufuOgHnN9u8tNaibMDKdBlTVzG0ZH4crVpsdh2OVi2eW91htW5TzSl818PLNPoeJ6fy/ObXr3LuWpdyStKW5eH58sUdADY6Lh97cAlFUwbK+np+PzxzaZevr7VxHJ/3n54bzOtsU5X75yvsKfvRDlzZ53qn6yVuWzo8nEnThvEtFbPFXJZxeDn9dxpv9m32XDTPvNUPFkJ8EtiWUj4rhPjYWz1eSvlLwC8BPPXUU29bB1QNha+0HR5JG0vsuT0+fGJ6aFJnoSvgRRF7ZIPj8nCzdMsLldwQG2VWkbed4KYVgrYXDv4nO3HHUTTAjRXB43YMm22H1bqDqSgoqsJcOalUvrLd5QsX6yjxNA8vT3F1x2G10WPaUpBxSKPvYbsem92k4OrCrp3wpDgRtpdYo5e3W9TtRAoSRS0ANa1YUnXQUwf1W1G0b9cd9KV96JLf7mfvtxvRNSBM5JwOGw7M5WClavL8psf75k1WOx6tPuRTv1DBylPQbApWntWGTQysdWGpqpPrB+RzOroQaEpETldp207K1JnEWRpOUsnbcCJ0TUUoEaqmYrshjZ6L7ebIG4lbJ58Gap9YrtIJJE8sV7m03eHCVoeqAatNl1DGrDZd7luoktM0jHTyr7Xswa7YUlX6XoilJgVYx6aKqKpK20loHdpp+lA2bqSStHFU54s3uDazv+/2AhwvYrcXDFn/989XsAztpso+i+wOYK5g8jKJxX/DMzLmecnG7u6mgqvbjX0Vv5Tyt1L5y7fw2d8MfLcQ4jtJWWyFEL8CbAkhFlNrfxHYvoXPfst4YT1hiXxhvc23nD0yFDgqmRGaqrDT9ziTOWa96xHLRO6HLN1yxw0GvXhnytYQSVrFMgYVvkPdpzrOQNmPbl0Pws6ZJa0aLS672kiCroaaLGTbLYdT0xZfvrjLqxtdDCSffHKFluPRdUJajselep+mB89f62D3E3fHxU2XXC6hT7jaSCz+yylr5OVu4gvvkaRMdlJl3wmuBybbb+/2vSXcLDVzFLfqQtov0JvlDhqkUDqQXzLIGR75vEHQ8JKsnL1uWL5NN0ykmn6oGkHXDXDiROYNDS8GN4pJk8UGMvQ87DCRhYKVuHRUhe1On2sth+2qwUNLVbbtkIfSSnHT0NFUDdPQQdUo5wyKlslS2eNiXbJU1lmomCzWcixUknjDsxd3+E/n63z8vmlUVadganjBMMvtw8tV7CCRkLZB9EN0RdBxQ4RMZJZ40PHDoSLJM3N5LjX7nJnLD9XRPDlTvKmyH3Vzji4K2X7Ub0ZVDsOV8ndTwdXtxpu5en6LfXbcUsrv3ue9v0XasSu1+P9rKeV/JoT4eeBHgH+Yyt98y6O+BcQypu34xDIxtUQY8szlOt/54BxG3qDvRhhTw/1rT00X2eq4nJpOJs+4ytcz82VMQ2WlVmCz7QyRRBmqOvjsrP8/q7iTbJ6bb10PYnV87dIuL1xr88hShT/z6NHh7aquUcolPOZffuMaX73URVMCBJIwSnqbArx2rU83TGQ9VUobmeSfNtc7N23epIr2Zj7xQ665GsI4P/472Tgim566l2TbAq42bHredQkM5Frnujw2Y9HdcZmfsbjWShbXrgeSEA3o++ENRHChoibN1RWVtbqLJ2Gt7qIoCo2+z+tbfY5MSTpOxEaa+XK+0SeIIs43+jy6UMILI2o5lVdciYKg5Up0RcMNQ3Qlmed/8sYuqw2XP3ljlz99dh7bizC0eIjl9oGFMrtOwAMLe0uuRCT0nFQLGkXLoFrQuLTT4eWNHnEYEcZi0LZ0eaZI24tZquRoezEn56+TH2afvewO2YviIcPobiJCu5vxZlfmF1L5fcAC19stfgq4fIvn/Ick/P5/BbgK/MAtfs6bIsvVM1/OM1/ymS8n3ubnN9rYfszzG22+f7HK/QslaiM8+cfniuRzOnOlxOoZZ31nlXXe1IZI0WoFY/DZ46yJPUsFblxc9nMv7QW76n2PVj+gnlYYZ/33ge9zbqPFiarBly7UubDjI/A5NV1gs2PTdZLvtqfs6zcJQN4LGEexcPkdHMM4N1LPTqile/aNWU7ZkuXQc/HjRIbpP4QenF7Ms9u3OT2V5xIu9U5MKZ+4YAI/wk9lI115Gj5Mez59D/qez2sbPo1uyGsbLQAWTI3nnSCRV5Od8PNX2zT7Lj1f0uy7PHd1l/Obfcq64JNPLCe9DWTS42Cr7dHzArbaHjMFl82Wy7Gyy+XdNl9f7SLiiEePzxDGgpyhEsaCs0emcEOFs0eqXG44rLdtCqZK1VJ4baPDVC75PtlOW9kMn6wx03L9wQ55lAbloIyx43A3EakdJt7M1fOHAEKIvyul/Gjmrd8SQvzRQU8ipfw8SfYOUso68Im3PNJbQDHl6ilapD7oeJBIKcKYtUaf+6bMGwOyGUs8S+Wa3aKu7vYGGQOj28nshDFVhY4bsDySdnmQzlr7TbyrDZvXNjvoQuH4VJHdvs/xlBVxq+Xy/GqDvKbwr55b5+XNDo4bsN3xcWLY7vi8vuXjAb/zSpN/dMtX+M7iVojUDhPZiuOacj2I20yVeNO70VWUpapo+cmi0fJhpgy9TiL7oUDXExnFMRKIUj4SKVLyNwFHawqXmjFHawpOJFEAJ5IUtCT4oKZtR1/Z6eEEIa/s9LB0hbbt4UQmOV3FUCGnJ21K3SBpjA7wwZMz9OMGHzw5xUbHxQsjel5IKAWmrhBKweVdh/WmzXTaLS2vC3b7Lg/MFVBVkxNzBWp5E0tT6HsRx6dyXG44qJqg5abLpUj5JYQY8vFnfe+j7tAsxrVbPOhz9W7262dx0CVtVghxUkp5EUAIcQKYPbxh3R5kKx6bjkvHiWnu9afTVJan8qANE6vtdtyBv3yUCz9bgPXc1Savb3fpOgE5Q7tplysYJmnLEsC5fnRT1suDTjxTF1TyRiILOidnSlQKiXvphbUml3Z7FHWVjUaXeidkw+iSxmTxvIMVT93tuJ1EarcbUlyX2QKsUWQZQmup7lNjmCvn2Og7zJVzbHf6dFzY6fSRIvnOe59/arpA0+lzajrhuPlPr9f5+Jlpnrtc55qIqJkaC9UCO07IselEUbpeiBtIXC9ktlCiaOmUDJOipnGp6TJXtJgvGxjbKvPlZB6W8wZHq3nKeYMQyO24zJYtVqYtdvs+K9MWV3YTv35aIMzvvbzOVy63sG2XP/fUiQEfTiWnU3dCFirJ7ntvEQB4fbPDxZ0uJVMhb+mDZ2elVhgYYVkuqVGFnn1ms26ggz5X72a/fhYH/YY/BXxeCLFXrXsc+IlDGdFtRDsjS5bFbMmjZCWz8tsfXKBgJR2wspZBNqtmlPlvr9ikbGrkDQVdFeQNZd8OXKNUznuT7+VGk/ObXUyFGzjADzLxzsyVCeJEbnZc6n2fxfSJi+KArh0RxQFBnHSkCuKYfqpY+qO+iHsId5uVPw7Z/rkmSYetPTkO+ZyC5sbkcwrbHYcgShrXxEIgkMRCUDY1trrBIIY0V82z0IuYq+ZRNYXZsoWqKQhFoKpJx7OcoWDqCjkjcaesTOfZtkNWpvNU84KcrjFVEOz0YgxNIxYxhmZytJbHSJu6G7pOzlAxdJ35ssbJ2YD5cp6tjsfrW12OVk2WamVWejFLtcTHf37LZqfrc37LHmqE8sJak6t1G0MRg1z/Pevd1HXypo6p60PPTlahtxx/0OyomjOGOtSNy8p5ryj0g+KgBVz/QQhxH/BA+tKrUsp7ylh8+vgUQhU8tZwwREwVLU7NlpgqWkP+8tFtZNbV4/ghTcfD8U3umy3RTmlpp4rW4Jj9OnBlEcSSoqUSxPLAx4ymhrrpg7Da6HFxp0PFUnj65AyOF9H1QhwvotGLCIFGL7ol6oG7DXezlZ9F2YC+n8owaQivJ7TygxoHUrn3d7sXE6ZSMxL3jxvBYslkp+cynTNp2G4SPPaS/UOj59LsuTR6iZFyrWmzUjEIQkkcQxBK7DDGTyXAA0dq9ALBA0eqtO2AWsEjZ1rMKDqlZsBMucDKbJ4rLYeV2cQqX65ZrDVMlmsWXiAxjS7zJYuvXKnTsj2+sd7mo6dnWG05HK0l1vtTKzW8WPLUSo2Nts16w8FQkrr1WEoEcGmny0vXusRhzEzZ4r6ZHKutPvfN5IYs+yw9uOtHg/65m/71dOWZsjU2jjYJ+g7joK0X8ySVtytSyv9cCHGfEOJ+KeW/O9zhvT0s52HVTqQXxRQNfZAv/HsvX+Mbax3W6z2WqvlBs/WTc6XBZHt5rclLm53BpAxiSdHQCGI5RCZ1NDNB204wRMuQ3Q1ULWPg3slmAo0eMw7Zz2r3fba7LmVLpWWHtOxgwNj40lqH9ZbNS2uQxnvpe3eeLuFWsF9O/p1GNqcfYNaAHT+R5ZLGdj2kXNLIByGdDswWodkFN+XZh2Ef/17DFE+Ckr4Rh/DkiRo+bZ48UeFXv7IBQCNNn7pS79HzExmQVKhvdF1yuoaheuR0jSiKEUiidO6fmi2y3fM5NVvk9c0OUkLRVFmZztPzQh5cKBFFYBkKaaMvGr2AlufT6AUIVVDNGdhhxKNHKtR7AY8eqaCqGvPVHKqaqJU/8+hRjs2XObtQ5sX1Nq9udtAUwcNHKnix5PRciS9f2mGjbVO0BE+fmuVq20HGcLXtUMjUx5ycKw0U+rWWPXAbbXfcQSo1DDcHypvXY2/vlaDtQXHQK/DPgWeBD6V/rwG/BtzVin+mpLNlB8yU9KQr1FYbTcDDy1NsNGyuNhzm8hoFQ2Gr7dGuukPW95VGn/WGQ8lQefrU7JCydvxwkGqWnVSjtAzZHcRG2x5k25yaLw1lAu0ds59lku3tG4cxuiYomRqu77PZcXHTpq1128ELEnm7KY7faRwkJ/+dRFqEi8KNgdqylSj+sgXNbkhEImslDYMQTdeI1RBCiNPVwhRJPwJTwGwB2u1ESkDxoGBBFErsMCIKJQtVQa+RSABNVVEI0VSVGcvgouYwYxlMzVp4QnD2SIW2F6BrKqV053qt5bDedLlWc+i4AUJIOm7AfNnCCWM0ReDHMZam4qdB5LVWn0bfZ63V5wMnZrnWdlgq56gUdAxd58RMsjPoeUlDF0gqhL0wou0ESOKkQTsxm22HjbbDdE5noZxjvemxkPL+FwwDVXUoGMZQfUzWes9a9dWcMXgmgeski3SGki7eK0Hbg+Kgiv+UlPIvCCE+BSCldIQQ+5undwFe3w7wU4kQSClI+7cxW8kx3faYreSw016mdjBMpLYylafnxaxMJZM6m7b5xlZnwAm+VLLGFlNlj2k7wVBbxT0ctMtWloe8VjS5f75MrWhyreniBRHXUiqFkpX0sCpZGlEaUryX3DvvVE7+flW4sxrshNflHnSSgPiezGKnd12W8oAPugHsMZpLOVTkBXBqVuP17ZBTs4llrhFjagpFy2LTtpkp5vna1QabLZ+vXW1w/2KNXtjh/sVkKfymEzM4cYNvOjGFagimmgbTFYOnV6bYdUPef2KK/3huC6QgperhC69v8o31HnHo8aHTC8x2kjTntZaHqaqstTy+8+FFQil57GgVAEtTsL0QS1OoFgyOT5eoFhJSwr05vVjNMVW0Bsr1ja0Oz6w2kWFM0dRwgwhTUbjWduh5IdfaDmePVHm/qg5Spt9/Ypr5qnXd558q9XHdtLKp0JCQL+5V62Yx8fEP46BXwhdCDEgHhRCnuAcSQgJ5Xc4WdeZLFrPFROk+sVLDNHTOLha5sNVFVxXy2nBvUEMVQ9kHWYxj2tyPciHbxHwcsulo+51zbbfD7762w7ffP4uuxLhBjK4k1tlOJyBI5b2CrLJ/uzn5JsnkfLOeZwZJsNXgOqHcHlvTbE2ntRMwW9NxdgJ6JNXJeRO2vYQ6ue0Nn2fQID2Go5U8LdfmaCUPcYQQEVVTw5hTeG074PhcMg+fPD6DI1s8ebzK77y4SQjU7ZhTCyZrXZ/5qskb2yFhlHzuXCnPbCVgrpT63udLPObHLM+X2On4FE0NXTW43HLRFYXLLZem7WL7AU07MQzaTkQQSdpOxNnFElt9L5Fth5c3O5ycsm5wjWq6xrGpApqu0ew7XN7tMZ1XiCKDb6w1KJ2YhpGU5Z4XEkWJDCKJJhSadsCjy1X6QcSDC+UbUqlHCxj3fr+w1b0p3QkME6ktzxSHLP0Jbo6DKv6fAf4DsCyE+AwJHcNfOqxB3S4Mk30lfTVJFfXZo1ODBudrTZuCoWMa6lDKZtsNBulko5Mpu0Bk3UNZdwyMb2Ke/bzs/2SDYKMLR/ac//OL13h108b3A5DghzFdP/mmzTRHcE/eCxilS347fvz9SN4qJFleCc1Xgj3Stj1LHiAKw4HMussq6TqvCzg9BecaiYSkzaHtJTJvalhaIl9as/EkXKx7PLxc5lonZDZtNZg3DSqWTt40mKmYtFyPmYpJpx/QdUM6/YD5oslW32e+aLI8ZbHW8VieSt2EuoqmqOR1lVpex9A0ankdEcfsdF3un80jpIKmCIRMlrUPnqziS8EHT1Y4v+vQcQLO7zrYQUjZNNi0Q4pdn42uQzG1kj94fIpQSj54fIpnrzS5sNOlbKqoistOx+P51Q4zlfzQbrWS1wljSSWfuHR6fszxmQKFnMH7T8yQ02/sUT22X/SYhujAPVm5e6fH+aZnFEIoJKSC3wd8kERz/qSUcveQx/a2kc2fzgZmR2HqOqW8iqnrw66ekQyf7M3KLhDZY0a7do1rYj6uuGS363Gt7QwauWT/79Juj5eudYgjie0G7HRtjlV16l2XRs9jdTchzxnXKvBuw63QJY9D1m2zX2cvw0jeMAyI/IRiYi+zBjJ++1gSpzLlXkODIa6cxekcOc0hl0v7xRYU2l7MXEFBShBCRcrhWEAYRYRSEqZRU8dP/nb8iCeWqrS9Bk8sVXlmrUksYdv2eexIldVuEj8SaRHWnpyv5DmzGDNfyRPGDkuVHHlTp95zCCOwg4gTs0U2+wEnZhNj4/0nF1F0k6eWp7jU6JIQd0TMFnTWTMFsQUdXJI4ToSvJ81LMmTx6dIpizsQLQxw/wgtDTs/luFIXLFWNoYIrgFjCsZk8sYSzR2ssTRWG3KFVq3ADG232WYDr1vy+DdEzvx8kQ+5WlO7tVtR3Otj8pmeUUsZCiP9SSvkvgd9+B8Z0KJgpGFxu9Jkp3FjaXTIFhqJSModdPaPbzuykyir7bEC33nWHJv/oJL1Z4UnWvVO0dExNpZjmaV/Y7nBp1+bETJ7XNtu8vtlFVyRTxRzz5YCpYo7Lu128ELppil+WJfKG7uV3Ed5uamYJ6GYkHCCWkdkOWAb0/EQWNdi0IY1REookjBsKBVOJcWMwFciZ0HESl08cJznjcWpMzJTzrPV7zJTzaa58xMp0nrwh+OLlNh88XqHlxGhCEMaJYTBbtpJYU9litdmnalmEiuBDJ6ZwoxYfOlHF9WKiWCIkbLT7tG2fjXayX3n4aI1ywWClVkBTYLfnszKdo+V4lPM6qqrw2PEZNFPjocUqADs9j92ez07P45GlKh0v4pGlKkemihybLbFSK/DCWgvL1AjiZIuTtbhXpkt0g5iV6RIn5soUciZzJZPz291Bfv7yTJEnjk1hGnsZNtct+6btDxg5swSFM2Vr6FnIPiOjDdHHEa7t15luD7eidG+3or7TweaDfoPfF0L818CvkmldKqVsHMqobhNyJD7cHFDvB6hCod5PlGPf8XlmtclTyzU0NQlMaaqe5BWnKZyjxVjZSZX112cn4rnNYXfOuMBt1jpq+eFg95Dl9gEGPXyLpoYuREKcJQRHqwYvbcDRqsEX/KT9nu0nWr5gQbuXSMWF3RBmtETeabzdAqys/z5nJJb3ntxDNq0SGLLYCwbsBIncc4UFATx9vMRXrnZ5/GhSRW2pye7BUiFvQNtN5MnZIt5Wj1OzRWaLJpv9iGPpjjCIE5qEIJYcny3y6q7L8dki0+Uc7UDwwJEaa40eqy2Po6mr5r65Mjt9n/vmygRhzJW8y0Ipx4NHKkjF4IOnpvj1Z64QRIJdN2CumkdRwNJu9ujK1JMpeXixzLWOx8OLZSxdJYol07lkl9D3faJI0vd97CDHTMHCDuRQ3nzJVLA0hZK515b0usX98NEqiqYMmqXs+ehX6/1Bfj4MNzvKIjv3R3fVWcrmrHIcdLd7E0U5rtlRFreidG+3or7TweaDnvkvk9hKf3Xk9ZO3dzi3F9kttqYk22kt3bq+utml0fN5dbPLylRuwClyuWEPMg6WpgpDq3x2Up3bbN/UX79fR6CsNXOl4wyONxVlUJBSyelD3D4lU8VUFUqmykUvYLfn0/UCnr3S5FrD5tkrTdxU6e3Jh49W6V9u8fDRKl+50AKul/jfabxdK7+og5d2rEpd1kgFZnTYDRK5MpOjv+mwMpNcw2zD9nIpTzm0KZfyhNi0+0kGTrWQY7oUUC0kx0yXCmz1e0yXCsyVBc5Gl/sWSzy+UqUfwlMnp1AVwY4TcTLt8bBYzrPZC1ks59npB1TyGjv9AFWArikEUUwsQdESAwKSvsUJwZ7Dh07PUC5YnF0s8uJam52ux2rdRpcQhBG6hGMzRepOyLF0zr241uS17R6dvs96y2Wj43KlYTBTtnhwsYIjBZe3bLwg5tUtmw+cgYVSjoumzUIpN/RcZK3aqWKO0/MiLU5MCqeEFEll7Ig7cw9T+aQl4lQ+2a2Oq2jfj255v2rbgxRjHaRoaz+leyvH3Is46Dd5H4nS/zDJAvDHwP9yWIO6Xcj6ekcncpYFMMvNn92ejq7y2Zs/jihqv45AC+XcwJrJBoFbjj94qNaazjBNre2z2uqxXDV59mKdN7Y6FBXYsQM8GbNj35i5s7rbpeumMn27+w4m+GQDtL+7TwHW6YrgjbYcyJshucrXUznTOh3cAEppEEMFigWVbiuiWlCZKuoULI+pNIOrpCWsoyUNPnq6gv1qzEdPV1hv5QmvNHl6pUYQSaIIgigZR0FL/PsFDTQVkJKiAWEImqoQhrA0nWeu4jKfZth8032zOAK+6fQsILjcsFNKb8mFhs3xqQIvr7fwwohG2sv2yq7Netvhyq7BJ953ZEBf8MXz2zT6Pl3HY7ZqsWxHzFYt7psvo2jKgCp8td7j+ctN8mrC17/RdDg1k2OxWObCTpdHFksUNGg6Pidnk3kpVMF8JYdQBTlDp1bUyRn6kGFSqxpDlnPe0Adpm9ndMlwPrmafo0cZqWHJsGuOJkBkcRAFe1C3y93g0rlbcdBm678MPAj8D8D/mP5+K81Z7hgqOZ2coQxavFm6RqWoY+kaJ6fyqAqcnMqzPFPkOx5aetOUsJmyxZMr0/t2yYJk8lfzCe9ItslzNic/u40Oo4CNlkMYJRruP7ywyude2eI/vLBK0w6wvYimHfCnz8xwpJrnT5+ZQdXSzlfpPL3cTLL3Lzej62ykI+PKj8jbiSO1ZGIdqd1YgPURPstZPstH+CxLlQJVE5YqBfY20AawkF7SBStpIg7XZTZgX82rqKk8WrEwDThasWj1UtdZL/FtWemHWwbousl82UTXTaoFnbKpUy3oHJvJs1ixOJY6+a+2PIIokWvtAAmstQPafT/pMtX3MXSNoqlhpK05FUUwnTdRFMHCVI6PPTDPwlQON5CUTQM3kMwXTYqmxnwxUXphFNB3Q8IoGHJzmIZOzlQwDZ3vOLvEkydqfMfZJSq5JAa0N493ex5eFLHb85AS5iomUkI/iJkrWvSDmPlynrmKOaAkL1sGhqJStowhSz57/r0ArO0l13CxmuPETIHFao6LDZsohosNe+C2iaN46DkChlxHjh+ym8bHxu0YDoqEQNFP+1iMx7hm67f7mGwj+HsFB73y90spf0xK+Qfpz48D9x/mwG4Hstkt2SwcgJ1ukoa203UH6WWFnDF0E/dW/6Z9s/yQm2O/SZB9mDaafb56aZeNZh/HD2l0Axw/pN4Lqdse9VRprXd8bD9iveMzVzEoWjpzFQPTMJgtWpiGcUP+YtG4Lq30DlsjdzqvDcvbif/d+SFe5If4350fGrQ73PPjz1jXpRQxMYlMGz1RMeGhoyUqRiKnCkmYbqqQLF0rteR+rtSgaBqUjERqhoalCTRDQ9dVVA10fS8DZsD0y/ntLlfqDue3u3S8CENX6XgRDy5WuX+xxINpADRnCJRUnprOkdMVTk3nmCobgEilJOXKBGCr63Gt5bLV9ZgtmIRRzGzBRNPA9yM0DU7NV1isWJyarwCgKhoFU0NVtCElWs3pVCydak7n6GyZH3hqhaOz5aF2hpBUsdYKCbX4Y0cqTBcNHjtSIYoi1ls2URQNKWogKSiTicxa8lmFurdTvdJMQnp5U+NILU/eHDaUrjb7dNyAq83+0HMEDD0/o02IDqJcxz1Lo8/yOGTHfFDcyjHZ73mvLAIH/XbPCSE+KKX8MoAQ4gPAnxzesG4PygKaMpFZYicAhJJWoyljt663EtDJbmlPzZdu4Nd5YyeRr210eHGtg6korMwU2O257PQMvnF1h69eaqHFId/71DHmizqvbUXMF3U0RSGSYCgKv/XcVV7f9ml2emnHoiSVDyBMzeIwgIWqoJ+W+Lcb190pIo14ivRypFmOGEBehVYE1VSOw167xSIwXYQrPVgpQrmXWvku/NiR3+CZdZenjlj8X0CQFjkFcZKxJ1NZycGOl8jdbkAUJ9LSVQxCrFSJf8/jK/zxhSYfOVXD9kL6cYP3n5zia5cb9ANJ2/Z5+uQ0XgyPHkuUayWnstWPqORU4kgSSUkcSR5aLrPW9nhooUwQS3K6Okj3PTVdouFKTk2X+Ob7FygWCzyxXOHSTo/pvAEodGyXna5Lx05WrYKlMVc2KFgaay2Xrhey1nIxNIViTsXQFFAk1bwJaazp+GyJrX7A8dkS57d7XN61MRSFcs5gvmpRzhlD87Ns6UMd3s4erZK3DE7M5NnpekwXLPqhxNJVjlTzqKrKybIxaIgOSfZXEEd0vYATs6VBFlvW4h91x2RjVX4kyes6fiSTdqJ9n4pl3PC8DLuO3jp52ji3y0Eyd95JZL/3veIqOujIPgD8sBDiavr3MeCcEOJFQEopHzmU0b1N9OV1mU0HAyhZadDUUnlts0e96/PaZo8PnZ4ZWzl7EGRpYWGYX+fqTp+rjT6zBYPdrk2j57LbtdEVeOFak5qlcrXu0nNDrtaTzPKNtksUJ7Lec9ntxjy/2mCzFeMCF7d9PniyhKpCxUpuZ7ab1oPFPBudPvPFPKuN/qAjWT9NXN+TBQX8OJF7Owchh/PjTa53NAMw0sXD0OD/DlNffjicrXP/YpWG3+b+xUQJzxQUmn7MTEGhYCqoAgqmwmZXoCJxQkHOSIKgkYzRVQ1NC9FTP9ZMKc+Rms9MKc9q2CWvawhVECNRBcRIjlaKvJKzOVpJ3HWzlRLb/S6zlRKVnE7RTFx+HT9ARdDxA+ZRSPJRkq3RfCXHbMtjvpLj9HwJVVU5MZOnYweYhsJ0waTe9/DCkHo/ueAfOzPPbDnH2YUy/+nlazx3pYUlJcuzZY5MF6jkLZCCas5hOp9sfU7OFrEDycnZIl0vQBESiJktGcz1Et6b7Pz8xNmFoQ5vi5U8fixZrORZbTg0bR83yDGd19nuuZyZHS6YSua+ga66lCyD5680+OKlXb7pxAyPrUwN5r4HQ+6YcQSBjxyt4cUxC5XcDf75LJXyuCKtUUMpu8CM9pXeO+YgmTvvJG6IS9wDnEAHVfzfcaijOCRkg7tZPnBI/LFLUzkURQARV+s2x6essY0c8qbG69daA8vr6HTxppbKaAn65d0ur260KWgCU1MomzqmplDJGeR1jUrO4NnLdd7Y6FFUBMvTFutdl+XpRDHEAoSSyJ6X0Pb2vHjouzWdkDhOJAyzcK61+9hhIp9YzvHMmsMTR3Oc23CwQ0ibJeHF1+VewW8zvp4jnwcWKnChDUcSHY6Mr8uyTK18CR9VP0s9gmkVZi5ucbEhIUpWGENN/s9Q91IE0/RYIYkAQ0geXZ6iFzV4dHmKay0bs+UO0lu3OzZbbYftjkHbloSxpG1LZvImVzSXmbzJ5aZNFMVcTt0hJ6ct1jsuJ6ctKgWLuZbPQjXHa5ttLu32qeYE71us4gbhoGDJ0FRMTcXQ1CHlOlu2OTlTYrZsUc5rtNyAE7M3GgmrTZuNtsdq0+bjZ5fw45j75oq8thGjqwola69GWKb0UZLpvMG5uMt03kBVVap5g5yhs1CBuu2zULkx0yVrpc8WDebKJrNFg8sNm1jC5YbNVNEaqi2xdIXpgoGlK/zBWoO1psPX9QYPHq3eNJUShgO1m4pCx42YK1lD5x8txjpIte2ooZRdYJ5cmR58169d2OGlzQ4PLZR5+tTsW87Keadwr2T/HJSP/8phD+QwkHVfjFIhzBZMrjRsZgsm9a7PykweiTK2kQPAM6tNNlouz9CkkDMGkzfb/LnRcweLw5mlKq9udVmtOxQMlbym8MpGhyMVA8f3qfc9HD+hhgiimLYbcGa+hKGrVNKI5GLR4MKOzWLRoNf32HWSxth+ENEIk8Ijzw9wg0SOwg6SHHY7gNW2gycTqRskRV6pYTKOstlI6SgNBXKWgdnzyaVj+/fGD1F2oWNAJ06tfAkLNY3ebshCTaPlJiyVvZROYrObLF6b3RhN9QhD6DgeIcmCEALTRYOiYTJdNIhimO5c75V8pd5nrWWzUNeYK+kEYUzJjPGLFjPFgErRomwK/FBSNvcI+Qocnw6YrRSI4wg/jNCUhPJYVSRxCFcbLjtdn6uNdAsk0pVMyCGfsq4mbkNdhem8xaumxlIa4P/ypTqvbfboOgF+GBGGIX7KTrnHUtl0PTRFoekmVFc9L8INI3pehBeHg6yY6ZxOs+/jVEwWKvkBZ9SoYhtyp2SI+wAaTsBSJTcUF1ieKQ759Z84OoUbxDxxdGpf12aWjXahkhtY+cD1FOURnqrsecZV247m54/L+MkSu+2Hw3K1jGu1CndHJfBbxd2/NL0NlAyo+4ncGeEeyfLpr0zlWG3brEzlxvbIBXhqucYzJEo9O5HPbbYHE/4PX9nghfUum40+f32pSs1KLJ2apfK1qy06bsAL19o0ej52GPHGrstC0eBiw2ahaPAn57e5sO1ixBE/Bbyxa9P3ExmnVlGMZK4EjSbMlcCXSS9hX46qbYiD63LTTrw4m53rFap7AfCpHFxzEll3rhdJ+akb1U+bbcuIgSsom7HzSeuzXPbhuAWnanl2nC6LtTwzfkTX73M6bfuXehvQVYgRRFEipwsWDcdlumDx0rUWu12bl64JFisWUSRR1eS79b2YOJL0vZi10KfnBaw1fe5fKHO54XKslmeuluORYzCXptrGcUzHCYnjmCsNh54XcKXh8OTJafoRPHlymp7t0eh59Oy9hvURnX6I7UdDPuXVpsNu32O16WB7Eat1m6/pLT5wZoFm1+H8Voe5gspircBSL2CxVmCr67DZcSkaKlVLJ4xjqqnFP1uy6PghsyULQxUDX/xay8WXEV0vorvd4Wq9j6GAH8kh10h2hzpKV6xoCiu1Apd2uvT8EF1JbmbWVVLJ6dTK5oBGZI9ZdnS3m6U7PlKxBkZUztAGi+JoinP2PPtV247uYPay3bJ4cKE8IHbbD4dVETuO7hlurcH7nY4FvKsVf8FIGlcXDCiZCqaiDioRNSl5dbPNh09MD6W+hWN65OZNjTNLVc4sVYHh3rwlXeW1ToflikUQxXhhRJBOXFM3eXCxjKmbeLbPlXqXY0WNvJrw7eRVSd0OcfyYuh3wxpZLP4Y3thLLc6vj48WJ1NXEIm678cA0bzmgqXHalSl5MdvVqZiH7XYiu2kvSgVuKPpS1OsyS1iWF6mrR8D/2vl/JFZ9B0Zz8nOaikJETkt2NrGU5DWF08tThIrBkycS/1Atr1N3Amp5HS8MiQEvDPn2s0tItcG3nJrii2/s0vEiOv2AOBJ03YD1RqKQZwoaiiaYKWhc3nXougHNno+mCcqWhqYJ7p8tsdPzuX82qcL9/7f33kGSpOl53+9Ln+Wr2ruxOzs7627vds8fDgeAIAgaHR2AIwSJMgzIUTQiQwQREkJUhESQITFIMUiJFzQBigRJEKABCQoUAhBhiMO5xe3e7q2ZHd8zbau6fPpM/fFl12TVTPXWzo7Zm84nYuLt7imTmVX5fO/3mufd6ng4QcRWx6NkKJi6RslQODVXZKvtc2quyE7P5cRckbm0vCgCakWdiHFxvL7r0+x59F0fQ1PwwxhNlSuhH0HRUvEjOL9SZq8f8MRSGccJuLTTY61o0KjYXFipUkx3TdnyTEVVRrF4vTvEcSN0JSaIFeJE5h+y4ROQE7gu7nZHIzwPcWWvy+tbfeIwwg0iOv0AN5ChwOywko4TsHkwxFSkw3Oz7eD5ES+caIwR6JlGYbQoNQcBThDRdyMKhj5aFLPlmzC9mSq7Q54sh56WuJ3MU0zDgwq1TJN7humLzVHk/u0i2fBticWywW7fZ7FsjFXxgNzax5G0pxeKo0qJqq2PtppHSSRnt7W+H4/kIDZqBd7YG7BRS2umTcFW1+H5lRI3elLQ7UbPxxkO6TgJF7c7DMKYgQdXmz3ah4R+OHhb3LbZDtS0/wfHH50S/VQoe74Am6nuTDOto2x2x2vgswlgAMe7bW1TvpZtwr8QP0wlhK6Wevja7Zr8z/PT7AKLwJymYmkRiabS9gSGqtP2BDsHQ67s9zhVkx5uyVLQVWlJdArmkKplYmoqpqZgaiqaIlAEaIrMixi6gqnJkywXTJYrNuWCiW356KrAtlS8IMEJIrwg4WbHY+CF3Ox4fAhYKOuUTZ2Fss7ZhQq9CD5ycp5Le12uHTgs7ql88swiHS/iuXRh/97zS6jqPt/9xPxYHHuuYLMxHzBXsKkWdC41HdZr0gM8v1ykNQw4v1xEVVQWqzaqonK13aPnRFxtO3zi3NLY4JBsJc/z67XR9+3mgcP15pDlss5HTs6x3XNYr1moqjo206HrBfhRTNcLeP1mm9dudXl2tcJ2x6fnBmx3ZBxd0wQH6YS2rPdqKoKttkvFkD0JhzuDSQLNEq9taHS8gPW6zVzZGnn1RxFd9v8m9XmyyC6yWTxqojxK7nnaYnPUMT/qXMBjTfxbHR83tZd2enxzs4WtCj56Zp5aQSXaS6gVVM4slkeVEpd3e6NZtn6UjLbR8xVrLHkVegFfuSKJQVOVUdv7O3td2n2fd/Yk4756q0N76PPqrQ4idOgMY0TF4UY7JgButGPqRenJJwmUBPRTC1C3YNeV1kdBH8aYhkKtqOHs+azNGVzfk6tAqiQ8VrHTS8MyveR2/D5kfFcAUgbh0M6VAU9q01QCUESmG1e5PRTFSI/REPDh9Spt94APr1eJo5hL+zGrZYVv7Q4I44Rv7cp68IpdpGRHVOwiz6yWcNjnk0/M8/Ubba41h3zdUBFCJoyFgE+cnaMdxHzi7BwAJ+dK7PRDTs6V2Ou5FEy5WAehnEEchAFX97u8vd2lpCvAGuvVAm8XpTZ+a+DR64e0Bh6OlxDFEY6XEArBU8tVwnRQT9E2ubBco2ibY+WUn31qkbmaxTPLFb50aY9awWCYetJnFmvYlsVKxeLWQR/Xk8nitarFbtdlrWrd0dntBhEdx8cNorEFpufGKAJ6bjwelixZY8S4VLbp+xFLZZvfvtbkrZ0+GjGfe2oZ3ZB6Oo4f0g9CnlqWO6Cs93p1v4ubfnezOYLJMMVkyeJhxU82PHSUo5R9vmy8urPrHcaT1Vk8LKK8n7H3R03uR+GDeVT3Cc3hbbs/8HCDmP10CG2taHJmsUStaI59QNlxb44f8M5OH1NJOLtU5uJOj+sHQ3w/5mtXW9xoOXzlaotT80Ve32ozV1B581aXd3YGFNLqkDc2D/jS9TYEAXueIAH2PIFIv9cihsOcrB/Aeg3ePJAWxqc6LVVlCMJSoSBk8WFBJKQPGdlhfNtmO3dX0zj+qi13DG4EqfozKw2Nq62QlYbG3x/+oCT6ICV7Q9o/Vv5ZrrR8TlcNfgGwLBXDibAslYptcrJeoGKbuGHCWrWIZVl8/ITO/+MEfPyEJJ1T8wW2+x6n5gss14qcW/BZrhW5uDfA0nUsXcX1FUxdQSgKTphQMjWcMJVSMBVURVA0FcIwIghjwjDCCROSJMYJE/QwZugnBOlklOsHQ/pexPWDIR0vpDnwudwc8OknFuj5Mc9u1O5IKu72PLa7LhVLo+cFNPs+b+z0+N6nV3hOVWRZYdXiVtdlpSqJPCvc1/Migjim50V8x5PLI9XLSWLZaNiEccJGwx4TL/vY6To+MR87XaeRObbtzvhw8azT8vrNA/wgwtAU5srW6DgPhv5YmCTrvV7c7WNbKkGsjFW+TcobT4Zt7pbQzUqSTGKSBLMhoSwehmf/QY69Pyw8vmeGTE66qT2/VKQ1CDi/JL2MbMXBWBlaRr759VsdLu31qVoqHwXCKGTrwGG1YpAAnaFPQpE3t3t0hwFvbvfYHXj4IeymC8yXLrU5CKX15LhV9g5CygZ0U2XJwxBN3wMlDdt007+1wtu24MpO154b4xsKCDgIEgqM19dnyT4rVLdctWi5LstVi+bApdODNCLFR9ZqdNwWH1mrUbl428v/iXO/xG/f7PLhtQpst5EjWG/3KGz3hywWTVwv5GAY4HohlqHQ9QMsNWGhWuZDazELNUn8ZxdLNN2Qs4sl2o5H2w1pOx7fd2EJP9nl+y4s8s1bB3T9hKdXy3QdXw4kSbs0r7U8Bn7AtZaHpunUixaaplMxDWxTo2IaiCRBEI9GDVYKJlXLpVIwWanZdJ2Yp5bK2JpGpaBha9pY5c0GsFA26HsWC2WpM38w8LiwWJ6QCtap2iZWGnbJyhKTpBMXk3HpgkliyZaKvrLZ4lprgK5IWYWCruPHjEkcZB2TO77vmkrBlGWol3d7XGr2OTtX4sxieYxMs9/3bO4rmyg+qkkqW+WUXTAnPf4swQJ3rd3PTtM6XBzuRrj30xP/IMfeHxYea+LPlihahk7F1kc3aTaWmPVaXD9EUxX2Bh7NgUvb8WmmsZOeG+LHMT03JApD+l5AFIbM2wZfdwLmbQ0RS50cEUvK7abE3Q1vKyu4gEhj9H3/9oegJrCf7lIObXZilKIKBAmKKrDUiCgBS404UYU3O5A2qo5V6Dg+HERQV2EYBMSJtI2iwd7Ap5HWx/+pi7+TnwC6F1Mv30yTtobMjdiGwgsbdZy4zQsbNQCeWKnSCaQ1TF1WplgGN1t9Bl7AzbaLbeg0Bz79lLgNXaVoqBi6SjIQiCQhiQUeCqfmi3gonJmv8E7L48x8BT+KqBcMlivSE58vaFiaynxB49yFRQJ2+d4Li1w7GKIqAttUUIQU4yukDW0vnazjxjEvnaxjGxqxovCRjTpfubrPTsfjarHHabWMF8Z00mz3WGNUc4ilafgT9e1X93tpMld+1m4Q03Y83MBmoWyyUDVZKJtjRDNJLNnhOl6Q0BkEeNWEt1td3truSu2iyu06/Mm5Etl5DYauSR0eXaPj+qPzmSTT7Pc9K16YLWWu2cZdY+0wnoDNLkqTYZoswVuGetfa/UkSnrZY3E9P/IMce39YeKzPMCthc7XZZ7vncrXZ5zsY7yrMVuXEUcLAjTAaKnNFi5ot2+ABuk7IdmfIiZrN1ZaD48dcbTkoyZAbrQGvbmrouo6p+Oh6Wq5nwrYn7b53e67r4VCDAbc99YA7p0eVitAZSFvS02lIeoJl2Ni6g2VY3OjL2ua08IWCKdCchIIpWCrrDHd9Ts0ZtByfEDn1yVY1uTCmgzaypZlfKP8cF/c9zs2bbAx8vECqSZ6cL2KoGpX0hnl6tcogiKUdenzJ9VmyVW6ioioqMSol22SuaFKyJXH3hwF7PY/+MGC5ZrHas1iuWXSGHjeaA9bKBtf2B/SdgLd3ejy1WqVgqKMF+9mNBpZl8sRCkevNAWt1mwiFVt/HD2JafZ9n1mtYu0OW0jrzN7Z6XNrpM2cZnJwvjRLxRcNAVQVFw+D8UhXL0EZx5zE9GCHzDYhxYsj2goCc67xYslko6bKs0jZv16hPkRq+st/nVntI0VC4sFIZhX1IYhpFg3pJH9PDsQxtFO8Hxia2ZcNGK9XC2Plkkf2+Z0suh144CvVMi7XDXTTv71KfD4yE2WqWlDSfqq2feU52sUhIRuGm1VrhrmR91E7guEgs3wse67M300SpKWSzTaPojVrlW31nFL9XNHV0M2UHobQHDroiKKUloAcDj64TcjDwKFsqfhhTtlS+cfWAg2HIxZ0eliIFsKw0zrAxX2S4P2Bjvsj+zcFdjzM70zU7PAagoCuoxBR0he22rOTfbsNK3cMJwPU9+ukLHFrb1NEVH9vU6Tg+HtBxfRq2wU5f2r/Z/UNU4ruXZvpxjKJI2xvKMsDeMODt7T7doc/b2zKbMFcyqRYM5komv3mpSRQlvLLV58WTVfYHAS+erFKxVMIkHpUfXm0N2O64XG0N+K7FJRolk/mSyXbHJYwTnCBG1wTDIELXBDsdh+22x07auJNtHvqVN27yyrUOlpKgqQlhJEsr3TCiXtBxQ0mOl3f77PU8Lu/2eWa9iq2rlCwVvQdeFKEr4+EYGPdqy5aWdtuO3y6b7SF9N2SzPeTJ1Rq2oY+6bR0/oD30cfxxoprsbl2t2HL2Q8Ue22XIOnxVJmCbfW61HFbK5hhpA2MT22q2gaG71Gxj7HwmCTCbLM6S4FbbGTlDWaI+CkfV52c9+1nr+LPPyX4G00pDZ60kOu5EP4nH+mq4yW37sTPzLNXtkQcUxgLbUAljQSFT059NcLXdGFUTtF3p9fQ9n/bQo+/59JxQCl05IbWChuj41Aoa212HIIFuOg2rZAmpF5/aEEb2EGlzLAqwVIarPWkB9tsxUWoPk7e9CKKW7IDdbMWs1gSX2gmrNem912wNXfWp2RqbzcPZpfCRM3UOggPOrtapdMflkv/SE7/E6zs9nlkq81Tsszfo8NRSAT9SsHSVkq1j6ipCESMCfGd3MPJ4N2o2tzoeG+lc2MWqiRAqr262ubY34FVb4w9/XE5/6nshA99nv+fT7Hvs9/xUtkB61kuVAmfnQ5YqBfZ6DnESjaaLZT3RrhMy8KRdrRdYachRlHXLJIx71C3piX/0TI0wtWcXKzRKFvWCwZfe2YcIbnXcsZj4sxv1Ma92uzscyXtkidv15Y7A9W/Xz4s0qZ/9fmUJ6Pr+YFQgMF+xWK7bfEybZ7EsE7eHNfX1kjkKoaiKwlrdRlVkCPIwFPkkjFQubV0dG3DiRfHIW7YNbYwAp3XHTsonTMOshJqVG5+GyUUpe/8VTG1sN3I3sj8qbPOo4/WPujv3KDywoxFCbAB/H1hG8toXkyT5a0KIBnKE4yngKvCDSZIcPIhjyIZTJsvozi2VMQzZ2fi1661Rq3zRvr3Fr1kKUZhQSzWNHT8gjKXd73m4fsR+z6PrBIShDB/1Xak5009XnYEbE8TSppGYkT1ENhlbLhjYA5/yYYwz/b8DZEPVIZz4ti1bBhoe5bQpyDYs6sUI27DYaPj0d0M2Ghp/5s3vkV79m2kcX79dmlm3VNy0w3h3qFO2TUJ0lisal1s6yxWTxVqRQZiMBNf2ugOaPZ+97oCPn55ns+fx/HqVr11rcnm3z3JR5VZrKMMRqSTwXMFmruQzV7AZBBFhBIMgQiEhCKRoxvnlKr0g4vxylSQBXe8zX5Lkmk0grtaKbPQDVmtFFsomljZgoWwhVFiq2aTzyPn0kys8vT43IpDD8sNGQWMQhDQK2lh37bPUxx6XDQNlJ14tlE0WejKeD+NTqrLfr4KpjQjoctRmq+2wWpGfZpbofv36Di9vHhAHMd/3/Nrt8selyqj2/8p+fxSKBDgYOFzd7zNXUDg1X7ld/dN1eWu7h66IO8Ik2e7YLDllj2VSPC2LWQl1UhjxbphcRLIL+3zGy8+OLc1+B44K2zzqkM4HecfxII8mBP5MkiQvCyHKwNeFEL8E/CfALydJ8pNCiB8Dfgz4cw/wOIA7t9jZhUDq4chpRdntZRAJLFMhiA49aYui6VCzLYKgxcBNCAKfAycgTODACRim4ZZD23Zc/EDaVMxyZA9hIuP7JhAEAUEsLTBWsbNWgYtdOFWB9hD2QqhqsDfwiJEW4FTD4K29PqcaBo6nY+ohVVuXXr4LFQv+4+rP8I2dkBcaGj8HvLp5QKsf8OrmAacXK4gkwdYEEQqqohKhUDVUwjihmt7I1YJJ0XCoFkxevdXD8SNevdVjfxDghiH7g4CSqaFpykgq48Mna7iRtCC4bCgslQ2ueCGLFROESq1ocGquTK1o4McRpqbip8ny7EzkF0/WcWJpv3qthReG7HRdTjWK7HQcztZvDwQ5vPGy8hqJorBeK5IoSjqcxKWSLp7ZBGjWQ04ARciyXMtQmSsZI2LLeriTjsbh+wexMiqfhPEdTBDHWIZGEMd3hDZGSBKpI5SkomYtj52uy7WWyZml24lWP4pGiedJAsxKlE8mYA+P5Sjvf1ZCnRQsvBsmF5Fpi8pkH8G0/MMHCY96x3EUHhjxJ0myBWylP/eEEG8Aa8Dngc+lD/sp4N/xgIg/lZdBwB0CUllkm3fGOgdFIksC03h9lEQMnIgoifATFUMHP1GpmIKdvhQF2+vLxx569XEiQzVxElM35BDwuiGPadeHRUNW3hwe78CXO4ZBKmpWtOQiUrSgWi5SGAyolouYVkh312OpYXLQ94hIdXSAlgtl06Dlwl/e+QNUVOjujMsl3+yFJKkF2Bl4uKG0zxkqpq5QMlR2Bw7Nnsv+wOC17Zhmz+O1bdmcVrNNyrZOzTZpDgbsdFyeWrRYrhTY7vosVwromkI7gBOLMqhk64YsodQNum6ApWkEEZxfLHL1YMj5xeIY6SjIslUl7Vt+dfOAVzY7xGHE6YUyuqLSHAYEYczQjwnCmEEYUy+YDNI6/qxXm42R1yyNMI6oWdqYYiWMJ0B/6fUtfnuzza3mgM+cW2C757Jes/GjZKzkMevhTqtO0ZV4JMUA4zuYT55doFI075AFyPaPxMQUTQ1f1tUShRGtoU8URmNEE9eL9Lzbg+CzcPyQ1sBntSw/+8MEbNXW76qfPysmnatZSjMnMe05347Sx496x3EUHspRCSFOAR8GvgwspYsCSZJsCSEWpzznR4EfBThx4sS9vS+3if+oOZ+LEw0yh3FWQ1FwwggjLa5//UaXra7D6zdUVioG19sOKxUDN9DYGfRYqpR4s9kDbssjJInUsEkSFduOUHyw7VTS2AfThP2U+AfAqqmj9wMK6azBbOK25wwJI2njOMEHPN+7Q1nT8112ugNONzRZrZMOo/mR6s/yuuvzTNWgEcbsD0MaqS7zctniwHFZLls4UYwQCk4U03MiEgV6TkRRi+g6IUFaUeIEMs/hBCGGbrHWsDF0iyfmDd5pDriwVOTkQhnTVPnMadl5+1uXdvjSlTahH7DeKLHTdThRtwgSnZWqTduPWc/0WCxWTVa6FouHI7oyuvluEI/05+sFnaqlUi/oXFgqM/BDLqQhiuyWe3/goysK+wMfVVVZrsphJa4f0Rx6rPjp4JHM4/b6Lvs9j72+O5YYNQ+bLlJkPdysJw2Mft7vhzQHHvvphLVs9dBqrTBquspCU2DoSUXR5eo4oYdJgqkqhMl4AvX1TYetA5c5W2eubI3Fmv349uJhZRbZaWEWuJPU74ajnKsssp+H/B69t3DIB5lQv13wwK+eEKIE/Bzwp5Ik6QoxPdGTRZIkXwS+CPDSSy8dnW2aAhtJpjZ3qv5lvY5sLXK2/rnlBKhCoeVIGu96cuZt1wtYLRaoFU1MU6fvuoQxhFGCgazOObx1C4ZMohYM2DmQ5OwOb0+i6g+lbMIQaau6DCNU9dSL1MAJpY0TOXAkTgQ9T27Cex4sV03ajsdSWuv+45d/t5RLvpx6+UJayzSp2AGWaUIiY+5mKjD2qScXCWjxqScbNDuelC5GMFfSUPekrRR06kWdSkEuSj3Xo9MP6bkepqZwdW/AUws239x2cb2Qb253ObNcY70uyRXgRtul64XcaLvUSzZBmDDwI84uVWgNpIxwdtf15FIVVVNHw8VPNmxudlMlVV3BVBTKpoKlF3lyNWaxeufgkWxHrK4I+m6ErggqZWukK7/bcwnChF4aVsk+7mSjxE7P52SjNOYk+FHCfFmWbMKEKNkdYmry5yCRIZUg3Z4dDPxRLD6bhIXbu4RsSGnye9xIFTYbEwnQrY7LwA/Y6rg0SuPx+mzOouME06WTM5iF1CcrjqYlN6dJNOd4eHigxC+E0JGk/w+TJPln6Z93hBArqbe/Auw+qPfPipJNjl7MtqSbqjIihhOZLbLjhkRJTCNtYhHp0AxBgudFdBwPzyvQcny8AFqOT92GLQfqaaGHpemoaoSl6fRTT7mfabr0IjnqcJjaa22fAGkBTs3p9HcCTs3ptHoBIeB7MW4qS+46cO7JCi2vw7klGSLIDkX53z/0y/za5TafPVNjeRBwpSVYLut8pRWRALtDeUyqUChZOqpQ8AKp9eAFMREKuiaIEoWTjTI3uwEnG9KTtk2LxaqPbVq8td0BEi7uOayUDdpOgIiTO5KmJ+sm11oOJ+smjaJOtaTTKOosVyw5bKRije26JoeLq6rCYtlGVRU0VWOlbqOpGqfm7dGwk0liyerRL1Vszi1DoyRr2LPTrA4XAZD/f/g4y1ApWDqn5wtjxDvZ5JQlusmKlsOfX1irE8bwwpoc85mNxWfDPtkdQ7bLHBgLL51brqDoCmfnSmPf6aeWyyN9nmw9PYwXOmQrZ7IL16SHf9SO+RDNQTDqkYDpyc2jSjvfKz7IlTMfZDzIqh4B/B3gjSRJ/krmv34e+KPAT6b2Xz6oY8g2Qzl+wEE/wCmnX8q+x1s7XXRRYbM15OXNAxwn4NxyZdS63/dC/DCmn3qBy7UiW4OY5VqRzWYfL4DdrpMJPiRjZYkAB46PH0l7eLE1wDJh6EHJTNU1HVANORwEIM1lUi3alK2AatHmjR157DtDmC9DtwelMvx3b32vjN2/BdCheyiqJmRNf61gYJs6m22PKIFBELNWMWkNPdbSXUKz79IeujT7Jk4QMPACnCDA0nV0RcFA4IZyILybDvX96IkqPT/goyeqDIcOF3cFGxUDVIGpiVQqeTxpapsm82UL2zRZrxfouDHr9fGh3W4QjRaLG60Br97qkEQxG/MlNCUZiYqt1+2RSqQfJZRMOQc2KztcMEtj3nt2N5Gt3KnaOpahjEh8vEnJHpWAbrWdEfFONjlliS5b4dMeuFzZHdCwVFbqJU7NlUYjDbPed/b1snkOU1VGGkBZNUwY72u4st+/XclTL4x2PYofjgadT2Ja2CSbV5ivWGO74mlhn5KljnokYHpy82HJL+SYjgd5pT4N/EfAN4UQ30j/9uNIwv8ZIcR/DlwHfuABHsMIPS/GDWN6qWZ9z5MSvj0v4vJ+jxsHDjVLY7FmjUI9zYFPdyBFvQDOLZbY7gWcWyxxZb9LEECQxBRMHaHKuHzLDeTgpvQe6zvpuEQnxkwlMU0LTtYt+jsuJxsWNzoykC8EnFm06G+5nFmUN1QYxiSJtNkdzD8NfngkpJbtugX4n078Al+/3uXFExVKbZ+Dgc9226fVd/H8mFbf5YWNeXylw/PpHMX20B/9c6MEgYIbJXzoVIU9J+L8WoX9XkBMMopPt5wQRQhaTsjafJkP+bA2X+a1Gy3aTshBX05Tl5MF5XXfPRhwo9lno6TBqTkSmT3HUJVRmeJBz+ednR5rJYu249MeBDRTQaNsVUyWjIaOOwqnvLY/4HpriBdEbMyXxrz3LLlm5YGBUQ38xnxpqlc62ema1aYZqzzpeyMvf7sXMAhCtnsBq/VxDZys9z30wrt2t76x3Rkdm21oo8WqYGpjk+Wm7R7iieFCWeI+1A+aJOFJEs++3uSicIhsj8ThNbsbGT8s+YUc0/Egq3p+g9sl6pP4ngf1vtOgKwluEIxmqupKMpLNXShbWLtDFsrWWKjnK+/scKU55PRc+kW2dRZrFgVbJ0q9vCiKGYQeSQwDx2Ml3RKvpFtiRZGkrCiQpMytRKAoCoqQNqvUOV8tsDRImK/KUkTb0tE1FdvSWSvC9QGsFaESTcglp5r5RSCNR4EQhHGIG0SEcSgXKEVKGS/VbKpNh6WUDNwoAiFwowhTFSRJjKkK/EAOlvGDGEMJ2Wq7fGhZHluz741IuWqrxHFCxVKxDINawcAyDDYPnDGhu7YXESeCthfR88JRXP3EXHHUMf3ytaasOOoM+ciJBkEsOJ9KCpdNFUOolE11jIzcIKY58FmpWqxW7VG+AMZ1mbI19XfKA99dKjiLLJlNlhVOEl2SymFk+0GOGhQ+rYQzO9nq19/e5uXNDh9Zr/IHXjrFXs/nVselZGo8v14b7R6ySeOOG4wtapOKmncj4UkSzy6Yk4vCe8VR8s3vFXmi995wbK7YKzda/OY7LTRivuOplTHBtSSWMe0kjnlzq81XLh2gJjFvbQ9pDVze2paJ0PbQ4/r+gNMNE1UIFAVUIeQErRgOnIi6oqAo4KZksFE1aXseG1WTq21Puusa3OoNcSJpNV2guQmaLjhZt7nUHHIyTRIoxCRJhELMP4lSLz9KyT6R9gvmz7DlhqwUNX4V2Gp7uGHCVtvjzGIR09ARipTdrViyUUcVChVbxvQBlks2F1WX5ZJNjMJyNaBRLvDGdpedrssb210Kps5cyWRnIM9tqWJyuTlgqWLScWWvgBfB7//wGvM1i8+cnuM3L+2x1R6ynTYsXVip0nQiLqxU0RWZBNWV8YqYs/MldvoeZ+dLPLNeZ7VRvF3nXTI5vyJtlox2ew57fYfdns53PbXCar1wV9KarFbJyjRkf55Wjpn9+SgCswx1FF5RVV0OZVH1mYlqsjv18Nh2e3Ka2G5P7oAWyyZdN2SxbI7NxXX9iN2uR8XUmByJmP09uxBmMXmcWc+6XjDGFoW7HfNR53iUDlCOh4NjQ/wvX22zeTDg5auS6G62h7y+2aFuq3hhjBCCnh/xq2/v8s2bPfwoQBATx1LiF+CtrT77fZ+3tvqULB1NCyhZOjvDAAGEAvp+gBtLC6BoKpomrZ8mHXwfNCGlkuMQzq+W6ftdzi2Vudoc0BoEXG3K8EPXjYkTha4by5COmgqpVX+WS4HP2arBcN+XoxfTEEzVUtGEtGVdJUlCyrpKrCVoqvSaNRWCIEbLOG2FtArmhY0KLSfkhY0Kv3VZet+2rvAdZxr8q2/t8h1nGgAULWM0RlCgECcxNctgrVHiE0KwVi9iXm9jGRpmKlr34ZMNdFPj2eUKm60Bzb7Pfs8bI5pTi2UKtsFi+c5EYnYmcpZ4bV2nWjCw9TvVJLOPG6t8maIeWTC1sUSp60e8szfgiQXZY3CohtkoWVMJLLuQHfQ9OaLTnN1Dzg5/Oeh7o/f/rvNLlAvy78CYHv+vXdwdTdY6t1AeVRxNNpNNay7L4qg4/LTFazLsMm3xzFZZHfW+2ee8X6/+XsTcHmccj7MEhAhx3AghJDle2e/Rcnyu7Pf4yIk5vrXVZ7licfFWm/2BS29gsNaw2Ox6rDXkTeL7Pk7g4/s+cSzr4+MYzlQMmgOfMxWDd1JtnEFadbPXHdL3pM3KhRYtBWMYU7QUkigiiCGJIm50PQZOxI2WfIG/svv7pJe/Oy6zsFA0udX1WSiaHAx8RB/MtJLo9EKJlptweqHEwdAnDAVtN0AoCmEMvSDGtjROzBew00qPoqlRsnSKpsZcucDzGzFz5QIbjSFb3ZCNhs1CrcTvuKCwkIr4b9QLdL2QjXqBt3e7I5mEbCjhubUqQhU8m97kjZLFuUVpr7UGmJpKBNzY748SslnpgNc3W7y+1eeZlRIfPbs4pkdTjeJROOP59RrVos7JevEO3Z2sh+lNJGAPE6iTpJXt4M5q4HtBNFLDPLtYmUneN5tjmBWXW0OiWNqKqY3e/1PnFkdznyffJzsX96iQUhbTErWT3vss3vzkgpBdPLOlqtkqq6MGl8N7r/GfhlzMbRzH4ywBgY6hq4hU8WYwCNjuOJypGsQJrDVs4gSiOEFRBFGcULYMKgVjpIHT8yNcX1pL1xCqQNNVtrs+AtjzYlJByJHtp1LMfW9cJrpi6AjhUTF0Lu4PCAK4uD9gsaATRKCngf9s4va/WvrXvLU34PxCkeWqid10ma9aDPyIpjtkLSXkxZpNcddhsWZz4IRS6F8oaEmCrgi0JOHJhTK7fZ8n04HkT6/X2Xdinl6vjyk+1m2Lsj2kblvs94Z87UqLQvqtyVbSJBHstB3O1otjg+zXFsoomjIKM2SnVD2/VsOPE55fq43NgT23UB6pRF5rDdk8GFIyFT56djxM0XGCETlnvdi3djpj2vpZUs8mZLPdqZOklc0LVG19pJWz3XHo+iEL5emdqZOYrCSaxfPMknijZI3ef/L5WeLO9i8cVZqZfY1p9fmTYazJa/heB6ePJb4tfTTjehIPqsb/gyzm9ihwbIh/tW5xs+ezWpdfziutPo4XcaXV52NhxMXtPqdqFuWSibHvUC6Z3GwNubY/YK0kv6DbXQcnkvaphQqCBEsRBEFIBARBSKMEBx1opI6MbYJwpVUU6AyhYMHewCdMpF0umuz2PJaLJn+9/YeoWNDtwKRcshf69L0IL/Rp9gVhlNDs+5yeL9B0Y07PS+IfuBGqIm3FEugoVCzBaq3MzX7I2eUKzaHsTG2mnpWqKCyWTVRFGavE8ZMEXVXxk4RrLYeBH3It3Y1kPebrrT67PZ/rrT7bXY3NfYdvGl3mq4WxcEjW2zs5XxoR1ZkGI6LLNj9VLY04ianepQYduOuwkElt/WkJ2cl4fxbZXcJavTBW956t/c9iWphi2o5jkrjbjj/ykL0opmTIfoHsOWfFygqmNkbcF5arIwLLvu5kFU7Ww80upNnjzyaHDxeLw2oiL4pnGpye3XWM7Uwy4alJ3M8a/1lxHBPEx+ZsT88XeWvP4fS8JIM4AS+U9rcu73Jpt0/ZiOk7Pjttl+1Wj1sHLnudiFeutwDwfOmtez7c6gwYuNI+sVCk40u73w8xFY+SKePTqpDCEaoQnF+06dwYcn6xwLUDBwGoClRLJtVCQLVkUmmPl2b+rWd/mV+51OK7zzbQ9hxM3UPTDPY7Q1r9kP3OkOfX11jqBqzU5WrTHcimqe7AYBgmCAWGfkLXCej7AV0nYK/r8uZWl2oad/aCkK4X4AUhm62IS3vy/8qmjq4KaUVAnCSUDZknycaxDU2lbGoYmkqz73C9OWS5cmc3aCXj7WVjvX6USBmBaFyHvWSZnF+uUkollrPkNC1JOLk4ZDGrd3dUDfohAU56u1lCdfzwrkNEJktAs8Rds4zReffdCCeI6LvR2PtPeuKTidq7idFlJR8mz61ganddVCZHL05bYLKVUZO7kQ8SoR7HcM5RODZX4BvXDrh1MOQb16TQcdHQKFk+RUNj4CXEwMBLeO3WgH4Ir90aULVl/Pnw1jN1wJPWjVP5hRgM08TUHAzTpNccEMXQ82TVhR8l6Km92XbxI7jZdjm/WGZ/2OX8YpmfuPF75VCUzXEhtSJw4MZYusqBG3N6zuJWz+P0nMWXrgwQQD+IcbyAg4GP48mE8p4TEkQJe06IrSu4XkxMwtXWgM4w4GprwGLVJoySUXNatWCwUS9QLRg0Bx62rhESM18xOb9aYb5i4gU6ZxdCFqp3ql5+7PQciqbw0kadr1xtcmLeZ658J/lmG44u7vToDAM2DxyGQTBq2jo1dzsxWbX1UZMWjN/A91IWOFky+V4TmFkCBMa83Syhun501yEikyWg2Y5Y29DGwkuHss5ZTC520xa57ILQdvxRJdRR12AsnKOGY7upaQvMtIXjKHKdHOQ+DdM+n3tJAB+14M+S3H3cEsDf/mcwI67t92h2fa6ZUkStbquI1J5bKnK94/LMcpG3ttoAGCpsVA22ew4bVfllCdLS6iCEkhYRA0YS0ey6+GFMs+uiyjnbqGkHw4sbdX718gEvbtT58rUD2cwVxLQGcvJTaxDJOL4iCf+Ln/j3vLLZ50PrJf40oImEjuOhiRLVosVcwaRaNDk9V6Q56HJ6rshrWz32+wGvbclzswyVJImxDJWSYdAom5RMk4oZc8P2WCyZaIrAC2M0RR7oXMHgjbjHXMFgvVYgiOFDa3UaJYta0RzFt/0ITjTuJFo/SuRw8CjhY6fmUFS5CEze5NkZs5qS4KRduEtlm74fsVS2x0IEW21nlEeA+yvPe5Tm/DRMShdkf84S4pjKawaTBDRtZq2pjgvATXv+NELKLgiOH05t4MqGbdbqhakL1FG7qGnHNg1HDXLPYpqXfi8J4KN2H7PsBh63HcO3/xnMCC+OCRNpAXYHEV4ordGSHa3XWi4rZZ39QcBKWacXCBQVeoH8gh4KqwUxBIqGSkigaMRxjBNAHMfUSwXK7pB6SXrFqqZQtg1UTWG+ANsDmC/AX219Xoqntca9/CcWy9zqBDyxKIlop+fhh9KuN0qUbBVNUVmvF7jR8aXcQWtIGEWkERjmCyYLFZv5gsknz85h6hqfPFNjr+2y2fW5sFQhVqXu/aF42qu32txoObxqtvnU2SVONEqoqnrHDX/orU9it+ey23OpWCon5oojWYLJm/xWx6HvBdzqODy7WhsN+p7UzTnEpC78HTfwe5QEyP7frBOnssgSNennpdyFpKeFoSaPf3LX8m7dsZPPnyTBu3nC2UqojfkSb+90udl28PyIF0403lX//qhrerfwzt2QfdysFUfTFpL7nQCeZcF63BLAx4b454omW72QudQ784KAJJb2nR2f3U7IO1qHrh8SANuDgKqZ4HngePKmWilptFshKyUNPwrluMQoxIk0FAFOBBcWbK4euJxopIO+b3XZPgh4Q+0yDOT83J6vjFXr/Jcrv8DF/SHn5gt8Z9dlu+ew0031mBMhxwEkgqWyCYq0F/e6dN2I3YGPJkBRErTUgSpbKnEs5wE/tVInEipPLVd4a/cGtqbR8kM+fqomdfBTTzcIEgZuQBAkY/OIq7Y+8g6zA+rnK9aY5xhFEdsHDqcb1hjZZ6t4gDHJ5GkEkPXEjxrmcS+SALO+9jTMSjrTqmAOj++QKCcXiMOfJ+PysxzPNE94soGrckRVzSGOWmBmWXiOKpnM7ixmDaFM0/C/H3mEWV7jg5SvuB94fM7kXbBes7nS9lhPt7sn6jZbvYATdZt39vrEQBDH+L6M3fs+CFN6giL1CCu2hq2GVGwNJ1LROh5F20RPwyUFTbDXDRAJ7HVlvF0Kbkn7094XpGfvjXv5K2WNt3YiVsoaL19tcqM15OWr8riXyhoX9wVLZY1Xb7a42RzwakHF82THsefJbs2hD9tdmVfY7wckicJ+P+Dibp9rrQGGojBfsDCNIfMF646O2I2GzWbHYaNh0/ci3DCi70W8tdPhZsfF9UMMReHidg9TgbNL5bH/cwOolwzcYLya45XrB6M4/sZ8aWrJ4Vcv7fHarR7PrsqKj2lDumchiqO81aMGgM+CWatOso/Lxr5hPDQxbSE56HvUi8ZI8nkWZHcPrb47agBbW62N7RqyeZZZQxjTPN7se06+1rT8QRZHxfunLWST1zDHe8exuWpdNyaJBd10cHoYK5iqShjL8sUIIIlpFKHpQaMIbSfCQ1qArb6PG0lrKAkhMPR8FislTENg6hr7/QGtYcx+Xyb/ziyWaDtdziyWqFy77eX/zRd/nS9fP+DjJ+p09/oYmkrXjWmUDDTFo5beIDfaHn4Yc6PtEYYh2x2Pt7UuL5ycY7Pnc3K+RHPgSXXQ1DusWRqmKu1OZ8BbtzpUdIXn1htYps4TC1Jd9JAYnlytjXXh6oqQE7hMjZ32kK9daVI4M4eiquz1XPZ68tjiKObWwZCVksH55RK9IOD88nhDzlFiX1liuNrqs9UZUrIEz6zXR574JNG/30aibHPYrLgXr3Sa3IF84Ls3fWUlH47CZJPU4Y4h2wCWbfgC7sgl3O3zmJVQJwfJZM9tFi//qHj/kdftMQq7PAocG+JvDlz6XkBzcBhCSQiTGJKEZk96+c0eFGxZxdP3YSed1n5oWx25QLQ6MbouH9fsJ5yaV9AEFAyF7b5AU8BL5Bf5L1z7PdKzv5Z6+Za05aJBtWBTLhp4N0OGfoDnh5yar3GzG3AqrclPkoQollZTVRCgqSq2oVE2pEf4yTMLuEmTT56RU64WqzZzFYfFqk0UC0xdJYoFURRxszPgdMPiN692uNYa4PsxT67WeHJioDeJACG42fOIE7jZ89io2wiRjEZR9rwYP0zoeTErqjKK62dv+Emxr2y4KJtYXC5b3GzLCWBZAnxnpzvmEd5LJU+WXGbVicmS06xe8b3oz0/zeLML1FGhouyciSzxPrNc4XVkJ/QkoWcJ9fJubzT7oF4yZwqRZRPh74m4U1za7Y5kL1aqhbEk+N3GN97tuuWe/vvDsbl6rYFDz5cWQFMFUSLQVEE7rddsR9Dvy593++OdtiBHJnYdaXupJIMTgBsEeKFU//y/Bz8oiX4A0BmL5f/4E/+Wr13v8NKJKk+GET3XIwojqiWLoulSLVk4IYRRjJNWEM2XdN5pSqsrGluDgOWKTRjHqKogjGM+8cQi1UqB84vS2y4YOicbRQqGjqULwhCqtsqXrxxwZW+AjsKFlRLtYcDZBbnAZAW+vrV5wFeuHqDEEU+vVHD8mKdXKli6xnw5YKEsw2WmLqgWdUxdTO3SnCS9bP7gmfXbicXVegmhaqwc0f0J9ybwdUcuYQZvMUviR2nLZHEvCcAscU/rUcg2fbl+NEbAWd3/LDbmSyM5hMkyy+xnkp04d2axfNe8RMHUmJwodrdrO7nwTQulZXsUOsZ43mjW8Y2z4HErwbyfODZXY6cnb42dnrxBbrYGDN2Ym63B2Mza7PCWQxwK5C4UYc+RNgxgGIKtwfWWw9CXNiukBqmX70LXgtc2m9zsgrXZxA9jNpsDXrNVlssmtqFSt1U293tstges7suPxg2hoGu4IXz4TI2On/Dseo0wToiJqVoGShJzvTXgQkriJ+oW7zT7nKhbvLbVw40idns+VVshjhKqtsKLpxc4s1QdkdTL11tcbzt4fsjNjtwd3ey4/J4XNihY+u168FQ6GeBD641Rqafjh6MkbrbJafKGC2OBbaiE8biHOKlzP60C5P1K+s4a18+SeFYPf1Jb5l5eO4uDgcuVnQENS+NgaN51sZkrW6NjueUPx6ucMtO5pu04jlqQsjLkWbx+s81rt7o8u1rho2fmx97nyEqeGRa+c0vlUY9C2/HHzmcyEX03zEroj1sJ5v3EsbkaZQO6obQA270AN5F2GnSkivJh7UOEgS58IgxUzYcQVA3+kf9HpJfvp0QfQFeVDVjf7f40DmC7oMncK7sdsLUerUHEjf0eIobOwGen4+ElMV6QjOb8nmoUuNX1ONUoMPRDDlyfoR+i6SoLJZtYwG9c2udGa8BvXBJ85zNrvL3bp+OEvL3bR4hYVgaJmNVaiRPzMhY7GeNXBFzfH3KqbvPcepUDJ+S59Spv3Grx9etdhic8Lqw2xuLj2VLPL13cGyVxDUOZ6rVlb/ppMeCsh5r9O9ybx38vBJAltFnI6F5xMAzRNMHBMBwj6Mmk+OGxTOYops0amHYucGf38+Eoyex1ypbdTr7PrCGtLLLvOTn6MVtZNUu/wPtNSOc4RsS/VDLYHfosleSXoJWScMuDAjBE2hDp7RuAiST+w69hHAWEibSjEYkhVLTb4ZwfrPwslwOp1PkLyJi+4962IEPkiqYhCFE0jebQlyMDhz61gk4YRWjp7EYhEoIkQYiEVzbbNHsOr2y2+YMvbnDtwOFko8A3hx6tgT+qPup7Aft9l37NZKFsEcUxFctgv+fT7Pns93ze2OpxcbdPfxjw5GoNN0yo2gZumPDhE3XmyjaLZZNf/OZN3trpoykJ9aLNjaaDqSh3iH1lm7Gm6b9M3qT7nSG/caXJZ07PjUIFkxUgR8WnZ8VRrzcLZiGjScxa9/7hE3UMQ03HRN4mzmnDTiYXvmmzBo46zyxxZkNp2d3URzbqmLo6Cm9NSwjPcs6T7znrYjENs34HHrcSzPuJY3NVrrfkEPPrLRnEOQzfhEip42EAlg4FDTYdWLRhN43jp2sEUSI3pFGS8K+0Hx5NvepGjAakLBdNrrWk8BrA2TmL9k2Xs3MWb+66EICmQ6NgYBsejYJB0VS53HKYLxu4QYKmSvlkgIu7Do4fcnHXYa6oIYSgamkULZ1zi2WKls7JRoWuDycb8iZdrhRYqXgsVwrsDl0KpkrT8dGFQscJOHB8LE3Q80KstPj/VMNm4EWcatgTmvcqAy/AVFWuN/u8vdPDUBKe3aiPyR/bRjrb19DHiHIyOZstAX17u8dez+PlG21UVR1pzj+7Ub+r9z8ZN56VxKeVVr6XuvH3WtUzS917wdSYK1s8pyp3kFg2KZ593UnSnUbCR3nF2efUa8ZYjP6Q3LM5ApitY3rW93y/uJfvQI5xHJsrtR+O2yxawW1rWXJqYazdGe/vpzX+fV/G7RWk/ZTy03SAagTLnQF+CJudVMvFj0BIa6dbCNuE+ZJJueAyXzIJk4SyLUcseoFM4B0OfymZAs+PKJmC04sl9oYxpxdLXN/r8Stv7mGwwKfOLSF0MRrOMV/WmStazJd1NBXe2R2wWrY4GAT4UYwmBGXbYL5sUrblArVcLdB0QparhbHa/4KpslIrUDBV9roOl3f7LBXvTAwaqpre+OONXdlJUACGqo5m6z6xUKTjBjyxUBzTvM/iKO/uXkI4s3qL9yILMDk16267jEkCnFbVM00NExgj3WyV1GG561F183D0RLJpO6NpsfxZavUn3/N+Io/j3xuO7ZVSkCR+aA8x7MkqnmHvzuf8czcdfeiON2D56Qv4MWy1YnykBdhqBniJtKsNhd1+TM1SSFK9/UTEzBctKqbHfMnk6l6fIIb9vrzJi7bJaq1E0TapWSZlS6Nmmby22yWK4fXdPs9szOEFCR1Xrmo9L8GPYnpegqpqLJRNVFVDKCG1goFQBPu9IdeafU7WJPFn2/qdIKAz9HGCgBMNm72+tK9sdhCKnFQG4/LHr262CKKInuuPSQJEcczV/T5z6WJh69K7tHWVZ9ZqowRzs+eOhrrMKgNwL2GfWbf/WYKeFjs/Kgx1VANXlgCzoZZpOvmLRfOuiV4Yl7SYljM56tymXZujdkbZRanjBGNVRu/1Pd8v8jj+veHYEn88YQ/RnrBZVOLUy4/hGX76jv93uD1d/nBjkfaLSRVPzcDQXAzNoNXz6ToBrZ7PMys1TH3AatVCJOmc9LQ6zxYxe70hH16xaTsBPS+g7QR8bK3KVtvjY2tVfuG3r/Glq20+earGR8/M0x267HSGnKiZCCHYbrucrHloJOz0HD60UkolIZSRNERZV3mr22WjanGgKLhBhKkoWLpOtahj6TrLFWs0qWwSuiIY+iG6ItAVQT/9+c1bPS7t9aiYKt9xfhnHD6WSaHV8rGJWA+coGYBpi8L93vIf6RWnOKp8cZqXP7mITCuHzIrBZRflScXTO2QnZiDBWbzvowg1uyhVLX0mvaMH5fHncfx7Q37FjsCX+OGRVz85FGUaogmrIxcEHVBETBRK23FDwkh66V++2uR6q8+Xr4IfuAxCaQFe2erhhDGvbPU47cdcbQ6Yt1Xmyots1Ap4icIrNztsd11eudkB4MregLd2+swXDBYqJkGc0HMDbraG9IcBb+/0+PS5RWKlySdOyaav/YEczLI/8Gk5AapQaDkBiqoQhAk9L8QNI6q2jpuOF8sSgKqqrNUKqGlzWd2WMsOtgctW2+VkXZ7PXs9jb+Cw1xufeRtF0ajKaH2uNCKdycahaYtCtinouY3G+/7sZ/EkZw1DtfouN1sOhiJ4bqMxNbmZ1er3uC0Al02Wv1ut/CwL4Sze91GEOinRPIveUe6Zf7CQE/8RyDZfAXzyLl7+JCbzAl7G9j3Z+dv3YqLYpxdAd+gQx4K+G7LT9tlPE8qHljjC86S9stej1Qu4stfjqdUqe32PnutRMlRIkBa40R7S90JutIecWSing1QMCoZLguwwLpsqemYAeLPn8JWrTT57do7Vis2tjsNqxWan4/CNGy3mLI2ioaOpCkXjTo12xw9HoZpsbbapS+kBMx3kbhoK1YKBaShjYYpJiYFD0mn13TF9oMkk4yEJ7vV8tnoOpXv0/u7WMfpunuRRZZLZ47y+Pxg1LB1FyNMqZ7LJ8qEXTiXQWbuNs+9zL0nsgqmxXLHfNdk+TVgtx6NHTvwTyHr5k0NRZsFkt6+asX1PKn/2vTDt7IWdNsythAQhmCJkqWxw4PgspQ0Hp+bLtL0+p+ZLvLMnm83CRNDqulze73G6ZrBWL7A9CFirywau5ZLBO6rCcsnA0KFo6Bg6LJZt5ssei2Wb37rSZqfj8VtX2nz8yWW2eh7Egq2ex3K1QNUyMXWF12612e16vHarzaeemENXBCVTigJlCWC74+CmSUbXj2gOPVZ8k+97ZpW5ysEo8bxRK7DT89ioFcbCFKaq3FViIIgTSpZKEN8py9zsuaPYd9lUMBWVsnmnnOUspZX30jF6lI5QNsY+rXdhklxnqZw5akGaJbk8mYt4v0nsw9/vttjcy2u/X+RVPrMhvzITyHr52Tj+1YnHyYGKt2P6hz9byNDOoWJ9NvSzXCnS9QcsV4oUjAH9A1iug5+oGLq0F9aKNL02F9bkPuO5Ew06nrRuELI78FivmXxrt8/QD/nWbp/vfmqZQSQ4t1wFYKFqc3LOY6FqY+oGZVvF1A1udbvcbDncqpvUbY2r+wOeWpAkt1I2ubg9YKVs0vMCgjii5wXUCxqGqlIvaOz2fAaB7AIGxso5d3se212XiqVh6QolQyOIE6kDlBEJ2xt4aKrC3sAb8+yHnkxC28Y4YWzUC6OdxCSuHwzougHXDwYsVwojbf9JTCPbbEXNvTRpTb5u1kvP7iDGPGSY6rHfSxdsFrMkl+/mpd9tHsBRBDpt4ZgM59wR3nkI3n9e5TMb8ivDdC9/EiqSwFUk0R+SvYYM7ehAUZf6PcW03bdiwJ4vbclI8CNpF4pVDtwOZ+eqtN2AOAFTE/S9BF1R6XvSwy0bGnNlg7KhsVwtsNiLWK4WGLohl5p9VooGL52s48YxL52UXvVypcByVdbxbzRswjhho2HzL14e0HI8ruwP8KsFdA12Uvno+XKBl05Lq6kCXXUpWwYXVmu0nYQLqzX6XoShKhRSqeC9nozfVwwNXUlw/RBdidmol6ZW6BiKwsCTEs9ZZAePfOhEfYxYpg07qVoG+wOfqnX0cI9pMe1sRc1RTVrTwiGTxJYNoWSHkFctfaxkcxZCupek5bSwy+RxHjW3eNpQ+KPeJ5u4Pqo562EQcZ5LmA058TPdy59E1ns3kXF7ndtev4Ic3k7GmumqYGrw6q0hXizt+aUCfgRtN+DEQoUDD04sVDCUGERC3ZZBot2ex07XZbfnYekKCgmWrrBYrTCMBaeWytzsOAzdkJsdhw8BJUtBV1RKlsJKtYAfJ6xUC6xULDbbHisVC1WJcf0IVZE3/HrdHs22vdrs0xn6uEGIpqos1iw0VeWJJZm8PZ0qh2pKgpt262qqzkrNRlP1sQqdyeSsbWg07qIzn+1UndXzPbNYHk3tOooop1WUTBuPOIlpIYvJksks6WSHkHecYKZRg/czTHFUaedRXvosHvosA+8fFfIqn9lwbK/QLF5+ttZ/EtmkbQVwkTIPYVrHeWh1XaCQoOsCLU5k564KBwOfoS/tj3xyHhTBZ8/M8eXL+xR0FZG+637P5WAQsN9z6Xg+B32fnb7Hp59Y5FbP47nVCpeaA64fOMyl24zrLZf9nsf1lsuZxdsNPh89Pc8wgY+enmez7bBU9ZmvSC/Yj5LRbNvWMEBVBa1hwNn5El0/ZKFsyWlafjCaB5sl+2wcG26HDBzCsXI/y1BZKFlYhjpGIJPyzYc46kaetZxzmhc4K2nNGrLIHk/B1Mb0aGYZNTgtTDHrKMlpi9BR53OUV/5ecwk5vn3wSIhfCPG7gL+GjJr87SRJfvJBv+dkaeYsXv5hCOfwIk1r+rJSuWbLhn5ajXNYx9+wTfYGLg3b5FRD46s3+jy7UqIXxJSdiHLR4ORimc8oKifnC3zlShMhFESq1TPwfQZewMD3OegFBMQc9AKud1ySJOF6x2W5anNiEIxm4QohSESCEII3brb51Ut7fOfZBWxL44nFMralsTFXoOuHbMyluv+ZCpusTottaKNpTV+73hqrvMmS/aRMQ3Y4R7bcL/v7NK90Mj4+C+kdFdudtnjMSlrvN2Qxqxc6LSF71LndiwbO+/WKj1o4HhTypO39xUO/gkIIFfgbwPcCm8BXhRA/nyTJtx7k+06WZs5Sk28pshvXSl3+ogq9SFpbg10PFk3Q0x28LuD8ss63tgPOL0vv+/RSmaaXcHqpDELhlJMwVy3ymYUC/+L1Xb7/wuKY5O1KvcBK32clTWbGgKoqxEi55RtdjxN1Odc2QergP7dWR1FvC2qdWyzQdUPOLRb4+vU2fpDwzn6PTz+xiKG4VCyDJxct1MxzJgn6UD8mW11yplGgNfA405DHNi0uPqkxn5VoniWMk9XzOTVfnon0HmQX76PAvVToPCw8iuuWJ23vLx7FFfwY8E6SJJcBhBD/GPg8cN+J/6jSzFlq8tfrOpeaAev1lMTrCq/vx5yuKzTqZcIbHZ7eqOIMQwbRgPV6kc89vchctceLJ+SUorOLFdpOwtnFCut1GyFUPnuuwa2Oy/nlCqGijiUmXzrVwDYNnlmRAlmn58vs9iNOz5cpWTrdEM6sVPnOJxeZr1g8s1wZC9MArNbLCFVnpWJhKApOuM8nTzUgiWWUOYnH5Hhherv+JLEczss9CtlwzlFlktMIJJu0vdeQxbcjZlnIZh12chS+Hb3nPKR0f/EoPvU14Ebm903g45MPEkL8KPCjACdOnLinN5q1NDMry1wwYN+HeQN+4GMn+cU39vldF+YBeHJtjkHc5cm1ChVboz2MOTNXYPGUhfetfb7r6XlePL2IZVo8uyo96ZdOzWEZBs+uljm9UGZ1rsTJepFff2uHzbbDYmm8WeiZ9QarjdLoC/7JswtUCna6EAiE0Hh2tTymnvjVS7ujqVZnl8pjC4llqPxArYitq7xyrcVu32GxZ9Ao2VMTjpMSA9M89GkEkt091LyQ91omOWvS9v2S/cMiwFnfZ5ZyzPtBgPfTe35Y1/BxWNg/SHgUV/JupQ13CH0kSfJF4IsAL7300tFCIFMwSzgHYLUGl9vSrtbKvLLV4+mVMicXynwPCicXJGktVWzqBY+lis0LJ2ogdD55psZON+DCapmSZfHMWo3VemF0Yz6zXme1UbwjbPLS6TlsW3/XcX6TC8Hha2UxOdVqGllbhkLNlvao8sdpSc/J150lvpxNcs6Kh3WT3wsB3gvRzfo+s+Qi7se1uZ+CaXkI5tsTj+KT2gQ2Mr+vA7cexBsdFc751Mkyb+4MeGqpyFzZxKPLhfUKT69UMEyTF09UMBSVoR9iKDK0cXapTNeXZYlnFmvYlsVKxSKI2zQKBo3S0WWB2Rv4Vns4CrUclcibJbE4WVGTRfb5z683qKajEo8ikFm9ynvxPj9IYYZ7Of4HKQU9Dfd7IbyfJZh5CObbE4/izvsqcE4IcRq4CXwB+OEH/aYastLm8IS/8NIG/+pbu/y+pxfZ7np03YjnVqp8/4fWOb0kpQOuHwxYrRcQaUj7yaUqqqZydq405jFXbZ2lWuGuLfmTdeyHN3C2eWjWJOU00px1QtSsj5uVaO6FkI5S3nzYuJfjfxySyPeTrD9o55ZjNjz0TyxJklAI8ceBf4ss5/y7SZK8/qDf9/ufqvFrV9p89nQNgLXFCl8o2dQKOprh8owfsz5fHpuIZBvaSG8exmPPWRwlopUtkzxqiPgsW/kHua1+WJ54lnS+HcMEjwPRPQ7nkOP94ZF8+kmS/Bvg3zzM9/zchVUiXedzTywAjOmdG4oYyRpM1pZnPeRpCbejbqJZ6tYPX/vd8CC31Q+LhGcp58yRI8eDxbFZ9m90HHShcqMjO6yysgJ3dI2+j/j2u5bbfYBivVkcl3rwHDlyHCPiv7BY4kpzyIVFWQJ5VMni+4lvH0WgsxDdo0p+5iScI8fxwd1kaB4bPL+goaU20TReOjVHoklye5Cj4LJhnKEXcvNgKGP/M+Bwx3Aw9N/9wTly5MhxD3isXbxnNhoMoy7PbFTukBt4WKGN9xo7z8vjcuTI8aDxWBN/ydKwTJWSpVG0jZnkBu433muzTB5yyZEjx4PGYx3qsQ2D+bKFbUh99I7jjySFH1ZI5YOmV54jR44cj7Vr+dFTdRRF5cUTFdqOP5IKnq9YDy2kkoducuTI8UHDY038L55e5MxSjXrBYKvtjImSPayQSh66yZEjxwcNjzUjZUn3KFGyHDly5DhOeKyJP4vc886RI0cOicc6uZsjR44cOe5ETvw5cuTIcczwWBP/e+2azZEjR47jgMea+LfaDlf2B2y1nUd9KDly5MjxgcFjTfxZLfwcOXLkyCHxWJe5ZLXwP0gj/3LkyJHjUeKxZsB7GZySI0eOHI87jg0D5tIJOXLkyCFxbIg/b+DKkSNHDonHOrmbI0eOHDnuRE78OXLkyHHMkBN/jhw5chwz5MSfI0eOHMcMOfHnyJEjxzFDTvw5cuTIccyQE3+OHDlyHDOIJPng69gIIfaAa/f49Hlg/z4ezrcj8muQX4Pjfv5wPK/BySRJFib/+G1B/O8HQoivJUny0qM+jkeJ/Brk1+C4nz/k1yCLPNSTI0eOHMcMOfHnyJEjxzHDcSD+Lz7qA/gAIL8G+TU47ucP+TUY4bGP8efIkSNHjnEcB48/R44cOXJkkBN/jhw5chwzPNbEL4T4XUKIt4QQ7wghfuxRH8+DhhBiQwjx/wkh3hBCvC6E+JPp3xtCiF8SQlxMbf1RH+uDhhBCFUL8thDiX6e/H6trIISoCSF+VgjxZvp9+ORxugZCiD+d3gOvCSH+kRDCOk7n/254bIlfCKECfwP4fuBp4I8IIZ5+tEf1wBECfyZJkgvAJ4D/Jj3nHwN+OUmSc8Avp78/7viTwBuZ34/bNfhrwC8mSfIU8CHktTgW10AIsQb8CeClJEmeBVTgCxyT858Fjy3xAx8D3kmS5HKSJD7wj4HPP+JjeqBIkmQrSZKX0597yJt9DXneP5U+7KeA3/9IDvAhQQixDvwe4G9n/nxsroEQogJ8Fvg7AEmS+EmStDlG1wA5XdAWQmhAAbjF8Tr/I/E4E/8acCPz+2b6t2MBIcQp4MPAl4GlJEm2QC4OwOIjPLSHgb8K/PdAnPnbcboGZ4A94O+l4a6/LYQockyuQZIkN4H/DbgObAGdJEn+X47J+c+Cx5n4xV3+dixqV4UQJeDngD+VJEn3UR/Pw4QQ4vcCu0mSfP1RH8sjhAZ8BPg/kyT5MDDgGIU10tj954HTwCpQFEL8yKM9qg8WHmfi3wQ2Mr+vI7d7jzWEEDqS9P9hkiT/LP3zjhBiJf3/FWD3UR3fQ8Cngf9ACHEVGd77biHEP+B4XYNNYDNJki+nv/8sciE4LtfgdwBXkiTZS5IkAP4Z8CmOz/m/Kx5n4v8qcE4IcVoIYSCTOz//iI/pgUIIIZBx3TeSJPkrmf/6eeCPpj//UeBfPuxje1hIkuTPJ0myniTJKeRn/itJkvwIx+sabAM3hBDn0z99D/Atjs81uA58QghRSO+J70Hmu47L+b8rHuvOXSHE70bGe1Xg7yZJ8r882iN6sBBCfAb4deCb3I5v/zgyzv8zwAnkTfEDSZK0HslBPkQIIT4H/NkkSX6vEGKOY3QNhBAvIJPbBnAZ+E+Rjt6xuAZCiL8A/BCy0u23gT8GlDgm5/9ueKyJP0eOHDly3InHOdSTI0eOHDnugpz4c+TIkeOYISf+HDly5DhmyIk/R44cOY4ZcuLPkSNHjmOGnPhz5HhAEEK8kJYUv9fn/TshRD4UPMcDQ078OXI8OLwAvGfiz5HjQSMn/hzHBkKIHxFCfEUI8Q0hxN8SQnxcCPFqqtVeTPXbnxVCfE4I8WtCiH8uhPiWEOL/EkIo6Wv8TiHEl4QQLwsh/mmqi4QQ4qNCiN8UQrySvkcV+J+BH0rf74fS9/i7QoivpuJpn0+fawsh/nF6LP8EsB/ZRcpxLJA3cOU4FhBCXAD+MvAHkyQJhBB/E/gt4EnAQpLtZpIkfzHt+P1F5ByHa+nPfwv4d0jdl+9PkmQghPhzgAn8JPAm8ENJknw1lUUeAj+C1IT/4+kx/K/At5Ik+QdCiBrwFaSC6n8BPJskyX8mhHgeeBn4RJIkX3vAlyXHMYX2qA8gR46HhO8BXgS+KuVbsJEiXf8zUtfJRQ7vOMRXkiS5DCCE+EfAZ9LHPA38+/Q1DOBLwHlgK0mSrwIcKqKmj8nidyIF5P5s+ruFlA/4LPB/pM99VQjx6v066Rw57oac+HMcFwjgp5Ik+fNjfxRiGanhoiOJeJD+1+RWOElf45eSJPkjE6/x/F0eP+0Y/lCSJG9NPP9u75cjxwNDHuPPcVzwy8AfFkIswmgG70ngi8D/CPxD4C9lHv+xVNlVQYp9/QYyNPRpIcQT6WsUhBBPIsM8q0KIj6Z/L6eTn3pAOfOa/xb4b1PFSIQQH07//mvAf5j+7Vng+ft+9jlyZJDH+HMcGwghfgj480iHJ0DK8r6QJMkfTGc0/2b6/zHwE8gpVs8hifm/TpIkFkJ8N3KBMNOX/R+SJPn5lPT/OjKE5CA14Q0k2evAX0TKAv9VpDa8AK6myqE28PeQYaRvAE8AfyKP8ed4UMiJP0eOCWTlnB/xoeTI8UCQh3py5MiR45gh9/hz5MiR45gh9/hz5MiR45ghJ/4cOXLkOGbIiT9Hjhw5jhly4s+RI0eOY4ac+HPkyJHjmOH/B8o3daazPmUlAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x_test_scaled = data_pipeline.transform(x_test)\n", "y_test_pred_dnn = dnn_model.predict(x_test_scaled)\n", "dnn_mse = mean_squared_error(y_test_pred_dnn, y_test)\n", "print(np.sqrt(dnn_mse))\n", "visualize_model_preformance(dnn_model, x_test_scaled, y_test, s=3, name=\"dnn_gen\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }